

ASB/ACORS 1999 Conference H.I. Gassmann
Halifax, Nova Scotia School of Business Administration
 Dalhousie University

VIEWS AND REPRESENTATIONS OF STOCHASTIC PROGRAMS1

Stochastic programs are difficult objects to work with. This paper describes vari-
ous views and representations that may make it easier for the modeller to interact
with a model, by way of formulating, archiving and visualizing models and mod-
el components.

1. Introduction

Stochastic programming problems are mathematical programs in which some of the data

are uncertain. A broad classification distinguishes between situations when probability distribu-
tions are known (or can be estimated) for all data items, giving rise to optimization under risk,
and situations where such distribution information is not known, also called optimization under
uncertainty.

One further distinguishes chance-constrained problems, in which constraints involving

one or more random variables are only required to hold with a certain (prespecified) probability,
and recourse problems, in which corrective action is allowed after a particular realization of the
random variables has been observed. The recourse decisions add a cost to the objective that can
be evaluated only after the random variables have been observed and is normally handled as an
expected cost.

In some problems the alternating sequence of observing random variables and making

decisions based on the actual realizations observed to date is repeated several times, giving rise to
multistage stochastic recourse problems. The stages may correspond to explicit time periods, but
it is permissible to aggregate several time periods into a single stage, as long as decisions taken at
any time depend only on the information available beforehand. This is called the principle of
nonanticipativity. In the case of discrete distributions event trees give a convenient way to picture
the flow of information (i.e., what the decision maker knows when). Event trees differ from the
widely used decision trees in that they record only the random events; the decisions taken are im-
plicit. A small event tree is depicted in Figure 1.

This paper is concerned with linear multistage stochastic programs, in which all the con-

straints and the objective are linear (affine) functions of the decision variables. Working with

1 This research was supported in part by a grant from the National Sciences and Engineering Research
Council of Canada (NSERC)

such problems can be highly nontrivial; not just their solution but even such mundane tasks as
formulation, storage and data handling can be difficult and time consuming, mostly because of
the large problem size.

The remainder of this paper describes some ways to facilitate the mentioned model man-

agement functions. Section 2 describes an input format based on the MPS format for linear pro-
grams that can be used for problem formulation. Section 3 introduces some components and func-
tions of an algebraic modelling language for the same purpose, and Section 4 features different
database tools for visualizing both data and solutions.

We begin by formulating two stochastic linear recourse problems, which will be used for

illustrative purposes. The first is a stochastic version of a transportation problem, given mathe-
matically as

()

)5.1(., allfor 0,

)4.1(, allfor 0

)3.1(, allfor

)2.1(allfor

)1.1(min

,

,

wjyy

jix

wjdyyx

isxst

yqyqpxc

jwjw

ij

wjjwjw
i

ij

i
j

ij

w j
jwjjwjw

ji
ijij

≥

≥

=+−

≤











++

−+

−+

−−++

∑

∑

∑ ∑∑

Here jwd is the random demand realized in demand centre j under scenario w, pw is the

probability of observing outcome or scenario w, and +
jq and −

jq are the costs incurred in dealing

with over- and underallocations if the total shipment into demand centre j exceeds or falls short of
the realized demand.

It should be remarked that this mathematical formulation defines sets and indices

(sources, destinations, scenarios), variable classes (−+ yyx ,,) and general relationships (such as
the generic product balance equations (1.3)). No mention is made of the actual set memberships
(i.e., what the sources, destinations and scenarios actually are) or the values of the coefficients;
that is left for later. This is an example of the separation of model and data, which we will return
to in Section 3.

Figure 1. A small event tree

The second problem is a multistage financial planning problem. The full formulation is

given in Gassmann and Ireland (1995); we only summarize the most salient features here. At each
stage the decision-maker selects borrowing and repayment decisions in a number of different debt
instruments issued in different markets, subject to cash requirement, market saturation and other
institutional and regulatory constraints. Uncertainty enters in the form of interest and exchange
rate risk. The objective is to minimize the expected value of the debt outstanding at the end of the
planning horizon.

In block schematic form, this problem can be written as

)5.2(,,,1),(in for 0

)4.2(0

)3.2(,,1),(in for

)2.2(

)1.2(min

0

)(,1

000

)(

TttNsx

x

TttNsbxAxB

bxAst

xp

ts

tststssatts

TNs
Tss





=≥
≥

==+
=

−

∈
∑

where it is assumed that the nodes in the event tree are numbered in some fashion (for instance,
stage by stage), such that the root node is numbered 0 and for each node s > 0, a(s) gives the an-
cestor node in the previous stage. N(t) denotes the collection of all nodes in stage t.

2. The SMPS format

It is very important to have a commonly accepted way to describe a stochastic program.

