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Abstract 

Four genotypes of B. napus (cultivars Topas,  Sentry and Polo, and the experimental line 

04C204) varying in seed oil content (SOC) potential (from 42.2% to 50.0% seed DW) were 

used to study C and N partitioning among shoots, roots and soil, as well as nitrogen use 

efficiency (NUE).  Topas, with lowest SOC potential, had higher biomass accumulation in 

shoots and roots and higher NUE than 04C204 with the highest SOC potential. Although the 

absolute amounts of biomass and N accumulated in Topas were greater than in 04C204, the 

percentage of 13C partitioned to shoots was lower, and the percentage of 15N partitioned to roots 

was higher. These results imply that SOC may be more associated with the proportions of C 

and N partitioned between shoots and roots, than with absolute amounts accumulated in these 

organs. This study also indicates that while Topas fixed the most CO2, it also had the greatest 

nitrogen fertilizer demand, while 04C204, with the highest SOC potential, had the greatest 

proportion of whole plant C retained within shoots of all the genotypes.  These results suggest 

that a breeding strategy to optimize B. napus as a biodiesel feedstock may well be selection for 

maximum SOC at a minimal investment in vegetative biomass (and hence a lower N fertilizer 

requirement).  

 

Keywords: carbon, nitrogen, partitioning, seed oil content, Brassica napus. 
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1. Introduction 

 In recent decades, the rising cost of petroleum and the increased concern about greenhouse 

gas emissions has led to increase in the demand for plant-derived oils as renewable alternatives 

to fossil oil for use as biofuels and in industrial applications. The world production of vegetable 

oil increased by 61% between 1997–2007 (FAOSTAT, 2008). Replacing petroleum diesel with 

biodiesel could reduce the accumulation of CO2 in the atmosphere (Peterson and Hustrulid, 

1998). The production and subsequent consumption of biodiesel results in less greenhouse gas 

emission compared to conventional diesel (Hill et al., 2006; Hirel et al., 2007; Peterson and 

Hustrulid, 1998). However, the supply of vegetable oils today relies upon only a few crops, such 

as soybean, oilseed rape and palm. The restricted supply of feedstock for biodiesel production is 

one of the biggest challenges in the industry. There is thus a considerable interest to improve oil 

productivity and plant growth efficiency in the oilseed crops specifically for biodiesel 

feedstocks. 

Oilseed rape or canola (Brassica napus L.) is a crop that is grown mainly for its high quality 

oil for the human diet. It also is a promising crop for further development into a major feedstock 

for biofuel production because of its high seed oil content (30 - 50%) (Sana et al., 2003) 

compared to some other seed oil crops, e.g., soybean (18-20%) (Liu, 1997). The production of 

oilseed rape has become second only to soybean oil in the world supply (Rayner, 2002). 

However, it is well known that the nitrogen (N) requirement per unit of yield in oilseed rape is 
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relatively high compared to many other crops, such a cereals (Chamorro et al., 2002; Hocking 

and Strapper, 2001; Scott et al., 1973). The application of N fertilizer can have negative and 

unpredictable effects on the environment (Chamorro et al., 2002; Erisman et al., 2007). It has 

been reported that N2O emitted from N fertilizer applied to crops has made a great contribution 

to the increased concentrations of N2O in the atmosphere (Bøckman and Hans-Werner, 1998). 

Thus, optimizing N fertilizer utilization by oilseed rape is an important factor regarding its use as 

a biodiesel feedstock crop. Another important factor in this regard is the distribution of carbon 

(C) and N among plant parts (e.g. seed, shoot and root) and how much of these assimilates are 

exuded from the roots into the soil. Crops that contribute to long-term C pools in the soil can 

have a positive effect on the global C balance and this factor is often an important component of 

lifecycle analysis of biofuel feedstock (Lal, 2010; Tilman et al., 2006). Changes in C exudation 

from roots can also affect the composition and activity of the microflora in the rhizosphere 

(Hartmann et al., 2009) which might affect N2O emissions from the soil (Sey et al., 2010).  

In the present work, four genotypes of B. napus (three cultivars and one experimental line) 

varying in seed oil content (SOC) potential, i.e., cv. Topas (42.2% ± 0.3% SOC), (Agriculture 

Canada, 1987); cv. Sentry (44.6% ± 0.2% SOC), (Rimmer et al., 1998); cv. Polo (47.2% ± 0.1% 

SOC), (Rahman et al., 2001) and experimental line 04C204 (50.0 ± 0.6% % SOC), (P. McVetty, 

unpublished data); were studied.  For this study, SOC potential refers to the mean oil contents 

and ranges provided in the above previous reports.  The range of SOC for these genotypes is 
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wide, (7.8%) and each genotype is significantly different from all other genotypes used in this 

study. This study focused on C and N partitioning during vegetative and early reproductive 

growth of these lines and plants were not grown to maturity.  The objective of this study was to 

determine if SOC potential influences carbon and nitrogen partitioning, as well as nitrogen use 

efficiency (NUE), among these genotypes in ways that might influence improving the plant’s 

potential as a biodiesel feedstock crop. While this study does not address actual oil yield (i.e. 

SOC multiplied by the seed yield per ha), experimental line 04C204 with the highest SOC 

potential, has been shown in field studies to have had the highest seed oil yield of the four B. 

napus genotypes used in this study ). In three separate greenhouse experiments, these genotypes 

were grown to assess dry weight, total N, and 13C and 15N partitioning at three growth stages to 

determine if genotypes with different SOC potential also have differences in assimilate 

partitioning between shoot and root and between the plant and the soil.   

