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ABSTRACT

Three-dimensional hydrodynamic simulations of full amplitude RR Lyrae stars have been computed for several
models across the instability strip. The three-dimensional nature of the calculations allows convection to be treated
without reference to a phenomenological approach such as the local mixing length theory. Specifically, the time-
dependent interaction of large-scale eddies and radial pulsation is controlled by conservation laws, while the effects
of smaller convective eddies are simulated by an eddy viscosity model. The light amplitudes for these calculations
are quite similar to those of our previous two-dimensional calculations in the middle of the instability strip, but
somewhat lower near the red edge, the fundamental blue edge, and for the one first overtone model we computed.
The time-dependent interaction between the radial pulsation and the convective energy transport is essentially the
same in three dimensions as it is in two dimensions. There are some differences between the light curves of the two-
and three-dimensional simulations, particularly during decreasing light. Reasons for the differences, both numerical

and physical, are explored.
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1. INTRODUCTION

Convection continues to be a major issue in the study of
variable stars half a century after it was first suspected as being
significant near the red edge of the instability strip (Christy
1966; Cox et al. 1966). Simple prescriptions for the time-
dependent interaction between convection and pulsation such as
freezing in the convective flux during the pulsation cycle (Tuggle
& Iben 1973) and having the convective flux instantaneously
adjust to the current pulsational structure (Cox et al. 1966)
failed to provide realistic behavior near the red edge. Time-
dependent mixing length approaches (e.g., Stellingwerf 1982a,
1982b, 1984a, 1984b, 1984c; Kuhfuss 1986; Xiong 1989) have
been used (Gehmeyr 1992a, 1992b, 1993; Bono & Stellingwerf
1994; Bono et al. 1997a, 1997b; Marconi et al. 2003; Marconi
& Degl’Innocenti 2007) to produce a red edge, but the light
curves near the red edge do not agree well with observations
(Marconi & Degl’Innocenti 2007) and it is generally concluded
that the treatment of convection needs improvement (Buchler
2009; Marconi 2009).

An alternative approach is to allow the time-dependent
interaction of convection and pulsation to be determined by
finite difference approximations to the conservation laws. Such
calculations (Deupree 1977a, 1977b) follow the largest-scale
convective eddies and treat the unresolved small-scale eddies as
a viscosity acting on the large-scale flow.

Deupree allowed the computational mesh to move radially
with the horizontal average of the radial velocities on each spher-
ical surface. In principle, one can allow the mesh to move how-
ever one chooses; in practice, this specific algorithm allowed the
very narrow hydrogen ionization region to be poorly simulated
during parts of the pulsation cycle. It took approximately twenty
periods for this to become significant, so Deupree was able to
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compute pulsational growth rates, but not full amplitude solu-
tions. Based on the fact that one-dimensional (1D) Lagrangian
calculations allow the computation of full amplitude solutions,
Geroux & Deupree (2011, hereinafter GD1) developed a 1D,
two-dimensional (2D), and three-dimensional (3D) radiation
hydrodynamics code which makes the radial coordinate move
so that the total amount of mass in a given spherical shell does
not change during the calculation. Of course, this motion is La-
grangian in a 1D code, but not in multiple dimensions because
material can flow in and out of a spherical shell; there can just
be no net flow.

This approach does allow the calculation of full amplitude so-
lutions. Geroux & Deupree (2013, hereinafter GD2) computed
full amplitude solutions in 2D for several models across the in-
stability strip. They found the same time-dependent relationship
between convection and pulsation as found by Deupree (1977b).
The pulsation amplitudes strongly decreased as the models ap-
proached the red edge, but models beyond the red edge encoun-
tered difficulties because the convection zone wanted to pene-
trate well below the hydrogen and helium ionization regions.
More 2D calculations have become available (e.g., Gastine &
Dintrans 2011, 2008a, 2008b; Mundprecht et al. 2013), but the
computational difficulties of the pulsation—convection interac-
tion have led to a difference in emphasis between these and the
current work. Those 2D simulations tend to focus on highly
zoned calculations to obtain great detail about the convective
behavior. This necessarily limits the time scale over which the
calculations can be performed and requires some other restric-
tive assumptions. Conversely our work accepts relatively modest
zoning (particular angular) in the interests of being able to inte-
grate over the many time steps necessary to obtain the full ampli-
tude models which can be compared directly with observations.

