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Abstract  

 

Benchmarking Insider Threat Intrusion Detection Systems 

 

by Binbin Ye 

 

Abstract: An intrusion detection system generally detects unwanted manipulations to 

computer systems. In recent years, this technology has been used to protect personal 

information after it has been collected by an organization. Selecting an appropriate 

IDS is an important decision for system security administrators, to keep authorized 

employees from abusing their access to the system to exploit sensitive information. To 

date, little work has been done to create a benchmark for small and mid-size 

organizations to measure and compare the capability of different insider threat IDSs 

which are based on user profiling. It motivates us to create a benchmark which 

enables organizations to compare these different IDSs. The benchmark is used to 

produce useful comparisons of the accuracy and overhead of two key research 

implementations of future insider threat intrusion algorithms, which are based on user 

behavior.  
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Chapter 1 

Introduction 

1.1 Overview of existing problems 

An insider threat is a current or former member of an organization who has or 

had privileged access to classified, sensitive or propriety data and exceeded or 

misused that access in a way that puts the organization’s confidentiality, integrity, or 

availability of the organization’s information or information systems in jeopardy 

(CERT, 2010). In recent years, several computer crime surveys show that insider 

attack has become a major threat in cyber security. According to the 2011 CSI 

Computer Crime survey and the 2011 Verizon Data Breach Report data breach due to 

insider attacks cost more than those due to outsiders. Insider threat has becoming one 

of the problems of organizational security that is most difficult to handle because 

insiders often have information and capabilities not known to external attackers, and 

as a consequence can cause serious harm (Hunker & W.Probst, 2011). The biggest 

concern is the discrimination between legal insider actions representing a threat, and 

legal insider actions representing normal behavior. This is where many of the standard 

techniques fail, since they require a clear separation between insiders and outsiders, 

between “good” employees and attackers (Moore, Cappelli, Shaw, Spooner & 

Trzeciak, 2011). 

 In order to address this issue, efforts have been made to identify and prevent 

insider threats by using Intrusion Detection System (IDS) technology. An intrusion 
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detection system generally detects unwanted manipulations to computer systems. In 

recent years, this technology has been used to protect personal information against 

insider threat after it has been collected and stored by an organization.  

The performance of an Intrusion Detection System plays an integral role in the 

decision of a company to utilise that system to protect personal data against insider 

threat. Such decisions must be based on information that compares the performance 

and price of different Intrusion Detection Systems. Benchmarks provide a yardstick 

with which to measure these important factors. However, to date little work has been 

done to create a benchmark for small and mid-size organizations to measure and 

compare the capability of different insider threat IDS which are based on user 

profiling. It motivates us to create a benchmark standard which enables larger 

organizations to compare these different IDS. The benchmark is used to produce 

useful comparisons of the accuracy and overhead of two key research 

implementations of future privacy intrusion algorithms that are based on user 

behavior in the context of a large organization. 

1.2 Objectives and Goals 

The goals of this paper are to design and implement a benchmark for insider 

threat intrusion detection systems which are based on user profiling, in the context of 

small to mid-size organizations, and to demonstrate the usefulness of the benchmark 

through its application to measure and compare different insider threat intrusion 

detection algorithms based on user behavior. 
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Chapter 2 

Literature Review 

 In this chapter, we first introduce three popular intrusion detection techniques 

that have been used for protecting information stored in database systems – data 

dependency relationship based IDDS, time-signature based IDDS and User behavior 

profile based IDDS. In the second part of this chapter, the benchmarking procedures 

that have been used in database systems are discussed. 

2.1 Intrusion Detection in Database Systems (IDDS) 

The problem of developing Database Management Systems (DBMS) with 

confidentiality guarantees and high-assurance privacy is not that trivial (Agrawal, 

Kiernan, Srikant & Xu, 2002). To start with, it requires a revision of architectures and 

techniques adopted by current DBMS. 

Despite the necessity of protecting information stored in database systems 

(DBS), existing security models are insufficient to prevent misuse, especially insider 

abuse by legitimate users. Further, concepts for misuse detection in DBS have not 

been adequately addressed by existing research in misuse detection. Even though 

there are some means to guard the information stored in a database system against 

misuse, they are seldom used by security officers because security policies of the 

organization are either imprecise or not known at all (Antón, Bertino, Li & Yu, 2004). 

Thus, intrusion detection systems have emerged as independent and complementary 
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software for additionally securing DBSs. Examining the state-of-the-art, we can 

divide intrusion detection techniques into three main types: data dependency 

relationship-based; time-based; and user behavior profiles-based Intrusion Detection 

in Database Systems (IDDS). In the following sections, we will discuss the works that 

have been done with these three types of IDS techniques in detail. 

 

2.1.1 Data Dependency Relationship Based IDDS 

In data dependency relationship-based IDDS, a system tries to find malicious 

database transactions submitted to the DBMS by analyzing the dependencies among 

the data items in the database. In recent research, data dependency refers to the data 

access correlations between two or more data items (Hu & Panda, 2003). That is, 

which data items must be read or written before a data item gets updated and which 

others are written after the update. Those data items are separately known as read set, 

pre-write set and post-write set. They focused on the malicious transactions issued by 

an intruder masqueraded as a normal user. By checking whether each update 

operation in the user transaction conforms to the generalized data dependencies, 

anomaly activities at the transaction level are detected.  

A static semantic analyzer is used to analyze the database application program 

instead of the database log, to decide the read set, the pre-write set, and the post-write 

set. First the system finds out all the possible transactions one user may use, which 

can be identified by checking the database application program. Then the static 



5 

Benchmarking Insider Threat Intrusion Detection Systems 

semantic analyzer is used to check all statements that update data items in each 

transaction to find out the read, pre-write, and post-write sets for each data item that is 

updated in the transaction. Other statements that are not for updating purpose are not 

checked. 

Hu and Pamda (2003) also propose the method for finding anomalies at the 

user task level, which are comprised of a group of transactions, by using a system 

modeling tool called Petri-Nets to model normal data update sequences in user tasks. 

This method is especially useful for finding hidden malicious activities that consists 

of several transactions, each of which appears as normal transaction. 

 

2.1.2 Time Signature Based IDDS 

Real-time database systems have to deal with data which changes its value 

with time. These temporal data objects are used to reflect the status of objects in the 

real world. Whenever the value of a real world object changes, the data value that 

describes this object should change as well, but a certain lag between the moment of 

change in the real world and the updates in the database is unavoidable (Bodlaender, 

Stock & Son, 1997). Therefore, data values may become out of date due to delayed 

updates. If intruders are able to change such values, they could sabotage applications 

such as air traffic control or the electric power grid. 

Lee, Stankovic & Son (2000) monitor behavior at the level of sensor 

transactions, which they define as transactions that are responsible for updating the 
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values of real-time data. By determining the update latency of sensor transactions in 

real-time database systems, violations of the security policy can be detected. In order 

to determine the period of the sensor transaction, they consider one of the many 

possible semantics of sensor transactions with period P. One instance of the sensor 

transaction must be generated every period. Suppose a sensor transaction takes e units 

of time to complete (0<e<P). If an instances starts at time t, they expect the 

corresponding temporal data will be updated between t+e and t+p. Security alarm will 

be triggered when a transaction attempts to write a temporal data object that is already 

updated in a period. In addition, they also allow different tolerance levels in a system 

by utilizing the knowledge of the behavioral constrained (sensitive) IDS. 

 

2.1.3 User Behavior Profile Based IDDS 

Behavior profiles based IDDS are more popular than data dependency 

relationship-based or time-based IDDS. Systems attempt to profile normal user 

behavior by analyzing the database log or database application program. 

The approach used in (Bertino, Kamra, Terzi & Vakali, 2005) is based on 

mining database traces stored in log files. The result of the mining process is used to 

form user profiles that can model normal behavior and identify intruders. By 

considering the fact that it is not feasible in practice keeping a profile for each single 

user, Bertino et al, (2005) have based their approach on the well-known role-based 

access control (RBAC) model, which is widely used for access-control management 
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both in closed and open systems (Forrest, Hofmeyr & Somayaji, 1997). Through 

building profiles for each role, their ID system is able to determine role intruders, that 

is, individuals that while holding a specific role, have a behavior different from the 

normal behavior of the role. Authorizations are specified with respect to roles and not 

with respect to individual users.  

Figure 2.1 Overview of the RBAC-Specific ID Process (Bertino, et al, 2005) 

As we can see in the Figure 2.1, the system’s architecture consists of four main 

components: the user that enters queries, the conventional DBMS mechanism that 

handles the query evaluation process, the database log files and the ID mechanism. 

Every time a query is issued, the database log files are updated. In the training phase, 

the intrusion detection system mines the existing log files and forms role profiles. In 

the detection phase, for every new query, the ID mechanism checks the query 

statement to determine whether it is anomalous. If this is the case, an alarm is raised 
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(Agrawal et al, 2002). 

In the paper, they transform the log file entries into a format that can be 

processed and analyzed. Therefore, they represent each entry by a data basic unit that 

contains three fields (SQL Command, Relation Information, Attribute Information), 

and thus it is called a triplet. A Naive Bayes Classifier is used for forming the profiles 

as well as for deciding when to raise an intrusion alarm. The Maximum Aposteriori 

probability (MAP) decision rule is used by the Classifier. 

An, Jutla & Cercone (2006) provide a theoretically significant improvement to 

the intrusion detection algorithm proposed by Bertino et al, (2005). Instead of using 

the simple Naïve Bayes (Naïve BN) approach, a Bayesian Network method is used. 

The latter removes the Naïve Bayes assumptions that all classification features are 

independent of each other. The Bayes Network method allows the combination of 

user activities to be modeled together and improves the credibility of the alarms raised 

by the intrusion detection system. However the Bayes Network model introduces 

further overhead, over Naïve BN, due to the requirement for compiling the BN into a 

tree structure to perform inference and the manipulation of the resulting larger 

conditional probability distribution tables.  

The idea of using an IDS approach to protect privacy is not new. User 

profile-based methods are presented in DEMIDS (Detection Misuse in Database 

Systems) (Chung, Gertz & Levitt, 1999), which is a misuse detection system tailored 

to relational database systems. It uses audit-log data to derive profiles that describe 
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typical behavior (access patterns) of users working with the DBS by specifying the 

typical values of features that are audited in audit logs. Carter and Katz (2005) 

revealed that in computer systems the primary security threat comes from insider 

abuse rather than from intrusion. This observation results in the fact that much more 

emphasis has to be placed on internal control mechanisms of systems, such as audit 

log analysis. Thus in DEMIDS the profiles computed can be used to detect misuse 

behavior, in particular insider abuse. Furthermore, the profiles can serve as a valuable 

tool for security reengineering of an organization by helping the security officers to 

define/refine security policies and to verify existing security policies, if there are any. 

Moreover, the approach used by DEMIDS is that the access patterns of users 

typically form some working scopes which comprise certain sets of attributes that are 

usually referenced together with some values in a query. The idea of working scopes 

is conceptually captured by the concept of frequent itemsets which are sets of features 

with certain values. Based on the data structure and semantics ( integrity constraints) 

encoded in the data dictionary and the user behavior reflected in the audit log, 

DEMIDS defines a notion of distance measure which measures the closeness of a set 

of attributes with respect to the working scopes. Distance measures are used to guide 

the search for frequent itemsets in the audit logs by a novel data mining approach. 

Anomalies can be detected by comparing the derived profiles against the security 

policies specified or against new information (audit data) gathered about users.  

