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VIEWS AND REPRESENTATIONS OF STOCHASTIC PROGRAMS1 
 
 
 
 
 
Stochastic programs are difficult objects to work with. This paper describes vari-
ous views and representations that may make it easier for the modeller to interact 
with a model, by way of formulating, archiving and visualizing models and mod-
el components. 
 
 
 
 
 

1. Introduction 
 
Stochastic programming problems are mathematical programs in which some of the data 

are uncertain. A broad classification distinguishes between situations when probability distribu-
tions are known (or can be estimated) for all data items, giving rise to optimization under risk, 
and situations where such distribution information is not known, also called optimization under 
uncertainty. 

 
One further distinguishes chance-constrained problems, in which constraints involving 

one or more random variables are only required to hold with a certain (prespecified) probability, 
and recourse problems, in which corrective action is allowed after a particular realization of the 
random variables has been observed. The recourse decisions add a cost to the objective that can 
be evaluated only after the random variables have been observed and is normally handled as an 
expected cost. 

 
In some problems the alternating sequence of observing random variables and making 

decisions based on the actual realizations observed to date is repeated several times, giving rise to 
multistage stochastic recourse problems. The stages may correspond to explicit time periods, but 
it is permissible to aggregate several time periods into a single stage, as long as decisions taken at 
any time depend only on the information available beforehand. This is called the principle of 
nonanticipativity. In the case of discrete distributions event trees give a convenient way to picture 
the flow of information (i.e., what the decision maker knows when). Event trees differ from the 
widely used decision trees in that they record only the random events; the decisions taken are im-
plicit. A small event tree is depicted in Figure 1. 

 
This paper is concerned with linear multistage stochastic programs, in which all the con-

straints and the objective are linear (affine) functions of the decision variables. Working with 
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such problems can be highly nontrivial; not just their solution but even such mundane tasks as 
formulation, storage and data handling can be difficult and time consuming, mostly because of 
the large problem size. 

 
The remainder of this paper describes some ways to facilitate the mentioned model man-

agement functions. Section 2 describes an input format based on the MPS format for linear pro-
grams that can be used for problem formulation. Section 3 introduces some components and func-
tions of an algebraic modelling language for the same purpose, and Section 4 features different 
database tools for visualizing both data and solutions. 

 
We begin by formulating two stochastic linear recourse problems, which will be used for 

illustrative purposes. The first is a stochastic version of a transportation problem, given mathe-
matically as 
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Here jwd  is the random demand realized in demand centre j under scenario w, pw is the 

probability of observing outcome or scenario w, and +
jq  and −

jq are the costs incurred in dealing 

with over- and underallocations if the total shipment into demand centre j exceeds or falls short of 
the realized demand. 

 
It should be remarked that this mathematical formulation defines sets and indices 

(sources, destinations, scenarios), variable classes ( −+ yyx ,, ) and general relationships (such as 
the generic product balance equations (1.3)). No mention is made of the actual set memberships 
(i.e., what the sources, destinations and scenarios actually are) or the values of the coefficients; 
that is left for later. This is an example of the separation of model and data, which we will return 
to in Section 3. 

 

 

 

 

 

 

 

 

Figure 1. A small event tree 
 



 
The second problem is a multistage financial planning problem. The full formulation is 

given in Gassmann and Ireland (1995); we only summarize the most salient features here. At each 
stage the decision-maker selects borrowing and repayment decisions in a number of different debt 
instruments issued in different markets, subject to cash requirement, market saturation and other 
institutional and regulatory constraints. Uncertainty enters in the form of interest and exchange 
rate risk. The objective is to minimize the expected value of the debt outstanding at the end of the 
planning horizon. 

 
In block schematic form, this problem can be written as 
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where it is assumed that the nodes in the event tree are numbered in some fashion (for instance, 
stage by stage), such that the root node is numbered 0 and for each node s > 0, a(s) gives the an-
cestor node in the previous stage. N(t) denotes the collection of all nodes in stage t. 
 
 

2. The SMPS format 
 
It is very important to have a commonly accepted way to describe a stochastic program. 