 

2. Materials and Methods 

2.1. Plant materials and growth conditions: 

Seeds of B. napus cv. Topas, cv. Sentry, cv. Polo and the canola line 04C204 (courtesy of P. 

McVetty, University of Manitoba) were sown in 3 L plastic pots containing 2.5 kg sandy loam 

soil (68% sand, 23.4% silt and 8.6% clay) from the Annapolis Valley, Nova Scotia. The soil pH 



 

 

6 

 

was 6.9 (soil:water ratio of 1:2). Soil analysis indicated the following availability of nutrients in 

the soil: 14 mg kg-1 N (Nitrate), >60 mg.kg-1 P, 106 mg kg-1 K, 3 mg kg-1 S, 55.4 mg kg-1 Fe, 

1200 mg kg-1 Ca, 236 mg kg-1 Mg, 24.7 mg kg-1 Cu and 5.5 mg kg-1 Zn.  

The soil in each pot was covered with black plastic disk in which there were five holes for 

watering and ventilation (these holes were sealed during 13C labeling; see below). Seeds were 

sown in the center of the pot and a single plant was grown out of a central hole in the disk. Plants 

were grown in greenhouse located on the campus of Saint Mary’s University in Halifax, NS, 

Canada (44°38' N, 63°35' W) with supplemental lighting to maintain a photoperiod of 16/8 h 

(day/night). The minimum photosynthetic photon flux density (PPFD) at plant height supplied by 

the supplemental lighting was 300 μmol m-2 s-1 provided by 600 W SON-T Green Power lamps 

(Philips, Belgium). Temperature was set at 25/18oC (day/night) and controlled by heating and 

ventilation. In the first two weeks, each pot was watered with 100 mL of one-half strength of 

Hoagland’s nutrient solution daily (Hoagland and Arnon, 1950). From the 4th week on, each pot 

was watered with 200 mL per plant daily. 

2.2. Experiment 1 – Biomass accumulation  

B. napus cv. Topas, cv. Sentry, cv. Polo and line 04C204 were grown under the conditions 

described above. The plants of each genetic line were harvested at the three growth stages (Tab. 

1). At harvesting, shoots were separated from roots, soil was removed from the roots by gently 
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washing, and the plant materials were then dried separately at 80oC for 3 days. There were 6 

replicates for each sample (1 plant/sample). 

2.3. Experiment 2 - 13C and 15N labeling and partitioning at three growth stages   

In Experiment 2, B. napus cv. Topas, cv. Sentry, cv. Polo and line 04C204 were labeled 

with 13C and 15N at the three growth stages used in Experiment 1 and partitioning of these 

stable isotopes was monitored to observe short-term effects (3 and 10 days, respectively) on C 

and N partitioning Due to the limitation of the size of the labeling chamber (see below), the 

replicate number for each B. napus genetic line was limited to three. 

Plants were labeled with 15N by applying 200 mg of K15NO3 (15 atom % excess) in 200 mL 

of water to each plant 7 days before 13C-labeling. 

Before 13C labeling, the disks covering the soil in each pot were sealed with UHU® Tac 

Adhesive Putty (Saunders Mfg. Co., Readfield, ME, USA) to prevent access of 13CO2 to the soil 

and root zone during labeling. Twenty four pots of plants were placed into a custom -designed 

13C-labeling chamber (Fig. 1) with light, temperature, and ventilation control. Light was 

supplied with two 1000 W high pressure sodium lamps (Philips, Belgium). The PPFD in the 

chamber was 350-370 μmol m-2 s-1 at the level of top of the pots. Temperature inside of 

chamber was maintained at ~28oC by pumping the air in the chamber at a controlled rate 

through a brass coil immersed in an ice bath. Moisture which condensed in the cooling coil was 
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removed via gravity feed through a T-piece, thereby partially dehumidifying the air before it 

was returned to the chamber. Hence, temperature and relative humidity (~95%) in the chamber 

were regulated by controlling the pumping speed of air through the cooling/dehumidifying 

system.  Under these conditions, the CO2 compensation point of the plant was determined in 

preliminary tests to be approximately 75 µl L-1. The CO2 concentration in the labeling chamber 

was monitored by a LiCor-820 CO2 gas analyzer (LI-COR Environmental, Lincoln, NE, USA). 

After the plants were placed into the chamber and CO2 had declined to approximately 75 µl L-1, 

200 mL of 1 M Na2
13CO3 (99 atom % excess; Cambridge Isotope Laboratories, Inc., US) 

solution was injected into 200 mL of 3 M H2SO4 solution in a flask at the bottom of the 

chamber by a peristaltic pump at a controlled rate to maintain a CO2 concentration of 

approximately 400 µl L-1 in the chamber. Once 200 mL of 1 M Na2
13CO3 solution had been 

completely injected into the chamber, the plants were given time to photosynthesize until the 

concentration of CO2 in the chamber had declined to approximately 75 µl L-1, previously 

determined to be the CO2 compensation plants for the plants within the chamber. Then, 

injecting 1 M Na2CO3 to increase CO2 concentration in the chamber to around 400 µl L-1, and 

letting the plants assimilate CO2 down to 75 µl L-1. This process was repeated twice. The total 

labeling time was approximately 5 h. After labeling, the plants were removed from the labeling 

chamber and, except for the immediately harvested plants (see below), were placed in a 

greenhouse and were grown under the conditions described above (section 2.1). Three control 
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plants for each of the B. napus genotypes for the labeling experiments were grown under 

exactly the same conditions, but were not labeled with 13C and 15N. 

