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Origin and Evolutionary Dynamic of Elymus ciliaris, E. pendulinus and E. longearistatus 

(Triticeae: Poaceae) 

by Qianni Hu 
 

 

Abstract  
 

 

Evidence accumulated over the last decade has shown that allopolyploid genomes may 

undergo complex reticulate evolution. Elymus, a genus with rampant interspecific 

hybridization, is an ideal model for examining the impact of gene introgression and 

polyploidization on species diversification. Although five basic genomes (St, H, Y, P and 

W) have so far been identified in species of the genus Elymus, the origin of the Y genome 

in species with a StY genome is still unknown and under debate. Previous studies 

suggested that the St and Y genomes may share a common progenitor genome. To test this 

hypothesis and explore genome evolutionary dynamic, we analyzed three tetraploid StY 

Elymus species, E. ciliaris, E. pendulinus and E. longearistatus, using molecular markers. 

The results rejected the suggestion of the same origin of the St and Y genomes. Our data 

revealed multiple origins and complex reticulate evolutionary dynamic of each species, 

also indicated that geographic isolation strongly influenced the evolution of the Y genome 

in these Elymus species.  
 

 

 

 

 

August 20, 2013 



 

 
III 

 

Acknowledgements 

 

I would like to express my first and foremost gratitude to my supervisor Dr. Genlou Sun. 

This thesis would not have been possible without his consistent and illuminating 

instruction, encouragement and financial support. 

 

I would like to express my heartfelt appreciation to my committee members, Dr. Ron 

Russell and Dr. Pierre Jutras for their excellent academic guidance and expertise in this 

project. 

 

I would like to thank other faculty and staff members of the Biology Department at Saint 

Mary’s University for their friendly help: Dr. Susan Bjornson, Dr. Doug Strongmen, Dr. 

Tim Frasier, Janet White, Heidi de Boer, Carmen Cranley, Jing Yang and Matt Logan. I 

would express my gratitude to my fellow classmates and friends for their friendly support. 

 

I am, as always, deeply grateful to my parents and husband for putting up with me during 

the writing of theis thesis, for their unwavering support of my study, and for always 

bringing me a cup of hot tea just when I needed it most.  



 

 
IV 

 

Table of Contents 

 

Origin and evolutionary dynamic of Elymus ciliaris, E. pendulinus and E. longearistatus 

(Triticeae: Poaceae).............................................................................................................. 1 

1. Introduction ............................................................................................................... 1 

1.1. Hybridization, Polyploidization and Introgression ............................................ 1 

1.2. Elymus and its genome constitutions ................................................................. 3 

1.2.1. Poaceae, Triticea, Elymus .............................................................................. 3 

1.2.2. Genome constitution of Elymus species......................................................... 4 

1.2.3. Three tetraploid Elymus species with StY genome ........................................ 4 

1.2.4. Debate of the Y genome origion .................................................................... 5 

1.3. The molecular markers in phylogenetic study ................................................... 6 

1.4. The purpose of this study ................................................................................... 7 

2. Materials and Methods .............................................................................................. 8 

2.1. Plant materials and DNA extraction .................................................................. 8 

2.2. DNA amplification............................................................................................. 8 

2.2.1. E. ciliaris ........................................................................................................ 8 

2.2.2. E. pendulinus ................................................................................................ 15 

2.2.3. E. longearistatus .......................................................................................... 20 

2.3. Cloning and sequencing ................................................................................... 24 

2.4. Data analysis .................................................................................................... 25 



 

 
V 

 

3. Results ..................................................................................................................... 26 

3.1. E. ciliaris.......................................................................................................... 26 

3.1.1. Sequence variation ....................................................................................... 26 

3.1.2. Phylogenetic analyses of RPB2 sequences .................................................. 30 

3.1.3. Phylogenetic analyses of PGK1 sequences .................................................. 34 

3.1.4. Phylogenetic analyses of RPS16 sequences ................................................. 38 

3.2. E. pendulinus ................................................................................................... 41 

3.2.1. RPS16 analysis ............................................................................................. 41 

3.2.2. TrnD/T analysis ............................................................................................ 43 

3.2.3. RPB2 analysis .............................................................................................. 47 

3.2.4. PepC analysis ............................................................................................... 50 

3.3. E. longearistatus .............................................................................................. 57 

3.3.1. Phylogenetic analyses of RPS16 sequences ................................................. 57 

3.3.2. Phylogenetic analyses of TrnD/T sequences ................................................ 60 

3.3.3. Phylogenetic analyses of EF-G sequences................................................... 63 

3.3.4. Phylogenetic analyses of HTL sequences .................................................... 67 

4. Discussion................................................................................................................ 71 

4.1. Phylogenetic analysis revealed reticulate evolution of E. ciliaris ................... 71 

4.1.1. On the origin of E. ciliaris ........................................................................... 71 

4.1.2. Reticulate origin of StY E. ciliaris ............................................................... 72 

4.1.3. Relationship among E. ciliaris Y genome from different geographic regions  

  ...................................................................................................................... 77 



 

 
VI 

 

4.2. Introgression and complex evolution of E. pendulinus ................................... 78 

4.2.1. Maternal donor of E. pendulinus ................................................................. 78 

4.2.2. Introgression shaped genome diversity within E. pendulinus ..................... 79 

4.2.3. Multiple origins of E. pendulinus ................................................................ 82 

4.3. Origin and geographical differentiation of the Y genome in E. longearistatus ... 

  ......................................................................................................................... 83 

4.3.1. Maternal donor of E. longearistatus ............................................................ 83 

4.3.2. Intraspecies relationship among E. longearistatus ...................................... 84 

4.3.3. The relationship between St and Y genome ................................................. 87 

References .......................................................................................................................... 90 

Publications ...................................................................................................................... 105 

 

Content of Tables 

Table 1. Taxa used in the study of E. ciliaris ..................................................................... 10 

Table 2. Taxa used in the study of E. pendulinus ............................................................... 16 

Table 3. Taxa used in the study of E. longearistatus ......................................................... 21 

 



 

 
VII 

 

Content of Figures 

Figure 1. Partial alignment of the amplified sequences of RPB2....................................... 28 

Figure 2. Strict consensus trees derived from RPB2 sequence (E. ciliaris) . ..................... 32 

Figure 3. Strict consensus tree derived from PGK1 sequence (E. ciliaris). ...................... 36 

Figure 4. Strict Consensus tree derived from RPS16 sequence (E. ciliaris). ..................... 39 

Figure 5. Strict Consensus tree derived from RPS16 sequence (E. pendulinus). .............. 42 

Figure 6. Strict consensus tree derived from TrnD/T sequence (E. pendulinus)................ 45 

Figure 7. Strict Consensus tree derived from RPB2 sequence (E. pendulinus) ................. 49 

Figure 8. Strict Consensus tree derived from PepC sequence (E. pendulinus). ................ 53 

Figure 9. Strict consensus tree derived from morphological data matrix (E. pendulinus). 55 

Figure 10. Strict consensus trees derived from RPS16 sequence (E. longearistatus) ....... 58 

Figure 11. Strict consensus trees derived from TrnD/T sequence (E. longearistatus). ...... 61 

Figure 12. Strict consensus trees derived from EF-G sequence (E. longearistatus). ........ 65 

Figure 13. Strict consensus trees derived from HTL sequence (E. longearistatus) ........... 69 

Figure 14. Hypothetical scenario of tetraploid E. ciliaris origin ....................................... 75 

 

  

 

 



 

 
1 

 

Origin and evolutionary dynamic of Elymus ciliaris, E. 
pendulinus and E. longearistatus (Triticeae: Poaceae) 

1. Introduction 

Phylogenies are important for addressing various biology questions such as relationships 

among genes, the origin and spread of viral infection, and the demographic changes and 

migration patterns of species. In addition, the most popular application is to describe 

relationships among groups of organisms in systematics and taxonomy, which are 

discovered through molecular sequencing data and morphological data matrices. An 

interesting challenge facing plant systematists during the last decade is untangling 

reticulate phylogenetic relationships at all levels and uncovering previous undetected 

evolutionary processes.  

1.1. Hybridization, Polyploidization and Introgression 

Hybridization and polyploidization have played an important role in the history of plant 

evolution, and have contributed greatly to speciation (Cui et al., 2006), and are 

widespread in plants (Masterson, 1994). Polyploids are the result of a fusion between two 

or more genomes into the same nucleus and can be classified into allopolyploids or 

autopolyploids, based on the origin of the duplicated genomes (Stebbins, 1947). A recent 

evaluation of chromosome numbers has led to the conclusion that 15% of speciation 

events in angiosperms involve polyploidization (Wood et al., 2009). Polyploidization is a 

very common process, especially in plants. Many economically important crops such as 

wheat, cotton and potatoes are polyploids. The Triticeae group (e.g. Elymus, Aegilops, 
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and Triticum) emphasizes the impact of hybridization and polyploidization on species 

evolution. 

Introgression through hybridization and segmental gene duplication events are also 

reported to play critical roles in driving speciation (Antunes et al., 2007; Laura 

Kavanaugh et al., 2006; Ragupathy et al., 2008). Ragupathy et al. (2008) demonstrated 

that a segmental duplication event mediated by an LTR retrotransposon occurred prior to 

the polyploidization resulting in hexaploid wheat speciation. Introgression has been 

shown in some instances to cause widespread genomic and epigenomic changes in a 

recipient species similar to those caused by the merger of divergent genomes during 

allopolyploid speciation (Liu and Wendel, 2000; Shan et al., 2005; Liu et al., 2004; Wang 

et al., 2005). Mallet (2005) estimated that up to 25% of plant species produce viable 

offspring from interspecific mating, which leads to simple hybridization and introgression. 

Numerous studies suggested that introgression has resulted in range expansion and niche 

shifts (Klier et al., 1991; Neuffer et al., 1999; Milne and Abbott, 2000; Rieseberg et al., 

2007). The occurrence of introgression events may also confound reconstruction of 

individual polyploidization events by creating complex reticulate patterns (Mason-Gamer 

et al., 2010). Previous studies indicated that introgression clearly has the potential for 

inducing significant evolutionary change in recipient species.  



 

 
3 

 

1.2. Elymus and its genome constitutions 

1.2.1. Poaceae, Triticea, Elymus 

The Poaceae is a large and nearly ubiquitous family of monocotyledonous flowering 

plants, which are often used as research materials in the studies of evolution, phylogeny, 

or taxonomy, since they include a number of plants of major economic importance and 

they have a complex evolutionary history worldwide. 

The tribe Triticeae in the grass family (Poaceae) is a fairly big group of grasses with 

more than 15 genera and 300 species, including not only the world’s most economically 

important grain crops (wheat, barley, and rye) but also some valuable forage grasses. 

While most crop plants are annuals, the majority of species within Triticeae are perennials, 

and they are potential sources of genes for crop and forage improvement. The economic 

importance has resulted in its taxonomy being more thoroughly studied than any other 

tribe of grasses. The tribe combines a wide variety of biological mechanisms and genetic 

systems which make it an excellent group for research in evolution, and speciation in 

plants (Bothmer and Salomon, 1994).  

Elymus L. is the largest and most morphologically diverse taxon in the Triticeae tribe 

with approximately 150 species identified worldwide (Löve, 1984). Although 

predominately a northern temperate genus, Elymus species occur from the Arctic and 

temperate to subtropical regions. These species inhabit various ecological niches, 

including semi-desert, grassland, forests, mountain slopes and valleys among bushes. 

Taxonomy of Elymus is extremely complex because of the massive morphological 
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variation within the species, the polyploid origin of the genus, and the frequent 

spontaneous hybridizations between species. As an exclusively allopolyploid genus, 

Elymus has origins from a few related genera in the Triticeae through natural 

hybridization (Dewey, 1984), and thus it has close relationships with such genera. It has 

been considerably effective for facilitating the introgression of useful genes from wild to 

cultivated species (Sears, 1983; Sharma and Gill, 1983). Due to its worldwide distribution, 

great economic value and complex genetic composition, Elymus is an ideal candidate for 

studying the evolution and polyploidy in plants. 

1.2.2. Genome constitution of Elymus species 

Five basic genomes (St, H, Y, P, and W) have been cytogenetically identified in different 

combinations in the genus Elymus with all its members containing at least one set of the 

pivotal St genome, which is donated by Psedoroegneria (Nevski) Á Löve (Dewey, 1984; 

Löve, 1984). The H, P, and W genomes are derived from Hordeum L., Agropyron Gaetn., 

and Australopyrum (Tzvelev) Á Löve, respectively. The origin of the Y genome is still 

unclear and under debate (Dewey, 1971; Torabinejad and Mueller, 1993; Jensen and 

Salomon, 1995).  

1.2.3. Three tetraploid Elymus species with StY genome 

Elymus ciliaris L. (2n = 4x = 28), is a perennial, self-pollinating allotetraploid species 

with wide distribution in China, Japan and the Russian Federation (Löve, 1984). This 

species is well adapted to high-humidity environments (Zhou et al., 1999), and is a 
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valuable gene pool for resistance to wheat scab, which may be useful in wheat 

improvement (Wan et al., 1997).  

Elymus pendulinus (2n = 4x = 28) is a short-lived perennial, self-pollinating 

allotetraploid species. It inhabits central Asia and is characterized by drooping to strongly 

nodding spikes. Löve (1984) classified this species into four subspecies (i.e., pendulinus, 

brachypodioides, multiculmis, and pubercaulis), based on both ecological-geographical 

and morphological criteria. 