Archiving, algorithmic development and benchmarking, and test problem collection all depend on
it. Linear programming has used the MPS format (see, e.g.,IBM 1972a,b,1996) as a de facto
standard for about forty years. In this section we describe a modification of the MPS format de-
signed to handle stochastic extensions. This so-called SMPS format is described in full detail in
Gassmann and Schweitzer (1996), and is based on earlier work by Edwards et al. (1985) and Bir-
ge et al. (1988).

The key idea is that multistage stochastic problems contain special structure of two types,

temporal information to describe the time stage each row and column of the problem belongs to,
and stochastic information to describe the distributions of the random coefficients. Because the
random information is revealed gradually over time, the stochastic structure is a secondary struc-
ture, which cannot be conveyed accurately without describing the temporal structure first. All this
information is collected in the SMPS format in three separate files, called the core file, the time
file, and stochastic file (or stoch file, for short).

The core file is in MPS format and fixes the problem dimensions, row and column

names, deterministic coefficients, and representative values for all the random elements. The lat-
ter could be the means, but that is not a strict requirement. (In this simplified exposition we as-
sume that the dimensions of the problem are deterministic; the SMPS format has special devices
for dealing with stochastic problem dimensions, such as trap states or variables that are only acti-
vated if a particular set of realizations has been observed.)

One important simplifying assumption is that the rows and columns have been sorted into

temporal order, so that all first-stage rows are mentioned in the core file before the appearance of
the first row of the second stage, and so on. (And similarly for the columns.) This allows for a
very simple description of the time structure, by simply marking the first row and column for
each stage. This information is contained in the time file.

The random structure is described in the stoch file. The goal is to arrange the possible re-
alizations into an event tree, which can be set up implicitly or explicitly. Explicit event trees are
built one scenario at a time, by specifying branching probabilities along with all the information
that is particular to each scenario. Explicit event trees are finite by definition. Implicit event trees
are generated by the system; the user merely supplies information about marginal distributions
governing one or more random elements. Implicit trees can at present only be dealt with if the
random elements are independent from one stage to the next, but the format provides support for
continuous distributions that are discretized (or sampled) only during the solution phase.

Figure 2 shows a sample stoch file for the transportation problem, in which the demands

at four destinations are random, independently of each other. (Depending on the information giv-
en in the core file, these may be the only destinations, or there may be other destinations at which
the demand is deterministic.) Lines 2 to 5 indicate that the demand at destination ‘TRD’ is dis-
crete and takes on values of 150, 180 and 120 units with probability 0.25, 0.5, 0.25, respectively.
Similarly the demand at destination ‘KRS’ is assumed uniformly distributed on the interval
[80,110], the demand at ‘STV’ is normally distributed with mean 100 and variance 100, and the
demand at ‘LIL’ follows a distribution described by the (user-supplied) subroutine My_Jiffy
(which must be distributed with the data files to completely specify the problem instance).

3. Algebraic modelling languages

Algebraic modelling languages have been used for some years to assist with the genera-

tion of linear (and nonlinear) mathematical models. Their aim is to mimic as closely as possible
the notation used by the modeller to describe the model in conventional mathematical notation.
Algebraic modelling languages often feature the separation of model and data, as mentioned in
the introduction. Commonly used algebraic modelling languages are AMPL (Fourer et al. 1993),
GAMS (Brooke et al. 1988), MPL (Kristjansson 1993), MODLER (Greenberg 1993), and
AIMMS (Bisschop and Entriken 1993).

In as much as algebraic modelling languages can be used to formulate large scale linear

programs, they can be used to set up stochastic programs with finite discrete distributions (in ex-
plicit scenario form). For example, the transportation problem (1) can be formulated in AMPL as
shown in Figure 3. A data section to define a particular instance is displayed in Figure 4.

NAME Transportation problem
INDEP DISCRETE
 RHS DEMTRD 150.0 0.5
 RHS DEMTRD 180.0 0.25
 RHS DEMTRD 120.0 0.25
INDEP UNIFORM
 RHS DEMKRS 80.0 110.0
INDEP NORMAL
 RHS DEMSTV 100.0 100.0
INDEP My_Jiffy
 RHS DEMLIL 80.0 100.0
ENDATA

