
Investigation of Efficient Methods for the

Determination of Strassen-type Algorithms for

Fast Matrix Multiplication

By
Zachary A. MacDonald

A Thesis Submitted to
Saint Mary’s University, Halifax, Nova Scotia
in Partial Fulfillment of the Requirements for

the Degree of Bachelor of Science, Honours Computer Science

April, 2016, Halifax, Nova Scotia

Copyright Zachary A. MacDonald

Approved: Dr. Paul Muir
Supervisor

Approved: Dr. Gordon
MacDonald
Supervisor

Approved: Dr. Stavros
Konstantinidis

Reader

Date: April 25, 2016

Investigation of Efficient Methods for the

Determination of Strassen-type Algorithms for

Fast Matrix Multiplication

by Zachary A. MacDonald

Abstract

Fast matrix multiplication algorithms such as the Strassen algorithm allow for
the multiplication of matrices with fewer multiplications than would normally be
needed, thus making the calculations more efficient. We introduce an efficient
and highly parallelizable method for searching for Strassen-type fast matrix
multiplication algorithms for multiplying two 2 x 2 matrices, and discuss its
application in searching for algorithms that perform fast matrix multiplies for the
3 x 3 case. Searching for these algorithms is difficult, because the search space of
possible algorithms is extremely large. The method introduced in this thesis, for
the 2 x 2 case, makes use of a grid representation for the matrix multiplication
algorithms, making it easier to view patterns in the algorithms and prune the
search space effectively. The method is implemented in the Scilab language and is
able to find all Strassen-type fast matrix multiplication algorithms in about 90
minutes of computing time on an Intel Core i7 6700k CPU. Based on the insight
we gain from the 2 x 2 case, we provide suggestions for an efficient search
method for the 3 x 3 case.

April 25, 2016

1. Introduction

Matrix multiplication is used in a wide variety of computing applications, including weather

prediction, flight controls, and graphical computations, but for large matrices it can be a very costly

operation.

The standard algorithm requires n3 multiplications for two square matrices of size n. For several

decades going back to the 1960s, there has been interest in attempting to break this n3 barrier for

matrix multiplication. The first breakthrough came in 1969, with the Strassen algorithm. Strassen’s

algorithm uses approximately n2.805 multiplications for square matrices of size n [1]. The Strassen

algorithm is based on multiplying two 2×2 matrices using seven multiplications instead of eight, but

it scales up to any matrix of size n× n, where n = 2m for some positive integer m, and matrices of

other sizes can be padded with zeros to fit this size requirement. When scaled up to larger matrices

in this way, it is applied recursively to matrices of size 2m−1 × 2m−1 and eliminates one matrix

multiplication of a 2m−1 × 2m−1 matrix. We give a detailed description of Strassen’s algorithm in

Chapter 3 of the thesis.

For larger matrices, matrix multiplications become increasingly more expensive than matrix ad-

ditions. For a square matrix of size 2, a matrix addition involves 4 scalar additions, while a matrix

multiplication involves 4 scalar additions and 8 scalar multiplications; for a square matrix of size 8, a

matrix addition involves 64 scalar additions and a matrix multiplication involves 448 additions and

512 multiplications. A fast matrix multiplication algorithm will involve many more additions than

the standard algorithm for a slight reduction in the number of multiplications. Strassen’s algorithm

involves 18 addition/subtraction operations, 14 more than the standard algorithm.

It is possible that a 3× 3-based algorithm could be more efficient than applying Strassen’s algo-

rithm to the 3 × 3 matrices with a padding of a row and column of zeros, but there is no efficient

way of finding such an algorithm because the search space of possible algorithms is extremely large.

This thesis describes a method that finds all 2 × 2 Strassen-type algorithms very quickly and effi-

ciently (Ninety minutes with the current implementation in a scripting language, which is known to

be between ten and a hundred times slower than a compiled language). This is much faster than

any previously known method, and can be logically scaled toward finding algorithms for fast matrix

multiplication of 3× 3 matrices. It can also benefit greatly from parallelization.

Currently, the best 3 × 3 multiplication algorithm requires 23 multiplications, or n2.854 for a

matrix of size n (standard matrix multiplication for 3×3 matrices requires 27 multiplications). This

is less efficient than Strassen’s algorithm, but it has not been proven that this is optimal, and it is

conjectured that there could exist a 3 × 3 fast matrix multiplication algorithm that uses as few as

19 multiplications [8], or nlog3(19) ≈ n2.68 multiplications for a matrix of size n × n, where n = 3m

3

4

for some positive integer m. Though the size of the matrix is more restricted when using a 3 × 3

algorithm, other sizes of matrices can be padded with zeros as in the case of the Strassen algorithm,

and this would still be an improvement for a large range of matrix sizes.

In the next chapter, we review the background literature on fast matrix multiplication. In Chapter

3, we detail the mathematical principles of our method of discovering fast matrix multiplication

algorithms and introduce the idea of hierachical grids as a framework for the discovery process.

In Chapter 4, we extend the mathematical ideas and discuss the implementation of our method

and the details of how to create the grids and solution rectangles that determine the fast matrix

multiplication algorithms. In the final chapter we summarize this work and discuss the implications

of using our method for the discovery of algorithms for fast multiplication of 3× 3 matrices.

2. Background Literature on Fast Matrix Multiplication

In 1969, German mathematician Volker Strassen was attempting to prove that the standard

algorithm for matrix multiplication was optimal in terms of multiplications, and that 2 × 2 matrix

multiplication required 8 multiplications. By accident, he instead proved that it could be done with

7 multiplications, and discovered an algorithm that accomplished this, now known as Strassen’s

Algorithm [1].

With Strassen’s algorithm, or similar 7-multiplication algorithms, the time complexity of a matrix

multiplication is reduced from n3 multiplications to nlog2(7) ≈ n2.807 for a square matrix of size n.

However, this is a theoretical time complexity. If a matrix’s size is not a power of two, it must be

“padded” with zeros for Strassen’s algorithm to work, which may impede the performance. When

applied to matrices of size 2m×2m, Strassen’s algorithm prescribes a matrix multiplication in terms

of the multiplication of 7 matrices of size 2m−1 × 2m−1. The original matrices are viewed as each

being made up of four 2m−1 × 2m−1 blocks.

For arbitrarily large matrices, there are other algorithms that are more efficient, in the theoretical

sense. Currently the fastest known is the Le Gall algorithm [5], which is based on the earlier

Coppersmith-Winograd algorithm [3], and can multiply a pair of n × n matrices in O(n2.3728639)

time. This algorithm and others in its family are not used in practice, as they are only optimal on

matrices too large to be handled by modern computers.

Due to the increased number of additions in Strassen’s algorithm, it does not become more cost-

effective until matrices of size 100×100 or greater, but this is still a much smaller value of n than that

required to make other types of fast algorithms practical. A scalar addition is approximately as costly

as a scalar multiplication on a modern computer, but, as mentioned earlier, a matrix multiplication

is far more expensive than a matrix addition, so for larger matrices the cost of the additions can

5

be safely ignored. Generally, only the standard algorithm and Strassen-type algorithms are used in

practice, depending on the size of the matrices. Concerns such as cache usage, space complexity,

and numerical instability can make Strassen’s algorithm less appealing in certain circumstances, but

it has been found to be more efficient on dense matrices than the standard algorithm [6].

It is difficult to discover a Strassen-type algorithm. As we will see in the next chapter, the Strassen

algorithm involves the computation of seven intermediate quantities, seemingly based on random

expressions involving the original matrix elements. So far, methods of computationally searching

for these Strassen-type fast matrix multiplication algorithms have been very costly. In 2010, Oh

and Moon [2] did a genetic search for Strassen-type algorithms, and calculated that it would take a

Pentium IV 2.4 GHz machine 67 million years to perform an exhaustive search of this type.

MacAdam and MacDonald [7] demonstrated an exhaustive search that ran in 18 hours in C, by

taking advantage of equivalence, symmetry, parallelism, and linear algebraic reductions to improve

the search. Our method improves on this time, running in 90 minutes in a slower, scripting language,

using a home desktop.

In the 3×3 case, the best algorithm currently known was discovered by Julian Laderman in 1976

[4]. It uses 23 multiplications, an improvement over the 27 multiplications of the standard algorithm.

Unlike for 2 × 2 algorithms, however, it has not been proven to be optimal. It is conjectured that

the optimal algorithm could use as few as 19 multiplications [8].

3. A method for the discovery of Strassen-type matrix multiplication algorithms

3.1. Representation of the algorithm. We begin by reviewing the classic representation of

Strassen’s algorithm [1]. The multiplication of two 2 × 2 matrices, AB = C, using Strassen’s algo-

rithm involves seven intermediate terms, each one being formed with a single matrix multiplication

and one or two matrix additions/subtractions:

m1 = (a11 + a22)× (b11 + b22),

m2 = (a21 + a22)× b11,

m3 = a11 × (b12 − b22),

m4 = a22 × (b21 − b11),

m5 = (a11 + a12)× b22,

m6 = (a21 − a11)× (b11 + b12),

m7 = (a12 − a22)× (b21 + b22).

(1)

6

Then we calculate each of the four values in the product matrix C as a linear combination of these

M -values, using only 1, -1, and 0 as coefficients. If we were to substitute the M -values and simplify

these equations, we would see that they will give the same results as the standard algorithm:

c11 = m1 +m4 −m5 +m7,

c12 = m3 +m5,

c21 = m2 +m4,

c22 = m1 −m2 +m3 +m6.

(2)

There are three other families of Strassen-type algorithms that use seven multiplications [2], and

there are no similar algorithms that can do this with fewer than seven matrix multiplications [9].

In this chapter, we want to discuss an efficient method for finding these Strassen-type algorithms.

The process for discovering Strassen-type algorithms involves representing the M -values and the

C-values in terms of certain vector and matrix-vector products.

For a given pair of 2× 2 matrices A and B, we create the vector a by stacking the columns of A

and the vector b by stacking the rows of B, so

(3) a =


a11

a21

a12

a22

 and b =


b11

b12

b21

b22

 .

Then, each of the seven M -values (1) is written as follows. In this form, we can see why each

must contain only one multiplication.

m1 = aT


1

0

0

1


[
1 0 0 1

]
b, m2 = aT


0

1

0

1


[
1 0 0 0

]
b(4)

m3 = aT


1

0

0

0


[
0 1 0 −1

]
b, m4 = aT


0

0

0

1


[
−1 0 1 0

]
b

7

m5 = aT


1

0

1

0


[
0 0 0 1

]
b, m6 = aT


−1

1

0

0


[
1 1 0 0

]
b

m7 = aT


0

0

1

−1


[
0 0 1 1

]
b.

Similarly, an examination of the C-values based on standard matrix multiplication, e.g.:

c11 =
[
a11 a12

] b11

b21

 = a11b11 + a12b21,

shows that we can write the C-values in terms of a and b and four 4× 4 matrices as follows:

c11 = aT


1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


b, c12 = aT


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0


b

c21 = aT


0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0


b, c22 = aT


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1


b.

When we take the linear combinations of the M -matrices as above, we can see that they give

us the same C-matrices, showing that Strassen’s algorithm gives the same results as the standard

algorithm.

c11 = m1 +m4 −m5 +m7:

8

aT


1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

b = aT


1

0

0

1


[
1 0 0 1

]
b + aT


0

0

0

1


[
−1 0 1 0

]
b

−aT


1

0

1

0


[
0 0 0 1

]
b + aT


0

0

1

−1


[
0 0 1 1

]
b

aT


1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

b = aT


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

b + aT


0 0 0 0

0 0 0 0

0 0 0 0

−1 0 1 0

b

−aT


0 0 0 1

0 0 0 0

0 0 0 1

0 0 0 0

b + aT


0 0 0 0

0 0 0 0

0 0 1 1

0 0 −1 −1

b

Similarly,

c12 = m3 +m5 :

aT


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

b = aT


1

0

0

0


[
0 1 0 −1

]
b + aT


1

0

1

0


[
0 0 0 1

]
b.

c21 = m2 +m4:

aT


0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0

b = aT


0

1

0

1


[
1 0 0 0

]
b + aT


0

0

0

1


[
−1 0 1 0

]
b.

c22 = m1 −m2 +m3 +m6:

9

aT


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

b = aT


1

0

0

1


[
1 0 0 1

]
b− aT


0

1

0

1


[
1 0 0 0

]
b

+aT


1

0

0

0


[
0 1 0 −1

]
b + aT


−1

1

0

0


[
1 1 0 0

]
b.

The above equations must be true for every possible value of a and b, so we can remove these

vectors from the equations. That is, the Strassen algorithm is based on the fact that


1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 =


1

0

0

1


[
1 0 0 1

]
+


0

0

0

1


[
−1 0 1 0

]

−


1

0

1

0


[
0 0 0 1

]
+


0

0

1

−1


[
0 0 1 1

]
,

and corresponding matrix-vector expressions associated with c12, c21, and c22. If we assign names

to the vectors appearing in the right hand sides of the above equations, we can rewrite the four

equations above as a single summation and define a fast matrix multiplication algorithm in a very

compact format. Let

(5) ζ1 =


1

0

0

1

 , ζ2 =


0

1

0

1

 , ζ3 =


1

0

0

0

 , ζ4 =


0

0

0

1

 , ζ5 =


1

0

1

0

 , ζ6 =


−1

1

0

0

 , ζ7 =


0

0

1

−1

 ,

and

10

(6) η1 =


1

0

0

1

 , η2 =


1

0

0

0

 , η3 =


0

1

0

−1

 , η4 =


−1

0

1

0

 , η5 =


0

0

0

1

 , η6 =


1

1

0

0

 , η7 =


0

0

1

1

 .

(We note that some of the ηi vectors are the same as some of the ζi vectors, but some are different).

With these definitions, the following equation defines a fast matrix multiplication algorithm for 2×2

matrices, where a, b, c, and d are alternately equal to one with the other three equal to zero:

(7)


a b 0 0

c d 0 0

0 0 a b

0 0 c d

 =

7∑
k=1

xkζkη
T
k ,

where xk are constants from the set {0, 1,−1}.

For example, for b = 1 and a = c = d = 0, the right hand side of (7) is ζ3η
T
3 + ζ5η

T
5 . x3 = x5 = 1

and all other xk values are zero. This corresponds to the equation c12 = m3 + m5 in Strassen’s

algorithm.

Equation (7) implies that in order to obtain a Strassen-type algorithm, we must be able to find

non-zero vectors ζk and ηk, k = 1 to 7, whose entries are ∈ {−1, 0, 1}, and four sets of coefficients

xk ∈ {−1, 0, 1} so that the summations add up to give the four target matrices

(8)


1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0


,


0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0


,


0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0


and


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1


.

The only requirement for a Strassen-type algorithm is that the algorithm, defined by its ζk, ηk,

and xk values, fulfills equation (7). There are four families of such equations, with many small

variations (usually involving negative numbers), defined by their arrangement of four-term solutions

and two-term solutions. That is, which of their summations have xk with two non-zero values, and

which have xk with four non-zero values. There are no solutions with any number of terms other

than two or four [2].

11

3.2. Creating a search method. The process above is described and used by MacAdam and

MacDonald [7]. In their research, it took a compiled program 18 hours to perform an exhaustive

search and determine every 2× 2 fast matrix multiplication algorithm. By solving this problem in a

way that prunes a large number of cases, we will in this thesis develop a method that allows a much

slower scripted language to complete an exhaustive search in about an hour and a half. We begin

by splitting the ζj and ηj vectors into smaller vectors of size 2:

ζ =

 u

w

 , η =

 r

s
.


There were previously 34 = 81 possible ζ and η vectors (each vector has 4 entries, and there are

three ways to choose each entry, -1, 0, 1.) There are now only 9 different vectors, one of which is the

zero vector, and four of which are negatives of the other four. We assign each of these non-negative

vectors a name for future reference.

(9) v1 =

1

1

 , v2 =

 1

−1

 , v3 =

1

0

 , v4 =

0

1

 , v5 =

0

0

 .

Then we can split the summation appearing on the right hand side of Equation (7) into four pieces

to be solved separately, where uk,wk, rk, sk are the decomposed ζ and η vectors, each comprising a

set of vectors from v. This gives

(10)


Eij =

7∑
k=1

xkukrk
T

0 0

0 0
=

7∑
k=1

xkuksk
T

0 0

0 0
=

7∑
k=1

xkwkrk
T Eij =

7∑
k=1

xkwksk
T


=

7∑
k=1

xkζkηk
T

where Eij is defined as a matrix that has a 1 as the (i,j)th entry, i, j = 1, 2, and 0 elsewhere. That

is,

E11 =

1 0

0 0

 , E12 =

0 1

0 0

 , E21 =

0 0

1 0

 , E22 =

0 0

0 1

 .
We must find the right combination of vectors uk,wk, rk, sk, and coefficients xk to find solutions

to this problem.

