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A Network-Based Approach to 

Earthquake Pattern Analysis 

 

By Mirela Suteanu 

Abstract 

This research proposes a new network-based method for the assessment of earthquake 

relationships in space-time-magnitude patterns. The method is applied to the study of 

volcanic seismicity in Hawaii, over a time period from January 1
st
, 1989 to December 

31
st
, 2012. It is shown that networks with high values of the minimum edge weight Wmin 

enjoy strong scaling properties, as opposed to networks with low values for Wmin, which 

exhibit poor or no such properties. The scaling behaviour along the spectrum of Wmin, in 

conjunction with the robustness regarding parameter variations, endorse the idea of a 

relationship between fundamental properties of seismicity and the scaling properties of 

the earthquake networks, and can be used to discern the interrelated earthquakes from the 

rest of the dataset. The scale free behaviour of the connectivity distribution along the 

spectrum of the minimum weight values is mirrored by a similar behaviour of the 

distribution of the number of nodes’ linked neighbours. The patterns found in the 

distributions of temporal and spatial intervals between earthquakes are similar in various 

networks, from large to small networks. Notable similarities are found between the 

variation of the network clustering coefficient, C, and the variation of the exponents of 

the connectivity distribution, β, and of the weight distribution, γ . Results of this method 

are further applied for the study of temporal changes in volcanic seismicity patterns. It is 

shown that β, γ , and C manifest a generally synchronous variation over successive 

temporal windows, which can be related to changes in seismicity and in the life of the 

volcanic system. A Zipf distribution is found for the ranked sets of magnitude values of 

successive network nodes. The distribution of differences between the magnitude values 

of successive nodes is also governed by a power law. 
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Chapter 1 

Introduction 

     1.1.   Background 

 Understanding the fundamental laws that govern seismicity is an important, but 

challenging task. Extensive research dedicated to this topic shows various aspects of the 

correlations found in earthquake patterns. Correlations have been found in magnitude 

(Gutenberg and Richter, 1954; Lippiello et al., 2012b), time (Omori, 1894; Shcherbakov 

et al., 2004; Shcherbakov et al., 2006), and space (Turcotte, 1977; Felzer and Brodsky, 

2006; Lippiello et al., 2009). Integrated approaches have been developed to find space-

time-magnitude patterns (Bak et al., 2002). Over the past decade, approaches based on 

complex networks have shown not only that networks of correlated earthquakes can be 

created, but also that these networks enjoy scaling properties (Baiesi and Paczuski, 2004; 

Baiesi and Paczuski, 2005; Davidsen et al., 2008). 

     1.2.   Objectives 

 The purpose of this research is to use instruments from complex networks to 

study relationships between earthquakes. The earthquakes are seen as sets of space-time-

magnitude events that can be related with each other, while the features of the 

interactions among earthquakes can vary over time. This approach is applied to 

seismicity associated to hotspot volcanism in Hawaii. In order to assess earthquakes 

interactions and their change in time, the following main objectives are pursued: 
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1. The development of an integrative method that maps seismic information to 

directed weighted networks.  

2. The analysis of the earthquake networks, in search for possible patterns related to 

seismicity. 

3. The analysis of earthquake networks in temporal windows, with the purpose of 

finding new instruments able to reflect the changes in the real-world system.  

 

     1.3.   Organization of the Thesis 

 This thesis consists of six chapters and four appendices.  

 Chapter 1, the current chapter, is meant to present the main objectives of the 

research. 

 Chapter 2 reviews important results in earthquake pattern analysis and complex 

networks that support the studies presented in the thesis. 

 Chapter 3 discusses aspects regarding the data and the experimental setup. 

 Chapter 4 shows results presented in the paper “Scale Free Properties in a 

Network-Based Integrated Approach to Earthquake Pattern Analysis”, which was 

published on March 24, 2014 in the journal Nonlinear Processes in Geophysics. A 

network-based method for the assessment of earthquake relationships in space-time-

magnitude patterns is proposed. It is shown that networks with high values for the 

minimum edge weight Wmin enjoy strong scaling properties, as opposed to networks with 

low values for Wmin, which exhibit no such properties. The scaling behaviour along the 

spectrum of Wmin values, in conjunction with the robustness regarding parameter 

variations, endorse the idea of a relationship between fundamental properties of 
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seismicity and the scaling properties of the earthquake networks. Results of this method 

are further applied for the study of temporal changes in volcanic seismicity patterns. 

 Chapter 5 presents results discussed in the paper “Aspects of Structure in 

Earthquake Networks”, which was submitted for publication to the journal Pure and 

Applied Geophysics on March 30, 2014. The paper discusses various aspects revealed by 

the study of earthquake networks introduced in chapter 4, such as:  patterns found in the 

distributions of temporal and spatial intervals between earthquakes; similarities found 

between the variation of the network clustering coefficient, C, and the variation of the 

exponents of the connectivity distribution, β, and of the weight distribution, γ ; the Zipf 

distribution found for the ranked sets of magnitude values of successive network nodes, a.s.o. 

 Chapter 6 summarizes the results of the thesis research and presents aspects of the 

study which can be developed in future research. 

 The appendices refer to the code of the main programs that have been developed 

in the framework of this research. 

In order to avoid confusion involving the two articles in Chapter 4 and Chapter 5, 

the numbers of tables and figures start from number 1 for each chapter. Also, where 

references are required, they are added at the end of each chapter.   
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Chapter 2 

Related Work 

 An earthquake is an oscillatory movement of the ground as a result of a sudden 

release of energy inside the Earth (Hyndman and Hyndman, 2009). The magnitude of an 

earthquake is a measure of the size of the earthquake, and is proportional to the logarithm 

of the energy (Hanks and Kanamori, 1979). As Bak  and Tang (1989), and Kagan (1994) 

pointed out years ago, there is still no complete understanding of the underlying 

mechanisms of seismicity, and even the most well-established relations that come from 

empirical observations cannot be logically derived from the fundamental laws of physics 

(Davidsen et al., 2008; van Stiphout et al., 2012). 

 Although significant progress has been done in recent years, seismic forecasting is 

still an aspiration (Shcherbakov et al., 2010; Tiampo and Shcherbakov, 2012; Varotsos et 

al., 2012; Varotsos et al., 2013). Among many hypotheses and models, a fact that is 

generally acknowledged by the whole scientific community is the ubiquity of power law 

forms in earthquake occurrence. 

 Omori (1895) was the first scientist to note that the aftershock rate decays with 

time according to a power law:  

1)( −≈ ttn ,         (1) 

where n(t) is the frequency of aftershocks per time unit, and K and c are constants. 

 What is known today as the modified Omori law was the work of Utsu (1961), 

who showed that the aftershocks occurrence rate n fits the formula: 

p
ctKtn

−+= )()( ,        (2) 
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where p is a constant with values between 0.7 and 1.8.  

 Newer studies reveal more complex aspects of this formula (Shcherbakov et al., 

2004; Shcherbakov et al., 2006).   

 It was also discovered by Gutenberg and Richter (1954) that the magnitude-

frequency distribution of the cumulative number of earthquakes N of magnitude greater 

than m has the form: 

bma
N

−= 10 ,         (3) 

where a and b are constants, and in most cases b ≈ 1. Although eq. (3) represents an 

exponential with respect to m, since the magnitude is proportional to the logarithm of the 

seismic moment, it becomes a power law when considered with respect to the seismic 

moment. 

 Felzer and Brodsky (2006) found that the decay of aftershocks as a function of 

distance also fits a power law over distances of 0.2-50 km: 

n
crr

−=)(ρ ,        (4) 

where ρ is the linear density of aftershocks, r is the distance of the aftershock from the 

mainshock, c is a constant, and n ≈ 1.3. 

 A power law was also found by Lippiello et al. (2009), who showed that the 

distribution ρ (r) of the epicentral distance r between each aftershock and its mainshock 

exhibits a maximum followed by a power law decay. 

 The concept of mainshock refers to earthquakes that are independent of other 

earthquakes (also called background seismicity), while earthquakes that depend on other 

earthquakes are called aftershocks, foreshocks, or triggered earthquakes. The process of 

discrimination of earthquakes into these two categories is called seismicity declustering 
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(van Stiphout et al., 2012). This process is important for practical and scientific reasons, 

such as hazard management, seismicity modelling or prediction research. Different 

declustering methods have been developed, and, as van Stiphout et al. (2012) point out, 

each of them rely on their own model for seismicity. 

 In the window declustering methods, aftershocks are identified if they fall in a 

space-time window related to a mainshock, which is a function of the mainshock’s 

magnitude (Knopoff and Gardner,1972; Gardner and Knopof, 1974). If d is the spatial 

distance of influence of a mainshock of magnitude M, and t is its temporal interval of 

influence, then all earthquakes situated at a distance d in space and a distance t in time are 

aftershocks or foreshocks of that mainshock. As an example, in Gardner and Knopoff 

(1974) d and t developed for southern California are defined as: 

d (in km)  = 10
0.1238*M+0.983

       (5)  

  10
0.032*M+2.7389

, if M ≥ 6.5  
t (in days) =         (6) 

  10
0.5409*M-0.547

, if M < 6.5 

 Various choices of parameter values in such formulas lead to significant 

variations in aftershock identification.  

 Reasenberg’s algorithm (Reasenberg, 1985) identifies foreshocks and aftershocks 

within a cluster based on Omori’s law for the cluster’s time extension and on a window-

type function for the cluster’s spatial extension; also in this case, different choices of 

fixed parameter values may lead to substantially different estimates of the correlations 

between earthquakes.   

 The ETAS model (abbreviation from Epidemic Type Aftershock Sequence) is a 

statistical model, in which seismicity is considered the sum between a factor that 
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represents independent (background) earthquakes and a factor that represents the 

dependent (triggered) events, which is a superposition of modified Omori functions 

shifted in time (Ogata, 1988; Ogata and Zhuang, 2006): 

{ }

{ }

)()(
:

j

ttj

MM
ttet

j

cj −+= ∑
<

−
νµλ

α

θ ,     (7) 

where λθ  represents the total seismicity rate, µ represents the rate of the background 

seismicity, ν(t-tj) are modified Omori functions (Eq. 2) of the aftershocks that occurred 

before time t (expressed in days), the exponential is a weight factor for the size of the 

aftershock j and is a function of its magnitude Mj, and Mc is the cut-off magnitude of the 

fitted data. Eq. (7) expands the modified Omori formula to cover situations of cascading 

aftershocks that may result in very intricate structures.   

 The simple ETAS model described by the above equation is based on the 

modified Omori relation and does not include any spatial component. Based on ETAS, 

more complex models have been developed, for example space-time extensions of ETAS 

generated by multiplying ν(t-tj) with a function of space under the summation in Eq. (7): 

{ }

);,()()(
:

cjjjj

ttj

MMyyxxgttt
j

−−−×−+= ∑
<

νµλθ  (8) 

More elaborate models use probabilistic approaches, such as the stochastic declustering 

method of Zhuang et al. (2002); they start from the space-time extension of the ETAS 

model, and replace the functions for background and aftershock seismicity from Eq. 8 

with probability functions.  

 A seismicity declustering method was also proposed by Baiesi and Paczuski 

(2004).  They suggest that the identification of scaling properties in their earthquake 

networks endorse the idea of a relationship between these properties and the governing 
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features of real-life seismicity (Baiesi and Paczuski, 2004; Baiesi and Paczuski, 2005). In 

this context, the focus of their research is on the identification of correlations between 

earthquakes, and not on the precise classification of earthquakes in mainshocks and 

aftershocks; as they point out, an exact classification mainshock-aftershocks may be an 

intrinsically impossible task. Since their model was an insightful introduction of complex 

networks in the study of seismicity, their work will be discussed in more detail. They 

showed not only that networks of correlated earthquakes can be created, but also that 

these networks exhibit scaling properties. Albert and Barabási (2004) had already proven 

that the distributions of real networks enjoy power law properties: they showed that the 

Internet, science collaboration networks, biological networks, and many other real 

networks have connectivity distributions with scaling properties.    

 Baiesi and Paczuski (2004) built a directed weighted network in which the nodes 

were earthquakes, the direction of edges was given by the temporal succession of 

earthquakes, and the edge weight was given by a metric that included components in 

time, distance, and magnitude.  Their method works as follows: if j is a given earthquake, 

the relationship between j and any of the earthquakes i that occurred before j and had a 

magnitude within an interval ∆m of mi is described by the expected number of events 

between i and j, nij, or by the correlation between the two events i and j, cij, as follows: 

nij = C t l
df ∆m 10

-bmi
 , 

or 

cij = 1/nij = C
-1

 t
-1

 l
-df ∆m

-1
 10

bmi 
, 
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where t is the time interval between i and j measured in seconds, l is the distance in space 

between i and j measured in meters, df is the fractal dimension of earthquake epicenters in 

the studied area, and b is the exponent of the magnitude-frequency distribution. 

 Each new earthquake j attaches with a single link to the previous earthquake i that 

minimizes nij (or maximises cij), which means that an earthquake can have only one 

related predecessor and the network has a tree structure. Only the links that are strong 

enough are retained for the network; the strength of a link is assessed against a threshold 

value nc , with (nij < nc), or c<, with (cij  > c<). In 2005, they extended the network model 

to accept more than one predecessor, as long as nij < nc or cij  > c<, i.e. the link is strong 

enough. The authors give fixed values to the thresholds:  

• c< = 10
2
 (nc = 10

-2
 ) for the tree structure (Baiesi and Paczuski, 2004); 

• c< = 10
4 

(nc=10
4
) for the extended network that allows more than one predecessor for 

a node. 

 Singularities are eliminated by taking a cut-off value for spatial distance lmin = 100 

m, and a cut-off value for the time interval tmin = 180 s (Baiesi and Paczuski, 2004) or tmin 

= 60 s (Baiesi and Paczuski, 2005). The method is probably robust with respect to 

variations in the values of these parameters, but a study of the effect of choosing different 

values for them is not shown. 

 Also, when constructing the networks, Baiesi and Paczuski choose to discard all 

magnitudes lower than a magnitude threshold m<. In their first paper (Baiesi and 

Paczuski, 2004) the magnitude threshold is m< = 2.5, while in their second paper (Baiesi 

and Paczuski, 2005) the magnitude threshold is m< = 3 . Although the properties of the 

resulting networks are robust with respect to the actual value of m< , as Baiesi and 



15 

Paczuski (2005) point out, the selection of a magnitude threshold may result in the loss of 

valid correlations between earthquakes. 

