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The economic impact of crude oil price shocks on alternative energy stock prices 
 

by Emma McGuire 
 

Abstract 
 

Over the past couple of decades, rising oil prices have had a positive impact on the 
alternative energy industry because of the substitution effect. In a society that is 
growingly concerned about environmental sustainability, would this substitution effect 
suggest that the reciprocal could also be true; that low oil prices could be destructive to 
the alternative energy industry? Previous work by Henrique and Sadorsky examined the 
impact of oil price shocks on U.S. alternative energy stock prices through 2001 to 2007. 
This paper uses a similar approach to follow up their findings, in light of the 2015 oil 
price collapse. A vector autoregressive (VAR) model is used to investigate the 
relationship between multivariate time-series, including the following variables: 
alternative energy stock prices, crude oil prices, general stock prices, and interest rates. 
Granger causality tests and impulse reaction functions are examined to determine whether 
oil price shocks have a significant effect on alternative energy stock prices.  

 
 

Date:       
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I. Introduction 

In recent years, “renewable” and “alternative” have become buzzwords in the 

energy industry. This is partially due to a growing concern for the environment, but it is 

also an issue of energy security, resulting from the notoriously volatile oil market. 

Although often incorrectly used interchangeably, the terms renewable energy and 

alternative energy have different meanings. Renewable energy is an energy source that is 

capable of being replenished naturally within a human lifetime (Natural Resource 

Canada, 2016); while alternative energy encompasses energy sources other than fossil 

fuels, and is usually environmentally sound (National Resources Defense Council, 2016). 

For the purpose of this research, the focus will be on the broader category of alternative 

energy, as the data used in this study incorporates a wide variety of companies in the 

Clean Energy sector (to be discussed further in Section III). 

Alternative energy is not a new phenomenon; water energy technology, initially 

the waterwheel, was used throughout Europe in 200BC at industrial mills to crush grains, 

tan leather, shape iron and complete other industrial processes (Williams, 2006, p. 2). 

Since then, humans have learned how to harness a variety of alternative energies, 

including wind, hydro, solar thermal, and solar photovoltaic energy, as well as biofuel, 

and ethanol (Natural Resource, 2014). The development of these alternative technologies 

has progressed in leaps and bounds throughout the last century due to a variety of factors, 

including: the volatile crude oil market, general developments in technology, and the 

overall “well-being” of the world economy.  

The market for crude oil has a reputation for being extremely sensitive to various 

economic, political, and sociological shocks, which has resulted in radical price changes 
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from the beginning of the 1900s up until today (Huber, 2011, p. 818). Events such as the 

West Coast Gasoline Famine, the Great Depression, the OPEC Oil Embargo, various civil 

wars in the Middle East, and the Global Financial Crisis have contributed to the hills and 

valleys of oil price trends over the last one hundred years (Ro, 2014). Most recently, the 

United States had almost doubled their production of crude oil from 2010 to 2015 

(Kristopher, 2015; Krauss, 2016), and, coupled with other growing non-OPEC oil 

sources, has increased overall supply significantly. This has resulted in a severe reduction 

in the price of crude oil from a high range of $90-$120 per barrel from 2011- 2014 to a 

low of $27 per barrel in 2016 (Nasdaq, 2016).  

 It is generally accepted that when one good (in this case, energy) becomes 

expensive, consumers will tend to substitute to other goods wherever possible (Mathis 

and Koscianski, 2002, p. 179). Naturally, one would expect the reverse to be true; the 

drastically reduced oil prices should encourage the consumption of oil, and reduce the 

consumption of other sources of energy, such as alternative energy. However, as a society 

that is becoming increasingly aware of negative externalities resulting from crude oil 

extraction, production, and consumption (through various forms of pollution), as well as 

the risks associated with depending on outside sources for fundamental energy supply, 

more and more countries are funneling money into alternative energy investment projects. 

The United Nations Environment Programme's 9th Global Trends in Renewable Energy 

Investment 2015 indicates that in 2014, there was a worldwide 17 percent increase in 

alternative energy investment, totaling approximately 270 billion U.S. dollars (FS-UNEP, 

2015).  
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 The overall effect resulting from the opposing factors of the extremely low oil 

prices, together with the energy security and environmental concerns, poses an interesting 

and important question as to what will happen to alternative energy in both the short and 

long-term future. This empirical analysis aims to explore the impact of oil price shocks on 

alternative energy technology, focusing on the last ten years using data from the United 

States.  