Archiving, algorithmic development and benchmarking, and test problem collection all depend on 
it. Linear programming has used the MPS format (see, e.g.,IBM 1972a,b,1996) as a de facto 
standard for about forty years. In this section we describe a modification of the MPS format de-
signed to handle stochastic extensions. This so-called SMPS format is described in full detail in 
Gassmann and Schweitzer (1996), and is based on earlier work by Edwards et al. (1985) and Bir-
ge et al. (1988). 

 
The key idea is that multistage stochastic problems contain special structure of two types, 

temporal information to describe the time stage each row and column of the problem belongs to, 
and stochastic information to describe the distributions of the random coefficients. Because the 
random information is revealed gradually over time, the stochastic structure is a secondary struc-
ture, which cannot be conveyed accurately without describing the temporal structure first. All this 
information is collected in the SMPS format in three separate files, called the core file, the time 
file, and stochastic file (or stoch file, for short). 

 
The core file is in MPS format and fixes the problem dimensions, row and column 

names, deterministic coefficients, and representative values for all the random elements. The lat-
ter could be the means, but that is not a strict requirement. (In this simplified exposition we as-
sume that the dimensions of the problem are deterministic; the SMPS format has special devices 
for dealing with stochastic problem dimensions, such as trap states or variables that are only acti-
vated if a particular set of realizations has been observed.)  

 
One important simplifying assumption is that the rows and columns have been sorted into 

temporal order, so that all first-stage rows are mentioned in the core file before the appearance of 
the first row of the second stage, and so on. (And similarly for the columns.) This allows for a 
very simple description of the time structure, by simply marking the first row and column for 
each stage. This information is contained in the time file. 

 



The random structure is described in the stoch file. The goal is to arrange the possible re-
alizations into an event tree, which can be set up implicitly or explicitly. Explicit event trees are 
built one scenario at a time, by specifying branching probabilities along with all the information 
that is particular to each scenario. Explicit event trees are finite by definition. Implicit event trees 
are generated by the system; the user merely supplies information about marginal distributions 
governing one or more random elements. Implicit trees can at present only be dealt with if the 
random elements are independent from one stage to the next, but the format provides support for 
continuous distributions that are discretized (or sampled) only during the solution phase. 

 
Figure 2 shows a sample stoch file for the transportation problem, in which the demands 

at four destinations are random, independently of each other. (Depending on the information giv-
en in the core file, these may be the only destinations, or there may be other destinations at which 
the demand is deterministic.) Lines 2 to 5 indicate that the demand at destination ‘TRD’ is dis-
crete and takes on values of 150, 180 and 120 units with probability 0.25, 0.5, 0.25, respectively. 
Similarly the demand at destination ‘KRS’ is assumed uniformly distributed on the interval 
[80,110], the demand at ‘STV’ is normally distributed with mean 100 and variance 100, and the 
demand at ‘LIL’ follows a distribution described by the (user-supplied) subroutine My_Jiffy 
(which must be distributed with the data files to completely specify the problem instance). 

 

 
 

3. Algebraic modelling languages 
 
Algebraic modelling languages have been used for some years to assist with the genera-

tion of linear (and nonlinear) mathematical models. Their aim is to mimic as closely as possible 
the notation used by the modeller to describe the model in conventional mathematical notation. 
Algebraic modelling languages often feature the separation of model and data, as mentioned in 
the introduction. Commonly used algebraic modelling languages are AMPL (Fourer et al. 1993), 
GAMS (Brooke et al. 1988), MPL (Kristjansson 1993), MODLER (Greenberg 1993), and 
AIMMS (Bisschop and Entriken 1993). 

 
In as much as algebraic modelling languages can be used to formulate large scale linear 

programs, they can be used to set up stochastic programs with finite discrete distributions (in ex-
plicit scenario form). For example, the transportation problem (1) can be formulated in AMPL as 
shown in Figure 3. A data section to define a particular instance is displayed in Figure 4. 