Elymus longearistatus (Boiss.) Tzvelev (2n = 4x = 28) is a short-lived perennial, 

self-pollinating allotetraploid species. It inhabits stony slopes and rocks in the middle and 

upper mountain belts of eastern Alia, and the western Pamir of the USSR, Turkmainia, 

and Iran (Tzvelev, 1976). 

1.2.4. Debate of the Y genome origion 

Polyploid in Elymus includes tetraploidy (StH, StY, StP) and hexaploidy (StHP, StYP, 

StHY, StStY, StStH, etc.) (Dubcovsky et al., 1997). The most common Elymus genome 

combination in Asia is StY, which is present in more than 75% of the known Asiatic 

tetraploid. Recently, one of the controversial debates is on the origin of the Y genome. 

Chromosome pairing analyses show low affinity between the St and Y genomes 

(Sakamoto, 1964; Dewey, 1971; Lu and Bothmer, 1990), and Dewey suggested that the Y 

genome had an independent origin from a Y diploid species that is now extinct or 

undiscovered. Internal transcribed spacer (ITS) sequence data suggest that Y genome has 

gradually differentiated from the St genome, and they may share the same progenitor 
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genome (Lu and Liu, 2005; Liu et al., 2006). More recently, a random amplified 

polymorphic DNA (RAPD) based sequence tagged site (STS) study suggested one 

accession of Pseudoroegneria spicata (Pursh) Á Löve (St genome) as a potential Y 

genome donor candidate in tetraploid Elymus longearistatus (Boiss.) Tzvelev (StStYY) 

(Okito et al., 2009), which is consistent with the hypothesis based on the ITS. However, 

accumulating evidence from studies looking at single copy of nuclear genes, including the 

phosphoenolpyruvate carboxylase (PepC), β-amylase, the granule-bound starch synthase I 

(GBSSI), the second largest subunit of RNA polymerase II (RPB2) and the translation 

elongation factor G (EF-G), rejected the same origination hypothesis of the St and Y 

genome, and supported Dewey’s hypothesis (Mason-Gamer et al., 2005, 2010; Sun et al., 

2008, 2010).  

1.3. The molecular markers in phylogenetic study 

Over the last two decades, the introduction of molecular genetic markers has provided 

unprecedented insights into the origin of polyploid species. Although chloroplast DNA 

was thought to evolve slowly, moderate to high levels of genetic variation have been 

frequently detected in non-coding spacer regions even within species (Ohsako and 

Ohnishi, 2000; Huang et al., 2001; Chiang et al., 2001). The cpDNA trees remain 

important components of phylogenetic analyses of polyploids, which are suitable for 

investigating the origin of maternal lineage (Song et al., 2002; Guggisberg et al., 2006; 

Hodge et al., 2010; Ni et al., 2011).  
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The ITS region of nuclear DNA, as a member of a multigene family, is a classic 

marker of concerted evolution and has been widely used in some of early phylogenetic 

analyses (Buckler et al., 1997), recent studies suggest that ITS often fails as a marker in 

phylogenetic and hybrid speciation reconstructions because it may suffer from sequence 

homogenization due to concerted evolution (Wendel et al., 1995; Li and Zhang, 2002; 

Kovarik et al., 2005; Mahelka and Kopecky, 2010). In contrast to repeat sequences, single 

or low copy nuclear genes are supposed to undergo no extensive homogenization or even 

none at all (Mahelka and Kopecky, 2010), and provide higher resolution than ITS (Sang, 

2002), which makes them ideal candidates for phylogenetic study (Small et al., 2004; Sun 

and Salomon, 2009). 

1.4. The purpose of this study 

In order to explore genome evolutionary dynamics and the origin of tetraploid StY 

Elymus species, three tetraploid StY Elymus species (E. ciliaris, E. pendulinus and E. 

longearistatus, respectively) were analyzed in this study, together with diploid species 

from Pseudoroegneria (St) and other Triticeae diploid species. Single copy nuclear genes 

and chloroplast genes were used. The objectives of this study were to: (1) understand the 

possible maternal and paternal origin of these three tetraploid species; (2) explore the 

intra-species evolutionary dynamics of these three Elymus species; (3) confirm or refuse 

the hypothesis that St and Y share a common progenitor genome; (4) investigate the 

possible relationship between species sequence variation and their geographic regions.  
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2. Materials and Methods 

2.1. Plant materials and DNA extraction 

Thirteen accessions of E. ciliaris from China, Japan and the Russian Federation, 13 

accessions of E. pendulinus from southern borders of Altai, Eastern Siberia and the Far 

East of Russia, and eight accessions of E. longearistatus from Pakistan and Iran were 

used in this study (Tables 1, 2, 3). The seeds were kindly provided by the Germplasm 

Resources Information Network (GRIN) of the United States Department of Agriculture 

(USDA). DNA was extracted from fresh young leaf tissues from 5-10 plants of each 

accession using the method of Junghans and Metzlaff (1990). The sequences for some 

diploid Triticeae species representing the St, H, I, Xu, W, P, E, Ns, Ta, A, S, Xp, F, O, Q, 

K, R, and D genomes along with Bromus were obtained from published data (Sun et al., 

2008; Helfgott and Mason-Gamer, 2004), and included in the analyses. Plant materials 

with accession numbers, genomic constitutions, geographical origins, and GenBank 

identification numbers are presented in Table 1, 2 and 3. 

2.2. DNA amplification 

2.2.1. E. ciliaris 

The single copy nuclear genes including the second largest subunit of RNA polymerase II 

(RPB2), the phosphoglycerate kinase (PGK1) and cpDNA gene RPS16 sequences were 

amplified by polymerase chain reaction (PCR) using the primers P6F/P6FR (Sun et al., 

2007), PGKF1/PGKF2 (Huang et al., 2002), and RPS16F/RPS16R (Popp and Oxelman, 
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2007), respectively. The amplification profile for the RPB2 gene was as follows: an initial 

denaturation at 95 °C for 4 min; 35-40 cycles of 95 °C for 40 sec, 52 °C for 40 sec, 72 °C 

for 90 sec, and a final cycle of 72 °C for 10 min. The PCR profile for amplifying PGK1 

gene was based on Huang et al. (2002). The PCR protocol for RPS16F/R followed Popp 

and Oxelman (2007). 
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Table 1. Taxa from E. ciliaris, Bromus, Aegilops, Eremopyrum, Heteranthelium, Psathyrostachys, Secale, Taeniatherum, Agropyron, 

Australopyrum, Dasypyrum, Thinopyrum, Triticum, Pseudoroegneria and Hordeum used in this study 

 
Species Accession No. Genome* Origin RPB2 PGK1 RPS16 

Bromus catharticus Vahl CN 32048   HQ014410 - + 

Bromus inermis PI 618974  Xinjiang, China GQ848517 FJ711014 - 

Bromus sterilis PI 229595  Iran HQ231839 + + 

Aegilops bicornis  S
b
 The Middle East - AF343485 - 

Aegilops longissima Schweinf. & 

Muschl. 

 S
I
 The Middle East - AF343487 - 

 PI 542196 S
I
  - - + 

Aegilops searsii Feldman & Kislev  S
S
 The Middle East - AF343489 - 

 PI 599150 S
S
  - - + 

Aegilops sharonensis  S
sh

 The Middle East - AF343486 - 

Aegilops sharonensis Eig PI 542237 S
I
  - - + 

Aegilops speltoides Tausch.  S The Middle East - AF343491 - 

 PI 499261 S  - - + 

Aegilops tauschii Coss.  D The Middle East - AF343479 - 

 PI 486265 D  - - + 

Aegilops umbellulata Zhuk. PI 276994 U  - - + 

Aegilops uniaristata Vis. PI 554418 N  - - + 

Agropyron cristatum PI 277352 P Russian Federation - FJ711023 - 

 PI 486160 P Kazakstan - JF965622 - 

 PI 547347 P Urumqi, Xinjiang, China - JF965620 - 

 ZY 09088 P Dulan, Qinghai, China - JF965630 - 

Agropyron cristatum (L.) Gaertn. PI 383534 P Kars, Turkey EU187438 - - 

Agropyron fragile (Roth) P. Candargy 

  

PI 598674 P  - - + 

Agropyron monglicum Keng. PI 531543 P Inner Mongolia, China - JF965627 - 

 PI 598460 P  - - + 

Australopyrum retrofractum (Vickery) 

Á. Löve 

PI 533014 W New South Wales, Australia EU187482 - + 
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 PI 547363 W New South Wales, Australia EU187470 - + 

 PI 533013 W New South Wales, Australia - FJ711025 - 

Crithopsis delileana  K Greece - FJ711026 - 

Dasypyrum villosum (L.) P. Candargy PI 368886 V Gaziemir, Turkey EU187471 - - 

 PI 251478 V Turkey - FJ711027 - 

Eremopyrum bonaepartis (Spreng.) 

Nevski 

PI 203442 F  - - + 

Eremopyrum distans TA 2229 F Afghanistun - FJ711018 - 

 PI 193264 F  - - + 

Eremopyrum orientale (L.) Jaub. & 

Spach 
PI 203440 F  - - + 

Eremopyrum triticeum Y 206 F Xinjiang, China - FJ711028 - 

Henrardia persica PI 401349 O Turkey - FJ711029 - 

Henrardia persica (Boiss.) C.E. Hubb. PI 577112 Q  - - + 

Heteranthelium piliferum (Banks & 

Sol.) Hochst. 
PI 401351 Q Iran - FJ711030 - 

 PI 401354 Q  - - + 

Hordeum bogdanii PI 531761 H Xinjiang, China - FJ711020 - 

H.bogdanii Wilensky PI 499498 H Inner Mongolia, China EF596768 - - 

 H7476 H  - - + 

H. chilense Roem. and Schult. PI 531781 H Chile - FJ711017 - 

 H1819 H  - - + 

 H 1816 H Chile + - - 

H.marinum Huds. ssp. marinum H 121 Xa Greece + - - 

H.murinum L. ssp. glaucum (Steud.) 

Tzvel. 

H 74 Xu Egypt + - - 

H. vulgare Betzes I The Middle East - AF343494 - 

H. vulgare ssp. vulgare H 7514A I China + - - 

Lophopyrum elongatum PI 531719 E
e
 St. Angulf, France - FJ711035 - 

Peridictyon sanctum H 3841 Xp Greece - FJ711037 - 

Psathyrostachys fragilis Y 882 Ns Iran - FJ711016 - 

Psathyrostachys juncea (Fischer) PI 406469 Ns Former Soviet Union + - + 
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Nevski 

 PI 222050 Ns Afghanistun - FJ711031 - 

Pseudoroegneria ferganensis Drobow H 10248 St  - - + 

P. geniculata (Trin.) Á. Löve PI 632554 St  - - + 

P. libanotica (Hack.) D. R. Dewey PI 330688 St Sirak-Sar, Iran EF596751 - + 

 PI 228389 St Iran HQ231837 - - 

 PI 228390 St Iran HQ231838 - - 

 PI 228392 St Iran - FJ711032 - 

P. spicata (Pursh) Á. Löve PI 506274 St Washington, United States EF596746 - + 

 PI 610986 St Utah, United States EF596747 - - 

 PI 232128 St Idaho, United States HQ231840 - - 

 PI 563869 St Oregon, United States HQ231856 - - 

 PI 563872 St Montana, United States HQ231857 - - 

 PI 619445 St Nevada, United States HQ231859 - - 

 PI 232123 St Washington, USA - FJ711015 - 

P. stipifolia (Czern. ex Nevski) Á. Löve PI 325181 St Stavropol, Russian 

Federation 

EF596748 - + 

 PI 440095 St Russian Federation + - - 

 PI 440095 St Yankulskaya, Russian - FJ711033 - 

P. strigosa PI 531752 St Estonia  HQ231850 - - 

 W6 14049 St Russian Federation HQ231836 - - 

 PI 499637 St Xinjiang, China - FJ711034 - 

P. strigosa subsp. aegilopoides W6 13089 St Xinjiang, China HQ231835 - - 

 PI 420842 St Former Soviet Union HQ231846 - + 

 PI 440000 St Stavro, Russian Federation HQ231847 - - 

P. tauri PI 401324 St Iran HQ231844 - - 

 PI 401326 St Iran HQ231845 - - 

Secale cereale L. Imperial R The Middle East - AF343493 - 

 PI 573710 R  - - + 

Taeniatherum caput-medusae PI 220591 Ta Afghanistan - FJ711021 - 

 PI 208075 Ta  - - + 

Ta. caput-medusae ssp. asperum PI 561091 Ta  - - + 
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melderis 

Ta. caput-medusae subsp. asperum PI561091 Ta Siirt, Turkey + - - 

Ta. caput-medusae subsp. 

caput-medusae 

PI 208075 Ta Kars, Turkey + - - 

 PI 220591 Ta Afghanistan + - - 

 PI 222048 Ta Afghanistan + - - 

 PI 222048 Ta  - - + 

Thinopyrum bessarabicum (Savul. & 

Rayss) Á. Löve 

PI 531712 E
b
 Estonia EU187474 - - 

Thinopyrum elongatum (Host) D.R. 

