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Analysis of the Relationship Between Functional Divergence and the Propensity of 

Duplicated Genes to be Involved in Human Mendelian Diseases 

 

by  

Katherina Radan 

 

Abstract  

 

In recent studies, it has been observed that genes that have been duplicated during the 

course of vertebrate evolution are overrepresented among those genes that cause Mendelian 

diseases. My objective was to determine whether measures of functional divergence are 

correlated with the propensity of duplicated genes to be involved in Mendelian disease. To test 

this, I used a phylogeny-based maximum-likelihood mixture-model prediction program, FunDi, 

that accounts for functional divergence in phylogenetic trees. I then conducted a statistical 

analysis of the data, measuring the Rho value of functional divergence weight and branch lengths 

values, using a Pearson correlation test and two-sided Wilcoxon-Mann-Whitney U-test. 

Statistically significant correlation was found for the relationship between the length of the 

branch in the phylogenetic tree separating disease-associated genes and its orthologs from the 

rest of the gene family and the propensity for a gene to be involved in autosomal recessive 

disorders. Optimization with FunDi, which accounts for functional divergence in its model, 

resulted in shorter branch lengths. Unfortunately, no statistical significance was found between 

the analyzed gene categories for the Rho value. Therefore, I conclude that while some measures 

of evolution and functional divergence, such as the internal branch length between groups, may 

be correlated with disease-association, direct measures of functional divergence measured in this 

study do not explain the propensity of duplicated genes to be involved in Mendelian diseases. 
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Introduction  

Deoxyribonucleic acid (DNA) is a polymer of nucleic acids that carries the genetic instructions 

for the growth, function, development, and reproduction of all living organisms. Damage to 

DNA can cause genetic alterations, known as mutations, which can lead to hereditary diseases. It 

is important to note that mutations are not always harmful. In most cases, they are neutral, and in 

some instances, can even be beneficial (Ohta, 1973; Ohta & Gillespie, 1996). Human hereditary 

diseases are broadly classified as either monogenic or complex disease, based on whether they 

are caused by mutations in a single gene, or multiple genes. Monogenic diseases (also known as 

Mendelian diseases) are caused by mutations that lead to changes in the function of a single 

gene, including the complete loss of function. Sickle cell anemia, Marfan syndrome, 

Huntington’s disease, and cystic fibrosis are all examples of monogenic diseases (Carter, 1977; 

Rees et al., 2010; Dietz & Cutting, 1991; Roos, 2010; Zielenski et al., 1991). Some Mendelian 

diseases are more common in certain areas and populations. For example, Fabry’s disease and 

Niemann-Pick disease are particularly common in Nova Scotia (Greer et al., 1998; Kirkilionos et 

al., 1991). The Finnish Heritage diseases, which are a collection of approximately 40 rare genetic 

diseases (Norio, 2003), are common among ethnic Finns. In addition, many monogenic diseases 

are more commonly found in Ashkenazi Jewish populations, such as Canavan disease, Gaucher 

disease, familial dysautonomia, Bloom syndrome, and Fanconi anemia (Scott et al., 2010). 

Complex genetic diseases (also known as polygenic diseases) are responsible for the vast 

majority of human genetic-related diseases, and are caused by mutations in multiple genes that 

must be inherited together (Wink, 2006), and may also be influenced by the environment (Caspi 

et al., 2010). Many different mutations, with smaller effects, all contribute to the risk for a 

polygenic disease. Examples of polygenic diseases include coronary heart disease, many cancers, 
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Type 2 diabetes, and a number of birth defects and psychiatric disorders (Weeks & Lathrop, 

1995; Taylor, 1999; Swerdlow et al., 2012). Related to complex diseases are those that are 

caused by acquired genetic mutations, called acquired genetic disorders (Risch & Merikangas, 

1996). These develop during one’s lifetime and include cancer and “cancer-like” diseases such as 

myelodysplastic syndrome and thrombocytopenia (Mijović & Mufti 1998; Drachman, 2004).  

Deleterious mutations can be either “loss-of-function” or “gain-of-function”. Loss-of-

function (inactivating/null) mutations result in a gene product that has reduced or no function, 

while gain-of-function (activating) mutations result in a gene product that has a new or enhanced 

function, pattern of gene expression, or regulation. Some genes can be essential to the viability of 

organisms because they can acquire deleterious mutations that cause loss-of-function or null 

mutations in genes. These mutations do not affect the phenotype and in turn, the organism's 

viability. Other gene families have been described as “dangerous”, due to their tendency to 

acquire deleterious gain-of-function mutations, which increases their susceptibility to genetic 

diseases (Singh et al., 2012; Singh et al., 2014). In both cases, functional divergence can play an 

important role in gene evolution and functionality in the organism, and is a driving force in the 

evolution of genes involved in genetic diseases, including Mendelian disease.  

 

1.1 Mendelian Diseases 

Mendelian disease genes follow four main patterns of inheritance: autosomal dominant, 

autosomal recessive, X-linked recessive, and X-linked dominant (Chial, 2008). In the autosomal 

dominant pattern, a disease occurs when one copy of an allele is mutated and the disease will 

typically appear in every generation of the family. An example of this type of Mendelian 
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inheritance is Huntington’s disease, which is a progressive disorder of motor, cognitive, and 

psychiatric changes. This disease is caused by a genetic defect that alters the Huntingtin (HTT) 

gene on chromosome 4 (Roos, 2010), which changes the number of C-A-G trinucleotide repeats 

in the gene (Ross & Tabrizi, 2011). Generally, the number of repeats is between 10 and 35, but 

Huntington’s disease occurs when these increase to 36 or more, which produces a longer and 

unstable Huntingtin protein (HTT) that ultimately leads to neurodegeneration (Finkbeiner, 2011). 

