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Abstract

Upper Boundary Condition for Asteroseismological Modelling of

Solar-type Stars

by K. Christopher Cooke

We present a grid of line blanketed spherical LTE model atmospheres and high resolution
extinction spectra for use in interpolating an accurate outer boundary condition for asteroseismology
calculations at arbitrary Teff and log g. We investigate the accuracy of four interpolation methods by
interpolating within our grid to solar values of Teff and log g and comparing the results to an exact
solar model. We test the impact of the resolution of our grid on the accuracy of the interpolations by
performing linear interpolations within our grid at different sampling rates in Teff and log g. We test
whether interpolating κR within our grid and computing τR or calculating τR for each model and
interpolating it directly produces more accurate results. We also present a NLTE exact solar model
and compare the boundary condition resulting from it to those of the LTE exact model.

August 14, 2013
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Chapter 1

Introduction

1.1 Background

Astronomy is often considered to be one of the oldest of the sciences, with roots stretching back to

prehistoric times. For the majority of that time, however, it can be argued that astronomy was not

a proper science. Instead, it existed in the realm of time keeping, uranography, natural history, or

religion. It was only in the 17th century, when the rise of modern mathematics and the collection

of high precision astronomical observations conspired to allow astronomers to directly compare

theories on the nature of the cosmos to the cosmos itself, that astronomy became a rigorous scientific

endeavour. Since that time, advances in mathematical methods have allowed for the creation of

increasingly detailed and complex astrophysical theory, while the engineering of new technologies

has permitted testing of these theories through both the steady refinement in precision astronomical

observations and the introduction of entirely new kinds of observations.

The science of astronomy, born as it was alongside physics and chemistry, has evolved in

lock-step with the other natural sciences. The study of the spectrum of light, first performed by Sir

Isaac Newton, led to the invention of the spectroscope and the discovery of dark lines in the spectrum

of the Sun by Joseph von Fraunhofer in 1814. Fifty-five years later, in 1859, Gustav Kirchoff

and Robert Bunsen discovered the spectral fingerprints of the chemical elements and identified

1
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Fraunhofer’s lines with common chemical substances. In doing so, Kirchoff and Bunsen gave birth

to modern observational stellar astrophysics. Unfortunately, only the very outermost layers of stars

are observable using traditional astronomical instruments. Beneath the photosphere, colloquially

defined as the visible surface of a star, stellar atmospheres are largely opaque to direct observation.

Leighton et al. (1962) detected periodic variations in the radial velocity and brightness of the

solar surface. These variations have come to be known as the “five-minute oscillations” because

they have a characteristic period of approximately 300 seconds. It would take nearly a decade

for the nature of the oscillations to be understood. Ulrich (1970) and Leibacher & Stein (1971)

suggested that the oscillations were the result of standing acoustic waves, or pressure waves, ringing

throughout the solar interior, effectively opening the door for their use in probing the interior

structure of the Sun.

With the discovery and classification of the modal structure of the five-minute oscillations

(Deubner, 1975; Claverie et al., 1979; Duvall & Harvey, 1983) it has been possible to probe the

global structure of the Sun. By comparing the observed frequency modes of the Solar surface to

those predicted by theoretical models, it is now possible to directly compare models of the Solar

interior to empirical observations. While theoretical predictions for the values of low frequency

oscillations have been consistent with observations, the predictions have been shown to deviate from

observations at higher frequencies. The deviation at high frequencies has been attributed to improper

modelling of the near surface layers of the Sun (Guenther et al., 1992; Christensen-Dalsgaard et al.,

1996; Christensen-Dalsgaard & Thompson, 1997), as nearly all published stellar structure models

and asteroseismological models use highly simplified Tkin(τR) relationships, such as those found

using grey atmospheres or empirical solar atmospheres such as that of Krishna Swamy (1966), to

set their outer boundary conditions.

In stellar structure modelling, the outer boundary condition is commonly taken to be the

photosphere, which is customarily defined as the layer in a star’s atmosphere where its effective

temperature, Teff , is equal to the kinetic temperature of the surrounding gas, Tkin. Here Teff is
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defined as the temperature – expressed mathematically by the Stefan-Boltzmann law,

L = 4πR2σT 4
eff (1.1)

where L is the bolometric luminosity of the star, R is the geometric radius of the star, and σ is the

Stefan-Boltzmann constant – at which a true black body would radiate the same bolometric flux as

the star. In the Krishna Swamy 1966 atmosphere the photosphere is found at τR = 0.312156330,

where τR is the Rosseland mean optical depth, while in grey atmospheres utilizing the Eddington

approximation, the photosphere is set at τR = 2/3 (Demarque et al., 2008).

Throughout this thesis we calculate the kinetic temperature structure as a function of the

Rosseland mean optical depth, the Tkin(τR) relationship, for line-blanketed (i.e. non-grey) model

stellar atmospheres, which do not necessarily have Teff = Tkin at τR = 2/3. In order to maintain

a common measure of comparison across models, however, we focus our analysis on τR = 2/3 in

general, and Tkin(τR = 2/3) in particular.

While attempts have been made to compensate for these “near-surface effects” through a variety

of means (examples include improving solar models through inclusion of turbulence (Li et al., 2002)

and developing semi-empirical corrections to the observed oscillation frequencies (Kjeldsen et al.,

2008)), they have largely been stop-gap measures made in lieu of utilizing detailed treatments of

convection and the solar atmosphere near the upper boundary. Line blanketed solar atmosphere

models date to the 1940s (Strömgren, 1940; Barbier, 1946), and grids of stellar atmosphere models

for a range of Teff and surface gravities, log g, followed shortly thereafter (Ströemgren et al.,

1944; Rudkjobing, 1947). The computation of detailed line blanketed stellar atmosphere models

is computationally expensive, however, compared with the construction of stellar stellar interior

models. That makes the use of modern model atmospheres inconvenient for use in stellar evolution

codes, where details such as the Tkin(τR) structure of the atmosphere are needed on demand for

arbitrary values of Teff and log g in order to provide accurate upper boundary conditions for the

thousands of stellar structure models used to compute the evolution and seismology of a star.
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Several studies have investigated the use of model stellar atmosphere structures as an upper

boundary condition for stellar interior models, none of which have compared asteroseismological

oscillation modes to observations, nor to other models. Morel et al. (1994) compared the radiative

flux found from the diffusion approximation, as used in stellar interior modelling, to the values

calculated from the ATLAS9 model atmospheres of Kurucz et al. (1991) and found that the

fluxes agreed for τR ≥ 10 in solar-type stars. However, that does not appear to be a necessary

condition for fitting a detailed atmosphere onto a stellar interior model. Montalbán et al. (2001)

computed evolutionary tracks for low metallicity (metal mass fraction Z = 2 × 10−4) 0.8 M�

stars joined to ATLAS9 model atmospheres at values of τR = 1, 10, and 100. Two sets of interior

and atmospheric models were computed, one using Mixing Length Theory, and another using

Full Spectrum Turbulence. They found that, so long as convection was treated using the same

formulation in the interior as in the atmosphere, the evolutionary tracks differed very little when the

interior model’s outer boundary conditions were set at different values of τR. For models utilizing

Mixing Length Theory, in particular, the evolutionary tracks are nearly indistinguishable from the

main sequence through the sub-giant branch of the HR diagram, with the red giant branch showing

a spread in Teff of approximately 30 K at the tip.

More recently, VandenBerg et al. (2008) used the MARCS stellar atmosphere code (Gustafsson

et al., 2008) to produce line blanketed stellar atmospheres having [Fe/H] values of both 0.0 and -2.0,

using solar elemental abundances from both Aufdenberg et al. (1998) and Asplund et al. (2005),

under the assumption of local thermodynamic equilibrium for use in setting the outer boundary

conditions of stellar evolution models, and tested τR = 2/3 (the photosphere) and 100 as the outer

boundary point. Care was taken to use the same abundances of He and the most important heavy

metals, as well as the same opacities and thermodynamics, in the atmospheric and interior models.

For comparison, evolutionary tracks of models utilizing a grey atmosphere and the Krishna Swamy

(1966) (KS66) atmosphere were also calculated. They found the evolutionary tracks for the τR =

2/3 and τR = 100 fitting points were nearly identical, and concluded that, in the case of a 1 M�

star with solar metallicity, the Teff scale is essentially independent of the choice of τR for the outer
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boundary.

The evolutionary tracks created using the MARCS atmosphere were found to lie “very close” to

those found using the grey atmosphere, with the MARCS model atmospheres leading to a red giant

branch that has a ∼20 K warmer Teff than the grey atmosphere. The red giant branch calculated

using the KS66 atmosphere was found to be ∼150 K hotter than those found using the MARCS

atmosphere. The comparisons were performed utilizing the appropriate mixing length parameters,

α, to satisfy solar constraints (α = 2.0 for KS66, 1.71 for the grey atmosphere, and 1.80 for the

MARCS atmosphere). Comparisons were also made between models using MARCS atmospheres

that employed macroturbulence and MARCS atmospheres that did not, with the evolutionary tracks

diverging only along the red giant branch, and even then only with a spread of ∼30 K in Teff .

While stellar structure and evolution calculations are insensitive to the changes introduced

by using line blanketed stellar atmosphere models, the question is still open as to whether

such a detailed treatment of the structure of the near-surface layers of stars will improve the

agreement between predicted and observed stellar surface oscillation frequencies. Moreover, to

date only model atmospheres computed under the assumption of local thermodynamic equilibrium

(LTE) have been used in such studies. in LTE model atmospheres the strengths of absorption

lines in the spectral energy distribution (SED) are calculated using Maxwellian-Boltzmann and

Saha-Boltzmann statistics, which depend only on the local kinetic temperature of the gas to

determine the energy level populations of atoms, ions, and molecules in the stellar atmosphere. A

more realistic treatment of the atmosphere beyond the inclusion of line blanketing, i.e. atmospheres

computed without the simplifying assumption of LTE and that account for deviations from the

Boltmann, Saha, and Planck distributions caused by non-local radiation transfer, has yet to be

studied as an outer boundary condition for stellar structure models.