This paper is organized as follows. Section II explores previous research on the 

subject and outlines pertaining theoretical matters. Sections III and IV detail the data 

sources used in this study and the empirical methodology used, respectively. Section V 

discusses implications of the findings.  

 

II. Literature & Theory Review 

 The fundamental theory behind the question of this study relates to the Theory of 

Demand. One of the essential concepts of the Theory of Demand is price elasticity, which 

is used to measure responsiveness in quantity demanded to changes in price. More 

specifically, the cross-price elasticity of demand measures the change in quantity 

demanded of one good (X) as the price of a second good (Y) changes, ceteris paribus. 

The theory says that a substitute good is one that reflects a negative cross-price elasticity 

of another good, meaning that if price of Y goes up, quantity demanded of X will 

increase, as consumers substitute away from good Y. It is unlikely that oil specifically, 

and alternative energy technology more broadly, are perfect substitutes; there are certain 

uses for energy that lend better to certain types of energy forms, such as wind turbines for 

electricity generation, or solar thermal energy for home heating (Natural Resources 
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Canada, 2015). Regardless, previous research does indicate that there is imperfect 

substitution between oil and alternative energy as a whole (Terrado, Mendes, and 

Fitzgerald, 1989; Sadorsky, 2009; Haug, 2011).  

During 1985 and 1986, crude oil prices fell approximately fifty percent in the 

world market for petroleum (Terrado, Mendis, and Fitzgerald, 1989, p. 2). The World 

Bank published a working paper in 1989 that discussed the impact of the low oil prices on 

alternative energy technologies, specifically technologies utilizing solar, wind, and 

biomass resources. The World Bank distinguished between alternative energy technology 

that competed as large-scale petroleum substitutes and alternative energy technology that 

was used to meet smaller (and typically rural) needs. The alternative energy technologies 

that the World Bank highlighted as being a substitute for petroleum included: 

dendrothermal power plants, bagasse, fuel alcohol, wind electricity, biomass gasifiers, 

heat gasifiers, power gasifiers, solar water heating, biogas, and photovoltaic and wind 

powered pumping (Terrado, Mendis, and Fitzgerald, 1989, p. 1-34). 

The findings in the World Bank study suggest that there are a variety of factors 

that make the previously listed technologies vulnerable to influence from low crude oil 

prices. The first is scale of operation. For large-scale industrial operations, fuel costs 

generally comprise a large portion of overall costs, and if oil prices were to decrease, then 

a large portion of the operation costs could be reduced if oil was used as the primary fuel 

source. Large-scale operations are vulnerable to energy price shocks, and have an 

incentive to use less expensive energy sources, such as cheap oil. Not mentioned in the 

World Bank study is the idea in the longer term, firms might explore more efficient 

energy solutions, such as renewable energy. The second factor said to influence the 
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sensitivity to oil price shocks is the location of the operation. The costs of petroleum 

increases the further an operation is from a city, because of transportation costs (Terrado, 

Mendis, and Fitzgerald, 1989, p. 22). As a result of increased transportation costs, rural 

areas have an incentive to use alternative energy sources such as wind or hydropower. 

The World Bank study results illustrate the price sensitivity of alternative energy 

technology to oil price shocks is a function of both the scale of operation as well as 

geographic location: although lower oil prices provide incentive to substitute away from 

alternative energy, certain operations may find that it is more viable to use alternative 

energy because of their size and/or location.  

While the World Bank study from 1989 does provide insight on the qualitative 

factors influencing the sensitivity of alternative energy technology to oil price shocks, it is 

important to note that alternative energy technology is constantly developing, alongside 

information and computing technology. Prices of technology change greatly over time; as 

it becomes more accessible and more common, technology generally falls in price. An 

example of this is the standard laptop: a Toshiba laptop purchased in 1985 cost $4,000; 

today, a much better laptop could cost as little as $600 (Cheng, 2010). For this reason, it 

is more efficient to focus on the profitability of alternative energy technology companies. 

One way to do this is by studying the current stock prices. 

Irene Henriques and Perry Sadorsky completed a study in 2008 examining the 

sensitivity of a composite alternative energy technology stock price in relation to the price 

of crude oil, in addition to technology stock prices and interest rates. The argument for 

examining technology stock prices rests within the notion that investors view alternative 

energy technology companies similarly to other high technology companies, in their goal 
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to maximize their return on investment. For example, in the late 1990s, several fuel cell 

companies watched their stock prices skyrocket as the NASDAQ stock rose significantly, 

and when the technology bubble burst in 2000, the fuel cell companies’ stock prices fell 

drastically with the other technology stock prices (Henrique and Sadorsky, 2008). Interest 

rates are examined because business cycles typically influence the overall stock market, 

and consequentially would have an impact on alternative energy stock prices.  

