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Combing Genetic and Photo-Identification Data to Improve Abundance Estimates for the 

North Atlantic Right Whale 

By: Kayla Fitzgerald 

Abstract 

 Accurate abundance estimates are important for the management of species. Many abundance 
estimates are based off of capture-mark-recapture analyses which have several limitations that can 
reduce the accuracy of abundance estimates. By integrating pedigrees into abundance estimates, the 
accuracy of these estimates can be improved. In this study, a method created by Creel and Rosneblatt 
(2013) was adapted and used to estimate abundance of the North Atlantic Right Whale (Eubalaena 
glacialis). Both genetic and sightings data, obtained from the North Atlantic Right Whale Consortium, 
were used to estimate abundance. This method is compared to the photo-identification method typically 
used to estimate abundance for this species. The results of this study suggest that the photo-
identification method for this species is actually more accurate than other researchers have previously 
believed.  
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Introduction 

Abundance Estimates 

Accurate abundance estimation is crucial for the management and conservation of populations. 

Abundance estimates are the primary criterion upon which a population’s status is based when being 

considered for listing under endangered species legislation (e.g., the Species At Risk Act in Canada, or the 

Endangered Species Act in the U.S.), and therefore is key in determining how a population is prioritized 

with respect to recognition and funding for conservation. Moreover, accurate abundance estimates are 

required to determine trends over time, such as identifying if a population is increasing or decreasing. 

Reliably detecting these trends is key for developing new management or conservation plans, as well as 

when evaluating the effectiveness of existing plans (e.g. Caughley & Gunn, 1996). 

 Given the importance of abundance estimation, a variety of methods have been used and/or 

developed. For species where specific individuals cannot be recognized (either due to a lack of 

distinguishing features, or because population sizes are too large to make this practical) “distance 

sampling” approaches – such as quadrat or line-transect sampling – are often used (Buckland et al., 

2001; Krebs, 1989). For species where individuals can be recognized, based either on naturally occurring 

physical characteristics, or on artificial “marks”, capture-mark-recapture (CMR) methods are often used 

for abundance estimation (e.g. Amstrup, McDonald, & Manly, 2005; Krebs, 1989).  

 For CMR abundance estimation, the methods used to identify individuals have changed over 

time. Originally, most such studies required the placement of artificial “marks” on individuals, such as ear 

tags for large mammals and leg bands for birds (e.g. Hestbeck, Nichols, & Malecki, 1991; Rice & Harder, 

1977). Although these methods are still often used, it is increasingly being recognized that individuals 

across a wide range of species can be identified based on naturally-occurring characteristics. This allows 
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mark-recapture studies to be conducted without requiring the physical capture of individuals (instead, 

just taking photographs of the identifying features) (e.g. Langtimm et al., 2004; Wilson, Hammond, & 

Thompson, 1999). Even more recently, the increasing ease with which individual-specific genetic profiles 

can be obtained from small sources of DNA has made it possible (and sometimes more efficient) to use 

genetic data as the primary means of individual identification, and thus the basis for CMR analyses 

(Mowat & Strobeck, 2000; Palsboll et al., 1997; Petit & Valiere, 2006). 

Pedigree-Informed Abundance Estimation 

Many species can be difficult to monitor through typical CMR methods. This is particularly true 

for species who have a wide distribution which makes it difficult to “capture” an adequate 

representation of the population. For example, CMR studies require that “tagged” individuals are able to 

be re-sighted (González-Vicente, Díaz, Mallol, & Goñi, 2012). However, in some instances, these tags may 

be lost from the tagged individual(s) (González-Vicente et al., 2012). González-Vicente et al. (2012) 

explored these effects in European spiny lobsters (Palinurus elephas) which lose any tag that may have 

been attached to the original shell when individuals undergo molting. These authors illustrate that the 

loss of tags result in individuals not being identified as “tagged” which leads to overestimates of 

abundance. For cases where photo-identification can replace the need of physical tags, CMR studies still 

require a “recapture” period, which may be difficult for species who have a wide distribution. For 

example, Gore et al. (2016) used CMR methods and photo-identification to estimate the abundance of a 

population of basking sharks (Cetorhinus maximus). However, as a result of limited recaptures resulting 

from the wide distribution of the population, accurate abundance estimates were not possible for the 

population as a whole (Gore, Frey, Ormond, Allan, & Gilkes, 2016). However, when genetic relationships 

and field data are available, these data can be combined to gain a better understanding of populations 