 The criterion for the selection of earthquakes into the network is the maximization 

of the correlation function cij with respect to preceding events i as long as cij does not 

drop under the threshold value c<. The event pairs are checked one by one against the 

threshold value c<, and the events with the highest cij above the threshold c< are 

considered nodes with a mainshock-aftershock relationship.  

 The components of cij are functions with large discrepancies in their values. For 

example, for the network with tree structure (Baiesi and Paczuski, 2004), the maximum 

possible value of the component in distance is 100
-1

 = 0.01, the maximum possible value 

of the component in time is 180
-1

 ≈ 0.006, while the minimum possible value of the 

component in magnitude is 10
2.5 ≈ 316.23 (a cut-off value of 2.5 was applied to the 

magnitude values). Α comparison between the contribution of each of the three 

components should thus consider 0.01, 0.006 and 316.23, while this discrepancy can only 

grow with time and distance. This choice seems to effectively address the identification 

of event clusters around the largest shocks.  

 Various distributions are assessed, such as the distributions of node connectivity, 

of the correlation c between event pairs, of the link weights, and it is shown that they 

exhibit strong scaling properties.  

 The tree structure analysis with the measure nij introduced by Baiesi and Paczuski 

(Baiesi and Paczuski, 2004) is expanded by Zaliapin et al. (2008) in a new statistical 

methodology aimed at the identification of clusters of earthquakes, and particularly of 

aftershocks. Zaliapin and Ben-Zion apply this method to southern California data and 
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show that the method is accurate and robust with respect to a number of parameters, as 

well as to catalogue incompleteness and location errors, and identifies clusters comprised 

of foreshocks, mainshocks and aftershocks (Zaliapin and Ben-Zion, 2013a). Furthermore, 

they classify the detected clusters into three major types, which correspond largely to 

singles, burst-like and swarm-like sequences, and study correlations between different 

cluster types and geographic locations (Zaliapin and Ben-Zion, 2013b).  

 Overall, the work of Bayesi and Paczuski opened an elegant path for the future 

study of seismicity. One might recognize a trend in some areas of today’s scientific 

research that resorts to network-based approaches when complicated systems, containing 

many interacting subsystems, are involved, as for example the evolving climate networks 

(Hlinka et al., 2014), or the networks of recurrent events constructed by Davidsen et al. 

(2008). 
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Chapter 3 

Study Data and Experimental Setup 

     3.1.   Preliminaries: Data Preprocessing 

 The data source for this study is the Advanced National Seismic System (ANSS) 

catalogue for Hawaii (18.5° ÷ 20.5° N and 154.5° ÷ 156.5° W), with events ranging from 

January 1
st
, 1989 to December 31

st
, 2012. The conversion to Cartesian coordinates was 

performed by using the software GEOTRANS from the National Geospatial-Intelligence 

Agency (http://gcmd.nasa.gov/records/GEOTRANS.html). Given the flexibility of Visual 

FoxPro 9.0 in raw data manipulation, this software was used for the preliminary pre-

processing. Table 1 presents the description of the main fields of the table Data.DBF that 

was created from the downloaded text file, and Fig. 1 shows a data sample. 

 

 

 

 

 

 

Table 1. Table Data.DBF that provides the data for this thesis research. 

 

 

 

 

Fig. 1. Data sample for table Data.DBF. 
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 The number of events in the catalogue is 64,392. Scaling properties in the 

Gutenberg-Richter magnitude-frequency distribution start approximately at magnitude 

1.6, as shown by the regression line in Fig. 2, and therefore, for catalogue completeness, 

only events with magnitude m >= 1.6 are selected for the analysis (37,451 earthquakes). 

Fig. 2. Gutenberg-Richter magnitude-frequency distribution for the Hawaii data set ranging from January 

1
st
, 1989 to December 31

st
, 2012. N is the cumulative number of earthquakes of magnitude greater than m, 

and the slope of the regression line (coefficient b of the distribution) is 0.998.  

The fact that the earthquake catalogue is incomplete for low magnitude values can be 

noticed in Fig. 2. To find the catalogue completeness threshold, successive slopes from the 

log(N) vs. m graph have been determined and represented as a function of event magnitude: 

Fig. 3 shows that for low magnitudes the slopes have positive values, which decrease quickly 

with increasing magnitude; the decreasing tendency is followed by a plateau, and it is the m-

value for the beginning of this plateau that indicate where the completeness of the catalogue 
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should begin. Therefore, the threshold value of m = 1.6 has been selected for this catalog, as 

illustrated in Fig.3. This value has been used throughout the whole study. For larger magnitudes 

the point pattern is increasingly scattered, as expected from the distribution presented in Fig. 2. 

 

Fig. 3. Successive slopes determined for the magnitude-frequency distribution with a magnitude bin size 

∆m = 0.1. The selected threshold is marked by a thick vertical line. 

 

 The programming tools used for the research presented in this thesis are: 

• Microsoft Visual FoxPro 9.0: for data preprocessing. 

• Microsoft SQL Server 2008: for network generation and analysis. 

• MATLAB R2007b-R2012b: for information visualisation. 
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     3.2.   Construction of the Earthquake Networks 

 The first experimental objective is to build the earthquake network. The 

conceptual definition is presented in the papers in Chapters 4 and 5. The networks are 

generated in the database Network, which was created on a Microsoft SQL Server 2008. A 

diagram of the main tables of this database, including their primary keys and foreign 

keys, is shown in Fig. 4. The table Data.DBF is imported on the server through the 

Integration Services into the table Data. The user defined procedure 

usp_Create_Network, which is presented in Appendix A, uses the information in the 

input data Data to build the actual network in the table Network_Edges (metadata are 

presented in Table 2).  

 Examples of images from a network of earthquakes are shown in Fig. 5a. Details 

are also illustrated in Fig.5b, where, by zooming in, the actual nodes and edges can be 

seen. The software used to create these images was ArcGIS 9.2. Fig. 6 presents data 

samples from a network table. 

 By running the procedure Network.dbo.usp_Create_Network with different values 

of input parameters, different classes of networks are built as described in Chapters 4 and 

5. Inside each class, series of networks (i.e. Network_Edges tables) are created by setting 

different threshold values for the minimum edge weight Wmin. The newly created 

networks of each class are then copied into separate databases (Net_M, Net_O, Net_P,…) 

for future analysis and storage purposes. 
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Fig. 4.Diagram of the Network database. The primary keys and the foreign keys of the tables are presented 

in bold and the relationships are represented by thin bars. 
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Fig. 5a. Example of an earthquake network with locations of the main volcanoes on the Big Island of 

Hawaii.  
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Fig. 5b. Nodes and edges of an earthquake network.  

 

 

 

 

 

 

 

 

 

Fig. 6. Data sample from the earthquake network table.  
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Table 2. Metadata for table Network_Edges. 

# Field Name Type Prec Scale Description 

1 pid character 7   Identifier of the first occuring earthquake 

2 pid_linked character 7   Linked node identifier 

3 delta_t numeric 10 0 Time interval between the 2 nodes (seconds) 

4 weight numeric 19 18 Edge weight  

5 from_depth numeric 4 2 Depth of the first occuring earthquake 

6 to_depth numeric 4 2 Depth of the linked earthquake 

7 from_magn numeric 3 2 Magnitude of the first occuring earthquake 

8 to_magn numeric 3 2 Magnitude of the linked earthquake 

9 from_year smallint 4   Year of the first occuring earthquake 

10 from_month tinyint 2   Month of the first occuring earthquake 

11 from_day tinyint 2   Day of the first occuring earthquake 

12 from_hour tinyint 2   Hour of the first occuring earthquake 

13 from_minut tinyint 2   Minute of the first occuring earthquake 

14 from_sec numeric 4 2 Second of the first occuring earthquake 

15 to_year smallint 4   Year of the linked earthquake 

16 to_month tinyint 2   Month of the linked earthquake 

17 to_day tinyint 2   Day of the linked earthquake 

18 to_hour tinyint 2   Hour of the linked earthquake 

19 to_minut tinyint 2   Minute of the linked earthquake 

20 to_sec numeric 4 2 Second of the linked earthquake 

21 from_lat character 8   Latitude of the first occuring earthquake 

22 from_long character 9   Longitude of the first occuring earthquake 

23 to_lat character 8   Latitude of the linked earthquake 

24 to_long character 9   Longitude of the linked earthquake 

25 from_x numeric 9 3 x rectangular coordinate of the first earthquake 

26 from_y numeric 9 3 y rectangular coordinate of the first earthquake 

27 
to_x 

numeric 9 3 

x rectangular coordinate of the linked 

earthquake 

28 
to_y 

numeric 9 3 

y rectangular coordinate of the linked 

earthquake 

29 
oneway 

character 2   

Sense of the edge: From-To (FT/TF)(for 

ArcGIS) 

30 d numeric 7 3 Distance  between the 2 nodes (kilometers) 

31 w_m numeric 19 18 Weight due to the magnitude of the first event  

32 w_t numeric 19 18 Weight due to the time interval between events  

33 w_d numeric 19 18 Weight due to the distance between events  

34 t_infl_sec numeric 10 0 Max. time interval of influence between events 
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3.3.    Network Analysis 

 The experimental analysis of the earthquake networks starts on the SQL Server 

and is finalized in MATLAB, where the network distributions are assessed and their 

image is represented. Starting from the data in table Network_Edges, the node 

connectivity, the node weight, the number of nodes’ linked neighbours, and the node 

clustering coefficient are calculated in table Network_Nodes by the procedure 

usp_Compute_Network_Nodes (Appendix B). Fig. 7 presents a chart of the system with 

the functional modules of the Network database and the main tables they contain.  

 

 

Fig. 7. Functional chart of the system.  
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 The ranked sequences of two and three magnitude values of successive network 

nodes are calculated in the table Sequence_Magn_2_Rank and  Sequence_Magn_3_Rank 

(not shown).  

 A description of the Network_ Nodes table is presented in Table 3. 

Table 3. Metadata for table Network_Edges. 

# Field Name Type Prec. Scale Description 

1 cid int     Node identifier (unique, Identity) - in computing  

2 pid int     Node (earthquake) identifier (unique) 

3 in_lines int     Number of edges that enter into the node  

4 in_weight numeric 21 18 Total weight of edges that enter into the node  

5 out_lines int     Number of edges that leave the node  

6 out_weight numeric 21 18 Total weight of edges that leave the node  

7 tot_lines int     Total number of edges linked to the node  

8 tot_weight numeric 21 18 Total weight of all the edges in the node 

9 linked_near int     Number of linked neighbours of the node 

10 clustering numeric 4 3 Clustering coefficient of the node 

 

 The network tables Network_Edges and Network_ Nodes are then exported to 

MATLAB for analysis of the distributions of node connectivity, node weight, linked 

neighbours, spatial and temporal distances, etc., and for generation of the graphs. 

 

     3.4.   Study of Temporal Windows 

 The temporal windows are sub-sets of a regular network that are created and 

stored in the database Windows. An edge table Window_i_Edges and a node table 

Window_i_Nodes are created for each of these sub-sets, where i is the rank of the 

window. The windows are generated by splitting up the main table of the network nodes 

in smaller tables Window_i_Nodes of equal size, which can have an overlap factor. The 
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temporal succession of events is accomplished by ensuring that the main table 

Network_Nodes is ordered by the node ID, pid, which implicitly gives the chronological 

order of the events. The corresponding table Window_i_Edges is generated by collecting 

all edges adjacent to the nodes in the table Window_i_Node from the main table 

Network_Edges. 

 

Fig. 8. Diagram of the tables in the database Windows (the database of the successive temporal windows). 
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 During this process, the characteristics of each window are logged in the table 

Results, including the network average clustering coefficient for each window i. A 

diagram of the tables in the database Windows is shown in  Fig 8.  

 The programs that generate the temporal windows are 

usp_Compute_Network_Nodes_in_tempdb (Appendix C) and usp_Create_Windows 

(Apendix D). 

 The tables are then exported to MATLAB for further analysis. 
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Chapter 4 

Scale Free Properties in a Network-Based Integrated 

Approach to Earthquake Pattern Analysis 

 

 

Published in: 

Suteanu, M: Scale Free Properties in a Network-Based Integrated 

Approach to Earthquake Pattern Analysis, Nonlinear Processes in 

Geophysics, 21, 427-438, doi:10.5194/npg-21-427-2014, 2014. 

 

Abstract 

This paper proposes a network-based method for the assessment of earthquake 

relationships in space-time-magnitude patterns. It is shown that networks with high 

values for the minimum edge weight Wmin enjoy strong scaling properties, as opposed to 

networks with low values for Wmin, which exhibit no such properties. The scaling 

behaviour along the spectrum of Wmin values, in conjunction with the robustness 

regarding parameter variations, endorse the idea of a relationship between fundamental 

properties of seismicity and the scaling properties of the earthquake networks. Results of 

this method are further applied for the study of temporal changes in volcanic seismicity 

patterns. 
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1 Introduction 

 Extensive research is dedicated to earthquake pattern analysis in an on-going 

effort to understand the laws that govern seismicity. Correlations in earthquake patterns 

have been found in magnitude (Gutenberg and Richter, 1954; Lippiello et al., 2012b), 

time (Omori, 1894; Shcherbakov et al., 2004; Shcherbakov et al., 2006), and space 

(Turcotte, 1977; Felzer and Brodsky, 2006; Lippiello et al., 2009). Integrated approaches 

have been developed to find space-time-magnitude patterns (Bak et al., 2002). Network-

based approaches have shown not only that networks of correlated earthquakes can be 

created, but also that these networks enjoy scaling properties (Baiesi and Paczuski, 2004; 

Baiesi and Paczuski, 2005; Davidsen et al., 2008; Suteanu and Suteanu, 2011).  

 A space-time-magnitude metric defined for a directed network of earthquakes was 

proposed by Baiesi and Paczuski with their seismicity declustering method (Baiesi and 

Paczuski, 2004; Baiesi and Paczuski, 2005). The study in our paper also creates directed 

weighted networks of earthquakes with the purpose of assessing relationships between 

them. Given the ubiquity of power laws governing earthquake distributions (Nanjo and 

Nagahama, 2000; Lapenna et al., 2000; Shcherbakov et al., 2004; Carbone et al., 2005; 

Felzer and Brodsky, 2006; Shcherbakov et al., 2006; Bunde and Lennartz, 2012; 

Lippiello et al., 2012a; Lippiello et al., 2012b), power law forms are used to estimate 

quantitatively the relationships between events in a space-time-size perspective.  