Henrique and Sadorsky found that in a time of relatively consistent increases in oil 

prices, alternative energy stock prices were significantly impacted by changes in oil 

prices, but not as strongly as they were affected by changes in technology stock prices. 

These results were found using a vector autoregression (VAR); an econometric model 

that treats each time-series variable as dependent, regressing each variable against lags of 

the other variables, as well as against lags of itself. The advantage to using VAR is that it 

can capture “rich dynamics” in multiple time series data (Stock & Watson, 2001, p. 3), as 

it treats each variable as an endogenous part of the whole picture. Henrique and Sadorsky 

found that, as oil prices climbed slowly from 2001-2007, there was a significant negative 

effect on the stock prices of alternative energy companies. If the trend were to change 

suddenly as it did with oil prices in 2009 and in 2015 (see Figure 1), would their findings 

still hold true, or would a more immediate drastic price shock produce different effects 

than consistent price changes over a longer period? The analysis outlined in the following 

sections aims to provide an answer to the former question by examining data from 2006-

2016 utilizing the same variables and econometric model specified by Henrique and 

Sadorsky in 2008.  
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Figure 1: End of day commodity futures price quotes for crude oil  
Source: NASDAQ. (2016). Retrieved from http://www.nasdaq.com/markets/crude-oil.aspx?timeframe=10y 
 

 

III. Data  

 The time-series data used in this study includes 522 weekly observations spanning 

February 2006 to February 2016. Four variables are used: alternative energy stock prices, 

oil prices, technology stock prices, and interest rates. Data for alternative energy, oil, and 

technology in the United States was obtained using Datastream and the interest rates were 

taken from the St. Louis Federal Reserve website. 

 

i. Alternative Energy  

The alternative energy stock price used in this study is the Wilder Hill Clean 

Energy Price Index (ticker symbol ECO), a composite stock price index comprised of 42 

companies in the Clean Energy sector (as of Q1, 2016). The Wilder Hill Clean Energy 
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Price Index was the first index of its kind and has since become a benchmark index 

(Henrique and Sadorsky, 2008). The companies selected for the index are chosen based 

on technological and ecological criteria, including: “importance of the stock and sector to 

clean energy, relevance to climate change, pollution prevention, technological 

significance, intellectual property rights, salience to preserving biodiversity or ecological 

integrity and other non-financial criteria” (WilderShares, 2014). The businesses included 

in the ECO Index fall into the following categories: renewable energy supplies 

harvesting; energy storage; cleaner fuels; power delivery and conservation; and greener 

utilities. The weighting of the ECO Index stocks and sectors are based on their 

“significance for clean energy, technological influence and relevance to preventing 

pollution in the first place” (WilderShares, 2014). The ECO Index uses modified equal 

dollar weighting, and requires that no single stock exceed 4 percent of the weight of the 

index weight. Stocks in the index must be listed on a major U.S. exchange (NASDAQ, 

NYSE, or AMEX). Data is listed in U.S. dollars. 

 

ii. Oil  

Oil prices are measured using the West Texas Intermediate (WTI) Crude Oil 

Price; one of three primary oil price benchmarks (the other two being Brent Blend and 

Dubai Crude). WTI Crude Oil is used as the primary benchmark for the US, and is the 

underlying commodity of the NYMEX oil futures contract (NASDAQ, 2016). Data is 

listed in U.S. dollars.  
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iii. Technology  

Technology stock prices are measured using Arca Technology 100 Index (ticker 

symbol PSE); a composite technology stock price comprised of securities from 100 

businesses across a variety of technology sectors (Nationwide Financial, 2016). These 

sectors include: information technology (65.9 percent), healthcare (22.8 percent), 

industrials (5.9 percent), energy (3.2 percent), consumer discretionary (1.1 percent), 

telecom services (1.0 percent), and consumer staples (0.1 percent) (Nationwide Financial, 

2016). The weighting of stocks in the index is determined by stock prices. Data is listed in 

U.S. dollars.  

One disadvantage of this technology stock price index is that 3.2 percent of the 

index is comprised of energy technology. A portion of the 3.2 percent is alternative 

energy technology, and since this technology index is being compared to an alternative 

energy stock price, a very small portion of alternative energy technology companies may 

be double-counted.  