(Israel & May, 2010). 
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Pedigrees are a valuable source of information for monitoring populations, and provide 

information to aid in understanding population dynamics (e.g., Frasier et al., 2007). Pedigrees use 

genetics analyses to understand relationships among individuals. Pedigree analyses combine field data 

and genetic data to assess the genetic relationships among individuals (Frasier, Hamilton, et al., 2007). 

The use of pedigrees can eliminate some of the issues experienced with typical CMR studies by providing 

a means to infer the presence of individuals that have not been directly “tagged”. For example, Pearse et 

al. (2001) conducted a CMR study of painted turtles (Chrysemys picta) using genetic fingerprints as 

individual “marks”. By genetically sampling some individuals within the population, including offspring 

and one known parent, the second parent could be genetically inferred (Pearse, Eckerman, Janzen, & 

Avise, 2001). This information was then used to estimate the effective number of breeding individuals in 

the population (Pearse et al., 2001). Similarly, Frasier et al. (2007) conducted parentage analysis of the 

endangered North Atlantic right whale (Eubalaena glacialis) – a species so well documented that it has 

conventionally been thought that all individuals have been identified. However, their study found that a 

potentially large number of North Atlantic right whales had gone undetected by photo-identification-

CMR surveys. By using genetic data of female-calf pairs, pedigree analyses allowed them to infer the 

presence of a substantial number of undetected males that must exist within the population (Frasier, 

Hamilton, et al., 2007). Where typical CMR surveys left these males undetected, pedigree analyses could 

include them in the abundance estimates. With the pedigree information, these elusive individuals did 

not have to be seen to be included in abundance estimates.  

Introduction to methods 

One recent advancement in the inference of the existence of individuals through pedigrees is 

that by Creel and Rosenblatt (2013). Previous studies using pedigrees to estimate abundance have been 

limited to the estimation of the number of breeders. The method developed by Creel and Rosenblatt 
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allows overall abundance estimates to be obtained through pedigree reconstruction. This method is 

based on data from three main categories of individuals: (1) those that are directly sampled (Ns); (2) 

those that are inferred through pedigree analysis (Nin); and (3) those that are invisible to the pedigree 

analysis because they are neither sampled nor inferred (Niv). The sum of these values results in a 

pedigree-informed estimate of abundance. 

 

𝑁𝑁� =  𝑁𝑁𝑠𝑠 +  𝑁𝑁𝑖𝑖𝑖𝑖 +  𝑁𝑁𝑖𝑖𝑖𝑖     Equation 1 

 

Through field work, the number of individuals directly sampled (Ns) can be directly counted. 

Through reconstruction of pedigrees from sampled offspring, the existence of one or more non-sampled 

parents can be inferred, resulting in a count for Nin. The crux of this method is to estimate Niv - the 

number of individuals that are invisible to pedigree reconstruction. These represent two types of 

individuals: (1) non-sampled non-breeders, which includes adults that weren’t sampled and didn’t breed, 

as well as individuals not yet of reproductive age that have not been sampled; and (2) breeders that 

were neither sampled nor inferred. As shown below, these quantities can be estimated from the data. 