Dewey 

PI 142012 E
e
 Odessa, Russian Federation EU187439 - - 

Triticum monococcum TA 2025 A
M

 The Middle East - FJ711022 - 

 PI 191146 A
M

  - - + 

Triticum urartu TA 763 A Lebanon - AF343474 - 

       

Elymus ciliaris (Trin.) Tzvelev BKA-0931 StY Siberian Botanical Garden, 

Novosibirsk 

St, Y St, Y + 

 BKA-0939 StY Siberian Botanical Garden, 

Novosibirsk 

St, Y St, Y + 

 PI 377532 StY Japan Y, ? Y, ? + 

 PI 531574 StY China St, Y St, Y + 

 PI 531575 StY China St, Y St, Y + 

 PI 531576 StY Estonia St, Y St, Y + 

 PI 531577 StY Japan St, Y St, Y + 

 PI 564917 StY Vladivostock, Soviet Far 

East 

St, Y St, Y + 

 VBG-0844 StY Siberian Botanical Garden, 

Novosibirsk 

St, Y St, Y + 

 W6 14463 StY Unknown St, Y St, Y + 

 PI 547303 StY Near Hasan, far east 

Primorsky region 

St, Y St, Y + 

 W6 10267 StY Siberian Botanical Garden, St, Y St, Y + 
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Novosibirsk 

Elymus ciliaris (Trin.) Tzvelev PI 632544 StY China St, Y St, Y + 

 Pr87-88-337 StY  GQ867851 

GQ867851 

- - 

*Note: The genome designations are according to Wang et al. (1994). +, the sequence data has been recovered; -, the sequence data does not be 

recovered.
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2.2.2. E. pendulinus 

The low copy nuclear genes RPB2 and phosphoenolpyruvate carboxylase (PepC), and 

cpDNA genes RPS16, and non-coding chloroplast DNA region TrnD/T were amplified 

using the primers P6F/P6FR (Sun et al., 2007), PEPC-F and PEPC-R (Helfgott and 

Mason-Gamer 2004), RPS16F/RPS16R (Popp and Oxelman 2007), and TrnD and TrnT 

(Sun, 2002), respectively. The amplification profile for the RPB2 and RPS16 genes were 

the same as 2.2.1. E. ciliaris. The PCR profile for amplifying PepC gene was based on 

Helfgott and Mason-Gamer (2004). The PCR protocol for TrnD/T followed Sun (2002).
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Table 2. Taxa from E. pendulinus, Bromus, Aegilops, Eremopyrum, Heteranthelium, Psathyrostachys, Secale, Taeniatherum, 

Agropyron, Australopyrum, Dasypyrum, Thinopyrum, Triticum, Pseudoroegneria, and Hordeum used in this study  
 
Species Accession No. Genome* Origin RPB2 PepC RPS16 TrnD/T 

Bromus catharticus Vahl CN 32048   HQ014410 - - - 
Bromus sterilis PI 229595  Iran HQ231839 - - + 

B. tectorum Kellogg s.n.   - AY553239 - - 

Aegilops comosa Sibth. and Smith G602 M  - AY553236 - - 
Aegilops comosa Sibth. and Smith PI 551032 M  - - + + 

Aegilops longissima Schweinf. & Muschl. PI 542196 SI  - - + + 

Aegilops searsii Feldman & Kislev PI 599150 SS  - - + - 
Aegilops sharonensis Eig PI 542237 SI  - - + + 

Aegilops speltoides Tausch. PI 499261 S  - - + + 

Aegilops tauschii Coss. PI 486265 D  - - + - 
Aegilops umbellulata Zhuk. PI 276994 U  - - + - 

Aegilops uniaristata Vis. PI 276996 N Istanbul, Turkey + - - - 

Aegilops uniaristata Vis. PI 554418 N Former Soviet Union + - + - 
Agropyron cristatum (L.) Gaertn. PI 383534 P Kars, Turkey EU187438 - - - 

Agropyron fragile (Roth) P. Candargy   PI 598674 P  - - + + 

Agropyron fragile (Roth) P. Candargy PI 598694 P Kazakhstan + - - - 
Agropyron mongolicum Keng. PI 598460 P China + - + + 

Aust. retrofractum (Vickery) Á. Löve  PI 531553 W Austr. Capital, Australia - - - + 

Australopyrum retrofractum (Vickery) Á. Löve PI 533013 W New South Wales, Australia - - - + 
Australopyrum retrofractum (Vickery) Á. Löve PI 533014 W New South Wales, Australia EU187482 - + + 

Australopyrum retrofractum (Vickery) Á. Löve PI 547363 W New South Wales, Australia EU187470 - + + 
Eremopyrum bonaepartis (Spreng.) Nevski PI 203442 F Ankara + - + + 

Eremopyrum bonaepartis (Spreng.) Nevski PI 219966 F Girishk + - - - 

Eremopyrum distans PI 193264 F  - - + - 

Eremopyrum orientale (L.) Jaub. & Spach PI 203440 F  - AY553254 - + 

Eremopyrum orientale (L.) Jaub. & Spach PI 203440 F  - - + - 

H. bogdanii PI 531760 H  - EU282293 - - 
H. bogdanii Wilensky H4014 H Pakistan + - - - 

H. bogdanii Wilensky H7476 H  - - + - 

H. bogdanii Wilensky PI 499498 H Inner Mongolia, China EF596768 - - - 
H. bogdanii Wilensky PI 499645 H Xinjiang, China EU18747 - - - 

H. bogdanii Wilensky  PI 531762 H Tajikistan - - - + 

H. brachyantherum Nevski ssp. californicum (Covas and 
Stebbins) Bothm. et al 

H 3317    H U. S. A.  + - - - 

H. bulbosum L. H 3878 I Italy + - - - 

H. bulbosum L. PI 440417 I  - EU282294,EU282295, 

EU282296 

- - 
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H. chilense Roem. and Schult. H 1816 H Chile + EU282297 - - 

H. chilense Roem. and Schult. H1819 H  - - + - 

H. comosum Presl. H 1181 H Argentina + - - - 
H. cordobense Bothmer, Jacobsen and Nicora H 6460  H Argentina + - - - 

H. flexuosum Steud. H 2127 H Uruguay + - - - 

H. marinum PI 304347 Xa  - EU282298 - - 

H. marinum Huds. PI 304346 Xa  - AY553258 - - 

H. marinum Huds. ssp. gussoneanum (Parl.)Thell. H 581 Xa Greece + - - - 

H. marinum Huds. ssp. marinum H 121 Xa Greece + - - - 
H. murinum CIho 15683 Xu  - AY553259 - - 

H. murinum L. PI 247054 Xu  - EU282299, EU282300 - - 

H. patagonicum (Haumann) Covas ssp. magellanicum 
(Parodi and Nicora) Bothm. et al. 

H 1342  H Argentina + - - - 

H. patagonicum (Haumann) Covas ssp. mustersii (Nicora) 
Bothm. et al. 

H 1358 H Argentina + - - - 

H. patagonicum (Haumann) Covas ssp. patagonicum H 6052 H Argentina + - - - 

H. patagonicum (Haumann) Covas ssp. santacrucense 
(Parodi and Nicora) Bothm. et al. 

H 1353 H Argentina + - - - 

H. patagonicum (Haumann) Covas ssp. setifolium (Parodi 

and Nicora) Bothm. et al. 

H 1352 H Argentina + - - - 

H. pubiflorum Hook. f. H 1236  H Argentina + - - - 

H. pusillum Nutt. CIho 15684 H  - EU282301 - - 

H. roshevitzii Bowden  H 10070 H  - - - + 
H. roshevitzii Bowden  H 7754 H  - - - + 

H. roshevitzii Bowden H9152 H China + - - - 

H. stenostachys Godr. H 1780 H Argentina + - - - 
H. stenostachys Godr.  H 6439 H Argentina + - - + 

H. stenostachys Godr. PI 531791 H  - EU282302 - - 

H. vulgare RJMG 107 I  - AY553260 - - 
H. vulgare ssp. spontaneous (K.Koch) Thell H 3140A I Cyprus + - - - 

H. vulgare ssp. vulgare H 7514A I China + - - - 

Henrardia persica (Boiss.) C.E. Hubb. PI 577112 Q  - - + - 
Heteranthelium piliferum (Banks & Sol.) Hochst. PI 401351 Q Iran + - - - 

Heteranthelium piliferum (Banks & Sol.) Hochst. PI 401354 Q Iran + AY553255 + - 

Pseudoroegneria ferganensis Drobow H 10248 St  - - + - 
P. geniculata (Trin.) Á. Löve PI 632554 St  - - + - 

P. libanotica (Hack.) D. R. Dewey PI 228389 St Iran HQ231837 - - + 

P. libanotica (Hack.) D. R. Dewey PI 228390 St Iran HQ231838 - - + 
P. libanotica (Hack.) D. R. Dewey PI 228391 St  - EU282304 - - 

P. libanotica (Hack.) D. R. Dewey PI 282392 St  - EU282305  - - 

P. libanotica (Hack.) D. R. Dewey  PI 330687 St Kandavan Pass, Iran EF596753 - - - 
P. libanotica (Hack.) D. R. Dewey PI 330688 St Sirak-Sar, Iran EF596751 - + + 

P. libanotica (Hack.) D. R. Dewey PI 401274 St Saqqez, Iran EF596752  - - - 
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P. spicata (Pursh) Á. Löve D 2844  St  - AY553264 - - 

P. spicata (Pursh) Á. Löve PI 232128 St Idaho, United States HQ231840 - - + 

P. spicata (Pursh) Á. Löve PI 232134 St Whoming, United States HQ231841 - - - 
P. spicata (Pursh) Á. Löve PI 232140 St U. S. A. - - - + 

P. spicata (Pursh) Á. Löve PI 236669 St British Columbia, Canada HQ231842  - - - 

P. spicata (Pursh) Á. Löve PI 286198 St Washington, United States HQ231843 - - - 

P. spicata (Pursh) Á. Löve PI 506274 St Washington, United States EF596746 - + - 

P. spicata (Pursh) Á. Löve PI 516184 St Oregon, United States HQ231848 - - - 

P. spicata (Pursh) Á. Löve PI 537379 St Oregon, United States HQ231851 - - - 
P. spicata (Pursh) Á. Löve PI 537389 St Washington, United States HQ231852 - - - 

P. spicata (Pursh) Á. Löve PI 539873 St Idaho, United States HQ231853 - - - 

P. spicata (Pursh) Á. Löve PI 547154 St Idaho, United States  HQ231854 - - - 
P. spicata (Pursh) Á. Löve PI 547162 St Oregon, United States  HQ231855 - - - 

P. spicata (Pursh) Á. Löve PI 563869 St Oregon, United States HQ231856 - - + 
P. spicata (Pursh) Á. Löve PI 563872 St Montana, United States HQ231857 - - + 

P. spicata (Pursh) Á. Löve PI 598818 St Oregon, United States - - - + 

P. spicata (Pursh) Á. Löve PI 598822 St Colorado, United States HQ231858 - - + 
P. spicata (Pursh) Á. Löve PI 610986 St Utah, United States EF596747 AY553263 - - 

P. spicata (Pursh) Á. Löve PI 619445 St Nevada, United States HQ231859 - - + 

P. stipifolia PI 531751 St  - EU282307, EU282308 - - 
P. stipifolia (Czern. ex Nevski) Á. Löve PI 313960 St  - EU282306 - - 

P. stipifolia (Czern. ex Nevski) Á. Löve PI 325181 St Stavropol, Russian Federation EF596748 - + + 

P. stipifolia (Czern. ex Nevski) Á. Löve PI 440095 St Russian Federation + - - - 
P. strigosa PI 531752 St Estonia  HQ231850 - - + 

P. strigosa W6 14049 St Russian Federation HQ231836 - - + 

P. strigosa (M.Bieb.) Á. Löve  PI 499637 St  - EU282309, EU282310 - - 
P. strigosa subsp. aegilopoides PI 420842 St Former Soviet Union HQ231846 - + + 

P. strigosa subsp. aegilopoides PI 440000 St Stavro, Russian Federation HQ231847 - - + 

P. strigosa subsp. aegilopoides W6 13089 St Xinjiang, China HQ231835 - - + 
P. strigosa subsp. aegilopoides (Drobow) Á. Löve PI 531755 St  - EU282311 - - 

P. tauri PI 380644 St  - EU282314, EU282315 - - 

P. tauri PI 401319 St  - EU282313 - - 
P. tauri PI 401324 St Iran HQ231844 - - + 

P. tauri PI 401326 St Iran HQ231845 - - + 

P. tauri PI 401330 St Toward Ahar, Iran - - + - 
P. tauri (Boiss. & Balansa) Á. Löve PI 380652 St  - EU282312 - - 

Psathyrostachys juncea (Fischer) Nevski PI 406469 Ns Former Soviet Union + - + + 

Psathyrostachys juncea (Fischer) Nevski PI 430871 Ns Former Soviet Union + - - - 
Secale cereale L. Kellogg s.n. R  - AY553266 - - 

Secale cereale L. PI 573710 R  - - + + 

Ta. caput-medusae RJMG 189 Ta  - AY553268 - - 
Ta. caput-medusae subsp. asperum PI561091 Ta Siirt, Turkey + - + - 

Ta. caput-medusae subsp. caput-medusae PI 208075 Ta Kars, Turkey + - + - 
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Ta. caput-medusae subsp. caput-medusae PI 220591 Ta Afghanistan + - - - 

Ta. caput-medusae subsp. caput-medusae PI 222048 Ta Afghanistan + - + - 

Thinopyrum bessarabicum (Savul. & Rayss) Á. Löve PI 531712 Eb Estonia EU187474 - - - 
Thinopyrum elongatum (Host) D.R. Dewey PI 142012 Ee Odessa, Russian Federation EU187439 - + + 