 

iv. Interest Rate 

The interest rate of an American three-month treasury bill is used to capture 

business cycle fluctuations for this study. Data is weekly, not seasonally adjusted, and is 

listed in percentages.  
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IV. Empirical Methodology  

Table 1 provides descriptive statistics on the variables used in this model. The 

mean for the alternative energy stock price was $108.71, although it ranged from as low 

as $37.37 up to $288.36. Crude oil prices rose as high as $145.18 per barrel and sunk as 

low as $28.47 per barrel. The technology stock price experienced a similar range to 

alternative energy; with a high of $242.31 and a low of $44.54.  

 

Table 1: Descriptive statistics     

 Observations Std. dev. Mean Max Min 

Alternative energy stock price (US$) 522 65.65 108.71 288.36 37.37 
Crude oil price (US$/barrel) 522 21.70 80.47 145.18 28.47 
Technology stock price (US$) 522 42.42 119.09 242.31 44.54 
Interest rate (%) 522 1.77 1.06 5.05 0.00 

 

As illustrated in Figure 2, stock prices for alternative energy technology and 

general technology fell drastically during the 2008 global financial crisis, and have still 

not risen to pre-recession prices. Oil prices also fell considerably in 2008, but eventually 

rose up through 2011-2014. Interest rates decreased through the recession and have 

remained low since then (Figure 3).  
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Figure 2: Alternative energy stock price, oil price and technology stock price, 2006-2015 
 

 
Figure 3: Three-month U.S. treasury bill interest rate, 2006-2015 
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i. Stationarity 

 Augmented Dickey-Fuller (ADF) tests are used to test for stationarity in each 

variable. Tests are conducted in three ways: using no constant and no trend, constant with 

no trend, and constant with trend. The results of the initial tests indicate that each of the 

four variables contains a unit root, and display a stochastic trend. First-differencing the 

data results in first-difference stationary variables at the 1 percent level of significance by 

the same ADF tests, as shown in Table 2, meaning that each series is integrated of order 

one, I(1).  

Table 2: ADF test for unit roots, lags(0) 

 Levels First differences 
ENERGY   
no cons, no trend -1.73 -23.469* 
cons, no trend -1.507 -23.505* 
cons, trend -2.089 -23.489* 
OIL   
no cons, no trend -0.748 -23.234* 
cons, no trend -1.467 -23.216* 
cons, trend -1.43 -23.277* 
TECH   
no cons, no trend -1.02 -22.563* 
cons, no trend -1.356 -22.556* 
cons, trend -1.859 -22.542* 
RATE   
no cons, no trend -2.646 -21.120* 
cons, no trend -1.979 -21.230* 
cons, trend -0.672 -21.375* 

* Significant at the 1% level of significance 
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ii. Co-integration 

 Before proceeding with a regression for the first-difference stationary variables, it 

is necessary to ensure that the variables are not co-integrated, so as to avoid using an 

incorrect model. To test for co-integration, Engle and Granger suggest a two-step 

approach: predict the residuals using a simple ordinary least squares (OLS) regression, 

and then complete an ADF test (Engle & Granger, 1987, p.269). The ADF test statistic 

suggests no co-integration at the 95 percent level of confidence.  Since there is no co-

integration, a vector autoregression (VAR) model can be used for hypothesis testing. If 

there had been evidence of co-integreation, it would be more appropriate to use a vector 

error correction (VEC) model. 

 

iii. VAR  

 The vector autoregression (VAR) model is a multivariate time-series model in 

which each variable is explained by its own lagged values, together with the current and 

lagged values of the other variables (Stock & Watson, 2001, p. 3). The advantage to using 

a VAR model is that it treats all variables as endogenous, allowing the model to capture 

certain co-movements that might not be detected in other models. Using lags makes sense 

for weekly financial data, as each observation is effected by previous observations.  

The coefficients fabricated by the VAR model are not especially informative to 

look at because there are so many1; instead, Granger causality tests and impulse response 

functions (IRFs) are analyzed to determine causal relationships between variables.  

