

Benchmarking Insider Threat Intrusion Detection Systems

by

Binbin Ye

A Thesis Submitted to Saint Mary's University, Halifax, Nova Scotia,

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Applied Science

March 25, 2013, Halifax, Nova Scotia

Copyright Binbin Ye, 2013

Approved: Dr. Dawn Jutla

 Co-Supervisor

Department of Finance, Computing

Information Systems and Management

Science

Approved: Dr. Hai Wang

 Co-Supervisor

Department of Finance, Computing

Information Systems and Management

Science

Approved: Dr. Nur Zincir-Heywood

 External Examiner

Department of Computer Sciences

Dalhousie University

Approved: Dr. Cristian Suteanu

 Supervisory Committee Member

Department of Geography and

Environmental Science

Approved: Dr. Jeremy Lundholm

 Graduate Studies Representative

Date: March 25, 2013

i

Benchmarking Insider Threat Intrusion Detection Systems

Abstract

Benchmarking Insider Threat Intrusion Detection Systems

by Binbin Ye

Abstract: An intrusion detection system generally detects unwanted manipulations to

computer systems. In recent years, this technology has been used to protect personal

information after it has been collected by an organization. Selecting an appropriate

IDS is an important decision for system security administrators, to keep authorized

employees from abusing their access to the system to exploit sensitive information. To

date, little work has been done to create a benchmark for small and mid-size

organizations to measure and compare the capability of different insider threat IDSs

which are based on user profiling. It motivates us to create a benchmark which

enables organizations to compare these different IDSs. The benchmark is used to

produce useful comparisons of the accuracy and overhead of two key research

implementations of future insider threat intrusion algorithms, which are based on user

behavior.

 March 25, 2013

ii

Benchmarking Insider Threat Intrusion Detection Systems

 TABLE OF CONTENTS

Abstract ...i

Table of Contents ...ii

List of Table ..iv

List of Figures ...v

List of Abbreviations ..vii

1. Introduction ..1

1.1 Overview of existing problems ..1

1.2 Objective and goals ..2

2. Literature Review ..3

2.1 Intrusion Detection in Database Systems ..3

2.1.1 Data Dependency Relationship Based IDDS4

2.1.2 Time Signature Based IDDS ..5

2.1.3 User Behavior Profile Based IDDS ...6

2.2 Benchmarking IDS...10

3. Benchmark Design ...15

3.1 Selection of Performance Metrics ..15

3.2 Selection of Parameters..22

3.3 Workload Design ..24

 3.3.1 Financial Bank Scenario ...25

 3.3.2 Transaction Template ..30

 3.3.3 Daily Transactions Scheduler ...49

 3.3.4 Types of Insider Attacks ..53

4. Implementation ..56

4.1 Benchmark Implementation ...56

4.1.1 Database Populator Implementation ..57

4.1.2 Employee Profile Generator Implementation61

4.1.3 Anomaly Generator Implementation ...62

iii

Benchmarking Insider Threat Intrusion Detection Systems

4.1.4 Anomaly Injector Implementation ...64

4.1.5 Workload Driver Implementation ..64

4.2 Implementation of Two Testing IDS ..65

4.2.1 Implementation of RBAC Classifier ..65

4.2.2 Implementation of Bayesian Network IDS68

5. Experiment Methodology and Results ...72

 5.1 Scalability Testing ..72

 5.2 Different Anomaly Injection Methods Testing80

 5.3 Tuning IDS Settings with Benchmark ...83

6. Conclusion and Future Work..86

 6.1 Conclusion ...86

 6.2 Future Work ...87

REFERENCES ...88

iv

Benchmarking Insider Threat Intrusion Detection Systems

List of Tables

Table 1 Conditional Probabilities of the Detector’s Report Given the State of the

System ..18

Table 2 Bank Database Schema ...28

Table 3 Business Functions and Their Roles ...31

Table 4 Daily Transactions Scheduler Fields ...50

Table 5 Trans Table’s Attributes Description ...65

Table 6 Triplet Construction Example ...68

v

Benchmarking Insider Threat Intrusion Detection Systems

List of Figures

Figure 2.1 Overview of the RBAC-Specific ID Process ...7

Figure 2.2 Entity Relationship Diagram for Bank Enterprise12

Figure 3.1 Synthetic Benchmark Data; False Alarms vs. Regularity Index20

Figure 3.2 Financial Bank Entity-Relationship Diagram ..26

Figure 3.3 Table’s Relationships in a Bank Database Implemented in MS SQL

 Server ...29

Figure 3.4 A HR Employee Transaction Log for a Day Example52

Figure 4.1 Benchmark Workload Flow ..56

Figure 4.2 A JDBC Driver Example Used in Database Populator58

Figure 4.3 Class Diagram of Database Populator ..59

Figure 4.4 An Example of Generated Employee Table ...61

Figure 4.5 Employee Profile Generator Workflow ..62

Figure 4.6 Anomaly Generator Members View ...63

Figure 4.7 Java Codes for Masquerade() Function ..63

Figure 4.8 Class Diagram of RBAC Classifier ..69

Figure 4.9 BNIDS Diagram in Genie ..70

Figure 5.1 Test Case 1: Precision vs. Number of Injected Anomalies73

Figure 5.2 Test Case 1: Recall vs. Number of Injected Anomalies75

Figure 5.3 Test Case 1: F-measure vs. Number of Anomalies76

Figure 5.4 Test Case 1: Time Cost vs. Number of Testing Tuples76

Figure 5.5 Test Case 2: Precision vs. Number of Tuples ...78

Figure 5.6 Test Case 2: Recall vs. Number of Tuples ..78

Figure 5.7 Test Case 3: Precision vs. Number of Roles ...79

Figure 5.8 Test Case 3: Recall vs. Number of Roles ...80

Figure 5.9 Test Case 4: Precision vs. Number of Anomalies with RBAC Classifier..81

Figure 5.10 Test Case 4: Recall vs. Number of Anomalies with RBAC Classifier ...81

vi

Benchmarking Insider Threat Intrusion Detection Systems

Figure 5.11 Test Case 4: Precision vs. Number of Anomalies with BNIDS82

Figure 5.12 Test Case 4: Recall vs. Number of Anomalies with BNIDS82

Figure 5.13 BNIDS Threshold Tuning ...83

Figure 5.14 Precision vs. Number of Injected Anomalies ...84

Figure 5.15 Recall vs. Number of Injected Anomalies ..85

vii

Benchmarking Insider Threat Intrusion Detection Systems

List of Abbreviations

API Application program interface

AUC Area under the ROC curve

BNIDS Bayesian Network Intrusion Detection System

CERT Computer Emergency Readiness Team

CSI Crime Scene Investigation

DARPA Defense Advanced Research Projects Agency

DB Database

DBIR Data Breach Investigations Report

DBMS Database management system

DEMIDS Detection Misuse in Database Systems

ER Entity Relationship

FN False Negative

FP False Positive

GeNIe General Electric Network for Information Exchange

ID Intrusion detection

IDDS Intrusion detection in database system

IDS Intrusion detection system

JDBC Java Database Connectivity

jSMILE Java Structural Modeling, Inference, and Learning Engine

LARIAT Lincoln Adaptable Real-time Information Assurance Test-bed

MAP Maximum Aposteriori Probability

NPV Negative predictive value

OLTP Online Transaction Processing

PIDS Privacy Intrusion Detection System

PPV Positive predictive value

QID Query Intrusion Detector

viii

Benchmarking Insider Threat Intrusion Detection Systems

RBAC Role-based access control

ROC Receiver Operating Characteristic

SQL Structured Query Language

TN True Negative

TP True Positive

TPC-A Transaction Performance Council – A benchmark

TPC-B Transaction Performance Council – B benchmark

TPoX Transaction Processing over XML

URL Uniform Resource Locator

1

Benchmarking Insider Threat Intrusion Detection Systems

Chapter 1

Introduction

1.1 Overview of existing problems

An insider threat is a current or former member of an organization who has or

had privileged access to classified, sensitive or propriety data and exceeded or

misused that access in a way that puts the organization’s confidentiality, integrity, or

availability of the organization’s information or information systems in jeopardy

(CERT, 2010). In recent years, several computer crime surveys show that insider

attack has become a major threat in cyber security. According to the 2011 CSI

Computer Crime survey and the 2011 Verizon Data Breach Report data breach due to

insider attacks cost more than those due to outsiders. Insider threat has becoming one

of the problems of organizational security that is most difficult to handle because

insiders often have information and capabilities not known to external attackers, and

as a consequence can cause serious harm (Hunker & W.Probst, 2011). The biggest

concern is the discrimination between legal insider actions representing a threat, and

legal insider actions representing normal behavior. This is where many of the standard

techniques fail, since they require a clear separation between insiders and outsiders,

between “good” employees and attackers (Moore, Cappelli, Shaw, Spooner &

Trzeciak, 2011).

 In order to address this issue, efforts have been made to identify and prevent

insider threats by using Intrusion Detection System (IDS) technology. An intrusion

2

Benchmarking Insider Threat Intrusion Detection Systems

detection system generally detects unwanted manipulations to computer systems. In

recent years, this technology has been used to protect personal information against

insider threat after it has been collected and stored by an organization.

The performance of an Intrusion Detection System plays an integral role in the

decision of a company to utilise that system to protect personal data against insider

threat. Such decisions must be based on information that compares the performance

and price of different Intrusion Detection Systems. Benchmarks provide a yardstick

with which to measure these important factors. However, to date little work has been

done to create a benchmark for small and mid-size organizations to measure and

compare the capability of different insider threat IDS which are based on user

profiling. It motivates us to create a benchmark standard which enables larger

organizations to compare these different IDS. The benchmark is used to produce

useful comparisons of the accuracy and overhead of two key research

implementations of future privacy intrusion algorithms that are based on user

behavior in the context of a large organization.

1.2 Objectives and Goals

The goals of this paper are to design and implement a benchmark for insider

threat intrusion detection systems which are based on user profiling, in the context of

small to mid-size organizations, and to demonstrate the usefulness of the benchmark

through its application to measure and compare different insider threat intrusion

detection algorithms based on user behavior.

3

Benchmarking Insider Threat Intrusion Detection Systems

Chapter 2

Literature Review

 In this chapter, we first introduce three popular intrusion detection techniques

that have been used for protecting information stored in database systems – data

dependency relationship based IDDS, time-signature based IDDS and User behavior

profile based IDDS. In the second part of this chapter, the benchmarking procedures

that have been used in database systems are discussed.

2.1 Intrusion Detection in Database Systems (IDDS)

The problem of developing Database Management Systems (DBMS) with

confidentiality guarantees and high-assurance privacy is not that trivial (Agrawal,

Kiernan, Srikant & Xu, 2002). To start with, it requires a revision of architectures and

techniques adopted by current DBMS.

Despite the necessity of protecting information stored in database systems

(DBS), existing security models are insufficient to prevent misuse, especially insider

abuse by legitimate users. Further, concepts for misuse detection in DBS have not

been adequately addressed by existing research in misuse detection. Even though

there are some means to guard the information stored in a database system against

misuse, they are seldom used by security officers because security policies of the

organization are either imprecise or not known at all (Antón, Bertino, Li & Yu, 2004).

Thus, intrusion detection systems have emerged as independent and complementary

4

Benchmarking Insider Threat Intrusion Detection Systems

software for additionally securing DBSs. Examining the state-of-the-art, we can

divide intrusion detection techniques into three main types: data dependency

relationship-based; time-based; and user behavior profiles-based Intrusion Detection

in Database Systems (IDDS). In the following sections, we will discuss the works that

have been done with these three types of IDS techniques in detail.

2.1.1 Data Dependency Relationship Based IDDS

In data dependency relationship-based IDDS, a system tries to find malicious

database transactions submitted to the DBMS by analyzing the dependencies among

the data items in the database. In recent research, data dependency refers to the data

access correlations between two or more data items (Hu & Panda, 2003). That is,

which data items must be read or written before a data item gets updated and which

others are written after the update. Those data items are separately known as read set,

pre-write set and post-write set. They focused on the malicious transactions issued by

an intruder masqueraded as a normal user. By checking whether each update

operation in the user transaction conforms to the generalized data dependencies,

anomaly activities at the transaction level are detected.

A static semantic analyzer is used to analyze the database application program

instead of the database log, to decide the read set, the pre-write set, and the post-write

set. First the system finds out all the possible transactions one user may use, which

can be identified by checking the database application program. Then the static

5

Benchmarking Insider Threat Intrusion Detection Systems

semantic analyzer is used to check all statements that update data items in each

transaction to find out the read, pre-write, and post-write sets for each data item that is

updated in the transaction. Other statements that are not for updating purpose are not

checked.

Hu and Pamda (2003) also propose the method for finding anomalies at the

user task level, which are comprised of a group of transactions, by using a system

modeling tool called Petri-Nets to model normal data update sequences in user tasks.

This method is especially useful for finding hidden malicious activities that consists

of several transactions, each of which appears as normal transaction.

2.1.2 Time Signature Based IDDS

Real-time database systems have to deal with data which changes its value

with time. These temporal data objects are used to reflect the status of objects in the

real world. Whenever the value of a real world object changes, the data value that

describes this object should change as well, but a certain lag between the moment of

change in the real world and the updates in the database is unavoidable (Bodlaender,

Stock & Son, 1997). Therefore, data values may become out of date due to delayed

updates. If intruders are able to change such values, they could sabotage applications

such as air traffic control or the electric power grid.

Lee, Stankovic & Son (2000) monitor behavior at the level of sensor

transactions, which they define as transactions that are responsible for updating the

6

Benchmarking Insider Threat Intrusion Detection Systems

values of real-time data. By determining the update latency of sensor transactions in

real-time database systems, violations of the security policy can be detected. In order

to determine the period of the sensor transaction, they consider one of the many

possible semantics of sensor transactions with period P. One instance of the sensor

transaction must be generated every period. Suppose a sensor transaction takes e units

of time to complete (0<e<P). If an instances starts at time t, they expect the

corresponding temporal data will be updated between t+e and t+p. Security alarm will

be triggered when a transaction attempts to write a temporal data object that is already

updated in a period. In addition, they also allow different tolerance levels in a system

by utilizing the knowledge of the behavioral constrained (sensitive) IDS.

2.1.3 User Behavior Profile Based IDDS

Behavior profiles based IDDS are more popular than data dependency

relationship-based or time-based IDDS. Systems attempt to profile normal user

behavior by analyzing the database log or database application program.