In the method explained in this thesis, we represent this search process as a problem of matching

grids, that makes it much easier to conceptualize and solve in an efficient way. We will start from

5× 5 grids and combine them into 10× 10 grids, then combine those into 20× 20 grids,

12

We begin by identifying all possible matrix products formed by multiplying a pair of vk vectors.

The products vk × vTj are shown in Figure 1.

Figure 1. A table showing the vk product matrices.

3.3. Creation of 5 by 5 grids. The collection of 5×5 grids is created with a brute force algorithm.

All possible combinations are checked, and those that are found to equal an Eij matrix are kept. The

idea during this step of the method is to determine all relevant 5×5 grids, i.e., all linear combinations

of the 2 × 2 outer product matrices appearing in Figure 1 that give the matrices appearing in the

four blocks on the left hand side of equation (10), for i, j = 1, 2. It turns out that this amounts to

111 5 × 5 grids for each Eij , each one corresponding to a unique linear combination of between 1

and 4 matrices appearing in Figure 1. A 5× 5 grid that corresponds to an Eij with more than four

terms could be constructed, but we know empirically that no fast matrix multiplication algorithms

contain such a grid, and later we argue that it would be impossible mathematically for a 5× 5 grid

with more than four entries to appear in a fast matrix multiplication algorithm.

Consider the grid shown in Figure 2. The 1 in the (1,2) position corresponds to the outer product

v2× vT1 =
[

1 1
−1 −1

]
(see Figure 1), the -1 in the (4,3) position corresponds to the −v4× vT3 = − [0 1

0 0]

outer product, the 1 in the (3,4) position corresponds to the v3 × vT4 = [0 0
1 0] outer product, and

the 1 in the (4,4) position corresponds to the v4 × vT4 = [0 0
0 1] outer product. The grid in Figure 2

indicates that

13

(1)v1 × vT2 + (−1)v3 × vT4 + (1)v4 × vT3 + (1)v4 × vT4

=

 1 1

−1 −1

−
0 1

0 0

+

0 0

1 0

+

0 0

0 1

 =

1 0

0 0

 = E11

(11)

Thus, the 5× 5 grid encodes a solution for the upper left or lower right block of equation (10) for

the i = j = 1 case.

Figure 2. A 5×5 grid representation of one E11 matrix from Strassen’s algorithm.

The zero row and zero column are greyed out.

3.4. Creation of 10 by 10 grids. Once all of the 5× 5 grids have been generated, we can create

10×10 grids. Each 10×10 grid is composed of a pair of Eij 5×5 grids, placed in the upper left and

lower right corners, and zero 5 × 5 grids placed on the off-diagonals. This corresponds to equation

(10). See Figure 3 for an example of a 10×10 grid corresponding to Strassen’s algorithm. The 5×5

grid in the top left quadrant is the simplest 5× 5 grid, as the entry for v3× vT3 = E11, and the 5× 5

grid in the bottom left is the one from Figure 2, and this 10 × 10 grid is one of the grids used in

Strassen’s algorithm. Since there are 111 different 5 × 5 grids for each Eij matrix, it would seem

that there would be four sets of 1112 = 12321 10× 10 grids, one set for each Eij . However, we can

eliminate a very large number of these. It turns out that 88 of the 111 5× 5 grids for each Eij have

four elements. Only one grid contains one element. This means that 88× 110 = 9680 of the 10× 10

grids will have a total of six or more elements, leaving 2641 with five or fewer. Empirically, and

for other reasons that will be discussed later, we know that if a 10 × 10 grid contains six or more

elements, it cannot correspond to a fast matrix multiplication algorithm, so we can discard these.

For each of the remaining 2641 10×10 grids, we must find all of its different “solution rectangles.”

The solution rectangles and the rules of determining them are detailed in Chapter 4. It is in

determining these solution rectangles that we find solutions to the equation (7) and thus find fast

14

Figure 3. A 10×10 grid in Strassen’s algorithm. The zero rows and zero columns

are greyed out.

matrix multiplication algorithms. The basic idea is that we must identify a set of rectangles having

one corner in each quadrant of the 10 × 10 grid, such that every non-zero grid entry is included in

exactly one solution rectangle.

3.5. Creation of 20 by 20 grids. To find a 2 × 2 fast matrix multiplication algorithm, we must

construct a 20 × 20 grid composed of four 10 × 10 grids which uses only seven different solution

rectangles. (We will show later in the thesis how each solution rectangle leads to one M -value;

thus the number of distinct solution rectangles determines the number of matrix multiplications

performed by the corresponding algorithm.) If a rectangle appears more than once in a 20×20 grid,

that is acceptable and the reappearances do not count toward the limit of seven. It only needs to

be calculated once, and after that its reuse is “free.” For the same reason, the negative of a solution

rectangle can be counted as the same rectangle in this regard, since the corresponding M -value can

be subtracted instead of added without needing to perform another multiplication.

Once the 10× 10 grids have been processed, such that their solution rectangles are in place, they

are in four different groups, one for each Eij , i, j = 1, 2. Any combination of four of them (one from

each group) constitutes a valid 20 × 20 grid. See Figure 4 for the 20 × 20 grid that corresponds to

Strassen’s algorithm.

15

Figure 4. The initial 20× 20 grid for Strassen’s algorithm, without solution rect-

angles superimposed. The upper left 10 × 10 grid corresponds to E11; the upper

right 10×10 grid corresponds to E12; the lower left 10×10 grid corresponds to E21

and the lower right 10× 10 grid corresponds to E11.

A 20 × 20 grid is said to be valid if the algorithm corresponding to the grid would multiply

matrices correctly. However, only very specific combinations will give a 20×20 grid that corresponds

to Strassen-type algorithms that only use seven matrix multiplications. These combinations are the

ones with only seven distinct solution rectangles. Solution rectangles are detailed in Chapter 4, but

an example of Figure 4 with solution rectangles in place is given in Figure 5. The twelve solution

rectangles correspond to the twelve M -values that are added and subtracted to form the C-values.

16

Figure 5. The 20 × 20 grid for Strassen’s algorithm, with solution rectangles su-

perimposed. Each solution rectangle is identified by its corners which are all the

same colour. Solution rectangles have the same colour when the same rectangle

appears in more than one 10× 10 grid.

4. Further Extensions and Implementation

We have implemented the algorithm for determining the solution rectangles for a given 20 × 20

grid (and thus the corresponding M -values, as will be explained later in this chapter) using the

Scilab programming environment [10]. The Scilab script consists of a large number of functions, all

working together to process the grids. Rather than storing a 10× 10 grid as a sparse 10× 10 array,

we store only the non-zero entries in the array, in the form of a k × 2 array, where k is the number

of non-zero entries in the grid. The first entry in each row of this array is the element’s index within

a 5 × 5 grid, and the second is its quadrant within the 10 × 10 grid. The index can be any integer

17

between -25 and 25, except for 0, and the quadrant will be between 1 and 4 (the quadrants are

numbered row-wise from 1 to 4). The indices correspond to a 5× 5 grid entry, as in Figure 6, where

a negative index indicates a -1 coefficient for the matrix.

Figure 6. The indices of a 5× 5 grid.

At first, we tried storing each grid entry with 5 items per row of the array, keeping its index,

sign, quadrant, row, and column separate. However, this made it more difficult to create consistency

between functions, as they sometimes only needed some of the information. The simple two-item

representation makes it easy to keep a consistent data structure. Theoretically, the index and

quadrant could have been combined, to form a super-index ranging from -100 to +100 (with 25

indices going through each quadrant sequentially), but this creates more problems than it solves.

Quadrants need to be determined frequently, and it is important to see if two elements are in the

same place within their respective quadrants.

The most important functions are the matching functions, which are used to find every possible

arrangements of solution rectangles. Every other function either prepares data for the matching

functions to use, or makes use of the data the matching functions generate.

The main challenge in designing this program was not in finding individual solution rectangles,

but in efficiently computing all possible combinations of solution rectangles for a given 10× 10 grid.

The calculations must be balanced between not duplicating cases (as that is inefficient, and creates

more inefficiencies later), but also not missing any possibilities.

By separately identifying the five ways in which elements on a 10×10 grid can be matched together

(these five ways are identified later), it becomes possible to ensure that no solution rectangles are

missed. Then, instead of creating entire matched grids sequentially, the matching functions were

made to return “options.” An option is simply one way in which some number of elements could

be matched, i.e., arranged into solution rectangles. After running all the matching functions, we

will have a three-dimensional array composed of many options, each of which is a subset of the grid

containing between one and three solution rectangles.

18

After all the options have been composed, we face the first time-intensive calculation. Every

option that has been calculated will use some subset of the original non-zero grid entries. For a

combination of options to be valid, it must include every original non-zero grid entry in a solution

rectangle exactly once, and it must have no more than four solution rectangles. A single element

can not be part of multiple solution rectangles in a single grid, so we can’t choose multiple options

that all include the same element. Likewise, all elements must be part of one solution rectangle, so

if one element is not included in any options, then that set of options is not complete. This process

takes approximately 30 minutes on our hardware, an Intel Core i7 6700k CPU.

This operation is run on every 10 × 10 grid that can possibly produce useful solutions. At first

glance, this would seem to be a very difficult task, but by removing the 10 × 10 grids with more

than five elements as mentioned in Chapter 3, the search space can be massively reduced. The grids

removed are the most expensive ≈ 87% of the grids, as a larger number of grid elements corresponds

to a much larger amount of time spent on finding its solution rectangles. A 10× 10 grid with eight

elements takes several minutes to process, but a 10 × 10 grid with five elements takes at most 15

seconds. By removing these expensive grids, the estimated run time of this function on our hardware

is reduced by ≈ 99.93%, from approximately one month to thirty minutes.

4.1. The Rules of Determining Solution Rectangles. With the 10× 10 grids, we must super-

impose sets of solution rectangles on to the grids, with one corner in each 5× 5 grid (referred to as

the quadrants of a 10 × 10 grid; for our purposes, the top left grid is the first quadrant, top right

is the second quadrant, bottom left is the third quadrant and bottom right is the fourth quadrant).

These solution rectangles correspond to one of the intermediate M -values of a fast matrix multipli-

cation algorithm. (This will be explained later in the thesis). The process of finding these solution

rectangles is called “matching” and a set of solution rectangles created through this process is called

“a match.” The different types of matches are explained later.

4.2. Virtual, Zero, and Original Elements. The entries of a grid, usually called “elements”

because of their indivisible nature, can be considered in three categories: original, zero-place, and

virtual elements. See Figure 7 for examples of each of these in a 10× 10 grid.

An original element is one of the non-zero elements that is part of a 5× 5 grid. These elements

are not allowed to be changed at all in the matching process–they are set in stone.

A zero element or “zero-space element” is any element placed in a zero-row or zero-column.

These are the freebies of making matches, since every row and column of every quadrant has a zero

space available. Every zero-space corresponds to a zero matrix (this can be seen in Figure 1) and so

19

elements can be safely added to any grid’s zero-spaces without changing the value of the grid, i.e.,

the corresponding linear combination of outer products of vj matrices; see, e.g. equation (11).

Finally, a virtual element is the most complicated type. It is technically two elements: a +1

and -1 placed on the same spot in the grid. Both of these elements are contained separately in two

solution rectangles. We need to introduce such grid elements in order to form some of the solution

rectangles, because adding and subtracting the same value is the only way to avoid changing the

value of the 5× 5 grid.

4.3. The function MatchSolutions. Despite taking up the other half of the program’s run time,

this part is far more simple than the part that deals with the solution rectangles. In the naive

implementation, we would have four nested loops running through each of the four Eij groups to

process the corresponding 10 × 10 grids. Some of the functions that create the 10 × 10 grids will

create the same grid more than once. After these redundant grids are pruned, there are at most 991

different 10×10 grids in each of these groups (some groups have slightly fewer, but they are all close

to 991), so this means that ≈ 9914 ≈ 9.64× 1011 different 20× 20 grids must be checked. When our

software is run, we find that the true amount is 8.34× 1011 grids.

Each solution rectangle is indexed as a single integer using a one-to-one function, so a 20×20 grid

is represented as a collection of these integers, up to four for each 10 × 10 grid. We want to find a

set of four 10× 10 grids with exactly seven different integers (since we know that seven is optimal.)

Figure 7. A 10× 10 grid with two solution rectangles identified by their vertices:

one with blue vertices and one with red vertices. Original elements are marked O,

zero elements are marked Z, and a virtual element is marked V.

20

On a high-end home desktop with a Core i7 6700k CPU, it takes approximately 10−4 seconds to

check a single 20× 20 grid, so we would expect that an exhaustive search of these grids would take

approximately 8.34 × 107 seconds, or 2.6 years. However, there is a very important optimization

that can be done: at every step of the nested loops, we will check to see if the current solution has

more than seven different solution rectangles already.

The majority of 10 × 10 grids have four original elements in one quadrant, which means that

the majority of 10 × 10 grids must have four solution rectangles. Since the majority of 10 × 10

solutions have four solution rectangles, and equivalent solution rectangles are relatively infrequent

(there are thousands of different solution rectangles that are distributed in a relatively uniform way),

it is likely that each additional 10× 10 grid in a 20× 20 grid will add four new solution rectangles.

Because of this, the majority of 20 × 20 grid constructions will abort after just two 10 × 10 have

been considered (since 8 distinct solution rectangles would correspond to a multiplication algorithm

with 8 multiplications, which implies that the algorithm is of no interest.) Whenever this occurs,

every set of 10× 10 grids that starts with the two 10× 10 grids as described above is skipped, which

is a savings of 9912 = 982081 20× 20 grids.

When this optimization is implemented, ≈ 99.996% of the 8.34 × 1011 grids are pruned early.

Only 3.64×107 are completed down to the “bottom” inner loop, and this takes slightly over an hour

to complete.

4.4. Dealing with the Negatives. Every element in a grid can be a zero, one, or negative one.

A large amount of complexity is added by the possibility of negatives. One important fact is that

every solution rectangle must contain an even number of negatives. This makes sense, as we do not

have direct control over the indices. By choosing the vectors u, w, r, and s (from eq. (10)), we are

choosing two columns and two rows in the 10×10 grid, and we mark the matrix each pair represents

as an element in the grid. When we make any one of these vectors negative, it will switch the signs

of two elements in the solution rectangle. This makes it impossible for a solution rectangle to have

one or three negatives.

In the function MatchSolutions, the amount of computing expended on the construction of 20×20

grids depends on the set of solution rectangles that are being checked for identical entries. The only

way to reduce these computational costs is to reduce the size of the set. One way to accomplish

this is to remove negatives of zero-space elements and virtual elements entirely. But why are we

allowed to do this? There are two reasons. For the zero-space elements, the negative is already an

abstraction. The matrix 0 0
0 0 is equivalent to the matrix −0 −0

−0 −0 . This means that if we disregard the

negative, it won’t change the algorithm at the end; the only thing we need to be concerned about is

making the solution rectangle invalid by having an odd number of negatives.

21

We can reintroduce the negatives at the end by assigning the negative and positive element of

each virtual element to a solution rectangle in some valid way, and then assuring that each solution

rectangle is valid by changing the signs of the zero elements (which can be changed independently).

When the solution rectangle has no zero elements it is more complicated but still always possible

to arrange the signs in some valid way. This will give one representative member of the set of all

algorithms that could be made by some variation of a 20× 20 grid’s negative entries.

For virtual elements, it is a bit more complicated. There are two varieties of solution rectangles

that will include a virtual element. The first one is one original element, one virtual element, and

two zero-elements, which can be seen in Figures 8, 9, and 10 respectively. The second is two virtual

elements and two original elements, which can be seen in the red solution rectangles of Figures 11

and 12. Every virtual element is a 1 in one solution rectangle and a -1 in the other, so we do not

have arbitrary control over how we choose them. However, if we ignore negatives until the very end,

we will never accidentally create an arrangement where we can not reconcile the negatives. Every

solution rectangle of the second type has both virtual elements “cleaned up” by solution rectangles

of the first type (e.g., Figure 8). Since we do have arbitrary control over the choice of the sign of

the first type, then any of the second type can be made valid.

4.5. On negative priorities: There are many scenarios where the program would have the option

of how to arrange the negatives. When an element is in a zero-row or zero-column, its entries are 0 0
0 0

no matter which zero-space index it has. Whether or not it is negative is essentially an abstraction.

Because of this, we ignore its sign and count it as positive in the construction of the 20× 20 grids.

At the end of the program, when the algorithms are being printed in a human-readable format, the

program simply chooses one way of representing that particular algorithm.