In autosomal recessive diseases, two copies of the harmful allele must be present for the 

individual to express the disease. The disease will not appear in every generation of the family, 

but carriers will be present in every generation. A typical example of a Mendelian disease with 

autosomal recessive inheritance is cystic fibrosis (Zielenski et al., 1991). This relatively common 

genetic disease occurs in about 1 in 3,500 individuals of European descent (Ratjen, 2009), and is 

caused by the loss-of-function of a chloride channel, which is coded for by the cystic fibrosis 

transmembrane conductance regulator (CFTR) gene on chromosome 7 (Zielenski et al., 1991). 

The loss-of-function mutations in the protein leads to an accumulation of thick mucus in the 

digestive, reproductive, and respiratory systems, leading to an increase in inflammation, 

infection, and respiratory problems (Zielenski et al., 1991; Welsh & Smith, 1993). 

X-linked diseases operate the same way as diseases on autosomes, except that males only 

have one copy of the X chromosome. This means that if a mutation appears on the X 

chromosome, the male will be affected. Since females have two copies of the X chromosome, X-

linked recessive diseases are more common among men. An example of a disease with an X-

linked recessive pattern of inheritance is Duchenne muscular dystrophy. The disease is caused by 

a mutation of the dystrophin gene (DMD) located at the short arm of the X chromosome (Blake 

& Kröger, 2000). Mutation of the DMD gene prevents the creation of the protein dystrophin, 
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which leads to an excess of calcium in the cell membrane, alters cell signaling pathways, and 

ultimately leads to a progressive muscular disorder (Dobyns et al., 2004). Fragile X syndrome is 

a disease with an X-linked dominant pattern of inheritance, which is caused by mutation in the 

fragile X mental retardation 1 (FMR1) gene, located on the X chromosome. Similar to 

Huntington's disease, the mutation alters the length of the gene by expending the C-G-G 

trinucleotide repeats in the gene. The number of repeats is increased from between 5 and 44 to 45 

or more, resulting in failure to express a normal protein (FMRP) which leads to abnormal neural 

development (Hagerman, 2005; Garber et al., 2008).  

 

1.2 Mendelian Diseases and Gene Duplications 

It has been observed that genes that have been duplicated are overrepresented among genes that 

cause Mendelian diseases (Chen et al., 2013; Chen et al., 2014; Singh et al., 2012; Singh et al., 

2014). Duplicated genes result from gene or genome duplications, which are important 

mechanisms for creating genetic variation and novelty in organisms (Stephens, 1951; Magadum 

et al., 2013) by providing new genetic material for mutation, drift, and selection to act upon. 

Many new gene functions have evolved through the process of gene duplication (Alberts et al., 

2002; Wolfe & Li, 2003). These duplications are divided into two main categories: small-scale 

duplication and whole-genome duplication (Dehal & Boore, 2005). Small-scale duplication 

occurs when a specific region of the genome, containing a single gene or a few genes located 

close together, is duplicated. Genes that originate from small-scale duplication are highly diverse 

in their function and are thought to be more essential (Hakes et al., 2007). Whole-genome 

duplications are large-scale events where the entire genome is duplicated, resulting in additional 



9 

copies of the genome (polyploidy) (Dehal & Boore, 2005). Polyploid cells contain more than two 

paired (homologous) chromosome sets. Genomes that have been duplicated in this fashion 

eventually return to a diploid state (diploidization), and some gene copies are lost or gained 

during this process (Conrad & Antonarakis, 2007). Because of this, genes that originate from 

whole-genome duplication are less diverse in their functions, are thought to be less essential, and 

are more likely to be members of a protein complex (Hakes et al., 2007). Since small-scale 

duplication provides no immediate benefit, they will have low probability to be retained and will 

be rapidly lost following the duplication. Whole-genome duplication, on the other hand, can 

provide immediate benefit thus selection will act stronger to retain these duplicates (Hakes et al., 

2007). During the course of vertebrate evolution, two rounds of whole-genome duplication have 

occurred, and this is hypothesized to be a driving force behind increases in organismal 

complexity (Brunet et al., 2006; Acharya & Ghosh, 2016). This hypothesis argues that gene 

duplication created genetic redundancy, which allowed for novel genes and gene functions to 

develop (Chen et al., 2013; Chen et al., 2014). This redundancy reduces or changes the 

functional constraints that otherwise operated on the original single gene (Qian & Zhang, 2014).  

Duplicated genes are called paralogs. These paralogs typically perform the same role as 

the original single gene initially, but can diverge over time (Innan & Kondrasov, 2010). After 

gene duplication, most duplicated genes acquire mutations that render them nonfunctional 

quickly (in evolutionary time) (Hughes, 1994; Hurles, 2004). These non-functional paralogs are 

called “pseudogenes”. Over time, many of these pseudogenes are completely lost from the 

genome, along with its functionality (Hughes, 1994; Hurles, 2004; Ohno, 1970; Hufton & 

Panopoulou, 2009). However, over the course of evolution, mutation and selection can act 

independently on the duplicate copies, leading to functional divergence between paralogs. The 
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main types of functional divergence are neofunctionalization, an adaptive process where one 

paralog acquires a new function that was not present in the pre-duplicated gene, and 

subfunctionalization, which can be either an adaptive or neutral process where both paralogs in a 

duplicated gene partition the ancestral function (Rastogi & Liberles, 2005; Innan & Kondrasov, 

2010). For example, the creation of hemoglobin, myoglobin, and cytoglobin from one ancestral 

gene (Hoffmann et al., 2011; Ebner et al., 2003), is an example of gene duplications followed by 

functional divergence. Currently, all three proteins perform a similar role in binding oxygen, but 

their specific function and tissue-specific expression differs. 