Figure 2. Stochastics file for the transportation problem

Since the financial planning model is a multistage model, it is by necessity more involved

than the two-stage transportation model. The full formulation of the financial planning model has
been omitted for space reasons, but some key points should be noted. First, each scenario is given

set ORIG; # origins
set DEST; # destinations
set SCEN; # scenarios

param supply {ORIG} >= 0; # amounts available at origins
param demand {DEST,SCEN} >= 0; # amounts required at destinations
param prob {SCEN} >= 0; # scenario probabilities
param cost {ORIG,DEST} >= 0; # shipment costs per unit
param shortcost {DEST} >= 0; # shortage costs at destinations
param surplcost {DEST} ; # surplus costs at destinations

var Trans {ORIG,DEST} >= 0; # units to be shipped
var Short {DEST,SCEN} >= 0; # units short in each scenario
var Surpl {DEST,SCEN} >= 0; # units long in each scenario

minimize total_cost:
 sum {s in ORIG, d in DEST} cost[s,d] * Trans[s,d] +
 sum {d in DEST, w in SCEN} prob[w]*(shortcost[d]*Short[d,w] +
 surplcost[d]*Surpl[d,w]);

subject to Supply {s in ORIG}: sum {d in DEST} Trans[s,d] <= supply[s];

subject to Demand {d in DEST, w in SCEN}:
 sum {s in ORIG} Trans[s,d] + Short[d,w] - Surpl[d,w] = demand[d,w];

Figure 3. An AMPL formulation of the transportation model

param: ORIG: supply := # defines set "ORIG" and param "supply"
 Oslo 250
 Bergen 100;

param: SCEN: prob := # defines set "SCEN" and param "prob"
 High 0.25
 Medium 0.5
 Low 0.25;

param: DEST: shortcost surplcost := # defines set "DEST" and
 # parameters "surpl" and "short"
 Stavanger 15 5
 Trondheim 10 0
 Lillehammer 20 -5;

param cost: Stavanger Trondheim Lillehammer :=
 Oslo 10 15 10
 Bergen 10 10 20;

param demand: High Medium Low :=
 Stavanger 110 100 90
 Trondheim 165 150 135
 Lillehammer 88 80 72;

Figure 4. A data file to accompany the AMPL model of Figure 3

a start time as well as a parent scenario from which it branches. (The root scenario has no parent.)
To make the correspondence to the event tree of Figure 1 completely explicit we use the conven-
tion that slanted arcs indicate branching, while horizontal arcs connect two stages on the same
scenario. The root scenario tus corresponds to the topmost scenario and the second scenario
branches from it starting in stage 4.

An inventory balance equation might then be written in AMPL in the form suggested in

Figure 5.

Here event_nodes is a subset of the cartesian product (periods × scenarios),

corresponding exactly to the nodes in the event tree. (This set can be constructed automatically
once the parent relation and the starting time are given for each scenario; the details are omitted.)
The crux of the formulation is AMPL's ability to use the predefined function previous[j,t]
in place of an indexing variable. The definition of previous[j,t] is simply j if scenario j
contains a node in the event tree in the previous period (i.e., if period t is not the starting time of
scenario j) and is parent[j] otherwise. This particular way of thinking about scenarios is con-
venient for data handling and uses a non-redundant representation of the data. We will call this
the compressed form of the event tree, and note that nonanticipativity of decision variables is
handled implicitly.

But each scenario also represents a path from the root node to one of the leaf nodes. For
displaying a time series of one data element or decision variable (such as the holdings in a partic-

balance { (j,t) in event_nodes} :

cash[j,t] = ; cash on hand in period t
 sum {k in debt_types}
 exch_rate[k,j,t] * ((1-issue_cost[k,t])*borrow[k,j,t]
 ; new borrowing

 - sum { s in 0..t-1} (int_rate[k,j,s,t] *
 (if t = 1 ; interest payments
 then init_debt[k] ; on outstanding debt
 else outst[k,previous[j,t],s,t-1])

 + ret_cost[k,j,s,t]*retire[k,j,s,t])) ; repayments

 + (if t = 1 ; cash from previous period
 then init_cash
 else (1 + cash_int[j,t]) * cash[previous[j,t],t-1]);

Figure 5. AMPL formulation of a constraint involving random variables

Figure 6. A small event tree in expanded form

ular financial instrument) over time, the expanded form of the event tree is more convenient. In
the expanded form, each data element and decision variable is replicated in each scenario, and
nonanticipativity is enforced through explicit constraint. Figure 6 shows the expanded view of the
event tree given originally in Figure 1. The vertical lines indicate nodes whose decision variables
must be made to agree by explicit constraints.

It is even possible to define implicit event trees in AMPL, provided that the scenarios are

identified by numbers instead of names. The reason for this is that the branching information can
be computed using modular arithmetic.

Figure 7 shows again the small event tree; this time the scenarios have been numbered

consecutively from 1 to 8. We assume that there is one random variable in each stage. Each ran-
dom variable takes two possible values and is independent of the previous stages. Note that the
odd-numbered scenarios use the first outcome of the stage 4 random variable and start prior to
stage 4, the even-numbered scenarios use the second outcome and start in stage 4. Similarly, if
the scenario number)4(mod1≡s , then the scenario uses the first outcome of the third-stage ran-
dom variable, and it started prior to stage 3, etc. A full example of how to implement this idea in
AMPL is contained in Gassmann and Ireland (1995).