Recently, Gruberbauer et al. (2012) developed a Bayesian analytical treatment for

asteroseismological grid fitting, and in doing so removed the need to apply semi-empirical

corrections to the observations. Using their Bayesian methods to study asteroseismological models

of the Sun, Gruberbauer & Guenther (2013) found indications of systematic errors in stellar
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evolutionary models.

In this thesis we use a grid of line-blanketed LTE stellar atmospheres, and a single non-LTE

solar atmosphere, to generate high resolution opacity spectra for stars with Teff and log g values

similar to those of the Sun, from which we can quickly interpolate temperature structures on the fly

for use in stellar models of near solar-type stars as they evolve on the main sequence. In Chapter 2,

we describe the computational modelling of, and the methods used to interpolate within, our grid of

models. In Chapter 3, we present the results of comparing models of the solar atmosphere computed

by interpolating within our grid of models to an exact LTE solar atmosphere, and of comparing our

exact NLTE solar atmosphere to the exact LTE solar atmosphere. Finally, in Chapter 4, we reiterate

our main conclusions, and discuss the possible directions in which future research could continue.



Chapter 2

Methods

2.1 Key Concepts

2.1.1 Local thermodynamic equilibrium

It is often convenient to consider stars as black body radiators, and so it is assumed, to first

approximation, that stars are in strict thermodynamic equilibrium (STE). Under STE the distribution

of energy levels for both gas particles and photons can be determined entirely by Tkin. Under the

condition of strict thermodynamic equilibrium a system is isothermal and experiences no net flow

of energy. This is obviously not the case for stars, as energy is observed to flow outward form the

stellar interior and through the surface by convection and electromagnetic radiation. For this energy

to be transported from the inner regions of a star to the outer regions, a temperature gradient must

exist, such that it is hotter deeper in the stellar interior than it is near the stellar surface.

While stars are not in strict global thermodynamic equilibrium, it is still possible to use the

value of Tkinat a given location to describe an approximation of thermodynamic equilibrium over a

localized region. This approximation, known as local thermodynamic equilibrium (LTE), is valid so

long as the change in temperature over the local mean free path of a photon at that location, `, can

be treated as negligible. When that occurs, radiation is effectively trapped in the local environment

7
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long enough to come into thermal equilibrium with the surrounding matter, and thermodynamic

equilibrium is achieved locally.

The kinetic temperature of the gas, Tkin, is defined by the Maxwell-Boltzmann distribution of

particle speeds,
n(v)

N
dv = 4πv2

(
m

2πkBTkin

)2/3

e
−mv2

2kTkin dv, (2.1)

where n(v)dv is the number of particles of mass m with speeds between v and v + dv, N is the

total number of particles in the system, and kB is the Boltzmann constant. In LTE, as in STE, Tkinis

set equal to the excitation temperature, Texc, as defined by the Boltzmann distribution of excitation

states,
Ni

N
=

gie
−Ei/(kBTexc)∑∞

j=1 gje
−Ej/(kBTexc)

, (2.2)

where Ni is the number of particles occupying the ith excitation state, N =
∑

iNi, Ei the energy

of the ith excitation state, and gi is the degeneracy of the ith state, as well as to the ionization

temperature, Tion, as defined by the Saha distribution of ionization states,

nk+1,1

nk,1
ne =

gk+1,1

gk,1
ge

(
2πmekBTion

h2

) 3
2

e
− χk
kBTion , (2.3)

where nk+1,1

nk,1
is the population ratio between the ground state of the kth and (k + 1)th ionization

stages, ne is the electron density, gk,1 and gk+1,1 are the ground state degeneracies of the kth and

(k+1)th ionization stages, respectively, ge = 2 and is the degeneracy of the electron in a given energy

level, me is the mass of the electron, h is Planck’s constant, and χk is the ground state ionization

energy of the kth ionization stage and also to the radiation temperature, Trad, which is defined by

the Planck distribution of photon wavelengths,

Bλ =
2hc2

λ5

1

e
hc

λkBTrad − 1
(2.4)

where Bλ is the intensity of photons of wavelength λ.
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2.1.2 The Rosseland mean opacity

Deep in the atmosphere of a star, where the mean free path of a photon is similar to that of

gas particles, and where the approximation of LTE holds, it is useful to take an average of the

monochromatic extinction coefficient over all wavelengths. While extinction from bound-bound

(b-b) processes is not negligible, and cannot be ignored, it is useful to have the average extinction

coefficient closely resemble the background continuum opacity. The appropriate average to take

in this case is the Rosseland mean average of the extinction coefficients, which is a flux-weighted

harmonic mean (described below) and which arises from the averaging of the radiative transport

equation over all wavelengths. It is given by the equation

1

κR
=

∫∞
0

1
κλ

∂Bλ
∂T dλ∫∞

0
∂Bλ
∂T dλ

, (2.5)

where κλ is the monochromatic linear extinction coefficient, ∂Bλ∂T is the temperature derivative of

the Planck function, and κR is the Rosseland mean extinction coefficient.

In stellar interior modelling, we are often interested in finding the net bolometric luminosity

being radiated by a star. In an optically thick medium, such as that found in the stellar interior, that

is conveniently done using the radiative diffusion equation,

L = −
64πr2σT 3

kin

3κρ

∂Tkin

∂r
, (2.6)

where L is the bolometric luminosity emitted by the star, σ is the Steffan-Boltzmann constant, and κ

is the grey extinction coefficient. The equation also holds for specific luminosity, Lλ(λ), in the case

where the specific extinction coefficient, κλ is substituted for κ. L is found from Lλ by integrating

over all wavelengths. Doing so, one finds that the appropriate grey opacity coefficient to use in the

diffusion equation is the Rosseland mean extinction coefficient, Eq. 2.5.
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2.1.3 Optical depth

In the atmosphere of a star, the average distance a photon of wavelength λ travels between

interactions with atoms or molecules is given by its mean free path,

`λ =
1

κλ
, (2.7)

where `λ has units of cm, and κλ (cm−1) can be treated as the fraction of photons of wavelength λ

(Å) that are removed from a beam (either by absorption of scattering) for every centimetre travelled.

It follows that

dτλ = −κλds, (2.8)

where dτλ represents the total fraction of photons of wavelength λ that are removed from a beam

passing through a medium of geometric thickness ds.The negative sign comes from the fact that

when we observe light from a star we are looking along the beam in the direction opposite to that

which the photons travel.

An optical depth scale can be defined for any extinction coefficient. Just as it can be useful to

define an average extinction, such as κR, in a stellar atmosphere, it is also convenient to use such an

average extinction to define an optical depth scale. In the case of κR we define the corresponding

Rosseland mean optical depth, τR (see Section 2.3 for details), which is commonly use to define the

location of the photosphere of the Sun.

2.2 PHOENIX

2.2.1 The grid of models

To calculate the grid of models, we have used version 15 of the multipurpose stellar atmosphere

computer code PHOENIX (Hauschildt et al., 1999). PHOENIX was designed to be very flexible,
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and, in addition to stars, has been used to generate model atmospheres for novae and supernovae,

accretion disks, white dwarfs, and sub-stellar objects such as brown dwarfs and planets. It is capable

of calculating model stellar atmospheres of varying types: static or expanding, plane-parallel

or 1D spherical geometry, line-blanketed or not, and LTE or NLTE (Aufdenberg et al., 1998).

For the purposes of this thesis, PHOENIX was used to compute static, spherical, line-blanketed

stellar model atmospheres and synthetic spectra under the approximation of local thermodynamic

equilibrium (LTE). The models in our grid do not include the effects of rotation, magnetic

fields, X-ray heating, or stellar winds, nor do they include the chromosphere and corona. The

chromosphere and corona can be safely neglected because we are interested in the properties of the

atmosphere at τR = 2/3, which is much deeper in the atmosphere than the temperature minimum

where the chromospheric temperature begins to rise. One additional non-local thermodynamic

equilibrium (NLTE) model atmosphere and synthetic opacity spectrum was computed for the sake

of comparison, which is discussed in Section 2.5.

The grid itself contains 28 spherical atmospheric models, each with 64 layers, spanning a range

in Teff from 5600 K to 5900 K, sampled every ∆Teff = 50 K, and in log g from 3.5 to 5.0, sampled

every ∆ log g = 0.5 dex. All models in the grid are computed with a mixing length parameter,

α = 1.0, and with a microturbulent velocity dispersion, ξT = 1.0 kms−1. Each model atmosphere

is computed with solar metallicity (
[

A
H

]
= 0.0) and utilize the solar abundance determinations

of Grevesse & Sauval (1998) to ensure consistency with the solar interior models for which they

are to act as an outer boundary condition. More recent solar abundance determinations based on

three-dimensional (3D) hydrodynamical models of the Sun exist (e.g. Asplund et al. (2005) and

Asplund et al. (2009)) and predict values of
[

C
H

]
and

[
N
H

]
that are 19% lower, and values of

[
O
H

]
and

[
Ne
H

]
that are 28% lower, than those recommended by Grevesse & Sauval (1998). To compute

spherical models, PHOENIX requires as input the effective radius, Reff , where the standard optical

depth, τSTD, is unity (Short & Hauschildt, 2003). For our models, τSTD is taken as τ12000, the

optical depth resulting from continuous extinction processes at λ = 12000 Å. To calculate Reff ,

each model was assumed to have a mass of 1M�. Newton’s equation of universal gravitation,
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10log g =
GM�
R2

eff

, (2.9)

was then solved for Reff using the necessary value of log g.