Another behavior profiles-based IDDS is PIDS (Venter, Olivier & Eloff, 2004), 
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which is an anomaly intrusion detection system. PIDS particularly addresses the 

problem of the internal misuses of private data within an organization, where profiles 

of the operators are represented by some features. Once the threshold regarding a 

feature is violated, the respective action will be taken to slow down or stop the 

possible anomaly activities. In PIDS, it also uses Naive Bayes to decide whether the 

employee’s behavior is anomalous or not. 

In a Hippocratic Database (Agrawal et al, 2002) a Query Intrusion Detector 

(QID) is proposed. PIDS differs from the QID in three significant respects: PIDS 

considers queries while QID considers the results of queries before data is released. 

Secondly, PIDS uses an intrusion detection model based on the expected activities of 

a user. This model is derived from the role of the user, as well as individual traits. In 

contrast QID builds a profile from past queries. Thirdly QID apparently only flags 

suspect queries, whiles PIDS attempts to limit damage by using throttling (Venter, et 

al, 2004). 

 

2.2 Benchmarking Intrusion Detection Systems  

By discussing the architecture and functionality of different kinds of Intrusion 

Detection in Database System above, we illustrate that there are reasons for expected 

differences in the system performance. Plus, organizations have a need for comparing 

and understanding these differences for their contexts. We focus on specifying a 

benchmark for the family of user behavior profile-based IDS. Choosing suitable 

performance measures and how to generate a workload to train, test and compare the 
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IDS are two main concerns for benchmarking.  

A recent 2012 study shows that within all the industry groups being investigated for 

data breach incidents, Finance and Insurance responds to 40% of compromised 

records with more than 1 Million records lost across industries. In this report, it also 

indicates that Finance and Insurance ranks on top with 28% of breaches within larger 

organizations (DBIR, 2012). Hence, it makes sense to build our benchmark in a 

financial services scenario where insider threats are most likely to occur. The idea of 

using a financial bank scenario in a database benchmark is not new. The first 

transaction processing benchmarks, DebitCredit, TPC-A and TPC-B, are designed to 

measure throughput in terms of how many transactions are processed per second in a 

particular banking enterprise. The DebitCredit benchmark emulates a teller support 

system in a large, multi-branch bank, where the operation of interest is a debit or 

credit transaction to an account performed by an account holder at a particular branch 

(Dietrich, Brown, Cortes-Rello & Wunderlin, 1992). The DebitCredit database stores 

information on accounts, tellers, branches, and the history file of bank transactions. 

Figure 2.2 is the Entity-Relationship (ER) diagram for the bank enterprise used in the 

DebitCredit benchmark. TPC-A is an industry standard for DebitCredit benchmark 

founded by Transaction Processing Performance Council (TPC), followed by TPC-B 

a database only version of TPC-A benchmark. However, while both benchmarks are 

designed to measure the performance of the update-intensive operations in the 

database, neither of them includes insider attack scenarios.  
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 Figure 2.2 Entity Relationship Diagram for Bank Enterprise 

 

Most if not all benchmarks for Intrusion Detection Systems are targeting 

outsider threats, which can be representing as a hacker who does not have an 

authorized access and breach into the systems. Most intrusion detection systems rely 

on some kind of pattern-matching algorithm in order to identify and categorize attacks. 

After training against “normal” data, the IDS can diagnose whether an action is an 

anomaly by matching it against normal patterns. The performance of an intrusion 

detection system is determined by the efficiency with which it diagnoses those attacks. 

Defense Advanced Research Projects Agency (DARPA) Intrusion Detection 

Evaluation is the first attempt to use simulated workload that involve generating 

background traffic interlaced with malicious activity, so that intrusion detection 
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systems and algorithms could be tested and compared(Kayacik & Zincir-Heywood, 

2005). Later on, the Lincoln Adaptable Real-time Information Assurance Test-bed 

(LARIAT) was initiated. Its effort is focusing on custom software that simulates 

network traffic from a small network connected to the Internet. The most common 

methodology of an IDS benchmark is to create a small test network and release 

malicious activity in that self-contained small network environment. The workload, 

i.e. network architecture and complexity of the traffic, is one of the main concerns for 

IDS benchmark design for online systems.  

In benchmarking parlance, the training data (normal background) and testing 

data (back-ground plus anomalous events) constitute the anomaly-detector workload. 

The methods proposed by Maxion and Tan (2000) illustrate that the training data are 

generated from 11 transition matrices that produce the desired regularities for the 

sequences such that the regularity indices of the sequences run, in increments of .1, 

from 0 to 1 inclusive. The transition matrix is entered at a random point, determined 

by a random number generator. Test data were generated in the same way in which the 

training data were generated, except that different random-number-generator seeds 

were used for generating the test data. The seed used for generation is different from 

the one used to enter the table, simply to go as far as possible to eliminate 

dependencies in the generation scheme. A single seed is used to generate data for all 

regularities, the seed is a 4-digit random integer produced from the Perl rand( ) 

function. A pool of anomalies for each anomaly type is generated independent of 
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generating the test data and then injected into the test data. 

Anomaly detector works in two phases: a learning phase and a detection phase. 

Simply described, in the learning phase it constructs an internal table containing the 

probability of occurrence of every unique n-gram in the training sequence (e.g. 

normal background data). In the detection phase, it is given a test sequence consisting 

of normal background data (noise) mixed with injected anomalous-event 

subsequences (signal). 

Scoring the detection outcomes: event outcomes in terms of hits (correct 

detection), misses (the absence of a detection within the basic scope of the injected 

anomaly) and false alarms (false detections any detection that falls outside the total 

scope of the injected anomaly). 

In RBAC-specific ID (Bertino et al, 2005), similarly, the workload is 

comprised of Synthetic Data sets, Real Data set and Intruder Queries. The real data set 

used for evaluating the proposed consists of over 6000 SQL traces from eight 

different applications submitting queries to a MS SQL server database. The database 

itself consists of 119 tables with 1142 attributes in all. The intruder/anomalous queries 

are generated by taking into account the insider threat scenario. They are taken from 

the same probability distribution as of normal queries, but with role information 

negated. For example, if the role information associated with a normal query is 0, then 

simply change the role to any role other than 0 to make the query anomalous. 

 



15 

Benchmarking Insider Threat Intrusion Detection Systems 

 

Chapter 3 

Benchmark Design 

In this chapter, we first identify relevant requirements and design decisions 

and then describe the workload design for the benchmark. The procedure proposed in 

(Jain, 1991) is being used as a reference model of how to proceed in benchmark 

design. The goal of this benchmark is to measure and compare different e-privacy 

intrusion detection algorithms based on user behavior. There is only one tested service: 

user behavior. For this service, a collection of tests is proposed, each of which focus 

on a specific sub-task of active behavior. The selection of goals and services should 

be fair, i.e., it should not favor specific systems. The benchmark tests the features that 

are common to most current relational database systems, and does not stress special 

features that are available for a few systems. The benchmark is designed to scale as 

the bank expands and new employees are hired, which can be reflected by 

incrementing branches, customers and employees.  

 

3.1 Selection of metrics 

A fundamental problem in intrusion detection benchmarking is to objectively 

evaluate an intrusion detection system (IDS) in terms of its ability to correctly classify 

events as normal or intrusive. The most basic and commonly used metrics are true 

positive rate (TP, i.e., the probability that the IDS outputs an alarm when there is an 
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intrusion) and false positive rate (FP, i.e., the probability that the IDS outputs an alarm 

when no intrusion occurs). Alternatively, one can use a false negative rate FN=1-TP 

and true negative rate TN=1- FP (Gu, Fogla, Dagon, Kee & Skori, 2006). 

However, by setting the threshold of a deviation from a normal profile, there 

may be different TP and FP values associated with different IDS operation points. If 

only the metrics of TP, FP is given individually, determining the better operation point 

is difficult. Thus, a composite metric, in which both TP and FP are considered, is 

necessary (Gu, et al, 2006).   

Traditional standard composite quality metrics of IDS are precision and recall, 

which are defined as follows: 

  

        

Here, # false Positives is the number of false alarms while # false Negatives is 

the number of times the system is not able to detect the anomalous queries (Agrawal; 

Kiernan; Srikant; & Xu, 2002). Precision is defined as the ratio of the number of 

correctly detected anomalous behaviors to the total estimated anomalous behaviors, 

and the recall is the hit-rate, that is, the ratio of the number of correctly detected 

anomalous behaviors to the total number of anomalous behaviors (Yao, An & Huang, 
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2005). 

Another popular composite metric is the Receiver Operating Characteristic 

(ROC) curve, which has been introduced to evaluate machine learning algorithms, to 

plot the different TP and FP values associated with different IDS operation points 

(Zeng, 2005). It shows the probability of detection provided by the detector at a given 

false alarm rate. However, Gu et al, (2006) argue that ROC curves cannot be 

effectively used for comparing IDSs, as when the curves cross it is not easy to 

compare the IDSs. It is not always appropriate to use the area under the ROC curve 

(AUC) for comparison because it measures all possible operation points of an IDS. 

Calzarossa & Serazzi, (1993) also argue that evaluations based on ROC analyses are 

often misleading. They further argue and demonstrate how evaluations based on cost 

metrics can overcome some of the problems of ROC analysis.  

One approach to integrating the metrics TP and FP is through cost-based 

analysis. Essentially, the tradeoff between a true positive and a false positive is 

considered in terms of cost measures (or estimates) of the damage due to an intrusion, 

and inconvenience caused by a false alarm. Gaffney and Ulvila (2001) used such an 

approach, which is similar to the approach proposed by Calzarossa & Serazzi, (1993), 

to combine ROC curves with cost analysis to compute an expected cost for each IDS 

operation point. The expected cost can be used to select the optimal operation point 

on a detector’s receiver operating characteristic (ROC) curve and to compare different 

IDSs. The detector’s ROC curve describes the relationship between the two operating 
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parameters of the detector, its probability of detection, 1-β, and its false alarm rate, α. 

That is, the ROC curve displays the1-β provided by the detector at a given α. It also 

displays α provided by the detector at a given1-β. The quality of cost-based analysis 

depends on how well the cost estimates reflect the reality. However, Gu et al, (2006) 

mention that cost measures in security are often determined subjectively because of 

the lack of good (risk) analysis models. Thus, cost-based analysis alone cannot be 

used to objectively evaluate and compare IDSs. 

Table 1 

Conditional Probabilities of the Detector’s Report Given the State of the System (Gue, 

et al, 2006) 

  

In addition to TP and FP, two other useful metrics are the positive predictive 

value(PPV), which is the probability of an intrusion when the IDS outputs an alarm, 

and the negative predictive value (NPV), which is the probability of no intrusion 

when the IDS does not output an alarm. The Positive Predictive Value (PPV) is 

defined as follow: 

         

 



19 

Benchmarking Insider Threat Intrusion Detection Systems 

Similarly, the Negative Predictive Value (NPV) is 

        

In (Gu, Fogla, Dagon, Kee & Skori, 2006), it states that these metrics are very 

important from a usability point of view because ultimately, the IDS alarms are useful 

to an intrusion response system (or administrative staff) only if the IDS has high PPV 

and NPV. Both PPV and NPV depend on TP and FP, and are very sensitive to the base 

rate (B), which is the prior probability of intrusion. Thus, these two metrics can be 

expressed using Bayes theorem so that the base rate can be entered as a piece of prior 

information about the IDS operational environment in the Bayesian equations. Similar 

to the situation with TP and FP, both PPV and NPV are needed when evaluating an 

IDS from a usability point of view, and currently, there is no objective method to 

integrate both metrics. 