However, there are major differences between Baiesi and Paczuski’s model and the work 

presented in this paper. Not only do the two methods use different metrics, but, most 

importantly, they use different criteria for the discrimination of interrelated earthquakes 

from the rest of the set: in the method of Baiesi and Paczuski (2004, 2005) the criterion is 
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the maximization of a correlation function, while in this study series of networks are 

created, assessed and searched for scale free properties. Since the main component in 

Baiesi and Paczuski’s metric is a function that is exponential in magnitude, their method 

effectively addresses the identification of event clusters around the largest shocks, while 

our method addresses earthquakes of all sizes that are considered close enough in space-

time-magnitude to be interrelated. 

 Although a new quantitative metric is defined in our study and a new type of 

networks is built, the results show power law properties that are consistent with previous 

work of Baiesi and Paczuski (2005) and with their interpretation that the underlying 

correlations of the seismicity structure are unambiguous, sufficiently strong to survive the 

approximation of the metric, and can be reliably detected. 

 Our method is applied to seismicity associated to hotspot volcanism in Hawaii. 

The earthquakes are seen as sets of space-time-magnitude events that can be related with 

each other, while the quality of the interactions among earthquakes can vary over time. In 

order to assess these interactions and their change in time, an integrative approach that 

maps seismic information to directed weighted networks is developed. Different classes 

of networks of earthquakes are studied, and results show scale free properties that are 

robust with respect to certain variations in the definition of the networks. Networks with 

values of the minimum edge weight Wmin in the middle to upper range of the spectrum of 

edge weight values enjoy strong scaling properties, as opposed to networks with Wmin in 

the lower range, which exhibit poor or no such properties. It is shown that network 

parameters studied for successive event windows are able to reflect the way the 
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relationships between earthquakes are changing over time, and that patterns of change 

can be related to important events in the life of the volcanic system.   

 

2 Construction of the earthquake networks 

 The epicenters of earthquakes that could be related to other earthquakes are seen 

as network nodes that are connected through directed edges. The edge direction is given 

by the temporal succession of the events. Ideally, only interrelated earthquakes can be 

nodes of this network, and the edges that link them to other nodes carry a space-time-

magnitude weight. Therefore, a combination of three factors is evaluated before deciding 

whether or not any two earthquakes belong to the network: the size (magnitude) of the 

first occurring event, and its proximity to future events in space and in time. There are 

many possible combinations of these three factors. Even small earthquakes may be 

related to subsequent events if the latter were close enough in space and time.  

 In order to quantitatively assess the relationship between earthquakes, three 

weight variables are defined: the weight in distance wd, the weight in time wt, and the 

weight in magnitude wm. A total weight W characterizes every edge as a combination of 

the previous three variables. Considering the Gutenberg-Richter law, the Omori law, and 

other scaling relationships regarding the distributions of earthquakes in space, time, and 

magnitude (e.g. Lei and Kusunose, 1999; Richards-Dinger et al, 2010; Felzer and 

Brodsky, 2006; Shcherbakov et al., 2006; Lennartz et al., 2008; Lippiello et al., 2009; 

Lippiello et al., 2012a; Sanchez and Shcherbakov, 2012), the following forms for the 

node weights of any one edge have been chosen: 

a) Distance weight: 
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0, <= rcdw
r

d ,       (1) 

where d is the spatial distance between the two nodes of the edge measured in km, and c 

is a positive constant. 

b) Time weight: 

0, <= pstw
p

t ,       (2) 

where t is the time interval between the two nodes of the edge measured in hours, and s is 

a positive constant. 

c) Magnitude weight: 

maxm

m
wm =  ,                 (3)  

where m is the magnitude of the first occurring node of the edge, and mmax is the 

maximum magnitude value in the data set. 

 The total weight of an edge is calculated as the product of the weights in space, 

time, and magnitude. Only the nodes that carry enough total weight belong to the 

network, which means that only edges that have a value of the total weight W higher than 

a minimum threshold Wmin are selected for the network: 
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 The generality of this definition allows various combinations of space-time-

magnitude correlations between any two events and includes the possibility of multiple 

interactions for any given event: any node can have any number of edges that enter the 
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node and any number of edges that leave the node, as long as these edges carry enough 

total weight.  

 For practical reasons and with the purpose of avoiding singularities, a small cutoff 

value is used for the weights in space and time (it is also reasonable to assume that all 

earthquakes that are very close in space or in time could be related to each other). 

Therefore, modified forms of Eqs. (1) and (2) are used in the actual construction of the 

networks: 
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 Various values for the exponents r and p, and for the cutoff values dmin and tmin 

are explored. The constants c and s are calculated using the boundary conditions: 

1min == r

d cdw        (1'') 

and  

1min == p

t stw        (2'') 

 An essential difference between the total edge weight defined in this paper and 

Baiesi and Paczuski’s (2004, 2005) metric consists in the contribution of each of the three 

factors (time interval, space interval, and magnitude). In contrast with their approach, in 

this paper the three components (time interval, spatial distance, and magnitude) are seen 

independently, as separate components with useful statistical properties, and each of them 
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can have comparable contributions to the total edge weight W. This is accomplished by 

limiting the upper value of each of the three components to 1. The definition of a 

magnitude weight proportional to m, and not exponential in m is therefore meant to 

support a balance of factors in the total edge weight formula. The resulting networks and 

network distributions are governed by statistical contributions of each of the three 

components. This choice is especially important in the study of volcano-tectonic 

seismicity, where the seismic sources are associated not only with tectonic stress, but also 

with thermodynamic processes and the dynamics of gas, fluid and solid. 

 To simplify the computation, a maximum interval of influence in time Tmax, and a 

maximum interval of influence in space Dmax are assigned. Although fixed values of Tmax, 

and Dmax are chosen for creating the initial network, making this choice is different from 

making a choice of parameters involving a subjective factor, such as in window 

declustering methods or in Reasenberg’s cluster method (Reasenberg, 1985). For 

example, in order to identify aftershocks, Knopoff and Gardner define space-time 

windows that are functions of the mainshock magnitude (Knopoff and Gardner, 1972; 

Gardner and Knopoff, 1974); various choices of parameter values lead to significant 

variations in the aftershock identification. Reasenberg’s algorithm (Reasenberg, 1985) 

identifies foreshocks and aftershocks within a cluster based on Omori’s law for the 

cluster’s time extension and on a window-type function for the cluster’s spatial extension; 

also in this case, different choices of fixed parameter values may lead to substantially 

different estimates of the correlations between earthquakes. In this paper, Tmax and Dmax 

receive fixed values only with the purpose of simplifying the computation. In principle, 

Tmax and Dmax could cover the whole extent of the catalogue in time and space. The study 
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shows that the final outcome is not affected by the initial choice of Tmax and Dmax, since 

large distances and long time intervals between events result in very small values of the 

edge weights wd and wt, and therefore lead to small values of the total edge weight W. 

The links carrying small weights are eliminated from the network in the next step 

anyway, when the network definition (4) is applied.  

 Different values for the maximum interval of influence in time Tmax, and for the 

maximum interval of influence in space Dmax are explored, as well as various values for r, 

p, dmin and tmin. This way, a series of network classes are generated with the purpose of 

creating a structured framework for the analysis: all networks that belong to a certain 

class B, C…, N share the same initial choice of Dmax, r, dmin, Tmax, p, tmin. Letters are used 

to name the classes of earthquake networks, and the choice of every letter has only a 

classification purpose.  A description of the classes that have been studied is shown in 

Table 1.  

 In each class, an initial network is created when assigning the specific values to 

parameters. For clarity, an index 0 is used to describe these initial networks: B0, C0, etc. 

The highest value of the total edge weight in each class, H, is the highest value of the 

total edge weight in the initial network (NETWORK CLASS)0, while the lowest value of 

the total edge weight in the class, L, is the lowest value of the total edge weight in the 

initial networks (NETWORK CLASS)0. For example, the highest value in the network B0 

is H=1, and the lowest value in the network B0 is L=1.01*10
-5

. In general, the first 

networks B0, C0,…, N0 are simply a collection of earthquakes, and not networks of 

interrelated events, and they serve for the operational initiation of the method. 

 Inside each class, specific values for the threshold Wmin define distinct networks.  
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3 Data  

 The data source for this study is the Advanced National Seismic System (ANSS) 

catalogue for the Big Island of Hawaii, with events ranging from January 1
st
, 1989 to 

December 31
st
, 2012. Fig. 1 shows an example of a network of earthquakes. By zooming 

in, the actual nodes and edges can be seen (Fig. 2). 

  

 

Figure 1. The earthquake network: an example for the Big Island of Hawaii. 
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Figure 2. Zoomed-in example of nodes and edges of the earthquake network presented in Fig.1. 

 

The number of events in the catalogue is 64,392. For catalogue completeness, only events 

with magnitude m >= 1.6 are used in the analysis (37,451 earthquakes); the b value in the 

Gutenberg-Richter magnitude-frequency distribution for this data set is b ≈ 0.99 (Fig. 3). 

 Different sets of networks in various network classes have been analyzed. The 

following values of the parameters have been studied: 

- Dmax: 10 km; 30 km; 50 km. 

- Tmax: 7 days; 8 days; 10 days; 30 days; 40 days. 

- dmin: 0.025km; 0.1 km; 0.2 km; 1 km; 2 km. 

- tmin: 3 min; 30 min; 1 h; 14h. 

- r: -1; -1.35. 

- p: -0.5; -1. 
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Figure 3. Gutenberg-Richter magnitude-frequency distribution for the Hawaii data set ranging from 

January 1
st
, 1989 to December 31

st
, 2012. 

Depending on the lowest edge weight value L and the highest edge weight value H in 

each class, specific values for the threshold Wmin are chosen in order to create and analyze 

distinct networks inside each class. 

 

4 Results 

4.1   Network parameters and analysis 

 Network parameters such as node connectivity and node weight distribution 

(Boccaletti et al., 2006) are assessed for sets of earthquake networks in different classes. 

The node connectivity (degree) represents the total number of edges in the node. The 

number of edges that enter the node (in-connectivity), and the number of edges that go 

out of the node (out-connectivity) are also studied. Similarly, the node weight, in-weight, 
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and out-weight are calculated and analyzed. The node weight is given by the sum of the 

weights of all edges in the node, the in-weight is the weight of all edges that enter the 

node, and the out-weight is the weight of all edges that go out of the node. 

 

Table 1. All classes. Tmax is the maximum time interval between events, Dmax is the 

maximum distance between events, r is the exponent of the distance weight wd (Eq. 1), p is 

the exponent of the time weight wt (Eq. 2), dmin and tmin represent cutoff values, H is the 

highest value of the total edge weight in the class, and L is the lowest value of the total 

edge weight in the class.  

Class 
Tmax Dmax r p tmin dmin 

H L 
(days) (km)     (h) (km) 

B 10 30 -1.35 -1 1 1 1.00 1.01*10
-5

 

C 10 30 -1.35 -1 0.5 0.2 0.65 5.76*10
-7

 

D 30 30 -1.35 -1 1 1 1.00 3.39*10
-6

 

E 40 50 -1.35 -1 0.05 0.2 6.07 7.24*10
-9

 

F 7 10 -1.35 -1 0.05 0.1 2.72 1.44*10
-7

 

G 7 10 -1.35 -1 0.05 0.025 2.72 2.22*10
-8

 

H 8 10 -1.35 -1 0.5 0.2 0.65 3.19*10
-6

 

I 8 11 -1.35 -1 0.05 0.1 2.72 1.11*10
-7

 

J 8 10 -1.35 -1 1 1 1.00 5.60*10
-5

 

L 7 10 -1 -0.5 14 2 1.00 1.39*10
-2

 

M 7 10 -1 -0.5 1 1 1.00 1.86*10
-3

 

N 40 50 -1 -0.5 0.5 0.2 0.66 2.19*10
-5

 

 

The results of the studies that were performed on all classes in Table 1 show that, 

for each class of networks, the connectivity distribution enjoys power law properties for 

all networks that have Wmin in the upper range of the interval between the lowest edge 

weight value L and the highest edge weight value H in the class, while for networks that 

have values of Wmin in the lower range of the interval between L and H, the connectivity 
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distribution is irregular and scattered. In many of the networks with irregular shapes, 

constants with a power law tail are present. 

 For example, a study on the large class E of networks is shown in Fig. 4. The 

class definition, the initial network E0 and the networks characteristics are presented in 

Table 2. The large size of the class (8,488,767 edges) originates in the assumption that, 

for any earthquake of the network, the interval of influence may go up to 40 days in time, 

and up to 50 km in space. This is a broad supposition for the active volcanic system of 

Hawaii; for the majority of these volcanic earthquakes, which do not have large 

magnitudes (Fig.3), correlations with earthquakes so far away in space and time are quite 

unlikely. This situation is suggestively illustrated in Fig. 4. The set of six images in Fig. 4 

shows the change in shape of the connectivity distribution when the minimum value of 

the total weight changes from low values, such as in networks E1, E2, E3, towards higher 

values, as in networks E10, E11, from highly irregular and scattered shapes to well-

organized shapes that exhibit significant power law properties. This behaviour is 

characteristic of networks in all the other classes. When weak links are included (low 

values of Wmin), most of the nodes in the emerging networks have little or no relationship 

with each other, and results show that this choice for network nodes translates in irregular 

and scattered shapes of the node connectivity. When only strong links are retained (high 

values of Wmin), the events selected to participate in the network are primarily 

earthquakes that are related to each other, and the results show that the underlying 

properties of seismicity manifest themselves in the well-organized, scale free appearance 

of the node connectivity. 
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Figure 4. Connectivity distribution for networks E1, E2, E3, E5, E10, and E11. N (on the Y axis) is the 

number of nodes that have a number E of edges(on the X axis). 

 

 

 

 

 



45 

Table 2. Class E Networks. E0 is the initial network that was generated using the 

parameter values shown in the first column. See Table 1 for the meaning of Tmax, Dmax, r, 

p, dmin , tmin,  H, and L. 