Of course the turbulent nature of convective flow encountered
near the surface in RR Lyrae variables is inherently 3D. Deupree
(1977a) and GD2 argue that the important feature is the time-
dependent interaction between convection and pulsation, and not
the details of the convective flow. This is, of course, debatable,
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Table 1
2D and 3D Full Amplitude Models

Tegt D Ay Lconv./Ltm. oL A<T)/<T) or Uconv. o Vamp.
X) (mag) (kms™) (kms™)
6300 2 0.56 0.60 & 0.06 0.70 0.63 £+ 0.01 0.72 20£2 0.69 65+8

3 0.44 0.58 £0.03 0.66 0.69 £ 0.01 0.69 28 £2 0.63 73£2
6400 2 0.64 0.65 £0.01 0.73 0.65 £0.02 0.76 20£2 0.71 82 +£1

3 0.66 0.45 £ 0.02 0.66 0.71 £ 0.01 0.69 31£1 0.64 8+ 1
6500 2 0.75 0.61 £ 0.04 0.67 0.66 & 0.01 0.70 21 £ 1 0.66 92+£1

3 0.76 0.34 £0.01 0.71 0.72 £ 0.01 0.74 31+1 0.71 94+ 1
6600 2 0.83 0.52£0.03 0.67 0.67 £ 0.01 0.71 22+1 0.67 96 = 1

3 0.84 0.23 +£0.02 0.66 0.69 & 0.01 0.69 28 £ 1 0.65 M9+l
6700 2 1.01 0.34 £ 0.04 0.65 0.62 £+ 0.01 0.76 15£1 0.73 106 £ 1

3 0.86 0.11 £0.01 0.63 0.63 £ 0.01 0.73 203 0.71 96 = 1
6900 2 0.46 0.05 £0.01 0.76 0.78 £0.04 0.61 11+£2 0.77 56+1

3 0.38 0.05 £ 0.01 0.73 0.82 +0.08 0.69 11£2 0.72 53+£1

but Geroux & Deupree (2014, hereafter GD3) have shown that
this appears to be true, at least in a limited set of circumstances.

In this paper we have carried a number of 3D calculations
to full amplitude with the primary objective of comparing
the results with the 2D full amplitude solutions in GD2. The
physics in both sets of calculations are the same: the OPAL
opacities (Iglesias & Rogers 1996) in conjunction with the low
temperature Alexander & Ferguson (1994) opacities and the
OPAL equation of state (Rogers et al. 1996). Radiation is treated
with the diffusion approximation. An eddy viscosity is used to
simulate the effect of unresolved convective eddies on the larger
scale flow. There are approximately 150 radial zones in the
models, while the number of angular zones is 20 in 2D and
20 x 20 in 3D. The total width in each horizontal dimension
was 6°. The conservation laws are explicitly computed with the
exception of the energy equation, which is solved implicitly
with a Newton—Raphson technique. More specific details are
provided in GD1, GD2, and GD3.

Sixteen processors were used in parallel for all the 3D
calculations presented here. Our 2D calculations take a few
weeks to get to full amplitude, while the 3D calculations required
several months. The reason for this amount of time is that the
models require so many time steps to reach full amplitude. Even
with current computational capabilities, only a limited number
of 3D models can be done feasibly, including having more
limited zoning than one might desire. Thus, we have computed
some more 2D models to assess the sensitivity of the results to
various features.

We begin with a comparison of the pulsation amplitude as a
function of effective temperature followed with a comparison
of individual light curves.

2. COMPARISON OF 2D AND 3D
FULL AMPLITUDE MODELS

We compare a few properties of the 2D and 3D models as
functions of effective temperature in Table 1. These include the
pulsation amplitude in the visual, the pulsation velocity ampli-
tude, the maximum of the ratio of the convective luminosity to
the total luminosity during the pulsation cycle, the maximum of
the horizontal temperature variation compared to the horizon-
tal average temperature, and the maximum convective velocity.
Also included are the phases at which these maxima are found
with phase zero being defined as the maximum in peak kinetic
energy near maximum light. The errors in the phases are about

0.01, with all errors being determined over four consecutive
periods. We see that the maximum convective luminosities are
generally noticeably larger in 2D than in 3D, although we note
the difficulty in comparing these because of the different geo-
metrical balance between upward and downward flow in 2D and
3D (see CD3). This difficulty is further highlighted by the fact
that the maximum horizontal temperature variation and convec-
tive velocity are generally higher in the 3D models nearer to the
red edge. These maxima generally occur a little later (the 6500 K
model is an exception) in 2D than in 3D, although the differ-
ences are sufficiently small as not to invalidate our contention
that the time dependence is reasonably similar in 2D and 3D.