Thinopyrum elongatum (Host) D.R. Dewey RJMG 113 Ee  - AY553269 - - 

Triticum monococcum PI 191146 AM  - - + - 

Triticum monococcum L.  AM  - AJ007705 - - 

E. abolinii (Drobow) Tzvelev PI531555 StY  - GQ844927, 

GQ844928 

- - 

E. abolinii (Drobow) Tzvelev PI 531554 StY Xinjiang, China EU187443, EU18744 - - - 

E. antiques (Nevski) Tzvelev PI632564 StY  - GQ844931, 

GQ844932 

- - 

E. caucasicus (Koch) Tzvelev PI 531573 StY Estonia EU187454, EU187453 GQ844940, 

GQ844941 

- - 

E. ciliaris (Trin.) Tzvelev PI531575 StY  - GQ844942, 

GQ844943 

- - 

E. ciliaris (Trin.) Tzvelev PI 564917 StY Vladivostock, Soviet Far East EF596749 , EU187483 - - - 
E. longearistatus (Boiss.) Tzvelev PI401277 StY  - GQ844950, 

GQ844951 

- - 

E. longearistatus (Boiss.) Tzvelev PI 401280 StY North of Tehran, Iran  EU187447, EU187448 - - - 
E. nevskii Tzvelev PI314620 StY  - GQ844952, 

GQ844953 

- - 

E. semicostatus (Nees ex Steud.) Melderis PI271522 StY  - GQ844956, 
GQ844957 

- - 

E. semicostatus (Nees ex Steud.) Melderis PI 207452 StY Afghanistan EU187445, EU187446 - - - 

E. pendulinus (Nevski) Tzvelev PI499452 StY  - GQ844954, 
GQ844955 

- - 

 BKA 0921 StY  Y, ? St1, St2, Y + + 

 VOK 0728 StY  St, Y Y + + 
 VBG 0727 StY  St, Y, ? ?, ? + + 

 VOK 0724 StY  St, Y St, Y + + 

 VBG 0722 StY  St, Y, ? St, Y + + 
 MES 0721 StY  St, Y, ? St, Y + + 

 USS 0720 StY  St St, Y + + 

 VLA 0719 StY  St, Y St, Y, ? + + 
 VLA 0718 StY  Y St, Y + + 

 RUS 0716 StY  St, Y St, Y + + 

 ZAR 0715 StY  St, Y St, Y + + 
 ZAR 0714 StY  St, Y, ? St, Y, ? + + 

 AND 0713 StY  St, ?, ? St, Y, ? + + 

*Note: The genome designations are according to Wang et al. (1994). +, the sequence data has been recovered; -, the sequence data does not be 

recovered. 
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2.2.3. E. longearistatus 

Two single copy nuclear genes: the translation elongation factor G (EF-G) closely 

linked to the VRS1 locus and the thioreoxin-like gene (HTL); along with two 

chloroplast DNA sequences: RPS16 and TrnD/T were amplified. The EF-G, HTL, 

RPS16 and TrnD/T sequences were amplified using the primers of cMWG699T3-2 

and cMWG699T7-2 (Komatsuda et al., 1999), trxF/R (Kakeda et al., 2008), 

RPS16F/R (Popp and Oxelman, 2007), and TrnD/T (Sun, 2002), respectively. The 

amplification profile for EF-G was based on Yan and Sun (2011), and the protocols 

for the other three genes followed Sun (2002), Popp and Oxelman (2007) and Kakeda 

et al. (2008).
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Table 3. Taxa from E. longearistatus, Bromus, Aegilops, Eremopyrum, Heteranthelium, Psathyrostachys, Secale, Taeniatherum, 

Agropyron, Australopyrum, Thinopyrum, Triticum, Pseudoroegneria, and Hordeum used in this study  
 

Species Accession No. Genome* Origin EF-G HTL RPS16 TrnD/T 

Bromus catharticus Vahl CN 32048   - - + - 

Bromus sterilis PI 229595  Iran - - - + 

B. sterilis                                                          55777   AY836187 - - - 
Aegilops comosa Sibth. and Smith PI 551032 M  - - + + 

Aegilops longissima Schweinf. & Muschl. PI 542196 SI  - - + + 

Aegilops searsii Feldman & Kislev PI 599150 SS  - - + - 
Aegilops sharonensis Eig PI 542237 SI  - - + + 

Aegilops speltoides Tausch. PI 499261 S  - - + + 

Aegilops tauschii Coss. PI 486265 D  - - + - 
Aegilops umbellulata Zhuk.  PI 542378 U Turkey - + - - 

Aegilops umbellulata Zhuk. PI 276994 U  - - + - 

Aegilops uniaristata Vis. PI 276996 N Istanbul, Turkey - + - - 

Aegilops uniaristata Vis. PI 554418 N Former Soviet Union - + + - 

Agropyron cristatum (L.) Gaertn. PI 383534 P Kars, Turkey GU982325 - - - 

Agropyron fragile (Roth) P. Candargy   PI 598674 P  - - + + 
Agropyron mongolicum Keng. PI 598460 P China - - + + 

Australopyrum retrofractum (Vickery) Á. Löve  PI 531553 W Austr. Capital, Australia - - - + 

Aust. retrofractum (Vickery) Á. Löve PI 533013 W New South Wales, Australia - - - + 
Aust. retrofractum (Vickery) Á. Löve PI 533014 W New South Wales, Australia GU982345 - + + 

Aust. retrofractum (Vickery) Á. Löve PI 547363 W New South Wales, Australia GU982347 - + + 

Eremopyrum bonaepartis (Spreng.) Nevski PI 203442 F Ankara - - + + 
Eremopyrum distans PI 193264 F  - - + - 

Eremopyrum orientale (L.) Jaub. & Spach PI 203440 F  - - - + 
Eremopyrum orientale (L.) Jaub. & Spach PI 203440 F  - - + - 

Hordeum bogdanii Wilensky H7476 H  - - + - 

H. bogdanii Wilensky PI 499498 H Inner Mongolia, China GU982334 - - - 
H. bogdanii Wilensky PI 499645 H Xinjiang, China GU982335 - - - 

H. bogdanii Wilensky  PI 531762 H Tajikistan - - - + 

H. chilense Roem. and Schult. H1819 H  - - + - 
H. roshevitzii Bowden  H 10070 H  - - - + 

H. roshevitzii Bowden  H 7754 H  - - - + 

H. stenostachys Godr.  H 6439 H Argentina - - - + 
Henrardia persica (Boiss.) C.E. Hubb. PI 577112 Q  - - + - 

Heteranthelium piliferum (Banks & Sol.) Hochst. PI 401351 Q Iran - + - - 

Heteranthelium piliferum (Banks & Sol.) Hochst. PI 401354 Q Iran - + + - 
Pseudoroegneria ferganensis Drobow H 10248 St Gissar mtns, Tadzhikistan GU982369 - + - 

P. geniculata (Trin.) Á. Löve PI 632554 St  - - + - 
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P. libanotica (Hack.) D. R. Dewey PI 228389 St Iran - - - + 

P. libanotica (Hack.) D. R. Dewey PI 228390 St Iran HQ231862 + - + 
P. libanotica (Hack.) D. R. Dewey PI 330688 St Sirak-Sar, Iran HQ231866 + + + 

P. spicata (Pursh) Á. Löve PI 232128 St Idaho, United States HQ231863 + - + 

P. spicata (Pursh) Á. Löve PI 232140 St U. S. A. - - - + 
P. spicata (Pursh) Á. Löve PI 506274 St Washington, United States GU982338 - + - 

P. spicata (Pursh) Á. Löve PI 563869 St Oregon, United States - - - + 

P. spicata (Pursh) Á. Löve PI 563872 St Montana, United States - - - + 
P. spicata (Pursh) Á. Löve PI 598818 St Oregon, United States - - - + 

P. spicata (Pursh) Á. Löve PI 598822 St Colorado, United States - - - + 

P. spicata (Pursh) Á. Löve PI 619445 St Nevada, United States - - - + 
P. stipifolia (Czern. ex Nevski) Á. Löve PI 325181 St Stavropol, Russian Federation GU982324 + + + 

P. strigosa PI 531752 St Estonia  - - - + 

P. strigosa W6 14049 St Russian Federation HQ231861 + - + 
P. strigosa subsp. aegilopoides PI 420842 St Former Soviet Union GU982329 + + + 

P. strigosa subsp. aegilopoides PI 440000 St Stavro, Russian Federation HQ231867 + - + 

P. strigosa subsp. aegilopoides W6 13089 St Xinjiang, China - - - + 
P. tauri PI 401324 St Iran - + - + 

P. tauri PI 401326 St Iran - + - + 

P. tauri PI 401330 St Toward Ahar, Iran GU982328 - + - 
Psathyrostachys juncea (Fischer) Nevski PI 406469 Ns Former Soviet Union - - + + 

Psathyrostachys juncea (Fischer) Nevski H10108 Ns Russia - AB509256 - - 

Secale cereale L. PI 573710 R  - - + + 

Ta. caput-medusae subsp. asperum PI561091 Ta Siirt, Turkey - - + - 
Ta. caput-medusae subsp. caput-medusae PI 208075 Ta Kars, Turkey - - + - 

Ta. caput-medusae subsp. caput-medusae PI 222048 Ta Afghanistan - - + - 

Thinopyrum bessarabicum (Savul. & Rayss) Á. Löve PI 531712 Eb Estonia GU982344 - - - 
Triticum monococcum PI 191146 AM  - - + - 

E. abolinii (Drobow) Tzvelev PI 531554 StY Xinjiang, China GU982339, 
GU982340 

- - - 

E. caucasicus (Koch) Tzvelev PI 531573 StY Estonia GU982342, 

GU982343 

- - - 

E. semicostatus (Nees ex Steud.) Melderis PI 207452 StY Afghanistan GU982318, 

GU982319 

- - - 

E. gmelinii (Ledeb.) Tzvelev PI 610898 StY Xinjiang, China GU982352, 
GU982353 

- - - 

E. strictus (Keng) Á. Löve PI 499476 StY Lanzhou, China GU982330, 

GU982331 

- - - 

E. antiquus (Nevski) Tzvelev PI 619528 StY Sichuan, China GU982355, 

GU982356 

- - - 

E. longearistatus (Boiss.) Tzvelev PI 401276 StY Iran St, Y St, Y + + 
 PI 401277 StY Iran St, Y St, Y + + 



 

 
23 

 

E. longearistatus (Boiss.) Tzvelev PI 401278 StY Iran St, Y St, Y + + 

 PI 401279 StY Iran St, Y St, Y + + 
 PI 401280 StY Iran St, Y St, Y + + 

 PI 401282 StY Iran St, Y St, Y + + 

 PI 401283 StY Iran St, Y St, Y + + 
 PI 564942 StY Pakistan St, Y St, Y + + 

*Note: The genome designations are according to Wang et al. (1994). +, the sequence data has been recovered; -, the sequence data does not be 

recovered. 
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2.3. Cloning and sequencing 

The PCR products for the nuclear genes were cloned into the pGEM-easy T vector 

(Promega Corporation, Madison, WI, USA) according to the manufacturer’s instructions. 

The resulting plasmids were used to transform Escherichia coli DH5α, and at least 20 

colonies for each accession were randomly selected for screening. Each colony was 

transferred to 10 μL of LB broth with 0.1 mg/ml ampicillin. The solutions were incubated 

at 37°C for 30 min before using 2 μL for PCR to check the presence of an insert using the 

same primers that were used for the original PCR amplification. For the solutions that 

were confirmed to contain the insert, the remaining 8 μL of solution was transferred to 5 

mL LB broth and incubated at 37°C overnight. Plasmid DNA was isolated using Promega 

Wizard ® Plus Minipreps DNA Purification System (Promega Corporation, Madison, WI, 

USA) according to manufacturer’s instructions.  

The PCR products amplified by cpDNA primers RPS16F/R and TrnD/T were 

purified and then directly sequenced. Both the PCR products and plasmid DNAs were 

commercially sequenced by either MACROGEN (Seoul, Korea) or Taihe Biotechnology 

(Beijing, China). Both forward and reverse strands of PCR products or plasmid DNAs 

were sequenced independently to enhance the sequence quality. Since Taq errors that 

cause substitutions are mainly random and it is unlikely that any two sequences would 

share identical Taq errors to create a false synapomorphy, each PCR product amplified by 

cpDNA primer was independently amplified twice and sequenced to avoid any error 

which would be caused by Taq DNA polymerase during PCR amplification. 
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2.4. Data analysis 

Automated sequence outputs were visually inspected with chromatographs. Multiple 

sequence alignments were made using ClustalX using default parameters and adjusted 

manually to minimize gaps (Thompson et al., 1997). Phylogenetic analysis using the 

maximum-parsimony (MP) method was performed with the computer program PAUP* 

ver. 4 beta 10 (Swofford, 2003). All characters were specified as unweighted and 

unordered, and gap-only columns were excluded in the analyses. The most parsimonious 

trees were constructed by performing a heuristic search using the Tree 

Bisection-Reconnection (TBR) with the following parameters: MulTrees on and ten 

replications of random addition sequences with the stepwise addition option. Multiple 

parsimonious trees were combined to form a strict consensus tree. Overall character 

congruence was estimated by the consistency index (CI), and the retention index (RI). To 

test the robustness of clades, bootstrap values with 1,000 replications (Felsenstein, 1985) 

were calculated by performing a heuristic search using the TBR option with Multree on. 