2.2.2 Creating the models in PHOENIX

There are two steps to creating a model stellar atmosphere and corresponding synthetic stellar

opacity spectrum in PHOENIX. The first step is to compute the vertical temperature, pressure,

and density structures. For a given Teff , Reff , and log g, PHOENIX solves the time independent,

spherically symmetric, special relativistic equation of radiative transfer at all input values of τSTD,

and uses the conditions of thermal equilibrium and hydrostatic equilibrium to compute the kinetic

temperature structure of the atmosphere.

The radiative transfer equation (RTE) is given by

e
∂I

∂r
+

∂

∂µ
(fI) + g

∂

∂λ
(λI) + hI = η − χI, (2.10)

where

e(r, µ) = γ(µ+ β), (2.11)

f(r, µ) = γ(1− µ2)

[
1 + βµ

r
− γ2(µ+ β)

∂β

∂r

]
, (2.12)

g(r, µ) = γ

[
β(1− µ2)

r
+ γ2µ(µ+ β)

∂β

∂r

]
, (2.13)

h(r, µ) = γ

[
β(1− µ2)

r
+ γ2(1 + µ2 + 2βµ)

∂β

∂r

]
, (2.14)

and r is the radial coordinate, I(r, µ, λ) is the specific intensity scaled by r2, µ is the cosine of the

direction angle such that µ = cosφ, β is the velocity as a fraction of the speed of light in a vacuum,

β = v/c, γ is the Lorentz factor, γ = (1 − β2)−1/2, η(r, λ) is the emissivity, and χ(r, λ) is the

total extinction coefficient. In this thesis we are only considering static atmospheres, and so we are
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solving the RTE for the case where β = 0 and γ = 1. The boundary conditions used to solve the

RTE are I(r, µ = −1, λ) = 0 at τSTD = 0 and I(r, µ = 1, λ) = Bλ at τSTD = τmax, which applies

when there is no radiation incident on the star’s surface, and the outgoing intensity at the bottom of

the atmosphere is given by the Planck function.

PHOENIX solves the radiative transfer equation and the vertical temperature, pressure, and

density profiles iteratively, with each iteration introducing temperature corrections until the structure

converges and the user-selected number of iterations is reached. Convergence is achieved when the

relative difference between the bolometric flux calculated by PHOENIX and that predicted from

exact thermal equilibrium, F = σT 4
eff , is ≤ 1%. For our LTE models convergence was achieved in

10 iterations or fewer.

For our purposes, the process involved taking a pre-existing PHOENIX stellar atmospheric

structure model that had properties close to those we wished to investigate and seeding the structure

convergence calculations with it. That allowed us to keep the number of iterations small and

increased the chance of the structure converging.

The next step was to run PHOENIX in its spectral synthesis mode. To do that, the wavelengths,

λ, and wavelength spacing, ∆λ, over which the star’s spectrum is to be sampled is input into

PHOENIX. To ensure our spectra were fully sampled, our sampling was chosen such that the

effective spectral resolution, λ/∆λ, was held at a value of at least 2× 105 throughout the spectrum.

The sampling over the full spectrum is given in Table 2.1. We ran PHOENIX in a special mode such

that it printed out the values of κλ at all λ and τSTD values.

2.2.3 Calculating line opacities

To calculate line opacities, PHOENIX utilizes an atomic line list that includes 47 million atomic

lines, and a molecular line list that includes up to 550 million molecular lines. Rather than utilizing

precomputed opacity sampling tables, PHOENIX utilizes a direct opacity sampling method for both

atomic and molecular lines. At the beginning of each iteration, PHOENIX selects the relevant LTE
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Table 2.1: Sampling of the spectra.

Range [Å] Sampling
2070–5000 ∆λ = 0.010 Å
5000–6000 ∆λ = 0.013 Å
6000–7000 ∆λ = 0.016 Å
7000–8000 ∆λ = 0.020 Å
8000–11000 ∆λ = 0.023 Å
11000–13000 ∆λ = 0.027 Å
13000–15000 ∆λ = 0.037 Å
15000–17000 ∆λ = 0.050 Å
17000–19000 ∆λ = 0.060 Å
19000–21000 ∆λ = 0.070 Å
21000–23000 ∆λ = 0.080 Å
23000–25000 ∆λ = 0.090 Å

lines from the atomic and molecular line lists, and sums their contributions to calculate the total

line opacity at an arbitrary wavelength point. That allows PHOENIX to handle both regular and

irregular wavelength grids, which is an important feature for NLTE calculations. It also permits the

use of detailed and depth dependent line profiles during the iterations. It is particularly useful for

computing the line opacities in cool dwarf stars, as the line forming regions in cool dwarfs can span

large ranges in pressure and temperature, with the core of a line forming in different layers from the

wings of the same line. Whether a line is included in that summation or not is determined by the

relative strength of the line extinction coefficient, κl as compared to the extinction coefficient of the

continuum at the same wavelength, κc. The threshold for inclusion in the model atmosphere is an

input parameter chosen by the user. In our models, as in Aufdenberg et al. (1998), it has been set to

κl/κc = 10−4.
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2.3 Computing the Rosseland mean optical depth scale

2.3.1 Computing the Rosseland mean opacity, κR

With PHOENIX run in opacity output mode, the program writes out monochromatic extinction

coefficients, κλi
(units: cm−1), computed for a variety of physical processes, separated into different

categories by the code, at each sampled wavelength in the spectrum, at each of the 64 layers of

the atmosphere. The categories include: absorption by continuous processes such as atomic b-f

transitions and H− ionization; scattering resulting from continuous processes; strong atomic lines

caused by absorption, modelled using Voigt profiles; weaker atomic lines caused by absorption,

modelled using Gaussian profiles; strong atomic lines caused by scattering events, modelled using

Voigt profiles; weaker atomic lines caused by scattering events, modelled using Gaussian profiles;

strong molecular lines caused by absorption, modelled using Voigt profiles; weaker molecular lines

caused by absorption, modelled using Gaussian profiles; strong molecular lines caused by scattering

events, modelled using Voigt profiles; and weaker molecular lines caused by scattering events,

modelled using Gaussian profiles. There is also a separate category, which is neglected in the

LTE models but is important in the NLTE model discussed in Section 2.5, that takes into account

departures from LTE values for the extinction coefficients. For the 890115 sampled wavelengths

in our spectra, that produces over 5 × 108 linear extinction coefficients per star. They are used

to calculate the value of the Rosseland mean extinction coefficient at each of the 64 layers of the

atmosphere. Using Fortran 2003, we developed a code to solve the finite difference form of the

Rosseland mean opacity equation, 2.5:

1

κR
=

∑
i

1
κλi

∂Bλi
∂T ∆λi∑

i

∂Bλi
∂T ∆λi

, (2.15)

where the sum is over the range in Table 2.1.

Here, κR is the Rosseland mean extinction coefficient, ∆λ is the difference between the
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currently sampled wavelength and the previously sampled wavelength, and the partial derivative

∂Bλ
∂T is the rate at which the Planck function at the wavelength of interest changes with temperature

in the star’s atmosphere. ∂Bλ∂T can be solved analytically to find

∂Bλ
∂T

=
2h2c3

kT 2λ6

 e
( ch
λkBT

)

(e
( ch
λkBT

) − 1)2

 , (2.16)

where kB is the Boltzmann constant. The equation that our code ultimately solves takes the form

1

κR
=

∑
i

1
κλi

λ6
i

[
e
( ch
λikBT

)

(e
( ch
λikBT

)
−1)2

]
∆λ

∑
i

1
λ6

i

[
e
( ch
λikBT

)

(e
( ch
λikBT

)
−1)2

]
∆λ

. (2.17)

To solve the equation computationally, care must be taken regarding the order in which the

mathematical operations are performed. Because of the finite precision of floating point

representations of real numbers, multiplying terms in the wrong order can lead to values being

rounded to zero. To overcome that, all values in our code are recorded in double-precision variables.

The constant ch
kB

was pre-computed and found to be 1.43877695998 cm−1K−1. Tλ is then found,

and the exponential e
ch/kB
Tλ is computed. Next, e

ch/kB
Tλ (e

ch/kB
Tλ − 1)−2 is found, and is multiplied by

λ−6. To compute the numerator, it is divided by κλ. Finally, ∆λ = λi − λi−1 is calculated. The

sum from λ = 2070 Å to 25000 Å is performed at each of the 64 layers of the atmosphere, with the

result for each layer being saved in two linear arrays, kr1 and kr2, each with a dimension of 64. κR,

itself an array with a dimension of 64, is found by dividing the array kr2 by the array kr1.

To verify that κR is being calculated correctly for the stellar atmosphere, we calculated it over

a small waveband and confirmed that κR was approximately equal to the background continuum

extinction. Figure 2.1 shows κλ, in red, and κR, in blue, over the range 7500 Å ≤ λ ≤ 7505 Å.

As expected, κR, with a value of 1.66817735828 × 10−8cm−1, is only slightly larger than the

continuum value of κλ.
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Figure 2.1: A comparison of κλ and κR over a limited wavelength range. The red line represents
the value of κR calculated over the range 7500Å ≤ λ ≤ 7505Å, while the blue curve shows the
values of κλ over the same part of the spectrum.
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2.3.2 Computing the Rosseland mean optical depth

Once the Rosseland mean extinction coefficients are known at the 64 depths of the stellar

atmosphere, they can be integrated over the geometric depth of the atmosphere to find the Rosseland

mean optical depth, τR, at each of the 64 depth points. Analytically, it is calculated using the

equation

τR = −
∫ r

R
κR(r)dr, (2.18)

where κR is the volume (linear) extinction, in units of cm−1, R is the outer radius of the star

measured in cm, defined at τSTD = 0, and r is the distance between a point in the star’s atmosphere

and the star’s centre (also measured in cm), i.e. R− r is the depth into the atmosphere at which τR

is being calculated.