These similarities and differences appear in the light curves
as well. We present the pulsation amplitude as a function of
the effective temperature for our 2D and 3D models, along
with the observed values from Cacciari et al. (2005) for M3
in Figure 1. We first note that the pulsation amplitudes in the
middle of the fundamental mode part of the instability strip
(Ter = 6400 K-6600K) agree quite well for the 2D and 3D
calculations. For the models near both edges of the fundamental
mode instability strip and for the first overtone model calculated,
the 3D pulsation amplitudes are noticeably lower than those of
the 2D models. Before discussing these differences in amplitude
in detail, we turn to a comparison of the individual light curves.

We have previously shown a comparison between the 2D
and 3D light curves for T.; = 6500 K (GD3). The differences
in the computed light curves are very similar to the result for
T = 6600 K, shown in Figure 2: the 2D and 3D curves are
essentially the same during rising light, but the 3D curve falls
off more rapidly from peak light and then falls more slowly as
minimum light is approached. In the 6500 K case we noted that
the 2D light curve resembles the observed light curves more
closely during decreasing light. This is also true for the 6600 K
case as well, as the comparison with the light curve of V10 in
M3 (Cacciari et al. 2005) shows. Comparisons of the 2D light
curves with observations are presented in GD2.

The same trend is also true for the T,y = 6300K model,
although the difference in amplitude between the 2D and
3D calculations somewhat masks the effect. We show this in
Figure 3, along with the light curve of V120. Again, the 2D
light curve provides marginally better agreement with the ob-
servations than the 3D light curve. One should keep in mind that
some details of the light curves change as the amplitude changes.

A somewhat different picture is presented in Figure 4 for the
T = 6900K case. Here the 3D light curve falls more slowly
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Figure 1. Pulsation amplitude as a function of effective temperature in 2D,
3D, and 2D with double the resolution and double the angular extent. Squares
indicate pulsation in the first overtone while circles indicate pulsation in the
fundamental mode and open symbols indicate observations. The small black
symbols show the low resolution and low extent 2D calculations (baseline case
with 20 angular zones). The larger dark gray symbols show the 3D calculations
and the large light gray symbols show the double extent and double resolution
2D calculations (Case C, discussed in Section 4). The baseline 2D and 3D full
amplitudes agree well in the middle of the instability strip, but less so elsewhere.

from maximum light than the 2D light curve, and the two curves
have nearly the same slope in the latter half of decreasing light
until minimum light is approached. There is little discernible
difference during rising light except near maximum light, which
may be attributed to the lower amplitude of the 3D calculation.
The comparison with the low amplitude first overtone pulsation
V97 shows that the 3D calculation has a steeper rise to maximum
light and remains at maximum light for a shorter time. The
2D light curve comparison with V125 shows the same trend
(Figure 13 of GD2), but perhaps in a less pronounced way. We
should also note that the difference in total amplitude may play a
role in the apparent differences of the light curve shape as some
features of the light curves shape can change with amplitude.
Thus, there are some general differences between the light
curves of the 2D and 3D calculations which appear to occur
over most of the instability strip. We now examine possible
sources, both numerical and physical, for the differences.

3. POSSIBLE ORIGINS OF DIFFERENCES BETWEEN
2D AND 3D CALCULATIONS

Given that the 3D pulsation growth rates were lower than
the 2D growth rates (GD3), however marginally, perhaps it is
not surprising that the pulsation amplitude is less in 3D than
2D for cases near the instability strip boundaries for the given
modes. The pulsation amplitude for the 7. = 6700 K 3D model
is somewhat less than that for the 2D model. Part of this is
due to the fact that the 3D model has a very low growth rate
and may not have reached full amplitude even after extensive
time integration, although we doubt that it would reach the 2D
amplitude based on this current rate of growth.
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Figure 2. Comparison of light curves from 2D and 3D simulations for an
effective temperature of 6600 K and the light curve of V10 in M3 (top). The
differences between the light curves at each phase are also shown (bottom).

The 2D models near the red edge have a tendency to form
deeper convection zones. Our experiments with the 2D angular
zoning in Section 4 indicate that this tendency depends on the
angular zoning, being less likely as the angular resolution or an-
gular extent is increased. Forming a deep convection zone means
that reaching the full amplitude solution may take some time be-
cause of the changing thermal energy content of the outer parts of
the model. This may not be reflected in the amplitude of the light
curve or the magnitude of the peak kinetic energy per period ex-
cept over many pulsation cycles. The full amplitude should thus
be considered more uncertain and sensitive near the red edge.