Most anomaly detectors are based on probabilistic algorithms that exploit the 

intrinsic structure, or regularity, embedded in data logs. Maxion and Tan (2000) 

introduce a metric for characterizing structure in data environments, and tests the 

hypothesis that intrinsic structure influences probabilistic detection. They argue that 

most evaluations are done according to a black-box testing regime, which can 

demonstrate the overall performance capabilities of a detection system but reveals 

almost nothing about the performance of components inside the black box.  

Because most, if not all, anomaly-detection algorithms depend on the intrinsic 

structure embedded in the data upon which they operate, it seems reasonable to 
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assume that differences in such structure would influence detector performance. 

High-regularity data contain redundancies that facilitate predicting future events on 

the basis of past events; low-regularity data impede prediction. Regularities refer to 

the sequential dependencies of sequences as measured by entropy, which has been 

called the Shannon-Wiener Index also (Maxion & Tan, 2000). 

Maxion et al, (2000) propose benchmarking as an approach toward 

understanding the performance characteristics of anomaly-detection algorithms 

applied to categorical data. 

 

Figure 3.1 Synthetic Benchmark Data; False Alarms vs. Regularity Index (Maxion 

& Tan, 2000) 

Another performance measure, the F-measure used to evaluate the accuracy of 

the session detection is presented by Yao, An & Huang, (2005). The F-measure is 

defined as a harmonic mean of precision (P) and recall (R) (van Rijsbergen, 1979). 
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The harmonic mean H is defined as follows. 
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F-measure has been used in information retrieval to measure the retrieval 

performance (Lundin & Jonsson, 2000)(Huang & Peng, 2004). A higher F-measure 

value means a better overall performance. The definition of F-measure as mentioned 

above is also called 𝐹1-measure by some researchers. The full definition of the 

F-measure is given as follows (Chinchor, 1992): 

        𝐹𝛽 = 
(𝛽2+1)𝑃𝑅

𝛽2𝑃+𝑅
 (0 ≤ β ≤ +∞), where β = 

𝑅

 𝑃
 . 

β is a parameter that controls a balance between P and R. When β =1, 𝐹1 

comes to be equivalent to the harmonic mean of P and R. If β >1, F becomes more 

recall-oriented and if β<1, it becomes more precision-oriented, e.g., 𝐹0=P.  

We list three popular composite performance metrics above - ROC curves, 

regularity index, and F-measure. In the future work of the benchmark design, we will 

include 𝐹1-measure as one basic performance metric in addition to precision and 

recall. The reason we do not chose ROC curve in our benchmark is that it cannot be 

effectively used for comparing IDSs, and it is not always appropriate to use the area 



22 

Benchmarking Insider Threat Intrusion Detection Systems 

under the ROC curve (AUC) for comparison because it measures all possible 

operation points of an IDS ( Calzarossa & Serazzi, 1993) (Gu et al, 2006). We do not 

include regularity index as well is because the benchmark focuses on transaction level 

instead of data level performance. 

 

3.2 Selection of Parameters 

Parameters are factors that influence IDSs performance on benchmark. By 

tuning configuration parameters based upon different benchmark testing needs, 

comparable results can be produced. Below we identify the specific parameters for 

e-privacy IDSs performance measurement. 

records accessed   The total number of records been accessed per transaction 

(Maxion & Tan, 2000) 

tables accessed    The total number of tables been accessed per transaction (Maxion 

& Tan, 2000) 

transaction type   The most common transaction types are listed as followed. Check: 

Check account information; Deposit: Deposit money into the account Withdraw: 

withdraw money from an account; Transfer In: Money moved into this account from 

another bank account, or money received from the bank holding this account; 

Transfer Out: Money moved out of this account into another bank account, or money 

paid to the bank holding this account. 

database size   Database size is determined by individually specifying the total 

number of branches, departments , customers and employees, and the number of 
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records in each. 

table size  The number of records generated on individual tables 

number of simulated users  Total number of simulated users of the database. In our 

benchmark, it represents the number of employees executing transactions on the 

banking system. 

user roles   The total number of roles that exists in the benchmark workload. More 

details on role design will be provided in Section 3.3.2. 

sequences length Number of queries issued by a user to achieve a certain task (Yao, 

et al, 2005) 

sequences frequency distribution  A user’s daily sequences distribution. It 

represents how frequently a user performs certain task on a database. In our 

benchmark, uniform distribution has been selected as the default distribution method.     

sequence type Management: Managers check the DB periodically to collect data for 

reports; HR management: HR manager adjusts employee data; Financial planning: 

Finance Analysts send queries to DB, in order to get customers information that 

qualify to certain investment programs; Customer request: Transactions requested by 

customer (by phone, in person, by email); Product marketing: Get general info from 

DB to target potential market; External service: Financial Analyst gets access to DB 

to check certain customer’s information like credit history for third party. 

number of anomalies  Total number of anomaly queries within the workload 

anomaly injection methods As stated above, the uniform distribution has been 
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chosen as the default distribution method. Technically a benchmark user can 

implement any distribution from what to draw anomalies. However, this thesis 

implements a choice of Uniform or Gaussian. 

anomaly types We target three types of anomalies in our benchmark. They are data 

harvesting, masquerading, and pure sabotage attacks. More details on anomaly 

design will be explained in Section 3.3.4. 

 

3.3 Workload Design 

In benchmarking parlance, the training data (normal background) and testing 

data (back-ground plus anomalous events) constitute the anomaly-detector workload 

(Maxion & Tan, 2000). The benchmark simulates a financial banking system, in 

which internal employees performs various transactions against a relational database. 

A workload driver is used to generate transaction flows on the database. It simulates n 

concurrent database users each of which connects to the database and submits a mix 

of transactions. In our benchmark, we consider the bank’s internal employees as the 

only database users. Customer’s interaction with the database is irrelevant to the 

purpose of our benchmark and its impact on IDS’s performance is negligible. The 

transactions are generated in the similar way as proposed in Transaction Processing 

over XML (TPoX) benchmark. In TPoX, all transactions are picked randomly from a 

set of predefined transaction templates. But in our benchmark, each role has its unique 

set of transaction templates to be chosen from. At run time, parameter markers in the 

templates are replaced by actual values drawn from configurable random value 
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distributions. The simulated banking transactions should reflect a real-world scenario. 

We use a daily transactions scheduler to populate and simulate each employee's 

everyday transaction flow. During the process of workload population, internal 

employees perform various transactions against the database which create the training 

data for the benchmark, while the normal background of the testing data are generated 

the same way. The workload’s testing data is the result of injected anomaly events into 

normal transactions. The following sections provide details of the workload design by 

describing transaction templates and daily transactions scheduler design, followed by 

the anomaly population. 

 

3.3.1 Financial Bank Scenario 

The financial banking scenario has been numerously used in OLTP benchmark 

applications, such as DebitCredit, TPC-A and TPC-B. In our benchmark for insider 

threat IDS, we model a financial banking system that focus on internal employees’ 

behavior towards the database. We consider an event is an anomaly when an 

employee conducts an unwanted or unexpected manipulation to the database, which 

may eventually result in the breach of customer's privacy. The simulated financial 

bank operates out of a number of Branches. The benchmark is designed in such a way 

that the size of the bank is scalable. In other words, the number of the branches and its 

total employees can be configured according to testing needs. Each branch has several 

Departments and every department has more than one employee. Bank Employees are 
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identified by ID number. Each employee is only allowed to work under a department. 

Employees perform various transactions on the database corresponding to its role 

(which department, he or she is in). The Bank provides three types of accounts to its 

customers - SavingsAccounts, CheckingAccounts and LoanAccounts. The bank's 

Customer is identified by its ID number. Each customer can have more than one 

Account. Each account is assigned a unique account number, account balances, and 

account branch. In addition, each saving and checking account interest rates, and each 

loan account installment amount. Every updates on the customer’s account will be 

recorded in a Journal table. The database stores information of bank transactions in 

the Trans log file.  

 

Figure 3.2 Financial Bank Entity-Relationship Diagram 



27 

Benchmarking Insider Threat Intrusion Detection Systems 

The banking database maintains information on Branch, Department, 

Customer, Employee, Accounts, and Journal. Above in Figure 3.2 shows the 

Entity-Relationship (ER) diagram for a banking system workload. An entity is an 

object or concept about what data is stored.  

In the diagram, entities, represented as rectangles, are Branch, Department, 

Customer, Employee, Accounts and Journal. The relationship, represented as 

diamonds, provides information about association among entities. The relationships 

belong_to and bank_account indicate the Branch associated with the entities 

Department and Account, respectively. The table Journal indicates the association 

between Employee and Account . The IsA relationship, depicted by a triangle, 

represent the "is a" relationship between low-level entities and high-level entities, 

which means a low-level entity is a special case of high-level entity. Low-level 

entities inherit properties from high-level entities. 

 In our case, Loan, Credit Account, Checking Account and Saving Account are 

low-level entities; they inherit properties from high-level Account. The attribute, 

denoted by ovals, indicate properties of the entities or relationships to which they are 

connected. The underlined attributes are key property, which are uniquely identifying 

attributes for the entities (Dietrich et al, 1992). According to the proposed ER diagram, 

we can map it to a database scheme as listed below.  
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Table 2  

Bank Database Schema 

Branch(branch_id,location,asset) 

Department(department_id,name,emp_totoal,branch_id) 

Employee(employee_id,name,street,city,province,title,department_id,hire_date,sa

lary,CPP, PayPerHr,Bonus,Hours) 

Customer(customer_id,name,phone,street,profession,income,city,province,DateO

fBirth) 

Account(id,customer_id,open_date,branch_id,type,interest,balance) 

CheckingAccount(id, currency) 

CreditAccount(id, available_fund,last_payment) 

LoanAccount(id, InstallmentAmount,penalty) 

SavingAccount(id,available_fund,currency) 

Journal(journal_id,employee_id,account_id,transamount,timestamp,type) 

 

                      

The schema for the relational data model representation of the bank is show in 

Table 2. The relations for Branch, Department, Customer, Employee, Accounts, 

Journal, and Trans include the attributes associated with the entities from the ER 

diagram, in which the underlined attribute are the primary key for its relation. In 

addition, the Branch and Department relations include the attribute branch_id, which 

indicates the associated branch as given by the relationship belong_to. Likewise, the 

attribute employee_id included in relation Employee and Transaction indicates the 

relationship update from the ER diagram. The primary keys of the relations are given 

by the corresponding key attributes from the ER diagram. The Journal relation 

contains the attributes corresponding to the key attributes of the Employee and 
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Account entities and the relationship's descriptive attributes TimeStamp and 

TransactionAmount. The records for all the relations are populated according to the 

database size parameters, which can be achieved through the use of a data filler 

program. The parameters can be configured in a way that the total number of each 

table's records may vary according to testing needs.  