To compute that, our code uses a finite difference form of equation 2.18,

τR,n = −
n∑

i = 2

κR,i∆ri, (2.19)

where n is the index of the atmospheric layer, counted from the top of the atmosphere, ∆ri =

ri − ri−1, and ri is the geometric radius of the ith. The layer i = 1 was neglected because it is the

upper boundary condition, and has an artificially low value of κR.

2.3.3 Comparison of results from the MARCS and PHOENIX codes

To check that the Tkin(τR) relationship resulting from the LTE PHOENIX output is consistent with

published results, we compared our output for the Sun with a pre-existing one-dimensional (1D)

spherical LTE model of the solar atmosphere computed using the MARCS stellar atmosphere code

(Gustafsson et al., 2008). The MARCS output consists of Tkin, τR, and the Rosseland mean of the

mass extinction coefficient in units of cm2g−1, κR,m, among other values. Our PHOENIX output

included Tkin, the mass density, ρ, and the linear extinction coefficient, κλ. To compare the MARCS
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and PHOENIX extinction coefficients, PHOENIX’s linear extinction coefficients were converted to

mass extinction coefficients, using the formula

κR,m =
κR

ρ
. (2.20)

Figure 2.2 shows the relationship between Tkin and κR,m for the MARCS model, shown in red,

and the PHOENIX model, shown in blue. Figure 2.3 shows the predicted Tkin profile between the

top of the atmosphere, τR ≈ 0, and τR ≈ 100 for the two models, where the colours used are the

same as in Figure 2.2. The agreement between the two models is very good, illustrating that the

physics and computations underlying the PHOENIX values are consistent with those used in the

literature.

The intercepts between the T (τR) relationships and the vertical black line represent the value of

Tkin at τR = 2/3 which, under the approximation of LTE and a grey opacity, defines the value of

Teff . The MARCS relation intercepts at a value of Tkin ≈ 5916 K, while the PHOENIX relationship

intercepts at a value of Tkin ≈ 5780 K. The PHOENIX model had Teff = 5780 K as an input

parameter, whereas the MARCS model had Teff ≈ 5777 K as an input parameter.

2.4 Interpolating within the grid

We are interested in interpolating several quantities, namely Tkin, κR, τR, the mass density, ρ, the

radial position R, the gas pressure, Pgas, and the electron pressure, Pe, each of which are functions

of τSTD, Teff , and log g. When interpolating models within the grid, we are interpolating the 64

values of each of the quantities within Teff and log g at each value of τSTD. When interpolating

these quantities within a model, we are interpolating them among the 64 values of τSTD over which

each quantity is sampled.

We exploit the fact that PHOENIX uses τSTD as the independent variable for the vertical

structure of the models, and we have used the same τSTD values for each model in the grid. This
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Figure 2.2: The computed relationship between Tkin and κR for the Sun. The red line represents the
predictions from the MARCS model, while the blue line is the prediction from PHOENIX.
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Figure 2.3: Computed T(τR) relationships for the Sun. The red line represents the predictions from
the MARCS model, while the blue line is the prediction from PHOENIX. The black vertical line
illustrates the value τR = 2/3.
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is particularly convenient for us, as it allows us to interpolate Tkin(τSTD), κR(τSTD), and τR(τSTD)

directly, without first having to interpolate them onto a common independent variable.

As we have interpolated κR(τSTD) and R(τSTD) in addition to τR(τSTD), it is possible to

compute τR from the interpolated values of κR and R and compare the results to the values of

τR which have been interpolated within the grid. That is done in Section 2.4.4.

2.4.1 Interpolation methods

We explored four different methods of interpolating the quantities within our grid of models: linear,

quadratic, least-squares quadratic, and cubic spline interpolation.

Linear and quadratic interpolations

We investigated two-point and three-point interpolation methods. The linear interpolation takes

two ordered pairs and determines a value of the ordinate for an input abscissa using a straight

line fit connecting the two ordered values. The quadratic interpolation takes three ordered pairs,

(xi−1, yi−1), (xi, yi), and (xi+1, yi+1), and determines the value at yout for the point of interest,

xout, which is defined such that xi ≤ xout ≤ xi+1, using a quadratic fit to the trio of points.

Least-squares quadratic interpolation

We also investigated a quadratic interpolation method that uses four data points, (xi−1, yi−1),

(xi, yi), (xi+1, yi+1), and (xi+2, yi+2) distributed around xout, i.e. xi ≤ xout ≤ xi+1 . The method

finds a least-squares quadratic fit to the four points surrounding xout, and then computes yout(xout)

from the parabola.

Cubic spline interpolation

We also investigated an exact, albeit piecewise, four-point interpolation in the form of a cubic

spline. A cubic spline is a piecewise cubic curve with continuous first and second derivatives.
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There are several methods that can be used to find cubic splines from sets of three or more data

points. The method utilized by the library we used solves the system of equations to find the exact

cubic polynomial defined by the four data points, (xi−1, yi−1), (xi, yi), (xi+1, yi+1), and (xi+2, yi+2)

distributed around the desired abscissa, i.e. xi ≤ xout ≤ xi+1. The process is repeated for every

interval (xi, xi+1) in the data set, resulting in an interpolated function that is smooth and twice

differentiable.

Basic Interpolation Benchmarks

Benchmarks were run on each method listed above by performing a representative interpolation

within our grid of models 100,000 times and measuring the amount of time taken and memory used

for the procedure to finish. Each interpolation among the models involved 11 calls to the desired

interpolation function.

The linear interpolation method was found to take an average of 4.91 ms of CPU time and a

maximum of 2624 byes of memory per grid interpolation. The quadratic method similarly used a

maximum of 2624 byes of memory, but saw the average CPU time per grid interpolation jump by

34% relative to the linear method to 6.59 ms. Interpolation by the least-squares quadratic method

fared the worst in the benchmarks, with an average CPU time per grid interpolation of 18.30 ms – an

increase of 273% compared to the linear interpolation method – and a maximum memory usage of

4768 bytes, while interpolation by cubic splines exhibited middling results of 3488 bytes of memory

used at peak memory usage and an average CPU run time of 8.90 ms (an increase of 81% over the

linear method) per grid interpolation.

2.4.2 Interpolation order

As we are interpolating among a two-dimensional (2D) grid of stellar atmospheres, interpolations

needed to be performed in both Teff and log g. Given the relatively small size of the grid, it was

determined that a two-step interpolation method was most appropriate.
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To maintain consistency, bilinear, biquadratic, and bicubic interpolations were explored. The 2D

interpolation methods involve performing a linear, quadratic, or cubic interpolation, respectively,

first along one axis, and then performing an interpolation of the same order along the second axis.

To determine whether the order in which our interpolations were performed had an impact on the

final result, PHOENIX was used to compute a set of 12 additional model atmospheres. Seven of the

models were made holding log g constant at log g� = 4.44 and varying Teff from 5600 K to 5900 K

in intervals of ∆Teff = 50 K, while four more were made holding Teff constant at Teff,� = 5780 K

and varying log g from 3.5 to 5.0 in intervals of ∆ log g = 0.5. One final model was produced using

the exact values of the Sun, Teff,� = 5780 K, log g� = 4.44.

It is worth noting that the step size in surface gravity, g, in our grid is large compared to the step

size in Teff . ∆ log g = 0.5 represents a change in g by a factor of ∼312%, where ∆Teff = 100K

represents a change in Teff of∼2%. The grid sampling rates are typical of published model grids, as

stellar spectra are significantly more sensitive to changes in Teff than changes in g (let alone log g).

It is readily seen in the Steffan-Boltzmann law (L ∝ gT 4) and the diffusion equation (L ∝ gT 3),

among others.

Interpolating Tkin(τSTD) within Teff to Teff = Teff,� with log g held constant at log g� resulted

in a root-mean-square (RMS) deviation of interpolated to exact Tkin(τSTD), σT , of 0.006%, while

interpolating Tkin(τSTD) among log g to log g = log g� with Teff held constant at 5780 K resulted

in σT of 0.012%. It was therefore determined that interpolations within the grid of models was

least sensitive to interpolations among Teff , therefore interpolations within the grid were performed

within Teff first.

Interpolations to Teff,� were performed within Teff for each value of log g in the grid using

each of the methods described above. They were compared with the values from the exact models

computed in PHOENIX with Teff = 5780K and the corresponding value of log g. They were

then interpolated over log g to find the values at the solar values of Teff and log g. Finally, the

resulting values were compared to those from the exact solar model. The process was then repeated,

interpolating first over log g and then over Teff . The results are presented in Table 2.2, from which
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we can see that for each interpolation method, the results differ negligibly regardless of the order

in which the interpolations are performed. For the sake of consistency, all 2D interpolations in this

thesis are performed over Teff followed by those in log g.

2.4.3 Comparison of the interpolation methods

As can be seen from Table 2.2, with the exception of the least-squares quadratic method, increasing

the number of data points over which an interpolation is performed increases, on average, the

agreement between the interpolated atmosphere’s structure and that of the exact solar model. That

holds in general throughout the atmosphere. Figure 2.4 shows the relative difference between

Tkin(τSTD) from the exact solar atmosphere and the values found from the four interpolation

methods discussed in section 2.4. The cubic spline interpolation, shown in green, is nearest

the exact solar value almost throughout the entire atmosphere. The results from the linear

interpolation, illustrated with the blue line, and the quadratic interpolation, shown in red, are largely

nearly indistinguishable, and are intermediate between the cubic spline results and those of the

least-squares quadratic interpolation, shown in orange.

Similar results are seen when we examine the structure of other properties of the atmosphere.

Figure 2.5 shows the relative differences from comparing the radial height values, R(τSTD), that

result from the different interpolation methods to that from the exact solar model. Each interpolation

method misestimates the radial position of the atmospheric layers by a constant factor, with the

quadratic and cubic spline methods being most accurate, and the least-squares quadratic method

being the least accurate. Of the four interpolation methods, only linear interpolation overestimates

the radius of the star, and does so by less than 2%.