 

The threshold values Wmin are evaluated in the context of the whole set of 

earthquakes in the class, and not individually. Wmin values that identify networks of 

interrelated events emerge from the global assessment of network properties: they are 

found as those values for which scale free properties appear and become stronger when 

subsequent networks are created using increasing values of Wmin. In this sense, the 

Class E 

definition 

Characteristics of 

the initial network 

E0 

Network Number of 

nodes 

Number of 

edges Name Wmin 

  

 - Tmax= 40 days  

 

 - Dmax= 50 km 

 

 - r = - 1.35 

  

 - p = - 1 

 

 - dmin = 0.2 km 

  

 - tmin = 3 min 

 

  

  - 37,441 nodes 

 

  - 8,488,767 edges 

 

  - H = 6.07 

 

  - L = 7.24*10
-9

 

 

 

 

E1 
     10

-8
 37,441 8,461,301 

E2 
 5*10

-8
 37,419 6,628,575 

E3 
     10

-7
 37,357 5,660,485 

E4 
 5*10

-7
 36,808 3,782,245 

E5 
     10

-6
 36,172 3,102,765 

E6 
 5*10

-6
 32,886 1,784,667 

E7 
     10

-5
 30,377 1,330,446 

E8 
 5*10

-5
 23,032 584,548 

E9 
     10

-4
 20,063 376,852 

E10 
 5*10

-4
 14,091 117,835 

E11 
     10

-3
 11,955 68,408 
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threshold Wmin is a global parameter; it belongs to a range of values in the middle to upper 

zone of the interval between the lowest edge weight value L and the highest edge weight 

value H in any given class of networks. This represents a major difference between this 

method and the method of Baiesi and Paczuski (2004, 2005).  

 Moreover, the generality of this method allows a variety of correlations between 

earthquakes: any event of the network can have any number of predecessors and any 

number of successors if the corresponding edges carry enough space-time-magnitude 

weight, with no arbitrary limitation on magnitude, time, or distance. 

 Power law properties can also be found in the distributions of time intervals and 

distances between nodes. Fig. 5 shows the distribution of time intervals in the initial 

network E0, i.e. the distribution of all the time intervals between any two earthquakes 

within a space-time window that is quite large in the Hawaii volcano-tectonic context.  

Figure 5. Distribution of time intervals (in seconds) between any two nodes in the initial network E0. N is 

the number of time intervals of ∆t seconds between any two earthquakes in a space-time window of 50 km 

and 40 days. The red line represents a reference line with the slope -0.5. 
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As shown in Fig. 5, there is a distinct scale free zone that goes up to 7 days with a power 

law exponent of -0.5. The peak between 7 and 15 days with a maximum at 11 days is 

consistent with studies that show that the precursory sequences in Hawaii follow a power 

law acceleration with 10-15 days before eruption (Chastin and Main, 2003). 

 

Figure 6. Distribution of distances (in km) between any two nodes in the initial network E0. N is the number 

of distances of ∆d km between any two earthquakes in a space-time window of 50 km and 40 days. The red 

line represents a reference line with the slope -1. 

The distribution of the distances between events also has scaling properties. Fig. 6 

shows the distribution of space intervals in the initial network E0, which exhibits an 

exponent of -1 for the power law interval between 1 km and 10 km. Although the context 

is volcano-tectonic and not all earthquakes in this space-time window are interrelated, the 

overall shape of the distribution shows remarkable similarities with the distribution of 

distances of aftershocks from the mainshock in (Lippiello et al., 2009): an increase up to 
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a maximum value (1 km in this case), followed by a power law decrease. We believe that 

the peaks with maximums at 13, 18… km refer to events that are spatially clustered 

around the neighbouring volcanoes, distinct vents and fracture zones, and reflect the 

spatial characteristics of the Hawaii volcanic system: as shown in Fig.1, the network 

exhibits intense clusters spatially centered on the volcanoes, their vents and fracture 

zones, which are situated at distances compatible with the peaks in Fig. 6.  

 As another example, one of the network classes, class M, was created with 

characteristics drawn from the two distributions shown in  Fig. 5 and Fig. 6:  Tmax = 7 

days,  p = - 0.5,  Dmax = 10 km,   r = -1. The full description of the class M is summarized 

in Table 3.  

Table 3. Class M Networks. M0 is the initial network that was generated using the 

parameter values shown in the first column. See Table 1 for the meaning of Tmax, Dmax, r, 

p, dmin , tmin,  H, and L. 

Class M 

definition 

Characteristics of 

the initial network 

M0 

Network 
Number of 

nodes 

Number of 

edges Name Wmin 

 - Tmax= 7 days  

 - Dmax= 10 km 

 - r = - 1 

 - p = - 0.5 

 - dmin = 1 km 

 - tmin = 1 h 

  - 33,065 nodes 

  - 1,913,280 edges 

  - H = 1 

  - L = 1.86*10
-3

 

M1 
  1.5*10

-2

 26,919 1,270,458 

M2 
  2 * 10

-2

 25,396 1,088,015 

M3 
  3 * 10

-2

 22,682 782,659 

M4 
  4 * 10

-2

 20,440 584,686 

M5 
  5 * 10

-2

 18,825 443,533 

M6 
        10

-1

 14,006 149,235 
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The choice of the parameter values in the definition of class M was largely based 

on specific statistical characteristics of the dataset; however, the analysis reveals the same 

behaviour and the same qualitative patterns as those found in all the other classes. For 

example, Fig. 7a shows the exponential character of the dependency of the number of 

edges and number of nodes on the minimum weight in the network, and Fig. 7b shows 

the power law dependency of the number of edges on the number of nodes for class M of 

networks.  

 

a.     b. 

Figure 7. Class M networks. a. The dependency of the number N of edges (circles) and the number N of 

nodes (squares) on the minimum weight Wmin. b. The dependency of the number of edges on the number of 

nodes. 
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In the example of class M, the connectivity, in-connectivity and out-connectivity 

distributions are assessed for networks M1 to M6. Since the maximum intervals in time 

and space Tmax and Dmax that define class M have rather low values, inside class M even 

networks with relatively low values of Wmin display power law properties, as illustrated in 

Fig. 8a. The connectivity distributions for the other five networks M2 to M6 are quite 

similar; another example is shown for network M5 in Fig. 9a. The exponent β for each 

type of connectivity distribution (all, in, out) is calculated and a graph with all β values is 

shown in Fig. 10. Similarly, power law properties are detected for the weight, in-weight 

and out-weight distributions in networks M1 to M6, as shown in Fig. 8b and Fig. 9b, and 

the exponent γ (Albert and Barabasi, 2002) for each weight distribution is illustrated in 

Fig. 11. 

 In general, the analysis shows that the scale free behaviour observed in all 

networks with superior values of Wmin inside their class is remarkably robust with respect 

to variations of parameter values r, p, dmin and tmin. Moreover, networks of the same class 

that have lower values of Wmin exhibit poor scaling characteristics or even no such 

characteristics at all. The scaling behaviour along the spectrum of Wmin values, in 

conjunction with the robustness regarding parameter variations, endorse the idea of a 

relationship between fundamental properties of seismicity and the scaling characteristics 

found in earthquake networks. 
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Figure 8 a. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 b. 

Figure 8. Connectivity and weight distributions for network M1. The curves are shifted by 10 units each 

along the Y axis. a. Total connectivity (circles), in-connectivity (squares), out-connectivity (diamonds).  N 

is the number of nodes that have a number of edges E (on the X axis). b. Total weight (circles), in-weight 

(squares), out-weight (diamonds). N is the number of nodes that have a weight of W (on the X axis). 
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Figure 9 a. 

Figure 9 b. 

Figure 9. Connectivity and weight distributions for network M5. The curves are shifted by 10 units each 

along the Y axis. a. Total connectivity (circles), in-connectivity (squares), out-connectivity (diamonds).  N 

is the number of nodes that have a number of edges E (on the X axis). b. Total weight (circles), in-weight 

(squares), out-weight (diamonds). N is the number of nodes that have a weight of W (on the X axis). 
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  Figure 10. Exponent of connectivity distributions for networks M1 to M6. 

 

 Figure 11. Exponent of the weight distribution for networks M1 to M6. 
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 This observation suggests that a way of testing the reliability of the method is to 

question the identity of the earthquakes selected in networks that possess scaling 

properties. If the method is reliable, networks with strong scaling properties should retain 

only the nodes that correspond to earthquakes that are truly related to each other, 

regardless of the choice in the parameter values. Since a series of parameter values were 

explored in this study, a discussion around a few samples of results would be relevant. As 

shown in Table 1, each specific set of parameter values corresponds to the definition of a 

class. Table 4 compares four networks with strong scale free properties (D9, J6, M6 and 

E10) from four different combinations of initial parameters, i.e. from four different 

classes, with the purpose of showing that all four of them identify the same correlated 

earthquakes. D9 is the most selective network, having 11,966 nodes (the lowest number 

of nodes), the next selective is J6, with 13,523 nodes, while M6 and E10 have almost the 

same number of nodes, 14,006, and 14,091 respectively. Although they come from 

different classes, with different characteristics, all these networks possess a high value of 

Wmin inside their class, and their connectivity distributions enjoy significant power law 

properties. The question is how many earthquakes selected in the smallest network, D6, 

have also been selected in the slightly larger networks J6, M6, and E10, then how many 

earthquakes chosen for the network J6 have also been accepted in the networks M6, and 

E10, and how many earthquakes included in the network M6 have also been included in 

the network E10.  
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Table 4. Robustness of the method: regardless of various choices of parameter values 

shown under column “Class definition”, the method identifies the same statistical 

population of events as being the earthquakes that are interconnected. In this example, 

the overlap between the nodes selected by networks D9, J6, M6, and E10 ranges between 

91.34% and 100%.   

Network 
Network 

characteristics 

Comparative node 

selection 
Class 

Class 

definition 

Class 

characteristics 

D9 
11,966 nodes 

11,966 nodes in J6  

           (100%) D 
Tmax= 30 days  37,325 nodes 

    Dmax= 30 km 5,801,083 edges 

  
11,966 nodes in M6 

            (100%) 
r = - 1.35 

  

    p = - 1 H = 1.00 

W >=7. 5*10
-3

 
11,813 nodes in E10 

            (98.72%) 
dmin = 1 km L =3.39*10

-6
 

    tmin = 1 h   

J6 
13,523 nodes 

13,154 nodes in M6  

           (97.27%) J 
Tmax= 8 days  33,447 nodes 

    Dmax= 10 km 2,035,257 edges 

  
12,702 nodes in E10 

            (93.93%) 
r = - 1.35 

  

    p = - 1 H = 1.00 

W >= 5*10
-2

   dmin = 1 km L = 5.60*10
-5

 

    tmin = 1 h   

M6 
14,006 nodes 

12,793 nodes in E10 

            (91.34%) M 
Tmax= 7 days  33,065  nodes 

    Dmax= 10 km 1,913,280 edges 

    r = - 1   

    p = - 0.5 H = 1.00 

W >= 10
-1

   dmin = 1 km L = 1.86*10
-3

 

    tmin = 1 h   

E10 14,091 nodes   E Tmax= 40 days  37,441 nodes 

    Dmax= 50 km 8,488,767 edges 

    r = - 1.35   

    p = - 1 H = 6.07 

W >= 5*10
-4

     dmin = 0.2 km L = 7.24*10
-9

 

        tmin = 3 min   
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The results in Table 4 show that all the earthquakes selected in the network D9 

have also been selected in the networks J6 and M6, and 98.72% have also been included 

in E10, regardless of the variations in the choice of the parameter values. In network J6, 

97.27% of the earthquakes have also been selected by the slightly larger network M6, and 

93.93% of the events have also been chosen for the network E10. Finally, 91.34% of the 

events included in the network M6 have also been included in the network E10. We are 

actually looking, in each of these cases, at the same statistical population of earthquakes. 

These are the earthquakes that, being close enough in space-time-magnitude, are most 

likely to be related to each other. 

 This is an interesting result, indicating that the method is reliable, robust with 

respect to variations in parameter values, and reflects fundamental properties of 

seismicity. Consequently, the process of identification of correlations between 

earthquakes can start with a certain choice of parameter values (class definition), and end 

when networks with scale free properties are found. 

 

4.2   Evolution of network properties over time 

 Results of this method are further applied for the study of the way the 

relationships between earthquakes change over time. The network is split up in 

successive event windows, each window having the same number of successive events. 

The first objective of the analysis is to determine whether scaling properties can be 

identified in the temporal windows. If that is the case, the next objective is to study 

whether changes of scaling properties in successive temporal windows can be related to 

real-life changes in the volcanic system. 
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 Numerous networks from different classes have been studied. The networks 

chosen for the analysis were those with strong scaling properties. They were split in event 

windows of 1,000 successive events and sub-networks of 1,000 nodes were generated 

accordingly. In each case, the node connectivity distribution and the node weight 

distribution were assessed.  

 The results (not shown) confirm that also these distributions manifest power law 

characteristics; for each scaling regime, the corresponding exponents β and γ were 

calculated. As an example, the study of successive event windows in the network M2 is 

presented in Fig. 12 (the variation of the connectivity distribution exponent β) and Fig. 13 

(the variation of the weight distribution γ).  

Figure 12. Temporal variation of the connectivity distribution exponent in successive temporal windows of 

network M2. 
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Figure 13. Temporal variation of the weight distribution exponent in successive temporal windows of 

network M2. 

Although the graphs of the two distributions are not identical, they show the same 

trend in their evolution. In this example, the minimum values in the variation of β 

correspond to the windows where γ also has minimum values; therefore, the same lower 

case letters from “a” to “i" were used on both graphs to tag the corresponding minimum 

values of the two exponents.  

 Fig. 14 presents the graph of the cumulative number of earthquakes from January 

1989 to December 2012. On this graph, the areas corresponding to the temporal windows 

tagged with letters from “a” to “i" in Fig. 13 and Fig. 14, were tagged with the same 

letters. Each of the labeled areas in Fig. 14 is therefore associated with the minimum 

values of β and γ in successive temporal windows. A steep increase in the number of 
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earthquakes can be noticed in Fig. 14 for the tagged areas. The history of the volcano 

shows that sudden events, with important discharges of energy, such as rapid openings of 

new fissures, violent massive eruptions or explosions, occurred in the volcano in the 

corresponding time intervals.  