The approach used in (Bertino, Kamra, Terzi & Vakali, 2005) is based on

mining database traces stored in log files. The result of the mining process is used to

form user profiles that can model normal behavior and identify intruders. By

considering the fact that it is not feasible in practice keeping a profile for each single

user, Bertino et al, (2005) have based their approach on the well-known role-based

access control (RBAC) model, which is widely used for access-control management

7

Benchmarking Insider Threat Intrusion Detection Systems

both in closed and open systems (Forrest, Hofmeyr & Somayaji, 1997). Through

building profiles for each role, their ID system is able to determine role intruders, that

is, individuals that while holding a specific role, have a behavior different from the

normal behavior of the role. Authorizations are specified with respect to roles and not

with respect to individual users.

Figure 2.1 Overview of the RBAC-Specific ID Process (Bertino, et al, 2005)

As we can see in the Figure 2.1, the system’s architecture consists of four main

components: the user that enters queries, the conventional DBMS mechanism that

handles the query evaluation process, the database log files and the ID mechanism.

Every time a query is issued, the database log files are updated. In the training phase,

the intrusion detection system mines the existing log files and forms role profiles. In

the detection phase, for every new query, the ID mechanism checks the query

statement to determine whether it is anomalous. If this is the case, an alarm is raised

8

Benchmarking Insider Threat Intrusion Detection Systems

(Agrawal et al, 2002).

In the paper, they transform the log file entries into a format that can be

processed and analyzed. Therefore, they represent each entry by a data basic unit that

contains three fields (SQL Command, Relation Information, Attribute Information),

and thus it is called a triplet. A Naive Bayes Classifier is used for forming the profiles

as well as for deciding when to raise an intrusion alarm. The Maximum Aposteriori

probability (MAP) decision rule is used by the Classifier.

An, Jutla & Cercone (2006) provide a theoretically significant improvement to

the intrusion detection algorithm proposed by Bertino et al, (2005). Instead of using

the simple Naïve Bayes (Naïve BN) approach, a Bayesian Network method is used.

The latter removes the Naïve Bayes assumptions that all classification features are

independent of each other. The Bayes Network method allows the combination of

user activities to be modeled together and improves the credibility of the alarms raised

by the intrusion detection system. However the Bayes Network model introduces

further overhead, over Naïve BN, due to the requirement for compiling the BN into a

tree structure to perform inference and the manipulation of the resulting larger

conditional probability distribution tables.

The idea of using an IDS approach to protect privacy is not new. User

profile-based methods are presented in DEMIDS (Detection Misuse in Database

Systems) (Chung, Gertz & Levitt, 1999), which is a misuse detection system tailored

to relational database systems. It uses audit-log data to derive profiles that describe

9

Benchmarking Insider Threat Intrusion Detection Systems

typical behavior (access patterns) of users working with the DBS by specifying the

typical values of features that are audited in audit logs. Carter and Katz (2005)

revealed that in computer systems the primary security threat comes from insider

abuse rather than from intrusion. This observation results in the fact that much more

emphasis has to be placed on internal control mechanisms of systems, such as audit

log analysis. Thus in DEMIDS the profiles computed can be used to detect misuse

behavior, in particular insider abuse. Furthermore, the profiles can serve as a valuable

tool for security reengineering of an organization by helping the security officers to

define/refine security policies and to verify existing security policies, if there are any.

Moreover, the approach used by DEMIDS is that the access patterns of users

typically form some working scopes which comprise certain sets of attributes that are

usually referenced together with some values in a query. The idea of working scopes

is conceptually captured by the concept of frequent itemsets which are sets of features

with certain values. Based on the data structure and semantics (integrity constraints)

encoded in the data dictionary and the user behavior reflected in the audit log,

DEMIDS defines a notion of distance measure which measures the closeness of a set

of attributes with respect to the working scopes. Distance measures are used to guide

the search for frequent itemsets in the audit logs by a novel data mining approach.

Anomalies can be detected by comparing the derived profiles against the security

policies specified or against new information (audit data) gathered about users.

Another behavior profiles-based IDDS is PIDS (Venter, Olivier & Eloff, 2004),

10

Benchmarking Insider Threat Intrusion Detection Systems

which is an anomaly intrusion detection system. PIDS particularly addresses the

problem of the internal misuses of private data within an organization, where profiles

of the operators are represented by some features. Once the threshold regarding a

feature is violated, the respective action will be taken to slow down or stop the

possible anomaly activities. In PIDS, it also uses Naive Bayes to decide whether the

employee’s behavior is anomalous or not.

In a Hippocratic Database (Agrawal et al, 2002) a Query Intrusion Detector

(QID) is proposed. PIDS differs from the QID in three significant respects: PIDS

considers queries while QID considers the results of queries before data is released.

Secondly, PIDS uses an intrusion detection model based on the expected activities of

a user. This model is derived from the role of the user, as well as individual traits. In

contrast QID builds a profile from past queries. Thirdly QID apparently only flags

suspect queries, whiles PIDS attempts to limit damage by using throttling (Venter, et

al, 2004).

2.2 Benchmarking Intrusion Detection Systems

By discussing the architecture and functionality of different kinds of Intrusion

Detection in Database System above, we illustrate that there are reasons for expected

differences in the system performance. Plus, organizations have a need for comparing

and understanding these differences for their contexts. We focus on specifying a

benchmark for the family of user behavior profile-based IDS. Choosing suitable

performance measures and how to generate a workload to train, test and compare the

11

Benchmarking Insider Threat Intrusion Detection Systems

IDS are two main concerns for benchmarking.

A recent 2012 study shows that within all the industry groups being investigated for

data breach incidents, Finance and Insurance responds to 40% of compromised

records with more than 1 Million records lost across industries. In this report, it also

indicates that Finance and Insurance ranks on top with 28% of breaches within larger

organizations (DBIR, 2012). Hence, it makes sense to build our benchmark in a

financial services scenario where insider threats are most likely to occur. The idea of

using a financial bank scenario in a database benchmark is not new. The first

transaction processing benchmarks, DebitCredit, TPC-A and TPC-B, are designed to

measure throughput in terms of how many transactions are processed per second in a

particular banking enterprise. The DebitCredit benchmark emulates a teller support

system in a large, multi-branch bank, where the operation of interest is a debit or

credit transaction to an account performed by an account holder at a particular branch

(Dietrich, Brown, Cortes-Rello & Wunderlin, 1992). The DebitCredit database stores

information on accounts, tellers, branches, and the history file of bank transactions.

Figure 2.2 is the Entity-Relationship (ER) diagram for the bank enterprise used in the

DebitCredit benchmark. TPC-A is an industry standard for DebitCredit benchmark

founded by Transaction Processing Performance Council (TPC), followed by TPC-B

a database only version of TPC-A benchmark. However, while both benchmarks are

designed to measure the performance of the update-intensive operations in the

database, neither of them includes insider attack scenarios.

12

Benchmarking Insider Threat Intrusion Detection Systems

 Figure 2.2 Entity Relationship Diagram for Bank Enterprise

Most if not all benchmarks for Intrusion Detection Systems are targeting

outsider threats, which can be representing as a hacker who does not have an

authorized access and breach into the systems. Most intrusion detection systems rely

on some kind of pattern-matching algorithm in order to identify and categorize attacks.

After training against “normal” data, the IDS can diagnose whether an action is an

anomaly by matching it against normal patterns. The performance of an intrusion

detection system is determined by the efficiency with which it diagnoses those attacks.

Defense Advanced Research Projects Agency (DARPA) Intrusion Detection

Evaluation is the first attempt to use simulated workload that involve generating

background traffic interlaced with malicious activity, so that intrusion detection

13

Benchmarking Insider Threat Intrusion Detection Systems

systems and algorithms could be tested and compared(Kayacik & Zincir-Heywood,

2005). Later on, the Lincoln Adaptable Real-time Information Assurance Test-bed

(LARIAT) was initiated. Its effort is focusing on custom software that simulates

network traffic from a small network connected to the Internet. The most common

methodology of an IDS benchmark is to create a small test network and release

malicious activity in that self-contained small network environment. The workload,

i.e. network architecture and complexity of the traffic, is one of the main concerns for

IDS benchmark design for online systems.

In benchmarking parlance, the training data (normal background) and testing

data (back-ground plus anomalous events) constitute the anomaly-detector workload.

The methods proposed by Maxion and Tan (2000) illustrate that the training data are

generated from 11 transition matrices that produce the desired regularities for the

sequences such that the regularity indices of the sequences run, in increments of .1,

from 0 to 1 inclusive. The transition matrix is entered at a random point, determined

by a random number generator. Test data were generated in the same way in which the

training data were generated, except that different random-number-generator seeds

were used for generating the test data. The seed used for generation is different from

the one used to enter the table, simply to go as far as possible to eliminate

dependencies in the generation scheme. A single seed is used to generate data for all

regularities, the seed is a 4-digit random integer produced from the Perl rand()

function. A pool of anomalies for each anomaly type is generated independent of

14

Benchmarking Insider Threat Intrusion Detection Systems

generating the test data and then injected into the test data.

Anomaly detector works in two phases: a learning phase and a detection phase.

Simply described, in the learning phase it constructs an internal table containing the

probability of occurrence of every unique n-gram in the training sequence (e.g.

normal background data). In the detection phase, it is given a test sequence consisting

of normal background data (noise) mixed with injected anomalous-event

subsequences (signal).

Scoring the detection outcomes: event outcomes in terms of hits (correct

detection), misses (the absence of a detection within the basic scope of the injected

anomaly) and false alarms (false detections any detection that falls outside the total

scope of the injected anomaly).

In RBAC-specific ID (Bertino et al, 2005), similarly, the workload is

comprised of Synthetic Data sets, Real Data set and Intruder Queries. The real data set

used for evaluating the proposed consists of over 6000 SQL traces from eight

different applications submitting queries to a MS SQL server database. The database

itself consists of 119 tables with 1142 attributes in all. The intruder/anomalous queries

are generated by taking into account the insider threat scenario. They are taken from

the same probability distribution as of normal queries, but with role information

negated. For example, if the role information associated with a normal query is 0, then

simply change the role to any role other than 0 to make the query anomalous.

15

Benchmarking Insider Threat Intrusion Detection Systems

Chapter 3

Benchmark Design

In this chapter, we first identify relevant requirements and design decisions

and then describe the workload design for the benchmark. The procedure proposed in

(Jain, 1991) is being used as a reference model of how to proceed in benchmark

design. The goal of this benchmark is to measure and compare different e-privacy

intrusion detection algorithms based on user behavior. There is only one tested service:

user behavior. For this service, a collection of tests is proposed, each of which focus

on a specific sub-task of active behavior. The selection of goals and services should

be fair, i.e., it should not favor specific systems. The benchmark tests the features that

are common to most current relational database systems, and does not stress special

features that are available for a few systems. The benchmark is designed to scale as

the bank expands and new employees are hired, which can be reflected by

incrementing branches, customers and employees.

3.1 Selection of metrics

A fundamental problem in intrusion detection benchmarking is to objectively

evaluate an intrusion detection system (IDS) in terms of its ability to correctly classify

events as normal or intrusive. The most basic and commonly used metrics are true

positive rate (TP, i.e., the probability that the IDS outputs an alarm when there is an

16

Benchmarking Insider Threat Intrusion Detection Systems

intrusion) and false positive rate (FP, i.e., the probability that the IDS outputs an alarm

when no intrusion occurs). Alternatively, one can use a false negative rate FN=1-TP

and true negative rate TN=1- FP (Gu, Fogla, Dagon, Kee & Skori, 2006).

However, by setting the threshold of a deviation from a normal profile, there

may be different TP and FP values associated with different IDS operation points. If

only the metrics of TP, FP is given individually, determining the better operation point

is difficult. Thus, a composite metric, in which both TP and FP are considered, is

necessary (Gu, et al, 2006).

Traditional standard composite quality metrics of IDS are precision and recall,

which are defined as follows:

Here, # false Positives is the number of false alarms while # false Negatives is

the number of times the system is not able to detect the anomalous queries (Agrawal;

Kiernan; Srikant; & Xu, 2002). Precision is defined as the ratio of the number of

correctly detected anomalous behaviors to the total estimated anomalous behaviors,

and the recall is the hit-rate, that is, the ratio of the number of correctly detected

anomalous behaviors to the total number of anomalous behaviors (Yao, An & Huang,

17

Benchmarking Insider Threat Intrusion Detection Systems

2005).

Another popular composite metric is the Receiver Operating Characteristic

(ROC) curve, which has been introduced to evaluate machine learning algorithms, to

plot the different TP and FP values associated with different IDS operation points

(Zeng, 2005). It shows the probability of detection provided by the detector at a given

false alarm rate. However, Gu et al, (2006) argue that ROC curves cannot be

effectively used for comparing IDSs, as when the curves cross it is not easy to

compare the IDSs. It is not always appropriate to use the area under the ROC curve

(AUC) for comparison because it measures all possible operation points of an IDS.

Calzarossa & Serazzi, (1993) also argue that evaluations based on ROC analyses are

often misleading. They further argue and demonstrate how evaluations based on cost

metrics can overcome some of the problems of ROC analysis.

One approach to integrating the metrics TP and FP is through cost-based

analysis. Essentially, the tradeoff between a true positive and a false positive is

considered in terms of cost measures (or estimates) of the damage due to an intrusion,

and inconvenience caused by a false alarm. Gaffney and Ulvila (2001) used such an

approach, which is similar to the approach proposed by Calzarossa & Serazzi, (1993),

to combine ROC curves with cost analysis to compute an expected cost for each IDS

operation point. The expected cost can be used to select the optimal operation point

on a detector’s receiver operating characteristic (ROC) curve and to compare different

IDSs. The detector’s ROC curve describes the relationship between the two operating

18

Benchmarking Insider Threat Intrusion Detection Systems

parameters of the detector, its probability of detection, 1-β, and its false alarm rate, α.

That is, the ROC curve displays the1-β provided by the detector at a given α. It also

displays α provided by the detector at a given1-β. The quality of cost-based analysis

depends on how well the cost estimates reflect the reality. However, Gu et al, (2006)

mention that cost measures in security are often determined subjectively because of

the lack of good (risk) analysis models. Thus, cost-based analysis alone cannot be

used to objectively evaluate and compare IDSs.