 

Figure 3.3 Tables' Relationships in a Bank Database Implemented in MS SQL Server 

 

The database will be generated on Microsoft SQL Server 2008. Figure 3.3 

shows the database diagram that depicts relationship between tables. Tables represent 

the entities in Database schema. 
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3.3.2 Transaction Template  

In the realm of database systems, a transaction is a sequence of operations 

performed as a single logical unit of work. Usually, a transaction consists of several 

SQL commands, which are the combination of queries, inserts, updates and deletes. In 

our benchmark, we consider each SQL command as a single transaction. Users 

perform those transactions within the database to achieve a certain task. Database 

users execute various manipulations in a database according to his/her role. A role 

defines what a user can and cannot do within a database, and multiple users may share 

the same role. In our benchmark, we define that each role represents a unique 

department; employees who work in the same department share the same role, which 

means several employees would be entitled the same security clearance on the 

database if they are in the same department. In the real world, for the efficiency of 

managing its employees, companies create broad security clearance for each 

department (role) instead of each employee. That creates opportunities for employees 

to conduct unwanted manipulations to the database that may result in the breach of its 

customers’ privacy.  

As showed in table 3, we provide twenty roles in our benchmark. Each of 

these roles falls under one of four business functions – Human Resource, Marketing, 

Accounting, and Customer Service. In other words, up to twenty departments could 

exist in the banking scenario.     
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Table 3  

Business Functions and Their Roles 

Business Function Roles 

Human Resource Function Payroll Clerk,  

Recruiter,  

Compensation Analyst, 

Benefit Clerk, 

Employment and organizational development director, 

Marketing Function Product development specialist, 

Telemarketing Representative, 

Accounting Function Cost Accountant, 

General Accountant, 

Account Clerk, 

Foreign Exchange Dealer, 

Auditor, 

Fraud detection specialist, 

Customer Service Function Vault Teller, 

Teller,  

Sales representative, 

Credit Clerk, 

Mortgage Loan Officer, 

Loan Reviewer, 

Mortgage Closer, 

 

We assume employees that belong to the same department perform the same 

type of transactions in the database. In our benchmark, we predefine a set of 

transaction templates for each role. In each template, we use wildcard character '%' to 

represent a data value in the SQL command, which will be replaced by actual values 

drawn from configurable random value distributions. We will discuss each role's duty 

and its corresponding transaction templates in the following section. 
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1) Human Resource Function (HR) 

Human Resource employees need to keep track on employment history in 

order to keep reference for future decision making. That means they will access 

specific attributes in the Employee table, which store employees' detailed information. 

Presumably, they log onto the database a few times and stay for short periods of time 

per day whenever a task requires the employee to gather information from the 

database. Under the human resource function, there are five roles – payroll clerk, 

recruiter, compensation analyst, benefit clerk, and employment and organization 

development director. 

 

a) Templates for the Payroll Clerk Role 

 The payroll clerk is accountable for collecting timekeeping information, 

incorporating a variety of deductions into a periodic payroll, and issuing pay and 

pay-related information to employees. 

 i. Checking employee's working hour 

 69. Select hours from Employee where employee_id=’%’ 

 ii. Making monthly payment 

 70. Select employee_id, PayPerHr*hours from Employee 

 iii. Issuing tax form 

71. Select employee_id, salary from Employee 

 iv. Calculating over time 

72. Select Bonus from Employee 

 

b) Templates for the Recruiter Role 
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 The recruiter is in charge of recruiting new employees for the bank. That 

means he/she will access the Employee table to create new records and update the 

corresponding attribute in Department table. 

 i. Recruiting a New Employee 

01. SELECT department_id FROM Department WHERE name=’%’ AND 

branch_id=’%’ 

02. SELECT max(employee_id) FROM Employee  

03. INSERT INTO Employee (employee_id, name, street, city, province, title, 

department_id, hire_date)  

VALUES(‘employee_id’,’name’,’street’,’city’,’province’,’title’,’departme

nt_id’,’hire_date’) 

04. UPDATE Department SET emp_total=emp_total+1 

c) Templates for the Compensation Analyst Role 

 Compensation analysts monitor salaries spend in order to optimize the 

investment in human resources. They also participate in the implementation of various 

components of the organization’s pay and rewards program, which include base pay 

and bonuses. 

i. Model Salary Administration System 

   11. SELECT TOP 10 * FROM Employee ORDER BY salary  

  12. SELECT TOP 10 * FROM Employee WHERE department_id=’%’       

ORDER BY salary 

13.SELECT SUM(salary) AS TotalSalary FROM Employee WHERE 

department_id=’%’ 

  14. SELECT Employee_id, name, salary, title FROM Employee WHERE 

salary>% 
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ii. Retrieving Employee Information. 

      05. SELECT * FROM Employee WHERE employee_id = ‘%’   

      15. SELECT * FROM Employee WHERE province=’%’ 

 

iii. Organizing , coordinating the accurate payment of sales bonus according 

to their signed compensation plan 

73. Update Employee Set bonus =’%’ 

 

iv. Maintain and correct sales performance to ensure accurate bonus 

payment 

72. Select bonus from Employee 

 

d) Templates for the Benefit Clerk Role 

 A benefit clerk should help employees understand the benefits package offered 

by the employer. When employees have questions regarding their benefits, the benefit 

clerk is usually the first resource within the organization to deal with this issue. 

i. Answers employee’s questions 

05. Select * From Employee Where Employee_id=’%’  

 

ii. Records employee enrollment in benefit programs: retirement, pension 

and health. 

75. Update Employee Set CPP=’%’ 

 

e) Templates for the Employment and Organizational Development Director Role  

  The employment and organizational development director facilitate Human 

Resources functions including promoting and transferring employees within the bank.  



35 

Benchmarking Insider Threat Intrusion Detection Systems 

i. Promoting an Existing Employee within a Department 

05. SELECT * FROM Employee WHERE employee_id = ‘%’ 

06. UPDATE Employee SET salary= ‘%’ WHERE employee_id=’%’ 

ii. Transferring Employee Between Different Departments 

06. SELECT * FROM Employee WHERE employee_id = ‘%’ 

07. UPDATE Employee SET salary= ‘%’ WHERE employee_id=’%’ 

08. UPDATE Department SET emp_total=emp_total-1  FROM 

Department, Employee WHERE Department.department_id= 

Employee.department_id  AND Employee.employee_id=’%’ 

09. UPDATE Employee SET department_id=’%’ WHERE employee_id=’%’ 

10. UPDATE Department SET emp_total= emp_total+1 FROM Department, 

Employee WHERE Department.department_id= Employee.department_id 

AND Employee.employee_id=’%’ 

iii. Layoff Management Procedures 

07. UPDATE Department SET emp_total=emp_total-1  FROM 

Department,   Employee WHERE Department.department_id= 

Employee.department_id  AND Employee.employee_id=’%’ 

11.  DELETE * FROM Employee WHERE employee_id=’%’ 

 

 2) Marketing Function 

The marketing employees are responsible for the coordination of all marketing, 

social media and networking activities of the Bank. Under the marketing function, 

there are two roles – product development specialist, and telemarketing 

representative. 

a) Templates for the Product Development Specialist Role 

 In order to set up an effective marketing strategy, the product development 
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specialists need to analyze their target market in general, as well as keeping track of 

customer's contact information to collect feedback. They analyze the demography of 

its customers in order to develop various marketing concepts, objectives, materials 

and advertising programs. 

 

i. Review the bank’s existing products or services and research ways to 

enhance them 

76. Select * From Account Where type =’%’ 

 

ii. Design and develop product, promotional programs and product brochures 

16. SELECT COUNT(*) FROM Customer WHERE profession =’%’ 

17. SELECT COUNT(*) FROM Customer WHERE province=’%’ 

18. SELECT COUNT(*) FROM Customer WHERE DateOfBirth >’%’ 

19. SELECT COUNT(*) FROM Customer WHERE income>’%’ 

20. SELECT TOP 100 * FROM Customer AS T1, Account AS T2 WHERE 

T1.customer_id=T2.customer_id ORDER BY T2.Balance 

21. SELECT * FROM Account Where open_date>x AND open_date<y 

 

iii. Conduct surveys, market studies and research upon customer satisfaction 

in order to develop the project concept 

    24. SELECT * FROM Customer WHERE DateOfBirth >’%’ 

    25. SELECT * FROM Customer WHERE income>’%’ 

 

b) Templates for the Telemarketing Representative Role 

 A telemarketing representative contacts customers on behalf of the bank to 

promote the bank’s products. He/she interacts with the customers on possible 

solutions to their different financial problems. 
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  i. Look up the contact information from the Customer table in order to get 

in touch with an individual customer; to provide possible solutions to the customers’ 

different financial problems. 

 22. SELECT phoneNo FROM Customer as T1, Loan Account asT2 WHERE 

T1.customer_id=T2.customer_id AND T2.penalty>’%’ 

23. SELECT phoneNo FROM Customer as T1, Credit Account asT2 WHERE 

T1.customer_id=T2.customer_id AND T2.penalty>’%’ 

 

3) Accounting Function 

Accountants need access to every detailed transaction (every table) to make 

different accounting statements. The bank accountant is responsible for preparing or 

assisting in the preparation of financial statements at the end of each month and 

quarter. This allows an investor to follow the bank's lending and investing activities 

more easily.  

An auditor monitors the operations of the bank to ensure its compliance with 

industry guidelines and adherence to measures that deter fraud. In an industry 

frequently considered highly competitive, a bank auditor reviews the general and 

specific aspects of daily practices to guarantee her bank remains competitive and 

maintains the integrity expected by its customers. They scrutinize every practice from 

teller transactions through the security of the bank’s vaults and courier services. 

Another typical area of concern for bank auditors is compliance with regulations and 

http://www.wisegeek.com/what-is-an-auditor.htm
http://www.wisegeek.com/what-is-fraud.htm
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guidelines governing lending practices and disclosure procedures. Since the industry 

guidelines are frequently updated and revamped, it is important for the bank to be in 

total compliance in their operations to avoid penalties and properly secure customer 

deposits.  

Under the accounting function, there are six roles – cost accountant, general 

accountant, account clerk, foreign exchange dealer, auditor, and fraud detection 

specialist. 

a ) Templates for the Cost Accountant Role 

 The cost accountant is accountable for the ongoing analysis of target costing 

products and margin analysis. 

 i. Looking after product costing 

78. SELECT SUM(balance*interest) AS interestIncome FROM Account  

ii. Allocation of common costs or overheads with system process 

46. Select SUM(salary) from Employee  

 

b) Templates for the General Accountant Role 

 A general accountant’s duties include preparing journal entries, maintaining 

balance sheet schedules and assisting with monthly closings and account analysis. 