 

																																																								
1	See Appendix for the full list of VAR coefficients. 
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 iv. Lags  

Since the goal of using the VAR model is to explain each variable by lags of itself 

and lags of the other variables, it is very important to choose an appropriate lag length for 

the model. Estimated lag lengths that are different from the true length can either overfit 

the lags (specify too many), resulting in an increased mean-square forecast error, or 

underfit the lags (specify too few), resulting in autocorrelated errors (Ozcicek & 

McMillin, n.d., p. 2). STATA (the software program used in this study) has a command, 

“varsoc,” that creates a table of optimal lag estimates based on various criteria, including: 

LL, LR, FPE, AIC, HQIC, and SBIC. In 2005, Studies in Nonlinear Dynamics & 

Econometrics published a study that explored the various VAR lag choice criteria in order 

to determine the most reliable one. Their findings suggest that AIC-based estimates were 

“always at least as accurate as those based on other criteria,” and for larger sample sizes, 

AIC “dominates across the board” (Ivanov & Kilian, 2005, p. 11).  Considering the 

sample size in this paper is 522, the AIC-based estimates seem to be the best fit. The 

various criteria lag suggestions for this model are outlined in Table 3. AIC indicates that a 

lag length of seven is optimal.  

Table 3: Criteria for choosing lag length    
Lag LL LR df p FPE AIC HQIC SBIC 
0 -4144.72    132.441 16.2376 16.2506* 16.2708* 
1 -4126.39 36.652 16 0.002 131.241 16.2285 16.2935 16.3943 
2 -4103.41 45.967 16 0 127.704 16.2012 16.3182 16.4997 
3 -4086.83 33.163 16 0.007 127.417 16.1989 16.3679 16.63 
4 -4061.23 51.186 16 0 122.729 16.1614 16.3824 16.7251 
5 -4049.6 23.26 16 0.107 124.857 16.1785 16.4515 16.8749 
6 -4020.75 57.718 16 0 118.744 16.1282 16.4532 16.9572 
7 -4003.3 34.901 16 0.004 118.092* 16.1225* 16.4995 17.0842 
8 -3990.53 25.534 16 0.061 119.624 16.1351 16.5642 17.2295 
9 -3984.13 12.793 16 0.688 124.242 16.1727 16.6537 17.3997 
10 -3964.29 39.678* 16 0.001 122.435 16.1577 16.6907 17.5173 

* indicates optimal lag length 
 



	 17	

v. Autocorrelation 

 Testing for autocorrelation is one way to determine whether the lag selection is 

appropriate. In this study, the Lagrange-multiplier (LM) test was calculated seven 

different times, using one, two, three, four, five, six, and seven lags. The LM test results 

support the AIC lag selection of seven, determining that autocorrelation is found at each 

level up until seven lags are specified. Table 4 illustrates the seventh LM test.  

Table 4: Lagrange-multiplier test for autocorrelation 
lag chi2 df Prob > chi2 
1 19.2682 16 0.255 
2 16.5634 16 0.41438 
3 14.8193 16 0.53791 
4 40.5251 16 0.00065 
5 26.9612 16 0.04192 
6 17.2724 16 0.36818 
7 35.0003 16 0.00397 
H0: no autocorrelation at lag order  

 

vi. Granger Causality  

 Granger causality tests are conducted after VAR to determine whether or a 

variable can be predicted by lagged values of another variable. The findings of the 

Granger test, shown in Table 5, indicate that lagged values of both oil prices and interest 

rates help predict alternative energy stock prices, statistically significant at the 99 percent 

confidence level. Based on this analysis, technology stock prices are not found to help 

predict alternative energy prices.  

Table 5: Granger causality Wald tests  
Equation Excluded chi2 df Prob > chi2 
D_ENERGY D.OIL 18.986 7 0.008 
D_ENERGY D.TECH 8.7859 7 0.268 
D_ENERGY D.RATE 22.132 7 0.002 
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vii.  Impulse Reaction Functions  

In addition to the Granger tests, impulse reaction functions are indicative of causal 

relationships in the VAR model. In the words of Stock and Watson (2001):  

Impulse responses trace out the response of current and future values of 

each of the variables to a one unit increase in the current value of one of 

the VAR errors, assuming that this error returns to zero in subsequent 

periods and that all other errors are equal to zero. (p. 6) 

The first row of graphs in Figure 4, listed left to right, show: an alternative energy 

stock price shock to itself, as well as: an oil price shock, an interest rate shock, and a 

technology stock price shock, on the alternative energy stock price. The “shocks” are 

equal to an unexpected 1-percentage point increase in the variable in question. In the very 

short-run (about two weeks), oil prices and technology stock prices are found to have a 

statistically significant negative impact on alternative energy prices at the 95 percent level 

of confidence. Interest rates do not appear to have a statistically significant impact on 

alternative energy stock prices. Although oil prices and technology stock prices display a 

short-term impact on alternative energy, the graphs show a convergence back to zero by 

week eight, indicating that the change resulting from the shocks is not “persistent” (does 

not stick).  
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Figure 4: Impulse response graphs 

 

V. Conclusion  

 Granger causality tests indicate that lagged values of both oil prices and interest 

rates help predict alternative energy stock prices, and impulse response functions (IRFs) 

suggest that shocks in oil prices and technology stock prices impact alternative energy 

stock prices in the short run, though the changes are not persistent over a longer period. 