In addition to MP analysis, maximum-likelihood (ML) and Bayesian analyses were 

also performed in the study of E. ciliaris and E. longearistatus. Because of huge amount 

of sequence data (greater than 100 sequence), the Bayesian analysis was not suitable for 

the analysis of E. pendulinus. For ML analysis, eight nested models of sequence evolution 

were tested for each data set using PhyML 3.0 (Guindon and Gascuel, 2003). For each 

data set, the general time-reversible (GTR) (Lanave et al., 1984) substitution model led to 

the largest ML score compared to the other 7 substitution models: JC69 (Jukes and Cantor, 

1969), K80 (Kimura, 1980), F81 (Felsenstein, 1981), F84 (Felsenstein, 1993), HKY85 
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(Hasegawa et al., 1985), TN93 (Tamura and Nei, 1993) and custom (data not shown). For 

ML, the support of clades was assessed with the approximate likelihood ratio test method 

(aLRT), which is an alternative to the bootstrap method for evaluating tree reliability 

(Anisimova and Gascuel, 2006).  

As the result, the GTR model was used in the Bayesian analysis using MrBayes 3.1 

(Ronquist and Huelsenbeck, 2005). MrBayes 3.1 was run with the program’s standard 

setting of two analyses in parallel, each with four chains, and estimates of convergence of 

results by calculating standard deviation of split frequencies between analyses. In order to 

make the standard deviation of split frequencies fall below 0.01, so that the occurrence of 

convergence could be certain. Samples were taken every 1000 generations under the GTR 

model with gamma-distributed rate variation across sites and a proportion of invariable 

sites. For all analyses, the first 25% of samples from each run were discarded as burn-in 

to ensure the stationary of the chains. Bayesian posterior probability (PP) values were 

obtained from a majority rule consensus tree generated from the remaining sampled trees. 

3. Results 

3.1. E. ciliaris 

3.1.1. Sequence variation 

The amplified patterns from 13 accessions of tetraploid E. ciliaris species showed a single 

band for each gene, RPB2, PGK1, and RPS16, with size of approximately 1000bp, 

1400bp and 900bp, respectively, which corresponded well with previous findings (Sun, 
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2002; Fan et al., 2012; Hodge et al., 2010). Sequence comparison of cloned PCR 

fragments identified two distinct copies each for RPB2 and PGK1 genes from all E. 

ciliaris accessions analyzed. The amplified regions of RPB2 are ~1,000 bp long in the all 

St genome except a sequence from accession PI 377532, where it is approximately 900 bp 

in length (named St?).  

Extensive sequence variation was detected among E. ciliaris for each gene, with the 

variability of the RPB2 sequences being the highest. RPB2 sequence alignment showed 

three large transposable-like element insertion/ deletions. This corresponded well with 

previous findings (Sun et al., 2007, 2008). The first indel occurred at position 233, with H 

and St? genomes having a deletion compared to the St and Y genome in this region (Fig. 

1). All sequences from E. ciliaris St genome have a 43 bp insertion at position 268 

compared to the sequences from H, Y and St? genomes. A third insertion of about 29-31bp 

occurred in the sequences from all E. ciliaris St and Y genomes except for the St? and H 

genome. 
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Figure 1. Partial alignment of the amplified sequences of RPB2 from E. ciliaris and 

Hordeum species. Note that except St1 genome sequence, sequences from St?, and H have 

the deletions at three indels, the Y genome sequence has a deletion at the second indel as 

well. All the St1 and Y sequences are the same in these two alignment regions. 
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3.1.2. Phylogenetic analyses of RPB2 sequences 

MP analysis using Bromus sterilis, B. inermis and B. cathartharticus as the outgroup was 

conducted (304 parsimony-informative characters, 1189 equally most parsimonious trees, 

CI = 0.639; RI = 0.826). The separated Bayesian analyses using the GTR model resulted 

in identical trees with mean log-likelihood values -7235.30 and -7255.86 (data not shown). 

The tree topologies were almost identical in both ML and Bayesian trees and were similar 

to those generated by MP. Strict consensus trees with bootstrap (1000 replicates) values 

and Bayesian PP are shown in Figure 2. 

The phylogenetic tree showed three different clades. The sequences from Hordeum 

species (H, Xa, I and Xu genomes) were grouped into a clade (BS = 69%, PP = 1.00). As 

expected, two distinct copies of sequences obtained from each tetraploid E. ciliaris 

accessions of StStYY genomes that were amplified and sequenced were well separated 

into two different clades, one in the St genome (Pseudoroegneria) clade and the other in 

the Y genome clade  (BS = 80%, PP = 0.92). However, one sequence from the accession 

PI 377532 of E. ciliaris (St?) was grouped with the Hordeum species. All E. ciliaris St 

sequences were grouped together into a subclade (BS = 63%, PP = 0.98), which was 

nested within the Pseudoroegneria species St genome clade. The St sequences from 

accession PI 531577, W6 10267, VBG-0844 and PI 531574 are closer to each other than 

the St sequences from other E. ciliaris accessions and formed a weakly supported group 

(BS=64%, PP=1.00). The sequence from accession PI 531575 is distinct from the St 
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sequences from other accessions of E. ciliaris. The Y-genome sequences formed a 

polytomous clades. 
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Figure 2. Strict consensus trees derived from RPB2 sequence data was conducted using 

heuristic search with TBR branch swapping. Numbers above and below branches are 

bootstrap values and Bayesian posterior probability (PP) values, respectively. Bromus 

sterilis, Bromus inermis, and Bromus cathartharticu were used an outgroups. Consistency 

index (CI) = 0.639, retention index (RI) = 0.826, rescale consistency index (RCI) = 0.528. 
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3.1.3. Phylogenetic analyses of PGK1 sequences 

Thirteen accessions of E. ciliaris were analyzed using the PGK1 gene. Two distinct 

copies of sequences were detected for each accession of E. ciliaris studied. Phylogenetic 

analysis of the 60 sequences was performed using B. sterilis and B. inermis as outgroups. 

The data matrix contained 1403 characters, of which 957 were constant, 222 were 

parsimony uninformative, and 224 were parsimony informative. Heuristic searches 

resulted in 827 most parsimonious trees with a CI (excluding uninformative characters) = 

0.642 and RI = 0.806. The Bayesian analyses using the GTR model results in identical 

trees with mean log-likelihood values -7140.45 and -7163.61 (data not shown). The tree 

topologies generated by ML, MP and Bayesian analyses were similar to each other. The 

strict consensus tree with BS and PP values is shown in Figure 3.  

Two copies of sequences from each accession of tetraploid E. ciliaris were separated 

into two different clades, one into the Y genome clade and the other into the St genome 

clade, except for one copy of sequence from accessions PI 377532 (St? copy). The 

St-genomic sequences from tetraploid E. ciliaris were grouped together with St genome 

sequences from Pseudoroegneria species with a 97% bootstrap support (PP = 1.00; Fig. 

3). Within this clade, the St sequences from E. ciliaris accession PI 531577, W6 10267, 

W6 14463, and PI 547303 formed a subclade (BS = 57%, PP = 1.00). Similarly to the 

phyologenetic result of RPB2 data, phylogenetic analysis based on PGK1 data also 

grouped one copy sequence from the accession PI 377532 together with H genome 

species, Hordeum chilense and H. bogdanii in high support (BS = 100%, PP = 1.00). Our 

PGK1 sequence data also generated an obvious Y genome specific clade (BS = 96%, PP = 
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1.00; Fig. 3), which contained the Y genome copies sequences from all the E. ciliaris 

accessions analyzed, and is distinct from the St clade. Within the Y genome clade, four E. 

ciliaris accessions (VBG-0844, BKA-0931, BKA0939, and W6 10267) from Siberian, 

Russia formed a subclade with a strong bootstrap support of 91% (PP = 1.00 in ML).
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Figure 3. Strict consensus tree derived from PGK1 sequence data was conducted using 

heuristic search with TBR branch swapping. Numbers above and below branches are 

bootstrap values and Bayesian posterior probability (PP) values, respectively. B. sterilis 

and B. inermis were used as outgroups. Consistency index (CI) = 0.642, retention index 

(RI) = 0.806. 
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3.1.4. Phylogenetic analyses of RPS16 sequences 

Forty-eight RPS16 sequences were analyzed. The data matrix contained 774 characters, of 

which 710 characters were constant, 35 variable characters were parsimony 

uninformative, and 29 were parsimony informative. MP analysis was conducted by using 

B. sterilis and B. catharticus as outgroups. MP analysis produced 79 equally 

parsimonious trees (CI excluding uninformative characters = 0.886; RI = 0.915). The 

Bayesian analyses using the GTR model resulted in identical trees with mean 

log-likelihood values -1690.64 and -1706.12 (data not shown). The tree topologies 

generated by ML, MP and Bayesian analyses were similar to each other. Strict consensus 

tree with BS and PP values is shown in Figure 4. 

Phylogenetic analyses based on RPS16 sequence data grouped all sequences from E. 

ciliaris into the St genome clade (Fig. 4). The sequence from the E. ciliaris accession PI 

377532 was also included in the St clade. Within this clade, the sequences from three 

accessions of E. ciliaris (PI 531576, PI 564917 and PI 531574) formed a subclade in 65% 

BS and PP = 0.92.
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Figure 4. Strict Consensus tree derived from RPS16 sequence data was conducted using 

heuristic search with TBR branch swapping. Numbers above and below branches are 

bootstrap values and Bayesian posterior probability (PP) values, respectively. B. sterilis 

and B. catharticus were used as outgroups. Consistency index (CI) = 0.909, retention 

index (RI) = 0.939. 
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3.2. E. pendulinus 

3.2.1. RPS16 analysis 

Thirteen accessions of E. pendulinus were analyzed together with an additional 34 RPS16 

sequences. The data matrix contained 733 characters, of which 659 characters were 

constant, 43 variable characters were parsimony-uninformative, and 31 were parsimony 

informative. MP analysis was conducted by using Bromus catharticus as outgroup. MP 

analysis produced 88 equally parsimonious trees (CI excluding uninformative characters 

= 0.886; RI = 0.913). The ML heuristic search under GTR model resulted in identical 

trees. The tree topologies generated by MP and ML analyses were similar to each other. A 

strict consensus tree with BS and ML aLRT values is shown in Figure 5. 

Phylogenetic analyses based on RPS16 sequence data grouped all sequences from E. 

pendulinus into the Pseudoroegneria St genome clade except for the sequence from the 

accession ZAR0714 of E. pendulinus (Fig. 5). Within this clade, the sequences from three 

accessions of E. pendulinus (VOK0724, VOK0728 and VBG0727) formed a subclade in 

83% BS and aLRT = 0.864, and the accession VLA0719 and USS0720 were put into a 

subclade (BS=72, aLRT = 0.850). The accessions AND0713, MES0721 and BKA0921 

were grouped with two Pseudoroegneria species (P. stipifolia PI 325181 and P. gracillima 

PI 420842) and T. elongatum (PI 142012) with weakly support. Unexpectedly, the 

sequence from the E. pendulinus accession ZAR0714 was not included in the St clade.  
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Figure 5. Strict Consensus tree derived from RPS16 sequence data was conducted using 

heuristic search with TBR branch swapping. Numbers above and below branches are 

bootstrap values and ML aLTR values, respectively. B. catharticus was used as outgroup. 

Consistency index (CI) = 0.886, retention index (RI) = 0.913. 
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3.2.2. TrnD/T analysis 

Thirteen TrnD/T sequences from E. pendulinus were used in this analysis. The TrnD/T 

data matrix of 51 sequences contained 900 characters, of which 73 were parsimony 

informative. MP analysis produced 295 equally parsimonious trees (CI excluding 

uninformative characters = 0.797; RI = 0.764). The tree topologies generated by ML were 

similar to those generated by MP. Strict consensus trees with bootstrap (1000 replicates) 

values and ML is shown in Figure 6.  

Phylogenetic analyses based on TrnD/T sequence data also grouped all sequences 

from E. pendulinus into the St genome clade except accession ZAR0714 (BS = 55, aLRT 

= 0.786) (Fig. 6). Interestingly, the cpDNA TrnD/T data tree also positioned the accession 

ZAR0714 of E. pendulinus outside of Triticeae species analyzed here. Within this clade, 

three accessions of E. pendulinus (VOK0724, VOK0728 and VBG0727) formed an 

independent subclade in 85% BS and aLRT = 0.932. The accession AND0713 of E. 

pendulinus grouped with one accession of P. stipifolia (PI 325181).  
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Figure 6. Strict consensus tree derived from TrnD/T sequence data was conducted using 

heuristic search with TBR branch swapping. Numbers above and below branches are 

bootstrap values and ML aLTR values, respectively. Bromus sterilis was used as an 

outgroup. Consistency index (CI) = 0.797, retention index (RI) = 0.764. 
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3.2.3. RPB2 analysis 

As expected for allotetraploids, two different copies were recovered from six accessions 

(BKA0921, VOK0728, VOK0724, VLA0719, RUS0716, and ZAR0715); however, three 

distinct sequences were recovered from five accessions of E. pendulinus (VBG0727, 

VBG0722, MES0721, ZAR0714, and AND0713), and one copy was recovered from two 

accessions (USS0720 and VLA0718). MP analysis using 100 RPB2 sequences together 

with two outgroups, Bromus sterilis and B. catharticus, was conducted (332 

parsimony-informative characters, 1320 equally most parsimonious trees, CI = 0.573; RI 

= 0.859). The separated ML analyses using the GTR model resulted in identical trees. The 

tree topologies were almost identical in ML trees and similar to those generated by MP. 