She/he also in charge of assisting in the preparation of various financial statements, 

which include an income statement, balance sheet, cash flow statement and the 

statement of retained earnings. 
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i.Cash Position Report 

      41. SELECT SUM (transamount) FROM Journal WHERE timestamp=’today’ 

AND type=’credit’ 

     42.SELECT SUM (transamount) FROM Journal WHERE timestamp=’today’ 

AND type=’transfer’ 

40. SELECT SUM (transamount) FROM Trans WHERE timestamp=’today’ 

AND type=’debit’ 

         Income Satement 

43. SELECT SUM(balance*interest) AS interestIncome FROM Account 

WHERE type=’loan’ 

44. SELECT SUM(balance*interest) AS interestExpense FROM  Account  

WHERE type=’saving’ 

45. SELECT SUM(balance*interest) AS interestExpense FROM  Account 

WHERE type=’checking’ 

46. SELECT SUM(salary) FROM Employee 

  

ii. Balance Sheet 

47. SELECT SUM(balance) FROM Account WHERE type =’saving’ 

48. SELECT SUM(balance) FROM Account WHERE type =’checking’ 

49. SELECT SUM(balance) FROM Account WHERE type=’credit’ 

50. SELECT SUM(asset) FROM Branch 

 

iii. Cash Flow 

43. SELECT SUM(balance*interest) AS interestIncome FROM Account 

WHERE type=’loan’ 

44. SELECT SUM(balance*interest) AS interestExpense FROM  Account  

WHERE type=’saving’ 

45. SELECT SUM(balance*interest) AS interestExpense FROM  Account 

WHERE type=’checking’ 
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c) Templates for the Account Clerk Role 

An account clerk is responsible for monitoring the bank’s daily transaction and 

maintaining account records, including posting and adjusting entries in Journal.  

  i. Preparing & Posting Adjusting Entries  

       51. UPDATE Journal SET transamount=’%’ WHERE account_id=’%’ AND  

timestamp=’%’ 

52. UPDATE Journal SET trans_balance=’%’ WHERE account_id=’%’ AND 

timestamp=’%’ 

       ii. Monitor Daily Transaction 

        53. SELECT * FROM Journal WHERE timestamp=’today’ 

        54. SELECT * FROM Journal WHERE type=’%’ 

 

d) Templates for the Foreign Exchange Dealer Role 

 The foreign exchange dealer engages in financial market transactions and 

evaluates investment opportunities in currencies. A foreign exchange dealer who uses 

corporate funds to buy and sell currencies is referred to as a proprietary trader. 

i. Accessing bank foreign exchange deposit balance  

80. Select * form Journal where type =’debit’ and currency=’%’ 

 

ii. Monitoring foreign currencies transactions 

81. Select * from Journal where type=’credit’ and currency =’%’ 

82. Select SUM(transamount) from Journal where currency=’%’ 
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e) Templates for the Auditor Role 

 Bank auditors need the access to the database to audit the large sums reported 

by accountants in their statements, and cash flow (cash inflow/outflow): employee's 

pension, insurance, salary, and any cash flow occurred during transactions. They run a 

number of tests, and compare statements to balance sheets to verify all documents 

contain correct information.  

 i. Auditor important accounts 

55. SELECT TOP 10 * FROM Account, SavingAccount WHERE 

Account.id=SavingAccount.id ORDER BY balance 

56. SELECT TOP 10 * FROM Account, SavingAccount WHERE 

Account.id=SavingAccount.id AND currency =’%’ ORDER BY balance  

57. SELECT TOP 10 * FROM Account, Checking Account WHERE 

Account.id=SavingAccount.id ORDER BY balance 

     ii. Verify that processing charges are debited accordingly to borrower’s ledger 

   58. SELECT account_id FROM Journal WHERE transamount>’%’ 

          59.SELECT account_id, transamount FROM Journal WHERE 

transamount>’%’ 

       60. SELECT id, balance, installment FROM Account, Loan Account WHERE 

Account.id=LoanAccount.id AND balance>’%’ 

 

f) Templates for the Fraud Detection Specialist Role 

 The fraud detection specialists are responsible for analyzing and preventing 
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dollar loss to the bank by monitoring the various reports for potential fraud activity.   

They are also responding to inbound calls from customers, call centers, merchants, 

authorization centers and police worldwide to verify questionable transactions. 

 

i. Monitoring various transactions for potential fraud activity 

47.  SELECT SUM(balance) FROM Account WHERE type=’saving’ 

48. SELECT SUM(balance) FROM Account WHERE type=’checking’ 

49. SELECT SUM(balance) FROM Account WHERE type=’credit ’ 

50. SELECT SUM(asset) FROM Branch 

 

ii. Contacting customers to verify transactions 

     83. Select phoneNo from Customer where customer_id=’%’ 

 

iii. Accessing to customers’ records in order to confirm questionable 

transactions 

84. Select * from Account where customer_id = ‘%’ 

 

4) Customer Service Function 

 Customer service employees need the access to single customer record in 

order to provide personal service. Customer service is the main channel that 

customers have to communicate with the banking system. Under the customer service 

function, there are seven roles – vault teller, teller, sales representative, credit clerk, 

mortgage loan officer, loan reviewer, and mortgage closer.  

a) Templates for the Vault Teller Role 
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 A vault teller is in charge of preparing the bank for that day’s transactions. 

She/he counts and records the night deposits, the money transactions from the day 

before and verifies the vault’s money supply count that was made the day before. 

They are also responsible for ordering currency from the national bank, monitoring 

money supply and recording deposits.  

i. Verifying cash deposit 

88. Select cash from Branch where id=’%’ 

 

ii. Ajusting cash balance for the branch 

89. Update Branch Set cash=’%’ 

 

b) Templates for the Teller Role 

 Tellers have a wide variety of duties such as check cashing to 

deposits/withdraws, making loan payments. Banking facilities often offer many 

services, information to clients.  When tellers meet their clients, they will assist the 

clients with various services the bank has to offer, provide information, and redirect 

the customers to the appropriate department. The basic duties as a teller are: deposit, 

withdraw, transfer, check account balance, check cashing, bill payments, currency 

exchange, processing loans. Bank tellers balance their receipts and payments at the 

end of each day. High volume of transaction traffic is expected for tellers. 

 i. Deposit 

      26. UPDATE Account SET balance=balance+’%’ WHERE account_id=’%’ 
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ii. Withdraw 

      28. UPDATE Account SET balance= balance-‘%’ WHERE account_id=’%’ 

   

iii. Transfer between accounts 

      28. UPDATE Account SET balance= balance-‘%’ WHERE account_id=’%’ 

      26. UPDATE Account SET balance=balance+’%’ WHERE account_id=’%’ 

   

iv. Closing and Opening of Bank Accounts 

30. INSERT INTO Customer (customer_id, name, street, city, province,  

postal_code, profession, DateOfBirth, income) VALUES 

( ‘customer_id’, ’name’, ’street’, ’city’, ’province’, ’postal_code’, 

‘ profession’, ‘DateOfBirth’, ‘income’) 

       31. INSERT INTO Account (id, customer_id, open_date, branch_id, type,  

interest, balance) 

VALUES (‘id’,’customer_id’,’open_date’,’branch_id’,’type’,’interest’, 

‘balance’) 

      32. INSERT INTO Checking Account (id, currency) 

   VALUES (‘id’, ’currency’) 

      33. UPDATE Checking Account SET balance= 0 WHERE id=’%’ 

 

v. Check Account Detail 

35. SELECT * FROM Account WHERE id=’%’ 

   

vi. Cashing Checks 

26. UPDATE Account SET balance=balance+’%’ WHERE     

account_id=’%’ 

vii. Currency Exchange  

38. UPDATE Account SET balance = ‘%’ WHERE currency=’%’ AND 

account_id=’% 
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  viii. Accepting Loan Payments 

      39. SELECT * FROM Account, Loan Account WHERE 

Account.id=LoanAccount.id AND id=’%’ 

 

   ix. Balance their receipts and payments at the end of each day 

40. SELECT SUM (transamount) FROM Journal WHERE timestamp=’today’ 

AND type=’debit’ 

  41. SELECT SUM (transamount) FROM Journal WHERE timestamp=’today’ 

AND type=’credit’ 

 

c) Templates for the Sales Representative Role 

 A sales representative works as a salesperson and customer services agent, 

directly with potential customers to determine their financial viability or needs and 

sell them a variety of financial services. The sales representative need to be familiar 

with the bank’s offered checking or saving accounts, mortgages or securities 

portfolios in order to deduce which would best fit the prospective customer. 

  

 i. Reviewing customers’ personal accounts to determine what banking 

products might be appropriate for customers 

64. Select * from Customer Where customer_id=’%’ 

 

 ii. Answering customers’ questions about products, prices, availability, 

product uses, and credit terms 

77. Select distinct type from Account  
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d) Templates for the Credit Clerk Role 

A credit clerk processes applications of individuals applying for credit. She/he 

also establishes credit limit, considering such factors as applicant’s assets, credit 

experience and personal references, based on predetermined standards. 

 i. Accessing the applicant’s records in order to determine credit limit  

65. SELECT * FROM Customer WHERE Customer_id=’%’ 

66. SELECT * FROM Account WHERE customer_id=’%’ 

85. SELECT * FROM Account, Loan Account WHERE id=’%’ AND 

type=’credit’ 

 

 ii. Creating new credit records for the accepted applicants 

30. INSERT INTO Customer (customer_id, name, street, city, province,  

postal_code, profession, age, income) VALUES 

( ‘customer_id’, ’name’, ’street’, ’city’, ’province’, ’postal_code’, 

‘ profession’, ‘age’, ‘income’) 

  31. INSERT INTO Account (id, customer_id, open_date, branch_id,         

type,interest,balance) 

      VALUES (id, customer_id, open_date, branch_id, type, interest, balance) 

         86. INSERT INTO Credit Account (id ,available_fune, last_payment)  

VALUES(‘id’, available_fund , last_payment) 

iii. Adjust incorrect credit charges and grant extensions of credit on overdue 

accounts 
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87. Update  Credit Account Set  available_fund=’%’ where id=’%’ 

 

e) Templates for the Mortgage Loan Officer Role 

To increase the amount of transactions through their facility, loan officers 

assist individuals who seek loans, and act as a liaison to creditors and 

borrowers. Originators aid clients when applying for loans, as well as ensure that the 

necessary information is provided to both the creditor and the borrower.  These 

professionals must be able to advise clients experiencing difficulties receiving loans, 

in addition to suggesting the best possible option(s) for each client. Other duties 

include creating loan accounts, checking loan type, tracking interest rates and updating 

the LoanAccount table. 

 

 i. Analyze applicants' financial status, credit, and property evaluations to 

determine feasibility of granting loans 

    65. SELECT * FROM Customer WHERE Customer_id=’%’ 

       66. SELECT * FROM Account WHERE customer_id=’%’ 

    39. SELECT * FROM Account, Loan Account WHERE id=’%’ AND 

type=’loan’ 

 

 ii. Explain to customers the different types of loans and credit options that are 

available, as well as the terms of those services 

    

77. Select interest from Account where type= ’loan’  
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iii. Review and update loan files 

  Take information from the prospective borrower and complete the loan 

application form 

   29. INSERT INTO Customer (customer_id, name, street, city, province,  

postal_code, profession, age, income) VALUES 

( ‘customer_id’, ’name’, ’street’, ’city’, ’province’, ’postal_code’, ‘ profession’, 

‘age’, ‘income’) 

  30. INSERT INTO Account (id, customer_id, open_date, branch_id,         

type,interest,balance) 

   VALUES (id, customer_id, open_date, branch_id, type, interest, balance) 

31. INSERT INTO Loan Account (id ,installmentAmount, interest)  

VALUES(‘id’, installmentAmount , interest) 

f) Templates for the Loan Reviewer Role 

A loan reviewer performs loan review duties in the following areas and write 

reports on results of analysis performed on the various loan types, denied and 

withdrawn mortgage loans, and any other analysis requested. 