Immediately after 13C labeling, three labeled and three control plants from each of the B. 

napus genotypes were harvested separately to provide “time 0” samples. There were three 

replicates for each sample (1 plant/sample). Shoots were removed from roots and then, each pot 

was immersed into 4 L of water. Soil was gently removed from the root systems, and the roots 

were washed another two times in 1 L of clean water. The shoots and the clean roots were dried 

at 80oC for 3 days and weighed (as dry weight patterns in labeling Experiments 2 and 3 were 

the same as in Experiment 1, data is not presented). Dried shoots and roots were pulverized into 

a fine powder with a Thomas Wiley Mini-Mill (Thomas Scientific, NJ, US) with a 60 mesh 

delivery tube. Subsamples of approximately 20 mg for each plant part were analyzed for 13C 

and 15N (see below). 

To sample the amount of 13C and 15N labeled materials that may have been exuded from 

the roots, the slurries from the root washing were combined for each plant and mixed for 10 

min. A sample of 200 mL of the combined slurries was filtered through Whatman #1 filter 

paper. A sub-sample of 100 mL of the filtrate was dried at 80oC in oven. The dried matter 

containing water-soluble solutes and filtrate particulates was re-suspended in 5 mL water and 

kept -20oC until analysis for 13C and 15N content. 
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Three days after 13C labeling (and hence 10 days after initiation of 15N labeling), control 

and labeled plants were harvested to determine the heavy isotope partitioning during the 

“chase” period (i.e. the time between labeling and harvest) among shoot, roots and the soil. 

Samples were handled as described above for the materials harvested immediately after 

labeling. 

Total N content and 13C and 15N analysis of plant samples were conducted at the 

Agriculture and Agri-Food Canada Research Centre at Lethbridge, AB, Canada using a Carlo 

Erba NA1500 combustion analyzer (Carlo Erba Strumentazoine, Milan, Italy) interfaced to an 

Optima Mass Spectrometer (V.G. Isotech, Middlewich, United Kingdom). Analysis of 13C and 

15N analysis of soil extracts were carried out at Stable Isotope Laboratory, University of 

Saskatchewan, Saskatoon, SK, Canada, using a Costech ECS4010 elemental analyzer coupled 

to a Delta V mass spectrometer.  

Amounts of 13C and 15N (in μg) among shoots, roots and soil at each sampling time was 

calculated from the measured atom % of the heavy isotopes in these tissues as follows: 

i) atom % excess = (atom % in labeled sample) – (atom % in unlabeled sample) 

ii) ug 13C or 15N excess = atom % excess x (C or N% in sample) x (mg DW of component) ÷10 

Partitioning of 13C and 15N in shoot, roots and soil is expressed as a percent of the total of 

the amount of labeled isotope recovered and was calculated as follows: 
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iii) (μg of 13C or 15N in component) ÷ (μg of 13C or 15N shoot + root + soil) x 100 

2.4. Experiment 3 - 13C and 15N partitioning at three separate growth stages in plants 

labeled once at growth stage I  

 In Experiment 2, plants were labeled at three growth stages and the “chase” period was the 

same after each labeling (i.e. 3 days for 13C and 10 days for 15N). In Experiment 3, the same 

genotypes of B. napus were used (cv. Topas, cv. Sentry, cv. Polo and line 04C204), but the 13C 

and 15N labeling was carried out only once (hence the chase period varied with when the plants 

were harvested). Experiment 3 allows longer term observation of genotype effects on C and N 

partitioning than Experiment 2.  The plants were cultured under the same conditions as in 

Experiment 2 and the methods for labeling and sampling were also the same as in Experiment 

2. There were three replicates for each sample. The 13C label was applied at growth stage I 

(Tab. 1). The 15N label was applied 3 days before the 13C labeling. Aside from harvesting 

immediately after the application of the 13C label, samples were also collected at growth stages 

II and III (Tab.1).  

2.5. Nitrogen use efficiency (NUE)  

 NUE in the present work was defined as units of plant biomass produced per unit of N in 

shoot and root tissues, i.e., NUE = mg DW mg-1 N. 

3. Results 
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3.1 Experiment 1 - Biomass accumulation 

 Biomass accumulation in shoots or roots was not different among genotypes at growth 

stage I (Fig. 2). However, at growth stages II and III, biomass accumulation was significantly 

higher in the shoots and roots in cv. Topas compared to other genotypes. The ratio of root to 

shoot was also significantly higher in cv. Topas than in other genotypes at these growth stages. 

The lowest ratio of root to shoot occurred in line 04C204 at growth stage III (Fig. 2).  

3.2. 13C and 15N partitioning in experiment 2 

 In experiment 2, 13C labeling was conducted at growth stages I, II and III, respectively. 

Following 13C labeling, 13C was “chased” for only 3 days before harvesting shoots, roots and 

soil at each growth stage. At growth stage I, there was no significant difference in 13C excess in 

shoots, roots and soil in all genotypes (Fig. 3). The proportions of 13C partitioned to shoots, 

roots and soil was approximately 85-86%, 13-14% and 0.15-0.21%, respectively (Tab. 2). At 

growth stages II and III, 13C excess was much higher in shoots, roots and soil in cv. Topas 

compared to other genotypes, particularly line 04C204 (Fig. 3). However, the proportion of 

total 13C partitioned to shoots (84.65%) was much lower, and that partitioned to roots (14.94%) 

and soil (0.40%) was much higher in cv. Topas compared to line 04C204 (90.99%, 8.74% and 

0.27% respectively) at growth stage II (Tab. 2). The pattern in differences in 13C partitioning 

among shoot, roots and soil between these genotypes were similar at growth stages III as 
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growth stage II.  Cultivars Sentry and Polo had intermediate levels of 13C excess (Fig. 3) and 

13C partitioning (Tab. 2) compared to the other two genotypes.   