As stated previously, genes that cause Mendelian disease are enriched in duplicated genes 

(Dickerson & Robertson, 2011; Chen et al., 2013; Chen et al., 2014; Singh et al., 2012; Singh et 

al., 2014). This observation was unexpected, as it was previously hypothesized that singletons 

(genes without duplicates) were more likely to be functionally critical as paralogous genes could 

potentially compensate for one another and mask the effects of deleterious mutations (Brunet et 

al., 2006; Gu et al., 2003; Dickerson & Robertson, 2011; Chen et al., 2012; Chen et al., 2013; 

Chen et al., 2014). Several proposals have been put forward to explain this observation. First, the 

age of the duplicates may play a major role in their ability to functionally compensate for one 

another when there is a mutation in one of the paralogs. In the case of ancient duplications, due 

to the amount of time that has passed, functional divergence is more likely to have occurred. This 

functional divergence prevents the paralogous genes from functionally compensating for one 

another (Chen et al., 2013; Chen et al., 2014). In contrast to older duplication events, paralogs 

that result from more recent duplication events might still be able to functionally compensate for 

mutations in their gene duplicate. This means that if a mutation or damage occurs in one copy of 

the gene, the other copy will still produce a normal and functional gene product. In the absence 
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of strong functional divergence, both paralogs can perform the same functions and are typically 

still expressed in the same tissues. Second, whole-genome duplication created the potential for 

more complex systems, as all genes were duplicated at the same time, allowing more 

opportunities for functional divergence. Gene divergence would then expose the deleterious 

effect of genetic alterations (mutations) and lead to disease. Existing studies have shown that 

genes that are prone to dominant deleterious mutations are considered to be more "dangerous" 

(Singh et al., 2012; Singh et al., 2014). In addition, functional compensation by duplication of 

genes masks the phenotypic effects of deleterious mutations and reduces the probability of 

purging the defective genes from human population (Chen et al., 2013; Chen et al., 2014). 

Mendelian diseases can have a large burden on human health. This includes both loss of 

life and decreased quality of life, because most aren’t fatal (Costa et al., 1985; Botstein & Risch, 

2003). Though relatively rare individually, it is estimated that over 10,000 human diseases are 

known to be Mendelian, and the global prevalence is approximately 10/1000 individuals at birth 

(World Health Organization, 2016; Chakravarti, 2011). In this project, the focus is on genes that 

can lead to Mendelian diseases when mutated. Understanding the mechanism of genes and 

diseases has long been a point of interest in genetic research. There are still many Mendelian 

diseases where the causal mutation and gene are not yet known. Discovering and analyzing the 

genetic basis of known Mendelian diseases will contribute to our knowledge of gene function 

and regulation and will also allow us to develop better treatment methods in the future (Chong et 

al., 2015). Today genome-scale analyses are incredibly useful for identifying genetic mutations; 

however, the small number of rare mutations found in a typical genome means we need to 

develop methods that will prioritize genes likely to be involved in Mendelian disease. 
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1.3 Thesis Objectives 

In this project, I hypothesize that direct measures of functional divergence between paralogs are 

associated with the propensity of duplicated genes to be involved in Mendelian disease. I test my 

hypothesis by using a phylogeny-based, functional divergence prediction program, FunDi 

(Gaston et al., 2011), to analyze ~9000 gene families. These families include both genes 

involved in Mendelian disease and non-disease genes. I predict that when comparing gene 

families that contain genes that cause Mendelian disease to gene families that do not, measures 

of functional divergence produced by FunDi, particularly the functional divergence score, will be 

higher in the gene families that are involved in Mendelian diseases. This is due to the 

compensation hypothesis where genes become too diverse (=higher functional divergence) and 

cannot compensate each other, leading to Mendelian disease when a mutation is acquired. 

Additionally, I predict that when comparing the two main patterns of Mendelian inheritance in 

autosomal (non-sex chromosome) genes, autosomal dominant and autosomal recessive, the 

functional divergence score will be the highest for genes involved in autosomal dominant 

disorders. This is due to the strength of the pattern of inheritance, where in the dominant pattern 

a defect in one allele can lead to disease, which also based on the compensation hypothesis. I 

propose that having a tool that can analyze genes, and output a significant functional divergence 

score, will aid in identifying new disease-causing genes; helping us gain a better understanding 

of our genome, its evolution, and disease-causing potential. 
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Methods 

2.1 Data Acquisition, Cleaning, and Integration 

To construct a dataset of human gene families, I downloaded 15,570 gene sequence alignments 

and phylogenetic trees from TreeFam (v9) (Schreiber et al., 2012). This approach was based on 

the method used by Chen et al. (2013); however, only alignments and phylogenetic trees of gene 

families (where at least two paralogous human sequences are present in the alignment and tree) 

were retained, for a total of 8,166 sequence alignments and their respective phylogenetic trees. 

Genes were then linked to extra information, particularly their disease categorization (non-

disease, recessive, dominant, etc.), from the Chen et al. (2013) supplementary data by using the 

TreeFam group identifier, Ensembl identifiers and a custom python script.  