Table 1

Conditional Probabilities of the Detector’s Report Given the State of the System (Gue,

et al, 2006)

In addition to TP and FP, two other useful metrics are the positive predictive

value(PPV), which is the probability of an intrusion when the IDS outputs an alarm,

and the negative predictive value (NPV), which is the probability of no intrusion

when the IDS does not output an alarm. The Positive Predictive Value (PPV) is

defined as follow:

19

Benchmarking Insider Threat Intrusion Detection Systems

Similarly, the Negative Predictive Value (NPV) is

In (Gu, Fogla, Dagon, Kee & Skori, 2006), it states that these metrics are very

important from a usability point of view because ultimately, the IDS alarms are useful

to an intrusion response system (or administrative staff) only if the IDS has high PPV

and NPV. Both PPV and NPV depend on TP and FP, and are very sensitive to the base

rate (B), which is the prior probability of intrusion. Thus, these two metrics can be

expressed using Bayes theorem so that the base rate can be entered as a piece of prior

information about the IDS operational environment in the Bayesian equations. Similar

to the situation with TP and FP, both PPV and NPV are needed when evaluating an

IDS from a usability point of view, and currently, there is no objective method to

integrate both metrics.

Most anomaly detectors are based on probabilistic algorithms that exploit the

intrinsic structure, or regularity, embedded in data logs. Maxion and Tan (2000)

introduce a metric for characterizing structure in data environments, and tests the

hypothesis that intrinsic structure influences probabilistic detection. They argue that

most evaluations are done according to a black-box testing regime, which can

demonstrate the overall performance capabilities of a detection system but reveals

almost nothing about the performance of components inside the black box.

Because most, if not all, anomaly-detection algorithms depend on the intrinsic

structure embedded in the data upon which they operate, it seems reasonable to

20

Benchmarking Insider Threat Intrusion Detection Systems

assume that differences in such structure would influence detector performance.

High-regularity data contain redundancies that facilitate predicting future events on

the basis of past events; low-regularity data impede prediction. Regularities refer to

the sequential dependencies of sequences as measured by entropy, which has been

called the Shannon-Wiener Index also (Maxion & Tan, 2000).

Maxion et al, (2000) propose benchmarking as an approach toward

understanding the performance characteristics of anomaly-detection algorithms

applied to categorical data.

Figure 3.1 Synthetic Benchmark Data; False Alarms vs. Regularity Index (Maxion

& Tan, 2000)

Another performance measure, the F-measure used to evaluate the accuracy of

the session detection is presented by Yao, An & Huang, (2005). The F-measure is

defined as a harmonic mean of precision (P) and recall (R) (van Rijsbergen, 1979).

21

Benchmarking Insider Threat Intrusion Detection Systems

The harmonic mean H is defined as follows.

 H =
𝑛

∑
1

𝑥𝑖

𝑛
𝑖=1

 =
𝑛

1

𝑥1
+⋯+

1

𝑥𝑛

When 𝑥1= P and 𝑥2=R, H will be:

 F-measure = H =
2

1

𝑃
+

1

𝑅

 =
2

𝑃+𝑅

𝑃𝑅

 =
2𝑃𝑅

𝑃+𝑅

F-measure has been used in information retrieval to measure the retrieval

performance (Lundin & Jonsson, 2000)(Huang & Peng, 2004). A higher F-measure

value means a better overall performance. The definition of F-measure as mentioned

above is also called 𝐹1-measure by some researchers. The full definition of the

F-measure is given as follows (Chinchor, 1992):

 𝐹𝛽 =
(𝛽2+1)𝑃𝑅

𝛽2𝑃+𝑅
 (0 ≤ β ≤ +∞), where β =

𝑅

 𝑃
 .

β is a parameter that controls a balance between P and R. When β =1, 𝐹1

comes to be equivalent to the harmonic mean of P and R. If β >1, F becomes more

recall-oriented and if β<1, it becomes more precision-oriented, e.g., 𝐹0=P.

We list three popular composite performance metrics above - ROC curves,

regularity index, and F-measure. In the future work of the benchmark design, we will

include 𝐹1-measure as one basic performance metric in addition to precision and

recall. The reason we do not chose ROC curve in our benchmark is that it cannot be

effectively used for comparing IDSs, and it is not always appropriate to use the area

22

Benchmarking Insider Threat Intrusion Detection Systems

under the ROC curve (AUC) for comparison because it measures all possible

operation points of an IDS (Calzarossa & Serazzi, 1993) (Gu et al, 2006). We do not

include regularity index as well is because the benchmark focuses on transaction level

instead of data level performance.

3.2 Selection of Parameters

Parameters are factors that influence IDSs performance on benchmark. By

tuning configuration parameters based upon different benchmark testing needs,

comparable results can be produced. Below we identify the specific parameters for

e-privacy IDSs performance measurement.

records accessed The total number of records been accessed per transaction

(Maxion & Tan, 2000)

tables accessed The total number of tables been accessed per transaction (Maxion

& Tan, 2000)

transaction type The most common transaction types are listed as followed. Check:

Check account information; Deposit: Deposit money into the account Withdraw:

withdraw money from an account; Transfer In: Money moved into this account from

another bank account, or money received from the bank holding this account;

Transfer Out: Money moved out of this account into another bank account, or money

paid to the bank holding this account.

database size Database size is determined by individually specifying the total

number of branches, departments , customers and employees, and the number of

23

Benchmarking Insider Threat Intrusion Detection Systems

records in each.

table size The number of records generated on individual tables

number of simulated users Total number of simulated users of the database. In our

benchmark, it represents the number of employees executing transactions on the

banking system.

user roles The total number of roles that exists in the benchmark workload. More

details on role design will be provided in Section 3.3.2.

sequences length Number of queries issued by a user to achieve a certain task (Yao,

et al, 2005)

sequences frequency distribution A user’s daily sequences distribution. It

represents how frequently a user performs certain task on a database. In our

benchmark, uniform distribution has been selected as the default distribution method.

sequence type Management: Managers check the DB periodically to collect data for

reports; HR management: HR manager adjusts employee data; Financial planning:

Finance Analysts send queries to DB, in order to get customers information that

qualify to certain investment programs; Customer request: Transactions requested by

customer (by phone, in person, by email); Product marketing: Get general info from

DB to target potential market; External service: Financial Analyst gets access to DB

to check certain customer’s information like credit history for third party.

number of anomalies Total number of anomaly queries within the workload

anomaly injection methods As stated above, the uniform distribution has been

24

Benchmarking Insider Threat Intrusion Detection Systems

chosen as the default distribution method. Technically a benchmark user can

implement any distribution from what to draw anomalies. However, this thesis

implements a choice of Uniform or Gaussian.

anomaly types We target three types of anomalies in our benchmark. They are data

harvesting, masquerading, and pure sabotage attacks. More details on anomaly

design will be explained in Section 3.3.4.

3.3 Workload Design

In benchmarking parlance, the training data (normal background) and testing

data (back-ground plus anomalous events) constitute the anomaly-detector workload

(Maxion & Tan, 2000). The benchmark simulates a financial banking system, in

which internal employees performs various transactions against a relational database.

A workload driver is used to generate transaction flows on the database. It simulates n

concurrent database users each of which connects to the database and submits a mix

of transactions. In our benchmark, we consider the bank’s internal employees as the

only database users. Customer’s interaction with the database is irrelevant to the

purpose of our benchmark and its impact on IDS’s performance is negligible. The

transactions are generated in the similar way as proposed in Transaction Processing

over XML (TPoX) benchmark. In TPoX, all transactions are picked randomly from a

set of predefined transaction templates. But in our benchmark, each role has its unique

set of transaction templates to be chosen from. At run time, parameter markers in the

templates are replaced by actual values drawn from configurable random value

25

Benchmarking Insider Threat Intrusion Detection Systems

distributions. The simulated banking transactions should reflect a real-world scenario.

We use a daily transactions scheduler to populate and simulate each employee's

everyday transaction flow. During the process of workload population, internal

employees perform various transactions against the database which create the training

data for the benchmark, while the normal background of the testing data are generated

the same way. The workload’s testing data is the result of injected anomaly events into

normal transactions. The following sections provide details of the workload design by

describing transaction templates and daily transactions scheduler design, followed by

the anomaly population.

3.3.1 Financial Bank Scenario

The financial banking scenario has been numerously used in OLTP benchmark

applications, such as DebitCredit, TPC-A and TPC-B. In our benchmark for insider

threat IDS, we model a financial banking system that focus on internal employees’

behavior towards the database. We consider an event is an anomaly when an

employee conducts an unwanted or unexpected manipulation to the database, which

may eventually result in the breach of customer's privacy. The simulated financial

bank operates out of a number of Branches. The benchmark is designed in such a way

that the size of the bank is scalable. In other words, the number of the branches and its

total employees can be configured according to testing needs. Each branch has several

Departments and every department has more than one employee. Bank Employees are

26

Benchmarking Insider Threat Intrusion Detection Systems

identified by ID number. Each employee is only allowed to work under a department.

Employees perform various transactions on the database corresponding to its role

(which department, he or she is in). The Bank provides three types of accounts to its

customers - SavingsAccounts, CheckingAccounts and LoanAccounts. The bank's

Customer is identified by its ID number. Each customer can have more than one

Account. Each account is assigned a unique account number, account balances, and

account branch. In addition, each saving and checking account interest rates, and each

loan account installment amount. Every updates on the customer’s account will be

recorded in a Journal table. The database stores information of bank transactions in

the Trans log file.

Figure 3.2 Financial Bank Entity-Relationship Diagram

27

Benchmarking Insider Threat Intrusion Detection Systems

The banking database maintains information on Branch, Department,

Customer, Employee, Accounts, and Journal. Above in Figure 3.2 shows the

Entity-Relationship (ER) diagram for a banking system workload. An entity is an

object or concept about what data is stored.

In the diagram, entities, represented as rectangles, are Branch, Department,

Customer, Employee, Accounts and Journal. The relationship, represented as

diamonds, provides information about association among entities. The relationships

belong_to and bank_account indicate the Branch associated with the entities

Department and Account, respectively. The table Journal indicates the association

between Employee and Account . The IsA relationship, depicted by a triangle,

represent the "is a" relationship between low-level entities and high-level entities,

which means a low-level entity is a special case of high-level entity. Low-level

entities inherit properties from high-level entities.

 In our case, Loan, Credit Account, Checking Account and Saving Account are

low-level entities; they inherit properties from high-level Account. The attribute,

denoted by ovals, indicate properties of the entities or relationships to which they are

connected. The underlined attributes are key property, which are uniquely identifying

attributes for the entities (Dietrich et al, 1992). According to the proposed ER diagram,

we can map it to a database scheme as listed below.

28

Benchmarking Insider Threat Intrusion Detection Systems

Table 2

Bank Database Schema

Branch(branch_id,location,asset)

Department(department_id,name,emp_totoal,branch_id)

Employee(employee_id,name,street,city,province,title,department_id,hire_date,sa

lary,CPP, PayPerHr,Bonus,Hours)

Customer(customer_id,name,phone,street,profession,income,city,province,DateO

fBirth)

Account(id,customer_id,open_date,branch_id,type,interest,balance)

CheckingAccount(id, currency)

CreditAccount(id, available_fund,last_payment)

LoanAccount(id, InstallmentAmount,penalty)

SavingAccount(id,available_fund,currency)

Journal(journal_id,employee_id,account_id,transamount,timestamp,type)

The schema for the relational data model representation of the bank is show in

Table 2. The relations for Branch, Department, Customer, Employee, Accounts,

Journal, and Trans include the attributes associated with the entities from the ER

diagram, in which the underlined attribute are the primary key for its relation. In

addition, the Branch and Department relations include the attribute branch_id, which

indicates the associated branch as given by the relationship belong_to. Likewise, the

attribute employee_id included in relation Employee and Transaction indicates the

relationship update from the ER diagram. The primary keys of the relations are given

by the corresponding key attributes from the ER diagram. The Journal relation

contains the attributes corresponding to the key attributes of the Employee and

29

Benchmarking Insider Threat Intrusion Detection Systems

Account entities and the relationship's descriptive attributes TimeStamp and

TransactionAmount. The records for all the relations are populated according to the

database size parameters, which can be achieved through the use of a data filler

program. The parameters can be configured in a way that the total number of each

table's records may vary according to testing needs.

Figure 3.3 Tables' Relationships in a Bank Database Implemented in MS SQL Server

The database will be generated on Microsoft SQL Server 2008. Figure 3.3

shows the database diagram that depicts relationship between tables. Tables represent

the entities in Database schema.

30

Benchmarking Insider Threat Intrusion Detection Systems

3.3.2 Transaction Template

In the realm of database systems, a transaction is a sequence of operations

performed as a single logical unit of work. Usually, a transaction consists of several

SQL commands, which are the combination of queries, inserts, updates and deletes. In

our benchmark, we consider each SQL command as a single transaction. Users

perform those transactions within the database to achieve a certain task. Database

users execute various manipulations in a database according to his/her role. A role

defines what a user can and cannot do within a database, and multiple users may share

the same role. In our benchmark, we define that each role represents a unique

department; employees who work in the same department share the same role, which

means several employees would be entitled the same security clearance on the

database if they are in the same department. In the real world, for the efficiency of

managing its employees, companies create broad security clearance for each

department (role) instead of each employee. That creates opportunities for employees

to conduct unwanted manipulations to the database that may result in the breach of its

customers’ privacy.

As showed in table 3, we provide twenty roles in our benchmark. Each of

these roles falls under one of four business functions – Human Resource, Marketing,

Accounting, and Customer Service. In other words, up to twenty departments could

exist in the banking scenario.

31

Benchmarking Insider Threat Intrusion Detection Systems

Table 3

Business Functions and Their Roles

Business Function Roles

Human Resource Function Payroll Clerk,

Recruiter,

Compensation Analyst,

Benefit Clerk,

Employment and organizational development director,

Marketing Function Product development specialist,

Telemarketing Representative,

Accounting Function Cost Accountant,

General Accountant,

Account Clerk,

Foreign Exchange Dealer,

Auditor,

Fraud detection specialist,

Customer Service Function Vault Teller,

Teller,

Sales representative,

Credit Clerk,

Mortgage Loan Officer,

Loan Reviewer,

Mortgage Closer,

We assume employees that belong to the same department perform the same

type of transactions in the database. In our benchmark, we predefine a set of

transaction templates for each role. In each template, we use wildcard character '%' to

represent a data value in the SQL command, which will be replaced by actual values

drawn from configurable random value distributions. We will discuss each role's duty

and its corresponding transaction templates in the following section.