15N labeling was carried out by application of K15NO3 to plants at each growth stage 10 

days before plants were harvested. It was more difficult to establish trends in 15N accumulation 

and partitioning among genotypes compared to that seen for 13C.  There were significant 

differences among genotypes in 15N excess in shoots at stage I and in roots at stage II and III 

(Fig. 4).  15N residue in soil was very low in all growth stages and in all genotypes (Fig. 4).  In 

terms of partitioning of 15N among shoot, root and soil (Tab. 3), there were no differences 

among genotypes at growth stage I, but by growth stage II and at growth stage III cv. Topas had 

a smaller proportion of 15N in shoots, and greater in roots, than line 04C204 (similar to the 

pattern seen in the proportions of 13C distributed between shoots and roots).   

3.3. 13C and 15N partitioning in experiment 3 

 In experiment 3, 13C and 15N were labeled only once at the growth stage I. Immediately 

after 13C labeling, there were no significant differences in13C excess in shoots and roots in all 

genotypes (Fig. 5A and 5B). 13C excess in soil at growth stage I was higher in cv. Topas than in 

other genotypes (Fig. 5C), but the amount of 13C excess in soil was small compared to that 

contained within shoots and roots. Between growth stages I and II, there was a small decline in 

13C in shoots in all genotypes, but a large increase in 13C in roots. At growth stage III, there was 

a significant difference in 13C excess in shoots between cv. Topas and cv. Sentry and line 
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04C204 (Fig. 5A).  In roots at both growth stages II and III, cv. Topas generally had higher 13C 

than the other genotypes, and this was most apparent at stage III, in which 13C excess was 

approximately 2 times greater in cv. Topas than in line 04C204 (Fig. 5B). 13C excess in soil 

trended downward with time in all genotypes (Fig. 5C). 

 The total proportion of 13C partitioned to shoots tended to decrease over time in all 

genotypes (Tab. 4). However, it is interesting that the magnitude of the decrease between 

growth stage I and III was much greater in cv. Topas (i.e., a decline of 12.9%) compared to line 

04C204 (i.e., declined only 6.52%). Correspondingly, the proportion of 13C in roots tended to 

increase between growth stages I and III, but to a much greater degree in cv. Topas (i.e., an 

increase of 13.09%) compared to the other genotypes, and especially line 04C204 (i.e., an 

increase of only 6.53%).  These data indicate that line 04C204 retained a greater proportion of 

its labelled 13C in shoots over time compared to cv. Topas.   

 Regarding 15N excess among components in experiment 3, there were no significant 

differences in 15N excess in shoots among genotypes at the growth stages I and II, however, 

there was a significantly higher 15N excess in shoots in cv. Topas than in line 04C204 at growth 

stage III (Fig. 6A). There was also significantly higher 15N excess in roots of cv. Topas 

compared to the other genotypes at growth stage II and III (Fig. 6B). 15N excess in soil declined 

dramatically after the initial labeling at growth stage I (Fig. 6C).  
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 In terms of the proportion of 15N partitioned among components, there was a greater 

proportion of 15N in shoots and a significantly lower proportion in roots in line 04C204 

compared to cv. Topas, at the growth stages II and III (Tab. 5). 

3.4. Total nitrogen content 

 There were no significant differences in total nitrogen content in shoots among genotypes 

at the growth stage I. However, at the growth stage II, total N in the shoots in cv. Topas was 

significantly higher than that in cv. Polo and line 04C204 (Fig. 7A). In roots, total N tended to 

be higher in cv. Topas compared to the other genotypes at the growth stages II and III (Fig. 7B). 

3.5. Nitrogen use efficiency  

There were not many differences in NUE in shoots among cultivars and no consistent 

patterns (Fig. 8A).  At the growth stage I, cv. Topas showed a lower NUE in shoots than the 

other genotypes. However, by growth stages II and II, cv. Topas had higher levels of NUE in 

shoots compared to some of the other genotypes. The pattern of NUE changes in roots was 

similar to that in shoots (Fig. 8B).   

 

4. Discussion 
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Seed oil content in Brassica species varies significantly with genetic line and environmental 

conditions (Frick et al., 1994; Sana et al., 2003). With the growing importance of agriculturally-

based feedstock for biofuel production, it is of great interest to identify genotypes of Brassica 

superior in SOC and relatively low in greenhouse gas emissions in their production. To our 

knowledge, the current study is the first to look at C and N partitioning among shoots, roots and 

soil in genotypes of B. napus varying in SOC potential. In this study, it was found that the four 

genotypes of B. napus varying in SOC potential showed different patterns of biomass 

accumulation, C and N partitioning, and NUE. 

4.1. Biomass accumulation  

 By growth stage III, cv. Topas, the genetic line with the lowest SOC potential had much 

greater biomass accumulation than genotypes with higher SOC potential (Fig. 2). In fact, there 

appeared to be a negative correlation between genetic line SOC potential and biomass 

accumulation (especially in roots). This may seem counterintuitive, but it has been previously 

reported that while CO2 enrichment and increased N fertilizer increased plant height and the dry 

weight of reproductive organs in Brassica species, SOC actually decreased or did not change 

(Franzaring et al., 2008; Frick et al., 1994; Hocking and Strapper, 2001; Jackson, 2000; Taylor et 

al., 1991). 