In this analysis, I was specifically interested in the relationship between functional 

divergence and the disease-causing potential of duplicated genes. Additionally, because FunDi in 

this analysis uses the program IQ-TREE to perform the maximum-likelihood phylogenetic 

analyses, a minimum of three taxa in each defined subgroup of the phylogenetic tree is required 

(IQ-TREE, 2016) as this is how the program was built. Therefore, 250 of the multiple sequence 

alignment files that had fewer than three taxa in each defined subgroup of the phylogenetic tree 

were removed from the analysis. Due to polytomies (unresolved evolutionary relationships in 

which three or more branches originate from the same node, particularly at the root of the tree 

(Olmstead, 1996, Lin et al., 2011)) in some phylogenetic trees, an additional 1,500 multiple 

sequence alignment files were removed from my dataset. After filtering and cleaning the dataset 

of human gene families from the mentioned datasets, a total of 6,416 gene family alignments and 

phylogenetic trees were analyzed using FunDi. Because the phylogenetic tree information was 
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encoded in the EMF (Enhanced MetaFile) file format, and multiple sequence alignments in 

FASTA (text-based format for representing peptide sequences) files, custom python scripts were 

written to extract newick-format phylogenetic trees from EMF files and to convert FASTA-

format sequence alignments to the phylip-format used by FunDi. 

Having only the Ensembl gene ID’s of interest from Chen et al.’s (2013) dataset as a 

starting point, a datasheet that contained all human gene families, as our dataset and their 

associated paralog proteins, was created (Fig. 1). 

 

2.2 Subtree Definition File Creation  

The subtree definition files define two different subgroups within multi-member gene families. 

FunDi separates the tree into its constituent subtrees, using the subtree definition file as a map 

that identified which sequences will be in each of the two subgroups to be considered in the 

analysis. Knowing only the protein ID’s as our starting point, a connection to its’ paralogs was 

required. To split the tree files into subgroups, an algorithm was written in python that uses the 

ETE v3 (Environment for Tree Exploration v.3.0.0b35) package (Huerta-Cepas et al., 2016; ETE 

Toolkit - Analysis and Visualization of (phylogenetic) trees, 2016). This toolkit allows 

programmatic access to, and manipulation of, a phylogenetic tree. Specifically, the subtree 

definition files were generated using the following algorithm (Fig. 2): 

 

1. Iterate through the terminal (leaf) nodes of the tree until the node corresponding with 

the protein of interest is found. 

2. Starting from the terminal node containing the identified protein in 1, move to the 
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parental node. Check all terminal nodes that are a descendant of this node to see if they 

contain a human protein identifier, excluding the original protein of interest. If a human 

paralog is identified here, then stop and proceed to step 4. Otherwise continue with step 

3. 

3. Repeat step 2 by continuing to traverse through ancestral nodes, towards the root of the 

tree, until a terminal node with a descendant terminal node corresponding to a human 

protein other than the original protein of interest is found. 

4. Once an internal node of the tree that has a descendant node corresponding to a human 

protein other than the original protein of interest is identified, go to the previous internal 

node tested, as that was the last node that did not contain this paralog as a descendant. 

5. Create a list that contains the sequence identifiers of all terminal nodes descended from 

the internal node identified in 4.  

6. Iterate over all the terminal nodes in the tree and create a second list of all sequence 

identifiers that do not appear in the list created in 5. 

7. Create a subtree definition file whose first line is list of nodes from step 5 and a second 

line that has the list of nodes from step 6. 

 

2.3 FunDi Analysis 

FunDi is a phylogenetic maximum-likelihood mixture-model prediction program that identifies 

functionally divergent sites among protein families, using specified models of amino acid 

substitution (Gaston et al., 2011). A proper FunDi run of each gene family in the dataset uses the 

following files: a multiple sequence alignment file (phylip), a phylogenetic tree file (newick), 
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and a subtree definition file. FunDi compares two subgroups in each gene family: a subgroup 

defined by a human protein sequence of interest along with its orthologs and the rest of the 

sequences in the gene family. In the case where a gene family contains three or more human 

paralogs FunDi will conduct one comparison per paralog. 

FunDi uses a two-component mixture model where sites in the multiple sequence 

alignment are modelled using a dependent component (standard evolutionary model) and an 

independent model, where the specified subtrees of gene family’s phylogenetic tree are treated as 

completely independent trees. After maximum-likelihood optimization, a site-wise posterior 

probability of functional divergence for each site in the alignment is calculated, where the 

independent model approximates functional divergence. In the dependent component (non-

functionally divergent), the maximum-likelihood evaluation of the tree as a whole reflects 

normal evolutionary models, where all of the evolutionary parameters (i.e.: evolutionary rate, 

and amino acid frequency) are the same across the phylogenetic tree. The independent 

(functionally divergent) component models the two subtrees as independent of one another; 

therefore, the subtrees can be optimized to different evolutionary rates amino acid frequencies, 

and other evolutionary parameters between the two parts of the phylogenetic tree. FunDi 

optimizes the overall ratio between the independent and dependent components, the branch 

length between the two groups, and finally estimates a functional divergence value. The 

determination of whether the site is functionally divergent or not is dependent on a set cut-off 

threshold (standard threshold is 0.5). In our analysis, we set different thresholds (0.75, 0.9, and 

0.95) to test the weight of functional divergence of the different sites in the alignment files. The 

use of the two components is an attempt to statistically and computationally model the process of 

molecular evolution when functional divergence might be occurring.  
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 FunDi analysis used the LG model of amino acid substitution, a gamma distribution of 

evolutionary rates among sites in the sequence alignment, and an empirically estimated 

frequency of individual amino acids in the multiple sequence alignment. The LG model is one of 

many amino acid replacement matrices (such as WAG (Whelan & Goldman, 2001), JTT (Jones 

et al., 1992), and PAM (Dayhoff et al., 1978)) that are used in protein phylogenetic inference (Le 

& Gascuel, 2008). These models are used to calculate probabilities of amino acid substitution 

along branches of phylogenetic trees. The dataset of multiple sequence alignments that was used 

to construct the LG substitution matrix was larger and contained a more diverse set of sequences 

(Le & Gascuel, 2008). The gamma distribution is used to model multiple rates of evolution at 

sites in the multiple sequence alignment, allowing for faster or slower evolving sites (Yang, 

1994; Yang, 1996). The shape of this gamma distribution of site-rate categories is controlled by 

the shape parameter alpha, which is optimized during the maximum-likelihood optimization 

process.  