  

i. Reviewing various loan accounts  

90. SELECT id, interest, balance FROM Loan Account  

ii. Tracking all corrections identified in risk reports and ensures corrections 

are reported back to the appropriate party 

68. UPDATE LoanAccount SET penalty=’%’ WHERE id=’%’ 
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g) Templates for the Mortgage Closer Role 

 A mortgage closer schedules loan closing and compiles and types closing 

documents. She/he also in charge of reviewing approved mortgage loan to determine 

conditions that must be met prior to closing.  

i. Preparing and verifying closing documents during the completion of real 

estate transactions 

39. SELECT * FROM Account, Loan Account WHERE 

Account.id=LoanAccount.id AND id=’%’ 

 ii. Verifying loan interest and principal payment, and closing costs 

98. Select * from Journal where account_id=’%’ 

99. Select SUM(transamount) from Journal where account_id=’%’ 

100. Select penalty LoanAccount where id=’%’ 

   

   iii. Updating loan information in log and on government reporting forms 

   94. Update LoanAccount Set penalty=0 where id=’%’ 

 

3.3.3 Daily Transactions Scheduler 

In the benchmark, we use a daily transactions scheduler to populate each 

employee's everyday transaction flow. A scheduler dynamically generates each 

employee’s transaction for a day. That means each employee’s everyday transaction 

length is arbitrary. The scheduler stores a database access pattern according to each 

role’s characteristics. 

 In the relational database system environment, accesses to the database come from 

various application sources. The combination of transaction and query accesses  
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Table 4  

Daily Transactions Scheduler Fields 

Fields Description  

timestamp Date and time when the transaction happens 

timespan Time spend on database per login 

logins How many times login to the database 

empId Employee identification 

role Roles that employee possessed 

FirstLogin The time an employee first login to the database a day 

                    

generates all possible access patterns (Sacco and Schkolnik, 1986; Kearns and 

DeFazio, 1989). In a financial bank background, bank employees retrieve private data 

that are stored in a database system through different banking applications. Data is 

being accessed according to different transactions or queries that an employee 

performs against a database system.  

In Table 4, it shows the fields that store in a daily transactions scheduler record. 

According to the nature of the jobs and different transaction templates being used, 

each business function has its unique database access pattern. In the following we will 

discuss in detail the different database access patterns categorized by the business 

functions as we mentioned in section 3.3.2.  
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a) Human Resource Function  

A human resource employee logins several times a day to the database, 

whenever there is a task involving usage of employee records. She/he stays on the 

database for a short period of time approximately 30 minutes to 1 hour. Therefore, we 

can assign ranges for the fields: time span, logins and start time in the daily 

transactions scheduler according to each role’s characteristic. For Human Resource 

role, we assign each field’s ranges as followed:  timespan [30 – 60 minutes]; logins 

[1 to 2 times]; FirstLogin [8:00 – 16:00].   

At run time, an instance of the daily transaction scheduler is generated for 

each employee. The fields of the scheduler instance are assigned with actual random 

values within each field’s range based on a poisson distribution.  

b) Marketing Function 

A marketing employee logins frequently to the database a day. She/he stays for 

a longer period of time. Therefore we can assign corresponding fields of the daily 

scheduler with following ranges: timespan [60-120 minutes]; logins [1 to 3 times]; 

FirstLogin [8:00 – 16:00].   

c) Accounting Function 

An accounting employee is a database heavy user similar to the teller. She/he 

normally logins to the database when work starts and stays logged in for a long period 

of time. Heavy database usage can be assumed at the end of the month or quarter. 

Therefore we can assign corresponding fields of the daily scheduler with the 
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following ranges: time span [180-240 minutes]; logins [2]; FirstLogin [8:00].   

 

d) Customer Service Function 

A customer service employee logins twice to the database a day, when each 

shifts starts (morning and afternoon). She/he stays logged in during her/his shift. 

Therefore we can assign corresponding fields of the daily scheduler with following 

ranges: timespan [180-240 minutes]; logins [2]; FirstLogin [8:00].   

 For further explaining the purpose of the daily transaction scheduler, an 

example is given by using the scheduler to populate a transaction flow for a human 

resource employee. Given the random value drawn from the field ranges are timespan 

[30-60], logins [2] and FirstLogin [11:45], the example is listed in Figure 3.4.   

 

 

Figure 3.4 A HR Employee Transaction Log For a Day Example 
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3.3.4 Types of Insider Attacks   

Numerous definitions have been proposed for the term insider attack. 

According to Maybury et al. (2005), malicious insider is one motivated to adversely 

impact an organization's confidentiality, integrity, and or availability. Schultz (2002) 

defines an insider attack as “the intentional misuse of computer systems by users who 

are authorized to access those systems and networks”. Aleman-Mezal, et al. (2005) 

asserts that insider threat refers to the “potential malevolent actions by employees 

within an organization, a special type of which relates to legitimate access of 

document”. The above definition involves the notion of assigned privileges to an 

insider. So general definition of insider has privileges through which he/she can 

access different information in his/her organization (Mun, H., Han, K., Yeun, C., & 

Kim, K., 2008).  

Anderson (1980) first proposed the classification for insiders who may misuse 

the IT systems into masqueraders, clandestine users, and misfeasors. Salem, et al. 

(2008) defines a malicious insider to be two classes of malfeasant users; traitors and 

masqueraders. However, both classifications only characterized the type of users and 

not the actual attacks or the purpose of the attacks. For the purposes of this 

benchmark, we categorized anomalies according to the types of the insider attacks 

instead of actual attackers; we define anomaly to be three classes of attacks: 

Data-harvest, Masquerade, and Sabotage. 

a) Data-harvest 

Data-harvest is probably one of the most common insider attacks. The attacker 
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could be a legitimate database user within an organization who abuses his/her 

privilege to gather valuable information of its customer and perhaps sell it to a third 

party. An example of the attack would be a bank employee who exports a list of its 

customers’ demographic information and sells it to an insurance company. This type 

of attack is probably the hardest to detect. During the attack, we can assume massive 

data would being accessed; the attacker probably need to frequently access sensitive 

data and logins to the database outside of his/her working hours. In our benchmark, 

we define sensitive data that are stored in Loan Account Table, Credit Account Table. 

The transaction templates of the attacks are listed as followed. 

 i. Access massive Loan Account Information 

  SELECT * FROM LoanAccount 

  SELECT * FROM Account, CustTable WHERE  Account.type=’loan’ 

   SELECT * FROM Loan Account WHERE penalty > 100  

ii. Access massive Credit Account Information 

   SELECT * FROM CreditAccount 

   SELECT * FROM Account, CustTable WHERE Account.customer_id =    

Customer.customer_id AND Account.type=’credit’ 

    SELECT * FROM Account WHERE balance>100 AND type=’credit’ 

b) Masquerade  

According to Salem, et al. (2008), the most familiar example of an insider is a 

masquerader; an attacker who succeeds in stealing in legitimate user’s identity and 
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impersonates another user for malicious purpose. Credit card fraudsters are perhaps 

the best example of masqueraders. In our benchmark, we define a masquerading 

attacker is the one who illegally use other database user’s identity to perpetrate 

malicious actions. The attackers are drawn from the same probability distribution as 

of normal workload background, but with role information negated.   

 

3) Sabotage 

Sabotage is probably one of the severest insider attacks that an organization 

can encounter. A sabotage attack could be launched by a disgruntled former employee 

or an unsatisfied current employee who seek revenge to the organization. The attacker 

uses his/her knowledge of the company and the infrastructure of the database system 

to perpetrate their malicious actions, causing negatively effects on confidentially, 

integrity or availability of some information asset (Maybury,2005). One of the typical 

examples of this attack in our benchmark as listed bellowed, is deleting a journal log 

and making the record files untraceable. 

   DELETE FROM Journal WHERE transamount >1000 
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Chapter 4 

Implementation 

In this chapter, the procedure of implementing the benchmark is explained in 

section 4.1. In the second part of the chapter, we discuss the techniques that have been 

used to implement two testing intrusion detection systems – Bayesian Network IDS 

(An&Jutla, 2006) and RBAC Classifier (Bertino, et.al, 2005). 

 

4.1 Benchmark Implementation 

As showed in Figure 4.1, in order to create the workload, the benchmark 

includes Employee Profile Generator, Workload Driver, Anomaly Generator, Anomaly 

Injector, and Database Populator. We chose Microsoft SQL Server as our Database  

 

Figure 4.1 Benchmark Workload Flow 

 

Management System (DBMS) to build our financial bank infrastructure, since MS 
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SQL Server is one of the popular DBMS used by organizations. We used Java for the 

implementation of Employee Profile Generator, Anomaly Generator, Anomaly 

Injector and Workload Driver for its availability and platform independence. All our 

experiments were conducted with Java 6.5 and MS SQL Server 2008 R2, but earlier 

versions of both software should work as well.  

 

4.1.1 Database Populator Implementation  

Database populator is a benchmark component to populate records in the 

database; it has been implemented by using Java 6.5. We used the Java Database 

Connectivity (JDBC) driver provided by Microsoft to make connections to MS SQL 

Server. JDBC driver is a software component enabling a Java application to interact 

with a database, such as Java SE Technologies (2012). To make connection with an 

individual database, JDBC requires drivers for each database. Type 4 JDBC driver for 

MS SQL Server was used; it provides database connectivity through the standard 

JDBC application program interfaces (APIs). The JDBC driver gives out a connection 

to our benchmark banking database and implements the protocol for transferring the 

query and result between the database populator and the database.  

In a Java application, the JDBC driver requires to specify driver class, driver 

location, and JDBC URL format in order to make a connection to the database. An 

example of JDBC driver being used in our benchmark is listed in Figure 4.2. As 

shown in the below, we log into the database, Financial Bank, as system administrator 

(represented as’ sa’ in Figure 6). The system administrator’s credentials are 
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predefined. 

_____________________________________________________________________

//Load and register SQL Server driver 

Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver"); 

//Establish a connection 

 String connectionUrl="jdbc:sqlserver://localhost:1433; "+"databaseName=Financial 

Bank; user=sa; password=Bm123456"; 

 Connection conn = DriverManager.getConnection(connectionUrl); 

//Create a Statement object 

Statement sql_stmt = conn.createStatement(); 

_____________________________________________________________________ 

Figure 4.2 A JDBC Driver Example Used in Database Populator 

 

The size of the database is define by four parameters – total number of roles, 

total number of branches, maximum employee per departments, and total number of 

customers. By specifying these four parameters, we can use the population component 

to create a desired size of database. After defining the parameters, the method 

initialize (int NumOfDepartment, int BranchTotal, int MaxEmpPerDep, int 

CustomerTotal) is called, which creates four instances of the classes – Branch, 

Department, CustTable, and EmpTable. Each of these classes are in charge of 

populating one or a group of tables in the database. 
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As mentioned in Section 3.3.1, there are several tables in the Financial Bank 

database – Department table, Employee table, Journal table, Trans table, Branch 

table, Customer table, Account table, Checking Account table, Credit Account table, 

Loan Account table, and Saving Account table. 

 

 

Figure 4.3 Class Diagram of Database Populator 

 

a) Branch Class 

This class has one public method: generate (Statement sql_stmt, int 

BranchTotal). It is in charge of populating branch records into the Branch table 

according to the parameter: total number of branches. 

 

b) Department Class 

This class is in charge of generating the Department table, which has two 
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method: generate (Statement sql_stmt) and getName (int i). This class describes how 

many departments exist in the database, which is controlled by the total number of 

branches and the total number of roles. Given there are N branches and M roles, the 

total number of departments that exist in the database is N×M.  

 

c) EmpTable Class 

This class is used to generate records into the Employee Table, which stores 

employees’ demographic information. It includes two methods: getTitle (int role) and 

generate (Statement sql_stmt, int MaxEmpPerDep). Method getTitle (int role) returns 

the job title of the position an employee holds according to his/her role.  

In our benchmark, we assume that one person holds only a given title in an 

organization. Public method generate (Statement sql_stmt, int MaxEmpPerDep) 

creates records into Employee table. The total number of records in the Employee 

table is determined by the number of departments that exist in the database and the 

parameter maximum employee per department.  