When matches are being made, negatives are kept despite it not being strictly necessary. This

is partially because before software was finished it was not clear that negatives could be ignored in

this way, but in troubleshooting it acts a directive to show where problems are occuring, because

incorrect negatives are relatively easy to spot. Though there is usually a large variety of negative

arrangements that could be made with a given solution rectangle, only one will be chosen. Sometimes

only some arrangements are possible, so the arrangement that is used depends on a hierarchy. The

actual order of the hierarchy is entirely arbitrary, but we put them in this order: same, diagonal,

row, column (where “same” means all elements are the same signs, “diagonal” means that elements

on diagonals share a sign, and so on). If multiple options are available, we simply use the one that

appears first in the hierarchy.

22

4.6. Types of Matches. There is a limited number of ways in which the elements of a 10 by 10

grid may be matched, i.e., identified with a set of solution rectangles. By checking for each match

in turn, all possible matches are generated. At first we attempted to design a general function to

identify any match, but this quickly becomes a daunting task as one must deal with varying numbers

of elements, varying negatives, and varying combinations of arrangements.

For this section, the signs of the grid elements do not matter, so we will represent matches with

coloured grid entries. All entries of the same colour form the vertices of one solution rectangle.

Where one entry has two colours, that is a virtual element.

Figure 8. An example of a type 0 match. For readability, the zero rows and zero

columns are given a grey background.

Type 0 matches, or “Solo matches”: A solo-match is the simplest kind of match, and as the

name may indicate, the only one that requires one element. It does not match the non-zero element

with any other original non-zero elements. A solo match is simply the original element, included in

a solution rectangle with one entry from the zero column in the horizontal quadrant, one entry in

the zero row of the vertical quadrant, and one entry in the zero-corner of the opposite quadrant.

These are usually only used to “clean up” whatever original elements are left over after making more

complex matches. Figure 8 gives an example of a type 0 match.

Type 1 matches: The type 1 match is also fairly simple, and can be made with any pair of

elements from diagonally opposite quadrants. Each type 1 match comes in four varieties. Refer to

Figure 9 to see a type 1 match with the intersection of the red and blue rectangles appearing in the

top right quadrant. A type 1 match between two elements puts a virtual element at their intersection

23

Figure 9. An example of a type 1 match.

in one of the empty quadrants: the top right or bottom left. Then, each original element is put

into one of the two solution rectangles associated with this virtual element. Depending on which

original element is placed in a solution rectangle with the positive part and which is placed with

the negative part, we will have different solution rectangles. Then, the remaining elements of the

solution rectangles are placed in the appropriate zero-rows or zero-columns, and negative signs are

assigned as appropriate to the hierarchy of negative arrangements explained in the previous chapter.

The remaining two variations arise from putting the virtual element on the other intersection of the

two original elements, and varying the negatives again.

Type 2 matches: See Figure 10 for an example of a type 2 match. These begin to become

more complicated, and have more stringent requirements. In order to make a type 2 match, one

quadrant must have two elements in the same row or the same column. Then, a virtual element is

placed in one of the four non-zero locations in the other 5 by 5 grid along this row or column, and

the two original elements match up with it, and the remaining places are filled by zero-entries in

the remaining two columns. By varying arrangements of negatives, or by varying which of the four

locations along the row/column the virtual element is placed in, each type 2 match contains eight

variations.

Type 3 matches: The type 3 match is the first match that has more original elements than

solution rectangles, and this is the key for fast matrix multiplication algorithms, including Strassen’s

algorithm. The type 3 match has three solution rectangles and four non-zero original elements.

Figure 11 gives an example of a type 3 match. In the first quadrant, there must be three elements,

24

Figure 10. An example of a type 2 match.

Figure 11. An example of a type 3 match. Note that the red solution rectangle is

an efficient solution, as it does not include zero elements.

such that one of these elements shares a row with another, and a column with the third. There is

no restriction on the element in the opposite quadrant. Then, by creating two virtual elements and

“cleaning them up” with the two other elements, the intersecting element from the first quadrant is

matched with any element in the opposite quadrant. Note that the red solution rectangle in Figure

11 contains two original elements, which has not been done in any previous match.

25

Figure 12. An example of a type 4 match.

Type 4 matches: This type of match is similar to the type 3 match, in that it involves one

efficient solution rectangle with no zero-elements. However, instead of having one quadrant with

three elements and another with one, this type has two elements in each quadrant, and either both

pairs of elements are row-aligned or both are column-aligned. Since no element is “central,” like the

intersection in type 3, this has a larger number of varieties in the arrangement of virtual elements.

Figure 12 gives an example of a type 4 match.

We can empirically verify that these are the only kinds of matches, as they are the only ones that

appear in any 2× 2 fast matrix multiplication algorithms. But also we can argue theoretically that

it would not make sense to have any others.

All matches (other than type 0) are based on the idea of creating virtual elements (a +1 and -1

on the same grid entry) to make one solution rectangle, and then “cleaning them up” with a second

solution rectangle. A virtual element can be “cleaned up” by being included in a solution rectangle

that includes an original grid element that it shares a column or row with it. If there is one virtual

element, then there must be two original elements making use of it in two matches (this is what we

see in the type 1 and type 2 matches). If there are two virtual elements, then it is possible to create

a match using two original elements and two virtual elements (the red matches in Figures 6 and 7),

and then “clean them up” with two more matches. This is what gives us type 3 and type 4 matches.

It is impossible to come up with a new kind of match that is not just a combination of these smaller

matches.

26

Why is this? Consider our limitations: we can have at most five original non-zero elements (as

argued earlier in this thesis), with at most four in one 5 × 5 grid. A match (other than a type 0)

can only include an even number of original elements. For every virtual element it is either matched

with two original elements that are then matched with zero rows/zero columns (as in type 1 and

type 2 matches) or it is matched with two original elements which are each matched with a second

virtual element, and these two virtual elements must be matched with a third and fourth original

element. To have more than two virtual elements, we would need six original elements, which we

know is not possible. Any match made without virtual elements is just a series of unrelated type 0

matches. This means that any new matches would have to have one or two virtual elements. It is

easy to see that any match with only one virtual element is either a type 1 match or a type 2 match.

A match with two virtual elements that would not be a type 3 or type 4 match would require that

all four of the original elements in the match to be in the same quadrant. This is a possibility, and

such a match could be made, but it would actually just be two type 2 matches.

With the same empirical knowledge of other 2×2 fast matrix multiplication algorithms, we know

that no non-trivial solutions for the top right and bottom left 5× 5 grids of a 10× 10 grid are used,

only trivial solutions (i.e., the matrices that correspond to zero elements and virtual elements), so

our five types of matching algorithms can all assume that the top right and bottom left grids do not

contain any “free” elements to be used in solution rectangles.

4.7. From grids to algorithms: Once the software has run and the 20× 20 grids are completed,

i.e., a set of seven distinct solution rectangles are superimposed on the grid, see, e.g., Figure 5, we

must convert the 20× 20 grid back into the format of M -values and C-values. We will perform this

operation on Strassen’s algorithm, using the grid shown in Figure 5. The signs of these elements are

not shown, but for our example we will use a solution rectangle with four positive elements.

Each solution rectangle of a distinct colour corresponds to one of the M -equations of the Strassen

algorithm. The process of translating a solution rectangle into an M -equation is straightforward.

Recall the four vectors from eq. (10): uk,wk, rk, sk. Each is a set of vectors from v, eq. (9),

corresponding to one row or column used by a solution rectangle: uk corresponds to the top row,

wk to the bottom row, rk for the left column, and sk for the right column.

Once we determine these vectors, we then create the matrix Pk, such that

Pk =

 uk

wk

[rk sk

]
.

Let us first consider the red solution rectangle, which appears in the top left and bottom right

quadrant. Its top elements are on the third row, so u1 = v3. Its bottom row is the fourth row, so

27

w1 = v4; its left column is the third column, so r1 = v3; its right column is the fourth column, so

s1 = v4. Thus,

P1 =

 u1

w1

[r1 s1

]
,

P1 =

 v3

v4

[v3 v4

]
,

P1 =


1

0

0

1


[

1 0 0 1
]
.

.

When we reintroduce a and b, we see that this is the same representation of M -values we saw in

eq. (4): e.g.,

m1 = aT


1

0

0

1


[

1 0 0 1
]
b.

And by multiplying out this equation we recreate the standard representation ofm1 from Strassen’s

algorithm, m1 = (a11 +a22)× (b11 + b22). The equation for each M -value is determined by following

this same series of steps for each solution rectangle in the 20× 20 grid.

The calculation of the C-values is determined by which solution rectangles appear in each 10×10

quadrant of the 20×20 grid. In this case, the other solution rectangles in the top left quadrant turn

out to give m4, −m5, and m7, thus c11 = m1 +m4 −m5 +m7.

When a solution rectangle and its negative appear in a 20× 20 grid, determining which solution

rectangle is mk and which is −mk is arbitrary. There is no practical reason for one to be chosen

over the other.

4.8. Functions: This section gives a brief description of the Scilab functions we have developed.

4.8.1. One through FourTermSolutions and allTermSolutions. A 5x5 grid may have between 1 and

4 elements (or terms). For reasons explained earlier in the thesis, no 10 × 10 grid may have more

than 5 elements, and a 10×10 grid contains two 5×5 grids, each of which must contain at least one

element, so a 5 × 5 grid can contain at most four elements. These functions find every 5 × 5 grid,

with each function finding grids with a different number of terms.

28

OneTermSolutions just returns a hard-coded list, as there are only four of these solutions. The

other functions iterate through all possibilities and discard the invalid 5×5 grids. AllTermSolutions

simply runs all the functions OneTermSolutions through FourTermSolutions functions sequentially

and combines the output to form a single list.

4.8.2. SetNeg. This is a helper function that is used in most of the FindTypeXMatch functions. It

is a very simple function that changes the sign of the first entry in a vector with two components.

This is so that the software can easily change the sign of an element index in the same line that it

assigns it to a variable, which makes the matching functions more readable (since many have signs

which depend on other entries or calculations in the match).

4.8.3. FindSoloMatch. The calculation for a type 0 match is very simple. It takes a single grid

element as an argument, and returns an options matrix with the vertices of the solution rectangle

made from taking the zero-row and zero-column entries that share a column or share a row with

the element passed to the function. If the original element is negative, then by our negative priority

every element of the match will be considered negative.

4.8.4. FindTypeOneMatch. Between any pair of elements, there are four type one matches that can

be made: one with the virtual element in quadrant 2, and one with the virtual element in quadrant 3,

each one having a second variety with a different arrangement of negatives. Given a list of elements,

this function will take the one at the top of the list and create type 2 matches with every element in

the opposite quadrant. To find every type 1 match, the main function will call FindTypeOneMatch

on a shortening list (elements 1 through 5, elements 2 through 5, etc.).

4.8.5. FindTypeTwoMatch. A type 2 match is more selective than a type 1 match. A type 2 match

requires two elements in the same quadrant in the same row or in the same column. There are eight

separate matches made for every such pair of elements, one for each potential location of the virtual

element in the quadrant along the row or column, each one having two possible arrangements of

negatives.

4.8.6. FindTypeThreeMatch. The type 3 match is more complicated than the earlier types, due to

the asymmetry of the elements involved. The element that is at the intersection of two others

in its quadrant plays a different role in the match than other elements, so we first run a helper

function “t3dmReorder” to rearrange the elements in an order based on their role in the match, so

that the function can access each one, knowing its position. A key difference between this function

and the other matches is that the calculations of the solution rectangles are made more generic and

configured based on an analysis of the elements that have been passed to the function. Conversely, in

29

the functions for type 1 and type 2 matches, there are different blocks of code for different variations

in the match.

4.8.7. FindTypeFourMatch. The type four match is similar to the type three match, but there are a

larger number of variations that make the generic code more complex. Firstly, the elements may be

arranged as sharing columns or sharing rows, and the algorithmic details for each of these cases are

different enough that it made sense to break the function into two blocks of code. It also involves

some of the most complex calculations for the individual elements. The most egregious example of

this complexity appears in the case of the elements sharing columns, where the calculation of the

9th element in the options matrix involves taking the ceiling of the sum of the floor of the modulo

of one element and another element divided by five. Though it took some time to troubleshoot, this

complexity pays off in the long run due to being applicable to many variations of the match. Having

eight separate blocks of code based on the specifics of the match was a choice we could have made,

but this was deemed more difficult to maintain.

4.8.8. allTenByTenCombinations. This function receives as input every possible original 5x5 grid

and combines them in every way that could possible give a productive result.

No 10× 10 grid may have more than 5 elements, because the most efficient types of matches can

create (at best) 3 solution rectangles from 4 elements. Therefore, if there are 6 or more elements there

will be 5 or more solution rectangles, and it is known that no fast matrix multiplication algorithm

has more than 5 solution rectangles in one quadrant. Since grids with more elements take more time

to process, and more of them exist, this pruning step is very important, reducing the runtime from

months to an hour.

4.8.9. ProcessSolutions. When the collection of 10× 10 grids has been created, they are in a sparse

format in a four-dimensional array. Most 10× 10 grids have less than a dozen variations, but a very

small number have as many as 169 variations, so the entire array must have a size of 169 in one of

its dimensions. Since the process of matching these 10× 10 grids into 20× 20 grids does not need to

know which 10 × 10 grids are variations of others, and every empty array entry slows the function

by some amount, the output is processed into a more efficient format. This function rearranges the

10× 10 grids into a three-dimensional array with far fewer empty entries.

4.8.10. Indexify, deindexify, reindexify, indexify2, deindexify2. A solution rectangle can be defined

by the index of its top left vertex and the index of its bottom right vertex, with an additional

factor to differentiate between negatives. A solution rectangle’s index is calculated based on these

three factors, and an automated test confirms that with the function deindexify (which reverses this

process), every possible solution rectangle can be stored and retrieved in this way with no collisions.

30

That is, for any solution rectangle R, R = deindexify(indexify(R)), and for any integer N, N =

indexify(deindexify(N)).

Indexify2 and Deindexify2 are similar in function, except that they ignore negatives in zero-spaces

and in virtual elements and encode to a smaller set of integers. Before the construction of the 20×20

grids, where non-essential negatives create redundant matrices (as explained earlier in this thesis),

solution rectangles are indexed by Indexify2. Negatives are reintroduced in the final stage.

The function reindexify translates any index encoded by indexify to the equivalent solution rec-

tangle as it would be encoded by indexify2. There is no “unindexify” function, as the mapping

from indexify to indexify2 is onto, and multiple “indexify” indices can be represented by the same

“indexify2” index. This collision will occur with two functions when their arrangement of elements

is the same, but one has different signs on the zero elements than the other.

5. Summary, conclusions, and Future Work

5.1. Summary and Conclusions. The discovery of fast matrix multiplication algorithms for the

2 × 2 case is complete. The recent paper by Oh and Moon [2] describes a genetic search in which

all four families of Strassen-type algorithms for fast matrix multiplication are identified. However,

studying the 2×2 algorithms and studying how to find them in an efficient way is an excellent testing

ground for methods of finding improved fast matrix multiplication algorithms for 3× 3 matrices. It

is conjectured that there are potential improvements in 3× 3 matrix multiplication algorithms (the

current known smallest number of multiplications for the 3 × 3 case is 23), but the search space is

overwhelmingly large, so a very efficient method for searching for new 3×3 fast matrix multiplication

algorithms will be necessary.

Our method abstracts a linear algebra representation of the Strassen-type algorithm into a set of

sparsely populated grids, in three tiers: 5 × 5, 10 × 10, and 20 × 20, where each is made of four of

the smaller grid. By superimposing rectangles within 10× 10 grids with a corner in each 5× 5 grid,

and aiming to have similar rectangles appear between 10 × 10 grids, a fast matrix multiplication

algorithm is defined by a single 20×20 grid with superimposed rectangles. By restricting the creation

of these superimposed rectangles with certain rules, we limit the number of possible 20 × 20 grids,

which reduces the search space, and allows the final brute force search to be completed in about an

hour.

The pruning process considered in this thesis removes an enormous number of potential cases.

There are so few remaining that they can be processed by a Scilab script in about an hour on our

hardware (an Intel Core i7 6700k CPU) to find the remaining valid algorithms. The representation

31

of the Strassen-type algorithms considered in this thesis may also make it easier to conceptualize

the method, so that other pruning or optimizations can be more easily found for the 3× 3 case.

With this method as a starting point, it may be possible to search the entirety of the 3 × 3

case. If not, a heuristic approach may be enough to find just one algorithm (that uses fewer than

23 multiplications). This method can be designed to run in parallel very easily, so brute force

calculations may be an effective option.

5.2. Future Work. The entirety of our program for the 2 × 2 case runs in approximately ninety

minutes on a computer (Intel Core i7-6700k CPU). This time is split as 30 minutes spent constructing

each of the 10× 10 grids and 60 minutes in checking all possible 20× 20 grids to determine if they

represent one of the algorithms we are searching for. In the 3 × 3 case, the construction of the

42×42 grids (equivalent to the 10×10 grids) grows at least cubically as the number of smaller grids

(14 × 14 for the 3 × 3 case) increases, since the 42 × 42 grids are created by choosing every set of

three 14×14 grids (it may be possible to apply similar pruning techniques as we used on 5×5 grids,

but the cubic growth rate is a maximum, so we will use it for the estimations.)