Figure 14. Cumulative number of earthquakes between January 1989 and December 2012. The small 

letters tag the areas corresponding to the minimum values of the exponents β and γ in successive temporal 

windows of network M2. 

 For example, minimum “a”, corresponding to window number 2, can be related to 

the braking of the Kupaianaha tube system in 1989 that caused massive surface lava 
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flows; these surface lava flows spectacularly invaded new territory, overran the Waha`ula 

Visitor Center and residences in Hawaii Volcanoes National Park. Minimum “b”, 

corresponding to window number 6, can be related to the four episodes that occurred 

between the end of 1991 and the end of 1992: episodes 49, 50, 51, and 52. New fissures 

developed with these four episodes, and were accompanied by important seismic 

phenomena, as for example the 4.5 magnitude earthquake that preceded the episode 52 

from October 1992. As another example, minimum “d”, corresponding to window 

number 10 can be related to episode 54 from 1997, when another new fissure developed, 

lava fountains reached tens of meters in height, and a period with 2,000 to 4,000 

earthquakes per day followed. 

 Each of these minimums can be related to such sudden events, with surges in the 

activity of the volcano, important discharges of energy, and changes in seismicity. 

However, the steep slope situated between “h” and “i” in Fig. 14, which is probably due 

to episode 58 from July 2007, cannot be related to a minimum in the values of β and γ. A 

possible explanation for this exception is the process of artificially breaking down the 

network M2 in sub-networks with an equal number of nodes. A study on the optimization 

of the temporal windows selection should address this issue and is subject to further 

research.  

 The meaning of the minima in the exponents β and γ is an increased connectivity 

in the corresponding networks; the proportion of nodes that have high connectivity is 

larger. In the studied context, energy dissipates through various processes such as magma 

flows, lava effusion, explosions, heat emission, tectonic phenomena, degassing, etc. 

(Wright and Pilger, 2008). Although the increased connectivity in minima of the 
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exponents β and γ is not consistently related to higher dissipation in tectonic energy, it 

could be related to peaks in the overall energy emitted by the volcanic system during 

eruptions or large outpourings of lava. An analysis of the clustering coefficient and of 

associations with energy dissipation in the system is subject of future research. 

 Overall, the study shows that variations in the values of the exponents β and γ are 

able to reflect the way the relationships between earthquakes are changing over time. 

Minimum values of β and γ in successive temporal windows can be related to important 

events in the life of the volcanic system and the associated seismicity.  

 

5 Conclusions 

 A new type of directed networks has been proposed for the assessment of 

relationships between earthquakes. The method was applied to volcanic seismicity in 

Hawaii. The nodes of the networks are epicenters of earthquakes; the edges that link the 

nodes carry space-time-magnitude weights, and have a direction given by the temporal 

succession of the events. The generality of the definition of the edge weight, W, as a 

combination of a factor in time, a factor in space, and a factor in magnitude is 

comprehensive and permits various combinations of space-time-magnitude correlations 

between earthquakes. Since any node can have any number of edges that enter the node 

and any number of edges that leave the node, any given event may have multiple 

predecessors, and any given event can contribute to multiple future events, as long as its 

edges carry enough weight.  

 Parameters and formulas used in the calculation of the weights take into 

consideration well-established properties of seismicity. High values of W are associated 
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with strong relationships between earthquakes, while low values of W are associated with 

either weak relationships or no relationships at all. Various classes of networks can be 

generated based on distinct values of the parameters. Inside each class, different networks 

can be created by setting different thresholds for the minimum edge weight Wmin.  

 It is shown that networks that have Wmin in the middle to upper range of the 

interval between the lowest edge weight value L and the highest edge weight value H in 

their class manifest significant scaling properties of node connectivity distributions, as 

opposed to networks with low values of Wmin, which exhibit poor or no scaling 

characteristics. Since high values of weight describe the strong links, the events selected 

in the networks with high values of Wmin are primarily the earthquakes that are most 

likely to be related to each other. Therefore, it is reasonable to see a relationship between 

the fundamental characteristics of seismicity and the well-organized, scale free 

distributions of node connectivity. In networks with low values of Wmin, most of the 

nodes have little or no relationship with each other. In this context, the irregular and 

scattered shapes of their connectivity distributions are not a surprise. 

 It is also shown that the scale free behaviour observed in networks with superior 

values of Wmin is robust with respect to variations in parameter values. Tests performed 

on networks that manifest strong power law properties, but originating in different 

choices of parameter values, confirm the reliability of the method.  They show that the 

same statistical population of earthquakes is chosen to participate in these networks, i.e. 

the earthquakes most likely to be interrelated. The results indicate that the method is 

reliable, robust with respect to variations of parameter values, and reflects fundamental 

properties of seismicity. 
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 The threshold values Wmin that identify networks of interrelated events are 

assessed in the context of all the earthquakes in the class: they are found as those values 

for which scale free properties appear and become stronger when subsequent networks 

are created using increasing values of Wmin. It can be said that the threshold Wmin is a 

global parameter that characterizes the set of earthquakes and its values are meaningful 

only inside that set. 

 There are also other significant scaling properties that are detected in the analysis 

of the classes of networks. Node weight distributions also enjoy scaling properties. For 

each class, the dependency of the number of edges on the number of nodes is a power 

law. The distribution of the distances between events exhibits distinct regimes with scale 

free properties. Similarly, the distribution of the time intervals between events is 

characterized by different domains with scaling properties as well. 

 It is also shown that the evolution of the relationships among earthquakes over 

time can be studied by splitting up the network in successive event windows with an 

equal number of nodes. The distributions of node connectivity and node weight in the 

emerging sub-networks manifest scaling properties that can be used to follow the 

evolution of seismicity over time. The exponents β and γ of these distributions have a 

similar trend in their evolution over the temporal windows. The increased connectivity in 

minima of β and γ can be associated with sudden, important discharges of energy in the 

life of the volcanic system and accompanying earthquakes. It is shown that the exponents 

of connectivity and weight distributions for successive event windows are able to reflect 

the way the relationships between earthquakes are changing over time. Aspects regarding 
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the clustering coefficient, energy dissipation and optimization of the selection of the 

temporal windows are subject to further research. 
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Aspects of Structure in Earthquake Networks 
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Abstract 

Analysis performed on multiple sets of earthquake networks created for the Hawaii 

volcanic system reveals characteristics that can be associated with fundamental properties 

of seismicity. The scale free behaviour of the connectivity distribution along the spectrum 

of the minimum weight values, which can be used to discern the interrelated earthquakes 

from the rest of the data set, is mirrored by a similar behaviour of the distribution of the 

number of linked neighbours. The patterns found in the distributions of temporal and 

spatial intervals between earthquakes are similar from large to small networks. 

Similarities are found between the variation of the network clustering coefficient, C, and 

the variation of the exponents of the connectivity distribution, β, and of the weight 

distribution, γ ; their synchronous variation over successive temporal windows can be 

related to changes in seismicity and in the life of the volcanic system. A Zipf distribution 

is found for the ranked sets of magnitude values of successive network nodes. The 

distribution of differences between the magnitude values of successive nodes is also 

governed by a power law. 

Keywords: seismicity, earthquakes, networks, Hawaii volcanoes, nonlinear systems, 

scaling properties. 
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1    Introduction 

 Current research dedicated to understanding seismicity and its ruling phenomena 

illustrates various aspects of the correlations found in earthquake patterns. Over the past 

decade, approaches based on complex networks revealed that networks built on 

earthquake data enjoy scaling properties (Baiesi and Paczuski, 2004; Baiesi and Paczuski, 

2005; Davidsen et al., 2008; Suteanu, 2014). This paper presents an analysis of 

earthquake networks introduced by Suteanu (2014) and used for the study of volcanic 

seismicity in Hawaii. An objective of this research is to determine whether the 

distributions of the spatial and temporal distances between connected nodes have a 

similar pattern in different networks, and, if that is the case, whether the pattern enjoys 

scaling properties. Since the network average clustering coefficient (C), the exponent of 

the connectivity distribution (β), and the exponent of the weight distribution (γ) are 

global parameters, which characterize the network as a whole, we investigate if any 

coherent relationship can be found between them. We also inquire whether distributions 

of magnitude values for successive nodes of a network enjoy specific properties, and, if 

that is the case, whether those properties are characteristic of all networks. 

 

2    The earthquake networks 

 In this analysis we generate directed weighted networks of earthquakes to identify 

interrelated events following the method in Suteanu (2014). The source of data is the 

Advanced National Seismic System (ANSS) catalogue for the Big Island of Hawaii 

between January 1
st
, 1989 and December 31

st
, 2012. For catalogue completeness, only the 

earthquakes with a magnitude m >= 1.6 are used in the analysis (37,451 events). The b 
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value in the Gutenberg-Richter magnitude-frequency distribution is b ≈ 0.99. The nodes 

of the networks are epicenters of earthquakes and are linked by edges that carry space-

time-magnitude weights, with a direction given by the temporal succession of the events. 

The edge weight, W, is a combination of a variable in space, a variable in time, and a 

variable in magnitude. All three weight components are seen independently, as separate 

ingredients with comparable contributions to the total edge weight and a maximum value 

limited to 1. This approach is particularly important in the case of volcano-tectonic 

seismicity, where the seismic sources are diverse (tectonic stress, thermodynamic 

processes, dynamics of gas, fluid and solid). 

 Given the omnipresence of scaling relationships in earthquake distributions 

(Omori, 1894; Utsu., 1961; Kagan, 1994; Nanjo and Nagahama, 2000; Lapenna et al., 

2000; Shcherbakov et al., 2004; Carbone et al., 2005; Felzer and Brodsky, 2006; 

Shcherbakov et al., 2006; Lennartz et al., 2008; Bunde and Lennartz, 2012; Lippiello et 

al., 2012a; Lippiello et al., 2012; Varotsos et al., 2012), power laws are used for the 

quantitative estimation of the relationships between earthquakes in space and time: 

a) Distance weight: 

0, <= rcdw
r

d ,       (1) 

where d is the spatial distance between the two nodes of an edge measured in km, and c is 

a positive constant. 

b) Time weight: 

0, <= pstw
p

t ,       (2) 

where t is the time interval between the two nodes of an edge measured in hours, and s is 

a positive constant. 
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 Assuming that all earthquakes that are very close in space or in time could be 

related to each other, and in order to avoid singularities, a small cutoff value is used for 

the weights in space and time. Therefore, the method uses modified forms of Equations 

(1) and (2): 
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The constants c and s are calculated using the boundary conditions: 

1min == r

d cdw        (1'') 

and  

1min == p

t stw        (2'') 

c) The magnitude weight is proportional to the magnitude of the first occurring event of 

the edge: 

maxm

m
wm =  ,                 (3)  

where m is the magnitude of the first occurring earthquake associated with the edge, and 

mmax is the maximum magnitude value in the data set. 

 The total weight of an edge is given by the product of the weights in space, time, 

and magnitude, but only the nodes that carry enough weight are selected in the network 
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of correlated events, therefore only edges with a total weight W higher than a minimum 

threshold Wmin are chosen for this network: 
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     (4) 

 This definition allows various combinations of space-time-magnitude correlations 

between any two events: any node can have any number of predecessors and any number 

of successors, as long as its edges carry enough total weight. An example of an 

earthquake network is illustrated in Fig. 1.  

 A maximum interval of influence in time Tmax, and a maximum interval of 

influence in space Dmax are assigned in order to simplify the computation, but, 

hypothetically, Tmax and Dmax may cover the whole extent of the catalogue: large spatial 

and temporal intervals between events produce very small values of the edge weights wd 

and wt, and, implicitly, of the total edge weight W; the resulting weak links are eventually 

eliminated by the network definition (4).  

 The network classes are sets of earthquake networks that share the same values of 

the parameters Dmax, r, dmin, Tmax, p, tmin. A summary of all classes that have been studied 

is presented in Table 1. An initial network is created in every class when specific values 

are assigned to the above parameters, but, in general, this first network does not hold 

predominantly correlated earthquakes, it represents mainly a collection of events that 

serves for the initiation of the method. An index 0 is used to differentiate the initial 

networks B0, C0, …, P0 from the rest of the networks. Inside each class, a series of 

networks is generated by setting various threshold values for the minimum edge weight 

Wmin. 
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Figure 1a.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1b.  

Figure 1. The earthquake network. (a) An example for the Big Island of Hawaii. (b) Zoomed-in example of 

nodes and edges. 
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Figure 2. Connectivity distribution for networks O0, O2, O4, O5, O11, and O14. N (on the Y axis) is the 

number of nodes that have E edges (on the X axis). 

In Suteanu (2014) network parameters such as node connectivity distribution, 

node weight distribution (Boccaletti et al., 2006), and the exponents of these 

distributions, β and respectively γ (Albert and Barabasi, 2002), are assessed for sets of 
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earthquake networks in different classes. Since the weight distribution can be related to 

the specific choices of parameter values and the study was focused on finding patterns 

that do not depend on variations in parameter values, only the behaviour of node 

connectivity was assessed along the spectrum of Wmin over different classes. The study 

shows that networks having Wmin in the middle to the upper range of the interval between 

the lowest edge weight value L and the highest edge weight value H in their class exhibit 

significant scaling properties of the node connectivity distributions, while networks with 

low values of Wmin exhibit poor or no such characteristics (Fig. 2). Since the higher 

values of weight in the strong links are associated with the earthquakes that are most 

likely to be related with each other, a relationship can be discerned between the major 

characteristics of seismicity and the structured, power law characteristics in the 

distributions of node connectivity.   

This behavior along the spectrum of Wmin is robust with respect to variations of 

parameters that cover the range of values found in numerous studies on temporal and 

spatial distributions of earthquakes (Omori, 1894; Utsu., 1961; Utsu et al., 1995; Felzer 

and Brodsky, 2006; Shcherbakov, 2005; Shcherbakov, 2006; Davidsen et al., 2008; 

Lippiello et al., 2009; Lennartz et al., 2011; Lippiello et al., 2012a;). For example, since 

p-values usually range between 0.7 and 1.8 (Utsu., 1961), in this study p-values were 

meant to cover this interval and therefore they were chosen from the slightly larger 

interval [0.5,2]. Also, since r-values of 1.35-1.37 have been observed for distance 

distributions (Felzer and Brodsky, 2006), or equal to the earthquake’s fractal distribution 

in the studied area (Bayesi and Paczuski, 2004), in this paper r-values were chosen from 

the larger interval [0.5,2] (Table 1). 
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Table 1. All classes. Tmax is the maximum time interval between events, Dmax is the 

maximum distance between events, r is the exponent of the distance weight wd (Eq. 1), p is 

the exponent of the time weight wt (Eq. 2), dmin and tmin represent cutoff values, H is the 

highest value of the total edge weight in the class, and L is the lowest value of the total 

edge weight in the class.  