Figure 2.6 shows the relative differences between the interpolated Rosseland mean opacities,

κR(τSTD), and those from the exact solar model. Once again, the values arrived at via least-squares

quadratic interpolation fare the worst, deviating from the exact solar value by up to 12%. As

expected, linear interpolation is next best, over-estimating the exact solar values by at most 5.5%,
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Table 2.2: Root Mean Square Deviations of the relative differences comparing modelled and
interpolated stellar atmosphere properties at log g = 4.44, Teff = 5780 K.

Over Teff then log g

Variable σ σ(τSTD < 1)

Linear Interpolation:
Tkin 0.030 % 0.032 %
κR 5.136 % 5.293 %
τR 0.039 % 0.037 %
ρ 2.171 % 2.010 %
R 1.729 % 1.713 %
Pgas 2.184 % 2.037 %
Pe 1.472 % 1.585 %
Quadratic Interpolation:
Tkin 0.030 % 0.032 %
κR 2.702 % 2.810 %
τR 0.026 % 0.025 %
ρ 0.883 % 0.812 %
R 1.240 % 1.229 %
Pgas 0.904 % 0.842 %
Pe 0.634 % 0.677 %
Least-Square Quadratic Interpolation:
Tkin 0.035 % 0.036 %
κR 10.499 % 10.954 %
τR 0.033 % 0.024 %
ρ 2.905 % 2.605 %
R 3.520 % 3.489 %
Pgas 2.923 % 2.645 %
Pe 1.550 % 1.686 %
Cubic Spline Interpolation:
Tkin 0.026 % 0.027 %
κR 2.439 % 2.576 %
τR 0.022 % 0.023 %
ρ 0.459 % 0.381 %
R 0.708 % 0.702 %
Pgas 0.439 % 0.358 %
Pe 0.121 % 0.089 %

Over log g then Teff

σ σ(τSTD < 1)

Linear Interpolation:
0.030 % 0.032 %
5.136 % 5.293 %
0.039 % 0.037 %
2.171 % 2.010 %
1.729 % 1.713 %
2.184 % 2.037 %
1.472 % 1.585 %
Quadratic Interpolation:
0.030 % 0.032 %
2.702 % 2.810 %
0.026 % 0.025 %
0.883 % 0.812 %
1.240 % 1.229 %
0.904 % 0.842 %
0.634 % 0.677 %
Least-Square Quadratic Interpolation:
0.035 % 0.036 %
10.499 % 10.954 %
0.033 % 0.024 %
2.905 % 2.605 %
3.520 % 3.489 %
2.923 % 2.645 %
1.550 % 1.686 %
Cubic Spline Interpolation:
0.026 % 0.027 %
2.439 % 2.576 %
0.022 % 0.023 %
0.459 % 0.381 %
0.708 % 0.702 %
0.439 % 0.358 %
0.121 % 0.089 %

Note: The tables on the left shows values where the interpolation was done over Teff first, followed
by log g. The tables on the right shows values where the interpolation was done first over log g.
σ represents the RMS deviation over the entire atmosphere, whereas σ(τSTD < 1) is the RMS
deviation computed only for values of τSTD < 1.
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while the quadratic and cubic spline methods misstimate κR by an equal magnitude, though the

quadratic interpolation overestimates the exact solar values, while the cubic spline interpolation

underestimates them.

Figure 2.7 shows the results of interpolating τR(τSTD) using each of our four interpolation

methods compared with calculating τR from the exact solar model directly. In the upper atmosphere,

quadratic and cubic spline interpolations produce nearly indistinguishable results, diverging only for

log τSTD ≤ −4.5. For log τSTD ≤ −4, linear interpolation produces the least accurate values of τR,

but produces the most accurate values for −4 ≤ log τSTD ≤ −1.

The most accurate interpolations are found for Tkin(τSTD) and τR(τSTD). Across all

interpolation methods, the displacement from the exact solar value of Tkin(τSTD) is found to be

. 0.05%, while in τR(τSTD) it is . 0.1%. The interpolations are even more accurate in the

neighbourhood of τSTD ≈ 2/3, which is of great convenience since τSTD ≈ τR at that depth

for all of the above interpolation methods.

Deep in the atmosphere, at log τSTD & 0, the results are significantly more difficult to interpret

than those found in the upper atmosphere. With the exception of R, each quantity experiences

a greater fluctuation in the relative differences, with the greatest irregularity occurring between

0 . τSTD . 1. It is in that region that the atmosphere becomes increasingly opaque. Convection

begins here, the Tkin(τR) relationship takes on a steeper profile, and the rate at which values change

with depth increases greatly. That region is also covered by only a few layers in PHOENIX, making

interpolation here very difficult.

We do not consider the least-squares quadratic interpolation method any further in this thesis,

as it consistently yields the least accurate results.

2.4.4 Interpolating τR or κR

In the procedure described above, we calculate τR(τSTD) for each model in our grid and interpolate

to the solar parameters. Alternatively, we can interpolate κR(τSTD) and R(τSTD) from our grid to
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Figure 2.4: Difference between Tkin(τSTD) interpolated to Teff = 5780 K, log g = 4.44 and the exact
solar value. The green line represents the results of a cubic spline interpolation, the blue line linear
interpolation, the red line quadratic interpolation, and the orange line is the result of the least-squares
quadratic interpolation method.
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Figure 2.5: Relative difference between R(τSTD) interpolated to Teff = 5780 K, log g = 4.44 and the
exact solar value. The green line represents the results of a cubic spline interpolation, the blue line
a linear interpolation, the red line a quadratic interpolation, and the orange line is the least-squares
quadratic interpolation method.
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Figure 2.6: Relative difference between κR(τSTD) interpolated to Teff = 5780 K, log g = 4.44 and the
exact solar value. The green line represents the results of a cubic spline interpolation, the blue line
a linear interpolation, the red line a quadratic interpolation, and the orange line is the least-squares
quadratic interpolation method.
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Figure 2.7: Relative difference between τR(τSTD) interpolated to Teff = 5780 K, log g = 4.44 and the
exact solar value. The green line represents the results of a cubic spline interpolation, the blue line
a linear interpolation, the red line a quadratic interpolation, and the orange line is the least-squares
quadratic interpolation method.
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the solar parameters, and calculate τR(τSTD) from the interpolated values, τκR(τSTD), using Eq.

2.19.

Figure 2.8 shows a comparison of τR interpolated using each of the two procedures described

here. The dashed lines show the second procedure, with τκR calculated from interpolated values of

κR and R. The figure includes solid lines, representing the direct interpolation of τR from the grid

of models, however the relative differences are so small compared to those of the second procedure

that they are nearly indistinguishable from τR(τSTD) = τR,�(τSTD). The blue lines represent linear

interpolations. The red lines represent quadratic interpolations.

Because τκR(τSTD) is calculated using interpolated values of κR(τSTD) and R(τSTD), errors

introduced into the quantities by the interpolation process are propagated to τκR(τSTD) itself.

As can be seen from Figures 2.5, 2.6, and 2.7, the errors in both R(τSTD) and κR(τSTD) are

significantly larger than the interpolation errors introduced in τR(τSTD), and so τκR(τSTD) is found

to be significantly less accurate than τR.

2.4.5 Interpolation and grid resolution

Our grid lends itself to exploring resolutions of between 50 K and 300 K in Teff , and resolutions of

between 0.5 dex to 1.5 dex in log g. To accomplish that, linear interpolations were performed using

the two extreme values of ∆Teff , 50 K and 300 K, and ∆ log g = 0.5, 1.0, and 1.5 dex.

2.5 LTE vs NLTE solar model

LTE model atmospheres are computed utilizing the Boltzmann and Saha equations, which assume

that the local kinetic temperature of the gas in the stellar atmosphere can be used to describe the

distribution of electrons across the energy levels of the atoms, ions, and molecules of the stellar

atmosphere. The Boltzmann equation, Eq. 2.2, gives the distribution of energy level populations of

a given ionic species, and defines the excitation temperature, Texc. The Saha equation, Eq. 2.3, gives

the population ratio between the ground levels of successive ionization stages of a given element,
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Figure 2.8: Relative differences between τR(τSTD) as calculated using values of κR and R
interpolated to the solar position of log g = 4.44, Teff = 5780 K and the exact solar τR(τSTD).
The blue line represents a bilinear interpolation, the red line a biquadratic interpolation, and the
green line a bicubic interpolation. Compare these results to those found from pre-computing the
τR structure of each atmosphere and interpolating τR(τSTD) within the grid of models, as shown in
Figure 2.7.
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and defines the ionization temperature, Tion. In LTE, Tion = Texc = Tkin.