Looking at the first overtone model, we note that the 2D first
overtone calculation was actually begun in the fundamental and
made the transition to the first overtone during the hydrody-
namic simulation while the 3D calculation was begun in the
first overtone. Furthermore, there is a few hundredths of a mag-
nitude variation in the amplitude over the course of a number of
periods in the 2D light curve, suggesting that some fundamental
mode contamination remains. To make a better comparison, we
recomputed the 2D calculation imposing the first overtone ve-
locity distribution instead of the fundamental mode velocity dis-
tribution on the static model. The result is that the 2D amplitude
is reduced from about 0.50 mag to 0.46 mag, but still noticeably
higher than the 3D 0.38 mag. This suggests a genuine difference
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Figure 3. Same as Figure 2, except for an effective temperature of 6300 K. The
observed variable is V120 in M3.

(see Figure 4). One can see that the two light curves have nearly
the same shape; it is just the amplitude which is different.

To explore the nature of this difference in amplitude we have
considered the following possibilities: it is a physical difference
related to how convection alters pulsation in 2D and 3D, it is
related to how large eddy simulations differ in 2D and 3D,
and it is a numerical effect perhaps related to the different
zonings in 2D and 3D. For the first of these we will examine
the relationship between the light and velocity curves and the
time-dependent convective behavior on pulsation phase. The
second we investigate by examining the effects of eddy viscosity
coefficient variation in 2D and 3D. Finally we study the effects
of angular zoning in 2D calculations.

To explore if the differences in amplitude are physical in
origin we compared the surface pulsational velocities of the
two models and found the amplitudes to be quite close, to
within about 1 kms~! out of a total amplitude of approximately
55 kms~!. This suggests a difference between the 2D and 3D
models that alters the relationship between light and velocity
amplitudes a modest amount. In both models the convective
flux is always small, as seen in the time-dependent history of
the maximum ratio of the convective to total luminosity shown
in Figure 5. We see that the time dependence is similar for
both 2D and 3D, with the primary difference between the two
being the larger ratio of the convective luminosity to the total
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Figure 4. Same as Figure 2, except for the first overtone mode with an effective
temperature of 6900 K. The observed variable is V97 in M3.
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Figure 5. Comparison of the phase dependence of the convective luminosity in

2D and 3D (top) for the first overtone 6900 K effective temperature model. The
surface pulsational velocity is shown on the bottom.
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Table 2
Eddy Viscosity Parameter Study of the 6500 K Model

EV D Ay Lconv./Lml. ¢L (T>/<T) ¢T Uconv. ¢v Vamp.

(mag) (kms~1) (kms~1)
0.17 2 0.75 0.61 = 0.04 0.67 0.66 = 0.01 0.70 21+ 1 0.66 92 +1
0.25 2 0.76 0.37 £ 0.04 0.68 0.63 + 0.01 0.68 17+ 1 0.68 100 £ 1
0.11 3 0.78 0.50 £ 0.01 0.72 0.73 £ 0.01 0.74 34+2 0.71 86+ 1
0.17 3 0.76 0.34 £ 0.01 0.72 0.70 £ 0.01 0.74 311 0.71 94+ 1
0.25 3 0.72 0.14 +£0.01 0.57 0.66 + 0.03 0.72 22+ 1 0.68 103+1

luminosity in 2D just prior to the time of maximum contraction
velocity (approximately phases 0.4—0.6 in Figure 5). At this time
there appears to be a little more mass in the hydrogen and first
helium ionization zones in 2D than in 3D, which may produce
a larger amount of driving in 2D than 3D, although the dis-
crete nature of the zoning and the defining of the boundaries of
the ionization region makes this conclusion somewhat less than
compelling. The other difference of note is that the velocity at
the second local maximum near the end of contraction is closer
to zero in 2D than in 3D (approximately phase 0.75) when the
large spike in convective luminosity is seen in both 2D and 3D. It
is not clear how this relates to the difference in light amplitude if
at all.