 

Class 

Tmax Dmax r p tmin dmin 

  H      L 

(days) (km)     (h) (km) 

B 10 30 -1.35 -1 1 1 1.00 1.01*10
-5

 

C 10 30 -1.35 -1 0.5 0.2 0.65 5.76*10
-7

 

D 30 30 -1.35 -1 1 1 1.00 3.39*10
-6

 

E 40 50 -1.35 -1 0.05 0.2 6.07 7.24*10
-9

 

F 7 10 -1.35 -1 0.05 0.1 2.72 1.44*10
-7

 

G 7 10 -1.35 -1 0.05 0.025 2.72 2.22*10
-8

 

H 8 10 -1.35 -1 0.5 0.2 0.65 3.19*10
-6

 

I 8 11 -1.35 -1 0.05 0.1 2.72 1.11*10
-7

 

J 8 10 -1.35 -1 1 1 1.00 5.60*10
-5

 

L 7 10 -1 -0.5 14 2 1.00 1.39*10
-2

 

M 7 10 -1 -0.5 1 1 1.00 1.86*10
-3

 

N 40 50 -1 -0.5 0.5 0.2 0.66 2.19*10
-5

 

O 50 50 -2 -2 1 1 1.00 6.75*10
-11

 

P 30 30 -0.5 -1.5 1 1 1.00 2.27*10
-6

 

 

The identification of correlated earthquakes starts with a certain choice of 

parameter values (the initial network) from the range of values exemplified previously, 
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and, after setting increasing thresholds for the minimum weight Wmin, ends when 

networks with scale free properties are found. An important aspect of this method is that, 

although different parameter values may be chosen initially, the same statistical 

population of interrelated earthquakes is identified in the end (Suteanu, 2014).    

 Our present analysis shows that the distributions of the spatial and temporal 

intervals between  connected   nodes  have a  similar pattern and scaling properties in all 

networks, from small to large networks, from networks inside the same class to networks 

from different classes.  

 

Table 2. Class E Networks. E0 is the initial network that was generated using the 

parameter values shown in the first column. See Table 1 for the meaning of Tmax, Dmax, r, 

p, dmin , tmin, H, and L. 

Class E 

definition 

Range of total 

weight W values 

Network Number of 

nodes 

Number of 

edges    Name     Wmin 

Tmax= 40 days    H = 6.07 E0 7.24*10
-9

 37,441 8,488,767 

Dmax= 50 km   L = 7.24*10
-9

 

r = - 1.35 E8  5*10
-5

 23,032 584,548 

p = - 1 

    

dmin = 0.2 km E10  5*10
-4

 14,091 117,835 

tmin = 3 min           

 

An example is shown for three networks in class E (Table 2): Fig. 3 presents the 

connectivity distribution in the three networks, from the highly irregular distribution of 

the large initial network E0, in which most of the earthquakes are not necessarily 
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correlated, to the scaling distributions of the networks E8 and E10. The left column in 

Fig. 4 shows how the distribution of distances between events changes from E0 to E8 and 

E10. The three distributions exhibit similarities with each other and with distributions 

found in other studies (Davidsen et al., 2008; Lippiello et al., 2009): an increase up to a 

maximum value, followed by a power law decrease. While the maximum value is ~ 1.2 

km in E0, it shifts towards lower values in E8 (~ 0.7 km) and E10 (~ 0.3 km). The peaks 

at 13 km, 18 km, 23 km… in the distribution of E0 may be attributed to the spatial 

relations among events that are clustered around neighbouring volcanoes, distinct vents 

and fracture zones (see Fig. 1a); these peaks are not present in the distributions of E8 and 

E10, suggesting that these networks have fewer nodes correlated over long distances. 

The right column of Fig. 4 shows the change in time interval distributions from E0 

to E8 and E10. Although the overall shape of the distribution is similar in the three 

networks and power law properties are present in all three of them, the time interval 

between events decreases significantly when the scaling properties of the connectivity 

distribution become stronger in networks E8 and E10. The increase between 7 and 15 

days with a peak at 11 days from E0, which can be attributed to precursory sequences in 

Hawaii (Chastin and Main, 2003), diminishes in E8, and completely disappears from 

E10, since E10 retains only the strongest links and the earthquakes that are extremely 

likely to be interrelated. These differences between the three networks illustrate the fact 

that in networks that exhibit increasingly strong scaling properties of the connectivity 

distribution, i.e. networks with nodes that are more and more likely to be interrelated, the 

earthquakes selected for the networks are increasingly close in time and space.  
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Figure 3. Connectivity distribution for networks E0, E8, and E10. N (on the Y axis) is the number of nodes 

that have E edges (on the X axis). 
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Figure 4. Left column: distribution of distances (km) between any two nodes in networks E0, E8 and E10; N 

is the number of distances of ∆d km between any two earthquakes in each network. Right column: 

distribution of time intervals (s) between any two nodes in the networks E0, E8 and E10; N is the number of 

time intervals of ∆t seconds between any two earthquakes in each network. 
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3    The clustering coefficient 

 A relevant measure of the extent to which the nodes in the network tend to group 

together is the clustering coefficient. If a node i has ki neighbours, the local clustering 

coefficient Ci of the node i is defined as the actual number of links Li between its 

neighbours divided by the total number of possible links between them (Watts and 

Strogatz, 1998): 

   
)1(

2

−
=

ii

i

i
kk

L
C        (5) 

 In this study, Ci is 0 for nodes with neighbours that don’t have any link between 

them and for nodes with a node degree equal to 1.  

In order to calculate the clustering coefficient, the number of links Li between the 

neighbours of each node i were first calculated and assessed. Results show significant 

similarities between the change in the connectivity distributions towards a scaling 

structure and the change in the neighbours’ links distributions, as illustrated in the 

examples from class O in Fig. 2 and Fig. 5. A description of these networks is presented 

in Table 3. 

Fig. 5 shows that the distribution of the number of links between nodes’ 

neighbours Li observed in the initial network O0 has a similar appearance with the 

connectivity distribution in O0 (Fig. 2): an approximately constant interval followed by 

an approximate power law tail and scattered dot patterns. Moreover, corresponding to the 

increasingly strong scaling properties of the connectivity distribution that appear in the 

networks with Wmin in the upper range of the weight spectrum, a more prominent scaling 
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structure seems to emerge in the Li links distributions with the increase of the threshold 

Wmin. 

 

Table 3. Class O Networks. O0 is the initial network that was generated using the 

parameter values shown in the first column. See Table 1 for the meaning of Tmax, Dmax, r, 

p, dmin , tmin, H, and L. 

Class O 

definition 

Range of total 

weight W values 

Network Number 

of nodes 

Number of 

edges    Name     Wmin 

Tmax= 50 days    H = 1.00 O0  6.75*10
-11

 37,443 9,966,177 

Dmax= 50 km   L = 6.75*10
-11

 O2    10
-8

 37,354 5,737,672 

r = - 2 

 

O4    10
-7

 37,019 3,826,589 

p = - 2 O5  5*10
-7

 36,366 2,816,955 

dmin = 1 km 

 

O11  5*10
-4

 21,996 444,071 

tmin = 1 h   O14    10
-2

 14,158 130,196 

 

 The network average clustering coefficient C was calculated as the average of all 

Ci: 

 ∑
=

=
nodesN

i

i

nodes

C
N

C
1

1
,      (6) 

where Nnodes is the total number of nodes, and Ci is the clustering coefficient of node i 

(Watts and Strogatz, 1998). 
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Figure 5. Distribution of actual links between the neighbours of each node for networks O0, O2, O4, O5, 

O11, and O14. N (on the Y axis) is the number of nodes that have L-n (“Linked- neighbours”) links 

between their neighbours (on the X axis). 
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Table 4. Class M Networks. M0 is the initial network that was generated using the 

parameter values shown in the first column. See Table 1 for the meaning of Tmax, Dmax, r, 

p, dmin , tmin, H, and L. 

Class M 

definition 

Range of total 

weight W values 

Network Number 

of nodes 

Number of 

edges Name   Wmin 

Tmax= 7 days  H = 1 M0 1.86*10
-3

 33,065 1,913,280 

Dmax= 10 km  L = 1.86*10
-3

 M1 1.50*10
-2

 26,919 1,270,458 

r = - 1 M2    2*10
-2

 25,396 1,088,015 

p = - 0.5 M3    3*10
-2

 22,682 782,659 

dmin = 1 km M4    4*10
-2

 20,440 584,686 

tmin = 1 h  M5    5*10
-2

 18,825 443,533 

    M6     10
-1

 14,006 149,235 

 Compared with many other types of networks (Newman, 2003), rather high 

values of the network clustering coefficient (> 0.4) are found in the earthquake networks 

studied in this paper. High values of the network clustering coefficient have also been 

found by Baiesi and Paczuski (2005). Fig. 6a shows an example of network clustering 

coefficient values for the networks in class M, which are described in Table 4. The 

corresponding values of the exponents of the connectivity distribution, β, and weight 

distribution, γ, are presented in Fig. 6b. A comparison between Fig. 6a and 6b shows that 

the variation of the network average clustering coefficient C and the variation of the 

exponents β and γ in networks M1 to M6 display a similar overall behaviour.  
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Figure 6 a.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 b.  

Figure 6. Comparison between the clustering coefficient (a), and the signed values of β, the exponent of the 

connectivity distribution (black dashed line), and γ, the exponent of the weight distribution (red continuous 

line) for networks M1 to M6 (b).  

 

 



86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 b. 

 

Figure 7.  Successive temporal windows of network M2. (a) Variation of the network average clustering 

coefficient, C. (b) Variation of the connectivity distribution exponent, β (green continuous line), and of the 

weight distribution exponent, γ (black dashed line). 
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 The variation of β and γ over successive event windows can be used to study the 

way in which relationships between earthquakes change over time (Suteanu, 2014). The 

network is divided in successive event windows of various lengths. In this study, equal 

sized windows of 1,000 events and their corresponding networks were generated. The 

values of β and γ were estimated using linear regression with uncertainties ranging in 

most cases between 0.08 and 0.2 at a confidence level of 95%. Fig. 7 presents a 

comparison between the variation of β and γ in temporal windows of network M2 (Fig. 

7b), and the variation of the network clustering coefficient C in the same temporal 

windows (Fig. 7a). Since in this paper we consider the signed values of β and γ, and not 

their absolute values, the maxima in Fig. 7b correspond to the minima discussed by 

Suteanu (2014). In a similar way, the lower case letters from “a” to “i" are used to tag the 

maximum values of the two exponents β and γ (Fig. 7b), the values of the network 

clustering coefficient C in the corresponding windows (Fig. 7a), and the corresponding 

areas on the cumulative number of earthquakes graph in Fig. 8.  

Each of the maxima of the exponents β and γ  in Fig. 7b was associated in 

Suteanu (2014) with enhanced volcanic activity, major discharges of energy, changes in 

earthquake patterns, etc. Fig. 7 shows that the network clustering coefficient in 

successive temporal windows has an overall variation that closely resembles the variation 

of β and γ. Although one important discrepancy can be observed for window 18 (g), 

which may be related to the abrupt cut-off in window definition, the similarity in the 

variation of the three network parameters is remarkable. The synchronous maxima of the 

three parameters show that, in the corresponding windows, there is an increase in the 

number of nodes that are highly connected and grouped together.  
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Figure 8. Cumulative number of earthquakes from January 1989 to December 2012. The small letters tag 

the areas corresponding to the maximum values of the exponents β and γ and the network clustering 

coefficient C in successive temporal windows of network M2.  

  

We believe that this is another confirmation that the analysis we perform in 

successive temporal windows is able to reflect the change in the relationships between 

earthquakes over time.   

 

4    Magnitude of successive nodes 

 All the sequences of values (mi, mj) – where i and j are nodes of magnitude mi and 

mj, respectively, and node i has a directed edge to node j – are ranked and assessed. This 

is accomplished by taking magnitude values of every two linked nodes i and j to create 
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ordered pairs (mi, mj). The number of occurrences of every instance (mi, mj) is calculated 

and the set of all occurrences is arranged in a decreasing order. The distribution of the 

resulting ordered vector is ultimately assessed.  Moreover, if the node j has a directed 

edge to the node k of magnitude mk, then the sequences of values (mi,mj,mk) are similarly 

ranked and assessed. Results show that a Zipf distribution is found in both cases. 

Examples are presented in Fig. 9: Fig 9a shows the example of a network with strong 

scaling properties in the connectivity distribution, network D5, while Fig. 9b shows the 

example of a large initial network, network E0, which has an irregular distribution of 

node connectivity.  

This property can probably also be found for sequences of four, five, or more 

successive magnitude values. Since it is unlikely that the majority of nodes in E0 

represent earthquakes that are correlated with each other (Suteanu, 2014), we believe that 

these results are not characteristics of interconnected earthquakes, but rather root in the 

Gutenberg-Richter magnitude frequency distribution (Gutenberg and Richter, 1954).  

 

5    Conclusions 

 The study of earthquake networks is able to reveal aspects of structure that can be 

reasonably associated with fundamental properties of seismicity. The scale free behaviour 

of the connectivity distribution along the spectrum of Wmin, which can be used to discern 

the interrelated earthquakes from the rest of the data set, is mirrored by a similar 

behaviour of the distribution of the number of nodes’ linked neighbours. This behaviour 

is robust with respect to variations in parameters within the range of values found in 

temporal and spatial distributions of earthquakes. 



90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9b. 

 

Figure 9. Figure 9. Magnitude values of successive nodes. (a) Magnitude of two and three successive nodes 

in a network that enjoys scaling properties of the connectivity distribution (network D5). (b) Pairs of 

magnitude values of successive nodes in a large initial network (network E0). 
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 A similar pattern of increase up to a maximum followed by a power law decrease 

was found in the distribution of distances between earthquakes in a variety of networks: 

large networks, small networks, networks in the same class, or networks that belong to 

different classes. Similarly, an overall pattern of slow decrease followed by a power law 

decrease was found in the distribution of time intervals between events in various 

networks: networks inside each class, networks across the classes, as well as in the 

selective networks of interrelated events. In this latter case, the above distributions reflect 

the increased proximity in space and time of the correlated events. 