Strict consensus trees with ML aLTR and MP bootstrap (1000 replicates) value is shown 

(Fig. 7). 

The phylogenetic tree showed three different clades, representing St, Y, and H 

genome groups, respectively. As expected, two distinct copies of sequences obtained from 

nine accessions of E. pendulinus (ZAR0714, ZAR0715, RUS0716, VLA0719, MES0721, 

VBG0722, VOK0724, VBG0727, VOK0728) that were amplified and sequenced were 

well separated into two different clades, one in the Pseudoroegneria-like (St genome) 

clade (BS=83%, aLTR = 98%), another in the Y genome clade  (BS = 96%, aLTR = 

97%). Only St genome sequence from accession USS0720 and only the Y genome 

sequence from accession VLA0718 were obtained. Within the Y genome clade, the E. 
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pendulinus sequences were separated into two subclades in 85%BS and 63%BS, 

respectively.  

Unexpectedly, one of each of the sequences from five E. pendulinus accessions 

(AND0713, MES0721, VBG0722, VBG0727, and BKA0921) was grouped with 

Hordeum species (H, Xa, and I genomes) (BS = 100%, aLTR = 100%). These 

Hordeum-like sequences from E. pendulinus were put into two subclades. The first (91% 

BS) is comprised of accession AND 0713, MES0721, VBG0722, and VBG0727 along 

with H. bogdanii; the second subclade contained BKA0921 and AND0713 Hordeum-like 

copy.  
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Figure 7. Strict Consensus tree derived from RPB2 sequence data was conducted using 

heuristic search with TBR branch swapping. Numbers above and below branches are 

bootstrap values and ML aLTR values, respectively. B. catharticus was used as outgroup. 

Consistency index (CI) = 0.573, retention index (RI) = 0.859. 
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3.2.4. PepC analysis 

Fourteen accessions of E. pendulinus were analyzed using the PepC gene sequence. 

Expectedly, two distinct PepC copies were recovered from nine accessions of E. 

pendulinus (PI499452, ZAR0715, RUS0716, VLA0718, VLA0719, USS0720, MES0721, 

VBG0722, VOK0724, and VBG0727). Unexpectedly, three different copies of PepC 

sequences were detected from four accessions of E. pendulinus (AND0713, ZAR0714, 

VLA0719, and BKA0921), and only one copy was identified from accession VOK0728. 

Phylogenetic analysis of the 80 sequences was performed using B. tectorum as outgroup. 

The data matrix contained 1054 characters, of which 267 were constant, 395 were 

parsimony uninformative, and 392 were parsimony informative. Heuristic searches 

resulted in 1575 most parsimonious trees with a CI (excluding uninformative characters) 

= 0.705 and RI = 0.838. The tree topologies generated by ML using GTR model and MP 

analyses were similar to each other. Strict consensus tree with BS and aLRT values is 

shown in Figure 4.  

The phylogentic analyses generated three large clades (Fig. 8), representing St 

genome sequences, Y genome sequences together with Triticeae genome sequences (M, 

Ta, A
M

, R, and E
e
), and a Hordeum-like sequence. Thirteen E. pendulinus sequences were 

grouped with Pseudoroegneria (St) diploid species. The second clade was composed of 

the identified Y copies from tetraploid Elymus species, E. pendulinus sequences and the 

sequences from M, Ta, A
M

, R, and E
e
 genomes in Triticeae. In this clade, nine accessions 

from E. pendulinus together with seven Y copies from additional tetraploid Elymus 
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species constructed a subclade, and the other three E. pendulinus sequences were grouped 

with R and E
e
 genomes sequences. Four sequences from E. pendulinus fell into the H 

clade together with diploid Hordeum species, named Hordeum-like copies. Interestingly, a 

copy from E. pendulinus ZAR0714 was also put outside of Triticeae species analyzed 

here which is consistent with the RPB2 nuclear gene and two cpDNA data. Two different 

Hordeum-like copies with obvious sequence variation from the accession VBG0727, and 

two distinct St copies from the accession BKA0921 were also recovered. 

Within the St (Pseudoroegneria + Elymus) clade, all E. pendulinus accessions, except 

AND0713, BKA0921b, and VLA0719, formed a well supported subclade (93% BS, 94% 

aLRT). The sequences from AND0713 and BKA0921b were grouped into a separated 

subclade (99% BS, 99% aLRT). The St copy from VLA0719 was distinct from the other 

St copies. In the second clade, AND0713, BKA0921b, and VLA0719 were grouped with 

Triticeae diploid species with R, Ta, A
M

, E
e
, and M genomes. The rest of the Y genome 

sequences of E. pendulinus were grouped with other tetraploid Elymus with strong 

support (100% BS and aLRT), within this clade, and all accessions from Russia were 

placed into one subclade (BS= 62%, aLRT = 87%).  
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Figure 8. Strict Consensus tree derived from PepC sequence data was conducted using 

heuristic search with TBR branch swapping. Numbers above and below branches are 

bootstrap values and ML aLTR values, respectively. B. tectorum was used as outgroup. 

Consistency index (CI) = 0.705, retention index (RI) = 0.838.  
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Figure 9. Strict consensus tree derived from morphological data matrix (glume trichomes, 

lemma margin cilia, lemma trichomes, rachilla trichomes, leaf-sheath villosity, blade 

upper surface villosity, stem node) was conducted using heuristic search with TBR branch 

swapping. Numbers above are bootstrap values. Consistency index (CI) = 0.675, retention 

index (RI) = 0.618.  
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3.3. E. longearistatus 

3.3.1. Phylogenetic analyses of RPS16 sequences 

The RPS16 data matrix of 41 sequences contained 736 characters, of which 680 were 

constant, 35 were parsimony uninformative, and 21 were parsimony informative. MP 

analysis produced 66 equally parsimonious trees (CI = 0.894, RI = 0.923, RCI = 0.825). 

The separated Bayesian analyses using GTR model resulted in identical trees with mean 

log-likelihood values -1552.69 and -1563.64 (data not shown). 

Phylogenetic analyses based on RPS16 sequence data grouped all sequences from E. 

longearistatus into the St clade with the St genome from Pseudoroegneria (Fig. 10). 

Within this clade, six accessions of E. longearistatus originated from Iran (PI 401277, PI 

401278, PI 401279, PI 401280, PI 401282, PI 401283) formed a subclade with the 

accession PI 420842 of P. strigosa and PI 325181 of P. stipifolia. The accessions PI 

401276 (from Iran) and PI 564942 (from Pakistan) were placed out of this subclade with 

other Pseudoroegneria diploid species.
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Figure 10. Strict consensus trees derived from RPS16 sequence data was conducted using 

heuristic search with TBR branch swapping. Numbers above and below branches are 

bootstrap values and Bayesian posterior probability (PP) values, respectively. Bromus 

cathartharticu was used as an outgroup. Consistency index (CI) = 0.894, retention index 

(RI) = 0.923, rescale consistency index (RCI) = 0.825.
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3.3.2. Phylogenetic analyses of TrnD/T sequences 

Eight accessions of E. longearistatus were analyzed together with an additional 37 

TrnD/T sequences. The data matrix contained 1027 characters, of which 758 characters 

were constant, 99 were parsimony informative, and 170 variable characters were 

parsimony-uninformative. MP analysis was conducted by using Bromus sterilis as the 

outgroup. MP analysis produced 423 most parsimonious trees (CI = 0.773, RI = 0.725, 

RCI =0.560). The separated Bayesian analyses using GTR model resulted in identical 

trees with mean log-likelihood values -3962.49 and -3983.07 (data not shown). 

As shown in Figure 11, MP and Bayesian analyses clearly grouped the sequences 

from E. longearistatus with diploid Pseudoroegneria species into one clade (BS = 59%, 

PP = 0.75). Within this clade, the sequences from six accessions of E. longearistatus (PI 

401277, PI 401278, PI 401279, PI 401280, PI 401282, PI 401283) formed a subclade 

with a P. stipifolia accession PI 325181 in 0.77 Bayesian PP value, the accession PI 

564942 was grouped with one P. spicata accession PI 598818 (BS = 68%, PP = 0.91), and 

PI 401276 was placed outside these subclades with other diploid Pseudoroegneria species.
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Figure 11. Strict consensus trees derived from TrnD/T sequence data was conducted using 

heuristic search with TBR branch swapping. Numbers above and below branches are 

bootstrap values and Bayesian posterior probability (PP) values, respectively. Bromus 

sterilis was used as an outgroup. Consistency index (CI) = 0.773, retention index (RI) = 

0.725, rescale consistency index (RCI) = 0.560. 
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3.3.3. Phylogenetic analyses of EF-G sequences 

Total of 45 sequences from 11 diploid Triticeae species/subspecies, six tetraploid StY 

Elymus, and eight accessions of E. longearistatus were analyzed. MP analysis using 

Bromus sterilis as the outgroup was conducted (258 parsimony-informative characters, 

509 equally most parsimonious trees, CI = 0.884; RI = 0.964). The separated Bayesian 

analyses using the GTR model resulted in identical trees with mean log-likelihood values 

-4012.01 and -4026.92 (data not shown). The tree topologies were almost identical in 

both ML and Bayesian trees and were similar to those generated by MP. A strict 

consensus tree with bootstrap (1000 replicates) values and Bayesian PP are shown in 

Figure 12.  

Phylogenetic analyses clearly separated the two copies of sequences from each StY 

tetraploid (E. abolinii, E. antiquus, E. genelinii, E. semicostatus, E. strictus, E. caucasicus, 

and E. longearistatus) accession into two different clades, one in the St genome clade, the 

other in the Y genome clade. All diploid Pseudoroegneria species (St genome) together 

with St copy from tetraploid StY Elymus species were grouped into a clade (BS = 66%, 

PP = 0.98). Within the St (Pseudoroegneria + Elymus) clade, the St genome from eight E. 

longearistatus accessions were clearly separated into two groups, the  first one 

containing one E. longearistatus accession (PI 564942, origin from Pakistan) and five StY 

tetraploid Elymus species (BS = 84%, PP = 1.00), the second one containing the rest of 

seven E. longearistatus accessions (PI 401276, PI 401277, PI 401278, PI 401279, PI 

401280, PI 401282, PI 401282, all originating from Iran) and one accession of E. 

caucasicus (StY) (BS = 73%, PP = 1.00). 
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The Y copy sequences from tetraploid StY Elymus species formed another clade with 

the W, P, H, and E
b
 genome species in 99% BS (PP = 1.00). The Y genome sequences 

from Elymus were also separated into two clades both with a strong bootstrap support of 

100% and PP = 1.00, the accession PI 564942 originating from Pakistan was grouped 

with five StY tetraploid Elymus species (E. abolinii, E. antiques, E. gmelinii, E. 

semicostatus, E. strictus), the other seven accessions of E. longearistatus, which all 

originate from Iran, were placed with E. caucasicus. Within the Iranian Y clade, five E. 

longearistatus accessions (PI 401277, PI 401278, PI 401279, PI 401280, PI 401283) 

formed a well supported subclade (BS = 87%, PP = 1.00). 
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Figure 12. Strict consensus trees derived from EF-G sequence data was conducted using 

heuristic search with TBR branch swapping. Numbers above and below branches are 

bootstrap values and Bayesian posterior probability (PP) values, respectively. Bromus 

sterilis was used as an outgroup. Consistency index (CI) = 0.884, retention index (RI) = 

0.964, rescale consistency index (RCI) = 0.853. 
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3.3.4. Phylogenetic analyses of HTL sequences 

Previous studies revealed that Ns genome of Psathyrostachy is basal in the Triticeae tribe 

(Petersen and Seberg 1997, Mason-Gamer and Kellogg 2000). Psathyrostachy juncea 

(Fish.) Nevski was used as the outgroup in the phylogenetic analysis on Hordeum species 

based on the thioreoxin-like gene (HTL) (Wang et al., 2011).  

Phylogenetic analysis of the 31 sequences was performed to determine the 

phylogenetic relationship of the St and Y genomes. MP analysis was conducted using 

Psathyrostachys juncea as the outgroup. The data matrix contained 1002 characters, of 

which 718 were constant, 91 were parsimony uninformative, and 193 were parsimony 

informative. Heuristic searches results in 403 most parsimonious trees with a CI of 0.811, 

RI of 0.921 and RCI of 0.747. The Bayesian analyses using the GTR model results in 

identical trees with mean log-likelihood values -3806.60 and -3824.07 (data not shown). 

The tree topologies generated by ML, MP and Bayesian analyses were similar to each 

other. A strict consensus tree with BS and Bayesian PP is shown in Figure 13.  

A clear separation between St and Y genome was observed (Fig. 13). The sequences 

from the St genome of E. longearistatus was grouped with St genome from 

Pseudoroegneria (BS = 64%, PP = 1.00). Within the Pseudoroegneria+Elymus clade, the 

St sequences of E. longearistatus PI 564942 and PI 401283 were sister to the sequences 

from the other six E. longearistatus accessions and diploid Pseudoroegneria species with 

a bootstrap value of 100% and PP value of 1.00. The St sequences from E. longearistatus 

accessions PI 401276, PI 401277, PI 401278, PI 401279, and PI 401280 formed another 
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subclade (BS = 70%, PP = 1.00). Within the Y genome clade, seven accessions of Iranian 

E. longearistatus formed a subclade (BS = 61%, PP = 0.70), and the accession from 

Pakistan was sister to this subclade (Fig. 13).  
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Figure 13. Strict consensus trees derived from HTL sequence data was conducted using 

heuristic search with TBR branch swapping. Numbers above and below branches are 

bootstrap values and Bayesian posterior probability (PP) values, respectively. 