The construction of 126 × 126 grids (equivalent to the 20 × 20 grids) will have a much greater

increase in cost. In the 2× 2 case, the number of 20× 20 grids grows at an approximately quadratic

rate as the number of 10× 10 grids increases, due to the optimization that aborts nearly all 20× 20

grid constructions after two 10× 10 grids are included. Conversely, in the 3× 3 case, each 42× 42

grid adds at most seven solution “rectangles.”

If we are searching for a 22-multiplication algorithm, then it will take at least four 42× 42 grids

being added before the maximum number of solution rectangles is exceeded, which would mean the

growth rate would be approximately quartic. If we’re searching for an algorithm with 19, 20, or

21 multiplications then it will take at least three 42 × 42 grids, which gives a cubic growth rate.

If it is the case that no algorithms with less than 22 multiplications exist, this calculation will be

prohibitively expensive. If this is not the case, and a 19, 20, or 21 multiplication algorithm exists,

then the cost will still be a great increase from the 2× 2 case, but not to the same degree.

In short, the number of 42× 42 grids is equal to at most the cube of the number of 14× 14 grids,

and the number of 126× 126 grids that will be analyzed by the software is approximately the cube

of the number of 42× 42 grids (for a 19, 20, or 21 multiplication algorithm). So we can approximate

the number of checks that will need to be done to be n6 for n 14× 14 grids.

Based on this growth rate, we can roughly estimate the cost of searching for 3 × 3 fast matrix

multiplication algorithms. First, we if we assume the number of 14×14 grids is equal to the number

of 5×5 grids, we can calculate that 1116 ≈ 1.8×1012 126×126 grid comparisons will be made in the

final step of the algorithm. In Scilab, each comparison took 10−4 seconds, so this would take slight

32

less than 3 years. This is only a rough estimation, and the true figure will likely be higher as we are

optimistically assuming that there are not significantly more 14 × 14 than there were 5 × 5 grids.

Considering Scilab’s slowness as a scripting language and the effectiveness of parallel computation

with the method described in the thesis, such a computation would not be out of reach for a super

computer or distributed computing system unless the number of 14× 14 grids is many times larger

than the number of 5× 5 grids.

Even if the calculation turns out to be prohibitively expensive, there are more options for opti-

mization. For one, we would only need to find one algorithm with less than 23 multiplications, of

which there may be many, whereas in this thesis we were aiming to find every algorithm to show the

effectiveness of the search method. There are many indications that certain arrangements are more

favorable than others, and these could be checked preferentially, potentially saving us from needing

to investigate the entire search space.

Additionally, we know empirically that all fast multiplication algorithms make use of at least one

“minimal” grid (such that each of the subgrids contains only a single element), on which there are

only a handful of variations. This means we can run one loop a dozen or so times, rather than over

the full number of grids available. Without knowing which grid will contain the minimal grid, we

must split the loop into nine separate parts, but there is still an improvement.

The creation of 42× 42 grids in the 3× 3 case will use the same five types of matches described

in this thesis, but it will be between three different pairs of 14 × 14 grids, as there will be three

14 × 14 grids that make up the 42 × 42 grid, from which three different pairs can be taken. Since

the 14× 14 grids seem to still be restricted to four entries per 14× 14 grid (judging by the currently

known 3× 3 algorithms), the same restrictions on the types of matches will remain. Because of this,

writing software to perform the search for a fast 3× 3 algorithm should be straightforward.

References

[1] V. Strassen, Gaussian Elimination is not optimal, Numer. Math., 13(4), 354-356, Sept., 1969.

[2] S. Oh and B. Moon Automatic Reproduction of a Genius Algorithm, Strassen’s Algorithm Revisited by Genetic

Search, IEEE Transactions on Evolutionary Computation, 14(2), 246-251, April, 2010.

[3] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic programming, J. Symbolic Comput.,

9(3), 251-280, March, 1990.

[4] J. Laderman, A noncommutative algorithm for multiplying 3 × 3 matrices using 23 multiplications, Bull.

Amer. Math. Soc. 82(1), 126-128, Jan. 1976.

[5] F. Le Gall, Powers of tensors and fast matrix multiplication, Proceedings of the 39th International Symposium

on Symbolic and Algebraic Computation, Jan. 2014.

[6] M. Paprzycki and C. Cyphers, Using Strassen’s matrix multiplication in high performance solution of linear

systems, Computers & Mathematics with Applications, 31(4-5), 55-61, February, 1996.

33

[7] B. MacAdam and G. MacDonald, An Exhaustive Search for Strassen-type Matrix Multiplication Algorithms,

preprint, 2016.

[8] M. Bläser, On the complexity of the multiplication of matrices of small formats. J. Complexity, 19(1), 43-60,

2003.

[9] S. Winograd, On multiplication of 2 × 2 matrices, Linear Algebra and its Applications, 4(4), 381-388, October,

1971.

[10] Scilab Enterprises (2012). Scilab: Free and Open Source software for numerical computation (64-bit Windows,

Version 5.5.2) [Software]. Available from: http://www.scilab.org

34

6. Appendix: Source Code

function[EList] = oneTermSolutions()

EList = [11, 0, 0, 0, 0, 1;

12, 0, 0, 0, 0, 2;

15, 0, 0, 0, 0, 3;

16, 0, 0, 0, 0, 4];

endfunction

function[EList] = twoTermSolutions()

vects = [1 1 1 0; //a much smaller set of vectors

1 -1 0 1];

m = 0; //counts up the matrices

hmat = hypermat([2, 2, 16]); //a much smaller set of matrices

for i = 1:4

for j = 1:4

m = m+1;

tempMatrix = vects(2*i-1:2*i)*vects(2*j-1:2*j)’;

hmat(1:2,1:2,m) = tempMatrix;

end;

end;

E11 = [1,0;0,0];

E12 = [0,1;0,0];

E21 = [0,0;1,0];

E22 = [0,0;0,1];

x = 1; y = 0;

A = 1; B = 2; C = 3;

while A < 15

for i = 0:1 //two combinations of +/-

//add and subtract matrices in various combinations

tempMatrix = hmat(1:2,1:2,A) + ((-1)^(i))*hmat(1:2,1:2,B);

//Eij it is and if it’s negative

//1 = E11, 2 = E12, 3 = E21, 4 = E22

//February 2016 update: EList(x,5) is superfluous now but it’s easier to just leave it in

if tempMatrix == E11 then

EList(x,1) = A; EList(x,2) = ((-1)^(i))*B; EList(x,5) = i;

EList(x,6) = 1; x = x+1;

end;

if tempMatrix == E12 then

EList(x,1) = A; EList(x,2) = ((-1)^(i))*B; EList(x,5) = i;

EList(x,6) = 2; x = x+1;

end;

if tempMatrix == E21 then

EList(x,1) = A; EList(x,2) = ((-1)^(i))*B; EList(x,5) = i;

EList(x,6) = 3; x = x+1;

end;

if tempMatrix == E22 then

EList(x,1) = A; EList(x,2) = ((-1)^(i))*B; EList(x,5) = i;

EList(x,6) = 4; x = x+1;

end;

if tempMatrix == (-1)*E11 then

EList(x,1) = (-1)*A; EList(x,2) = ((-1)^(i+1))*B; EList(x,5) = i+2;

EList(x,6) = 1; x = x+1;

end;

if tempMatrix == (-1)*E12 then

EList(x,1) = (-1)*A; EList(x,2) = ((-1)^(i+1))*B; EList(x,5) = i+2;

EList(x,6) = 2; x = x+1;

end;

if tempMatrix == (-1)*E21 then

EList(x,1) = (-1)*A; EList(x,2) = ((-1)^(i+1))*B; EList(x,5) = i+2;

EList(x,6) = 3; x = x+1;

end;

if tempMatrix == (-1)*E22 then

EList(x,1) = (-1)*A; EList(x,2) = ((-1)^(i+1))*B; EList(x,5) = i+2;

EList(x,6) = 4; x = x+1;

end;

end; //for loop

//iterate to the next unique set of matrices:

if B < 16 then

B = B + 1; //advance B and reset others

elseif A < 15 then

A = A + 1; //advance A and reset others

B = A + 1;

end;

end;

endfunction

//16 results (4*4)

function[EList] = threeTermSolutions()

vects = [1 1 1 0; //a much smaller set of vectors

1 -1 0 1];

m = 0; //counts up the matrices

hmat = hypermat([2, 2, 16]); //a much smaller set of matrices

for i = 1:4

for j = 1:4

m = m+1;

tempMatrix = vects(2*i-1:2*i)*vects(2*j-1:2*j)’;

hmat(1:2,1:2,m) = tempMatrix;

end;

end;

E11 = [1,0;0,0];

35

E12 = [0,1;0,0];

E21 = [0,0;1,0];

E22 = [0,0;0,1];

x = 1; y = 0;

A = 1; B = 2; C = 3;

while A < 14

for i = 0:3 //four combinations of +/-

//add and subtract matrices in various combinations

tempMatrix = hmat(1:2,1:2,A) + ((-1)^(floor(i/2)))*hmat(1:2,1:2,B) + ..

((-1)^(i))*hmat(1:2,1:2,C);

//1 = E11, 2 = E12, 3 = E21, 4 = E22

if tempMatrix == E11 then

EList(x,1) = A; EList(x,2) = ((-1)^(floor(i/2)))*B;

EList(x,3) = ((-1)^(i))*C;

EList(x,5) = i; EList(x,6) = 1; x = x+1;

end;

if tempMatrix == E12 then

EList(x,1) = A; EList(x,2) = ((-1)^(floor(i/2)))*B;

EList(x,3) = ((-1)^(i))*C;

EList(x,5) = i; EList(x,6) = 2; x = x+1;

end;

if tempMatrix == E21 then

EList(x,1) = A; EList(x,2) = ((-1)^(floor(i/2)))*B;

EList(x,3) = ((-1)^(i))*C;

EList(x,5) = i; EList(x,6) = 3; x = x+1;

end;

if tempMatrix == E22 then

EList(x,1) = A; EList(x,2) = ((-1)^(floor(i/2)))*B;

EList(x,3) = ((-1)^(i))*C;

EList(x,5) = i; EList(x,6) = 4; x = x+1;

end;

if tempMatrix == (-1)*E11 then

EList(x,1) = (-1)*A; EList(x,2) = ((-1)^(floor(i/2)+1))*B;

EList(x,3) = ((-1)^(i+1))*C;

EList(x,5) = i+4; EList(x,6) = 1; x = x+1;

end;

if tempMatrix == (-1)*E12 then

EList(x,1) = (-1)*A; EList(x,2) = ((-1)^(floor(i/2)+1))*B;

EList(x,3) = ((-1)^(i+1))*C;

EList(x,5) = i+4; EList(x,6) = 2; x = x+1;

end;

if tempMatrix == (-1)*E21 then

EList(x,1) = (-1)*A; EList(x,2) = ((-1)^(floor(i/2)+1))*B;

EList(x,3) = ((-1)^(i+1))*C;

EList(x,5) = i+4; EList(x,6) = 3; x = x+1;

end;

if tempMatrix == (-1)*E22 then

EList(x,1) = (-1)*A; EList(x,2) = ((-1)^(floor(i/2)+1))*B;

EList(x,3) = ((-1)^(i+1))*C;

EList(x,5) = i+4; EList(x,6) = 4; x = x+1;

end;

end; //for loop

//iterate to the next unique set of matrices:

if C < 16 then

C = C + 1; //advance C and reset D

elseif B < 15 then

B = B + 1; //advance B and reset others

C = B + 1;

elseif A < 14 then

A = A + 1; //advance A and reset others

B = A + 1;

C = B + 1;

end;

end;

//72 results (18*4)

endfunction

function[EList] = fourTermSolutions()

vects = [1 1 1 0; //a much smaller set of vectors

1 -1 0 1];

m = 0; //counts up the matrices

hmat = hypermat([2, 2, 16]); //a much smaller set of matrices

for i = 1:4

for j = 1:4

m = m+1;

tempMatrix = vects(2*i-1:2*i)*vects(2*j-1:2*j)’;

hmat(1:2,1:2,m) = tempMatrix;

end;

end;

E11 = [1,0;0,0];

E12 = [0,1;0,0];

E21 = [0,0;1,0];

E22 = [0,0;0,1];

x = 1; y = 0;

A = 1; B = 2; C = 3; D = 4;

while A < 13

for i = 0:7 //eight combinations of +/-

//add and subtract matrices in various combinations

tempMatrix = hmat(1:2,1:2,A) + ((-1)^(floor(i/4)))*hmat(1:2,1:2,B) + ..

36

((-1)^(floor(i/2)))*hmat(1:2,1:2,C) + ((-1)^(i))*hmat(1:2,1:2,D);

//1 through 4 are the four matrices summed together; 5 is the matrix’s +/- configuration;

//6 tells which Eij it is and if it’s negative

//1 = E11, 2 = E12, 3 = E21, 4 = E22

if tempMatrix == E11 then

EList(x,1) = A; EList(x,2) = ((-1)^(floor(i/4)))*B; EList(x,3) = ((-1)^(floor(i/2)))*C;

EList(x,4) = ((-1)^(i))*D; EList(x,5) = i; EList(x,6) = 1; x = x+1;

end;

if tempMatrix == E12 then

EList(x,1) = A; EList(x,2) = ((-1)^(floor(i/4)))*B; EList(x,3) =..

((-1)^(floor(i/2)))*C;

EList(x,4) = ((-1)^(i))*D; EList(x,5) = i; EList(x,6) = 2; x = x+1;

end;

if tempMatrix == E21 then

EList(x,1) = A; EList(x,2) = ((-1)^(floor(i/4)))*B; EList(x,3) =..

((-1)^(floor(i/2)))*C;

EList(x,4) = ((-1)^(i))*D; EList(x,5) = i; EList(x,6) = 3; x = x+1;

end;

if tempMatrix == E22 then

EList(x,1) = A; EList(x,2) = ((-1)^(floor(i/4)))*B; EList(x,3) =..

((-1)^(floor(i/2)))*C;

EList(x,4) = ((-1)^(i))*D; EList(x,5) = i; EList(x,6) = 4; x = x+1;

end;

if tempMatrix == (-1)*E11 then

EList(x,1) = (-1)*A; EList(x,2) = ((-1)^(floor(i/4)+1))*B; EList(x,3) =..

((-1)^(floor(i/2)+1))*C;

EList(x,4) = ((-1)^(i+1))*D; EList(x,5) = i+8; EList(x,6) = 1; x = x+1;

end;

if tempMatrix == (-1)*E12 then

EList(x,1) = (-1)*A; EList(x,2) = ((-1)^(floor(i/4)+1))*B; EList(x,3) =..

((-1)^(floor(i/2)+1))*C;

EList(x,4) = ((-1)^(i+1))*D; EList(x,5) = i+8; EList(x,6) = 2; x = x+1;

end;

if tempMatrix == (-1)*E21 then

EList(x,1) = (-1)*A; EList(x,2) = ((-1)^(floor(i/4)+1))*B; EList(x,3) =..

((-1)^(floor(i/2)+1))*C;

EList(x,4) = ((-1)^(i+1))*D; EList(x,5) = i+8; EList(x,6) = 3; x = x+1;

end;

if tempMatrix == (-1)*E22 then

EList(x,1) = (-1)*A; EList(x,2) = ((-1)^(floor(i/4)+1))*B; EList(x,3) =..