 In comparison to most of the biological, technological, or social networks, high 

values have been found for the network average clustering coefficient, which ranges 

generally between 0.4 and 0.6. A notable similarity was found between the variation of 

the network clustering coefficient, C, along the series of networks in a class, and the 

variation of the exponents of the connectivity distribution, β, and of the weight 

distribution, γ, especially in networks that exhibit significant scaling properties of these 

distributions. Moreover, the synchronous variation of β, γ, and C in successive temporal 

windows can be related to changes in the characteristics of seismicity and in the life of 

the volcanic system. 

 The intrinsic scale free structure of seismicity is also revealed in the Zipf 

distribution found for the ranked number of occurrences of groups of magnitude values of 

successive network nodes. 
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Chapter 6 

Conclusions 

 In this research, a new type of directed networks is proposed for the assessment of 

relationships between earthquakes. The method was applied to volcanic seismicity in 

Hawaii. The nodes of the networks are epicenters of earthquakes; the edges that link the 

nodes carry space-time-magnitude weights, and have a direction given by the temporal 

succession of the events. The generality of the definition of the edge weight, W, as a 

combination of a factor in time, a factor in space, and a factor in magnitude is 

comprehensive and permits various combinations of space-time-magnitude correlations 

between earthquakes. Since any node can have any number of edges that enter the node 

and any number of edges that leave the node, any given event may have multiple 

predecessors, and any given event can contribute to multiple future events, as long as its 

edges carry enough weight.  

 Parameters and formulas used in the calculation of the weights take into 

consideration well-established properties of seismicity. High values of W are associated 

with strong relationships between earthquakes, while low values of W are associated with 

either weak relationships or situations for which no relationships can be established. 

Various classes of networks can be generated based on distinct values of the parameters. 

Inside each class, different networks can be created by setting different thresholds for the 

minimum edge weight Wmin.  

 It is shown that networks that have Wmin in the middle to upper range of the 

interval between the lowest edge weight value L and the highest edge weight value H in 
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their class manifest significant scaling properties of node connectivity distributions, as 

opposed to networks with low values of Wmin, which exhibit poor or no scaling 

characteristics. Since high values of weight describe the strong links, the events selected 

in the networks with high values of Wmin are primarily the earthquakes that are most 

likely to be related to each other. Therefore, a relationship can be discerned between the 

fundamental characteristics of seismicity and the well-organized, scale free distributions 

of node connectivity. In networks with low values of Wmin, most of the nodes have little 

or no relationship with each other. In this context, the irregular and scattered shapes of 

their connectivity distributions are not a surprise. 

 It is also shown that the scale free behaviour in the connectivity distributions is 

robust with respect to variations of parameters within the range of values found by 

numerous studies in temporal and spatial distributions of earthquakes. Tests performed on 

networks that manifest strong power law properties, but originating in different choices 

of parameter values, confirm the reliability of the method.  They show that the same 

statistical population of earthquakes is chosen to participate in these networks, i.e. the 

earthquakes most likely to be interrelated. The results indicate that the method is reliable, 

robust with respect to variations of parameter values, and reflects fundamental properties 

of seismicity. 

 The threshold values Wmin that identify networks of interrelated events are 

assessed in the context of all the earthquakes in the class: they are found as those values 

for which scale free properties appear and become stronger when subsequent networks 

are created using increasing values of Wmin. It can be said that the threshold Wmin is a 
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global parameter that characterizes the set of earthquakes in a class, and its values are 

meaningful only inside that set. 

 There are also other significant scaling properties that are detected in the analysis 

of the classes of networks. Node weight distributions also enjoy scaling properties. Also, 

for each class, the dependency of the number of edges on the number of nodes is a power 

law.  

 A similar pattern of increase up to a maximum followed by a power law decrease 

was found in the distribution of distances between earthquakes in a variety of networks: 

large networks, small networks, networks in the same class, or networks that belong to 

different classes. Also, an overall pattern of slow decrease followed by a power law 

decrease was found in the distribution of time intervals between events in different 

networks: networks belonging to the same class, networks across classes, as well as in the 

selective networks of interrelated events. In this latter case, the distributions of spatial 

and temporal intervals between nodes reflect the increased proximity in space and time of 

the correlated events. 

 In comparison to most of the biological, technological, or social networks, high 

values have been found for the network average clustering coefficient, which ranges 

generally between 0.4 and 0.6. A notable similarity was found between the variation of 

the network clustering coefficient, C, along the series of networks in a class, and the 

variation of the exponents of the connectivity distribution, β, and of the weight 

distribution, γ, especially in networks that exhibit significant scaling properties of these 

distributions.  
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 The evolution of the relationships between earthquakes over time can be studied 

by splitting up the network in successive event windows of various lengths. The 

distributions of node connectivity and node weight in the emerging sub-networks 

manifest scaling properties that can be used to follow the evolution of seismicity over 

time. The exponents β and γ of these distributions have a similar evolution over the 

temporal windows. The increased connectivity in the maxima of β and γ can be 

associated with sudden, important discharges of energy in the life of the volcanic system; 

the exponents of connectivity and weight distributions for successive event windows can 

be used to study the way the relationships between earthquakes are changing over time.  

 Moreover, the network clustering coefficient, C, has an overall variation over the 

same temporal windows that closely resembles the variation of β and γ. Although a few 

differences can be observed, which may be related to the abrupt cut-off in window 

definition, the similarity in the variation of the three network parameters is remarkable. 

The presence of synchronous maxima of the three parameters confirms that the analysis 

performed in successive temporal windows is able to reflect the change in the 

relationships between earthquakes over time. The maxima show that, in the 

corresponding windows, there is an increase in the number of nodes that are highly 

connected and grouped together. 

 The intrinsic scale free structure of seismicity is also revealed in the Zipf 

distribution found for the ranked magnitude values of successive network nodes. 

 Aspects regarding the energy dissipation and the optimization of the selection of 

the temporal windows are the subject of further research. 
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Appendix A 

CREATE PROCEDURE dbo.usp_Create_Network 
 @nTMAx int, @nDMAx int,@nTmin dec(3,2), @nDmin dec(3,2),   

@nc dec (19,18), @ns dec (19,18),  

 @nr dec(3,1), @np dec(3,1) 

AS 

DECLARE @nMAx int, @i int, @nPid int, 

@nFrom_depth dec(4,2),@nFrom_magn dec(3,2), 

@nFrom_year smallint,@nFrom_month tinyint,@nFrom_day tinyint, 

@nFrom_hour tinyint,@nFrom_minut tinyint,@nFrom_sec dec(4,2), 

@cFrom_lat char(8),@cFrom_long char(9),@nFrom_x dec(9,3), 

@nFrom_y dec(9,3),@dFrom_moment datetime, @nMagnMAx dec(3,2) 

SET @i = 1 

SET @nMAx = (SELECT COUNT(*) FROM dbo.data_all) 

SET @nMagnMAx = (SELECT MAX(CAST(magn AS dec(3,2)))  

FROM dbo.data_all) 

WHILE @i < @nMAx 

 BEGIN 

  SET @nPid = (SELECT CAST(pid AS int) FROM dbo.data_all 

      WHERE cid = @i) 

  SET @nFrom_depth = (SELECT depth FROM dbo.data_all 

        WHERE cid = @i) 

  SET @nFrom_magn = (SELECT magn FROM dbo.data_all 

        WHERE cid = @i) 

  SET @nFrom_year = (SELECT year FROM dbo.data_all 

        WHERE cid = @i) 

  SET @nFrom_month = (SELECT month FROM dbo.data_all 

        WHERE cid = @i) 

  SET @nFrom_day = (SELECT day FROM dbo.data_all 

        WHERE cid = @i) 

  SET @nFrom_hour = (SELECT hour FROM dbo.data_all 

        WHERE cid = @i) 

  SET @nFrom_minut = (SELECT minut FROM dbo.data_all 

        WHERE cid = @i) 

  SET @nFrom_sec = (SELECT sec FROM dbo.data_all 

        WHERE cid = @i) 

  SET @cFrom_lat = (SELECT lat FROM dbo.data_all 

        WHERE cid = @i) 

  SET @cFrom_long = (SELECT long FROM dbo.data_all 

        WHERE cid = @i) 

  SET @nFrom_x = (SELECT x FROM dbo.data_all 

        WHERE cid = @i) 

  SET @nFrom_y = (SELECT y FROM dbo.data_all 

        WHERE cid = @i) 

  SET @dFrom_moment = (SELECT moment FROM dbo.data_all 

        WHERE cid = @i) 

  INSERT  dbo.Network_Edges 

(pid, pid_linked,delta_t,from_depth, to_depth, 

from_magn, to_magn, from_year,from_month, from_day, 

from_hour, from_minut,from_sec, to_year, to_month, 

to_day, to_hour,to_minut, to_sec, from_lat, 

from_long, to_lat, to_long, from_x, from_y, to_x, 

to_y, d) 
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SELECT @nPid,pid, DATEDIFF(SECOND,@dFrom_moment, 

CAST(year+'-'+month+'-'+day+' '+hour+':'+minut+':' 

+sec AS datetime)), 

@nFrom_depth,depth,@nFrom_magn,magn,@nFrom_year,  

@nFrom_month, @nFrom_day, @nFrom_hour, 

@nFrom_minut,@nFrom_sec,year, month,day, hour,minut, 

sec,@cFrom_lat,@cFrom_long,lat,long,@nFrom_x,@nFrom_y

,x,y, SQRT((x-@nFrom_x)*(x-@nFrom_x)+(y-@nFrom_y)*(y-

@nFrom_y)) 

   FROM dbo.data_all 

   WHERE CAST(pid AS int) > @nPid 

AND  

DATEDIFF(SECOND,@dFrom_moment,CAST(year+'-'+ 

month +'-'+day+' '+hour+':'+minut+':'+sec AS 

datetime))<= @nTMAx * 3600 *24 

    AND  

SQRT((x-@nFrom_x)*(x-@nFrom_x) 

+ (y-@nFrom_y)*(y-@nFrom_y)) <= @nDMAx 

   ORDER BY CAST(pid AS int) 

   SET @i = @i +1 

 END 

UPDATE dbo.Network_Edges 

 SET w_m = from_magn*1.000000000000000000/@nMagnMAx, 

 w_d = CASE  

  WHEN d <= @nDmin THEN 1 

  WHEN d > @nDmin THEN @nc * POWER(1.000000000000000000*d,(-

1)*@nr) 

  END, 

 w_t = CASE  

  WHEN delta_t/3600 <= @nTmin THEN 1 

  WHEN delta_t/3600 > @nTmin  

   THEN @ns * POWER(1.000000000000000000*delta_t/3600,(-

1)*@np) 

  END  

UPDATE dbo.Network_Edges 

 SET weight = w_m * w_d * w_t 

GO 
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Appendix B 

CREATE PROCEDURE [dbo].[usp_Compute_Network_Nodes] 
AS 

TRUNCATE TABLE dbo.Network_Nodes 

SELECT DISTINCT pid INTO dbo.#tmp_pid 

 FROM dbo.network_edges 

INSERT dbo.#tmp_pid 

 SELECT DISTINCT pid_Linked  

 FROM dbo.network_edges 

INSERT dbo.Network_Nodes 

 (pid) 

 SELECT DISTINCT CAST(pid AS int) AS pid 

 FROM dbo.#tmp_pid 

 ORDER BY CAST(pid AS int) 

--------- OUT edges: 

SELECT CAST(pid AS int) AS pid,COUNT(*) AS out_lines,SUM(weight) AS 

out_weight  INTO #Out 

 FROM dbo.network_edges 

 GROUP BY pid 

 ORDER BY CAST(pid AS int) 

UPDATE dbo.Network_Nodes 

 SET out_lines = tt.out_lines, 

  out_weight = tt.out_weight 

 FROM dbo.Network_Nodes nn 

 INNER JOIN dbo.#Out tt 

 ON nn.pid = tt.pid 

UPDATE dbo.Network_Nodes 

 SET out_lines = -1, 

  out_weight = -1 

 WHERE out_lines IS NULL 

--------- IN edges: 

SELECT CAST(pid_linked AS int) AS pid,COUNT(*) AS in_lines,SUM(weight) 

AS in_weight  INTO #IN 

 FROM dbo.network_edges 

 GROUP BY pid_linked 

 ORDER BY CAST(pid_linked AS int) 

UPDATE dbo.Network_Nodes 

 SET in_lines = tt.in_lines, 

  in_weight = tt.in_weight 

 FROM dbo.Network_Nodes nn 

 INNER JOIN dbo.#IN tt 

 ON nn.pid = tt.pid 

UPDATE dbo.Network_Nodes 

 SET in_lines = -1, 

  in_weight = -1 

 WHERE in_lines IS NULL 

--------- Total edge: 

UPDATE dbo.Network_Nodes 

 SET tot_lines = CASE  

    WHEN in_lines>0 AND out_lines>0  

THEN in_lines+out_lines 

    WHEN in_lines>0 AND out_lines<0 THEN in_lines 

    WHEN in_lines<0 AND out_lines>0 THEN out_lines 
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       END, 

     tot_weight= CASE  

   WHEN in_weight>0 AND out_weight>0  

THEN in_weight+out_weight 

   WHEN in_weight>0 AND out_weight<0 THEN in_weight 

   WHEN in_weight<0 AND out_weight>0 THEN out_weight 

            END   

--------- Linked neighbour: 

CREATE TABLE dbo.#tmp (pid char(7) NOT NULL) 

CREATE TABLE dbo.#tmp_1 (pid char(7) NOT NULL) 

DECLARE @nNodes int, @i int, @cPid char(7), @nLinks int 

SET @nNodes = (SELECT COUNT(*) FROM dbo.Network_Nodes) 

SET @i = 1 

WHILE @i <= @nNodes 

 BEGIN 

  IF (SELECT tot_lines FROM dbo.Network_Nodes WHERE cid = @i) 

> 1 

   BEGIN 

    SET @cPid = (SELECT pid FROM dbo.Network_Nodes 

        WHERE cid = @i) 