Psathyrostachys juncea was used as an outgroup. Consistency index (CI) = 0.811, 

retention index (RI) = 0.921, rescale consistency index (RCI) = 0.747. 
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4. Discussion 

4.1. Phylogenetic analysis revealed reticulate evolution of E. ciliaris 

4.1.1. On the origin of E. ciliaris 

It has been proposed that Pseudoroegneria (St genome) and an unknown diploid (Y 

genome) species could be the constituents of the tetraploid E. ciliaris genome (Zhou et al., 

1999; Redinbaugh et al., 2000; Sun and Salomon, 2009; Mason-Gamer et al., 2010). Both 

RPB2 and PGK1 phylogenetic trees showed an obvious Y genome specific clade which is 

distinct from the St clade. Our results further confirmed that E. ciliaris is a StStYY 

tetraploid, with the St genome coming from the maternal parent, but has also shown that 

the St genome in E. ciliaris species has a complex evolutionary history (it will be 

discussed later).  

The RPB2 sequence data indicated that the Y genome in E. ciliaris species were not 

highly differentiated from each other, all sequences from the Y genomes formed an 

unresolved polytomy (Fig. 2). Although the strict consensus tree from PGK1 data showed 

that all sequences from the E. ciliaris Y-genome also formed a clade and within this clade 

accessions PI 531575 and PI 564917 were grouped together, and four additional 

accessions (VBG-0844, BKA-0931, BKA-0939 and W6 10267) formed a well supported 

subclade (BS = 91%; PP = 1.00). The Y copy sequence of PI 547303 is sister to the Y 

copy sequences from the remaining accessions, indicating that the PGK1 sequences in the 

Y genome were highly differentiated from each other. Both RPB2 and PGK1 data showed 

that the St copy sequences from E. ciliaris formed a clade except the sequence from E. 
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ciliaris PI 377532 which was grouped into the H genome (Figs. 2, 3). Within the St clade, 

RPB2 data revealed that the St copy sequences from PI 531577, W6 10267, VBG-0844 

and PI 531574 formed a subclade, and PI 531575 was sister to other E. ciliaris species 

(Fig. 2). The PGK1 tree showed that PI 531577, W6 10267, W6 14463 and PI 547303 

were grouped together, indicating that the St genome sequences from E. ciliaris were also 

differentiated from each other. Although two single copy nuclear genes, RPB2 and PGK1, 

showed some degree of difference in evolutionarily pattern between E. ciliaris species, 

the data suggested multiple origins of E. ciliaris. Both RPB2 and PGK1 data supported 

the finding that E. ciliairs has originated from the Pseudorogneria (St) and unknown 

donor (Y) diploids, however, the particular diploid progenitors could not be determined.  

4.1.2. Reticulate origin of StY E. ciliaris 

The St genome is present in all Elymus species and is the most important constituent of 

the genus. Cytological and molecular data have confirmed that Pseudoroegneria species 

is the donor of the St genome to Elymus (Dewey, 1984; Jensen, 1990; Torabinejad and 

Mueller, 1993; Jensen and Salomon, 1995; Jones et al., 2000; Redinbaugh et al., 2000; 

Mason-Gamer et al., 2002; McMillan and Sun, 2004; Xu and Ban, 2004; Liu et al., 2006; 

Yan et al., 2011). Our result based on chloroplast and nuclear DNA data also suggested 

that the St genome is one constituent of Elymus ciliaris species (Figs. 2, 3, and 4).  

Interestingly, our phylogenetic data from two single copy nuclear genes, RPB2 and 

PGK1, suggested that the St genome is not present in the accession PI 377532 of E. 

ciliaris, but may contain a YH genome. However, cpDNA RPS16 have clearly indicated 
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that its maternal origin is the same as other E. ciliaris accessions, and is a St genomic 

diploid species (Fig. 4). Since there is no YH genome species reported in the genus 

Elymus, or in the tribe Triticeae so far, this accession cannot be a YH genome species. 

There are many StHY allopolyploid species in the genus Elymus and this accession might 

contain StHY genomes. A copy of the St sequence may have been missed in the sampling 

or lost since single copy genes may more easily suffer from locus loss due to stochastic 

events after polyploidization (Mahelka and Kopecky, 2010). One possible explanation is 

that this accession (PI 377532) contains StY genomes, in which the St genome highly 

differentiated from the St genome in other E. ciliaris accessions and the Pseudoroegneria 

species (St donors) studied here. Considerable variation existed among the St genome 

sequences, and the relationships among them are far more complicated (Mason-Gamer et 

al., 2010). Nuclear gene data (RPB2 and EF-G) clearly showed a high level of nucleotide 

polymorphism in Pseudoroegneria species, and significant differentiation between P. 

libanotica and P. tauri groups with other St genome Pseudoroegneria diploid species 

(Yan and Sun, 2011). In a study of allohexaploid Elymus repens (StStH) by Mahelka and 

Kopecky (2010), the GBSSI data indicated that besides the “original” Pseudoroegneria 

clade (St) and Hordeum (H) clade species, another “unknown” Pseudoroegneria-like 

clade species may be the third genome lineage within hexaploid E. repens. There is 

accumulating evidence for multiple contributions of Pseudoroegneria taxa to various 

tetraploid Elymus species (Sun et al., 2007). A study of tetraploid Elymus caninus (StH) 

using RPB2 gene data indicates that the St genome in Elymus caninus originated from 

two distinct sub-genomes, St1 and St2 (Yan and Sun, 2012). Moreover, grouping of St 
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genome species P. stipofolia and P. strigosa within the H- genome has been reported 

(Mason-Gamer and Kellogg, 2000). Liao et al. (2011) also found that RPB2 sequences 

from Roegneria alashanica (StSt--) and Pseudoroegneria geniculata (StStStSt) form a 

subclade with the H clade. Thus, it is more likely that there are two versions of the St 

genome present in E. ciliaris species; one is grouped with Pseudoroegneria diploid 

species, the other is grouped with Hordeum species (named St?) (Figs. 2 and 3). 

The possibility that the St genome in accession PI 377532 of E. ciliaris has acquired 

both RBP2 and PGK1 sequences from H genome either from Hordeum H genome species 

or from Elymus StH genome species through introgression after polyploidization also 

cannot be ruled out since natural hybridization among different Triticeae is common in 

the tribe (Dewey, 1984). Thus, we propose a scenario of tetraploid Elymus ciliaris 

reticulate origin inferred from RPB2, PGK1, and RPS16 sequences as shown in Figure 14. 
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Figure 14. Hypothetical scenario of tetraploid E. ciliaris origin as inferred from RPB2, 

PGK1, andRPS16 sequences. 
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4.1.3. Relationship among E. ciliaris Y genome from different geographic regions 

With respect to the geographic origin of the E. ciliaris accessions considered here, the 

accessions investigated were generally collected from Eastern Russian (Siberian 

Botanical Garden, Novosibirsk; and Vladivostock), China, eastern Asia (Japan) (Table 1). 

A previous genetic diversity study by Yan et al. (2011) on StY Elymus species using two 

nuclear genes RPB2 and EF-G demonstrates different evolutionarily diversities of the Y 

genome among different species. The Elymus Y genome clade was divided into two 

subclades by EF-G sequences, the first contained E. semicostatus (Afghanistan), E. 

stricus (China), E. abolinii (China), E. antiques (China), E. pendulinus (China), and E. 

gmelinii (China) (BS = 100%, PP = 1.00), the second group was comprised of species 

from western Asia, E. longearistatus (Iran) and E. caucasicus (Armenia) with 100% 

bootstrap support (PP = 1.00). The RPB2 data group all different Elymus species into one 

single clade, and did not show a link between Y genome diversities and their geographic 

origin. A study on Kengyilia (StYP) from a wide distribution by Fan et al. (2012) pointed 

out that the Y genome copies are separated into several subclades. Seven central Asia 

accessions group into three independent subclades with BS= 100%, 99%, and 100% 

respectively. Two accessions from Qinghai-Tibetan plateau constructed a subclade with 

BS = 99% and one accession from central Asia grouped together with two 

Qinghai-Tibetan plateau accessions while the other accession from central Asia did not 

group into any of the subclades. In the present study, the PGK1 Y genome sequences 

from the Siberian accessions (VBG-0844, BKA-0931, BKA-0939, and W6 10267), 
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formed a well supported subclade (BS=91, PP=1.00, Fig. 3). This might suggest that 

geographic isolation might have strongly influenced the evolution of Siberian population 

of E. ciliaris.  

4.2. Introgression and complex evolution of E. pendulinus 

4.2.1. Maternal donor of E. pendulinus 

As expected, the cpDNA data indicated that most of E. pendulinus accessions analyzed 

here have the St genome donor as maternal parent (Figs. 5 and 6), which is consistent 

with previous results. However, both RPS16 and TrnD/T sequence trees revealed that the 

E. pendulinus accession ZAR0714 is present outside of the Triticeae clade, indicating 

two possible maternal donors to E. pendulinus.  

Interestingly, both nuclear gene data also found a copy of sequence from ZAR0714 

present outside the Triticeae in the phylogenetic trees (Figs. 7 and 8). Based on the 

morphological characteristics we collected from E. pendulinus, phenotypic relationships 

among them are constructed by MP analysis. Coincidently, a phylogenetic tree based on 

morphology also places ZAR0714 together with MES 0721 outside of the main clade 

(Fig. 9). It is not clear if an unknown donor from outside of the Triticeae, if any, 

represented an entire genome from a third donor, or whether both cpDNA and nuclear 

gene are acquired through introgression by natural hybridization. The former hypothesis 

can be ruled out since our cytological observation found that this accession is tetraploid 

(data not shown). We suggest an alternative interpretation that introgression events 

occurred within the donor of ZAR0714 for the chloroplast and nuclear genes in ancient 
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time, as has been reported in several instances (Martinsen et al., 2001; Heuertz et al., 

2006). A recent study by Koch and Matschinger (2007) suggested that chloroplast 

introgression has become less common in recent times. E. pendulinus species have been 

shown to hybridize with other species (Lu et al., 1991; Salomon and Lu, 1994; Zhou et 

al., 1999), demonstrating at least some potential to acquire genetic material through 

introgression. Moreover, both nuclear gene data of ZAR0714 contained the St copy. The 

conclusion that Pseudoroegneria is the maternal donor of E. pendulinus is favored here. 

We proposed a hypothetical scenario that a successful hybridization event might lead to 

introgression, which have occurred repeatedly or continually on E. pendulinus ZAR0714, 

leading to a morphologic variation.  

4.2.2. Introgression shaped genome diversity within E. pendulinus  

Results from nuclear gene sequences are more complicated than those from the 

chloroplast genome. Our results indicated that E. pendulinus has experienced a very 

complex evolutionary history which has involved multiple hybridizations and 

polyploidization. The analyses of unlinked nuclear RPB2 and PepC gene sequences are 

interpreted in light of the morphological study, demonstrating intra-species variation in 

natural E. pendulinus populations originated from Russia. The nuclear gene trees 

revealed more potential donors than were expected, including Pseudoroegneria (St), 

unknown donor (Y), Hordeum (H), and an unknown donor from within/outside the tribe 

Triticeae.  
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The presence of the St and Y genome within E. pendulinus is consistent with 

previous cytogenetic (Dewey, 1984; Jensen, 1990) and molecular data (Mason-Gamer et 

al., 2002; McMillan and Sun, 2004). However, these two expected copies were not 

recovered from all accessions. In RPB2 gene data, one of the expected copies (St, Y) was 

not recovered from BKA0921 VLA0718, and USS0720. In addition, the PepC sequence 

data showed that St copy sequences were not recovered from accession VOK0728 and 

VBG0727. While failure to obtain a particular gene copy from a polyploid species may 

not indicate the lack or loss of that gene copy, in this situation primers specific to the 

“missing” gene copy may clarify the case (Ge et al., 1999; Ferguson and Sang, 2001; 

Doyle et al., 2002; Mahelka and Kopechy, 2010). Furthermore, when we compared the 

two phylogenetic trees from nuclear genes, the St and Y copies in all accessions of E. 

pendulinus have been recovered, from either RPB2 or PepC, or from both genes.  

The apparent involvement of Hordeum (genome H) as a third participant in the 

evolution of E. pendulinus comes as a surprise. Five out of thirteen E. pendulinus 

accessions contained the Hordeum-like sequence in RPB2 data, and three out of fourteen 

in PepC data. There is little cytogenetic evidence for the presence of an H genome in E. 

pendulinus. All of the RPB2 sequences in the E. pendulinus + Hordeum clade have three 

deletions, which is corresponded well with previous findings (Sun et al., 2007, 2008), 

and appear to be non-functional. Hordeum-like PepC sequences from E. pendulinus have 

numerous insertions and deletions, some of which involved gain or loss of 

Strowaway-like transposable elements, which is consistent with a previous study in E. 

repense (StStH) (Mason-Gamer, 2008). The appearance of Hordeum-like copy was only 
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found for two accessions (AND0713 and VBG0727) out of thirteen accessions with both 

RPB2 and PepC Hordeum-like copies, another three accessions (MES0721, VBG0722, 

and VBG0727) with a Hordeum-like RPB2 sequences, and accession VLA0719 with a 

Hordeum-like PepC sequence. The hypothesis of a entire H genome present in E. 

pendulinus can be ruled out, not only because of the lack of the presence of an H copy in 

all individuals, but also because our cytological observation found that all accessions 

studied here are tetraploids without a third genome (data not shown). A direct 

contribution from Hordeum to E. pendulinus remains a possibility. Although StH and StY 

species are intersterile, there are many StHY allopolyploid species in the genus Elymus. 