NAME    Transportation problem 
INDEP        DISCRETE 
    RHS      DEMTRD      150.0        0.5 
    RHS      DEMTRD      180.0        0.25 
    RHS      DEMTRD      120.0        0.25 
INDEP        UNIFORM 
    RHS      DEMKRS       80.0        110.0 
INDEP        NORMAL 
    RHS      DEMSTV      100.0        100.0 
INDEP        My_Jiffy 
    RHS      DEMLIL       80.0        100.0 
ENDATA 

 
Figure 2. Stochastics file for the transportation problem 



 

 

 
 
Since the financial planning model is a multistage model, it is by necessity more involved 

than the two-stage transportation model. The full formulation of the financial planning model has 
been omitted for space reasons, but some key points should be noted. First, each scenario is given 

set ORIG;   # origins 
set DEST;   # destinations 
set SCEN;   # scenarios 
 
param supply {ORIG}      >= 0;   # amounts available at origins 
param demand {DEST,SCEN} >= 0;   # amounts required at destinations 
param prob   {SCEN}      >= 0;   # scenario probabilities 
param cost   {ORIG,DEST} >= 0;   # shipment costs per unit 
param shortcost {DEST}   >= 0;   # shortage costs at destinations 
param surplcost {DEST}       ;   # surplus  costs at destinations 
 
var   Trans {ORIG,DEST}  >= 0;   # units to be shipped 
var   Short {DEST,SCEN}  >= 0;   # units short in each scenario 
var   Surpl {DEST,SCEN}  >= 0;   # units long in each scenario  
 
minimize total_cost: 
   sum {s in ORIG, d in DEST} cost[s,d] * Trans[s,d] + 
   sum {d in DEST, w in SCEN} prob[w]*(shortcost[d]*Short[d,w] + 
                                       surplcost[d]*Surpl[d,w]); 
 
subject to Supply {s in ORIG}:   sum {d in DEST} Trans[s,d] <= supply[s]; 
 
subject to Demand {d in DEST, w in SCEN}: 
   sum {s in ORIG} Trans[s,d] + Short[d,w] - Surpl[d,w] = demand[d,w]; 

 
Figure 3. An AMPL formulation of the transportation model 

param: ORIG:  supply :=         # defines set "ORIG" and param "supply" 
        Oslo      250 
        Bergen    100; 
 
param: SCEN:  prob :=           # defines set "SCEN" and param "prob" 
        High      0.25 
        Medium    0.5 
        Low       0.25; 
 
param: DEST:  shortcost   surplcost  :=    # defines set "DEST" and 
                                           # parameters "surpl" and "short" 
     Stavanger     15       5 
     Trondheim     10       0 
     Lillehammer   20      -5; 
 
param cost: Stavanger   Trondheim   Lillehammer := 
   Oslo        10          15          10 
   Bergen      10          10          20; 
 
param demand:  High      Medium    Low  := 
   Stavanger   110       100        90 
   Trondheim   165       150       135 
   Lillehammer  88        80        72; 
 

Figure 4. A data file to accompany the AMPL model of Figure 3 



a start time as well as a parent scenario from which it branches. (The root scenario has no parent.) 
To make the correspondence  to the event tree of Figure 1 completely explicit we use the conven-
tion that slanted arcs indicate branching, while horizontal arcs connect two stages on the same 
scenario. The root scenario tus corresponds to the topmost scenario and the second scenario 
branches from it starting in stage 4.  

 
An inventory balance equation might then be written in AMPL in the form suggested in 

Figure 5. 
 

 
Here event_nodes is a subset of the cartesian product (periods × scenarios), 

corresponding exactly to the nodes in the event tree. (This set can be constructed automatically 
once the parent relation and the starting time are given for each scenario; the details are omitted.) 
The crux of the formulation is AMPL's ability to use the predefined function previous[j,t] 
in place of an indexing variable. The definition of previous[j,t] is simply j if scenario j 
contains a node in the event tree in the previous period (i.e., if period t is not the starting time of 
scenario j) and is parent[j] otherwise. This particular way of thinking about scenarios is con-
venient for data handling and uses a non-redundant representation of the data. We will call this 
the compressed form of the event tree, and note that nonanticipativity of decision variables is 
handled implicitly.  