We previously found that increasing the free constant in
the eddy viscosity coefficient by a factor of two decreased
the amplitude of the light curve by about 10%. We have
performed similar calculations with both a 2D and 3D model
and achieved a similar rate of change for both, matching our
previous result, although there are some exceptions. In addition
to the free constant the eddy viscosity coefficient depends on a
characteristic length scale which is equated with the grid zoning
(see Equation (15) of GD2). In 2D we have taken this length
scale to be the square root of the product of the zone sizes in
the two directions. In 3D it is the cube root of the product of the
zone sizes in the three directions. Because the radial zoning is
generally finer than the angular zoning, the characteristic length
scale tends to be slightly larger in 3D than in 2D. This operates
in the direction of making the 3D light curve amplitude smaller
than it would be if we used the 2D characteristic length scale.
While this is not sufficiently large to explain the difference
for the 6900 K model, it may be compounded by the fact that
the larger amplitude variation will compress the radial zoning
further, making the eddy viscosity even less. We summarize
these results in Table 2. The table includes the value of the eddy
viscosity parameter (0.17) used in all our other calculations. We
see that velocity amplitude increases as we increase the eddy
viscosity coefficient in both 2D and 3D (indeed, the velocity
amplitude appears to be the same in 2D and 3D). However, the
light amplitude decreases in the 3D case, while it is basically
the same in the 2D case. This suggests that the light amplitude
is a fairly sensitive feature in the calculations. Possibly a very
broad parameter study, beyond the range of this current work,
may be required to resolve this.

While these differences in the light curves are noticeable, it
might be regarded as more surprising that they are not larger
than they are, given that the 2D convective flow patterns are
different from the 3D patterns. The primary difference is that in
2D the downward flow is in a trench rather than the relatively
narrow column in 3D. This difference makes it somewhat dif-
ficult to compare 2D convection results such as the convective
flux with the 3D analogue (see discussion in GD3). Another
way to change the characteristic length scale is to change the
grid zone size in the calculation. While extensive calculations

in 3D are computationally prohibitive, we can perform some in
2D and present the results in the next section.

4. ANGULAR RESOLUTION STUDY

We previously found that doubling the radial zoning did not
appreciably alter either the growth rate or the full amplitude
light curve (see GD2). However, until now we have not exam-
ined the angular zoning. The long time to completion makes this
impractical for 3D calculations, so we focus on the latitudinal
zoning for our 2D calculations. To this end we have performed
a set of three new full amplitude calculations for T = 6400 K
with different angular zonings for comparison with the baseline
calculations above: (1) calculation with the same horizontal ex-
tent but twice the angular resolution (case A), (2) calculation
with twice the horizontal extent but the same angular resolution
(case B), (3) calculation with twice the horizontal extent and
twice the angular resolution (case C). The same properties as in
Table 1 are summarized in Table 3 for the baseline case and these
three angular zoning variations. We see that both light and ve-
locity amplitudes generally increase as the resolution gets better
and the extent gets larger. The horizontal temperature amplitude
and phase do not appear to be much affected, while the convec-
tive velocities appear larger in the wider extent calculations.

Visual inspection of the convective flow patterns of the
baseline calculation compared to cases A—C show that the
larger extent cases (B and C) contain two convective cells,
while the smaller extant cases (baseline and A) contain only
one convective cell. The appearance of the large-scale flow
patterns remain the same between the baseline case and case
A and between the larger extent calculation cases (B and C),
in that a convective cell is composed of one fast narrow down-
flow and a slow broad up-flow (an example of such a flow is
given in Figures 1 and 2 in GD3); there is little difference in the
large-scale structure of the convective flow patterns from lower
resolution to higher resolution.

The comparison between light curves of the baseline calcu-
lation and cases A, B and C are presented in Figure 6. We see
that the shape of the light curve is not very different although
the amplitude is approximately 0.2 mag larger for the higher
resolution case (Case A). Perhaps this should be expected be-
cause higher angular resolution makes the eddy length scale
smaller, and we have already shown that reducing the eddy
viscosity coefficient increases the amplitude (see discussion
above).

The shape of the light curve does change in case B, par-
ticularly near minimum light. The prominent stand still in the
baseline case at about phase 0.6 has been almost eliminated.
Again the pulsation amplitude is increased with respect to the
baseline case, but only by about 0.1 mag.

The amplitude of the light curve in case C is larger than either
case A or case B, perhaps suggesting an additive effect. The
primary difference to the shape of the light curve is the loss of
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Table 3
Angular Resolution Study of the 6400 K Model