It is interesting that there also appeared to be a negative correlation between genetic line 

SOC potential and root to shoot ratios.  For example, line 04C204 with the highest SOC potential 
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had the lowest root to shoot ratio, indicating that this genetic line retains relatively more of its 

biomass in shoots rather than partitioning it to roots. Although line 04C204 had the lowest 

absolute amount of biomass accumulate among the four genotypes, the root to shoot ratios may 

be indicating that biomass partitioning among plant components is more important in 

determining SOC than the absolute amount of biomass accumulated (Addo-Quaye et al., 1985; 

Rood et al., 1984). This may be related to the fact that activity of key enzymes involved in 

triacylglycerol synthesis (e.g. diacyglycerol acyltransferase; DGAT) has been shown to be highly 

influential in determining SOC (Weselake et al., 2009), and is perhaps more important than the 

absolute amount of assimilate available for seed filling in B. napus.      

The current study focused on C and N partitioning during vegetative and early reproductive 

growth (i.e. up to the 20% flowering stage) and SOC and seed oil yield of the four genotypes 

were not assessed.  A set of control plants were grown to maturity and siliques were harvested. 

Unfortunately, these samples were destroyed by vermin so determination of SOC for plants 

grown under these experimental conditions was impossible. However, recent field studies 

involving these four genotypes conducted in eastern Canada confirm that the SOC and seed oil 

yield of Polo and 04C204 were higher than that of Topas (Beaudette et al., 2010).  Similarly, 

field studies by El-Ali (2011), using the four genotypes used in the current study and three levels 

of N fertility, found that Polo and 04C204 had the highest SOC and that 04C204 had the highest 

seed oil yield at all N fertility levels.    
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4.2. 13C partitioning  

The similarity of patterns between 13C excess levels among shoots, roots and soil (Fig. 3 and 

5) and that of biomass accumulation (Fig. 2), is not unexpected because the 13C in these pools is 

simply a fraction of the total C in the biomass accumulated in the tissue; a fraction originating 

from photosynthesis during the approximate 5-hour labeling period, minus that lost in respiration 

and the net accumulation/loss of 13C into/out of the tissue/soil during the chase period. Although 

previous reports of labeled C partitioning in B. napus are rare, it has been previously reported 

that approximately 17-19% of fixed 14C was translocated to the roots in B. napus over a 2 week 

period (Shepherd and Davies, 1993). This compares favorably with our results in experiment 3 

which indicated that by growth stage III approximately 81-89% in of 13C fixed at growth stage I 

was partitioned to shoots and 11-19% to roots (Tab. 2).  

Regarding 13C partitioning to soil, some differences among genotypes were evident at some 

growth stages (Figs. 3 and 5), and the partitioning pattern generally reflected the 

aforementioned inverse relationship between SOC potential and 13C excess accumulation. 

However, the relative amounts of 13C in this fraction were quite low. The 13C in the soil is 

attributed to non-decomposed exudates and microbial biomass. C fluxes from living plant roots 

to soil may account for 10-40% of total net assimilation (Van-Veen et al., 1991; Whipps, 1987). 

However, it has been reported that a large proportion of plant photoassimilates transported 

below ground were quickly transformed to CO2 and returned to the atmosphere (Kuzyakov and 
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Domanski, 2000; Leake et al., 2006). In the Brassicas, 30-34% of carbon transported to roots 

was released into the rhizosphere, but 35-51% of this carbon was assimilated and respired by 

rhizospheric microorganisms (Shepherd and Davies, 1993).  

From experiment 2, it is interesting that there is a positive relationship between SOC 

potential and the percentage of 13C allocated to shoots (i.e., there are higher percentages of 13C 

partitioning to shoots and lower percentage in roots in line 04C204 compared to cv. Topas 

(Tab. 2). This again suggests that SOC may be more associated with the partitioning of carbon 

between shoots and roots, rather than the absolute amount of carbon accumulated. This 

partitioning pattern was also observed in experiment 3 (Tab. 4). In fact, since labeling was done 

only once in experiment 3, but monitored over multiple growth stages, it also became clear that 

not only is there a positive relationship between SOC potential and the percentage of 13C 

allocated to shoots, but that genotypes with higher SOC potential also better retained relative 

amounts of 13C in shoots over time. For example, in line 04C204 with the highest SOC 

potential, 13C in shoots decreased by only 6.52% (from 95.07 to 88.55%) between growth 

stages I and III, while in cv. Topas with the lowest SOC potential, 13C in the shoots decreased 

by 12.9% (Tab. 4). This further supports the suggestion that SOC may be more associated with 

the partitioning of carbon between shoots and roots, rather than the absolute amount of carbon 

accumulated.   