NLTE model atmospheres are computed by solving the statistical equilibrium (SE) rate equation

to determine the exact energy level populations of the different atomic and molecular species that

compose the atmospheric gas. For a given species, the SE rate equation takes on the form

∑
j<i

nj(Rji + Cji)

− ni

∑
j<i

(Rij + Cij) +
∑
j>i

(
n∗j
n∗i

)
(Rij + Cij)


+
∑
j>i

nj

(
n∗j
n∗i

)
(Rji + Cji) = 0,

(2.21)

where ni is the NLTE population and n∗i is the LTE population of the ith energy level, (n∗i /n
∗
j )

is the Saha-Boltzmann factor between levels i and j, or the continuum stage k. Cij represents the

collisional rates, while the radiative rates for bound-bound transitions are represented by Rij and

have the form

Rij = Bij

∫ ∞
0

φij(λ)J(λ)dλ (2.22)

and

Rji = Aji +Bji

∫ ∞
0

φij(λ)J(λ)dλ. (2.23)

Here, Aji, Bji, and Bij are the Einstein coefficients for the transitions i → j, and φij(λ) is the

normalized line profile function for the given transition. For bound-free transitions, the radiative

rates are given by

Rik =
4π

hc

∫ ∞
0

σik(λ)J(λ)λdλ (2.24)

and

Rki =
4π

hc

(
n∗k
n∗i

)∫ ∞
0

σik(λ)λ

[
2hc2

λ5
+ J(λ)

]
e

(
− hc
kBλT

)
dλ, (2.25)

where σik(λ) is the cross-section for photo-ionization from the ith level to the continuum state k.
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For solar-type stars, LTE model atmospheres have been found to closely reproduce observed

fluxes for wavelengths longer than about 2700 Å. Allende Prieto et al. (2003) found σRMS between

the predicted LTE and observed solar flux to be 13%, leading them to suggest that uncertainties in

the atomic line data fully account for the differences between calculated and observed fluxes. They

found that departures from LTE were important at shorter wavelengths where the metal ionization

becomes dominant and leads to a sharp increase in opacities. Unlike PHOENIX NLTE models

which consistently calculate both the structure of the atmosphere and the population levels of

different species in NLTE, the models of Allende Prieto et al. (2003) were not internally consistent;

rather than solving for the atmospheric structure parameters (kinetic temperature, electron pressure,

and gas pressure) in NLTE, they solved the so-called restricted NLTE problem, wherein they adopted

a fixed atmospheric structure calculated using the assumption of LTE, and solved the SE equations

for species of interest.

Mashonkina et al. (2007) also solved the restricted NLTE problem in their study of Ca I and Ca

II abundances in late-type stars and found that NLTE line fits were in good agreement, within 0.04

dex, between solar Ca I and Ca II abundances, and removed the discrepancy between the two found

under the assumption of LTE.

To test the impact that the assumption of LTE has on our Tkin(τR) relationships, a NLTE model

atmosphere and synthetic opacity spectrum was created using the exact solar parameters of Teff,�

= 5780 K and log g� = 4.44. To compute NLTE model atmospheres, PHOENIX self-consistently

solves the radiative transfer equation and the NLTE SE rate equations for select ionization stages

of specific species and transitions using an operator splitting/accelerated lambda iteration (OS/ALI)

method (Hauschildt et al., 1999). OS/ALI takes advantage of an established operator formalism for

the radiative transfer and statistical equilibrium equations and numerical approximations based on

those of Cannon (1973) to solve the equations quickly using an iterative approach. The OS/ALI

method is fast enough to allow many atomic ionization species to be treated in NLTE.

PHOENIX treats the lowest six ionization stages of 20 of the most important elements in NLTE,

including Fe, and at least the lowest two ionization stages of 4 additional elements (Short et al.,
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1999). The species used in computing our NLTE solar model, as well as the number of energy

levels and bound-bound transitions included in the SE rate equations for each species, are shown in

Table 2.3. As performed in Short & Hauschildt (2005), only levels connected by primary transitions

(that is, transitions of log gf value greater than −3) are included in the SE rate equations. All

other transitions for that species, collectively called secondary transitions, are calculated under

the assumption that the occupation numbers are equal to the Boltzmann distribution value. The

excitation temperatures for secondary transitions are set equal to the local value of Tkin multiplied

by the NLTE ground-state departure coefficient for the next higher ionization stage. Only ionization

stages that are non-negligibly populated in the Sun’s atmosphere are treated in NLTE, and as a result

only the first two ionization stages are included for most elements.

2.6 Data management

The calculation of κR from κλ presented issues with data management not present in most model

stellar atmosphere or synethetic stellar spectrum computations. Because of the λ range and

resolution of the opacity spectra, and because κλ is computed in double precision for 14 different

types of physical processes, κλ,p, at each of the 64 depth layers over which PHOENIX samples the

atmosphere, the storage of κλ,p for each LTE atmosphere consumes a large amount of computer

disc space. As can be seen from Table 2.1, each synthetic spectrum computed under LTE in our grid

contains 890,112 wavelength points, resulting in 797,541,223 unique values of κλ,p. Each value

of κλ,p printed to disc consumes 10 bytes of storage space, resulting in each model atmosphere

and synthetic spectrum in our grid occupying approximately 8 gigabytes (GB) of disc space. That

resulted in our grid of 39 models, which includes models computed with Teff = 5780 K and those

computed with log g = 4.44, consuming approximately 300 GB of disc space. To save disc space

we compress PHOENIX’s output using the file compression and archiving utility gzip, resulting in

a 90% compression rate for our data. Our archived grid therefore consumes approximately 28 GB

of disc space.
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Files cannot be read directly by our τR calculator, as the contents of the files are necessarily

compressed. To read κλ,p from the files, they must first be decompressed. Our τR calculator has

been written to call gzip in its decompression mode to decompress the archived data automatically

before reading them. Once the data have been successfully read, the gzip utility is called one more

time in its compression mode to re-compress them. That allows κR and τR to be computed from our

archived grid of models and spectra without the need of direct user supervision, and facilitates the

use of our τR calculator on resource managed high performance computing clusters.

When calculating κR, we are interested only in the total κλ at each wavelength sampled, not

the extinction resulting from each of the 14 physical processes modelled by PHOENIX, κλ,p. That

allows us to sum over κλ,p on the fly, as κλ =
∑

p κλ,p, reducing the memory requirement of our

calculator from approximately 8 GB to less than 600 MB. That further facilitates the use of our τR

calculator on resource managed clusters.
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Table 2.3: Species Treated in Non-Local Thermodynamic Equilibrium (NLTE) in the NLTE Solar
Model.

Ionization Stage
Element I II III

H 80/3160 ... ...
He 19/37 ... ...
Li 57/333 55/124 ...
C 228/1387 ... ...
N 252/2313 ... ...
O 36/66 ... ...
Ne 26/37 ... ...
Na 53/142 35/171 ...
Mg 273/835 72/340 ...
Al 111/250 188/1674 ...
Si 329/1871 93/436 ...
P 229/903 89/760 ...
S 146/439 84/444 ...
K 73/210 22/66 ...
Ca 194/1029 87/455 150/1661
Ti 395/5279 204/2399 ...
Mn 316/3096 546/7767 ...
Fe 494/6903 617/13675 ...
Co 316/4428 255/2725 ...
Ni 153/1690 429/7445 ...

Note: Each ionization stage is labeled in the form
N/L,where N represents the number of energy levels
and L the number of b-b transitions included in the SE
rate equations for each model atom. This table shows
only those species used in the creation of our NLTE
solar model. PHOENIX is capable of treating many
more species in NLTE.
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Results

This chapter presents the results of our interpolations within the grid of stellar models. In much of

the analysis, we compare the result of interpolating a function within the grid to the solar values of

Teff and log g to the same function from the solar model computed by PHOENIX, which we call the

“exact” function, and which is consistently used as the baseline for the comparison.

3.1 Grid Resolution

Figure 3.1 shows a comparison of the solar temperature profile, Tkin(τSTD), derived by interpolating

temperature profiles within our grid to the solar values of Teff = 5780 K and log g = 4.44 using

different values of ∆Teff and ∆ log g, to the exact solar temperature profile, Tkin,�(τSTD). Lines

of different colour represent different resolutions of log g, with blue illustrating ∆ log g = 0.5 dex,

red illustrating ∆ log g = 1.0 dex, and green illustrating ∆ log g = 1.5 dex. Solid lines represent

values found by interpolating over Teff with the highest possible resolution in our grid, ∆Teff = 50

K, and dashed lines represent values found using the lowest possible resolution in our grid, ∆Teff

= 300 K. At the lowest investigated resolutions, ∆Teff = 300 K, and ∆ log g = 1.5, we have only

two data points available to interpolate within. As a result, and for the sake of consistency, linear

interpolation is used in each case in Section 3.1.

39
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In all cases, the interpolated models overestimate the temperature in the upper atmosphere

from −6 ≤ log τSTD ≤ −1. The overestimation is at a minimum at log τSTD ≈ −1 at all

resolutions, where it varies from 0 % to 0.04 %, and reaches a maximum at log τSTD ≈ −2.5,

where it varies from 0.04 % to 0.13 %. There is a general trend toward an increase in the

overestimation of Tkin with decreasing resolution in log g, i.e. increasing ∆ log g. Similarly,

changing the resolution in Teff implies that higher resolutions (smaller ∆Teff ) lead to marginally

better results in Tkin throughout most of the atmosphere, with the maximum overestimation being

lessened by approximately 0.01% for both the ∆ log g = 0.5 and 1.5 cases. The situation becomes

more complicated near the top of the atmosphere at log τSTD . −1, where increasing the resolution

in Teff results in an increase in the overestimation of Tkin by as much as 0.05%, as seen at the top

of the atmosphere for log g = 1.0. Deeper in the atmosphere, at optical depths greater than log τSTD

= 0, the atmosphere becomes convective and the temperature gradient changes rapidly over a small

number of depth points sampled by PHOENIX. That produces a region where interpolation within

grids of all resolution becomes less reliable. τR = 2/3 was found to lie above the convective zone at

log τSTD = −0.3360± 0.014, and so is unaffected by the region of less reliable interpolation.

The RMS deviation of the interpolated value of Tkin(τSTD) from the exact Tkin(τSTD)

throughout the atmosphere, σT , varies with resolution. The value of σT lies between extreme

values of 0.030% for ∆Teff = 50 K and ∆ log g = 0.5 dex, and 0.102% for ∆Teff = 300 K and

∆ log g = 1.5 dex. If only the region of the atmosphere located above log τSTD = 0 is considered,

the extrema are 0.033% and 0.097%, respectively.

Figure 3.2 is similar to Figure 3.1, except it shows the relative differences in interpolated and

exact τR(τSTD) values at solar values of Teff and log g. Decreasing the resolution in log g results

in an increase in the overestimation of τR(τSTD) at all points above the convective zone, with

a maximum increase of approximately 1.2 % occurring at the very top of the atmosphere. By

contrast, decreasing the resolution in Teff results in an increasing underestimation of τR(τSTD),

with τR(τSTD) dropping by as much as 1.1 % at the very top of the atmosphere.