GEROUX & DEUPREE

Case Zones  Extent  Conv. Cells Ay Lecony./Liot. oL A(T)/(T) or Vconv. [ Vamp.
(mag) (kms™!) (kms™1)
Baseline 20 6° 1 0.64 0.65+0.01 073 0.65+0.02 0.76 20+ 2 0.71 82+ 1
A 40 6° 1 0.83 0.61 +£0.04 074 0.68+£0.01 0.75 25+2 0.73 91+3
B 40 12° 2 0.78 0.64+0.03 073 0.68+0.01 0.76 31+1 0.72 88+ 1
C 80 12° 2 0.94 056 +£0.05 0.75 0.69+£0.01 0.76 31+3 0.74 95+ 1
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Figure 6. Comparison of the light curves for Case A (same horizontal extent and
twice the angular resolution), Case B (twice the horizontal extent and the same
angular resolution), Case C (twice the horizontal extent and angular resolution),
and the baseline calculation.

the long stand still at minimum light, seen in both case A and the
baseline case, but with a remnant of a stand still prior to the final
dip to minimum light which might be seen as a composite of
case A and case B. The near stand still during falling light near
mean light present in the baseline case and in case B and less
prominently in case A is virtually absent in case C. However,
we have noticed that a number of detailed features such as this
in light curves are amplitude dependent so that ascribing it to a
particular resolution must be treated with caution. We compare
the light curves of case C and v65 in Figure 7 were it is clear that
they have features in common, such as the large dip at minimum
light and the near stand still before that dip. However, we note
that the model at a given phase during declining light is always
less luminous. Despite the difference in amplitude, we find that

phase

Figure 7. Comparison of the light curves of Case C (twice the horizontal extent
and angular resolution) and V65 in M3.

the pulsational growth rates are essentially the same for all
four cases.

We have computed full amplitude solutions for case C for
effective temperatures from 6300-6900 K for comparison with
the baseline case. As the effective temperature increases the
change in amplitude between the baseline case and case C
decreases from about 0.3mag for T, = 6400K to about
0.1 mag for T = 6800 K. The change is only about 0.05 mag
for the first overtone T = 6900 K case (see Figure 1). This
decrease in effect with increasing effective temperature is most
likely due to decreasing importance of convection.

Based on all these results, it would appear that the amplitude
and some aspects of the shape of the light curve are relatively
sensitive to the various numerical aspects of the model. This
should not disguise the fact that the time-dependent interaction
between convection and pulsation is clear in general with only
relatively minor differences in detail.
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5. FINAL COMMENTS

Over the past three years we developed a code capable of
simulating the effects of convection on pulsation in RR Lyrae
stars. The code can be run in 1D, 2D, or 3D. A key to allowing
us to compute full amplitude RR Lyrae models is forcing the
radial zoning to move in such a way that the mass in any given
spherical shell is constant throughout the evolution. This does
not mean that the flow is Lagrangian, although it is in 1D, but
that there is no net flow of mass in or out of a spherical shell
during the calculation.

The convective flow patterns are of course different in 2D
and 3D, but the dependence of the convective flux on pulsation
phase is quite similar. This suggests that 2D calculations are not
a bad surrogate for 3D calculations, a point emphasized by the
slight differences in pulsational growth rates. The light curves
are reasonable representations of those observed, and those near
the red edge are quite a bit better than calculated with 1D models
using a time-dependent mixing length theory.

This does not mean that all issues are resolved. There are dif-
ferences between the light curves in the 2D and 3D calculations
of the same RR Lyrae model, and the amplitude of the pulsation
is rather sensitive to parameters of the eddy viscosity treatment,
particularly the eddy viscosity coefficient and the characteristic
length scale (here assumed to be related to the size of the com-
putational mesh). At least part of this sensitivity probably arises
from the fact that the zoning is still too coarse for the turbulent
cascade to extend to sufficiently small scales. It is interesting that
the 2D light curves generally look more like the observed light
curves than the 3D light curves. We have presented some zon-
ing studies in 2D that suggest that finer zoning is needed in the
angular directions. Because it takes several tens of millions of
time steps to compute a full amplitude model, even with a size-
able initial pulsational velocity, the likelihood of being able to
compute models with significantly better angular zoning in 3D is
remote, although it would be feasible to double our angular zon-
ing again (to 160 zones) for a limited number of models in 2D.
Another generation or two of computing power will probably
allow more finely resolved 3D calculations to be made, although
they will still be time consuming for the foreseeable future.

Many of these calculations would not have been possible
without the support of Compute Canada, and particularly of
ACEnet, the high performance computing provider in Atlantic
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Canada. ACEnet is funded by the Canada Foundation for
Innovation and provincial funding agencies of Nova Scotia, New
Brunswick, and Newfoundland and Labrador. C.M.G. received
partial financial support during writing and analysis from a
Consolidated STFC grant (ST/J001627/1). Persons potentially
interested in becoming users of the SPHERLS code should
contact C.M.G.
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