32

Benchmarking Insider Threat Intrusion Detection Systems

1) Human Resource Function (HR)

Human Resource employees need to keep track on employment history in

order to keep reference for future decision making. That means they will access

specific attributes in the Employee table, which store employees' detailed information.

Presumably, they log onto the database a few times and stay for short periods of time

per day whenever a task requires the employee to gather information from the

database. Under the human resource function, there are five roles – payroll clerk,

recruiter, compensation analyst, benefit clerk, and employment and organization

development director.

a) Templates for the Payroll Clerk Role

 The payroll clerk is accountable for collecting timekeeping information,

incorporating a variety of deductions into a periodic payroll, and issuing pay and

pay-related information to employees.

 i. Checking employee's working hour

 69. Select hours from Employee where employee_id=’%’

 ii. Making monthly payment

 70. Select employee_id, PayPerHr*hours from Employee

 iii. Issuing tax form

71. Select employee_id, salary from Employee

 iv. Calculating over time

72. Select Bonus from Employee

b) Templates for the Recruiter Role

33

Benchmarking Insider Threat Intrusion Detection Systems

 The recruiter is in charge of recruiting new employees for the bank. That

means he/she will access the Employee table to create new records and update the

corresponding attribute in Department table.

 i. Recruiting a New Employee

01. SELECT department_id FROM Department WHERE name=’%’ AND

branch_id=’%’

02. SELECT max(employee_id) FROM Employee

03. INSERT INTO Employee (employee_id, name, street, city, province, title,

department_id, hire_date)

VALUES(‘employee_id’,’name’,’street’,’city’,’province’,’title’,’departme

nt_id’,’hire_date’)

04. UPDATE Department SET emp_total=emp_total+1

c) Templates for the Compensation Analyst Role

 Compensation analysts monitor salaries spend in order to optimize the

investment in human resources. They also participate in the implementation of various

components of the organization’s pay and rewards program, which include base pay

and bonuses.

i. Model Salary Administration System

 11. SELECT TOP 10 * FROM Employee ORDER BY salary

 12. SELECT TOP 10 * FROM Employee WHERE department_id=’%’

ORDER BY salary

13.SELECT SUM(salary) AS TotalSalary FROM Employee WHERE

department_id=’%’

 14. SELECT Employee_id, name, salary, title FROM Employee WHERE

salary>%

34

Benchmarking Insider Threat Intrusion Detection Systems

ii. Retrieving Employee Information.

 05. SELECT * FROM Employee WHERE employee_id = ‘%’

 15. SELECT * FROM Employee WHERE province=’%’

iii. Organizing , coordinating the accurate payment of sales bonus according

to their signed compensation plan

73. Update Employee Set bonus =’%’

iv. Maintain and correct sales performance to ensure accurate bonus

payment

72. Select bonus from Employee

d) Templates for the Benefit Clerk Role

 A benefit clerk should help employees understand the benefits package offered

by the employer. When employees have questions regarding their benefits, the benefit

clerk is usually the first resource within the organization to deal with this issue.

i. Answers employee’s questions

05. Select * From Employee Where Employee_id=’%’

ii. Records employee enrollment in benefit programs: retirement, pension

and health.

75. Update Employee Set CPP=’%’

e) Templates for the Employment and Organizational Development Director Role

 The employment and organizational development director facilitate Human

Resources functions including promoting and transferring employees within the bank.

35

Benchmarking Insider Threat Intrusion Detection Systems

i. Promoting an Existing Employee within a Department

05. SELECT * FROM Employee WHERE employee_id = ‘%’

06. UPDATE Employee SET salary= ‘%’ WHERE employee_id=’%’

ii. Transferring Employee Between Different Departments

06. SELECT * FROM Employee WHERE employee_id = ‘%’

07. UPDATE Employee SET salary= ‘%’ WHERE employee_id=’%’

08. UPDATE Department SET emp_total=emp_total-1 FROM

Department, Employee WHERE Department.department_id=

Employee.department_id AND Employee.employee_id=’%’

09. UPDATE Employee SET department_id=’%’ WHERE employee_id=’%’

10. UPDATE Department SET emp_total= emp_total+1 FROM Department,

Employee WHERE Department.department_id= Employee.department_id

AND Employee.employee_id=’%’

iii. Layoff Management Procedures

07. UPDATE Department SET emp_total=emp_total-1 FROM

Department, Employee WHERE Department.department_id=

Employee.department_id AND Employee.employee_id=’%’

11. DELETE * FROM Employee WHERE employee_id=’%’

 2) Marketing Function

The marketing employees are responsible for the coordination of all marketing,

social media and networking activities of the Bank. Under the marketing function,

there are two roles – product development specialist, and telemarketing

representative.

a) Templates for the Product Development Specialist Role

 In order to set up an effective marketing strategy, the product development

36

Benchmarking Insider Threat Intrusion Detection Systems

specialists need to analyze their target market in general, as well as keeping track of

customer's contact information to collect feedback. They analyze the demography of

its customers in order to develop various marketing concepts, objectives, materials

and advertising programs.

i. Review the bank’s existing products or services and research ways to

enhance them

76. Select * From Account Where type =’%’

ii. Design and develop product, promotional programs and product brochures

16. SELECT COUNT(*) FROM Customer WHERE profession =’%’

17. SELECT COUNT(*) FROM Customer WHERE province=’%’

18. SELECT COUNT(*) FROM Customer WHERE DateOfBirth >’%’

19. SELECT COUNT(*) FROM Customer WHERE income>’%’

20. SELECT TOP 100 * FROM Customer AS T1, Account AS T2 WHERE

T1.customer_id=T2.customer_id ORDER BY T2.Balance

21. SELECT * FROM Account Where open_date>x AND open_date<y

iii. Conduct surveys, market studies and research upon customer satisfaction

in order to develop the project concept

 24. SELECT * FROM Customer WHERE DateOfBirth >’%’

 25. SELECT * FROM Customer WHERE income>’%’

b) Templates for the Telemarketing Representative Role

 A telemarketing representative contacts customers on behalf of the bank to

promote the bank’s products. He/she interacts with the customers on possible

solutions to their different financial problems.

37

Benchmarking Insider Threat Intrusion Detection Systems

 i. Look up the contact information from the Customer table in order to get

in touch with an individual customer; to provide possible solutions to the customers’

different financial problems.

 22. SELECT phoneNo FROM Customer as T1, Loan Account asT2 WHERE

T1.customer_id=T2.customer_id AND T2.penalty>’%’

23. SELECT phoneNo FROM Customer as T1, Credit Account asT2 WHERE

T1.customer_id=T2.customer_id AND T2.penalty>’%’

3) Accounting Function

Accountants need access to every detailed transaction (every table) to make

different accounting statements. The bank accountant is responsible for preparing or

assisting in the preparation of financial statements at the end of each month and

quarter. This allows an investor to follow the bank's lending and investing activities

more easily.

An auditor monitors the operations of the bank to ensure its compliance with

industry guidelines and adherence to measures that deter fraud. In an industry

frequently considered highly competitive, a bank auditor reviews the general and

specific aspects of daily practices to guarantee her bank remains competitive and

maintains the integrity expected by its customers. They scrutinize every practice from

teller transactions through the security of the bank’s vaults and courier services.

Another typical area of concern for bank auditors is compliance with regulations and

http://www.wisegeek.com/what-is-an-auditor.htm
http://www.wisegeek.com/what-is-fraud.htm

38

Benchmarking Insider Threat Intrusion Detection Systems

guidelines governing lending practices and disclosure procedures. Since the industry

guidelines are frequently updated and revamped, it is important for the bank to be in

total compliance in their operations to avoid penalties and properly secure customer

deposits.

Under the accounting function, there are six roles – cost accountant, general

accountant, account clerk, foreign exchange dealer, auditor, and fraud detection

specialist.

a) Templates for the Cost Accountant Role

 The cost accountant is accountable for the ongoing analysis of target costing

products and margin analysis.

 i. Looking after product costing

78. SELECT SUM(balance*interest) AS interestIncome FROM Account

ii. Allocation of common costs or overheads with system process

46. Select SUM(salary) from Employee

b) Templates for the General Accountant Role

 A general accountant’s duties include preparing journal entries, maintaining

balance sheet schedules and assisting with monthly closings and account analysis.

She/he also in charge of assisting in the preparation of various financial statements,

which include an income statement, balance sheet, cash flow statement and the

statement of retained earnings.

39

Benchmarking Insider Threat Intrusion Detection Systems

i.Cash Position Report

 41. SELECT SUM (transamount) FROM Journal WHERE timestamp=’today’

AND type=’credit’

 42.SELECT SUM (transamount) FROM Journal WHERE timestamp=’today’

AND type=’transfer’

40. SELECT SUM (transamount) FROM Trans WHERE timestamp=’today’

AND type=’debit’

 Income Satement

43. SELECT SUM(balance*interest) AS interestIncome FROM Account

WHERE type=’loan’

44. SELECT SUM(balance*interest) AS interestExpense FROM Account

WHERE type=’saving’

45. SELECT SUM(balance*interest) AS interestExpense FROM Account

WHERE type=’checking’

46. SELECT SUM(salary) FROM Employee

ii. Balance Sheet

47. SELECT SUM(balance) FROM Account WHERE type =’saving’

48. SELECT SUM(balance) FROM Account WHERE type =’checking’

49. SELECT SUM(balance) FROM Account WHERE type=’credit’

50. SELECT SUM(asset) FROM Branch

iii. Cash Flow

43. SELECT SUM(balance*interest) AS interestIncome FROM Account

WHERE type=’loan’

44. SELECT SUM(balance*interest) AS interestExpense FROM Account

WHERE type=’saving’

45. SELECT SUM(balance*interest) AS interestExpense FROM Account

WHERE type=’checking’

40

Benchmarking Insider Threat Intrusion Detection Systems

c) Templates for the Account Clerk Role

An account clerk is responsible for monitoring the bank’s daily transaction and

maintaining account records, including posting and adjusting entries in Journal.

 i. Preparing & Posting Adjusting Entries

 51. UPDATE Journal SET transamount=’%’ WHERE account_id=’%’ AND

timestamp=’%’

52. UPDATE Journal SET trans_balance=’%’ WHERE account_id=’%’ AND

timestamp=’%’

 ii. Monitor Daily Transaction

 53. SELECT * FROM Journal WHERE timestamp=’today’

 54. SELECT * FROM Journal WHERE type=’%’

d) Templates for the Foreign Exchange Dealer Role

 The foreign exchange dealer engages in financial market transactions and

evaluates investment opportunities in currencies. A foreign exchange dealer who uses

corporate funds to buy and sell currencies is referred to as a proprietary trader.

i. Accessing bank foreign exchange deposit balance

80. Select * form Journal where type =’debit’ and currency=’%’

ii. Monitoring foreign currencies transactions

81. Select * from Journal where type=’credit’ and currency =’%’

82. Select SUM(transamount) from Journal where currency=’%’

41

Benchmarking Insider Threat Intrusion Detection Systems

e) Templates for the Auditor Role

 Bank auditors need the access to the database to audit the large sums reported

by accountants in their statements, and cash flow (cash inflow/outflow): employee's

pension, insurance, salary, and any cash flow occurred during transactions. They run a

number of tests, and compare statements to balance sheets to verify all documents

contain correct information.

 i. Auditor important accounts

55. SELECT TOP 10 * FROM Account, SavingAccount WHERE

Account.id=SavingAccount.id ORDER BY balance

56. SELECT TOP 10 * FROM Account, SavingAccount WHERE

Account.id=SavingAccount.id AND currency =’%’ ORDER BY balance

57. SELECT TOP 10 * FROM Account, Checking Account WHERE

Account.id=SavingAccount.id ORDER BY balance

 ii. Verify that processing charges are debited accordingly to borrower’s ledger

 58. SELECT account_id FROM Journal WHERE transamount>’%’

 59.SELECT account_id, transamount FROM Journal WHERE

transamount>’%’

 60. SELECT id, balance, installment FROM Account, Loan Account WHERE

Account.id=LoanAccount.id AND balance>’%’

f) Templates for the Fraud Detection Specialist Role

 The fraud detection specialists are responsible for analyzing and preventing

42

Benchmarking Insider Threat Intrusion Detection Systems

dollar loss to the bank by monitoring the various reports for potential fraud activity.

They are also responding to inbound calls from customers, call centers, merchants,

authorization centers and police worldwide to verify questionable transactions.

i. Monitoring various transactions for potential fraud activity

47. SELECT SUM(balance) FROM Account WHERE type=’saving’

48. SELECT SUM(balance) FROM Account WHERE type=’checking’

49. SELECT SUM(balance) FROM Account WHERE type=’credit ’

50. SELECT SUM(asset) FROM Branch

ii. Contacting customers to verify transactions

 83. Select phoneNo from Customer where customer_id=’%’

iii. Accessing to customers’ records in order to confirm questionable

transactions

84. Select * from Account where customer_id = ‘%’

4) Customer Service Function

 Customer service employees need the access to single customer record in

order to provide personal service. Customer service is the main channel that

customers have to communicate with the banking system. Under the customer service

function, there are seven roles – vault teller, teller, sales representative, credit clerk,

mortgage loan officer, loan reviewer, and mortgage closer.

a) Templates for the Vault Teller Role

43

Benchmarking Insider Threat Intrusion Detection Systems

 A vault teller is in charge of preparing the bank for that day’s transactions.

She/he counts and records the night deposits, the money transactions from the day

before and verifies the vault’s money supply count that was made the day before.