As with Tkin, interpolated values of τR are overestimated at the top of the atmosphere for
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all values of ∆ log g when interpolating within the high resolution Teff grid, with a maximum

overstimation of 2.1 % occuring for ∆ log g = 1.5. The same trend does not hold for the low

resolution Teff grid, as τR at the top of the atmosphere is underestimated by 0.1 % for ∆Teff = 300

K and ∆ log g = 0.5 dex, and 0.9 % for ∆Teff = 300 K and ∆ log g = 1.0 dex. In general, values

of τR at the top of the atmosphere computed from grids with ∆Teff = 300 K are approximately 1%

lower than those computed from grids with ∆Teff = 50 K for each resolution in log g.

The RMS deviation in τR throughout the atmosphere, στR , was found to vary with resolution in

both Teff and log g. The extrema of στR were found to be 0.059% for ∆Teff = 50 K and ∆ log g =

0.5 dex, and 0.799% for ∆Teff = 50 K and ∆ log g = 1.5 dex. If only values of log τSTD < 0 are

considered, the values are 0.062% and 0.856%, respectively.

The results from Figures 3.1 and 3.2 have been combined into Tkin(τR) relationships.

The relative difference between the interpolated and exact Tkin(τR) relationships for the solar

atmosphere is shown in Figure 3.3, with line styles and colours as used in the previous two figures.

A black vertical line indicates the special value of τR = 2/3. We use T2/3 to represent the value of

Tkin at that point. The absolute difference between the interpolated and exact values of T2/3, ∆T2/3,

and the relative difference between the values, δT2/3, are of particular interest in this thesis, and are

found in Table 3.1.

With the exception of Tkin(τR) interpolated using ∆Teff = 50 K and ∆ log g = 1.5 dex, which,

as a result of the large overestimation of τR seen in Figure 3.2, underestimates Tkin at the very top

of the atmosphere, all interpolations of Tkin(τR) overestimate the value of Tkin relative to the exact

solar values by, at worst, 0.13 % for all values of log τR < 1 in the atmosphere.

The RMS deviation of the interpolated Tkin(τR) from the exact Tkin(τR) throughout the whole

atmosphere, σTkin(τR), was found to lie between values of 0.029%, for ∆Teff = 50 K and ∆ log g =

0.5 dex, and 0.096%, for ∆Teff = 300 K and ∆ log g = 1.5 dex. When only the atmosphere located

above the convection zone, i.e. τSTD < 0, is taken into consideration, the respective values are

0.031% and 0.095%. Table 3.1 lists the RMS deviation of the interpolated Tkin(τR) from the exact

Tkin(τR) above the convection zone, σTkin(τR<1), for all values of ∆Teff and ∆ log g.
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Figure 3.1: Difference between the kinetic temperature, Tkin(τSTD), interpolated within our model
grids and the modelled solar value. Each line represents a different resolution of the grid. Solid
lines show values found using ∆Teff = 50 K, while dashed lines show values found using ∆Teff =
300 K. Blue lines show the result of using ∆ log g = 0.5 dex, red lines ∆ log g = 1.0 dex, and green
lines ∆ log g = 1.5 dex.
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Figure 3.2: Relative difference between the Rosseland mean optical depth,τR(τSTD), interpolated
within our grid of models grids and the exact solar value. Each line is styled as described in Figure
3.1.
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Figure 3.3: Difference between the Tkin(τR) relationships interpolated within our grid of models
grids and the modelled solar value. Each line is styled as described in Figure 3.1.
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Table 3.1: Accuracies and Relative Differences of Tkin(τR) Interpolations from our grid onto Solar
Values of Teff and log g.

∆Teff [K] ∆ log g σTkin(τR) σTkin(τR<1) ∆T2/3 [K] δT2/3

50 0.5 0.029% 0.031% 0.47 0.008%
50 1.0 0.057% 0.060% 1.25 0.022%
50 1.5 0.076% 0.076% 1.20 0.020%
300 0.5 0.046% 0.048% 0.87 0.015%
300 1.0 0.071% 0.068% 1.70 0.029%
300 1.5 0.096% 0.095% 2.10 0.036%

Note: σT (τR<1) represents the RMS deviation of Tkin, plotted as a function of τR,
taking into consideration the atmosphere at a height higher in the atmosphere than
that which has τR = 2/3, whereas σTkin(τR) is calculated using Tkin throughout
the entire atmosphere.
∆T2/3 is the absolute difference between interpolated values of Tkin at τR = 2/3
and the exact solar value, whereas δT2/3 represents the relative difference.

3.2 Interpolation Method

Figures 2.4 and 2.7 show the relative differences between the interpolated and exact values of

Tkin(τSTD) and τR(τSTD), respectively, interpolated from within our grid using four different

interpolation methods at ∆Teff = 50 K and ∆ log g = 0.5 dex. Figure 3.4 shows the relative difference

between interpolated and exact values of Tkin(τR) at the same resolutions, combining the results for

three of the methods. Different colours represent the different interpolation methods, with the blue

curve showing the results of linear interpolation, the red curve showing the results of quadratic

interpolation, and the green curve showing the results of interpolation using cubic splines.

Two-point and three-point interpolations yield comparable results, with σT,Linear = 1.48 K,

or 0.030%, and σT,Quadratic = 1.44 K, or 0.030%. Interpolation by cubic splines produces more

accurate results, with σT,Cubic = 1.23 K, or 0.026%. The values are 1.44 K (0.030%) and 1.40 K

(0.029%) for linear and quadratic interpolations, respectively, while the results for interpolation by

cubic splines remain unchanged when only the atmosphere above τR = 1 is considered. ∆T2/3 and

δT2/3 resulting from linear interpolation were 0.47 K or 0.008%. Quadratic interpolation yielded

differences of 0.54 K, or 0.009%, and interpolation by cubic splines resulted in values within 0.41
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Figure 3.4: Difference between the kinetic temperature, Tkin interpolated within our grid of
models and the modelled solar value, plotted as a function of τR. Each line represents a different
interpolation method performed within our highest resolution grid (∆Teff = 50 K, ∆ log g = 0.5 dex).
The blue line shows the result of two-point interpolation, the red line three-point interpolation, and
the green line interpolation using cubic splines.
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Table 3.2: Least-Square Linear Regression Fit of T2/3(Teff) for Different Values of log g.

log g m b [K] R2 p

3.5 0.952 269 0.999991 7.8× 10−14

4.0 0.490 289 0.999997 5.1× 10−15

4.5 0.944 323 0.999998 2.5× 10−15

5.0 0.947 308 0.999977 8.6× 10−13

Note: m is the slope of the least-squares best fit line, and
b is the value of T2/3 extrapolated to Teff = 0 K.

K, or 0.007%.

3.3 T2/3 as a Function of Teff and log g

Figure 3.5 plots Tkin at τR = 2/3 for different values of log g plotted as a function of Teff . The blue

line represents log g = 3.5, the red line log g = 4.0, the green line log g = 4.5, and the orange line log g

= 5.0. The relationship between Teff and T2/3 is linear for each value of log g with the coefficient

of determination, R2, reaching values greater than 0.9999, and p-values less than 8.6 × 10−13, in

all four cases. The results of a least-square linear regression performed on each line can be found in

Table 3.2.

For LTE atmospheric models, the grey approximation to the radiative transfer equation yields

the result that T2/3 = Teff . Our results deviate from such a situation slightly, because PHOENIX

does not produce grey atmospheres, as can be seen from Table 3.2 and Figure 3.5. The line T2/3 =

Teff with slope m = 1 and T2/3 intercept of 0 K is shown as a dashed black line. Deviations from

the T2/3 = Teff line for all values of log g are shown in Figure 3.6. The deviations are also shown to

be highly linear within the Teff range of our grid, with R2 > 0.99 and p < 1.6× 10−6 for all values

of log g. Detailed results of the least-squares linear regression for the deviation of T2/3 from Teff as

a function of Teff are found in Table 3.3.

As all explored values of log g resulted in slopes of T2/3(Teff) < 1 and extrapolated T2/3

intercepts > 0 K, each line of constant log g will have some critical value of Teff such that
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Figure 3.5: T2/3 throughout out grid as a function of Teff . The lines are best fits. Blue shows
T2/3(Teff ) for log g = 3.5; red shows log g = 4.0; green shows log g = 4.5; and orange shows log g =
5.0. The dashed black line represents T2/3 = Teff .
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Figure 3.6: The differences between T2/3 and Teff for each value of log g. The lines are best fits and
are coloured as in Fig. 3.5.
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Table 3.3: Least-Square Linear Regression Fit of T2/3 − Teff vs Teff for Different Values of log g.

log g m b [K] R2 p

3.5 −0.048 269 0.996547 2.4× 10−7

4.0 −0.051 289 0.998971 1.2× 10−8

4.5 −0.056 323 0.999376 303× 10−9

5.0 −0.053 308 0.992626 1.6× 10−6

Note: m is the slope of the least-squares best fit line, and
b is the value of T2/3 − Teff extrapolated to Teff = 0 K.

Table 3.4: Values of Teff where T2/3 = Teff for Different Values of log g.

log g Teff [K]

3.5 5613
4.0 5688
4.5 5746
5.0 5838

T2/3 = Teff . Below that value of Teff , T2/3 > Teff , and above it T2/3 < Teff . The critical

values are represented in Figure 3.6 by the intercepts of each line with T2/3 − Teff = 0 K, and are

listed in Table 3.4.

3.4 LTE vs NLTE Atmospheres

Figure 3.7 shows the Tkin(τR) relationships for the LTE solar model, illustrated in blue, and

the NLTE solar model, shown in red. The vertical black line highlights the value of τR = 2/3.