Given there is at least one employee in a department and there are N 

departments in the database, the total number of employees lays between N and N × 

Maximum Employee per Department. Figure 4.4 is an example of a generated 

Employee table.  
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Figure 4.4 An Example of Generated Employee Table 

d) CustTable Class 

This class is used to generate the Customer table, which stores customers’ 

information. The method we used to populate records in the Customer table is similar 

to the one for the Employee table. According to the parameter, total number of 

customers, we can create the desired size of the table. After the Customer table has 

been populated, a method of the AccountTable class is being called to create a group 

of account records for each customer. According to the type of the account record, it 

further distributes that record to corresponding sub-account tables.   

 

4.1.2 Employee Profile Generator Implementation 

Employee Profile Generator uses the Daily Transaction Scheduler component 

as we mentioned in section 3.3.3 to generate transaction traffic for all employees. In 

order to achieve this, the generator first retrieves employee_id and department_id 

from the Employee table, then creates an instance of Daily Transaction Scheduler 
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class for each employee records. By creating daily transaction traffic for each 

employee, we can generate a daily transaction log for the financial bank database. As 

shown in Figure 4.4, the generator first creates the transaction flow into a temporary 

table called TempTrans. Its records are ordered by employee_id; then it inserts all the 

records into the Trans table ordered by timestamp.               

                      

 

Figure 4.5 Employee Profile Generator Workflow 

 

4.1.3Anomaly Generator Implementation 

As mention in section 3.3.4, there are three types of insider attacks – data 

harvest, masquerade and sabotage. According to the types of the attack, we can create 

different anomaly records by using the generator. Figure 4.6 shows the members’ 

view of Anomaly Generator class. In the class, we have three functions to generate 
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anomaly transactions; each of the functions corresponds to one of the three insider 

attacks. 

                

Figure 4.6 Anomaly Generator Members View 

 

We give details of the Java code for function Masquerade ( ) in Figure 4.7 below. 

 

Figure 4.7 Java Codes for Masquerade ( ) Function 
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4.1.4 Anomaly Injector Implementation 

In order to create workloads for Intrusion Detection to run against, we need to 

inject anomaly transactions into a normal background; in our benchmark, a normal 

background is the employee transaction traffic we created by using the employee 

profile generator and the anomaly is the insider attack behaviors. In our benchmark, 

we provide two anomaly injection methods: uniform distribution and Gaussian 

distribution. We used two methods provided by Java to realize the injection. One is 

Math.random ( ) for uniform distribution; the other is rand.nextGaussian ( ) for 

Gaussian distribution. 

 

4.1.5 Workload Driver Implementation      

In the previous section, we described how to use the employee profile 

generator to create the normal background and the anomaly generator to create insider  

attacks. By injecting anomalies into normal background, we enriched the workload 

for intrusion detection system to test on.  

The tests are conducted on the transaction log records, which stored in Trans 

table as listed in Table 5, and injected anomalies. The workload driver uses 

executeQuery ( ) from the class Statement, provided by Java, to execute SQL queries 

and stores the execution log in the Trans table. While running IDSs tests, an instance 

of SQLParser class is created to parse the SQL queries and stored in a 

ParsedLogRecords Array.  
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Table 5  

Trans Table’s Attributes Description                            

Attribute Description 

Trans ID Transaction record ID 

Empid Store employee id who issue the query 

SqlQuery The SQL query 

Timestamp Timestamp when the query occurs 

 

4.2 Implementation of Two Testing IDS 

We chose two insider-thread IDS to be tested on our benchmark – Role Based 

Access Control Classifier (RBAC classifier) proposed by Bertino, Kamr, Terzi and 

Vakali (2005), and Bayesian Network IDS proposed by An, Jutla and Cercone (2006). 

In the following section, we are going to explain how these two IDSs are being 

implemented in detail. 

4.2.1 Implementation of RBAC Classifier 

The procedure proposed by Lang (2005) is being used as a reference model to 

proceed in implementing the RBAC classifier. We chose Java 6.5 as our 

implementation platform for the RBAC classifier. Like all probabilistic classifiers, the 

RBAC classifier uses the Maximum Aposteriori Probability (MAP) decision rule; it 

arrives at the correct classification as long as the correct class is more probable than 
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any other class. The nature of the naïve probability model enables the RBAC 

classifier to raise an alarm when the probability of a user acting according to the role 

he is claiming to have is low (Bertino, et al., 2005). In the classification problem, a set 

of training examples 𝐷𝑇 is provided, and a new instance with attribute values 

(𝑎1, ...,𝑎𝑛) is given. The goal is to assign to this new instance the most probable class 

value v , given the attribute (𝑎1, ... ,𝑎𝑛) that describes it: 

 

 

In order to build profiles, Bertino, et al. (2005) transforms the log file entries 

into a triplet format, which contain three fields (SQL Command, Relation Information, 

Attribute Information). For simplicity they further denoted the triplet as T(c, R, A), 

where c corresponds to the command, R to the relation information and A to the 

attribute information. According to the amount of information it stores, a triplet can 

classify as c-triplet, m-triplet and f-triplet, where c-triplet stores the least amount of 

information and f-triplet stores the most. By applying the above general Naïve Bayes 

Classifier model to RBAC classifier framework, Bertino, et al. (2005) defined the set 

)|()|....,( 21 j

i

ijn vaPvaaaP 



67 

Benchmarking Insider Threat Intrusion Detection Systems 

)|()|()|()(max jijijij
Rrj

rAPrRPrcPrPr




of classifications is the set of roles r in the database system while the observations are 

the log-file triplets. Therefore, if R denotes the set of roles, predicting the role 𝑟𝑗 ∈ R 

of a given observation ( 𝑐𝑖, 𝑅𝑖 ,  𝐴𝑖) requires, in accordance to the above naïve 

Bayesian equation: 

 

In our RBAC classifier implementation program, we took coarse triplet 

(c-triplet) and medium-grain triplet (m-triplet) observations into consideration. 

C-triplet (SQL-CMD, REL-COUNTER, ATTR-COUNTER) is the simplest log file 

entries format, which REL_COUNTER and ATTR_COUNTER contain the number of 

relations and attributes involved in the issued SQL query, respectively. The SQL 

Command field (SQL-CMD) of both c-triplet and m-triplet corresponds to the issued 

SQL command.  

 In m-triplet (SQL-CMD, REL-BIN[], ATTR-COUNTER[]), Relation 

Information field is a binary vector of size equal to the number of relations in the 

database, denoted as REL-BIN[]. Meanwhile, Attribute Information field of m-triplet 

is a vector, denoted as ATTR-COUNTER[], of size equal to the size of the REL-BIN[] 

vector. The i-th element of the ATTR-COUNTER[] vector corresponds to the number 

of attributes of the i-th relation that are involved in the SQL command. This bit vector 

contains 1 in its i-th position if the i-th relation is included in the SQL command. 

Table 6 shows two SQL commands corresponding to select statements and their 
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representations according to the two triplets. In the example, they consider a database 

consisting of two relations R1= {A1, B1,C1} and R2={B2,D2,E2} (Bertino, et.al, 

2005). 

 

Table 6 

Triplet construction example (Bertino, et.al, 2005) 

SQL Command c-triplet m-triplet 

Select A1,B1  

From R1 

Select <1> <2> Select <1,0> 

<[1,1,0,0,0],[0,0,0,0,0]> 

Select R1.A1, R1.C1, 

R2.B2, R2.D2 

From R1,R2 

Where R1.E1=R2.E1 

Select <2>  <4 > Select <1,1> 

<[1,0,1,0,0],[0,1,0,1,0]> 

 

We consider c-triplet as the default triplet format for RBAC classifier. 

M-triplet is also included in the implementation of RBAC classifier, so that the 

performance improvement with more information stored in the triplet can be tested.  

There are three Java classes included: RBAC classifier, NBlearner and 

DomainValue. The RBAC classifier class is in charge of interacting with the 

benchmark. The NBlearner class and its methods implement the IDS algorithm. The 

DomainValue class is used to store attribute values. The class diagram is listed in 

Figure 4.8.  
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Figure 4.8 Class Diagram of RBAC Classifier 

 

4.2.2 Implementation of Bayesian Network IDS (BNIDS)   

The other insider threat IDS algorithm we chose was Bayesian Network IDS 

(BNIDS) proposed by An, et al., (2006). The core of our implementation is based on 

the application GeNIe and its Structural Modeling, Inference, and Learning Engine 

(jSMILE) for graphical probabilistic model of BNIDS, contributed to the community 

by the Decision Systems Laboratory of the University of Pittsburgh         

(http://dsl.sis.pitt.edu). GeNIe is a development environment for building graphical 

decision- theoretic models. As shown in Figure 4.9, BNIDS is built by using the 

GeNIe interface, where node I represents an insider intrusion while the others are 

Contain one (learner) Contain *(DomainValue) 
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observable events that may trigger an insider attack alarm, and the edges present 

conditional dependencies between nodes.  

        

 

Figure 4.9 BNIDS Diagram in Genie, where hypothesis variable I denotes a privacy 

intrusion. All others are information variables, where Fd denotes the usage frequency 

of the database, H office hours, Td time spend on database, Tr time spent on special 

records, A the amount of records accessed, M the number of special records modified, 

and Fr the usage frequency of records. Conditional probability distributions between 

nodes and prior knowledge about Tr and A, are assigned as suggested by An, et al. 

(2006). 

 

In our benchmark, event A is monitored by @@rowcount which we retrieved 

from queries; H is monitored by the timestamp of each query ; Fr and Fd are observed 

by frequency; Td by the time span between login and logout; Tr is observed by the 

time difference between current query and the previous one issued by the same 
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employee. M is monitored by the number of records that have been modified by the 

UPDATE or DELETE command; we considered that all the records stored in the 

database are sensitive. 
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Chapter 5  

Experiment Methodology and Results 

 

In this chapter, the performances of two IDSs are tested with four test cases. 

The IDSs run against the benchmark with varying percentage of anomalies, workload, 

number of roles, and attack patterns individually. We also demonstrate the usefulness 

of benchmark to tune an IDS setting. 

5.1 Scalability Testing  

In our benchmark, we provide configurable environments to conduct various 

performance tests. First, we want to test the accuracy and effectiveness of both IDSs 

in a small financial bank scenario. Test case 1(Figure 5.1 and Figure 5.2) established 

a testing environment with increasing number of injected anomalies, and constant 

training data (200 records) and normal background data of 1000 records. In Test Case 

1, we assume there are two branches and 25 employees working for each of the 

branch. In other words, the bank has 50 employees, each of which belongs to one of 

the 20 roles we used in Test Case 1. The threshold’s default value for BNIDS is 0.5. 

Later in section 5.3, we will demonstrate the procedure of using benchmark to tune 

the threshold setting and how it will affect the IDS performance.  

Figure 5.1 shows a superior performance in precision of Bayesian Network 

Intrusion Detection System (BNIDS), proposed by An, Jutla and Cercone (2006), 
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compared to the Role-Based Access Control Classifier (RBAC Classifier), proposed 

by Bertino, et al. (2005). In the test case 1, both IDSs show, given the constant size of 

normal background, the more anomalies that are injected in the testing set, the higher 

the precision. Anomalies are drawn from the anomaly templates under uniform 

distribution; each of the anomalies belongs to one of the three insider attacks: Data 

Harvest, Masquerade and Sabotage.  