 FunDi uses the site log-likelihood values estimated by the program IQ-TREE (v.1.5.0) 

(Nguyen et al., 2015; IQ-TREE, 2016). IQ-TREE takes the provided phylogenetic tree and 

multiple sequence alignment and re-optimizes branch lengths, the gamma shape-parameter alpha, 

and other aspects of the phylogenetic tree, with the exception of the tree topology, given the 

provided evolutionary model as described previously. 

 Branch length optimization was used in FunDi for each phylogenetic tree, in order to 

properly model functional divergence. In some cases, this results in the shortening of the internal 

branch length, which can be artificially inflated under standard evolutionary models that do not 

account for functional divergence. This optimization allowed me to estimate the optimal 

maximum-likelihood tree, with optimized branch lengths. FunDi output the following values: 
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fraction of functionally divergent sites, optimal branch length of the internal branch separating 

the defined subgroups, and the optimized weight parameter, Rho, for the independent (functional 

divergence) model component. 

The branch lengths in some of the analyzed tree files were theoretically very long and 

before using FunDi program, are referred to as “un-optimized”. They are referenced in the 

following figures as the “Pre-FunDi Branch Length”. As mentioned, FunDi uses the IQ-TREE 

(v.1.5.0) algorithm (Nguyen et al., 2015; IQ-TREE, 2016) that takes the provided phylogenetic 

tree file and re-optimizes the branch lengths. After optimizing the phylogenetic trees with FunDi, 

the branch length we considered “optimized” and were described as “Post-FunDi Branch 

Length”.  

  

2.4 Statistical Analysis and Data Visualization 

A number of statistical tests and data visualization methods were used to examine the association 

between functional divergence and the disease-causing status of genes. 

 Comparisons of the functional divergence weight (Rho) were made between gene-

families that cause Mendelian-disease (MD) vs non-disease (ND) gene-families. In addition, we 

specifically compared autosomal dominant (AD) and autosomal recessive (AR) genes. 

While Rho is the most direct measure of functional divergence output by FunDi, 

additional comparisons were made between the fraction of functionally divergent sites for genes 

in the AD and AR disease categories (that represent the subcategories of MD) when compared to 

those in the ND category, using different cut-offs (0.5, 0.75, 0.9, and 0.95) for the site-wise 

posterior probability of functional divergence output by FunDi. 
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The various comparisons were plotted as box plots or scatter plots, and analyzed using 

Minitab v.17 (Minitab 17, 2016), with focus on internal branch length (branch length separating 

a subgroup of interest from the rest of a phylogenetic tree) and Rho (weight of the independent 

component of the FunDi mixture model) values estimated by FunDi.  

Genes in our dataset were also separated into two-member and three or more-member 

gene families. Gene families with more than two paralogs are more difficult to accurately 

characterize and feature more complex, and overlapping, comparisons.   

 For the scatter plots, the Pearson correlation test was used to measure the strength of the 

relationship between two variables. For the box plots, two-sided Wilcoxon-Mann-Whitney U-

tests were used to evaluate the existence of significant differences between two independent 

groups. For both tests, the obtained P-values measured the significance of the tested 

relationships. In addition, Bonferroni correction (also known as the Bonferroni type adjustment 

(Bonferroni, 1936; Dunn, 1959; Armstrong, 2014)) was made on the P-values in order to reduce 

the chance for a false positive error; rejecting the null hypothesis when I should not. 

In order to better visualize the correlation of numerical data whose ranges differ 

significantly in magnitude, the Rho values were re-scaled using the following function:  

                             Logit = Ln [Rho / (1-Rho)]                                                       (1) 

The internal branch lengths were rescaled simply by taking the log of the branch length. 
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Results 

All reported P-values were corrected for multiple comparisons using the Bonferroni method in 

order to reduce false-positive errors in the analysis.  

 

3.1 Branch Length Results from Phylogenetic Trees 

The relationship between internal branch length values and the FunDi functional divergence 

score, Rho, for each gene family are shown in figure 3 for the two-member only (A&B) gene 

family groups, both before (A) and after (B) FunDi optimization. Similarly, the results for three 

or more-member (3+) gene families are also shown (C&D). For the two-member gene families 

there were 78, 125, and 1145 sets of alignments and phylogenetic trees for the AD, AR, and ND 

categories respectively. For the three or more-member gene families there were 217, 210, and 

3172 alignments and phylogenetic trees for the AD, AR, and ND categories respectively. 