4.3. Nitrogen partitioning 
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Oilseed rape has a higher requirement for N per unit yield than cereal crops (Hocking and 

Strapper, 2001). It also has a higher capacity to absorb N from the soil (Laine et al., 1993) and 

thus to accumulate larger quantities of N in vegetative parts of the plant. Despite the very high 

capacity of oilseed rape to absorb N, uptake efficiency (calculated as amount of N in the crop 

relative to the nitrogen supplied) is very low. Nitrogen uptake efficiency often does not exceed 

50–60 % of the level of N fertilizer applied (Chamorro et al., 2002; Hocking et al., 1997; Leleu 

et al., 2000; Schjoerring et al., 1995). Previous studies have indicated that N absorbed by the 

crop has been preferentially partitioned to leaves and stem during stem extension and flowering 

(Jensen et al., 1997; Rossato et al., 2001). Experiment 2 in our study indicated that more than 85-

92% of recovered 15N was in shoots, 7-14% in roots, and less than 1% in soil one week after 

application (Fig. 4, Tab. 3), but there were no clear trends in 15N accumulation among the four 

genotypes. However, in experiment 3 which had a single labeling event and longer chase times, 

significant differences in 15N excess in shoots was apparent at growth stage III and in the roots at 

both growth stages II and III (Fig. 6, Tab. 5) These data indicate a negative relationship between 

genetic line SOC potential and 15N accumulation (Fig. 6), but a positive relationship between 

SOC potential and the proportion of 15N retained in shoots over time (Tab. 5), similar to the 

pattern seen in 13C partitioning. However, unlike C, the total amount of N accumulated by the 

plant that ends up in seed is very small (i.e. 3% on average) (Chamorro et al., 2002; Hirel et al., 

2007). Hence, an important consideration in terms of N partitioning in B. napus for use as a 

biodiesel feedstock is the amount of N left in the crop residue at harvest. This represents N that 



 

 

21 

 

will be returned to the soil, and, in addition to the fertilizer N applied to the crop, represent 

considerable pools of soil N that may contribute to N2O emissions in the field (Hirel et al., 2007; 

Malagoli et al., 2005).     

4.4. Nitrogen use efficiency 

   A previous study has shown that canola genotypes differed in NUE despite similar amounts of 

N being absorbed into plant biomass; genetic line-specific responses in NUE were mainly 

attributed to the differences in the root to shoot ratio and harvest index (Svecnjak and Rengel, 

2006). It is interesting that in our study, that although at the growth stages II and III cv. Topas 

had a significantly higher biomass accumulation in both shoots and roots than line 04C204 (Fig. 

2), there were smaller to no differences in total N content (Fig. 7). This resulted in a higher NUE 

in both shoots and roots in cv. Topas relative to line 04C204 (Fig. 8). The higher NUE in cv. 

Topas would suggest to some a greater efficiency in the production of the crop in the field. 

However, the fact that cv. Topas in general accumulated the greatest amount of N (implying a 

great requirement for available N in the soil under field conditions), yet had the lowest SOC 

potential, may suggest that it may not be the most efficient for production of a biodiesel 

feedstock when N fertilizer requirements and greenhouse gas emission are taken into 

consideration. 
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5. Conclusion  

 Our study indicates that, in general, and especially at the later growth stages, there was an 

inverse relationship between genetic line SOC potential and biomass, C, and N accumulation in 

both shoots and roots. This may seem counterintuitive (i.e. genotypes with greater potential for 

growth have a lower potential for SOC) and suggests that C remobilization from vegetative 

biomass and partitioning to seed is more important a factor controlling SOC than the absolute 

amount of C available within B. napus plants. This suggestion is supported by the fact C 

partitioning clearly differed among genotypes. Line 04C204, with the highest SOC potential, 

retained a greater proportion of its biomass in shoots (i.e. had the lowest root to shoot ratio; Fig. 

2) and retained a greater proportion of 13C in shoots relative to roots over time compared to the 

other genotypes (Tab. 4). It is interesting that line 04C204 has previously been shown in field 

studies (Beaudette et al., 2010; El-Ali, 2011) to have had the highest seed oil yield of the four B. 

napus genotypes used in this study.   It is also noteworthy that despite a higher NUE, cv. Topas, 

with the lowest SOC potential, had a greater N requirement to achieve its greater biomass 

accumulation. Given that N fertilizer usage is one of the greatest contributors to greenhouse gas 

emission in agriculture (Woods et al., 2010), if greater biomass is only achieved with much great 

N requirements, breeding for maximum biomass accumulation may not be the optimal strategy 

for biofuel feedstock. In fact, a better breeding strategy to optimize B. napus as a biodiesel 

feedstock may well be selection for maximum SOC at a minimal investment in vegetative 

biomass (and hence a lower N fertilizer requirement).  The above being said, further study with 
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near isogenic lines for high and low oil content, or a larger number of high and low oil lines with 

different genetic background are desirable to further substantiate the results obtained from this 

study 
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Table 1.  Brassica napus growth stages used in the present work. 

 

 

 

 

 

 

 

 

 

Growth Stage Developmental stage description 
BBCH stage code 

(Lancashire et al., 1991) 

I 6-7 leaves unfolded 16-17 

II 8-9 visibly extended internodes 38-39 

III approximately 20% flowering 61-62 
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Table 2.  13C partitioning (%) in shoots, roots and soil 3 days after labeling in four Brassica 
napus genotypes at different growth stages in experiment 2.  

 