((-1)^(floor(i/2)+1))*C;

EList(x,4) = ((-1)^(i+1))*D; EList(x,5) = i+8; EList(x,6) = 4; x = x+1;

end;

end; //for loop

//iterate to the next unique set of matrices:

if D < 16 then //D can be advanced

D = D + 1; //advance D

elseif C < 15 then

C = C + 1; //advance C and reset D

D = C + 1;

elseif B < 14 then

B = B + 1; //advance B and reset others

C = B + 1;

D = C + 1;

elseif A < 13 then

A = A + 1; //advance A and reset others

B = A + 1;

C = B + 1;

D = C + 1;

end;

//y = y + 1 //shows progress of the loop

end;

// 352 results (88*4)

endfunction

function[sols] = allTermSolutions()

EList = oneTermSolutions();

temp = twoTermSolutions();

t = size(temp); // t = [16,6]

e = size(EList);

EList(e(1)+1:e(1)+t(1),1:6) = temp;

temp = threeTermSolutions();

t = size(temp); // t = [72,6]

e = size(EList);

EList(e(1)+1:e(1)+t(1),1:6) = temp;

temp = fourTermSolutions();

t = size(temp); // t = [352,6]

e = size(EList);

EList(e(1)+1:e(1)+t(1),1:6) = temp;

sols = EList;

endfunction

//Accepts any number of EList rows and returns equivalent Unmatched rows

function[fiveByFive] = EListFormatTranslate(EList)

s = size(EList); s = s(1); // s = number of rows of EList

fbfcount = 1;

for i = 1:s

currentQuadrant = EList(i,6);

for j = 1:4

if EList(i,j) <> 0 then

37

fiveByFive(j,1:2,fbfcount) = [EList(i,j),currentQuadrant]

end

end

fbfcount = fbfcount + 1;

end

fiveByFive = EListIndexTranslate(fiveByFive)

endfunction

//Accepts any number of "unmatched" elements, and fixes their indices (1-16 to 1-25)

function[newIndex] = EListIndexTranslate(oldIndex)

newIndex = abs(oldIndex);

s = size(newIndex)

disp(s)

s2 = size(s)

disp(s2)

if s2(2) == 2 then //not a hypermatrix, just a matrix

for i = 1:s(1)

select newIndex(i,1)

case 1 then

newIndex(i,1) = newIndex(i,1)*sign(oldIndex(i,1))

case 2 then

newIndex(i,1) = newIndex(i,1)*sign(oldIndex(i,1))

case 3 then

newIndex(i,1) = newIndex(i,1)*sign(oldIndex(i,1))

case 4 then

newIndex(i,1) = newIndex(i,1)*sign(oldIndex(i,1))

case 5 then

newIndex(i,1) = 6*sign(oldIndex(i,1));

case 6 then

newIndex(i,1) = 7*sign(oldIndex(i,1));

case 7 then

newIndex(i,1) = 8*sign(oldIndex(i,1));

case 8 then

newIndex(i,1) = 9*sign(oldIndex(i,1));

case 9 then

newIndex(i,1) = 11*sign(oldIndex(i,1));

case 10 then

newIndex(i,1) = 12*sign(oldIndex(i,1));

case 11 then

newIndex(i,1) = 13*sign(oldIndex(i,1));

case 12 then

newIndex(i,1) = 14*sign(oldIndex(i,1));

case 13 then

newIndex(i,1) = 16*sign(oldIndex(i,1));

case 14 then

newIndex(i,1) = 17*sign(oldIndex(i,1));

case 15 then

newIndex(i,1) = 18*sign(oldIndex(i,1));

case 16 then

newIndex(i,1) = 19*sign(oldIndex(i,1));

end

end

elseif s2(2) == 3 then //hypermatrix

for j = 1:s(3)

for i = 1:s(1)

select newIndex(i,1,j)

case 1 then

newIndex(i,1,j) = newIndex(i,1,j)*sign(oldIndex(i,1,j))

case 2 then

newIndex(i,1,j) = newIndex(i,1,j)*sign(oldIndex(i,1,j))

case 3 then

newIndex(i,1,j) = newIndex(i,1,j)*sign(oldIndex(i,1,j))

case 4 then

newIndex(i,1,j) = newIndex(i,1,j)*sign(oldIndex(i,1,j))

case 5 then

newIndex(i,1,j) = 6*sign(oldIndex(i,1,j));

case 6 then

newIndex(i,1,j) = 7*sign(oldIndex(i,1,j));

case 7 then

newIndex(i,1,j) = 8*sign(oldIndex(i,1,j));

case 8 then

newIndex(i,1,j) = 9*sign(oldIndex(i,1,j));

case 9 then

newIndex(i,1,j) = 11*sign(oldIndex(i,1,j));

case 10 then

newIndex(i,1,j) = 12*sign(oldIndex(i,1,j));

case 11 then

newIndex(i,1,j) = 13*sign(oldIndex(i,1,j));

case 12 then

newIndex(i,1,j) = 14*sign(oldIndex(i,1,j));

case 13 then

newIndex(i,1,j) = 16*sign(oldIndex(i,1,j));

case 14 then

newIndex(i,1,j) = 17*sign(oldIndex(i,1,j));

case 15 then

newIndex(i,1,j) = 18*sign(oldIndex(i,1,j));

case 16 then

newIndex(i,1,j) = 19*sign(oldIndex(i,1,j));

end

end

end

end

38

endfunction

//Q is the quadrant of the 20x20 matrix that we are looking for solutions for

function[sols] = allSolutionsForQuadrant(q, fiveByFive)

f = size(fiveByFive);

f = f(3); //f = number of matrices in the hypermatrix

solcount = 1;

for i = 1:f

if fiveByFive(1,2,i) == q then

sols(:,:,solcount) = fiveByFive(:,:,i);

solcount = solcount + 1;

end

end

endfunction

//Receives all 5x5 matrices from a single quadrant and combines them in every possible combination,

//so that GeneratesAllGrids can analyze them

function[allCombos] = allTenByTenCombinations(fiveByFive)

disp("Calculating all 10x10 varieties... Count up to 112:")

f = size(fiveByFive);

f = f(3);

comboCount = 1;

for i = 1:f

disp(i)

for j = 1:f

allCombos(1:8,1:2,comboCount) = zeros(8,2)

entryCount = 1;

for k = 1:4

if (fiveByFive(k,1,i) <> 0) then

allCombos(entryCount,1,comboCount) = fiveByFive(k,1,i);

allCombos(entryCount,2,comboCount) = 1;

// the elements from 5x5 grid i go into quadrant 1

entryCount = entryCount + 1;

end

end

for k = 1:4

if (fiveByFive(k,1,j) <> 0) then

allCombos(entryCount,1,comboCount) = fiveByFive(k,1,j);

allCombos(entryCount,2,comboCount) = 4;

// the elements from 5x5 grid j go into quadrant 4

entryCount = entryCount + 1;

end

end

if(entryCount <= 6)

//If the grid has too many elements then it won’t be useful, so we overwrite it

comboCount = comboCount + 1;

elseif i == f & j == f then

//the last one isn’t overwritten, so overwrite here.

allCombos(1:8,1:2,comboCount) = zeros(8,2);

end

end

end

endfunction

//Input: A grid containing four elements, formatted with the 1-16 indices

//example formatting [A,B,C,D]

function[yorn] = TypeThreeSolutionExists(fourElementGrid)

fourElementGrid = abs(fourElementGrid);

yorn = %f;

for i = 1:4

//disp(i,"i =")

for j = 1:4

//disp(j,"j =")

if (i == j) then //if they are the same element, or are in different quadrants, skip

continue;

end

for k = 1:4

//disp(k,"k =")

if (i == k) | (j == k) then //elements must be unique

continue;

else

//find out if the three are aligned properly

//this goes through redundant sets in different orderings, so we can check a

// single ordering without loss of generality

if (abs(modulo(fourElementGrid(i),4)) ==..

abs(modulo(fourElementGrid(j),4))) & ..

(ceil(abs(fourElementGrid(i)/4)) ==..

ceil(abs(fourElementGrid(k)/4))) then

//if i and j share a column and i and k share a row

disp(i,j,k)

yorn = %t;

end

end

end

end

end

endfunction

function[w] = allGridsForE(n) // n = 1,2,3, or 4

x = allTermSolutions()

y = EListFormatTranslate(x)

z = allSolutionsForQuadrant(n, y) //four different lists for arguments 1,2,3,4

39

w = allTenByTenCombinations(z);

w = w(:,:,1:$-1); //remove the last entry--it’s just a bunch of zeros

endfunction

//Takes a 4D hypermatrix and condenses it into a 3D hypermatrix, such that each

// "Slice of the hypermatrix"

// is one of four matrices, each one containing a VERY LARGE number of columns,

//where each column is one solution square

function[processedSols] = processSolutions(solutions)

s = size(solutions); //usually: s(1) = 4, s(2) = 169, s(3) = 2416, s(4) = 4

//processedSols = zeros(4,3000?,4)

for i = 1:s(4)

solsCount = 1;

disp(i)

for j = 1:s(2)

if (modulo(j,25) == 0) then //progress report

disp(j)

end

for k = 1:s(3)

//if (solutions(1:4,j,k,i) <> [0;0;0;0])

if (solutions(1,j,k,i) <> 0)

tempSols(1:4,solsCount,i) = solutions(1:4,j,k,i)

solsCount = solsCount+1;

end

end

end

//disp(size(tempSols))

end

//processedSols = zeros(tempSols’);

//disp(tempSols’);

for i = 1:4

processedSols(:,:,i) = tempSols(:,:,i)’;

end

endfunction

function[zeroes] = numberOfZeros(array)

s = size(array);

zeroes = 0;

for i = 1:abs(prod(s))

if array(i) == 0 then

zeroes = zeroes + 1;

end

end

endfunction

function[newInds] = indexReplace(indices, original, replacement)

newInds = indices;

for i = 1:prod(size(indices))

if abs(indices(i)) == abs(original)) then

newInds(i) = abs(replacement)*sign(indices(i));

end

end

endfunction

//unmatched(:,1) = element index; unmatched(:,2) = element quadrant

function[gridVariant] = findAllGrids(unmatched)

s = size(unmatched); s = s(1);

colscore = zeros(s); rowscore = zeros(s);

finalSize = 16; //the max number of elements in the final "unmatched"

baseGrid = zeros(finalSize,2);

baseGrid(1:s,1:2) = unmatched(1:s,1:2);

sameCol = zeros(2,2,8);

sameRow = zeros(2,2,8);

scsize = 1; srsize = 1;

for i = 1:(s-1)

if unmatched(i,:) == [0,0] then continue; end

for j = (i+1):s

if (abs(modulo(unmatched(i,1),5)) == abs(modulo(unmatched(j,1),5)) & ..

(unmatched(i,2) == unmatched(j,2)) & (unmatched(j,:) <> [0,0])) then

//if the modulo is equal, they are in the same column

sameCol(1,1:2,scsize) = unmatched(i,:);

sameCol(2,1:2,scsize) = unmatched(j,:);

scsize = scsize+1;

end

if (abs(ceil(unmatched(i,1)/5)) == abs(ceil(unmatched(j,1)/5)) & ..

(unmatched(i,2) == unmatched(j,2)) & (unmatched(j,:) <> [0,0])) then

//if ceilings are equal, they are in the same row

sameRow(1,1:2,srsize) = unmatched(i,:);

sameRow(2,1:2,srsize) = unmatched(j,:);

srsize = srsize+1;

end

end

end

options = zeros(16,2,1); opGroup = 1;

//opGroup denotes separate "slices" of the hypermatrix

for i = 1:s

if(unmatched(i,2) <> 0) then

soloMatches = findSoloMatch(unmatched(i,:));

options(1:4,:,opGroup) = soloMatches;

opGroup = opGroup + 1;

end

40

end

count = 1;

for i = 1:(s-1)

for j = i:s

if (unmatched(i,2) == 1) & (unmatched(j,2) == 4) | ..

(unmatched(i,2) == 4) & (unmatched(j,2) == 1) then

temp = findTypeOneMatch([unmatched(i,:);unmatched(j,:)]);

//ft1dm returns some matrices as a hypermatrix

t = size(temp); t = t(3) //t = number of hypermatrices

options(1:16,:,opGroup:opGroup+t-1) = temp(1:16,:,1:t)

end

end

end

for i = 1:scsize

if (sameCol(:,:,i) <> [0,0; 0,0]) then

temp = findTypeTwoMatch(sameCol(:,:,i))

options(1:8,:,opGroup:opGroup+7) = temp;

opGroup = opGroup+8;

end

end

for i = 1:srsize

if (sameRow(:,:,i) <> [0,0; 0,0]) then

temp = findTypeTwoMatch(sameRow(:,:,i))

options(1:8,:,opGroup:opGroup+7) = temp;

opGroup = opGroup+8;

end

end

for i = 1:s

for j = 1:s

if (i == j) | unmatched(i,2) <> unmatched(j,2) then

//if they are the same element, or are in different quadrants, skip

continue;

end

for k = 1:s

if (i == k) | (j == k) | unmatched(k,2) <> unmatched(i,2) | ..

unmatched(k,2) <> unmatched(j,2) then

//elements must be unique and in the same quadrant

continue;

else

//find out if the three are aligned properly

//this goes through redundant sets in different orderings,

//so we can check a single ordering without loss of generality

if (abs(modulo(unmatched(i,1),5)) == abs(modulo(unmatched(j,1),5))) ..

& (ceil(abs(unmatched(i,1)/5)) == ceil(abs(unmatched(k,1)/5))) then

for m = 1:s

if (m == i) | (m == j) | (m == k) then

//must have 4 unique entries

continue;

elseif (5 - unmatched(m,2) == unmatched(i,2)) then

//m must be in the quadrant opposite to i,j,k

matchRows(1:4,1:2) = [unmatched(i,:);

unmatched(j,:);

unmatched(k,:);

unmatched(m,:)];

//elements to be matched

options(1:12,:,opGroup) = findTypeThreeMatch(matchRows);

//disp(options(:,:,opGroup))

opGroup = opGroup + 1; //iterate to the next group of options

end

end

end

end

end

end

end

//find type 4 dual match

for i = 1:s

for j = 1:s

if (unmatched(i,2) <> unmatched(j,2) | i == j) then

continue;

end

for k = 1:s

if i == k | j == k then

continue;

end

for m = 1:s

if i == m | j == m | k == m then

continue;

elseif unmatched(i,2) == 1 & unmatched(j,2) == 1 & ..

unmatched(k,2) == 4 & unmatched(m,2) == 4 then

matchRows(1:4,1:2) = [unmatched(i,:);

unmatched(j,:);

unmatched(k,:);

unmatched(m,:)];

t4dmTemp = findTypeFourMatch(matchRows)

//if it fails, t4dmTemp == -1

if size(size(t4dmTemp)) == [1,3] then

41

options(1:12,:,opGroup:opGroup+3) = t4dmTemp;

end

end

end

end

end

end

gridVariant = hydraSlayer(unmatched, options)

endfunction

function[numberOfSlices] = hsize(grid)

temp = size(grid);

numberOfSlices = temp(3);

endfunction

function[numberOfRows] = gsize(grid)

temp = size(grid);

numberOfRows = temp(2);

endfunction

//"grid" contains the "unmatched" encoding of a grid, add the "row" to the first

//row of it that is a string of zeros

function[newGrid] = addToFirstEmptyRow(grid, row)

newGrid = grid;

//check that row is of the right dimension

rsize = size(row); //rsize = number of rows to be added

if rsize(2) <> 2 then

disp("Error in addToFirstEmptyRow(), row size incorrect.");

pause

end

rsize = rsize(1)

//check that row will fit (first: calculate how much space remains)

temp = size(grid); s = temp(1); emptySpaces = 0;

rowCounter = 1;

i = 1;

while ((rowCounter <= rsize) & (i <= s))

if newGrid(i,1:2) == [0,0] then

newGrid(i,1:2) = row(rowCounter, 1:2);

rowCounter = rowCounter + 1;

end

i = i + 1;

end

if(i == s+1)

newGrid(i:(i+rsize-rowCounter),1:2) = row(rowCounter:rsize,1:2);

end

endfunction

//takes one row of Unmatched and returns four rows, containing the original

//square and three new virtual squares

function[soloMatch] = findSoloMatch(unmatchedRow)

neg = sign(unmatchedRow(1));

unmatchedRow(1) = abs(unmatchedRow(1));

soloMatch = zeros(4,2)

select unmatchedRow(2)

case 1 then

soloMatch(1,:) = [neg*unmatchedRow(1),unmatchedRow(2)];

soloMatch(2,:) = [neg*(ceil(unmatchedRow(1)/5)*5),2];

soloMatch(3,:) = [neg*(21+modulo(unmatchedRow(1)-1,5)),3];

soloMatch(4,:) = [neg*25,4];

case 2 then

soloMatch(1,:) = [neg*(ceil(unmatchedRow(1)/5)*5),1];

soloMatch(2,:) = [neg*unmatchedRow(1),unmatchedRow(2)];

soloMatch(3,:) = [neg*25,3];

soloMatch(4,:) = [neg*(21+modulo(unmatchedRow(1)-1,5)),4];

case 3 then

soloMatch(1,:) = [neg*(21+modulo(unmatchedRow(1)-1,5)),1];

soloMatch(2,:) = [neg*25,2];

soloMatch(3,:) = [neg*unmatchedRow(1),unmatchedRow(2)];

soloMatch(4,:) = [neg*(ceil(unmatchedRow(1)/5)*5),4];

case 4 then

soloMatch(1,:) = [neg*25,1];

soloMatch(2,:) = [neg*(21+modulo(unmatchedRow(1)-1,5)),2];

soloMatch(3,:) = [neg*(ceil(unmatchedRow(1)/5)*5),3];

soloMatch(4,:) = [neg*unmatchedRow(1),unmatchedRow(2)];

else

soloMatch = zeros(4,2)

end

endfunction

function[returnedRows] = setNeg(rows, neg)

if (sign(neg) == 1)

returnedRows = rows;

else

s = size(rows); s = s(1);

for i = 1:s

returnedRows(i,1) = rows(i,1)*sign(neg);

returnedRows(i,2) = rows(i,2);

end

end

endfunction

42

//Matches the first element in the grid with all the appropriate elements in

//the opposite quadrant in Type 1 dual matches

//and returns an options hypermatrix

//Negatives are always set to "Same" or "Diagonal" arrangement

function[options] = findTypeOneMatch(grid)

options = zeros(16,2,2);

grid = sortByQuadrant(grid);

focus = grid(1,1:2); //Focus is always in Quadrant 1

n = 1;

g = size(grid); g = g(1);

for i = 2:g

if (grid(i,2) == 4) then //they are in opposite quadrants

if (sign(focus(1)) == sign(grid(i,1))) then //if both are the same sign

neg = sign(focus(1)); focus(1) = abs(focus(1));

tempgrid = abs(grid); //need absolute value for calculations

//Focus and -1 from VE

options(1,:,n) = focus; //quadrant 1 element

options(2,:,n) = setNeg(inters(focus, tempgrid(i,:)),-1); //virtual element in Q2

options(3,:,n) = [modulo(tempgrid(i,1)-1,5)+21,4]; //zero row/column

options(4,:,n) = setNeg([modulo(focus(1)-1,5)+21,3],-1); //zero row/column

//### grid(i) and 1 from VE

options(5,:,n) = tempgrid(i,:); //quadrant 4 element

options(6,:,n) = inters(focus, tempgrid(i,:)); //virtual element in Q2

options(7,:,n) = [ceil(focus(1)/5)*5,1]; //zero row/column

options(8,:,n) = [ceil(tempgrid(i,1)/5)*5,3]; //zero row/column

options(:,:,n) = setNeg(options(:,:,n),neg); //Reintroduce the negative

n = n + 1;