Common to both the Granger and IRF tests is the result that oil price shocks have an 

impact on alternative energy. However, despite the extreme negative oil price shock 

observed in 2015, alternative energy stock prices appear to only suffer in the short-run. 

These findings differ from the findings of Henrique and Sadorsky, who observed that 

both technology stock prices and oil prices had statistically significant impact on 

alternative energy stock prices over the span of about ten weeks. These findings imply 
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that sudden, extreme shocks might not be as prominent in the longer run as the gradual 

changes observed in Henrique and Sadorsky’s financial data from 2001 to 2007.  

 Stock and Watson (2001, p.103) state that the number of variables used in a VAR 

model is limited only by the “inventiveness of the researcher.” There are many factors 

contributing to the success of alternative energy companies, and further studies could 

improve the robustness of a study such as this one by using more variables to create a 

richer dataset. Nevertheless, this study has important implications for the alternative 

energy industry. Sudden and drastic oil price shocks appear to only have a negative 

persistent effect on alternative energy stock prices over the span of about two weeks. The 

extremely low oil prices seem to not be enough to dissuade investors from procuring 

alternative energy stocks. Perhaps society’s environmental concerns and realization of 

energy security issues trump the enticement of cheap oil, over a longer term.  
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VII. Appendix 

VAR Coefficients 

Alternative energy stock price (with first differencing)  

 Coef. Std. err. z P>|z| [95% Conf. interval] 

ENERGY       

LD. -0.0198698 0.0525705 -0.38 0.705 -0.1229061 0.0831666 
L2D. -0.0843667 0.0536779 -1.57 0.116 -0.1895734 0.02084 
L3D. 0.0423022 0.0533892 0.79 0.428 -0.0623388 0.1469431 
L4D. -0.0574922 0.0531198 -1.08 0.279 -0.1616052 0.0466208 
L5D. -0.021424 0.0533986 -0.4 0.688 -0.1260832 0.0832353 
L6D. -0.059152 0.0527408 -1.12 0.262 -0.162522 0.0442181 
L7D. -0.1908117 0.0530087 -3.6 0 -0.294707 -0.0869165 
OIL       
LD. 0.1247058 0.0794504 1.57 0.117 -0.0310141 0.2804256 
L2D. -0.0955257 0.079544 -1.2 0.23 -0.251429 0.0603775 
L3D. 0.0301318 0.0797261 0.38 0.705 -0.1261286 0.1863921 
L4D. 0.1042958 0.0792008 1.32 0.188 -0.0509349 0.2595265 
L5D. 0.0341365 0.0796681 0.43 0.668 -0.1220101 0.1902831 
L6D. 0.2586243 0.0789826 3.27 0.001 0.1038213 0.4134273 
L7D. 0.1132844 0.0789846 1.43 0.151 -0.0415225 0.2680913 
TECH       
LD. -0.0348395 0.0575009 -0.61 0.545 -0.1475392 0.0778603 
L2D. 0.0920139 0.0575924 1.6 0.11 -0.0208652 0.2048929 
L3D. -0.0181419 0.0577013 -0.31 0.753 -0.1312344 0.0949506 
L4D. 0.0293477 0.0577167 0.51 0.611 -0.083775 0.1424704 
L5D. 0.0868154 0.057939 1.5 0.134 -0.0267429 0.2003737 
L6D. -0.0784935 0.0576485 -1.36 0.173 -0.1914825 0.0344955 
L7D. 0.0550836 0.0578376 0.95 0.341 -0.0582759 0.1684431 
RATE       
LD. -0.0559133 3.268723 -0.02 0.986 -6.462493 6.350666 
L2D. 1.698083 3.205988 0.53 0.596 -4.585537 7.981704 
L3D. 1.788968 3.254415 0.55 0.583 -4.589568 8.167504 
L4D. 0.0511222 3.198504 0.02 0.987 -6.21783 6.320075 
L5D. -11.01708 3.190405 -3.45 0.001 -17.27016 -4.764005 
L6D. 9.624637 3.184587 3.02 0.003 3.38296 15.86631 
L7D. -2.855623 3.257656 -0.88 0.381 -9.240512 3.529267 
_cons -0.4308562 0.282316 -1.53 0.127 -0.9841853 0.122473 
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Crude oil price (with first differencing)    