B. 
napus 

             Growth stage I  
Growth stage II Growth stage III 

Cultiva
r/line Shoot 

         
Root 

       
Soil 

    
Shoot        Root        Soil 

   
Shoot   Root 

   
So
il 

cv. 
Topaz 86.12±1.66 

13.67±
1.67 

0.21±0.
03 a 

84.65±2.
95 b 

14.94±2
.91 a 

0.40±0.0
4 a 

87.50
±0.84 
c 

12.26±
0.81 a 

0.24±0.
03 a 

cv. 
Sentry 86.56±1.15 

13.28±
1.15 

0.16±0.
01 ab 

88.07±0.
59 ab 

11.67±0
.59 ab 

0.26±0.0
1 b 

91.12
±0.47 
b 

   
8.69±0.
44 b 

0.19±0.
04 ab 

cv. 
Polo 86.25±1.81 

13.61±
1.81 

0.15±0.
01 b 

86.98±2.
22 ab 

12.74±2
.16 ab 

0.28±0.0
7 b 

90.54
±0.75 
b 

   
9.30±0.
76 b 

0.16±0.
02 bc 

04C20
4 85.60±2.15 

14.24±
2.14 

0.15±0.
02 b 

90.99±0.
10 a 

  
8.74±0.
11 b 

0.27±0.0
2 b 

93.13
±0.60 
a 

   
6.78±0.
62 c 

0.09±0.
01 c 

Note: Each value is a mean of three replicates. The means in each column were analyzed by 
Student’s t-test at the α=0.05 significance level. Values in each column with the same letter are 
not significantly different. 
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Table 3.  15N partitioning (%) in shoots, roots and soil 7 days after applying the label in four 
Brassica napus genotypes at different growth  stages in experiment 2.  

 

Brassica                      Growth stage 
I 

                     Growth 
stage II 

                       Growth 
stage III 

 

Cultivar/l
ine 

     
Shoot 

     
Root 

    Soil     Shoot       Root     Soil     Shoot       Root      
Soil 

cv. Topaz 90.21±2.
26  

  
9.49±2.
25  

0.30±0
.03 

84.59±1.2
3 b 

14.99±1.1
8 a 

0.43±0
.07 

85.22±1.7
1 b 

14.26±1.77 
a 

0.52±0
.06 a 

cv. 
Sentry 

87.84±3.
34 

11.98±
3.33  

0.17±0
.02 

90.20±1.7
8 a 

  
9.36±1.68 
b 

0.44±0
.16 

87.80±1.3
7 ab 

11.73±1.42 
ab 

0.47±0
.08 ab 

cv. Polo 92.25±1.
29 

  
7.53±1.
32  

0.22±0
.02 

85.94±0.4
2 b 

13.37±0.2
8 a 

0.69±0
.14 

88.73±1.6
0 ab 

10.85±1.54
5 ab 

0.42±0
.05 ab 

04C204 89.42±0.
87 

10.38±
0.81  

0.20±0
.08 

89.63±0.0
4 a 

  
9.99±0.02 
b 

0.39±0
.06 

90.90±1.7
3 a 

  8.80±1.68 
b 

0.30±0
.05 b 

Note: Each value is a mean of three replicates. The means in each column were analyzed by 
Student’s t-test at the α=0.05 significance level. Values in each column with the same letter are 
not significantly different. 
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Table 4.  13C partitioning (%) in shoots, roots and soil of four Brassica napus genotypes in 
experiment 3. 13C labeling was carried out only at stage I.  

 

B. napus   Growth stage I                  Growth stage II       Growth stage III 
Cultivar/

line 
 

Shoot 
 

Root 
 

Soil 
 

Shoot 
 

Root 
 

Soil 
 

Shoot 
 

Root 
 

   Soil 

cv. Topas 
93.66±0.7
2 

6.04
±0.7
6 

0.29±0
.04  

84.72±
1.00 

15.12±
0.99 

0.15±0
.02 

80.76±1.3
5 c 

19.13±1.3
6 a 

0.11±0
.00 

cv. Sentry 
94.43±0.8
3 

5.39
±0.7
7 

0.18±0
.07 

88.61±
0.65 

11.25±
0.66 

0.14±0
.02 

85.02±1.3
0 ab 

14.83±1.3
0 bc 

0.15±0
.01 

cv. Polo 
92.95±1.4
4 

6.81
±1.4
1 

0.24±0
.03 

85.02±
1.37 

14.86±
1.38 

0.12±0
.01 

84.41±0.7
3 bc 

15.47±0.7
6 ab 

0.12±0
.04 

04C204  
95.07±1.6
1 

4.75
±1.5
7 

0.17±0
.04 

88.39±
5.01 

11.49±
4.98 

0.11±0
.04 

88.55±2.0
4 a 

11.28±2.0
4 c 

0.17±0
.01 

                             

Note: Each value is a mean of three replicates. The means in each column were analyzed by 
Student’s t-test at the α=0.05 significance level. Values in each column with the same letter are 
not significantly different. 
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Table 5. 15N partitioning (%) in shoots, roots and soil of four cultivars of Brassica napus in 
experiment 3. 15N labeling was carried out only at 3 days before growth stage I.  

 

B. 
napus 

                       Growth 
stage I  

                     Growth stage 
II                   Growth stage III

 
Cultivar

/line 

 
Shoot 

 
Root 

 
Soil 

 
Shoot 

 
Root 

 
Soil 

 
Shoot 

 
Root 

 
Soil 

cv. Topas 
81.57±2.
00 ab 

6.64±0.
12 a 

11.79±2.
13 ab  

88.56±0.
31 c 

11.04±0.
46 a 

0.04±
0.16 

86.32±3.
01 b 

13.53±3.
01 a 

0.15±0.
02 b 

cv. Sentry 
84.79±1.
14 a 

6.55±0.
83 a 

  
8.66±1.9
4 b  

90.36±0.
57 ab 

9.33±0.5
4 ab 

0.32±
0.03 

88.63±0.
27 ab 

11.08±0.
24 ab 

0.29±0.
05 ab 

cv. Polo 
80.51±0.
58 b 

6.36±0.
26 a 

13.13±0.
32 ab  

89.31±0.
52 bc 

10.05±0.
30 bc 

0.64±
0.34 

87.72±1.
61 ab 

11.88±1.
65 ab 

0.30±0.
08 ab 

04C204 
82.06±1.
93 ab 

4.15±0.
60 b 

13.78±1.
85a 

91.21±0.
23 a 

  
8.54±0.2
4 c 

0.25±
0.03 

90.98±0.
31 a 

  
8.57±0.2
1 b 

0.45±0.
18 a 

Note: Each value is a mean of three replicates. The means in each column were analyzed by 
Student’s t-test at the α=0.05 significance level. Values in each column with the same letter are 
not significantly different. 