//##

//##

// Focus and 1 from VE

options(1,:,n) = focus; //quadrant 1 element

options(2,:,n) = inters(focus, tempgrid(i,:)); //virtual element in Q2

options(3,:,n) = [modulo(tempgrid(i,1)-1,5)+21,4]; //zero row/column Q4

options(4,:,n) = [modulo(focus(1)-1,5)+21,3]; //zero row/column Q3

//### Grid(i) and -1 from VE

options(5,:,n) = tempgrid(i,:); //quadrant 4 element

options(6,:,n) = setNeg(inters(focus, tempgrid(i,:)),-1); //virtual element in Q2

options(7,:,n) = [ceil(focus(1)/5)*5,1]; //zero row/column Q1

options(8,:,n) = setNeg([ceil(tempgrid(i,1)/5)*5,3],-1); //zero row/column Q3

options(:,:,n) = setNeg(options(:,:,n),neg);

n = n + 1;

//Now we also include the "transpose" of this arrangement

//where the virtual element is in quadrant 3 instead

//At this point, all T1DMs have the pattern original element,

//virtual element, zero element, zero element

//Quadrants 1 and 4 remain the same

options(1,:,n) = focus; //quadrant 1 element

options(2,:,n) = setNeg(inters(tempgrid(i,:), focus),-1); //virtual element in Q3

options(3,:,n) = setNeg([ceil(abs(options(2,1,n))/5)*5,4],..

sign(options(2,1,n))); //zero col Q4

options(4,:,n) = setNeg([ceil(abs(options(1,1,n))/5)*5,2],..

sign(options(1,1,n))); //zero col Q2

//### grid(i) and 1 from VE

options(5,:,n) = tempgrid(i,:); //quadrant 4 element

options(6,:,n) = inters(tempgrid(i,:), focus); //virtual element in Q3

options(7,:,n) = setNeg([modulo(abs(options(6,1,n)),5)+20, 1],..

sign(options(5,1,n))); //zero row Q1

options(8,:,n) = setNeg([modulo(abs(options(7,1,n)),5)+20, 2],..

sign(options(6,1,n))); //zero row Q2

options(:,:,n) = setNeg(options(:,:,n),neg); //Reintroduce the negative

n = n + 1;

//##

// Focus and 1 from VE

options(1,:,n) = focus; //quadrant 1 element

options(2,:,n) = inters(tempgrid(i,:), focus); //virtual element in Q3

options(3,:,n) = setNeg([ceil(abs(options(2,1,n))/5)*5,4],..

sign(options(2,1,n))); //zero col Q4

options(4,:,n) = setNeg([ceil(abs(options(1,1,n))/5)*5,2],..

sign(options(1,1,n))); //zero col Q2

//### Grid(i) and -1 from VE

options(5,:,n) = tempgrid(i,:); //quadrant 4 element

options(6,:,n) = setNeg(inters(tempgrid(i,:), focus),-1); //virtual element in Q3

options(7,:,n) = setNeg([modulo(abs(options(6,1,n)),5)+20, 1], sign(options(5,1,n))); //zero row Q1

options(8,:,n) = setNeg([modulo(abs(options(7,1,n)),5)+20, 2], sign(options(6,1,n))); //zero row Q2

options(:,:,n) = setNeg(options(:,:,n),neg);

n = n + 1;

else //focus and grid(i) are opposite signs

neg = sign(focus(1)); focus(1) = abs(focus(1)); //-1*neg = sign of tempgrid(i,1)

tempgrid = abs(grid); //need absolute value for calculations

options(1,:,n) = focus; //quadrant 1 element

options(2,:,n) = inters(focus, tempgrid(i,:)); //virtual element in Q2

options(3,:,n) = [modulo(tempgrid(i,1)-1,5)+21,4]; //zero row/column Q4

options(4,:,n) = [modulo(focus(1)-1,5)+21,3]; //zero row/column Q3

options(1:4,:,n) = setNeg(options(1:4,:,n),-1);

//###

options(5,:,n) = tempgrid(i,:); //quadrant 4 element

options(6,:,n) = inters(focus, tempgrid(i,:)); //virtual element in Q2

options(7,:,n) = [ceil(focus(1)/5)*5,1]; //zero row/column Q1

options(8,:,n) = [ceil(tempgrid(i,1)/5)*5,3]; //zero row/column Q3

options(:,:,n) = setNeg(options(:,:,n),neg);

n = n + 1;

//##

43

//##

options(1,:,n) = focus; //quadrant 1 element

options(2,:,n) = setNeg(inters(focus, tempgrid(i,:)),-1); //virtual element in Q2

options(3,:,n) = [modulo(tempgrid(i,1)-1,5)+21,4]; //zero row/column Q4

options(4,:,n) = setNeg([modulo(focus(1)-1,5)+21,3],-1); //zero row/column Q3

//###

options(5,:,n) = setNeg(tempgrid(i,:),-1); //quadrant 4 element

options(6,:,n) = inters(focus, tempgrid(i,:)); //virtual element in Q2

options(7,:,n) = setNeg([ceil(focus(1)/5)*5,1],-1); //zero row/column Q1

options(8,:,n) = [ceil(tempgrid(i,1)/5)*5,3]; //zero row/column Q3

options(:,:,n) = setNeg(options(:,:,n),neg);

n = n + 1;

//Now we also include the "transpose" of this arrangement

//where the virtual element is in quadrant 3 instead

//At this point, all T1DMs have the pattern original element

//virtual element, zero element, zero element

options(1,:,n) = focus; //quadrant 1 element

options(2,:,n) = inters(tempgrid(i,:), focus); //virtual element in Q3

options(3,:,n) = [ceil(abs(options(2,1,n))/5)*5*..

sign(options(2,1,n)),4]; //zero col Q4

options(4,:,n) = [ceil(abs(options(1,1,n))/5)*5*..

sign(options(1,1,n)),2]; //zero col Q2

options(1:4,:,n) = setNeg(options(1:4,:,n),-1);

//###

options(5,:,n) = tempgrid(i,:); //quadrant 4 element

options(6,:,n) = inters(tempgrid(i,:), focus); //virtual element in Q3

options(7,:,n) = setNeg([modulo(abs(options(6,1,n)),5)+20, 1],..

sign(options(5,1,n))); //zero row Q1

options(8,:,n) = setNeg([modulo(abs(options(7,1,n)),5)+20, 2],..

sign(options(6,1,n))); //zero row Q2

options(:,:,n) = setNeg(options(:,:,n),neg);

n = n + 1;

//##

options(1,:,n) = focus; //quadrant 1 element

options(2,:,n) = setNeg(inters(tempgrid(i,:),focus),-1); //virtual element in Q3

options(3,:,n) = [ceil(abs(options(2,1,n))/5)*5*..

sign(options(2,1,n)),4]; //zero col Q4

options(4,:,n) = [ceil(abs(options(1,1,n))/5)*5*..

sign(options(1,1,n)),2]; //zero col Q2

//###

options(5,:,n) = setNeg(tempgrid(i,:),-1); //quadrant 4 element

options(6,:,n) = inters(tempgrid(i,:), focus); //virtual element in Q3

options(7,:,n) = setNeg([modulo(abs(options(6,1,n)),5)+20, 1],..

sign(options(5,1,n))); //zero row Q1

options(8,:,n) = setNeg([modulo(abs(options(7,1,n)),5)+20, 2],..

sign(options(6,1,n))); //zero row Q2

options(:,:,n) = setNeg(options(:,:,n),neg);

n = n + 1;

end

end

end

for i = 1:(n-1)

if(numberOfElements(options(:,:,i)) <> 8)

disp("Error: incorrect options formed in FindTypeOneMatch")

disp(options(:,:,i),"incorrect options:")

disp(grid, "original grid:")

disp(i, "Option #:")

pause;

end

end

endfunction

//Finds the intersection of two elements (with their indices and quadrants given) A and B

//If A is Q1 and B is Q4, this returns Q2; other way around returns Q3.

//Priority: Same, Diag, Row, Col

function[index] = inters(A, B)

neg = sign(A(1));

A = abs(A); B = abs(B);

if (A(2) == 1 & B(2) == 4) then

index = [neg*(floor((A(1)-1)/5)*5 + modulo((B(1)-1),5)+1),2];

elseif (A(2) == 4 & B(2) == 1) then

index = [neg*(floor((A(1)-1)/5)*5 + modulo((B(1)-1),5)+1),3];

end

//Sign(A) is always the sign of the result, because if we have these two diagonals, the

//final arrangement must be same or rows. index is always on the same row as A, so we use

//A’s sign

//Frequently, this handles "sanitized" inputs with no negatives--in this case, it will just

//return the positive anyway

endfunction

//Row is the element that is going to be swapped

//A and B are the elements whose intersection it is on.

//Assumes that A and B are in quadrants 1 and 4 (not necessarily respectively)

//and that row is in quadrant 2 or 3

//I don’t know that this is actually useful

function[swapRow] = swapInters(row,A,B)

if (row(2) == 2) then

newQuadrant = 3;

elseif (row(2) == 3) then

newQuadrant = 2;

end

firstInters = inters(A,B);

44

secondInters = inters(B,A);

if abs(firstInters(1)) == abs(row(1)) then

swapRow = [secondInters(1), newQuadrant];

elseif abs(secondInters(1)) == abs(row(1)) then

swapRow = [firstInters(1), newQuadrant];

else

swapRow = 999999; //error

end

endfunction

// Type 2:

//Two elements in the same quadrant on the same row/col;

//create a virtual element along that row/col in the oter quadrant along it.

//Match each element with this virtual element, then both with the opposite zero row/col

//this assumes that elements do not count each other for row score--

//each pair only occurs once, when the first element counts the second, not the other way around

//rows contains the two elements that share a row/col and a quadrant, though we double check this

//Shrunk to fit paper copies, comments may refer to lines above themselves

function[options] = findTypeTwoMatch(rows)

if (rows(1,2) <> rows(2,2)) then

disp("error: element quadrants do not match")

pause

end

if (rows(1,:) == rows(2,:)) then

disp("error: two identical elements")

pause

end

if rows(1,2) == 1 then

vquad = 2;

elseif rows(1,2) == 4 then

vquad = 3;

else

disp("Error: wrong quadrant in unmatched element")

pause

end

n = 1;

if (ceil(rows(1,1)/5) == ceil(rows(1,1)/5)) then //elements are in the same row

for i = 1:4

if (sign(rows(1,1)) == sign(rows(2,1))) then //signs are the same

//signs are the same (assume both are positive, setNeg handles it)

neg = sign(rows(1,1)); temprows = abs(rows);

//rows(1) and -1 from VE

options(1,:,n) = temprows(1,:) //original element

options(2,:,n) = setNeg([floor((temprows(1,1)-1)/5)+i, vquad], -1)

//virtual element

options(3,:,n) = [20+i, 5-temprows(1,2)] //opposite quadrant zero row

options(4,:,n) = setNeg([21+modulo(temprows(1,1)-1,5), 5-vquad], -1)

//opposite to virtual element, zero row

//### rows(2) and 1 from VE

options(5,:,n) = temprows(2,:) //original element

options(6,:,n) = [floor((temprows(1,1)-1)/5)+i, vquad] //virtual element

options(7,:,n) = [20+i,5-temprows(1,2)]

//opposite quadrant zero row

options(8,:,n) = [21+modulo(temprows(2,1)-1,5), 5-vquad]

//opposite to virtual element, zero row

options(1:8,:,n) = setNeg(options(:,:,n),neg);

n = n + 1;

//##

//##

//Rows(1) and 1 from VE

options(1,:,n) = temprows(1,:);

//original element

options(2,:,n) = [floor((temprows(1,1)-1)/5)+i, vquad];

//virtual element

options(3,:,n) = [20+i, 5-temprows(1,2)];

//opposite quadrant zero row

options(4,:,n) = [21+modulo(temprows(1,1)-1,5), 5-vquad];

//opposite to virtual element, zero row

//### rows(2) and -1 from VE

options(5,:,n) = temprows(2,:); //original element

options(6,:,n) = setNeg([floor((temprows(1,1)-1)/5)+i, vquad], -1);

//virtual element

options(7,:,n) = [20+i,5-temprows(1,2)]; //opposite quadrant zero row

options(8,:,n) = setNeg([21+modulo(temprows(2,1)-1,5), 5-vquad], -1);

//opposite to virtual element, zero row

options(1:8,:,n) = setNeg(options(:,:,n),neg);

n = n + 1;

else //signs are different

neg = sign(rows(1,1));

temprows = abs(rows);

//signs are opposite (assume rows(1,1) is positive, setNeg handles it)

//rows(1) and -1 from VE (1 neg, 1 pos)

options(1,:,n) = temprows(1,:); //original element

options(2,:,n) = setNeg([floor((temprows(1,1)-1)/5)+i, vquad], -1);

//virtual element

options(3,:,n) = [20+i, 5-temprows(1,2)]; //opposite quadrant zero row

options(4,:,n) = setNeg([21+modulo(temprows(1,1)-1,5), 5-vquad], -1);

//opposite to virtual element, zero row

//### rows(2) and 1 from VE (1 neg, 1 pos)

options(5,:,n) = setNeg(temprows(2,:), -1); //original element

options(6,:,n) = [floor((temprows(1,1)-1)/5)+i, vquad]; //virtual element

options(7,:,n) = setNeg([20+i,5-temprows(1,2)], -1); //opposite quadrant zero row

45

options(8,:,n) = [21+modulo(temprows(2,1)-1,5), 5-vquad];

//opposite to virtual element, zero row

options(1:8,:,n) = setNeg(options(1:8,:,n), neg);

n = n + 1;

//##

//##

//Rows(1) and 1 from VE (both positive)

options(1,:,n) = temprows(1,:) //original element

options(2,:,n) = [floor((temprows(1,1)-1)/5)+i, vquad]; //virtual element

options(3,:,n) = [20+i, 5-temprows(1,2)]; //opposite quadrant zero row

options(4,:,n) = [21+modulo(temprows(1,1)-1,5), 5-vquad];

//opposite to virtual element, zero row

//### rows(2) and -1 from VE (both negative)

options(5,:,n) = setNeg(temprows(2,:), -1); //original element

options(6,:,n) = setNeg([floor((temprows(1,1)-1)/5)+i, vquad], -1);

//virtual element

options(7,:,n) = setNeg([20+i,5-temprows(1,2)], -1);

//opposite quadrant zero row

options(8,:,n) = setNeg([21+modulo(temprows(2,1)-1,5), 5-vquad], -1);

//opposite to virtual element, zero row

options(1:8,:,n) = setNeg(options(:,:,n), neg);

n = n + 1;

end

end

elseif (modulo(rows(1,1)-1,5) == modulo(rows(2,1)-1,5)) then //elements are in the same column

for i = 1:4

if (sign(rows(1,1)) == sign(rows(2,1))) then

//same signs

neg = sign(rows(1,1)); temprows = abs(rows);