They are also responsible for ordering currency from the national bank, monitoring

money supply and recording deposits.

i. Verifying cash deposit

88. Select cash from Branch where id=’%’

ii. Ajusting cash balance for the branch

89. Update Branch Set cash=’%’

b) Templates for the Teller Role

 Tellers have a wide variety of duties such as check cashing to

deposits/withdraws, making loan payments. Banking facilities often offer many

services, information to clients. When tellers meet their clients, they will assist the

clients with various services the bank has to offer, provide information, and redirect

the customers to the appropriate department. The basic duties as a teller are: deposit,

withdraw, transfer, check account balance, check cashing, bill payments, currency

exchange, processing loans. Bank tellers balance their receipts and payments at the

end of each day. High volume of transaction traffic is expected for tellers.

 i. Deposit

 26. UPDATE Account SET balance=balance+’%’ WHERE account_id=’%’

44

Benchmarking Insider Threat Intrusion Detection Systems

ii. Withdraw

 28. UPDATE Account SET balance= balance-‘%’ WHERE account_id=’%’

iii. Transfer between accounts

 28. UPDATE Account SET balance= balance-‘%’ WHERE account_id=’%’

 26. UPDATE Account SET balance=balance+’%’ WHERE account_id=’%’

iv. Closing and Opening of Bank Accounts

30. INSERT INTO Customer (customer_id, name, street, city, province,

postal_code, profession, DateOfBirth, income) VALUES

(‘customer_id’, ’name’, ’street’, ’city’, ’province’, ’postal_code’,

‘ profession’, ‘DateOfBirth’, ‘income’)

 31. INSERT INTO Account (id, customer_id, open_date, branch_id, type,

interest, balance)

VALUES (‘id’,’customer_id’,’open_date’,’branch_id’,’type’,’interest’,

‘balance’)

 32. INSERT INTO Checking Account (id, currency)

 VALUES (‘id’, ’currency’)

 33. UPDATE Checking Account SET balance= 0 WHERE id=’%’

v. Check Account Detail

35. SELECT * FROM Account WHERE id=’%’

vi. Cashing Checks

26. UPDATE Account SET balance=balance+’%’ WHERE

account_id=’%’

vii. Currency Exchange

38. UPDATE Account SET balance = ‘%’ WHERE currency=’%’ AND

account_id=’%

45

Benchmarking Insider Threat Intrusion Detection Systems

 viii. Accepting Loan Payments

 39. SELECT * FROM Account, Loan Account WHERE

Account.id=LoanAccount.id AND id=’%’

 ix. Balance their receipts and payments at the end of each day

40. SELECT SUM (transamount) FROM Journal WHERE timestamp=’today’

AND type=’debit’

 41. SELECT SUM (transamount) FROM Journal WHERE timestamp=’today’

AND type=’credit’

c) Templates for the Sales Representative Role

 A sales representative works as a salesperson and customer services agent,

directly with potential customers to determine their financial viability or needs and

sell them a variety of financial services. The sales representative need to be familiar

with the bank’s offered checking or saving accounts, mortgages or securities

portfolios in order to deduce which would best fit the prospective customer.

 i. Reviewing customers’ personal accounts to determine what banking

products might be appropriate for customers

64. Select * from Customer Where customer_id=’%’

 ii. Answering customers’ questions about products, prices, availability,

product uses, and credit terms

77. Select distinct type from Account

46

Benchmarking Insider Threat Intrusion Detection Systems

d) Templates for the Credit Clerk Role

A credit clerk processes applications of individuals applying for credit. She/he

also establishes credit limit, considering such factors as applicant’s assets, credit

experience and personal references, based on predetermined standards.

 i. Accessing the applicant’s records in order to determine credit limit

65. SELECT * FROM Customer WHERE Customer_id=’%’

66. SELECT * FROM Account WHERE customer_id=’%’

85. SELECT * FROM Account, Loan Account WHERE id=’%’ AND

type=’credit’

 ii. Creating new credit records for the accepted applicants

30. INSERT INTO Customer (customer_id, name, street, city, province,

postal_code, profession, age, income) VALUES

(‘customer_id’, ’name’, ’street’, ’city’, ’province’, ’postal_code’,

‘ profession’, ‘age’, ‘income’)

 31. INSERT INTO Account (id, customer_id, open_date, branch_id,

type,interest,balance)

 VALUES (id, customer_id, open_date, branch_id, type, interest, balance)

 86. INSERT INTO Credit Account (id ,available_fune, last_payment)

VALUES(‘id’, available_fund , last_payment)

iii. Adjust incorrect credit charges and grant extensions of credit on overdue

accounts

47

Benchmarking Insider Threat Intrusion Detection Systems

87. Update Credit Account Set available_fund=’%’ where id=’%’

e) Templates for the Mortgage Loan Officer Role

To increase the amount of transactions through their facility, loan officers

assist individuals who seek loans, and act as a liaison to creditors and

borrowers. Originators aid clients when applying for loans, as well as ensure that the

necessary information is provided to both the creditor and the borrower. These

professionals must be able to advise clients experiencing difficulties receiving loans,

in addition to suggesting the best possible option(s) for each client. Other duties

include creating loan accounts, checking loan type, tracking interest rates and updating

the LoanAccount table.

 i. Analyze applicants' financial status, credit, and property evaluations to

determine feasibility of granting loans

 65. SELECT * FROM Customer WHERE Customer_id=’%’

 66. SELECT * FROM Account WHERE customer_id=’%’

 39. SELECT * FROM Account, Loan Account WHERE id=’%’ AND

type=’loan’

 ii. Explain to customers the different types of loans and credit options that are

available, as well as the terms of those services

77. Select interest from Account where type= ’loan’

48

Benchmarking Insider Threat Intrusion Detection Systems

iii. Review and update loan files

 Take information from the prospective borrower and complete the loan

application form

 29. INSERT INTO Customer (customer_id, name, street, city, province,

postal_code, profession, age, income) VALUES

(‘customer_id’, ’name’, ’street’, ’city’, ’province’, ’postal_code’, ‘ profession’,

‘age’, ‘income’)

 30. INSERT INTO Account (id, customer_id, open_date, branch_id,

type,interest,balance)

 VALUES (id, customer_id, open_date, branch_id, type, interest, balance)

31. INSERT INTO Loan Account (id ,installmentAmount, interest)

VALUES(‘id’, installmentAmount , interest)

f) Templates for the Loan Reviewer Role

A loan reviewer performs loan review duties in the following areas and write

reports on results of analysis performed on the various loan types, denied and

withdrawn mortgage loans, and any other analysis requested.

i. Reviewing various loan accounts

90. SELECT id, interest, balance FROM Loan Account

ii. Tracking all corrections identified in risk reports and ensures corrections

are reported back to the appropriate party

68. UPDATE LoanAccount SET penalty=’%’ WHERE id=’%’

49

Benchmarking Insider Threat Intrusion Detection Systems

g) Templates for the Mortgage Closer Role

 A mortgage closer schedules loan closing and compiles and types closing

documents. She/he also in charge of reviewing approved mortgage loan to determine

conditions that must be met prior to closing.

i. Preparing and verifying closing documents during the completion of real

estate transactions

39. SELECT * FROM Account, Loan Account WHERE

Account.id=LoanAccount.id AND id=’%’

 ii. Verifying loan interest and principal payment, and closing costs

98. Select * from Journal where account_id=’%’

99. Select SUM(transamount) from Journal where account_id=’%’

100. Select penalty LoanAccount where id=’%’

 iii. Updating loan information in log and on government reporting forms

 94. Update LoanAccount Set penalty=0 where id=’%’

3.3.3 Daily Transactions Scheduler

In the benchmark, we use a daily transactions scheduler to populate each

employee's everyday transaction flow. A scheduler dynamically generates each

employee’s transaction for a day. That means each employee’s everyday transaction

length is arbitrary. The scheduler stores a database access pattern according to each

role’s characteristics.

 In the relational database system environment, accesses to the database come from

various application sources. The combination of transaction and query accesses

50

Benchmarking Insider Threat Intrusion Detection Systems

Table 4

Daily Transactions Scheduler Fields

Fields Description

timestamp Date and time when the transaction happens

timespan Time spend on database per login

logins How many times login to the database

empId Employee identification

role Roles that employee possessed

FirstLogin The time an employee first login to the database a day

generates all possible access patterns (Sacco and Schkolnik, 1986; Kearns and

DeFazio, 1989). In a financial bank background, bank employees retrieve private data

that are stored in a database system through different banking applications. Data is

being accessed according to different transactions or queries that an employee

performs against a database system.

In Table 4, it shows the fields that store in a daily transactions scheduler record.

According to the nature of the jobs and different transaction templates being used,

each business function has its unique database access pattern. In the following we will

discuss in detail the different database access patterns categorized by the business

functions as we mentioned in section 3.3.2.

51

Benchmarking Insider Threat Intrusion Detection Systems

a) Human Resource Function

A human resource employee logins several times a day to the database,

whenever there is a task involving usage of employee records. She/he stays on the

database for a short period of time approximately 30 minutes to 1 hour. Therefore, we

can assign ranges for the fields: time span, logins and start time in the daily

transactions scheduler according to each role’s characteristic. For Human Resource

role, we assign each field’s ranges as followed: timespan [30 – 60 minutes]; logins

[1 to 2 times]; FirstLogin [8:00 – 16:00].

At run time, an instance of the daily transaction scheduler is generated for

each employee. The fields of the scheduler instance are assigned with actual random

values within each field’s range based on a poisson distribution.

b) Marketing Function

A marketing employee logins frequently to the database a day. She/he stays for

a longer period of time. Therefore we can assign corresponding fields of the daily

scheduler with following ranges: timespan [60-120 minutes]; logins [1 to 3 times];

FirstLogin [8:00 – 16:00].

c) Accounting Function

An accounting employee is a database heavy user similar to the teller. She/he

normally logins to the database when work starts and stays logged in for a long period

of time. Heavy database usage can be assumed at the end of the month or quarter.

Therefore we can assign corresponding fields of the daily scheduler with the

52

Benchmarking Insider Threat Intrusion Detection Systems

following ranges: time span [180-240 minutes]; logins [2]; FirstLogin [8:00].

d) Customer Service Function

A customer service employee logins twice to the database a day, when each

shifts starts (morning and afternoon). She/he stays logged in during her/his shift.

Therefore we can assign corresponding fields of the daily scheduler with following

ranges: timespan [180-240 minutes]; logins [2]; FirstLogin [8:00].

 For further explaining the purpose of the daily transaction scheduler, an

example is given by using the scheduler to populate a transaction flow for a human

resource employee. Given the random value drawn from the field ranges are timespan

[30-60], logins [2] and FirstLogin [11:45], the example is listed in Figure 3.4.

Figure 3.4 A HR Employee Transaction Log For a Day Example

53

Benchmarking Insider Threat Intrusion Detection Systems

3.3.4 Types of Insider Attacks

Numerous definitions have been proposed for the term insider attack.

According to Maybury et al. (2005), malicious insider is one motivated to adversely

impact an organization's confidentiality, integrity, and or availability. Schultz (2002)

defines an insider attack as “the intentional misuse of computer systems by users who

are authorized to access those systems and networks”. Aleman-Mezal, et al. (2005)

asserts that insider threat refers to the “potential malevolent actions by employees

within an organization, a special type of which relates to legitimate access of

document”. The above definition involves the notion of assigned privileges to an

insider. So general definition of insider has privileges through which he/she can

access different information in his/her organization (Mun, H., Han, K., Yeun, C., &

Kim, K., 2008).

Anderson (1980) first proposed the classification for insiders who may misuse

the IT systems into masqueraders, clandestine users, and misfeasors. Salem, et al.

(2008) defines a malicious insider to be two classes of malfeasant users; traitors and

masqueraders. However, both classifications only characterized the type of users and

not the actual attacks or the purpose of the attacks. For the purposes of this

benchmark, we categorized anomalies according to the types of the insider attacks

instead of actual attackers; we define anomaly to be three classes of attacks:

Data-harvest, Masquerade, and Sabotage.

a) Data-harvest

Data-harvest is probably one of the most common insider attacks. The attacker

54

Benchmarking Insider Threat Intrusion Detection Systems

could be a legitimate database user within an organization who abuses his/her

privilege to gather valuable information of its customer and perhaps sell it to a third

party. An example of the attack would be a bank employee who exports a list of its

customers’ demographic information and sells it to an insurance company. This type

of attack is probably the hardest to detect. During the attack, we can assume massive

data would being accessed; the attacker probably need to frequently access sensitive

data and logins to the database outside of his/her working hours. In our benchmark,

we define sensitive data that are stored in Loan Account Table, Credit Account Table.

The transaction templates of the attacks are listed as followed.

 i. Access massive Loan Account Information

 SELECT * FROM LoanAccount

 SELECT * FROM Account, CustTable WHERE Account.type=’loan’

 SELECT * FROM Loan Account WHERE penalty > 100

ii. Access massive Credit Account Information

 SELECT * FROM CreditAccount

 SELECT * FROM Account, CustTable WHERE Account.customer_id =

Customer.customer_id AND Account.type=’credit’

 SELECT * FROM Account WHERE balance>100 AND type=’credit’

b) Masquerade

According to Salem, et al. (2008), the most familiar example of an insider is a

masquerader; an attacker who succeeds in stealing in legitimate user’s identity and

55

Benchmarking Insider Threat Intrusion Detection Systems

impersonates another user for malicious purpose. Credit card fraudsters are perhaps

the best example of masqueraders. In our benchmark, we define a masquerading

attacker is the one who illegally use other database user’s identity to perpetrate

malicious actions. The attackers are drawn from the same probability distribution as

of normal workload background, but with role information negated.

3) Sabotage

Sabotage is probably one of the severest insider attacks that an organization

can encounter. A sabotage attack could be launched by a disgruntled former employee

or an unsatisfied current employee who seek revenge to the organization. The attacker

uses his/her knowledge of the company and the infrastructure of the database system

to perpetrate their malicious actions, causing negatively effects on confidentially,

integrity or availability of some information asset (Maybury,2005). One of the typical

examples of this attack in our benchmark as listed bellowed, is deleting a journal log

and making the record files untraceable.

 DELETE FROM Journal WHERE transamount >1000

56

Benchmarking Insider Threat Intrusion Detection Systems

Chapter 4

Implementation

In this chapter, the procedure of implementing the benchmark is explained in

section 4.1. In the second part of the chapter, we discuss the techniques that have been

used to implement two testing intrusion detection systems – Bayesian Network IDS

(An&Jutla, 2006) and RBAC Classifier (Bertino, et.al, 2005).

4.1 Benchmark Implementation

As showed in Figure 4.1, in order to create the workload, the benchmark

includes Employee Profile Generator, Workload Driver, Anomaly Generator, Anomaly

Injector, and Database Populator. We chose Microsoft SQL Server as our Database

Figure 4.1 Benchmark Workload Flow

Management System (DBMS) to build our financial bank infrastructure, since MS

57

Benchmarking Insider Threat Intrusion Detection Systems

SQL Server is one of the popular DBMS used by organizations. We used Java for the

implementation of Employee Profile Generator, Anomaly Generator, Anomaly

Injector and Workload Driver for its availability and platform independence. All our

experiments were conducted with Java 6.5 and MS SQL Server 2008 R2, but earlier

versions of both software should work as well.

