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1+cos20d6 (11)
4b '

Integrating, we obtain (only the plus sign is needed)

dx, = + ——cos? 0df = +
2%

x, = (1/8b)(26 + sin 20) + ¢, (12a)
and, from (10),
Y. =a+(1/8b)(1 — cos 26). (12b)

For the boundary conditions x, =0, y. =r for 6 =0,
and with the identification R = 1/8b, Eqgs. (12) yield Gille-
spie’s results

x, = R (20 + sin 26 (13a)

y.=r+R(l —cos28). (13b)
Thus the center of mass of the rolling object moves on a
cycloid generated by a rolling circle of radius R.

Since the Lagrangian (4) for O has the same form as that

for a particle sliding on a smooth curve,® except that m is
replaced by m(1 + ), then the curve C is ideally also one

which produces the fastest time of descent for the rolling
object, i.e., the curve is also the brachistochrone. However,
as Gillespie has noted, the friction between O and C re-
quired to produce rolling may not be achieved on the steep-
ly sloped portion of C. Indeed, for the brachistochrone
curve between two points in the Earth’s gravitational field,
the rolling object must start on the vertical cusp of the cy-
cloid,® where the normal force between O and C'is zero, and
thus there is no friction, and O starts from such a point by
sliding, not rolling.
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In a recent note,' B. Dasgupta has calculated the mag-
netic field of a circular solenoid by direct integration over
the source current. While that calculation is certainly cor-
rect, the following procedure is at once simpler and more
general.

Consider an infinitely long cylindrical shell of arbitrary
shape, such as shown in cross section in Fig. 1. A uniform
surface current of density J; flows “around” the cylinder,
that is in the sense of the arrow along curve C. Locate the
origin of a cylindrical coordinate system (p,d, z) at the
point at which the magnetic field is to be calculated. Let us
consider first a field point inside the cylinder, as shown. A
general argument will later suffice to extend our result to
points outside the cylinder.

Fig. 1. Cross section of noncircular cylinder.
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Let dS be a surface element located at r = ( p,é, z). We
break r into vertical and horizontal components:

r=zk+p, (1)

~ where k is the usual unit vector in the + z direction, up

from the page, and p is the horizontal vector shown. Since
k and p are perpendicular,
=2z +p% (2)
The current element flowing in dS is J, dS. Let d 1 be an
element of displacement along the closed curve C, with
counter-clockwise positive as usual. The current element
can be written

J. dS=J dldz. 3)
Noting that the vector from the current element fo the field

point (origin)is — r, we write for the magnetic field B, from
the Biot—Savart law:

o o [ B dS)X(—
47 Js | —r|?

Substituting from (1), (2), and (3), and writing the surface

integral as a double integral over d 1 (around the closed path

C) and over z (from — « t0 + o) we get

_ J + N

g __te’s Eﬁ J dz d21x(z:(37-2 p @
4 cJ—w (22 +p9)

There are two terms arising from the parentheses in the

numerator. Considering the first of these, and noting that
d 1 and k are not functions of z, we must evaluate

~ + oo dZ
dl kf L —
£ X e (22+p2)3/2

In the z integration, the integrand is odd in z, the interval is
symmetric, hence the value is zero.
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This leaves us with the following expression for B, where
for convenience we reverse the order of the cross product
and absorb the minus sign:

o § f+ * dz
B=""1 Xd1 —_
4r Jc P e B+ p?

The z integration is easily done, and gives the value 2/p>.
Using p = p/p, we obtain

B— ,uo §E

The product pXdlisin the k direction, and of magnitude
dl sin @ =dI,,, where @ is the angle between p and d 1. From
the geometry, di, is the component of d 1 perpendicular to
p, and dl, /p is the element of angle d¢ subtended by d1 at
the origin. Hence,

_ FoYs kj;d (s)

Now if the field point is inside the cylinder, the net change
in ¢ in going once around the contour is 27. Hence

Bin = :uO Js l‘&'
Since this does not depend in any way on the particular
location of the field point, we conclude that the field is
uniform, and is also independent of the shape of the cylin-
der.

For a field point located outside the cylinder, all equa-
tions are identical down to (5). The net change in ¢ in going
around an external contour is just 0. Hence

B, =0.
This result is in agreement with that previously obtained

for the particular case of a circular cross section, but is seen
to be much more general in application.

out

'B. Dasgupta, Am. J. Phys. 52, 258 (1984).
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L. INTRODUCTION

The subject of light diffraction is treated in many under-
graduate textbooks and the examples considered are usual-
ly chosen from the theory of diffraction by apertures.' This
is pedagogically appealing because Huygens’ principle may
then be used simply to predict the shape of the diffraction
pattern. However, light is an electromagnetic wave. In or-
der to describe electromagnetic waves properly, one must
normally solve Maxwell’s equations, including a descrip-
tion of the nature of the incident wave and the properties of
the materials with which it will interact. By being exposed
mainly to Huygens’ method the student may develop the
incorrect perception that diffraction is a phenomenon in-
volving only the geometry of the material, independently of
its physical properties like conductivity, absorption coeffi-
cient, etc.

According to the theory of diffraction by apertures,’ the
state of polarization of the incident light beam is not re-
quired in order to predict the irradiance pattern at large
distances. As a result, there has been a tendency not to
mention the effects of polarization in classroom discus-
sions, in textbooks,' or even in the pedagogical literature,?
even though such textbooks and articles always mention
that the Huygen—Fresnel-Kirchhoff theory is a scalar ap-
proximation. One notable exception is due to Fortin,* in a
context which is different from the present one. In order to
show how important the effects of polarization may be in
an actual situation, we have designed and performed a dif-
fraction experiment using a very small metallic wire of ap-
proximate diameter 30 um, at a wavelength of 632.8 nm
(He—Ne laser). The results indicate quite clearly that the
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state of polarization of the incident beam is important and
we believe that such an experiment could be assigned as a
laboratory exercise on diffraction, aimed at illustrating the
effect.

IL. PHYSICAL ORIGIN OF THE EFFECT

In this section, we consider the scattering of a uniform
beam of parallel-polarized light and perpendicular-polar-
ized light which is incident normally upon a perfectly con-
ducting cylinder of radius R. This problem contains the
basic ideas required to appreciate the physical origin of the
effect presented here. Furthermore, the idealized situation
discussed here is mathematically simpler to analyze than a
realistic one and so we sketch the former only.

The cylinder axis is made to coincide with the z axis of a
cylindrical system (p,¢,z). By parallel-polarized light, we
mean that the electric field of the incident beam is parallel
to the wire axis (E ?), while the magnetic field is perpendic-
ular to the same axis (B g,B §). (The superscript “o” refers
to the incident fields; a superscript ‘s> will be appended to
the scattered fields.) In the case of perpendicular-polarized
light, we have (E ; ,E ;) for the electric field and B ? for the
magnetic field.

Letf{ p, ¢ )beafunction of p and ¢ only and expanditina
Fourier series in ¢,

flpd) =3 fulple™, (1)
withm aninteger ( — o <m< + «)andf,,{ p)acoefficient
which depends on p. In the present context, f,,(p) is the

general solution of the standard Bessel equation of order m,
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