 For the group of two-member gene families, the Pearson correlation coefficient in the ND 

and AR groups of genes, both before and after internal branch length optimization with FunDi, 

had relatively weak positive (before optimization: ND: r = 0.613, P = 0.0002 and AR: r = 0.660, 

P = 0.0002; Fig. 3A; after optimization: ND: r = 0.126, P = 0.0002, AR: r = 0.147; P = 0.2060; 

Fig. 3B) correlation between the functional divergence weight parameter, Rho, and the internal 

branch length. However, this relationship was not statistically significance in the ND category 

after optimization of the internal branch length. The AD subcategory did not have a statistically 

significant correlation between Rho and the internal branch length before or after FunDi 

optimization (before optimization: AD: r = 0.187, P = 0.2080; Fig. 3A; after optimization: AD: r 

= 0.001, P = 1; Fig. 3B).  
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For the 3+ gene family groups, the Pearson correlation coefficient had a strong positive 

measure between in the AR subcategory, and a weak positive correlation in the ND category and 

AD subcategory. There was statistical significance for all three subcategories before optimization 

with FunDi (before optimization: ND: r = 0.613, P = 0.0002, AR: r = 0.726, P = 0.0002, and AD: 

r = 0.650,  P = 0.0002; Fig. 3C), and after FunDi analysis all three gene categories had relatively 

weak positive relationships, although it was not significant for the AD group (after optimization: 

ND: r = 0.067, P = 0.0002, AR: r = 0.188, P = 0.0120, and AD: r = 0.036, P = 1; Fig. 3D).  

The distribution of internal branch length values, before and after FunDi optimization, for 

each disease-gene category are shown in figure 4 for the two-member only (A) gene family 

groups. Similarly, the results for three or more-member (3+) gene families are also shown (B). 

We tested for differences in the distribution of branch length between the AD and AR gene 

categories with those of ND genes as described in the methods.  

For the two-member gene family group (A), a significant difference was only seen 

between the ND and AR gene categories before FunDi optimization (before optimization: ND vs. 

AR: P = 0.0256, and ND vs. AD: P = 1; after optimization: ND vs. AR: P = 0.2110, and ND vs. 

AD: P = 0.7706; Fig. 4A).  

For the 3+ group of gene families (B), no significant difference was found between any 

of the gene categories before FunDi optimization, but a significant difference was seen between 

the distribution of internal branch lengths when comparing the ND gene category and the AR 

category after branch length optimization with FunDi (before optimization: ND vs. AR: P = 

0.2482, and ND vs. AD: P = 1; after optimization: ND vs. AR: P = 0.0032, and ND vs. AD: P = 

0.4552; Fig. 4B).  

We also analyzed the distribution of the difference between pre- and post-FunDi 



22 

optimization of the internal branch length (Fig. 5), for both the two-member (A) and 3+ member 

(B) gene families. Here the difference in branch lengths is a measure of improvement in model 

fit when FunDi is used versus a standard evolutionary model. No statistically significant 

difference was found for either comparison (ND vs. AR: P = 0.0552, and ND vs. AD: P = 1; Fig. 

5A). For the 3+ gene family group (B), no significant result was found for any comparison 

(before and after optimization difference: ND vs. AR: P = 1, and ND vs. AD: P = 1; Fig. 5B).  

 

3.2 Rho Value - Functional Divergence Results 

Boxplots of the Rho values obtained for each group are shown in figure 6. For our analysis of the 

functional divergence score, Rho, no significant differences were seen between either the AD or 

AR category when compared to the ND category in either the two-member (ND vs. AD: P = 1, 

and ND vs. AR: P = 0.4422; Fig. 6A) or 3+ member (ND vs. AD: P = 0.8436, and ND vs. AR: P 

= 0.4712; Fig. 6B) groups.  

 While Rho is the most direct measure of functional divergence output by FunDi, we also 

compared the fraction of sites considered to be functionally divergent when using different cut-

offs for the site-wise posterior probability of functional divergence output by FunDi. Boxplots of 

the fraction of functionally divergent sites for each gene category are shown in figure 7. For our 

analysis of the fractions of the functionally divergent sites, no significant differences between 

either the AD or AR categories when compared to the ND genes were seen for any category in 

the two-member group (fraction 0.5: ND vs. AD: P =1, and ND vs. AR: P = 0.1814; fraction 

0.75: ND vs. AD: P = 1, and ND vs. AR: P = 0.3522; fraction 0.9: ND vs. AD: P = 1, and ND vs. 

AR: P = 0.9050; fraction 0.95: ND vs. AD: P = 1, and ND vs. AR: P = 0.8908; Fig. 7A). 
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For the 3+ member group, a statistically significant difference was only seen when 

comparing AR genes to ND genes when using the most conservative (0.9 and 0.95) cutoff for 

defining functionally divergent sites in the multiple sequence alignment comparing (fraction 0.5: 

ND vs. AD: P = 0.9808, and ND vs. AR: P = 0.7532; fraction 0.75: ND vs. AD: P = 1, and ND 

vs. AR: P = 0.1452; fraction 0.9: ND vs. AD: P = 1, and ND vs. AR: P = 0.0222; fraction 0.95: 

ND vs. AD: P = 1, and ND vs. AR: P = 0.0062; Fig. 7B). The results for figure 7 are illustrated 

in table 1. 

 

Discussion  

4.1 Observation and Predictions 

Previous studies have shown that genes that cause Mendelian disease are overrepresented among 

genes that have been duplicated in the course of evolution (Chen et al., 2013; Chen et al., 2014; 

Singh et al., 2012; Singh et al., 2014). Our approach focused on analyzing the relationship 

between functional divergence and the propensity of gene families to be involved in Mendelian 

disease using three measures of functional divergence (Rho, the difference between pre- and 

post-optimized internal branch length, and the fraction of functionally divergent sites in the 

multiple sequence alignment) as well as a measure of the evolutionary distance between paralogs 

(internal branch length), which functions as a more indirect, and nonspecific, measure of 

functional divergence.  