 

But each scenario also represents a path from the root node to one of the leaf nodes. For 
displaying a time series of one data element or decision variable (such as the holdings in a partic-

balance { (j,t) in event_nodes} : 
 
cash[j,t] =                     ; cash on hand in period t  
   sum {k in debt_types} 
      exch_rate[k,j,t] * ( (1-issue_cost[k,t])*borrow[k,j,t]   
                                                 ; new borrowing 
 
        - sum { s in 0..t-1} (int_rate[k,j,s,t] *  
            (if t = 1                            ; interest payments 
             then init_debt[k]                   ; on outstanding debt 
             else outst[k,previous[j,t],s,t-1])    
 
        + ret_cost[k,j,s,t]*retire[k,j,s,t] ))    ; repayments 
 
   + ( if t = 1                     ; cash from previous period 
       then init_cash 
       else (1 + cash_int[j,t]) * cash[previous[j,t],t-1]); 

 
Figure 5. AMPL formulation of a constraint involving random variables 

 

Figure 6. A small event tree in expanded form 



ular financial instrument) over time, the expanded form of the event tree is more convenient. In 
the expanded form, each data element and decision variable is replicated in each scenario, and 
nonanticipativity is enforced through explicit constraint. Figure 6 shows the expanded view of the 
event tree given originally in Figure 1. The vertical lines indicate nodes whose decision variables 
must be made to agree by explicit constraints. 

 
It is even possible to define implicit event trees in AMPL, provided that the scenarios are 

identified by numbers instead of names. The reason for this is that the branching information can 
be computed using modular arithmetic. 

 
Figure 7 shows again the small event tree; this time the scenarios have been numbered 

consecutively from 1 to 8. We assume that there is one random variable in each stage. Each ran-
dom variable takes two possible values and is independent of the previous stages. Note that the 
odd-numbered scenarios use the first outcome of the stage 4 random variable and start prior to 
stage 4, the even-numbered scenarios use the second outcome and start in stage 4. Similarly, if 
the scenario number )4(mod1≡s , then the scenario uses the first outcome of the third-stage ran-
dom variable, and it started prior to stage 3, etc. A full example of how to implement this idea in 
AMPL is contained in Gassmann and Ireland (1995). 

 
 

4. Database views 
 
Some algebraic modelling languages (such as AMPL Plus (Compass Modeling Solutions 

1995) and AIMMS (Bisschop and Entriken 1993)) allow data to be contained in a database. 
Through suitable queries, parameter and coefficient values are read form the database, and solu-
tions returned from the solver can be written back into the database. A recent paper by Fourer 
(1997) explores the use of databases in mathematical modelling and identifies several important 
advantages. First, databases are well accepted and understood by managers, making mathematical 
models in general and stochastic programs in particular accessible to a wider audience. 

 
Second, databases make it easy to eliminate data redundancies and thus reduce the possi-

bility of error. And finally, report generation is made much easier through the use of built-in re-
porting and graphing capabilities. In other words, one would store the event tree in compressed 
form. Queries can then be used to switch to expanded form whenever needed. 
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Figure 7. Event tree with numbered scenarios 



 
 

Figure 8. Database structure for a financial planning model 
 
 

The approach is illustrated in the two screen captures of figures 8 and 9. The first figure 
shows the database structure for the financial planning model, containing tables for data and solu-
tion variables as well as four auxiliary tables (whose names start with the underscore character). 
Two data tables are also shown to illustrate how the data are stored in compressed form. (There is 
no entry for cash_int in the CashInterest table for scenario 2 in current_period 1, since scenario 2 
only starts in period 3.) 

 
The second screen shows how data for a particular scenario (selected by the user) can be 

retrieved from the database and displayed in a line graph. (Other graphical representations are just 
as easy, limited only by the capabilities of the database.) This figure also shows how the data val-
ues in the different periods must be retrieved (by a SQL query) from several scenarios. The event 
tree for this particular problem is depicted (in part) in Figure 10. 

 
 

5. Conclusions 
 
This paper showed a number of ways to represent stochastic programming problems and 

their components. These views may aid the modeller in setting up stochastic models; they may 
also help the user visualize solution vectors and data items. Tools such as these may make sto-
chastic problems more accessible and easier to work with. 

 
 
 
 
 



 
 

Figure 9. Graphical representation of a data item 
 
 

 
Figure 10. A partial event tree for the financial planning problem 
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