The gene exchange may have occurred between the H and Y genome in StHY species. 

An alternative explanation might be that E. pendulinus acquired the sequences from the 

H genome through introgression. This phenomenon has been revealed for certain loci in 

E. repens (Mason-Gamer, 2008) and in E. ciliaris (Hu et al., 2013, In press). Another 

unexpected result is the apparent genetic contribution from species outside the Triticeae 

to E. pendulinus.  

The molecular phylogenetic analyses of E. pendulinus agree in part with the earlier 

cytogenetic studies, but uncover an additional genome-level complexity. The four gene 

trees together with cytological observation have shed light on the origin of tetraploid E. 

pendulinus, confirming the involvement of two distinct genome donors, and likely 

introgression of additional copies, one of which is a Hordeum-like copy, the other is 

outside the tribe. 
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4.2.3. Multiple origins of E. pendulinus  

Our molecular results have demonstrated intra-species variation in E. pendulinus in 

Russian distribution area, which corresponded with morphological results. From the 

RPS16 cpDNA gene tree, three subclades composed by E. pendulinus accessions were 

examined in the St clade. The sequences from E. pendulinus AND0713, MES0712, and 

BKA0921 fell into the clade with sequences from diploid P. stipifolia and P. gracillima, 

which indicated that they could be potential donors. The other two subclades in the 

RPS16 St clade are a monophyletic group with E. pendulinus accessions only. On the 

TrnD/T tree, accession AND0713 is grouped with P. stipifolia as well, and the same 

accessions (VBG0727, VOK0728, and VOK0724) formed a subclade in St clade (BS = 

85%, aLRT = 93%) as RPS16 (BS= 83%, aLRT = 86%). Based on our phylogenetic 

analyses, both the RPS16 and TrnD/T cpDNA trees point to more than one potential 

maternal donor for E. pendulinus, suggesting that the Russian E. pendulinus used in this 

study may have originated from multiple sources of Pseudoroegneria. 

Within the RPB2 tree, four accessions of E. pendulinus (MES0721, VBG0727, 

AND0713, and VBG0722) are placed in a distinct monophyletic group (BS= 91%, aLRT 

= 95%) that is sister to the H. bogdanii; the other two Hordeum-like sequences 

(AND0713 and BKA0921) are grouped together into a distinguished subclade (BS= 

100%, aLRT = 100%). This demonstrates that the RPB2 sequences in E. pendulinus 

might be introgressed from at least two different Hordeum diploids. In the RPB2 St clade, 

five accessions were placed into two subclades with weak support; as well as RPB2 Y 

clade, all E. pendulinus accessions are separated into two distinguished subclades. 
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In the PepC tree, the Hordeum-like copies are also separated into two suclades 

(AND0713 with VBG0727; VLA0719 with VBG0727). In the St clade, nine accessions 

of E. pendulinus from Russia formed a subclade (BS = 93%, aLRT = 94%). The other 

three accessions (AND0713, BKA0921, and VLA0719) do not have a close relationship 

with any of the diploid taxa sampled, thus which St genome species was their progenitor 

remain unidentified. A similar situation occurs in the Y clade as well, where the same 

three accessions (AND0713, BKA0921, and VLA0719) in E. pendulinus are grouped 

with the Triticeae genome (R, E
e
, A

M
, Ta, and M), which are separated from the other Y 

copy of E. pendulinus. This phenomenon has been reported for EF-G gene (elongation 

factor) in tetraploid Elymus (Sun and Komatsuda, 2010), where Y genome sequences 

were grouped with W and E sequences as well as sequences from many annual species 

(M, N, Ta, R, A, Q etc.). All of the gene trees suggested multiple contributions from 

Pseudoroegneria, an unknown Y genome donor, and Hordeum species, and reveal 

sequence divergence after polyploid formation. 

4.3. Origin and geographical differentiation of the Y genome in E. 

longearistatus  

4.3.1. Maternal donor of E. longearistatus 

The presence of Pseudoroegneria-derived chloroplast sequences is consistent with 

previous molecular studies that Pseudoroegneria (St) is the maternal parent of polyploid 

containing the St nuclear genome in combination with other genomes (Dewey, 1984; 

Redinbaugh et al., 2000; Hodge et al., 2010), and this phenomenon was documented in 
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numerous cases (Redinbaugh et al., 2000; Mason-Gamer, 2001; McMillan and Sun, 2004; 

Liu et al., 2006; Yan and Sun, 2012). Our nuclear sequence data further confirmed the 

contribution from Pseudoroegneria to all E. longearistatus accessions studied.  

A close relationship among six Iranian accessions of E. longearistatus (PI 401277, 

PI 401278, PI 401279, PI 401280, PI 401282, PI 401283) was revealed by both RPS16 

and TrnD/T data, they formed a subclade within the Pseudoroegneria+E. longearistatus 

clade (Figs. 10 and 11). In RPS16 dataset, these six accessions were grouped with the 

accession PI 420842 of P. strigosa and PI 325181 of P. stipifolia; In the TrnD/T 

phylogenetic analysis, they were grouped with a P. stipifolia accession PI 325181. The 

data generated from chloroplasts suggested that the accession of P. stipifolia (St) possess 

sequences that are most closely related to those from these six E. longearistatus, making 

P. stipifolia the most likely donor of these six Iranian accessions, although P. strigosa 

could not be excluded. Another Iranian E. longearistatus accession PI 401276 and the 

accession PI 564942 from Pakistan were placed outside of the subclade in both 

chloroplast sequence trees, indicating multiple maternal donors to E. longearistatus. 

4.3.2. Intraspecies relationship among E. longearistatus 

Recent molecular data indicated that polyploid speciation is often more complex than 

initially thought (Soltis and Soltis, 1993). Allopolyploids are fundamentally hybrids. The 

same allopolyploid can follow very different evolutionary trajectories (Mahelka and 

Kopecky, 2010; Yan and Sun, 2012), because each origin can bring together different 
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combinations of alleles at each homologous locus, leading to different transgressive 

effects (Doyle et al., 1999).  

In the present study, the E. longearistatus accessions from Iran and Pakistan were 

sampled and analyzed, both the two cpDNA and nuclear gene data provide a general link 

between the sequence placement of E. longaristatus in the phylogenetic trees and their 

geographic origins. All the sequences from the Pakistan accession, no matter the cpDNA 

or nuclear sequences from St or Y genome, were well separated from the sequences from 

Iranian accessions. Especially in the Y genome sequences, a close relationship was found 

among Iranian accessions, since they formed a well supported subclade (BS = 100%, PP 

=1.00, Fig. 12) in the EF-G tree, as well as the HTL tree. The Y genome sequences from 

Iranian accessions displayed a single, compact and distinct group from the sequences 

from the Pakistan accession (BS = 61%, PP =0.70, Fig. 13). This grouping suggested a 

common origin of Y genome in the accessions of E. longearistatus from Iran. Previous 

cytogenetic studies suggested that the E. longearistatus genome showed extraordinary 

variation from many Eastern and central Asiatic StY Elymus (Jensen and Wang, 1991; Lu 

and von Bothmer, 1993), however, our nuclear data revealed that the accession PI 564942 

from Pakistan had a close relationship with Eastern Asiatic Elymus species (E. abolinii, E. 

antiquus, E. gmelinii, E. semicostatus, E. strictus, Fig. 4). This novelty was based in both 

St (BS = 84%, PP =0.72) and Y (BS = 100%, PP =1.00) genome sequence data. Our data 

suggested that the geographic isolation strongly influenced the evolution of the Y 

genome in E. longearistatus. Previous molecular studies also supported the correlation 

between Y genome differentiation and geographical distribution. In our study of Elymus 
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ciliaris, the PGK1 Y genome sequences from all the Siberian accessions formed a well 

supported subclade (BS = 91%, PP = 1.00) apart from the remaining accessions from 

China, Japan, and Estonia (Hu et al. in press). A study on Kengyilia (StYP) from a wide 

distribution by Fan et al. (2012) pointed out that the Y genome in Qinghai-Tibetan 

plateau accessions were separated from the Y genome from central Asia accessions, and 

showed geographical differentiation.  

The EF-G sequence data indicated that the St genomes in the StY-genomic E. 

longearistatus from Iran were not highly differentiated from each other as observed in 

the Y genomes. Indeed, all sequences from the St genome formed an unresolved 

polytomy (Fig. 12). Although the phylogenetic tree from HTL data placed all the 

sequences from the E. longearistatus St-genomes into a clade (BS = 64%, PP = 1.00), 

within the clade accessions PI 564942 and PI 401283 were grouped together, and five 

accessions (PI 401276, PI401277, PI401278, PI401279, PI 401280) formed a well 

supported subclade with P. tauri and P. libanotica (BS = 77%, PP = 1.00). The St 

sequence of PI 401282 was sister to the St sequences from the remaining diploid 

Pseudoroegneria accessions (PI 420842, W6 14049, PI 325181, PI 440000, PI 232128) 

(Fig. 13), indicating that the HTL sequences in the St genome were highly differentiated 

from each other and displayed low correlation between accessions separated by 

geographical distance.  
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4.3.3. The relationship between St and Y genome 

The results convincingly showed that the homologous genomes in the StY tetraploid E. 

longearistatus were derived from phylogenetically distinct donors. All of the E. 

longearistatus accessions studied here yielded two distinct copies for each nuclear gene. 

The results confirmed cytogenetic results (Dewey, 1974; Jensen and Wang, 1991; Jensen 

and Salomon, 1995; Lu et al., 1990) that the StY tetraploid species Elymus are 

allotetrapolids. However, ITS sequences suggested that the St and Y genome sets were 

both derived from Pseudoroegneria (Liu et al., 2006). Concerted evolution might explain 

the lack of a distinct Y genome ITS sequence (Mason-Gamer et al., 2010). Okito et al. 

(2009) suggested that one accession of P. spicata (PI 232134) might be the donor of the 

Y genome and a prime candidate for the origin of the Y genome to two E. longearistatus 

accessions (PI 401278, PI 401282) which were also included in this study. In a previous 

study, both the RPB2 and EF-G phylogenetic tree placed this accession of P. spicata (PI 

232134) in the St genome together with other Pseudoroegneria species (Yan et al., 2011), 

and indicated that there was not a close link between St genome in P. spicata and the Y 

genome in E. longearistatus and in other StY Elymus species.  

5. Summary 

In the study of E. ciliaris, both RPB2 and PGK1 data supported that E. ciliairs has 

multiple origins, and originated from the Pseudorogneria (St) and unknown donor (Y) 

diploids. The St genome in E. ciliaris species has a complex evolutionary history. Both 

nuclear data suggested the absence of St genome in the accession PI 377532 of E. ciliaris. 
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However, cpDNA RPS16 clearly indicated that its maternal origin is the same as other E. 

ciliaris accessions, and is St genomic diploid species. Results suggest that there are two 

lineages of St genome present in E. ciliaris species; one is grouped with Pseudoroegneria 

diploid species, the other is grouped with Hordeum (H) species (named St?). The 

Japanese accession PI 377532 might have introgression either from Hordeum H genome 

species or from Elymus StH genome species with replacement of at least some nuclear 

St-loci by H-loci. The PGK1 data suggest that geographic isolation might have strongly 

influenced the evolution of Siberian population of E. ciliaris. 

In the analysis of E. pendulinus, our results revealed an extreme reticulate pattern, at 

least four distinct gene lineages coexisting within this species which might be acquired 

through a possible combination of allotetraploidization and introgression from both 

within and outside the Triticeae. Chloroplast DNA data identified two potential maternal 

genome donors (Pseudoroegneria and unknown species outside Triticeae) to E. 

pendulinus, Nuclear gene data indicated that both Pseudoroegneria and unknown Y 

diploid have contributed to the nuclear genome of E. pendulinus, in agreement with 

cytogenetic data. However, unexpected contributions from Hordeum, and unknown 

aliens within/outside Triticeae to E. pendulinus without genome duplication were 

observed. E. pendulinus provides a remarkable instance of the previously unsuspected 

chimerical nature of some plant genomes and the resulting phylogenetic complexity 

produced by multiple historical reticulation events. 

In the study of E. longearistatus, the two single copy nuclear gene sequence data 

(EF-G and HTL) provided strong support for the independent origin of the Y genome in 
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StY tertraploid E. longearistatus. Phylogenetic analyses well separated the Y genome 

from the St genome in both phylogenetic trees (with BS = 96% PP = 1.00 in EF-G tree, 

BS = 100% PP = 1.00 in HTL tree) (Figs. 12 and 13). These results are consistent with 

previous studies (Mason-Gamer et al., 2005; Sun et al., 2008; Sun and Komatsuda, 

2010;Yan et al., 2011). These nuclear data rejected the hypothesis that the Y genome was 

derived from the Pseudoroegneria species, instead supporting different origins of the St 

and Y genomes (Mason-Gamer et al., 2005; Sun et al., 2008; Mason-Gamer et al., 2010; 

Sun and Komatsuda, 2010; Yan et al., 2011). 
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