As a prediction, we expected to see some significant difference between gene families 

that cause Mendelian disease (MD) or specific categories of disease (AD and AR) when 

compared to non-disease causing gene families (ND). The reasoning behind this prediction was 
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the assumption that duplicated genes that cause Mendelian disease evolved differently than non-

disease genes. As previously stated, evolutionary pressures such as mutation and selection act 

independently on duplicated genes, releasing them from the constraints of their original function 

(Qian & Zhang, 2014; Chen et al., 2013; Chen et al., 2014; Innan & Kondrasov, 2010). Previous 

studies have shown that disease-associated genes, when compared to all other genes, were more 

conserved at the protein level (López‐Bigas & Ouzounis, 2004; Huang et al., 2004; Smith & 

Eyre-Walker, 2003; Tu et al., 2006). Therefore, some significance between the two categories 

must be present at some level. 

 In addition to the previous prediction, when comparing the two Mendelian disease 

subgroups, we hypothesized that gene families that cause autosomal dominant diseases 

specifically (AD) may show more functional divergence than those that cause autosomal 

recessive diseases (AR). This would indicate that evolutionary forces acted strongly on gene 

families in that category, resulting in a greater degree of functional diversity between paralogs in 

these genes compared to either AD or ND genes (Singh et al., 2014). In addition, this may 

provide evidence that may support or reject the compensation hypothesis (Chen et al., 2013; 

Chen et al., 2014). The rationale behind this prediction is that in dominant disorders we do not 

expect functional compensation, as only one copy of the disease-associated allele is required to 

cause disease, whereas in the recessive case, both alleles need to be affected to cause disease 

(Chial, 2008). In addition, due to the fact that a single copy of the normal gene cannot 

compensate in a dominant disease, we do not expect a paralog to be able to compensate either. 

Therefore, there won’t be any selective pressures to maintain a compensatory copy, allowing for 

greater functional divergence. 
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4.2 Results of the Analyzed Datasets - Proposed Explanations 

Despite my predictions, my results mainly showed no significant differences in the most direct 

signature of functional divergence, the Rho weight parameter, between disease-causing and non-

disease causing gene categories. The results were plotted using the FunDi output values, and 

included the internal branch lengths, Rho value, and fractions of functionally divergent sites.  

For my prediction, I expected Rho values and pre-optimized internal branch length values 

to correlate with one another when comparing the results before and after FunDi optimization, as 

I assumed that genes that are more divergent tend to have longer branch lengths (Gu, 2001). My 

results showed that before optimizing with FunDi, there was relatively strong correlation 

between the categories, except the AD category in the two-member gene family group (Fig. 3). 

Since FunDi accounts for functional divergence in its model, it tends to result in a shortening of 

the branch lengths, which would break the correlation between Rho values and internal branch 

length values, as Rho stays constant between the two graphs. Therefore, my observation in 

general is exactly what I expect to see. 

When I tested for differences in the distribution of internal branch lengths between the 

AD versus ND category and AR versus ND category, statistical significance was seen only 

between AR and ND categories but only when looking at the two-member gene family pre-

FunDi optimization and three or more-member gene family post-FunDi optimization (Fig. 4). As 

expected, the results showed shortening of the internal branch lengths after optimizing the values 

with FunDi, which showed that FunDis’ optimization tended to results in shorter internal branch 

lengths than those of the starting pre-optimization tree. The statistically significant difference 

observed between AR and ND categories in the two-member gene family group was no longer 

seen after FunDi optimization, as was expected, but it was interesting to see that in the three or 
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more-member gene family group a statistical significance was gained after FunDi optimization. 

This could represent a false result as FunDi was not specifically designed to handle groups such 

as the three or more-member gene families as well as the two-member families. 

In order to see how effective FunDi was in optimizing and shortening the internal branch 

length values for the two groups, I calculated the difference (Δ-delta) between pre- and post-

optimized internal branch lengths (Fig. 5). With that, I wanted to see if FunDi’s optimization has 

significantly shortened the internal branch lengths. Before the correction, the results showed that 

there was a statistical significance when comparing the AR and ND categories in the two-

member gene family group, but after the correction it was no longer significant, although it was 

relatively close to the threshold. The three or more-member gene family group did not show any 

statistically significant results in any of the analyzed categories. One possible explanation for this 

observed difference when comparing between the two-member gene family group versus the 

three or more-member gene family group is the difference in the relationships between the two. 

The two-member gene family group has relatively simple relationships, while the three or more-

member group has more complex relationships where there are potentially multiple subgroups 

within the tree undergoing functional divergence. FunDi is designed to explicitly model 

functional divergence that occurs along a single internal branch. While it is probably a better 

model than the standard evolutionary model, it still has shortcomings in some of these situations. 

 For my prediction, I expected to see significant differences in Rho values between the 

categories for both groups. My results did not see eye to eye with my logic and showed no 

significance in any category, for any of the analyzed groups (Fig. 6). As mentioned, Rho is the 

optimized weight of the independent component of the FunDi mixture model, which is a measure 

of the functional divergence between paralogs. I did not detect any statistically significant 
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difference between either category, the disease-associated genes and non-disease causing genes. 

Either functional divergence does not explain the difference between disease-causing and non-

disease causing paralogs, which also calls into question the functional compensation hypothesis, 

or my method did not detect the right signal of functional divergence. An additional possibility 

lies in the nature of the training set itself. Because the underlying genetic mutation causing many 

Mendelian diseases is still not known, the non-disease category does contain a significant 

number of false negative classifications. However, given the size of the datasets involved, and 

the size of the non-disease category compared to the disease category, I would expect this impact 

to be moderate.  