 Coef. Std. err. z P>|z| [95% Conf. interval] 

ENERGY       
LD. 0.0480969 0.0303901 1.58 0.114 -0.0114666 0.1076604 
L2D. 0.0045823 0.0310302 0.15 0.883 -0.0562359 0.0654004 
L3D. 0.0709115 0.0308634 2.3 0.022 0.0104204 0.1314026 
L4D. 0.0453007 0.0307077 1.48 0.14 -0.0148852 0.1054866 
L5D. -0.0000839 0.0308688 0 0.998 -0.0605855 0.0604178 
L6D. 0.0331483 0.0304885 1.09 0.277 -0.0266081 0.0929047 
L7D. -0.0796243 0.0306434 -2.6 0.009 -0.1396844 -0.0195643 
OIL       
LD. -0.0001624 0.0459289 0 0.997 -0.0901813 0.0898565 
L2D. -0.0535241 0.045983 -1.16 0.244 -0.1436491 0.0366008 
L3D. 0.0314618 0.0460883 0.68 0.495 -0.0588696 0.1217931 
L4D. 0.0701578 0.0457846 1.53 0.125 -0.0195784 0.1598939 
L5D. 0.0510459 0.0460547 1.11 0.268 -0.0392198 0.1413115 
L6D. 0.0132719 0.0456584 0.29 0.771 -0.076217 0.1027608 
L7D. 0.0988143 0.0456596 2.16 0.03 0.0093232 0.1883055 
TECH       
LD. -0.044517 0.0332403 -1.34 0.18 -0.1096667 0.0206328 
L2D. 0.0335295 0.0332932 1.01 0.314 -0.0317238 0.0987829 
L3D. 0.0192618 0.0333561 0.58 0.564 -0.0461149 0.0846386 
L4D. -0.0316954 0.033365 -0.95 0.342 -0.0970896 0.0336988 
L5D. -0.0233507 0.0334935 -0.7 0.486 -0.0889967 0.0422954 
L6D. -0.0582237 0.0333256 -1.75 0.081 -0.1235406 0.0070933 
L7D. 0.0732228 0.0334349 2.19 0.029 0.0076917 0.138754 
RATE       
LD. -6.371416 1.889592 -3.37 0.001 -10.07495 -2.667885 
L2D. 6.182173 1.853325 3.34 0.001 2.549722 9.814624 
L3D. -1.012192 1.88132 -0.54 0.591 -4.699512 2.675128 
L4D. 3.687539 1.848999 1.99 0.046 0.0635672 7.31151 
L5D. -2.071292 1.844317 -1.12 0.261 -5.686088 1.543503 
L6D. 1.772633 1.840954 0.96 0.336 -1.83557 5.380837 
L7D. -0.4061603 1.883194 -0.22 0.829 -4.097153 3.284832 
_cons -0.0027845 0.1632019 -0.02 0.986 -0.3226544 0.3170854 
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Technology stock price (with first differencing)   

 Coef. Std. err. z P>|z| [95% Conf. interval] 