 

 

 

 

 

 

 

 

Fig. 1. 
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Fig. 2.   
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Fig. 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Growth stage
I II III

0
50

100
150
200
250
300
350

13
C

 e
xc

es
s (

ug
)

0

4000

8000

12000

16000
0

20000

40000

60000

80000
cv. Topas
cv. Sentry
cv. Polo
04C204

A

B

C

a a
b

b

a
b

a a
b

a
b b

a

b
c b

c

a
b b

a
b

a

b b
b

a
a

a
b

b



 

 

37 

 

 

 

 

 

 

Fig. 4. 
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Fig. 5.  
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Fig. 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Growth stage

I II III

15
N

 e
xc

es
s (

ug
) 

0
100
200
300
400
500
600

0
200
400
600
800

1000 B

C

a
b

a a

a
bc d

a

b
c b

c

a
b

b
a

a
b

0

1000

2000

3000

4000

5000

cv. Topas
cv. Sentry
cv. Polo
04C204

A
a

b

a
b

a
b



 

 

40 

 

 

 

 

 

 

Fig. 7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Growth stage

I II III

N
itr

og
en

 c
on

te
nt

 (m
g)

0

10

20

30

40

50

60

0

50

100

150

200

250 cv. Topas
cv. Sentry
cv. Polo
04C204

A

B

a

b b

a
b

a

b
b

b

a

b
c

a
b

a
b

a
b

a
b



 

 

41 

 

 

 

 

 

 

Fig. 8.   
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Figure legends: 

 

Fig. 1. Diagram of the 13C labeling system. A: HPS lights (1000 W each), B: peristaltic pump, C: 

Na2
13CO3 solution, D: temperature and relative humidity indicator, E: acrylic labeling chamber, 

F: circulation fans, G: H2SO4 solution, H: cooling system, I: condenser, J: air pump, K: CO2 

monitor, L: air pump, M: computer.   

 

Fig. 2. Shoot and root dry weight (DW) and ratio of root to shoot in four Brassica napus 

genotypes at different growth stages (I: 6-7 unfold leaves; II: before inflorescence emergence; 

III: 20% flowering) in experiment 1. Each value is a mean of 6 replicates. The means in each 

group were analyzed by Student's t-test at the α= 0.05 significance level. Values in each group 

with the same letter are not significantly different. Bars represent S.E. 

 

Fig. 3. 13C excess in shoots (A), roots (B) and soil (C) in four Brassica napus genotypes in 

experiment 2. 13C labeling was conducted at each growth stage (I: 6-7 leaves; II: before 

inflorescence emergence; III: 20% flowering). Each value is a mean of three replicates. The 

means in each group were analyzed by the Student's t-test at the α = 0.05 significance level. 

Values in each group with the same letter are not significantly different. Bars represent S.E. 
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Fig. 4. 15N excess in shoots (A), roots (B) and soil (C) in four Brassica napus genotypes in 

experiment 2. 15N was applied 7 days before 13C labeling at each growth stage (I: 6-7 leaves; II: 

before inflorescence emergence; III: 20% flowering). Each value is a mean of three replicates. 

The means in each group were analyzed by the Student's t-test at the α = 0.05 significance level. 

Values in each group with the same letter are not significantly different. Bars represent S.E. 

 

Fig. 5. 13C excess in shoot (A), root (B) and soil (C) in four Brassica napus genotypes in 

experiment 3. (I: 6-7 leaves; II: before inflorescence emergence; III: 20% flowering). 13C 

labeling was carried out only at stage I. Samples were taken at growth stage I, II and III, 

respectively. Each value is a mean of 3 replicates. The means of each group were analyzed by 

the Student's t-test at the α = 0.05 significance level. Values in each group with the same letter 

are not significantly different. Bars represent S.E. 

 

Fig. 6. 15N excess in shoot (A), root (B) and soil (C) in four Brassica napus genotypes in 

experiment 3. (I: 6-7 leaves; II: before inflorescence emergence; III: 20% flowering). 15N was 

only applied once 3 days before 13C labeling. Samples were taken at growth stage I, II and III, 

respectively. Each value is a three replicates. The means in each group were analyzed by the 
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Student's t-test at the α=0.05 significance level. Values in each group with the same letter are not 

significantly different. Bars represent S.E. 

 

Fig. 7. Total N content in shoots (A) and roots (B) of four Brassica napus genotypes at different 

growth stages (A: 6-7 leaves; B: before inflorescence emergence; C: 20% flowering) in 

experiment 2. Each value is a mean of three replicates. The means in each group were analyzed 

by Student's t-test at the α = 0.05 significance level. Values in each group with the same letter are 

not significantly different. Bars represent S.E. 

 

Fig. 8. Nitrogen use efficiency (NUE) in shoots (A) and roots (B) of four Brassica napus 

genotypes at different growth stages (I: 6-7 leaf; II: before inflorescence emergence; III: 20% 

flowering) in experiment 2. Each value is a mean of three replicates. The means in each group 

were analyzed by Student's t-test at the α = 0.05 significance level. Values in each group with the 

same letter are not significantly different. Bars represent S.E.  

 