    INSERT dbo.#tmp 

     SELECT pid FROM dbo.network_edges 

     WHERE pid_linked = @cPid -- 98 

     ORDER BY CAST(pid AS INT) 

    INSERT dbo.#tmp 

     SELECT pid_linked FROM dbo.network_edges 

     WHERE pid = @cPid -- 98 

     ORDER BY CAST(pid AS INT) 

    INSERT dbo.#tmp_1 

     SELECT * FROM dbo.#tmp 

    SET @nLinks=(SELECT COUNT(*)  

FROM network_edges nn 

        INNER JOIN dbo.#tmp tt 

        ON nn.pid=tt.pid 

        INNER JOIN dbo.#tmp_1 

t1 

        ON 

nn.pid_linked=t1.pid) 

    UPDATE dbo.Network_Nodes 

     SET linked_near = @nLinks 

     WHERE cid = @i 

    TRUNCATE TABLE dbo.#tmp 

    TRUNCATE TABLE dbo.#tmp_1 

   END 

  SET @i = @i + 1 

 END 

UPDATE dbo.Network_Nodes 

 SET clustering= CASE 

    WHEN tot_lines >1  

THEN (CAST (linked_near AS  numeric(13,3)) /    

(CAST((tot_lines * (tot_lines - 1))/2 AS  

  numeric(13,3)))) 

    WHEN tot_lines = 1 THEN 0 

        END 

GO 
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Appendix C 

CREATE PROCEDURE [dbo].[usp_Compute_Network_Nodes_in_tempdb] 
AS 

TRUNCATE TABLE tempdb.dbo.Network_Nodes 

SELECT DISTINCT pid INTO dbo.#tmp_pid 

 FROM tempdb.dbo.network_edges 

INSERT dbo.#tmp_pid 

 SELECT DISTINCT pid_Linked  

 FROM tempdb.dbo.network_edges 

INSERT tempdb.dbo.Network_Nodes 

 (pid) 

 SELECT DISTINCT CAST(pid AS int) AS pid 

 FROM dbo.#tmp_pid 

 ORDER BY CAST(pid AS int) 

--------- OUT edges: 

SELECT CAST(pid AS int) AS pid,COUNT(*) AS out_lines,SUM(weight) AS 

out_weight  INTO #Out 

 FROM tempdb.dbo.network_edges 

 GROUP BY pid 

 ORDER BY CAST(pid AS int) 

UPDATE tempdb.dbo.Network_Nodes 

 SET out_lines = tt.out_lines, 

  out_weight = tt.out_weight 

 FROM tempdb.dbo.Network_Nodes nn 

 INNER JOIN dbo.#Out tt 

 ON nn.pid = tt.pid 

UPDATE tempdb.dbo.Network_Nodes 

 SET out_lines = -1, 

  out_weight = -1 

 WHERE out_lines IS NULL 

--------- IN edges: 

SELECT CAST(pid_linked AS int) AS pid,COUNT(*) AS in_lines,SUM(weight) 

AS in_weight  INTO #IN 

 FROM tempdb.dbo.network_edges 

 GROUP BY pid_linked 

 ORDER BY CAST(pid_linked AS int) 

UPDATE tempdb.dbo.Network_Nodes 

 SET in_lines = tt.in_lines, 

  in_weight = tt.in_weight 

 FROM tempdb.dbo.Network_Nodes nn 

 INNER JOIN dbo.#IN tt 

 ON nn.pid = tt.pid 

UPDATE tempdb.dbo.Network_Nodes 

 SET in_lines = -1, in_weight = -1 

 WHERE in_lines IS NULL 

--------- Total edge: 

UPDATE tempdb.dbo.Network_Nodes 

 SET tot_lines = CASE  

    WHEN in_lines>0 AND out_lines>0  

  THEN in_lines+out_lines  

WHEN in_lines>0 AND out_lines<0 THEN in_lines 

    WHEN in_lines<0 AND out_lines>0 THEN out_lines 

       END, 
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     tot_weight= CASE  

    WHEN in_weight>0 AND out_weight>0  

  THEN in_weight+out_weight 

    WHEN in_weight>0 AND out_weight<0  

  THEN in_weight 

    WHEN in_weight<0 AND out_weight>0  

  THEN out_weight 

       END   

--------- Linked neighbour: 

CREATE TABLE dbo.#tmp (pid char(7) NOT NULL) 

CREATE TABLE dbo.#tmp_1 (pid char(7) NOT NULL) 

DECLARE @nNodes int, @i int, @cPid char(7), @nLinks int 

SET @nNodes = (SELECT COUNT(*) FROM tempdb.dbo.Network_Nodes) 

SET @i = 1 

WHILE @i <= @nNodes 

 BEGIN 

  IF (SELECT tot_lines  

FROM tempdb.dbo.Network_Nodes WHERE cid = @i) > 1 

   BEGIN 

    SET @cPid = (SELECT pid  

FROM tempdb.dbo.Network_Nodes 

       WHERE cid = @i) 

    INSERT dbo.#tmp 

     SELECT pid FROM tempdb.dbo.network_edges 

     WHERE pid_linked = @cPid  

     ORDER BY CAST(pid AS INT) 

    INSERT dbo.#tmp 

     SELECT pid_linked 

FROM tempdb.dbo.network_edges 

     WHERE pid = @cPid -- 98 

     ORDER BY CAST(pid AS INT) 

    INSERT dbo.#tmp_1 

     SELECT * FROM dbo.#tmp 

    SET @nLinks = (SELECT COUNT(*)  

FROM tempdb.dbo.network_edges 

nn 

       INNER JOIN dbo.#tmp tt 

       ON nn.pid=tt.pid 

       INNER JOIN dbo.#tmp_1 t1 

       ON nn.pid_linked=t1.pid) 

    UPDATE tempdb.dbo.Network_Nodes 

     SET linked_near = @nLinks 

     WHERE cid = @i 

    TRUNCATE TABLE dbo.#tmp 

    TRUNCATE TABLE dbo.#tmp_1 

   END 

  SET @i = @i + 1 

 END 

UPDATE tempdb.dbo.Network_Nodes 

 SET clustering= CASE 

    WHEN tot_lines >1  

  THEN (CAST (linked_near AS  

numeric(13,3))/(CAST((tot_lines *  

(tot_lines - 1))/2 AS numeric(13,3)))) 

    WHEN tot_lines = 1 THEN 0 

       END 

GO 
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Appendix D 

CREATE PROCEDURE [dbo].[usp_Create_Windows] 
  @cNetworkName varchar(10), @nSize int, @nOverlap int  

AS 

/* 

Input:  

------ 

 - Tables: 

  - Network_Edges 

  - Result 

 - Parameters: 

  - @nSize = Window size 

  - @nOverlap = Overlap with previous window 

 

Network_Nodes is populated with all nodes (distinct) in Network_Edges. 

 

Output: 

------- 

 - Creates windows based on nSize & nOverlap 

 - Generates tables: 

  - Window_(No)_Edges 

  - Window_(No)_Nodes (with node characteristics) 

 - Fills up table Result with summary of computation 

*/ 

DECLARE @nEdges int,@nNodes int, @i int, @nMinPid int, @nMaxPid int, 

@nMinCid int, @nMaxCid int, 

 @nWindow_Edges int,@nWindow_Nodes int,@nCluster 

dec(4,3),@nCluster_NA dec(4,3), @c varchar(10) 

TRUNCATE TABLE dbo.Network_Nodes 

SELECT DISTINCT pid INTO dbo.#tmp_pid 

 FROM dbo.Network_Edges 

INSERT dbo.#tmp_pid 

 SELECT DISTINCT pid_Linked  

 FROM dbo.network_edges 

INSERT dbo.Network_Nodes 

 (pid) 

 SELECT DISTINCT CAST(pid AS int) AS pid 

 FROM dbo.#tmp_pid 

 ORDER BY CAST(pid AS int) 

SET @nEdges = (SELECT COUNT(*) FROM dbo.Network_Edges) 

SET @nNodes = (SELECT COUNT(*) FROM dbo.Network_Nodes) 

IF @nSize>=@nNodes 

 BEGIN  

  PRINT 'Error: Parameter Window_Size > Total number of 

nodes.' 

  RETURN 

 END 

IF @nOverlap>=@nSize 

 BEGIN  

  PRINT 'Error: Parameter Overlap > Window_Size.' 

  RETURN 

 END 

--------- 
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IF OBJECT_ID('tempdb.dbo.Network_Edges') IS NOT NULL 

 TRUNCATE TABLE tempdb.dbo.Network_Edges 

ELSE  

 CREATE TABLE tempdb.dbo.Network_Edges ( 

  [pid] [char](7) NOT NULL, 

  [pid_linked] [char](7) NOT NULL, 

  [delta_t] [decimal](10, 0) NULL, 

  [weight] [decimal](19, 18) NULL, 

  [from_depth] [decimal](4, 2) NULL, 

  [to_depth] [decimal](4, 2) NULL, 

  [from_magn] [decimal](3, 2) NULL, 

  [to_magn] [decimal](3, 2) NULL, 

  [from_year] [smallint] NULL, 

  [from_month] [tinyint] NULL, 

  [from_day] [tinyint] NULL, 

  [from_hour] [tinyint] NULL, 

  [from_minut] [tinyint] NULL, 

  [to_year] [smallint] NULL, 

  [to_month] [tinyint] NULL, 

  [to_day] [tinyint] NULL, 

  [to_hour] [tinyint] NULL, 

  [to_minut] [decimal](2, 0) NULL, 

  [from_lat] [char](8) NULL, 

  [from_long] [char](9) NULL, 

  [to_lat] [char](8) NULL, 

  [to_long] [char](9) NULL, 

  [from_x] [decimal](9, 3) NULL, 

  [from_y] [decimal](9, 3) NULL, 

  [to_x] [decimal](9, 3) NULL, 

  [to_y] [decimal](9, 3) NULL, 

  [oneway] [char](2) NULL, 

  [d] [decimal](5, 3) NULL, 

  [w_m] [decimal](19, 18) NULL, 

  [w_t] [decimal](19, 18) NULL, 

  [w_d] [decimal](19, 18) NULL, 

  [t_infl_sec] [decimal](10, 0) NULL) 

IF OBJECT_ID('tempdb.dbo.Network_Nodes') IS NOT NULL 

 TRUNCATE TABLE tempdb.dbo.Network_Nodes 

ELSE  

 CREATE TABLE tempdb.dbo.Network_Nodes ( 

  [cid] [int] IDENTITY(1,1) NOT NULL, 

  [pid] [int] NOT NULL, 

  [in_lines] [int] NULL, 

  [in_weight] [numeric](21, 18) NULL, 

  [out_lines] [int] NULL, 

  [out_weight] [numeric](21, 18) NULL, 

  [tot_lines] [int] NULL, 

  [tot_weight] [numeric](22, 18) NULL, 

  [linked_near] [int] NULL, 

  [clustering] [numeric](4, 3) NULL) 

---------------------------------------------- 

SET @i = 1 

SET @nMinCid = 1 

SET @nMaxCid = @nMinCid + (@nSize-1) 
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WHILE @nMaxCid <= @nNodes 

 BEGIN 

  SET @c = (SELECT CAST(@i AS varchar(10))) 

  SET @nMinPid = (SELECT CAST(pid AS int) FROM 

dbo.Network_Nodes 

       WHERE cid = @nMinCid) 

  SET @nMaxPid = (SELECT CAST(pid AS int) FROM 

dbo.Network_Nodes 

       WHERE cid = @nMaxCid) 

  TRUNCATE TABLE tempdb.dbo.Network_Edges 

  INSERT tempdb.dbo.Network_Edges 

   SELECT * FROM dbo.Network_Edges 

    WHERE CAST(pid AS int) >= @nMinPid AND 

CAST(pid AS int)<= @nMaxPid 

  EXECUTE (' 

IF OBJECT_ID(''dbo.Window_'+@c+'_Edges'') IS NOT NULL 

   BEGIN 

    TRUNCATE TABLE dbo.Window_'+@c+'_Edges 

    INSERT dbo.Window_'+@c+'_Edges 

     SELECT * FROM tempdb.dbo.Network_Edges 

   END 

  ELSE 

   SELECT * INTO dbo.Window_'+@c+'_Edges 

    FROM tempdb.dbo.Network_Edges 

   ') 

  EXECUTE dbo.usp_Compute_Network_Nodes_in_tempdb 

  EXECUTE (' 

IF OBJECT_ID(''dbo.Window_'+@c+'_Nodes'') IS NOT NULL 

   TRUNCATE TABLE dbo.Window_'+@c+'_Nodes 

  ELSE 

   CREATE TABLE dbo.Window_'+@c+'_Nodes( 

    [cid] [int] NOT NULL, 

    [pid] [int] NOT NULL, 

    [in_lines] [int] NULL, 

    [in_weight] [numeric](21, 18) NULL, 

    [out_lines] [int] NULL, 

    [out_weight] [numeric](21,18) NULL, 

    [tot_lines] [int] NULL, 

    [tot_weight] [numeric](22,18) NULL, 

    [linked_near] [int] NULL, 

    [clustering] [numeric](4, 3) NULL 

    ) 

  INSERT dbo.Window_'+@c+'_Nodes 

   SELECT * FROM tempdb.dbo.Network_Nodes')    

  SET @nCluster = (SELECT AVG(clustering)  

FROM tempdb.dbo.Network_Nodes) 

  SET @nCluster_NA = (SELECT AVG(clustering)  

FROM tempdb.dbo.Network_Nodes 

      WHERE tot_lines > 1)   

 SET @nWindow_Nodes = (SELECT COUNT(*)  

FROM tempdb.dbo.Network_Nodes) 

  SET @nWindow_Edges = (SELECT COUNT(*)  

FROM tempdb.dbo.Network_Edges) 

  INSERT dbo.Results 

   VALUES (@cNetworkName,@nNodes,@nEdges,@nSize, 

@nOverlap,@i,@nMinPid,@nMaxPid,@nWindow_Nodes, 

@nWindow_Edges,@nCluster,@nCluster_NA) 
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  SET @nMinCid = (@nMaxCid + 1) - @nOverlap 

  SET @nMaxCid = @nMinCid + (@nSize-1) 

  SET @i = @i +1 

 END 

PRINT 'Total number of windows: ' + CAST((@i-1) AS varchar(10)) 

GO 
 

 