As mentioned, Rho is the most direct measure of functional divergence output by FunDi, 

but also considered to be a broad measure of functional divergence, that reflects the total signal 

of functional divergence within the protein alignment file. This includes sites with both weak and 

strong signals of divergence. Strongly divergent sites are expected to be the most functionally 

important when looking at the difference in functions between paralogs. I predicted that a 

refinement of the functional divergent sites will provide a different answer. As mentioned, to 

determine whether the site is functionally divergent or not is dependent on a set cut-off threshold 

(standard threshold is 0.5), which is based on the posterior probability of functional divergence 

for individual sites. I set different thresholds (0.75, 0.9, and 0.95) and tested the fraction of 

functionally divergent sites in the alignment files for each of these cut-offs. The cut-offs created 

restrictions which allowed us to look progressively at only the fraction of sites with the strongest 

signals of functional divergence (Fig. 7). Results from the analyzed fractions did not shed new 

light on the stated prediction of Rho.  
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4.3 Conclusions and Further Research 

Measures of functional divergence did not explain whether they are correlated with the 

propensity of duplicated genes to be involved in Mendelian Disease. Rho value, that represents 

the functional divergence weight, was not the factor that explained the overrepresentation of 

Mendelian Disease genes among the duplicated genes in my dataset. 

Further research is required in order to provide an explanation for the overrepresentation 

of the Mendelian Disease gene among the duplicated genes, as Rho failed to explain the 

observation. One approach will be to test alignment files of each dataset for # of individual 

amino acid positions. This will allow us to focus on the genome positions that actually differ 

between genes, instead of looking at the whole genome. Another approach will be calculation of 

the maximum likelihood values for each of the dataset's branch lengths in the phylogenetic tree. 

This will provide an additional parameter that can be a factor that explains the observation. Third 

approach will be to try to look at other measures of functional divergence, like sequence entropy 

(Schmitt & Herzel, 1997), which is a mathematical approach that measures diversity. 

In addition, it is important to note that only one database was analyzed, and it had its own 

specific categorization. Expanding the research to other databases might provide different 

results. Furthermore, there is still a lot we don’t know about the disease genes and there is a 

possibility that some disease genes weren’t categorized as such and are still considered as non-

disease ones. This might give us a false-positive error which will affect the results. Aggregation 

of data from multiple databases and creation of one big database, with defined categorization 

might also provide more information on the analyzed genes and give better results. Lastly, 

optimizing FunDi algorithm in order to better handle the more complex relationships between 

the internal branch lengths- thus improving the program in general.  
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Figures 

 

 

 

Figure 1. Steps taken to create the datasheet of datasets from the original Chen et al., (2013) 

data, that contained human genes, separated into two categories: disease genes and non-disease 

genes. 
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Figure 2. Visualization of the algorithm: (1.) The algorithm starts from a terminal node that 

contains the protein ID. (2.) Traversing through the tree to an inner node. (3.) Traversing. (4.) 

Traversing until finding a node that contains a paralog that is associated with the protein ID from 

step 1. (5.) Go to the previous node. (6.) Separation into subgroups. 
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Figure 3. Scatterplots showing the correlation between Rho value (FD Weight) versus Branch 

Length values of each gene families’ phylogenetic tree, before using FunDi and after for all gene 

categories: AD- Autosomal Dominant, AR- Autosomal Recessive, and ND- Non-Disease genes. 

(A) Two-member gene family scatterplot results before using FunDi. (B) Two-member gene 

family scatterplot results after using FunDi. (C) Three or more-member gene family scatterplot 

results before using FunDi. (D) Three or more-member gene family scatterplot results after using 

FunDi. 
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Figure 4. Boxplots showing the comparison between Branch Length values of each gene 

families’ phylogenetic tree, before using FunDi and after for all gene categories: AD- Autosomal 

Dominant, AR- Autosomal Recessive, and ND- Non-Disease genes. (A) Two-member gene 

family scatterplot results before and after using FunDi. (B) Three or more-member gene family 

scatterplot results before and after using FunDi. P-values obtained from a two-sided Wilcoxon-

Mann-Whitney U-test for the indicated comparisons as follows: *P ≤ 0.05; ** P ≤ 0.01. 

 

 

 

 

 
 

Figure 5. Boxplots showing the difference between the values of the branch lengths (pre vs. 

post) before using FunDi and after for all gene categories: AD- Autosomal Dominant, AR- 

Autosomal Recessive, and ND- Non-Disease genes. (A) Two-member gene family boxplot 

results. (B) Three or more-member gene family boxplot results.  
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Figure 6. Boxplots showing the comparison of Rho (FD Weight) values for all gene categories: 

AD- Autosomal Dominant, AR- Autosomal Recessive, and ND- Non-Disease genes. (A) Two-

member gene family boxplot results. (B) Three or more-member gene family boxplot results.  

 

 

 

 

 
 

Figure 7. Boxplots showing the comparison between fractions of Rho (FD Weight) values for all 

gene categories: AD- Autosomal Dominant, AR- Autosomal Recessive, and ND- Non-Disease 

genes. (A) Two-member gene family boxplot results. (B) Three or more-member gene family 

boxplot results. P-values obtained from a two-sided Wilcoxon-Mann-Whitney U-test for the 

indicated comparisons as follows: *P ≤ 0.05; ** P ≤ 0.01. 
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Table 1. Visualization of fractions of Rho value comparison between the analyzed categories 

after Bonferroni correction. 

 

 
* Represents statistically significant P-value (P ≤ 0.01). 
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