ENERGY       
LD. 0.0318126 0.0474937 0.67 0.503 -0.0612734 0.1248986 
L2D. 0.0338529 0.0484941 0.7 0.485 -0.0611938 0.1288996 
L3D. -0.0265567 0.0482333 -0.55 0.582 -0.1210924 0.0679789 
L4D. -0.0470701 0.04799 -0.98 0.327 -0.1411287 0.0469886 
L5D. -0.0334546 0.0482418 -0.69 0.488 -0.1280067 0.0610976 
L6D. -0.0112261 0.0476475 -0.24 0.814 -0.1046135 0.0821614 
L7D. -0.0381486 0.0478896 -0.8 0.426 -0.1320106 0.0557133 
OIL       
LD. 0.0450671 0.0717777 0.63 0.53 -0.0956147 0.1857489 
L2D. -0.0453124 0.0718623 -0.63 0.528 -0.1861599 0.0955351 
L3D. -0.0150982 0.0720269 -0.21 0.834 -0.1562682 0.1260718 
L4D. 0.089578 0.0715522 1.25 0.211 -0.0506618 0.2298178 
L5D. 0.0551416 0.0719744 0.77 0.444 -0.0859257 0.1962089 
L6D. 0.0914778 0.0713551 1.28 0.2 -0.0483757 0.2313312 
L7D. 0.0409857 0.0713569 0.57 0.566 -0.0988713 0.1808427 
TECH       
LD. -0.0226541 0.051948 -0.44 0.663 -0.1244702 0.0791621 
L2D. 0.0667284 0.0520306 1.28 0.2 -0.0352497 0.1687066 
L3D. -0.0527925 0.052129 -1.01 0.311 -0.1549634 0.0493785 
L4D. -0.1010256 0.0521429 -1.94 0.053 -0.2032239 0.0011727 
L5D. 0.0614836 0.0523437 1.17 0.24 -0.0411082 0.1640754 
L6D. -0.0562339 0.0520813 -1.08 0.28 -0.1583114 0.0458436 
L7D. -0.03587 0.0522521 -0.69 0.492 -0.1382822 0.0665422 
RATE       
LD. 3.98635 2.953058 1.35 0.177 -1.801537 9.774237 
L2D. 1.705482 2.896381 0.59 0.556 -3.971321 7.382284 
L3D. 3.971866 2.940131 1.35 0.177 -1.790685 9.734418 
L4D. 8.138706 2.88962 2.82 0.005 2.475155 13.80226 
L5D. -4.587878 2.882303 -1.59 0.111 -10.23709 1.061333 
L6D. 8.393625 2.877047 2.92 0.004 2.754716 14.03253 
L7D. -1.213587 2.94306 -0.41 0.68 -6.981879 4.554704 
_cons -0.056496 0.2550523 -0.22 0.825 -0.5563893 0.4433973 
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Interest rate (with first differencing)    

 Coef. Std. err. z P>|z| [95% Conf. interval] 

ENERGY       
LD. 0.0034343 0.0007345 4.68 0 0.0019946 0.0048739 
L2D. 0.0017228 0.00075 2.3 0.022 0.0002528 0.0031927 
L3D. -0.0001817 0.000746 -0.24 0.808 -0.0016438 0.0012804 
L4D. -0.0014736 0.0007422 -1.99 0.047 -0.0029283 -0.0000189 
L5D. -0.001192 0.0007461 -1.6 0.11 -0.0026543 0.0002704 
L6D. -0.0023941 0.0007369 -3.25 0.001 -0.0038384 -0.0009498 
L7D. 0.0003635 0.0007407 0.49 0.624 -0.0010881 0.0018152 
OIL       
LD. -0.0014036 0.0011101 -1.26 0.206 -0.0035794 0.0007721 
L2D. -0.0020481 0.0011114 -1.84 0.065 -0.0042264 0.0001302 
L3D. -0.0025071 0.001114 -2.25 0.024 -0.0046904 -0.0003238 
L4D. 0.0042384 0.0011066 3.83 0 0.0020694 0.0064073 
L5D. 0.0003644 0.0011131 0.33 0.743 -0.0018173 0.0025461 
L6D. 0.0014204 0.0011036 1.29 0.198 -0.0007426 0.0035833 
L7D. 0.0015577 0.0011036 1.41 0.158 -0.0006053 0.0037207 
TECH       
LD. -0.0008716 0.0008034 -1.08 0.278 -0.0024463 0.000703 
L2D. 0.0008871 0.0008047 1.1 0.27 -0.0006901 0.0024643 
L3D. 0.0021377 0.0008062 2.65 0.008 0.0005576 0.0037179 
L4D. -0.0006162 0.0008064 -0.76 0.445 -0.0021968 0.0009644 
L5D. 0.0011996 0.0008095 1.48 0.138 -0.0003871 0.0027863 
L6D. 0.0000946 0.0008055 0.12 0.907 -0.0014841 0.0016733 
L7D. -0.0000852 0.0008081 -0.11 0.916 -0.0016691 0.0014986 
RATE       
LD. 0.0496174 0.0456715 1.09 0.277 -0.039897 0.1391319 
L2D. -0.1025929 0.0447949 -2.29 0.022 -0.1903894 -0.0147965 
L3D. -0.016096 0.0454716 -0.35 0.723 -0.1052186 0.0730266 
L4D. 0.0715868 0.0446904 1.6 0.109 -0.0160047 0.1591783 
L5D. -0.0513513 0.0445772 -1.15 0.249 -0.138721 0.0360184 
L6D. 0.2731618 0.0444959 6.14 0 0.1859514 0.3603722 
L7D. -0.0668118 0.0455168 -1.47 0.142 -0.1560232 0.0223995 
_cons -0.0061801 0.0039446 -1.57 0.117 -0.0139114 0.0015512 

 
 
 