Line-blanketed atmospheres exhibit a well-known phenomenon known as backwarming, wherein

spectral absorption lines block a fraction of the outgoing radiative flux, trapping it deeper in

the atmosphere, and leading to an increase in temperature. Near the surface of line-blanked

atmospheres, where the gas density is low enough for the atmosphere to become optically thin,

regions of the spectrum that are opaque at greater depths in the atmosphere become transparent,

leading to an increase in the probability of photon escape. That allows the atmosphere to maintain
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radiative equilibrium at a lower temperature than would be possible in the absence of absorption

lines (Carbon, 1979). Of particular importance in solar-type stars are lines resulting from absorption

by Fe I, which dominate a large part of the spectrum.

In LTE model atmospheres, absorption line strengths are calculated using Boltzmann-Saha

statistics, which depend only on the local kinetic temperature of the gas. Non-LTE calculations

account for deviations from the Boltzmann, Saha, and Planck distributions caused by non-local

radiation transfer. In particular, NLTE calculations account for the effect of an excess of ultraviolet

radiation, relative to LTE, with an origin deep in the atmosphere where the radiation temperature,

TRad, is higher than the local kinetic temperature of the gas, Tkin. That ultraviolet excess shifts

the ionization equilibrium of Fe I/Fe II further toward Fe II, resulting in an increase in the rate

of ionization of Fe I when compared to LTE (Athay & Lites, 1972), an effect known as NLTE

overionization. Because of the large number of Fe I lines found in the spectrum of solar-type stars,

such a reduction in the amount of Fe I in the atmosphere leads to a dramatic decrease in the strength

of the Fe I lines. That results in a net decrease in the opacity of the atmosphere in the line forming

regions, since the amount of Fe II in the solar atmosphere is large relative to the amount of Fe I, and

the impact of the additional Fe II produced by the increased ionization of Fe I on the strength of the

Fe II lines is negligible.

PHOENIX does not compute Tkin(τR) directly, so we have found Tkin(τSTD) and τR(τSTD) for

both the LTE and NLTE models of the solar atmosphere and combined the results to produce our

Tkin(τR) relationships. Figure 3.8 shows the relative difference in τR(τSTD) between the NLTE

model, shown in red, and the LTE model. The NLTE model predicts higher values of τR throughout

the entire atmosphere relative to the LTE model, with the difference peaking at approximately 47%

at the top of the atmosphere, and falling to a minimum of approximately 11% at τSTD ≈ 2.1.

For the NLTE model, τR = 2/3 at log τSTD = −0.40, while the same value of τR was found at

log τSTD = −0.34 in the LTE model.

The relative difference between κR(τSTD) in the NLTE and LTE exact solar models, shown in

red in Figure 3.9, follows a similar trend to that of τR(τSTD). The NLTE model predicts larger values
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Figure 3.7: Tkin(τR) relationships for LTE and NLTE models of the Sun. The blue line shows the
relationship computed under the assumption of LTE. The red line shows the NLTE relationship.
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Figure 3.8: Relative difference in τR for the comparison of the NLTE solar model to the LTE solar
model.
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of κR at all values of τSTD, with the maximum relative difference of 42% occurring at the very top

of the atmosphere, and the minimum relative difference of 9% occurring at τSTD ≈ 2.1. The global

increase in κR is caused in part by the extra electrons liberated by Fe I overionization binding with

neutral hydrogen atoms, H I, leading to an increase in the H− component of the continuous opacity.

Surface values of the gas density, ρ, were found to be approximately 4.5% lower in the NLTE

model compared with those in the LTE model, as seen in Figure 3.10, and only exceed LTE values

at depths greater than log τSTD = −3.67. The NLTE solar model underestimates the geometric

radius of the Sun, R, by between 0.0005% and 0.0042% compared with the LTE model, as seen in

Figure 3.11. dR is found to be negative for 0 ≤ τSTD ≤ 0.006 and 2.1 ≤ τSTD ≤ 100. Neither the

differences in ρ nor those in R between the LTE and NLTE models are significant enough to drive

the increase of τR(τSTD) in the NLTE model shown in Figure 3.8.

The cause of the global increase in values of κR(τSTD), and thus the increased values of

τR(τSTD), in the NLTE model is found in differences in κλ between the LTE and NLTE model.

Figure 3.12 shows a running box-car mean of κλ(λ) for both the LTE solar model, shown in red,

and the NLTE solar model, shown in green, at an optical depth of log τSTD = −0.32, the nearest

value of τSTD sampled by PHOENIX to τR(τSTD) = 2/3 for both models. The running mean was

performed with a box-car width of approximately 1000 Å for the sake of visual clarity. The mean

value of κλ over the whole atmosphere was found to be 4.9 × 10−5cm−1 in the LTE model, and

14.4× 10−5cm−1, or 2.9 times higher, in the NLTE model.

Figure 3.13 shows the relative difference in Tkin(τSTD) between the NLTE and LTE model

atmospheres. The NLTE model predicts larger values of Tkin everywhere above the convective

region of the atmosphere (τSTD < 1), with temperatures exceeding those predicted by the LTE

model by approximately 5.76% at the top of the atmosphere. The NLTE results approach the LTE

results in the region −1 ≤ log τSTD ≤ 0, which is the range in which we find τR = 2/3 for both

models.

The relative difference in the Tkin(τR) relationships between the NLTE and LTE models is

shown in Figure 3.14. The reduced efficiency of the backwarming and surface cooling effects in the



CHAPTER 3. RESULTS 55

Figure 3.9: Relative difference in κR for the comparison of the NLTE solar model to the LTE solar
model.
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Figure 3.10: Relative difference in gas density, ρ, for the comparison of the NLTE solar model to
the LTE solar model.
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Figure 3.11: Relative difference in solar radius, R, for the comparison of the NLTE solar model to
the LTE solar model.



CHAPTER 3. RESULTS 58

Figure 3.12: κλ spectrum for LTE and NLTE exact Solar models at τR ≈ 2/3. The red line shows
the LTE spectrum, while the green line is the NLTE spectrum.
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Figure 3.13: Difference in Tkin(τSTD) between the NLTE solar model and the LTE solar model.
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NLTE model compared with those for the LTE model are clearly seen. Tkin at τR = 2/3, represented

by the interception of the curve with the vertical black line, is 1.25%, or 73.27 K, cooler in the

NLTE model than it is in the LTE model.
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Figure 3.14: Difference in Tkin(τR) between the NLTE Solar Model and the LTE Solar Model.



Chapter 4

Conclusions

In this thesis we have investigated the accuracy of four different methods for interpolating the

structure of stellar atmospheres from a grid of precomputed near-solar spherical LTE model

atmospheres. In particular we have tested the accuracy of the interpolations of the Tkin(τR)

relationship for use as the outer boundary condition in on-demand calculations of stellar structure

and asteroseismological modelling at arbitrary Teff and log g. By interpolating Teff and τR within

our grid of models to solar values of Teff and log g and comparing the resulting Tkin(τR) relation

against that of an exact model of the Sun, we find comparable RMS deviations in Tkin, taken over the

whole atmosphere, for both linear and quadratic interpolations, while interpolation by cubic splines

produces marginally better results. For almost every other structural parameter, interpolation by

cubic splines generated improved results over the linear and quadratic methods, with deviations in

ρ, R, and Pgas being smaller by a factor of 2 and the deviation in Pe being smaller by a factor of 7,

compared with results from quadratic interpolation. Least-squares quadratic interpolation resulted

in a deviation in Tkin that was marginally larger than the linear or quadratic methods, however it

produced deviations in R and κR that were larger by a factor of approximately 3 and 4, respectively.

Differences in Tkin at τR = 2/3 between the interpolated and exact solar models were found to be

similar for linear, quadratic, and cubic spline interpolations.

62
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The sensitivity of linear interpolations to the resolution of our grid in both Teff and log g and to

the order in which the interpolations are performed (along Teff then log g, or vice versa), were also

tested. Decreasing the grid spacing in Teff from 300 K to 50 K decreased both the RMS deviation in

Tkin throughout the atmosphere and the difference in Tkin at τR = 2/3 by a factor of approximately

1.5, while decreasing the grid spacing in log g from 1.5 dex to 0.5 dex decreased the same values by

a factor of 2.

Over the investigated range of Teff the value of T2/3(Teff) was found to vary linearly for each

value of log g investigated, with deviations from a grey atmosphere also found to be linear over the

range of our grid.

We calculated a NLTE solar model and found that it predicts higher values of the kinetic

temperature for the atmosphere relative to the LTE model for values of log τR . −1.5, with a

maximum overestimation of approximately 4% at the top of the atmosphere, while it underestimated

the kinetic temperature for values of log τR & −1.5. The reduction in the effects of backwarming

and surface cooling is a known NLTE effect, caused in part by the weakening of Fe I absorption

lines through overionization by UV radiation deep within the atmosphere reaching the line forming

regions, something not accounted for under LTE, resulting in Tkin at τR = 2/3 approximately 73 K

cooler than in the LTE solar model.

4.1 Future Work

The results presented with this thesis have been prepared with the hope that they will be of use as

upper boundary conditions in stellar structure and asteroseismology models. With the methods of

Gruberbauer et al. (2012), it will be possible to test the accuracy of our Tkin(τR) relationships for

the outer boundary condition using a probabilistic approach.

Given the limited range over which we have developed our grid, we are looking to expand our

LTE calculations to smaller values in both Teff and log g in order to encompass the red giant branch.

Our goal is to map the variability in Teff at τR = 2/3 for G-type and later stars. Doing so will
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also open the door to explore further the impact of the resolution of our grid on the accuracy of

interpolations within our grid of models by allowing us to study grids with ∆Teff > 300K and

∆ log g > 1.5 dex. Moreover, given the large differences between our LTE and NLTE solar models,

we hope to develop a NLTE grid of models in parallel with our LTE grid so that we can establish

the variability in Teff at τR = 2/3 for NLTE atmospheres.
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