4.1.1 Database Populator Implementation

Database populator is a benchmark component to populate records in the

database; it has been implemented by using Java 6.5. We used the Java Database

Connectivity (JDBC) driver provided by Microsoft to make connections to MS SQL

Server. JDBC driver is a software component enabling a Java application to interact

with a database, such as Java SE Technologies (2012). To make connection with an

individual database, JDBC requires drivers for each database. Type 4 JDBC driver for

MS SQL Server was used; it provides database connectivity through the standard

JDBC application program interfaces (APIs). The JDBC driver gives out a connection

to our benchmark banking database and implements the protocol for transferring the

query and result between the database populator and the database.

In a Java application, the JDBC driver requires to specify driver class, driver

location, and JDBC URL format in order to make a connection to the database. An

example of JDBC driver being used in our benchmark is listed in Figure 4.2. As

shown in the below, we log into the database, Financial Bank, as system administrator

(represented as’ sa’ in Figure 6). The system administrator’s credentials are

58

Benchmarking Insider Threat Intrusion Detection Systems

predefined.

//Load and register SQL Server driver

Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");

//Establish a connection

 String connectionUrl="jdbc:sqlserver://localhost:1433; "+"databaseName=Financial

Bank; user=sa; password=Bm123456";

 Connection conn = DriverManager.getConnection(connectionUrl);

//Create a Statement object

Statement sql_stmt = conn.createStatement();

Figure 4.2 A JDBC Driver Example Used in Database Populator

The size of the database is define by four parameters – total number of roles,

total number of branches, maximum employee per departments, and total number of

customers. By specifying these four parameters, we can use the population component

to create a desired size of database. After defining the parameters, the method

initialize (int NumOfDepartment, int BranchTotal, int MaxEmpPerDep, int

CustomerTotal) is called, which creates four instances of the classes – Branch,

Department, CustTable, and EmpTable. Each of these classes are in charge of

populating one or a group of tables in the database.

59

Benchmarking Insider Threat Intrusion Detection Systems

As mentioned in Section 3.3.1, there are several tables in the Financial Bank

database – Department table, Employee table, Journal table, Trans table, Branch

table, Customer table, Account table, Checking Account table, Credit Account table,

Loan Account table, and Saving Account table.

Figure 4.3 Class Diagram of Database Populator

a) Branch Class

This class has one public method: generate (Statement sql_stmt, int

BranchTotal). It is in charge of populating branch records into the Branch table

according to the parameter: total number of branches.

b) Department Class

This class is in charge of generating the Department table, which has two

60

Benchmarking Insider Threat Intrusion Detection Systems

method: generate (Statement sql_stmt) and getName (int i). This class describes how

many departments exist in the database, which is controlled by the total number of

branches and the total number of roles. Given there are N branches and M roles, the

total number of departments that exist in the database is N×M.

c) EmpTable Class

This class is used to generate records into the Employee Table, which stores

employees’ demographic information. It includes two methods: getTitle (int role) and

generate (Statement sql_stmt, int MaxEmpPerDep). Method getTitle (int role) returns

the job title of the position an employee holds according to his/her role.

In our benchmark, we assume that one person holds only a given title in an

organization. Public method generate (Statement sql_stmt, int MaxEmpPerDep)

creates records into Employee table. The total number of records in the Employee

table is determined by the number of departments that exist in the database and the

parameter maximum employee per department.

Given there is at least one employee in a department and there are N

departments in the database, the total number of employees lays between N and N ×

Maximum Employee per Department. Figure 4.4 is an example of a generated

Employee table.

61

Benchmarking Insider Threat Intrusion Detection Systems

Figure 4.4 An Example of Generated Employee Table

d) CustTable Class

This class is used to generate the Customer table, which stores customers’

information. The method we used to populate records in the Customer table is similar

to the one for the Employee table. According to the parameter, total number of

customers, we can create the desired size of the table. After the Customer table has

been populated, a method of the AccountTable class is being called to create a group

of account records for each customer. According to the type of the account record, it

further distributes that record to corresponding sub-account tables.

4.1.2 Employee Profile Generator Implementation

Employee Profile Generator uses the Daily Transaction Scheduler component

as we mentioned in section 3.3.3 to generate transaction traffic for all employees. In

order to achieve this, the generator first retrieves employee_id and department_id

from the Employee table, then creates an instance of Daily Transaction Scheduler

62

Benchmarking Insider Threat Intrusion Detection Systems

class for each employee records. By creating daily transaction traffic for each

employee, we can generate a daily transaction log for the financial bank database. As

shown in Figure 4.4, the generator first creates the transaction flow into a temporary

table called TempTrans. Its records are ordered by employee_id; then it inserts all the

records into the Trans table ordered by timestamp.

Figure 4.5 Employee Profile Generator Workflow

4.1.3Anomaly Generator Implementation

As mention in section 3.3.4, there are three types of insider attacks – data

harvest, masquerade and sabotage. According to the types of the attack, we can create

different anomaly records by using the generator. Figure 4.6 shows the members’

view of Anomaly Generator class. In the class, we have three functions to generate

63

Benchmarking Insider Threat Intrusion Detection Systems

anomaly transactions; each of the functions corresponds to one of the three insider

attacks.

Figure 4.6 Anomaly Generator Members View

We give details of the Java code for function Masquerade () in Figure 4.7 below.

Figure 4.7 Java Codes for Masquerade () Function

64

Benchmarking Insider Threat Intrusion Detection Systems

4.1.4 Anomaly Injector Implementation

In order to create workloads for Intrusion Detection to run against, we need to

inject anomaly transactions into a normal background; in our benchmark, a normal

background is the employee transaction traffic we created by using the employee

profile generator and the anomaly is the insider attack behaviors. In our benchmark,

we provide two anomaly injection methods: uniform distribution and Gaussian

distribution. We used two methods provided by Java to realize the injection. One is

Math.random () for uniform distribution; the other is rand.nextGaussian () for

Gaussian distribution.

4.1.5 Workload Driver Implementation

In the previous section, we described how to use the employee profile

generator to create the normal background and the anomaly generator to create insider

attacks. By injecting anomalies into normal background, we enriched the workload

for intrusion detection system to test on.

The tests are conducted on the transaction log records, which stored in Trans

table as listed in Table 5, and injected anomalies. The workload driver uses

executeQuery () from the class Statement, provided by Java, to execute SQL queries

and stores the execution log in the Trans table. While running IDSs tests, an instance

of SQLParser class is created to parse the SQL queries and stored in a

ParsedLogRecords Array.

65

Benchmarking Insider Threat Intrusion Detection Systems

Table 5

Trans Table’s Attributes Description

Attribute Description

Trans ID Transaction record ID

Empid Store employee id who issue the query

SqlQuery The SQL query

Timestamp Timestamp when the query occurs

4.2 Implementation of Two Testing IDS

We chose two insider-thread IDS to be tested on our benchmark – Role Based

Access Control Classifier (RBAC classifier) proposed by Bertino, Kamr, Terzi and

Vakali (2005), and Bayesian Network IDS proposed by An, Jutla and Cercone (2006).

In the following section, we are going to explain how these two IDSs are being

implemented in detail.

4.2.1 Implementation of RBAC Classifier

The procedure proposed by Lang (2005) is being used as a reference model to

proceed in implementing the RBAC classifier. We chose Java 6.5 as our

implementation platform for the RBAC classifier. Like all probabilistic classifiers, the

RBAC classifier uses the Maximum Aposteriori Probability (MAP) decision rule; it

arrives at the correct classification as long as the correct class is more probable than

66

Benchmarking Insider Threat Intrusion Detection Systems

)()|....,(max

)....,(

)()|....,(
max

)....,|(max

21

21

21

21

jjn
Vvj

n

jjn

Vvj

nj
Vvj

vPvaaaP

aaaP

vPvaaaP

aaavPv













any other class. The nature of the naïve probability model enables the RBAC

classifier to raise an alarm when the probability of a user acting according to the role

he is claiming to have is low (Bertino, et al., 2005). In the classification problem, a set

of training examples 𝐷𝑇 is provided, and a new instance with attribute values

(𝑎1, ...,𝑎𝑛) is given. The goal is to assign to this new instance the most probable class

value v , given the attribute (𝑎1, ... ,𝑎𝑛) that describes it:

In order to build profiles, Bertino, et al. (2005) transforms the log file entries

into a triplet format, which contain three fields (SQL Command, Relation Information,

Attribute Information). For simplicity they further denoted the triplet as T(c, R, A),

where c corresponds to the command, R to the relation information and A to the

attribute information. According to the amount of information it stores, a triplet can

classify as c-triplet, m-triplet and f-triplet, where c-triplet stores the least amount of

information and f-triplet stores the most. By applying the above general Naïve Bayes

Classifier model to RBAC classifier framework, Bertino, et al. (2005) defined the set

)|()|....,(21 j

i

ijn vaPvaaaP 

67

Benchmarking Insider Threat Intrusion Detection Systems

)|()|()|()(max jijijij
Rrj

rAPrRPrcPrPr




of classifications is the set of roles r in the database system while the observations are

the log-file triplets. Therefore, if R denotes the set of roles, predicting the role 𝑟𝑗 ∈ R

of a given observation (𝑐𝑖, 𝑅𝑖 , 𝐴𝑖) requires, in accordance to the above naïve

Bayesian equation:

In our RBAC classifier implementation program, we took coarse triplet

(c-triplet) and medium-grain triplet (m-triplet) observations into consideration.

C-triplet (SQL-CMD, REL-COUNTER, ATTR-COUNTER) is the simplest log file

entries format, which REL_COUNTER and ATTR_COUNTER contain the number of

relations and attributes involved in the issued SQL query, respectively. The SQL

Command field (SQL-CMD) of both c-triplet and m-triplet corresponds to the issued

SQL command.

 In m-triplet (SQL-CMD, REL-BIN[], ATTR-COUNTER[]), Relation

Information field is a binary vector of size equal to the number of relations in the

database, denoted as REL-BIN[]. Meanwhile, Attribute Information field of m-triplet

is a vector, denoted as ATTR-COUNTER[], of size equal to the size of the REL-BIN[]

vector. The i-th element of the ATTR-COUNTER[] vector corresponds to the number

of attributes of the i-th relation that are involved in the SQL command. This bit vector

contains 1 in its i-th position if the i-th relation is included in the SQL command.

Table 6 shows two SQL commands corresponding to select statements and their

68

Benchmarking Insider Threat Intrusion Detection Systems

representations according to the two triplets. In the example, they consider a database

consisting of two relations R1= {A1, B1,C1} and R2={B2,D2,E2} (Bertino, et.al,

2005).

Table 6

Triplet construction example (Bertino, et.al, 2005)

SQL Command c-triplet m-triplet

Select A1,B1

From R1

Select <1> <2> Select <1,0>

<[1,1,0,0,0],[0,0,0,0,0]>

Select R1.A1, R1.C1,

R2.B2, R2.D2

From R1,R2

Where R1.E1=R2.E1

Select <2> <4 > Select <1,1>

<[1,0,1,0,0],[0,1,0,1,0]>

We consider c-triplet as the default triplet format for RBAC classifier.

M-triplet is also included in the implementation of RBAC classifier, so that the

performance improvement with more information stored in the triplet can be tested.

There are three Java classes included: RBAC classifier, NBlearner and

DomainValue. The RBAC classifier class is in charge of interacting with the

benchmark. The NBlearner class and its methods implement the IDS algorithm. The

DomainValue class is used to store attribute values. The class diagram is listed in

Figure 4.8.

69

Benchmarking Insider Threat Intrusion Detection Systems

Figure 4.8 Class Diagram of RBAC Classifier

4.2.2 Implementation of Bayesian Network IDS (BNIDS)

The other insider threat IDS algorithm we chose was Bayesian Network IDS

(BNIDS) proposed by An, et al., (2006). The core of our implementation is based on

the application GeNIe and its Structural Modeling, Inference, and Learning Engine

(jSMILE) for graphical probabilistic model of BNIDS, contributed to the community

by the Decision Systems Laboratory of the University of Pittsburgh

(http://dsl.sis.pitt.edu). GeNIe is a development environment for building graphical

decision- theoretic models. As shown in Figure 4.9, BNIDS is built by using the

GeNIe interface, where node I represents an insider intrusion while the others are

Contain one (learner) Contain *(DomainValue)

70

Benchmarking Insider Threat Intrusion Detection Systems

observable events that may trigger an insider attack alarm, and the edges present

conditional dependencies between nodes.

Figure 4.9 BNIDS Diagram in Genie, where hypothesis variable I denotes a privacy

intrusion. All others are information variables, where Fd denotes the usage frequency

of the database, H office hours, Td time spend on database, Tr time spent on special

records, A the amount of records accessed, M the number of special records modified,

and Fr the usage frequency of records. Conditional probability distributions between

nodes and prior knowledge about Tr and A, are assigned as suggested by An, et al.

(2006).

In our benchmark, event A is monitored by @@rowcount which we retrieved

from queries; H is monitored by the timestamp of each query ; Fr and Fd are observed

by frequency; Td by the time span between login and logout; Tr is observed by the

time difference between current query and the previous one issued by the same

71

Benchmarking Insider Threat Intrusion Detection Systems

employee. M is monitored by the number of records that have been modified by the

UPDATE or DELETE command; we considered that all the records stored in the

database are sensitive.

72

Benchmarking Insider Threat Intrusion Detection Systems

Chapter 5

Experiment Methodology and Results

In this chapter, the performances of two IDSs are tested with four test cases.

The IDSs run against the benchmark with varying percentage of anomalies, workload,

number of roles, and attack patterns individually. We also demonstrate the usefulness

of benchmark to tune an IDS setting.

5.1 Scalability Testing

In our benchmark, we provide configurable environments to conduct various

performance tests. First, we want to test the accuracy and effectiveness of both IDSs

in a small financial bank scenario. Test case 1(Figure 5.1 and Figure 5.2) established

a testing environment with increasing number of injected anomalies, and constant

training data (200 records) and normal background data of 1000 records. In Test Case

1, we assume there are two branches and 25 employees working for each of the

branch. In other words, the bank has 50 employees, each of which belongs to one of

the 20 roles we used in Test Case 1. The threshold’s default value for BNIDS is 0.5.