 

Figure 5.1 Test Case 1: Precision vs. Number of Injected Anomalies 

 

Our RBAC Classifier uses a Naïve Bayes classifier. It assumes that all 

attributes are statistically independent. In other words, all attributes should have the 

same relevance with respect to the classification task. The reason for making this 

assumption can be found in the way Naïve Bayes classifier computes the class 

likelihoods. They are simply products of the conditional probabilities of all attributes 

values given the class value. In our case, attributes are represented by various 
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observable database events, while classes are represented by all the employee roles 

existing in the database. On the other hand, the Bayesian network structure used by 

BNIDS captures that some attributes are in fact dependent.  

As shown in Figure 5.1, we received an improvement in precision when the 

percentage of anomalies in the workload goes up. It shows that the Bayesian Network 

inference makes use of dependencies, thus outperforms Naïve Bayes classifier by 20% 

on precision. The latter cannot handle dependent attributes and therefore needs the 

attribute independence assumption and end up with a lower performance in precision. 

Moreover, the RBAC Classifier only considers data manipulation as observable 

events, while BNIDS includes database events like usage frequency of database (Fd) 

and office hour (H) to capture the context of an intrusion threat scenario better. For 

this reason, a lower number of false positives is expected from BNIDS than RBAC 

classifier given the same testing environment. Hence, a higher precision is gained by 

BNIDS over RBAC classifier.  

In Figure 5.1, we also witnessed that m-triplet RBAC classifier, with its larger 

information stored in the triplet, shows a slightly higher performance than the c-triplet 

RBAC implementation. 

Figure 5.2 shows a steady performance in recall around 82% for BNIDS and 

95% for RBAC classifier. RBAC classifier outperforms BNIDS by 10% in terms of 

recall. In our implementation for BNIDS, each role uses the same conditional 

probability distributions between nodes and prior knowledge as suggested by An, et al. 
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(2006), which results in a higher number of false negatives. Therefore, we got a lower 

recall for BNIDS. In test case 1, we maintained the threshold of BNIDS at 0.5. That 

means if the probability of occurrence of intrusion is larger than 50%, the IDS 

consider it is an intrusion attack. In order to achieve a higher recall, we can lower the 

threshold to allow more true positives are being caught by IDS. However, with a 

lower threshold, more false positives are being detected by BNIDS as well, which 

may contribute to a lower precision. We will discuss how to use the benchmark to find 

an ideal balance between precision and recall later in section 5.3. 

 

 

Figure 5.2 Test Case 1: Recall vs. Number of Injected Anomalies 

 

According to the results we gathered from test case 1, we now can calculate 

the 𝐹𝛽-measure where β =1. F-measure is the harmonic mean of precision and recall. 
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With steady performances in recall and growing precisions, the F-measure values for 

both IDSs increase as the percentage of anomalies in the workload goes up. As shown 

in figure 5.3, the overall performance of BNIDS increases from 52% to around 87% 

when there are more anomalies injected in the workload. Meanwhile, RBAC 

Classifier shows noticeable improvement in overall performance before 

600-injected-anomalies mark, and it remains stable around 75% afterwards.  

 

 

Figure 5.3 Test Case 1: F-measure vs. Number of Anomalies 

 

 

Figure 5.4. Test Case 1: Time Cost vs. Number of Testing Tuples 
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Next, we built an experimental environment that monitors the time cost for 

running the IDSs with increasing total number of testing tuples. The results are 

demonstrated in Figure 5.4, we can tell that with larger log to process, the time cost 

went up. However, there were not many differences among IDSs in terms of time 

spent on inference. It needs to be mentioned that we did not include the training phase 

of both IDSs, considering an IDS only needs to be trained once per test case, and 

BNIDS already provides reasonable conditional probabilities for its Bayesian network 

structure (An & Jutla, 2006). 

In test case 2, we want to check the performance of both IDSs in a larger 

financial bank and where the percentage of anomalies that exist in the workload is low. 

In this test case we establish a large financial bank scenario, where the bank has 

around 10,000 customers across 10 branches, each of which has 50 employees. In 

other words, the total number of employees is around 500. In this test case, we use 20 

roles in the workload. During the test, we maintain the percentage of anomalies at 10% 

while increasing the total number of workload records. 

As expected, as shown in Figure 5.5, BNIDS outperformed RBAC Classifier 

in terms of precision. Both IDSs show low precision compared to other test cases. 

However, the result is reasonable considering there are only 10% of anomalies within 

the workload; with higher total number of false positives and lower total number of 

true positives, a lower precision is expected.  

In Figure 5.6, both IDSs show a steady performance in terms of recall around 
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85% for BNIDS and 95% for RBAC classifier. That means most of the anomalies are 

detected by both IDSs despite different sizes of the workload.  

 

 

Figure 5.5 Test Case 2: Precision vs. Number of Tuples 

 

 

Figure 5.6 Test Case 2: Recall vs. Number of Tuples 
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In previous two test cases, there are 20 roles which exist in the workload. We 

are wondering whether the total number of roles will affect the accuracy of the 

performance. With that in mind, we established test case 3 as a testing environment 

with varying number of roles, and constant training data (200 tuples) and testing data, 

which has 1000 tuples of normal background and 100 injected anomalies. In Figure 

5.7, RBAC classifier shows a steady performance of precision around 15%, despite 

various total numbers of roles in the workload. BNIDS out performed RBAC by 20% 

when there are less than12 roles in the workload; and increase the gap to 35% when 

there are more than 12 roles in the workload. The size of the training data set was 

varied from 100 to 1000 tuples with no difference in results. Thus a size of 200 tuples 

for the raining data is deemed adequate. 

 

 

Figure 5.7 Test Case 3: Precision vs. Number of Roles 
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In Figure 5.8, BNIDS shows steady performance in terms of recall while  

RBAC Classifier has increasing recall with higher total number of roles in the 

workload. In other words, RBAC Classifier has better classification results when there 

are more roles (classes) to work on. 

 

 

Figure 5.8 Test Case 3: Recall vs. Number of Roles 

 

5.2 Different Anomaly Injection Methods Testing 

Test case 4 is a variant of Test case 1 with different anomalies injection 

methods: Gaussian Injection and Uniform Injection. In this test case, we want to see 

whether attack patterns will affect IDSs results. As shown in Figure 5.9 and Figure 

5.10, the RBAC classifier did not show any performance difference between the two 

anomaly injection methods.  

0

10

20

30

40

50

60

70

80

90

100

2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

R
e

ca
ll(

%
) 

Number of Roles 

BNIDS

RBAC
Classifier c-
triplet



81 

Benchmarking Insider Threat Intrusion Detection Systems 

 

Figure 5.9 Test Case 4: Precision vs. Number of Anomalies RBAC-Classifier with 

c-triplet  

 

 

Figure 5.10 Test Case 4: Recall vs. Number of Anomalies RBAC-Classifier with 

c-triplet 
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300-injected-anomalies with Gaussian distribution. Figure 5.12 demonstrates similar 

results in recall for both injection methods. Gaussian distribution is a continuous 

distribution. When the number of anomalies is less than 300, the distribution is not 

smooth enough to assimilate the real Gaussian distribution. When the number of 

anomalies is greater than 300, the distribution in the experiment is smooth enough to 

be similar to the real Gaussian distribution.  

 

 

Figure 5.11 Test Case 4: Precision vs. Number of Anomalies with BNIDS 

 

 

Figure 5.12 Test Case 4: Recall vs. Number of Anomalies with BNIDS 
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5.3 Tuning IDS Settings with Benchmark 

For an IDS to work effectively, it should be tuned correctly. Settings of the 

IDS need to be in compliance with the security policies and goals of the sytem 

administrator. Although, the tuning process is very time consuming, it is a very vital 

factor to an effective IDS configuration. Later we will use BNIDS as an example to 

demonstrate how to utilize our benchmark for tuning IDSs settings. 

Here, we set up a test financial bank scenario that has two branches, each of 

which has 25 employees. The workload has constant 1000 tuples with 10% anomalies. 

By raising the threshold of BNIDS from 0.1 to 1.0 with the increment of 0.1, we 

received 10 sets of results of precision and recall, which are shown in Figure 5.13.  

 

 

Figure 5.13  BNIDS Threshold Tuning 
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threshold, more true positives are being caught by IDS, which contributes to a higher 

recall; meanwhile, more normal events are recognized as anomalies, hence more false 

positives and a lower precision. Increasing the threshold can decrease the number of 

normal events being wrongly classified as anomalies; hence less false positives and a 

higher precision.   

The goal is to find a ideal balance between precision and recall. Thresholds 

need to be tuned to ensure the IDS could identify relevant data without overloading 

the administrator with warnings or too many false positives. The F-measure is used as 

an overall performance metric in our benchmark. As shown in Figure 5.13, the 

F-measure reach its peak value at 0.8. With configured threshold of 0.8, we followed 

the procedure in test case 1 by maintaining normal background at 10000 records and 

increasing the number of anomalies in the workload. Figures 5.14 and 5.15 show a 

much better performance in terms of precision of the BNIDS over the RBAC 

Classifiers, however, the latter out perform by 10% in terms of the recall.  

 

 

Figure 5.14 Precision vs. Number of Injected Anomalies 
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Figure 5.15 Recall vs. Number of Injected Anomalies 
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Chapter 6 

Conclusion and Future Work 

6.1 Conclusion 

We have presented a benchmark for insider threat intrusion detection systems, 

and have tested two representitative insider threat intrusion detection algorithms with 

this benchmark. The previous chapters demonstrated the usefulness of our insider 

threat benchmark by comparing the performances of different intrusion detection 

systems across various testing environments.  

Little work has been done to provide a performance platform for insider threat 

IDSs to this date. This study contains original research to create a benchmark to 

compare different Intrusion Detection algorithms through the development of a 

synthetic workload that mirrors the types of insider attacks that exist in today’s 

database environment.  

The foremost work on a benchmark’s agenda is to ascertain the limits to 

scalability we are witnessing with the workload generator as well as understanding the 

performances, i.e reall and precision, of the IDSs to be compared. With severl test 

cases conducted in this paper, we have witnessed a slightly better performance in 

recall for RBAC classifier over BNIDS. However, BNIDS showed a much better 

performance in precision over RBAC classifier, especially with tuned thresholds. 

By running IDSs under various test senarios, the benchmark allows system 
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administrators to make informed decisions to select an appropriate IDS, according to 

provided performance metrics, to best identify insider attacks and abuse against 

information systems for their environment.  

 

6.2 Future Work 

Future work includes creating benchmark workloads for other contexts, e.g. 

health care industry, R&D companies, and government agencies. When implementing 

the benchmark, users should focus on which information the organization wants the 

IDS to protect and which group of people could get access to the data. Users can 

reference section 3.2 to select proper benchmark parameters and performance metrics. 

In our benchmark, we provide three composite metrics - precision, recall and 

F-measure.  

It would also be useful to look at enriching the metric set, such as receiver 

operating characteristic (ROC) curve, the area under the curve (AUC), and execution 

time/cost. By plotting the fraction of TPR vs FPR, the ROC curve can be created. It 

shows the probablitiy of detection provided by the IDS at a given false alarm rate. 

AUC can be used to compare the testing IDSs, the larger the area under the curve, the 

better of the performance. In our benchmark, we already provided the option to 

monitor the execution time for testing the IDSs. By assigning a cost to each query 

plan, execution time/cost can be calculated. 
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