//always assume element (1,1) is positive

// (+) rows(1) and -1 from VE

options(1,:,n) = temprows(1,1); //original element

options(2,:,n) = setNeg([ceil(temprows(1,1)/5)-4, vquad],-1); //virtual element

options(3,:,n) = [(i*5)-4, 5-temprows(1,2)]; //zero entry, opposite original

options(4,:,n) = setNeg([modulo(temprows(1,1)-1,5)+1 + (i-1)*5, 5 - vquad],-1);

//zero entry

//### (+) rows(2) and 1 from VE

options(5,:,n) = temprows(2,1); //original element

options(6,:,n) = [ceil(temprows(2,1)/5)-4, vquad]; //virtual element

options(7,:,n) = [(i*5)-4, 5-temprows(1,2)]; //zero entry, opposite original

options(8,:,n) = [modulo(temprows(1,1)-1,5)+1 + (i-1)*5, 5 - vquad] //zero entry, opposite virtual

options(1:8,:,n) = setNeg(options(:,:,n),neg);

//we assumed (1,1) was positive, this fixes it

n = n + 1;

//##

//##

//(+)Rows(1) and 1 from VE

options(1,:,n) = temprows(1,1); //original element

options(2,:,n) = [ceil(temprows(1,1)/5)-4, vquad]; //virtual element

options(3,:,n) = [(i*5)-4, 5-temprows(1,2)]; //zero entry, opposite original

options(4,:,n) = [modulo(temprows(1,1)-1,5)+1 + (i-1)*5, 5 - vquad]

//zero entry, opp virtual

//### (+)rows(2) and -1 from VE

options(5,:,n) = temprows(2,1); //original element

options(6,:,n) = setNeg([ceil(temprows(2,1)/5)-4, vquad], -1); //virtual element

options(7,:,n) = [(i*5)-4, 5-temprows(1,2)]; //zero entry, opposite original

options(8,:,n) = setNeg([modulo(temprows(1,1)-1,5)+1 + (i-1)*5, 5 - vquad], -1)

//zero entry

options(1:8,:,n) = setNeg(options(:,:,n),neg);

n = n + 1;

else

//different signs

neg = sign(rows(1,1)); temprows = abs(rows);

//rows(1) and -1 from VE

options(1,:,n) = temprows(1,1); //original element

options(2,:,n) = [ceil(temprows(1,1)/5)-4, vquad]; //virtual element

options(3,:,n) = [(i*5)-4, 5-temprows(1,2)]; //zero entry, opposite original

options(4,:,n) = [modulo(temprows(1,1)-1,5)+1 + (i-1)*5, 5 - vquad]

//zero entry, opp virtual

//### (-)rows(2) and 1 from VE

options(5,:,n) = temprows(2,1); //original element

options(6,:,n) = [ceil(temprows(2,1)/5)-4, vquad]; //virtual element

options(7,:,n) = [(i*5)-4, 5-temprows(1,2)]; //zero entry, opposite original

options(8,:,n) = [modulo(temprows(1,1)-1,5)+1 + (i-1)*5, 5 - vquad]

//zero entry, opp virtual

options(:,:,n) = setNeg(options(:,:,n),neg);

n = n + 1;

//##

//##

//Rows(1) and 1 from VE

options(1,:,n) = temprows(1,1); //original element

options(2,:,n) = [ceil(temprows(1,1)/5)-4, vquad]; //virtual element

options(3,:,n) = [(i*5)-4, 5-temprows(1,2)]; //zero entry, opposite original

options(4,:,n) = [modulo(temprows(1,1)-1,5)+1 + (i-1)*5, 5 - vquad] //zero entry, opp virtual

//### rows(2) and -1 from VE

options(5,:,n) = temprows(2,1); //original element

options(6,:,n) = [ceil(temprows(2,1)/5)-4, vquad]; //virtual element

options(7,:,n) = [(i*5)-4, 5-temprows(1,2)]; //zero entry, opposite original

options(8,:,n) = [modulo(temprows(1,1)-1,5)+1 + (i-1)*5, 5 - vquad] //zero entry, opp virtual

options(1:8,:,n) = setNeg(options(:,:,n),neg);

n = n + 1;

end

46

end

end

endfunction

//Three elements in one quadrant, one the fourth element, in the opposite quadrant

//Now we really need to pay attention to the negatives,

//since one solution square will have nothing in the zero row

function[options] = findTypeThreeMatch(rows)

//rows contains four elements, three in one quadrant, one in the opposite quadrant

//the third element in the quadrant is at the intersection of the other two

rows = t3dmReorder(rows);

//rows(1,:) = element in its own quadrant

//rows(2,:) = element at intersection of 3 and 4

//rows(3,:) = element in same row as 2

//rows(4,:) = element in same column as 2

mainQ = rows(2,2); //quadrant that contains 3 elements

oppQ = 5 - mainQ; //quadrant that contains 1 element

if mainQ == 1 then

horizQ = 2;//quadrant horizontal to the mainQ

elseif mainQ == 4 then

horizQ = 3;

else

disp("Error: screwy quadrants in type 3 match")

disp(rows(2,2))

pause

end

vertQ = 5 - horizQ; //quadrant vertical to the mainQ

neg = sign(rows(1,1));

hneg = sign(rows(3,1));

vneg = sign(rows(4,1));

oRows = rows; //original rows; some of these operations require knowledge of the original signs

absrows = abs(rows); //negatives are otherwise recorded separately

if (sign(rows(1,1)) == sign(rows(2,1))) then

//Same signs on the corners, assume they are positive

options(1, :) = absrows(1,:);

options(2, :) = inters(absrows(1,:), absrows(2,:));

options(3, :) = inters(absrows(2,:), absrows(1,:));

options(4, :) = absrows(2,:);

options(1:4, :) = setNeg(options(1:4,:), neg)

//Second solution square: element #3, the virtual element on the horizontal,

//and two zero-row entries on the vertical

options(5, :) = setNeg(absrows(3,:), hneg);

options(6, :) = setNeg([5*floor(absrows(3,1)/5) + modulo(absrows(1,1)-1,5)+1, horizQ], -1*neg);

options(7, :) = setNeg([20 + modulo(absrows(1,1)-1,5)+1, oppQ], hneg);

options(8, :) = setNeg([20 + modulo(absrows(1,1)-1,5)+1, vertQ], -1*neg);

//Third solution square: element #4, the virtual element on the vertical,

//and two zero-column entries on the horizontal

options(9, :) = setNeg(absrows(4,:), vneg);

options(10,:) = setNeg([5*floor(absrows(1,1)/5) + modulo(absrows(4,1)-1,5)+1, vertQ], -1*neg);

options(11,:) = setNeg([5*ceil(absrows(4,1)/5), horizQ], vneg);

options(12,:) = setNeg([5*ceil(absrows(1,1)/5), oppQ], -1*neg);

else//opposite signs on corners, assume element 1 is positive

//we want elements on the same row to have the same sign

options(1, :) = absrows(1,:);

options(2, :) = inters(rows(1,:), rows(2,:)); //use of rows is necessary,

//as we don’t know which element is in which quadrant

options(3, :) = inters(rows(2,:), rows(1,:));

options(4, :) = setNeg(absrows(2,:),-1);

options(1:4, :) = setNeg(options(1:4,:), neg)

//fix negative signs

if options(2,2) == 2 then

options(2,1) = options(2,1)*(-1);

elseif options(3,2) == 2 then

options(3,1) = options(3,1)*(-1);

end

//Need to find out which one is horizontal to the negative vertQ

if (options(2,2) == vertQ) then

options(2,1) = (-1)*options(2,1);

else

options(3,1) = (-1)*options(3,1);

end

//Second solution square: element #3,

//the virtual element on the horizontal, and two zero-row entries on the vertical

options(5, :) = setNeg(absrows(3,:), hneg); //element#3

options(6, :) = setNeg([5*floor(absrows(3,1)/5) + modulo(absrows(1,1)-1,5)+1, horizQ], -1);

//virtual element

options(7, :) = setNeg([20 + modulo(absrows(1,1)-1,5)+1, oppQ], hneg);

options(8, :) = setNeg([20 + modulo(absrows(1,1)-1,5)+1, vertQ], -1);

//Third solution square: element #4, the virtual element on the vertical,

// and two zero-column entries on the horizontal

options(9, :) = setNeg(absrows(4,:), vneg);

options(10,:) = [5*floor(absrows(1,1)/5) + modulo(absrows(4,1)-1,5)+1, vertQ];

options(11,:) = setNeg([5*ceil(absrows(4,1)/5), horizQ], vneg);

options(12,:) = [5*ceil(absrows(1,1)/5), oppQ];

end

endfunction

//T3DM helper function, gets the array in the right order

function[orderedRows] = t3dmReorder(rows)

//rows contains four elements. This function reorders them such that the

//first element is in its own quadrant,

47

//the second element is the intersection, and the last two are the one sharing a

// row and column with the intersection, respectively.

if rows(1,2) + rows(2,2) + rows(3,2) > 8 then

//if more than one of these are 4, three are in quadrant 4. Else, three are in quadrant 1.

mainQuad = 4;

else

mainQuad = 1;

end

for i = 1:4

if rows(i,2) == 5 - mainQuad then //if this element is the one alone in its quadrant

orderedRows(1,:) = rows(i,:);

rows(i,:) = rows(4,:);

rows(4,:) = [0,0]; //swap the fourth element for the deleted element

end

end

//now only three elements remain, all in the same quadrant

absrows = abs(rows);

for i = 1:3

x = i; y = modulo(i,3)+1; z = modulo(i+1,3)+1;

//x, y, and z are always three different numbers from 1 to 3

if modulo(absrows(x,1),5) <> modulo(absrows(y,1),5) & ..

modulo(absrows(x,1),5) <> modulo(absrows(z,1),5) then

//x shares a row with the intersection

orderedRows(3,:) = rows(x,:);

elseif ceil(absrows(x,1)/5) <> ceil(absrows(y,1)/5) & ..

ceil(absrows(x,1)/5) <> ceil(absrows(z,1)/5) then

//x shares a column with the intersection

orderedRows(4,:) = rows(x,:);

else

orderedRows(2,:) = rows(x,:);

//if x is not in its own row or own column then it must be the intersection

end

end

endfunction

//Four elements, two in each quadrant. Either each pair shares a row or each pair shares a column

//Does not appear in the Strassen algorithm but does appear in other fast matrix mult algorithms

function[options] = findTypeFourMatch(rows)

//First: validate the input

rows = sortByQuadrant(rows);

valid = %f;

absrows = abs(rows)

n = 1;

//Vertical:

if (modulo(absrows(1,1),5) == modulo(absrows(2,1),5) & ..

modulo(absrows(3,1),5) == modulo(absrows(4,1),5)) then

valid = %t;

n = 1;

for i = 1:2

for j = 3:4

//Four different possible locations for the virtual elements--

//for loops determine which two elements are "paired together"

//NOTE for negatives: always makes "same" arrangement when possible,

//otherwise "rows" arrangement

//First solution square, contains the paired elements:

options(1, :, n) = rows(i,:) //Original Element in Q1

options(2, :, n) = [(floor((absrows(i,1)-1)/5)*5 + ..

modulo(absrows(j,1)-1,5) + 1)*sign(rows(i,1)), 2];//virtual element in Q2

options(3, :, n) = [(floor((absrows(j,1)-1)/5)*5 + ..

modulo(absrows(i,1)-1,5) + 1)*sign(rows(j,1)), 3];//virtual element in Q3

options(4, :, n) = rows(j,:) //Original element in Q4

//Second solution square: contains unpaired element from Q1

options(5, :, n) = rows(modulo(i,2)+1,:) //The other Original Element in Q1

options(6, :, n) = [ceil(abs(options(5,1,n))/5)*5*sign(options(5,1,n)),2]; //Zero-col in Q2

options(7, :, n) = [-1*options(3,1,n),options(3,2,n)];

//virtual element in Q3, negative of the other one

options(8, :, n) = [ceil(abs(options(7,1,n))/5)*5*sign(options(7,1,n)),4]; //Zero-col in Q4

//Third solution square: contains unpaired element from Q4

options(9, :, n) = [ceil(ceil(floor((absrows(i,1)-1)/5)*5 + ..

modulo(absrows(j,1)-1,5) + 1)/5)*5*sign(options(2,1,n))*(-1),1] // zero-col element in Q1

options(10,:, n) = [-1*options(2,1,n),2]; //virtual element

options(11,:, n) = [ceil(absrows(modulo(j,2)+3,1)/5)*5*sign(rows(modulo(j,2)+3,1)),3]

// zero-column element in Q3

options(12,:, n) = rows(modulo(j,2)+3,:) //original element in Q4--if j = 3, this = 4

n = n + 1;

end

end

//Horizontal:

elseif (ceil(absrows(1,1)/5) == ceil(absrows(2,1)/5) & ..

ceil(absrows(3,1)/5) == ceil(absrows(4,1)/5)) then

valid = %t;

n = 1;

for i = 1:2

for j = 3:4 //Four different possible locations for the virtual elements--

//for loops determine which two elements are "paired together"

//NOTE for negatives: always makes "same" arrangement when

//possible, otherwise "rows" arrangement

//First solution square, contains the paired elements

options(1, :, n) = rows(i,:) //Original Element in Q1

options(2, :, n) = [(floor((absrows(i,1)-1)/5)*5 + ..

modulo(absrows(j,1)-1,5)+1)*sign(rows(i,1)), 2];//virtual element in Q2

options(3, :, n) = [(floor((absrows(j,1)-1)/5)*5 + ..

48

modulo(absrows(i,1)-1,5)+1)*sign(rows(j,1)), 3];//virtual element in Q3

options(4, :, n) = rows(j,:) //Original element in Q4

//Second solution square: contains unpaired element from Q1

options(5, :, n) = rows(modulo(i,2)+1,:) //Original Element in Q1

options(6, :, n) = [-1*options(2,1,n),options(2,2,n)];//virtual element in Q2

options(7, :, n) = [(modulo(abs(options(5,1,n))-1,5)+21)*..

sign(options(5,1,n)),3]; //Zero-row element in Q3

options(8, :, n) = [(modulo(abs(options(6,1,n))-1,5)+21)*..

sign(options(6,1,n)),4]; //Zero-row element in Q4

//Third solution square: contains unpaired element from Q4

options(9, :, n) = [(modulo(floor((absrows(j,1)-1)/5)*5 +..

modulo(absrows(i,1)-1,5),5) +21)*sign(options(3,1,n))*(-1), 1] // zero-row element in Q1

options(10,:, n) = [(modulo(absrows(modulo(j,2)+3,1)-1,5)+21)*..

sign(rows(modulo(j,2)+3,1)),2] // zero-row element in Q2

options(11,:, n) = [-1*options(3,1,n),options(3,2,n)];

options(12,:, n) = rows(modulo(j,2)+3,:) //if j = 3, this = 4

n = n + 1;

end

end

end

for i = 1:(n-1)

if numberOfElements(options(:,:,i)) <> 12 then

valid = %f;

end

end

if ~valid then

options = -1;

end

endfunction

function[viableGridsExist] = hasViableGrids(options, originals)

maxNumOptions = 0;

o = size(options);

o = o(3); //number of hypermatrices

for i = 1:o

if numberOfElements(options(:,:,i)) > maxNumOptions then

maxNumOptions = numberOfElements(options(:,:,i));

end

end

if (numberOfElements(originals) == 5) & (maxNumOptions == 8) then

viableGridsExist = %f;

else

viableGridsExist = %t;

end

endfunction

//Hydraslayer multiplies the grids and makes makes a

//variant of each initial grid with each of the options,

//essentially multiplying the number of grids by the number of options,

//with the exception of discounted, invalid grids.