Later in section 5.3, we will demonstrate the procedure of using benchmark to tune

the threshold setting and how it will affect the IDS performance.

Figure 5.1 shows a superior performance in precision of Bayesian Network

Intrusion Detection System (BNIDS), proposed by An, Jutla and Cercone (2006),

73

Benchmarking Insider Threat Intrusion Detection Systems

compared to the Role-Based Access Control Classifier (RBAC Classifier), proposed

by Bertino, et al. (2005). In the test case 1, both IDSs show, given the constant size of

normal background, the more anomalies that are injected in the testing set, the higher

the precision. Anomalies are drawn from the anomaly templates under uniform

distribution; each of the anomalies belongs to one of the three insider attacks: Data

Harvest, Masquerade and Sabotage.

Figure 5.1 Test Case 1: Precision vs. Number of Injected Anomalies

Our RBAC Classifier uses a Naïve Bayes classifier. It assumes that all

attributes are statistically independent. In other words, all attributes should have the

same relevance with respect to the classification task. The reason for making this

assumption can be found in the way Naïve Bayes classifier computes the class

likelihoods. They are simply products of the conditional probabilities of all attributes

values given the class value. In our case, attributes are represented by various

0

10

20

30

40

50

60

70

80

90

100

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

P
re

ci
si

o
n

(%
)

Number of Anomalies

RBAC Classifier c-
triplet
RBAC Classifier m-
triplet
BNIDS

74

Benchmarking Insider Threat Intrusion Detection Systems

observable database events, while classes are represented by all the employee roles

existing in the database. On the other hand, the Bayesian network structure used by

BNIDS captures that some attributes are in fact dependent.

As shown in Figure 5.1, we received an improvement in precision when the

percentage of anomalies in the workload goes up. It shows that the Bayesian Network

inference makes use of dependencies, thus outperforms Naïve Bayes classifier by 20%

on precision. The latter cannot handle dependent attributes and therefore needs the

attribute independence assumption and end up with a lower performance in precision.

Moreover, the RBAC Classifier only considers data manipulation as observable

events, while BNIDS includes database events like usage frequency of database (Fd)

and office hour (H) to capture the context of an intrusion threat scenario better. For

this reason, a lower number of false positives is expected from BNIDS than RBAC

classifier given the same testing environment. Hence, a higher precision is gained by

BNIDS over RBAC classifier.

In Figure 5.1, we also witnessed that m-triplet RBAC classifier, with its larger

information stored in the triplet, shows a slightly higher performance than the c-triplet

RBAC implementation.

Figure 5.2 shows a steady performance in recall around 82% for BNIDS and

95% for RBAC classifier. RBAC classifier outperforms BNIDS by 10% in terms of

recall. In our implementation for BNIDS, each role uses the same conditional

probability distributions between nodes and prior knowledge as suggested by An, et al.

75

Benchmarking Insider Threat Intrusion Detection Systems

(2006), which results in a higher number of false negatives. Therefore, we got a lower

recall for BNIDS. In test case 1, we maintained the threshold of BNIDS at 0.5. That

means if the probability of occurrence of intrusion is larger than 50%, the IDS

consider it is an intrusion attack. In order to achieve a higher recall, we can lower the

threshold to allow more true positives are being caught by IDS. However, with a

lower threshold, more false positives are being detected by BNIDS as well, which

may contribute to a lower precision. We will discuss how to use the benchmark to find

an ideal balance between precision and recall later in section 5.3.

Figure 5.2 Test Case 1: Recall vs. Number of Injected Anomalies

According to the results we gathered from test case 1, we now can calculate

the 𝐹𝛽-measure where β =1. F-measure is the harmonic mean of precision and recall.

0

20

40

60

80

100

120

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

R
e

ca
ll(

%
)

Number of Anomalies

RBAC Classifier c-triplet

RBAC Classifier m-
triplet

BNIDS

76

Benchmarking Insider Threat Intrusion Detection Systems

With steady performances in recall and growing precisions, the F-measure values for

both IDSs increase as the percentage of anomalies in the workload goes up. As shown

in figure 5.3, the overall performance of BNIDS increases from 52% to around 87%

when there are more anomalies injected in the workload. Meanwhile, RBAC

Classifier shows noticeable improvement in overall performance before

600-injected-anomalies mark, and it remains stable around 75% afterwards.

Figure 5.3 Test Case 1: F-measure vs. Number of Anomalies

Figure 5.4. Test Case 1: Time Cost vs. Number of Testing Tuples

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

100 200 300 400 500 600 700 800 900 1000

F-
m

e
as

u
re

Number of Anomalies

RBAC Classifier c-triplet

RBAC Classifier m-triplet

BNIDS

0

5000

10000

15000

20000

25000

30000

35000

40000

1000 2000 5000 7500 10000 15000

Ti
m

e
 C

o
st

Number of Testing Tuples

Bertino m-triplet

Bertino c-triplet

An & Jutla

77

Benchmarking Insider Threat Intrusion Detection Systems

Next, we built an experimental environment that monitors the time cost for

running the IDSs with increasing total number of testing tuples. The results are

demonstrated in Figure 5.4, we can tell that with larger log to process, the time cost

went up. However, there were not many differences among IDSs in terms of time

spent on inference. It needs to be mentioned that we did not include the training phase

of both IDSs, considering an IDS only needs to be trained once per test case, and

BNIDS already provides reasonable conditional probabilities for its Bayesian network

structure (An & Jutla, 2006).

In test case 2, we want to check the performance of both IDSs in a larger

financial bank and where the percentage of anomalies that exist in the workload is low.

In this test case we establish a large financial bank scenario, where the bank has

around 10,000 customers across 10 branches, each of which has 50 employees. In

other words, the total number of employees is around 500. In this test case, we use 20

roles in the workload. During the test, we maintain the percentage of anomalies at 10%

while increasing the total number of workload records.

As expected, as shown in Figure 5.5, BNIDS outperformed RBAC Classifier

in terms of precision. Both IDSs show low precision compared to other test cases.

However, the result is reasonable considering there are only 10% of anomalies within

the workload; with higher total number of false positives and lower total number of

true positives, a lower precision is expected.

In Figure 5.6, both IDSs show a steady performance in terms of recall around

78

Benchmarking Insider Threat Intrusion Detection Systems

85% for BNIDS and 95% for RBAC classifier. That means most of the anomalies are

detected by both IDSs despite different sizes of the workload.

Figure 5.5 Test Case 2: Precision vs. Number of Tuples

Figure 5.6 Test Case 2: Recall vs. Number of Tuples

0

10

20

30

40

50

60

70

80

90

100

1000 1500 2000 3000 5000 7000 8500 10000

P
re

ci
si

o
n

Numberr of Tuples

RBAC
Classifier

BNIDS

0

10

20

30

40

50

60

70

80

90

100

1000 1500 2000 3000 5000 7000 8500 10000

R
e

ca
ll

Numberr of Tuples

RBAC
Classifier

BNIDS

79

Benchmarking Insider Threat Intrusion Detection Systems

In previous two test cases, there are 20 roles which exist in the workload. We

are wondering whether the total number of roles will affect the accuracy of the

performance. With that in mind, we established test case 3 as a testing environment

with varying number of roles, and constant training data (200 tuples) and testing data,

which has 1000 tuples of normal background and 100 injected anomalies. In Figure

5.7, RBAC classifier shows a steady performance of precision around 15%, despite

various total numbers of roles in the workload. BNIDS out performed RBAC by 20%

when there are less than12 roles in the workload; and increase the gap to 35% when

there are more than 12 roles in the workload. The size of the training data set was

varied from 100 to 1000 tuples with no difference in results. Thus a size of 200 tuples

for the raining data is deemed adequate.

Figure 5.7 Test Case 3: Precision vs. Number of Roles

0
10

20
30
40

50
60
70
80

90
100

2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

P
re

ci
si

o
n

(%
)

Number of Roles

RBAC
Classifier c-
triplet

BNIDS

80

Benchmarking Insider Threat Intrusion Detection Systems

In Figure 5.8, BNIDS shows steady performance in terms of recall while

RBAC Classifier has increasing recall with higher total number of roles in the

workload. In other words, RBAC Classifier has better classification results when there

are more roles (classes) to work on.

Figure 5.8 Test Case 3: Recall vs. Number of Roles

5.2 Different Anomaly Injection Methods Testing

Test case 4 is a variant of Test case 1 with different anomalies injection

methods: Gaussian Injection and Uniform Injection. In this test case, we want to see

whether attack patterns will affect IDSs results. As shown in Figure 5.9 and Figure

5.10, the RBAC classifier did not show any performance difference between the two

anomaly injection methods.

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

R
e

ca
ll(

%
)

Number of Roles

BNIDS

RBAC
Classifier c-
triplet

81

Benchmarking Insider Threat Intrusion Detection Systems

Figure 5.9 Test Case 4: Precision vs. Number of Anomalies RBAC-Classifier with

c-triplet

Figure 5.10 Test Case 4: Recall vs. Number of Anomalies RBAC-Classifier with

c-triplet

Meanwhile, as shown in Figure 5.11 BNIDS has a lower precision before

0

10

20

30

40

50

60

70

80

90

100

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

P
re

ci
si

o
n

(%
)

Number of Anomalies

Uniform
Injection

Guassian
Injection

0

10

20

30

40

50

60

70

80

90

100

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

R
e

ca
ll(

%
)

Number of Anomalies

Uniform Injection

Gaussian Injection

82

Benchmarking Insider Threat Intrusion Detection Systems

300-injected-anomalies with Gaussian distribution. Figure 5.12 demonstrates similar

results in recall for both injection methods. Gaussian distribution is a continuous

distribution. When the number of anomalies is less than 300, the distribution is not

smooth enough to assimilate the real Gaussian distribution. When the number of

anomalies is greater than 300, the distribution in the experiment is smooth enough to

be similar to the real Gaussian distribution.

Figure 5.11 Test Case 4: Precision vs. Number of Anomalies with BNIDS

Figure 5.12 Test Case 4: Recall vs. Number of Anomalies with BNIDS

0
10
20
30
40
50
60
70
80
90

100

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

P
re

ci
si

o
n

(%
)

Number of Anomalies

Precision Vs Number of Anomalies(An)

Uniform
Injection

Gaussian
Injection

0

20

40

60

80

100

1
0

0

2
0

0

3
0

0

4
0

0

5
0

0

6
0

0

7
0

0

8
0

0

9
0

0

1
0

0
0

R
e

ca
ll(

%
)

Number of Anomalies

Recall Vs Number of Anomalies(An)

Uniform
Injection
Gaussian
Injection

83

Benchmarking Insider Threat Intrusion Detection Systems

5.3 Tuning IDS Settings with Benchmark

For an IDS to work effectively, it should be tuned correctly. Settings of the

IDS need to be in compliance with the security policies and goals of the sytem

administrator. Although, the tuning process is very time consuming, it is a very vital

factor to an effective IDS configuration. Later we will use BNIDS as an example to

demonstrate how to utilize our benchmark for tuning IDSs settings.

Here, we set up a test financial bank scenario that has two branches, each of

which has 25 employees. The workload has constant 1000 tuples with 10% anomalies.

By raising the threshold of BNIDS from 0.1 to 1.0 with the increment of 0.1, we

received 10 sets of results of precision and recall, which are shown in Figure 5.13.

Figure 5.13 BNIDS Threshold Tuning

 Figure 5.13 shows a gradually dropping recall numbers and increasing

precision percentages when the threshold goes higher. When the threshold reach at 1,

both recall and precision dropped to 0, where there are no true positives. With lower

0

20

40

60

80

100

120

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

P
e

rc
e

n
ta

ge

Threshold

Precision

Recall

F-measure

84

Benchmarking Insider Threat Intrusion Detection Systems

threshold, more true positives are being caught by IDS, which contributes to a higher

recall; meanwhile, more normal events are recognized as anomalies, hence more false

positives and a lower precision. Increasing the threshold can decrease the number of

normal events being wrongly classified as anomalies; hence less false positives and a

higher precision.

The goal is to find a ideal balance between precision and recall. Thresholds

need to be tuned to ensure the IDS could identify relevant data without overloading

the administrator with warnings or too many false positives. The F-measure is used as

an overall performance metric in our benchmark. As shown in Figure 5.13, the

F-measure reach its peak value at 0.8. With configured threshold of 0.8, we followed

the procedure in test case 1 by maintaining normal background at 10000 records and

increasing the number of anomalies in the workload. Figures 5.14 and 5.15 show a

much better performance in terms of precision of the BNIDS over the RBAC

Classifiers, however, the latter out perform by 10% in terms of the recall.

Figure 5.14 Precision vs. Number of Injected Anomalies

0

20

40

60

80

100

1000 2000 3000 4000 5000

P
re

ce
si

o
n

(%
)

Number of Anomalies

RBAC Classifier c-triplet

RBAC Classifier m-triplet

BNIDS

85

Benchmarking Insider Threat Intrusion Detection Systems

Figure 5.15 Recall vs. Number of Injected Anomalies

0

20

40

60

80

100

1000 2000 3000 4000 5000

R
e

ca
ll(

%
)

Number of Anomalies

RBAC Classifier c-triplet

RBAC Classifier m-triplet

BNIDS

86

Benchmarking Insider Threat Intrusion Detection Systems

Chapter 6

Conclusion and Future Work

6.1 Conclusion

We have presented a benchmark for insider threat intrusion detection systems,

and have tested two representitative insider threat intrusion detection algorithms with

this benchmark. The previous chapters demonstrated the usefulness of our insider

threat benchmark by comparing the performances of different intrusion detection

systems across various testing environments.

Little work has been done to provide a performance platform for insider threat

IDSs to this date. This study contains original research to create a benchmark to

compare different Intrusion Detection algorithms through the development of a

synthetic workload that mirrors the types of insider attacks that exist in today’s

database environment.

The foremost work on a benchmark’s agenda is to ascertain the limits to

scalability we are witnessing with the workload generator as well as understanding the

performances, i.e reall and precision, of the IDSs to be compared. With severl test

cases conducted in this paper, we have witnessed a slightly better performance in

recall for RBAC classifier over BNIDS. However, BNIDS showed a much better

performance in precision over RBAC classifier, especially with tuned thresholds.

By running IDSs under various test senarios, the benchmark allows system

87

Benchmarking Insider Threat Intrusion Detection Systems

administrators to make informed decisions to select an appropriate IDS, according to

provided performance metrics, to best identify insider attacks and abuse against

information systems for their environment.