4. Database views

Some algebraic modelling languages (such as AMPL Plus (Compass Modeling Solutions

1995) and AIMMS (Bisschop and Entriken 1993)) allow data to be contained in a database.
Through suitable queries, parameter and coefficient values are read form the database, and solu-
tions returned from the solver can be written back into the database. A recent paper by Fourer
(1997) explores the use of databases in mathematical modelling and identifies several important
advantages. First, databases are well accepted and understood by managers, making mathematical
models in general and stochastic programs in particular accessible to a wider audience.

Second, databases make it easy to eliminate data redundancies and thus reduce the possi-

bility of error. And finally, report generation is made much easier through the use of built-in re-
porting and graphing capabilities. In other words, one would store the event tree in compressed
form. Queries can then be used to switch to expanded form whenever needed.

1

2

3

4

5

6

7

8

Figure 7. Event tree with numbered scenarios

Figure 8. Database structure for a financial planning model

The approach is illustrated in the two screen captures of figures 8 and 9. The first figure
shows the database structure for the financial planning model, containing tables for data and solu-
tion variables as well as four auxiliary tables (whose names start with the underscore character).
Two data tables are also shown to illustrate how the data are stored in compressed form. (There is
no entry for cash_int in the CashInterest table for scenario 2 in current_period 1, since scenario 2
only starts in period 3.)

The second screen shows how data for a particular scenario (selected by the user) can be

retrieved from the database and displayed in a line graph. (Other graphical representations are just
as easy, limited only by the capabilities of the database.) This figure also shows how the data val-
ues in the different periods must be retrieved (by a SQL query) from several scenarios. The event
tree for this particular problem is depicted (in part) in Figure 10.

5. Conclusions

This paper showed a number of ways to represent stochastic programming problems and

their components. These views may aid the modeller in setting up stochastic models; they may
also help the user visualize solution vectors and data items. Tools such as these may make sto-
chastic problems more accessible and easier to work with.

Figure 9. Graphical representation of a data item

Figure 10. A partial event tree for the financial planning problem

1
5

2

3

4

6

7

8

9

References

Birge, J.R., Dempster, M.A.H., Gassmann, H.I., Gunn, E.A., King, A.J. and Wallace, S.W. (1988)
“A standard input format for multiperiod stochastic linear programs”. Committee on Algorithms
Newsletter 17, 1–19.

Bisschop, J. and Entriken, R. (1993) AIMMS: The Modelling System. Paragon Decision Technol-
ogy, Haarlem, The Netherlands.

Brooke, A., Kendrick, D. and Meeraus, A. (1988) GAMS -- A User's Guide. The Scientific Press,
Redwood City, California.

Compass Modeling Solutions (1995) Using AMPL Plus. Reno, Nevada.

Edwards, J., Birge, J., King, A. and Nazareth, L. (1985) “A standard input format for computer
codes which solve stochastic programs with recourse and a library of utilities to simplify its use”.
Working Paper WP-85-03, International Institute for Applied Systems Analysis, Laxenburg, Aus-
tria.

Fourer, R. (1997) "Database structures for mathematical programming models". Decision Support
Systems 20, 317–344.

Fourer, R., Gay, D.M., and Kernighan, B.W. (1993) AMPL: A Modelling Language for Mathe-
matical Programming. The Scientific Press, San Fransisco, California.

Gassmann, H.I. and Ireland, A.M. (1995) “Scenario formulation in an algebraic modelling lan-
guage”. Annals of Operations Research 59, 45–75.

Gassmann, H.I. and Ireland, A.M. (1996) “On the formulation of stochastic linear programs using
algebraic modelling languages”. Annals of Operations Research 64, 83–112.

Gassmann, H.I. and Schweitzer, E. (1996) “Proposed extensions to the SMPS input format for
stochastic programs”. Working Paper WP-96-1, School of Business Administration, Dalhousie
University, Halifax, Nova Scotia.

Greenberg, H.J. (1993) Modeling by Object-Driven Linear Elemental Relations: A User's Guide
for MODLER. Kluwer Academic Publishers, Dordrecht.

International Business Machines. (1972a) "Mathematical Programming Subsystem — Extended
(MPSX) and Generalized Upper Bounding (GUB) Program Description", Document number
SH20-0968-1.

International Business Machines. (1972b) "Mathematical Programming Subsystem — Extended
(MPSX) and Mixed Integer Programming (MIP) Program Description", Document number
GH19-1091-0.

International Business Machines. (1996) "Passing your model to OSL using Mathematical Pro-
gramming System (MPS) format. [web page] http://www.research.ibm.com/osl/ekkgc10.html.
[Accessed 28 April 1999].

Kristjansson, B. (1993) MPL Modelling System User Manual (Version 2.8). Maximal Software,
Inc., Arlington, Virginia.

	1. Introduction