//Named because it solves a problem that seemed to create /

//more problems whenever solutions were presented

function[indexGrids] = hydraSlayer(originals, options)

//allGrids = options; //sometimes, an "option" is actually an entire solution,

//so we start with all the option groups as potential solution grids

viableGrids = zeros(16,2,1);

o = size(options); o = o(3); //o = number of sets of options

//Determine which quadrant of originals has the most elements, and how many that is

qcount = [0,0,0,0]’;

ori = numberOfElements(originals);

//calculate how many entries a grid should have

for i = 1:ori

qcount(originals(i,2)) = qcount(originals(i,2)) + 1;

end

elementsPerQuadrant = max(qcount); // max(qcount);

if elementsPerQuadrant < 2 then

elementsPerQuadrant = 2;

//if there is one element in each quadrant, we allow two solution squares

end

n = elementsPerQuadrant

if ~hasViableGrids(options, originals) then

viableGrids = 0;

else

temp = allOptions(options, originals);

if (temp(1,1,1) <> -99) //error code

viableGrids = allOptions(options, originals);

end

end

n = size(size(viableGrids));

if (n(2) == 2)

n = 1;

else

n = size(viableGrids); n = n(3);

end

for k = 1:n

indexGrids(1:4,k) = handleIndexing(viableGrids(:,:,k));

if viableGrids(1,1,1) <> 0 then

49

if indexGrids(4,k) == 0 & viableGrids(13,1,k) <> 0 then

disp("Hydraslayer: Error in indexing discovered")

pause;

end

end

end

endfunction

function[allGrids] = allOptions(options, originals)

allGrids = zeros(16,2,2) //to form it as a hypermatrix

allGrids(1,1,1) = -99; // sometimes, there are no viable grids so this is the error code

s = size(options); s = s(3);

gridCount = 1;

grid1 = zeros(16,2,1);

for i = 1:s

grid1 = options(:,:,i);

if containsOriginals(grid1, originals) then

grid1 = grid1(1:16,:)

allGrids(1:16,:,gridCount) = grid1(1:16,:);

gridCount = gridCount + 1;

continue;

end

for j = (i+1):s

grid2 = addToGrid(grid1, options(:,:,j))

if duplicatesInList(grid2) | numberOfElements(grid2) > 16 then

continue;

elseif (containsOriginals(grid2, originals)) then

grid2 = grid2(1:16,:)

allGrids(:,:,gridCount) = grid2;

gridCount = gridCount + 1;

continue;

end

for k = (j+1):s

grid3 = addToGrid(grid2, options(:,:,k))

if duplicatesInList(grid3) | numberOfElements(grid3) > 16 then

continue;

elseif (containsOriginals(grid3, originals)) then

grid3 = grid3(1:16,:)

allGrids(:,:,gridCount) = grid3;

gridCount = gridCount + 1;

continue;

end

for m = (k+1):s

grid4 = addToGrid(grid3, options(:,:,m))

if duplicatesInList(grid4) | numberOfElements(grid4) > 16 then

continue;

elseif (containsOriginals(grid4, originals)) then

grid4 = grid4(1:16,:)

allGrids(:,:,gridCount) = grid4;

gridCount = gridCount + 1;

continue;

end

end

end

end

end

endfunction

//Adds rows of a 2-column array to the bottom of another array

function[addedGrid] = addToGrid(grid, addition)

g = size(grid); g = g(1);

a = size(addition); a = a(1);

addedGrid = grid;

acount = 1;

for i = 1:g

if (addedGrid(i,:) == [0,0]) & (addition(acount,:) <> [0,0]) then

addedGrid(i,:) = addition(acount,:)

acount = acount + 1;

end

end

bcount = acount;

for i = (g + 1):(g + a - acount - 1)

addedGrid(i,:) = addition(bcount,:)

bcount = bcount + 1;

end

endfunction

//Specifically for counting the number of elements present in a matrix

//(as they are frequently padded with zeros, making the size function inaccurate)

function[trueSize] = numberOfElements(grid)

trueSize = 0;

s = size(grid); s = s(1);

for i = 1:s

if grid(i,:) <> [0,0] then

trueSize = trueSize + 1;

end

end

endfunction

//Tests that each original element is present exactly once

function[originalsExistOnce] = containsOriginals(grid, originals)

originalsExistOnce = %t;

50

g = size(grid); g = g(1);

o = size(originals); o = o(1);

present = zeros(originals(:,1))

//present counts how many of each original element are present

for i = 1:g

for j = 1:o

if (grid(i,:) == originals(j,:)) then

present(j) = present(j) + 1;

end

end

end

for i = 1:o

if (present(i) <> 1) & originals(i,:) <> [0,0] then

originalsExistOnce = %f;

end

end

endfunction

//Takes two lists and checks if any entries are the same

function[duplicatesExist] = containsDuplicates(grid, options)

duplicatesExist = %f;

g = size(grid); g = g(1);

o = size(options); o = o(1);

for i = 1:g

for j = 1:o

//Does not count duplicates appearing in zero-rows or columns

if ((grid(i,:) == options(j,:)) & (modulo(grid(i,1),5) <> 0) & ..

(grid(i,1) < 20) & (grid(i,:) <> [0,0])) then

duplicatesExist = %t

break;

end

end

if (duplicatesExist) then break; end;

end

endfunction

function[duplicatesExist] = duplicatesInList(grid)

duplicatesExist = %f;

g = size(grid); g = g(1);

for i = 1:g

for j = (i+1):g

if (grid(i,:) == grid(j,:) & (modulo(grid(i,1),5) <> 0) & ..

(grid(i,1) < 20) & (grid(i,1) > -20)) then

duplicatesExist = %t

break;

end

end

if (duplicatesExist) then break; end

end

endfunction

//Takes a list of entries in unmatched format and "indexifies" them as up to 4 indices

//Since the indexing function uses a different formatting of data

function[indices] = handleIndexing(grid)

indices = zeros(4,1)

s = numberOfElements(grid);

//disp(grid, "The grid:")

//disp(s, "grid contains this many elements:")

if(modulo(s,4) <> 0) then

disp("Error: incorrect number of entries")

pause

end

for i = 1:4:s

//disp(i, "i = ")

holder = [0,0;0,0];

for j = 0:3

//disp(j, "j = ")

select grid(i+j,2)

case 1 then

holder(1,1) = grid(i+j,1);

case 2 then

holder(1,2) = grid(i+j,1);

case 3 then

holder(2,1) = grid(i+j,1);

case 4 then

holder(2,2) = grid(i+j,1);

end

end

if (holder(1,1) == 0 | holder(1,2) == 0 | holder(2,1) == 0 | holder(2,2) == 0)

disp("Error: improper arrangement of grid elements:")

disp(grid(i:i+3,:))

pause

end

//indices(:,:,ceil(i/4)) = indexify(holder);

indices(ceil(i/4)) = indexify(holder);

end

//disp(indices, "handleIndexing returns")

endfunction

//Does the same thing as handleIndexing, but with indexify2

function[indices] = handleIndexing2(grid)

51

indices = zeros(4,1)

s = numberOfElements(grid);

//disp(grid, "The grid:")

//disp(s, "grid contains this many elements:")

if(modulo(s,4) <> 0) then

disp("Error: incorrect number of entries")

pause

end

for i = 1:4:s

//disp(i, "i = ")

holder = [0,0;0,0];

for j = 0:3

//disp(j, "j = ")

select grid(i+j,2)

case 1 then

holder(1,1) = grid(i+j,1);

case 2 then

holder(1,2) = grid(i+j,1);

case 3 then

holder(2,1) = grid(i+j,1);

case 4 then

holder(2,2) = grid(i+j,1);

end

end

if (holder(1,1) == 0 | holder(1,2) == 0 | holder(2,1) == 0 | holder(2,2) == 0)

disp("Error: improper arrangement of grid elements:")

disp(grid(i:i+3,:))

pause

end

//indices(:,:,ceil(i/4)) = indexify(holder);

indices(ceil(i/4)) = indexify2(holder);

end

//disp(indices, "handleIndexing returns")

endfunction

//Sorts four entries of unmatched in descending order of quadrant and automatically removes zero-rows

//(Quadrant is in column 2 of the matrix)

function[sorted] = sortByQuadrant(unmatched)

s = size(unmatched); //s(1) = number of rows

j = 1;

for k = 1:4

for i = 1:s(1)

if(unmatched(i,2) == k) then

sorted(j,:) = unmatched(i,:);

j = j + 1;

end

end

end

endfunction

function[index] = indexify(solutionRectangle)

negatives = [0, 0; 0, 0;];

negativeIndex = 0;

for i = 1:2

for j = 1:2

if (solutionRectangle(i,j) > 0) then

negatives(i,j) = 1;

elseif (solutionRectangle(i,j) < 0) then

negatives(i,j) = -1;

end;

end;

end;

select negatives

case [1, 1; 1, 1] then

negativeIndex = 1;

case [-1, -1; -1, -1] then

negativeIndex = -1;

case [1, -1; 1, -1] then

negativeIndex = 2;

case [-1, 1; -1, 1] then

negativeIndex = -2;

case [1, 1; -1, -1] then

negativeIndex = 3;

case [-1, -1; 1, 1] then

negativeIndex = -3;

case [1, -1; -1, 1] then

negativeIndex = 4;

case [-1, 1; 1, -1] then

negativeIndex = -4;

else

negativeIndex = 0;

end;

index = sign(negativeIndex)*(abs((solutionRectangle(1,1))*25) + ..

abs(solutionRectangle(2,2)) + (abs(negativeIndex))*(651));

endfunction

function[solutionRectangle] = deindexify(index)

negativeIndex = fix(index/651); //floor does not interact as we want with negative numbers

select abs(negativeIndex)

case 1 then

negatives = sign(negativeIndex)*[1, 1; 1, 1];

case 2 then

52

negatives = sign(negativeIndex)*[1, -1; 1, -1];

case 3 then

negatives = sign(negativeIndex)*[1, 1; -1, -1];

case 4 then

negatives = sign(negativeIndex)*[1, -1; -1, 1];

else

negatives = 0;

end;

index = abs(modulo(index,651)); //remove the negative component of the index

//We need 1 and 4 to calculate indices 2 and 3, we do them first

ind1 = (fix((index-1)/25));

ind4 = (modulo((index-1),25)+1);

ind2 = (modulo((ind4-1),5)+1 + (fix((ind1-1)/5))*5);

ind3 = (modulo((ind1-1),5)+1 + (fix((ind4-1)/5))*5);

solutionRectangle = [ind1, ind2; ind3 ,ind4].*negatives;

//elementwise multiplication to "apply" proper negatives

endfunction

//Runs in 30 minutes (or your algorithm is free)

function[algorithms] = matchSolutions2(solutions)

s = size(solutions); s = s(1);

algCounter = 1; alg = 0;

//brute force algorithm

//get number of solution sets, these will be very large

//sols = zeros(7600)

tempSol = zeros(4,4);

//If the first three solution sets have more than 7 unique solutions then

//all combinations involving them can be skipped

disp(s(1))

timer()

savedComparisons = 0;

completedComparisons = 0;

for i = 1:s

disp(i,"i=")

tempSol = zeros(4,4);

//The size checks at each loop will interrupt valid grids without this reset

if solutions(i,1,1) == 0 then

continue;

else

tempSol(1,1:4) = solutions(i,1:4,1)

end

for j = 1:s

if modulo(j,200) == 0 then

disp(j)

end

tempSol(2,1:4) = [0,0,0,0]; //(this is probably redundant)

tempSol(3,1:4) = [0,0,0,0]; //Reset

tempSol(4,1:4) = [0,0,0,0];

if solutions(j,1,2) == 0 then

continue;

else

tempSol(2,1:4) = solutions(j,1:4,2)

end

n = size(unique(abs(tempSol))); n = n(1);

//n = number of unique solutions

if (n > 8) then

//Obviously, if we already have 8 different indices,

//we can’t add more and end up with fewer than 8

savedComparisons = savedComparisons + s*s;

continue;

end

for k = 1:s

tempSol(3,1:4) = [0,0,0,0]; //(this is probably redundant)

tempSol(4,1:4) = [0,0,0,0]; //Reset

//if modulo(k,100) == 0 then

// disp(k,"k=")

//end

if solutions(k,1,3) == 0 then

continue;

else

tempSol(3,1:4) = solutions(k,1:4,3)

end

n = size(unique(abs(tempSol))); n = n(1);

//n = number of unique solutions

if (n > 8) then

//Obviously, if we already have 8 different indices,

//we can’t add more and end up with fewer than 8

savedComparisons = savedComparisons + s

continue;

end

for h = 1:s

tempSol(4,1:4) = [0,0,0,0]; //this is probably redundant

if solutions(h,1,4) == 0 then

continue;

else

tempSol(4,1:4) = solutions(h,1:4,4)

end

completedComparisons = completedComparisons + 1;

n = size(unique(abs(tempSol))); n = n(1);

//n = number of unique solutions

53

if (n > 8) | (numberOfZeros(tempSol) == 0 & n > 7) then

//We want less than seven solutions, but the zeros in

//the array are counted so really less than eight

continue;

end

// deal with good algorithms

alg(1:4,1:4,algCounter) = tempSol; //"alg" holds the algorithms

algCounter = algCounter + 1;

disp("Algorithm found!")

disp(tempSol)

disp("i,j,k,h =")

disp(h,k,j,i)

disp("##########")

end

end

end

end

disp("Saved comparisons and completed comparisons:")

disp("#######", savedComparisons, "########")

disp("#######", completedComparisons, "########")

algorithms = alg;

endfunction

//de/indexify2 has "improved" interaction with negatives (can ignore certain aspects)

function[index] = indexify2(solutionRectangle)

negatives = [0, 0; 0, 0];

negativeIndex = 0;

//Negatives on these quadrants are always arbitrary and can be ignored

solutionRectangle(1,2) = abs(solutionRectangle(1,2));

solutionRectangle(2,1) = abs(solutionRectangle(2,1));

for i = 1:2

if abs(solutionRectangle(i,i)) >= 21 | modulo(solutionRectangle(i,i),5) == 0

solutionRectangle(i,i) = abs(solutionRectangle(i,i))*sign(solutionRectangle(3-i,3-i));

//For zero-row/col entries, the sign does not matter,

//so we set it equal to the other sign to minimize the

//index and make the translation consistent

end

end

negatives = sign(solutionRectangle);

select negatives

case [1, 1; 1, 1] then

negativeIndex = 1;

case [-1, 1; 1, -1] then

negativeIndex = -1;

case [1, 1; 1, -1] then

negativeIndex = 2;

case [-1, 1; 1, 1] then

negativeIndex = -2;

else

disp("Error determining negatives in indexify2")

pause;

end;

index = sign(negativeIndex)*(abs((solutionRectangle(1,1))*25) + ..

abs(solutionRectangle(2,2)) + (abs(negativeIndex))*(651));

endfunction

function[solutionRectangle] = deindexify2(index)

negativeIndex = fix(index/651); //floor does not interact as we want with negative numbers

select negativeIndex

case 1 then

negatives = [1, 1; 1, 1];

case 2 then

negatives = [1, 1; 1, -1];

case -1 then

negatives = [-1, 1; 1, -1];

case -2 then

negatives = [-1, 1; 1, 1];

case 0 then

negatives = [0,0;0,0];

else //invalid index

negatives = 0;

end;

index = abs(modulo(index,651)); //remove the negative component of the index

//We need 1 and 4 to calculate indices 2 and 3, we do them first

ind1 = (fix((index-1)/25));

ind4 = (modulo((index-1),25)+1);

ind2 = (modulo((ind4-1),5)+1 + (fix((ind1-1)/5))*5);

ind3 = (modulo((ind1-1),5)+1 + (fix((ind4-1)/5))*5);

if modulo(ind1,5) == 0 | abs(ind1) > 20 then

negatives(1,1) = 1;

end

if modulo(ind4,5) == 0 | abs(ind4) > 20 then

negatives(2,2) = 1;

end

solutionRectangle = [ind1, ind2; ind3 ,ind4].*negatives;

//elementwise multiplication to "apply" proper negatives

endfunction

function[reindexed] = reindexify(originalIndex)

num = prod(size(originalIndex));

reindexed = zeros(originalIndex);

54

for i = 1:num

if num > 10000 & modulo(i,2000) == 0 then

disp(num,"of",i) //progress report

end

if originalIndex(i) <> 0 then

reindexed(i) = indexify2(deindexify(originalIndex(i)));

end

end

endfunction

//Takes an N x 4 x 4 hypermatrix of processed indices--sorts it and removes duplicate rows

function[sorted] = sortAndTrim(processed)

sortpro = gsort(processed,"lr","d");

s = size(sortpro); s = s(1);

for j = 1:4

for i = 2:s

if sortpro(i,1:4,j) == sortpro(i-1,1:4,j) then

sortpro(i-1,1:4,j) = [0,0,0,0];

end

end

end

for j = 1:4

k = 1;

disp(j,"j=")

for i = 1:s

if sortpro(i,1,j) <> 0 then

sorted(k,1:4,j) = sortpro(i,1:4,j);

//removes all the scattered zero rows (wherever they may be)

k = k + 1;

end

end

end

endfunction

//Main

stacksize(100000000)

solutions = 0;

timer();

for i = 1:4

all = allGridsForE(i);

//timer()

s = size(all); s = s(3);

for j = 1:s

if (modulo(j,25) == 0) then //change this to change progess update frequency

disp("###########",j,"###########") //Progress counter

//timer()

end

temp = findAllGrids(all(:,:,j));

t = size(temp);

solutions(1:t(1),1:t(2),j,i) = temp;

end

end

findGridsTime = timer()

processed = processSolutions(solutions);

disp("time for processSolutions:")

processSolutionsTime = timer()

reprocessed = reindexify(processed);

reinTime = timer()

trimmed = sortAndTrim(reprocessed);

sortTrimTime = timer()

myAlgs = matchSolutions2(trimmed)

disp("Time for matchSolutions2:")

matchSolutionsTime = timer()