6.2 Future Work

Future work includes creating benchmark workloads for other contexts, e.g.

health care industry, R&D companies, and government agencies. When implementing

the benchmark, users should focus on which information the organization wants the

IDS to protect and which group of people could get access to the data. Users can

reference section 3.2 to select proper benchmark parameters and performance metrics.

In our benchmark, we provide three composite metrics - precision, recall and

F-measure.

It would also be useful to look at enriching the metric set, such as receiver

operating characteristic (ROC) curve, the area under the curve (AUC), and execution

time/cost. By plotting the fraction of TPR vs FPR, the ROC curve can be created. It

shows the probablitiy of detection provided by the IDS at a given false alarm rate.

AUC can be used to compare the testing IDSs, the larger the area under the curve, the

better of the performance. In our benchmark, we already provided the option to

monitor the execution time for testing the IDSs. By assigning a cost to each query

plan, execution time/cost can be calculated.

88

Benchmarking Insider Threat Intrusion Detection Systems

References

Agrawal, R., Bird, P., Grandison, T., Kiernan, J., Logan, S., & Rjaibi, W. (2005). Extending

relational database systems to automatically enforce privacy policies. Proceedings of

the 21st International Conference on Data Engineering, 1013-1022. doi:

10.1109/ICDE.2005.64

Agrawal, R., Kiernan, J., Srikant, R., & Xu, Y. (2002). Hippocratic databases. Proceedings of

the 28th International Conference on very Large Data Bases, Hong Kong, China.

143-154.

Aleman-Meza, B., Burns, P., Eavenson, M., Palaniswami, D., & Sheth, A. (2005). An

ontological approach to the document access problem of insider threat. Intelligence

and Security Informatics, 45-47.

An, X., Jutla, D., & Cercone, N. (2006). A bayesian network approach to detecting privacy

intrusion. Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web

Intelligence and Intelligent Agent Technology, 73-76. doi: 10.1109/WI-IATW.2006.6

Anderson, J. P. (1980). Computer security threat monitoring and surveillance (Vol. 17).

Technical report, James P. Anderson Company, Fort Washington, Pennsylvania.

Anton, A. I., Bertino, E., Li, N., & Yu, T. (2007). A roadmap for comprehensive online privacy

policy management. Commun.ACM, 50(7), 109-116. doi: 10.1145/1272516.1272522

89

Benchmarking Insider Threat Intrusion Detection Systems

Athanasiades, N., Abler, R., Levine, J., Owen, H., & Riley, G. (2003). Intrusion detection

testing and benchmarking methodologies. Information Assurance, 2003. IWIAS 2003.

Proceedings. First IEEE International Workshop on, 63-72.

Axelsson, S. (1999). The base-rate fallacy and its implications for the difficulty of intrusion

detection. Proceedings of the 6th ACM Conference on Computer and Communications

Security, Kent Ridge Digital Labs, Singapore. 1-7. doi: 10.1145/319709.319710

Bank Transactions.

http://www.turtlesoft.com/Goldenseal-Software-Reference/banktran.htm#transact_type

 (ACSAC’05), Tucson, Arizona 5-9 Dec. 2005.

Bertino, E., Kamra, A., Terzi, E., & Vakali, A. (2005). Intrusion detection in RBAC-administered

databases. Proceedings of the 21st Annual Computer Security Applications Conference,

170-182. doi: 10.1109/CSAC.2005.33

Bodlaender, M. P., Stok, P. D. V. v. d., & Son, S. H. (1997). A transaction-based temporal data

model for real-time databases. Proceedings of the 1997 Joint Workshop on Parallel and

Distributed Real-Time Systems (WPDRTS / OORTS '97), 149.

Calzarossa, M., & Serazzi, G. (1993). Workload characterization: A survey. Proceedings of the

IEEE, 81(8), 1136-1150.

Cert Research Report (2010)

Retrieved from http://www.cert.org/research/researchreport.html

90

Benchmarking Insider Threat Intrusion Detection Systems

Chinchor, N., MUC-4 Evaluation Merics, in Proc. of the Forth Message Understanding

Conference, pp 22-29, 1992.

Chung, C. Y., Gertz, M., & Levitt, K. (2000). Demids: A misuse detection system for

database systems. Third International IFIP TC-11 WG11, 5, 159-178.

Conte, T. M., & Hwu, W. W. (1991). Benchmark characterization. Computer, 24(1), 48-56. doi:

10.1109/2.67193

Denning, D. E., Lunt, T. F., Schell, R. R., Shockley, W. R., & Heckman, M. (1988). The SeaView

security model. Security and Privacy, 1988. Proceedings., 1988 IEEE Symposium on,

218-233.

Didriksen, T. (1997). Rule based database access control—a practical approach. Proceedings

of the Second ACM Workshop on Role-Based Access Control, Fairfax, Virginia, United

States. 143-151. doi: 10.1145/266741.266772

Dietrich, S. W., Brown, M., Cortes-Rello, E., & Wunderlin, S. (1992). A practitioner's

introduction to database performance benchmarks and measurements. Comput.J.,

35(4), 322-331. doi: 10.1093/comjnl/35.4.322

Forrest, S., Hofmeyr, S. A., & Somayaji, A. (1997). Computer immunology. Commun.ACM,

40(10), 88-96. doi: 10.1145/262793.262811

91

Benchmarking Insider Threat Intrusion Detection Systems

Freedmen, R., Maurer, J., Wolfe, V., Wohlever, S., Milligan, M., & Thuraisingham, B.

(2000). Benchmarking real-time distributed object management systems for

evolvable and adaptable command and control applications. In Object-Oriented

Real-Time Distributed Computing, 2000.(ISORC 2000) Proceedings. Third IEEE

International Symposium on (pp. 202-205). IEEE.

Gaffney, J. E., Jr., & Ulvila, J. W. (2001). Evaluation of intrusion detectors: A decision theory

approach. Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on,

50-61.

Geppert, A., Gatziu, S., & Dittrich, K. R. (1995). A designer's benchmark for active database

management systems: Oo7 meets the BEAST. Proceedings of the Second International

Workshop on Rules in Database Systems, 309-326.

Gu, G., Fogla, P., Dagon, D., Lee, W., & Skoric Boris. (2006). Measuring intrusion detection

capability: An information-theoretic approach. Proceedings of the 2006 ACM

Symposium on Information, Computer and Communications Security, Taipei, Taiwan.

90-101. doi: 10.1145/1128817.1128834

Huang, X., Peng, F., An, A., & Schuurmans, D. (2004). Dynamic web log session identification

with statistical language models. J.Am.Soc.Inf.Sci.Technol., 55(14), 1290-1303. doi:

10.1002/asi.20084

92

Benchmarking Insider Threat Intrusion Detection Systems

Hunker, J., & Probst, C. W. (2011). Insiders and insider threats—an overview of definitions

and mitigation techniques. Journal of Wireless Mobile Networks, Ubiquitous Computing,

and Dependable Applications, 2(1), 4-27.

Hopcroft, J., & Ullman, J. (2008). Introduction to Automata Theory Languages and

Computation., 3rd Edition, Pearson Education.

Jain, R. (1991). The art of computer systems performance analysis (Vol. 182). New York: John

Wiley & Sons.

Kamel, N., & King, R. (1992). Intelligent database caching through the use of page-answers

and page-traces. ACM Trans.Database Syst., 17(4), 601-646. doi:

10.1145/146931.146933

Karjoth, G. (2003). Access control with IBM tivoli access manager. ACM Trans.Inf.Syst.Secur.,

6(2), 232-257. doi: 10.1145/762476.762479

Kayacik, H. G., & Zincir-Heywood, N. (2005). Analysis of three intrusion detection system

benchmark datasets using machine learning algorithms. Proceedings of the 2005 IEEE

International Conference on Intelligence and Security Informatics, Atlanta, GA. 362-367.

doi: 10.1007/11427995_29

93

Benchmarking Insider Threat Intrusion Detection Systems

Kearns, J. P., & DeFazio, S. (1989, April). Diversity in database reference behavior. In ACM

SIGMETRICS Performance Evaluation Review (Vol. 17, No. 1, pp. 11-19). ACM.

Lane, T., & Brodley, C. E. (1999). Temporal sequence learning and data reduction for

anomaly detection. ACM Trans.Inf.Syst.Secur., 2(3), 295-331. doi:

10.1145/322510.322526

Lang, M. (2002). Implementation of Naive Bayesian Classifiers in Java. In Proceedings of the

Conference on Intelligent Systems and Intelligent Agents.

Lee, V. C. S., Stankovic, J. A., & Son, S. H. (2000). Intrusion detection in real-time database

systems via time signatures. Proceedings of the Sixth IEEE Real Time Technology and

Applications Symposium (RTAS 2000), 124.

Lundin, E., & Jonsson, E. (2000). Anomaly-based intrusion detection: Privacy concerns and

other problems. Comput.Netw., 34(4), 623-640. doi: 10.1016/S1389-1286(00)00134-1

Lunt, T. F., Tamaru, A., Gilham, F., Jagannathan, R., Neumann, P. G., & Jalali, C. (1990). IDES:

A progress report [intrusion-detection expert system]. Computer Security Applications

Conference, 1990., Proceedings of the Sixth Annual, 273-285.

Maybury, M., Chase, P., Cheikes, B., Brackney, D., Matzner, S., Hetherington, T., ... &

Longstaff, T. (2005). Analysis and detection of malicious insiders. MITRE CORP BEDFORD

MA.

94

Benchmarking Insider Threat Intrusion Detection Systems

Maxion, R. A., & Tan, K. M. C. (2000). Benchmarking anomaly-based detection systems.

Dependable Systems and Networks, 2000. DSN 2000. Proceedings International

Conference on, 623-630.

Moore, A. P., Capelli, D. M., Caron, T. C., Shaw, E., Spooner, D., & Trzeciak, R. F. (2011). A

preliminary model of insider theft of intellectual property. CARNEGIE-MELLON UNIV

PITTSBURGH PA SOFTWARE ENGINEERING INST.

Mun, H., Han, K., Yeun, C., & Kim, K. (2008). Yet another intrusion detection system

against insider attacks. Proc. of SCIS 2008.

Peng Liu. (2002a). Architectures for intrusion tolerant database systems. Computer Security

Applications Conference, 2002. Proceedings. 18th Annual, 311-320.

Peng Liu. (2002b). Architectures for intrusion tolerant database systems. Computer Security

Applications Conference, 2002. Proceedings. 18th Annual, 311-320.

Ponder, C. (1990). Performance variation across benchmark suites. SIGMETRICS

Perform.Eval.Rev., 18(3), 42-48. doi: 10.1145/122235.122238

Qian, J., Xu, C., & Shi, M. (2006). Redesign and implementation of evaluation dataset for

intrusion detection system. Proceedings of the 2006 International Conference on

Emerging Trends in Information and Communication Security, Freiburg, Germany.

451-465. doi: 10.1007/11766155_32

95

Benchmarking Insider Threat Intrusion Detection Systems

Qian, X., Stickel, M. E., Karp, P. D., Lunt, T. F., & Garvey, T. D. (1993). Detection and

elimination of inference channels in multilevel relational database systems. Research in

Security and Privacy, 1993. Proceedings., 1993 IEEE Computer Society Symposium on,

196-205.

Saavedra, R. H., & Smith, A. J. (1996). Analysis of benchmark characteristics and benchmark

performance prediction. ACM Trans.Comput.Syst., 14(4), 344-384. doi:

10.1145/235543.235545

Sacco, G. M., & Schkolnick, M. (1986). Buffer management in relational database systems.

ACM Transactions on Database Systems (TODS), 11(4), 473-498.

Salem, M. B., Hershkop, S., & Stolfo, S. J. (2008). A survey of insider attack detection

research. Insider Attack and Cyber Security, 69-90.

Shirdhonkar, M. S., & Kokare, M. B. (2011). Document image retrieval using signature as

query. Computer and Communication Technology (ICCCT), 2011 2nd International

Conference on, 66-70.

Schultz, E. E. (2002). A framework for understanding and predicting insider attacks.

Computers & Security, 21(6), 526-531.

96

Benchmarking Insider Threat Intrusion Detection Systems

Sinha, S., Jahanian, F., & Patel, J. M. (2006). WIND: Workload-aware INtrusion detection.

Proceedings of the 9th International Conference on Recent Advances in Intrusion

Detection, Hamburg, Germany. 290-310. doi: 10.1007/11856214_15

Srikant, R., & Agrawal, R. (1996). Mining sequential patterns: Generalizations and

performance improvements. Proceedings of the 5th International Conference on

Extending Database Technology: Advances in Database Technology, 3-17.

Teng, H. S., Chen, K., & Lu, S. C. (1990). Adaptive real-time anomaly detection using

inductively generated sequential patterns. Research in Security and Privacy, 1990.

Proceedings., 1990 IEEE Computer Society Symposium on, 278-284.

Van Rijsbergen, C.J.(1979).Information Retrieval(1nd edition), Butterworth, London.

Venter, H. S., Olivier, M. S., & Eloff, J. H. (2004). PIDS: a privacy intrusion detection system.

Internet Research, 14(5), 360-365.

Yao, Q., An, A., & Huang, X. (2005). Finding and analyzing database user sessions.

Proceedings of the 10th International Conference on Database Systems for Advanced

Applications, Beijing, China. 851-862. doi: 10.1007/11408079_77

Yao, S. B., Hevner, A. R., & Young-Myers, H. (1987). Analysis of database system

architectures using benchmarks. Software Engineering, IEEE Transactions on, SE-13(6),

709-725.

97

Benchmarking Insider Threat Intrusion Detection Systems

Yi Hu, & Panda, B. (2003). Identification of malicious transactions in database systems.

Database Engineering and Applications Symposium, 2003. Proceedings. Seventh

International, 329-335.

Zeng-Chang Qin. (2005). ROC analysis for predictions made by probabilistic classifiers.

Machine Learning and Cybernetics, 2005. Proceedings of 2005 International Conference

on, , 5 3119-3124 Vol. 5.

Zhang, X., Lu, X., Shi, Q., Xu, X. Q., Leung, H. C. E., Harris, L. N., ... & Wong, W. H. (2006).

Recursive SVM feature selection and sample classification for mass-spectrometry and

microarray data. BMC bioinformatics, 7(1), 197.