To estimate the number of non-sampled non-breeders (Nnsnb), we first need to estimate the 

probability of an individual being sampled. If we make the assumption that sampling patterns are the 

same among breeders and non-breeders, then we can use data from directly sampled and inferred 

breeders to estimate the probability of an individual being sampled. Specifically, the probability of being 

sampled (Ps) should equal the number of sampled breeders (Bs) divided by the total number of breeders 

(directly sampled, Bs, and inferred, Nin). 
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𝑃𝑃𝑠𝑠 =  
𝐵𝐵𝑠𝑠

𝐵𝐵𝑠𝑠 +  𝑁𝑁𝑖𝑖𝑖𝑖
       Equation 2 

Next, we need to estimate the probability of an individual being a breeder (Pb). This can be 

estimated as the total number of breeders (sampled and inferred) divided by the total number of 

sampled individuals. Specifically, 

 

𝑃𝑃𝑏𝑏 =  
𝐵𝐵𝑠𝑠 +  𝑁𝑁𝑖𝑖𝑖𝑖

𝑁𝑁𝑠𝑠
       Equation 3 

 

The probably of an individual not being a breeder (Pnb) is then calculated as 1 – Pb.   

We can use these data to estimate the number of non-sampled individuals (Nns). Specifically, if 

we know the number of sampled individuals (Ns), and we have an estimate of the probability of being 

sampled (Ps), then it holds that Ns = Ps · X, where X is the total population size. Solving for X results in (Ns 

/Ps). Although solving for X is our ultimate goal, and we could do so here, we can also extend the data 

further to obtain more information about the population. Therefore, instead of estimating population 

size at this stage, here we just use these data to estimate number of non-sampled individuals (Nns), 

which would be X – Ns. Combined, this results in: 

 

𝑁𝑁𝑛𝑛𝑛𝑛 =  
𝑁𝑁𝑠𝑠
𝑃𝑃𝑠𝑠
−  𝑁𝑁𝑠𝑠               Equation 4 

 

The number of non-sampled non-breeders (Nnsnb) can then be calculated by multiplying the 

number of non-sampled individuals (Nns) by the probability of an individual not breeding (Pnb): 
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𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑁𝑁𝑛𝑛𝑛𝑛  ×  𝑃𝑃𝑛𝑛𝑛𝑛        Equation 5 

 

The other category of individuals who are invisible to pedigree reconstruction are non-sampled 

non-inferred breeders (Nbnsni). First, an estimate of the number of non-sampled breeders (Nbns) can be 

obtained by multiplying the estimate of the number of non-sampled individuals (Nns) from above by the 

probability of breeding (Pb): 

 

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏 =  𝑁𝑁𝑛𝑛𝑛𝑛  × 𝑃𝑃𝑏𝑏        Equation 6 

 

This includes all non-sampled breeders, and therefore includes those that have already been 

inferred (Nin). Therefore, the number of non-sampled non-inferred breeders (Nbnsni) can be obtained by:  

 

𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 =  𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏 −  𝑁𝑁𝑖𝑖𝑖𝑖       Equation 7 

 

The estimate for the total number of individuals invisible to pedigree reconstruction (Niv) is then: 

 

𝑁𝑁𝑖𝑖𝑖𝑖 =  𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 +  𝑁𝑁𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏      Equation 8 

 

This can be used, along with Ns and Nin, in equation 1, to obtain a pedigree-informed estimate of 

abundance that includes non-breeders as well as breeders. 

The North Atlantic Right Whale 

The North Atlantic right whale (Eubalaena glacialis) is a highly endangered species (Kraus & 

Rolland, 2007a). This is primarily the result of a high rate of anthropogenic mortality and a reproductive 
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rate that is three-times lower than their known potential (Kraus & Rolland, 2007a). Although the 

population showed a very slow rate of increase (~2%/year) in the past (Kraus & Rolland, 2007b), it is now 

declining (Pace, Corkeron, & Kraus, 2017). This species inhabits a highly urbanized environment, which 

results in boat collisions and fishing gear entanglements being a prominent cause of mortality (Kraus & 

Rolland, 2007b; Pace et al., 2017). While females are capable of giving birth to one calf every three years 

(Hamilton, Knowlton, & Mar, 2007), intervals between births are frequently more than 8 years, and 

many females have never reproduced (Cole et al., 2013). A combination of factors are believed to be 

affecting this low fertility rate, such as: low genetic diversity, oceanographic processes (which influence 

prey availability and aggregation), disease, stressors from urbanization, and loss of critical habitat (Kraus 

& Rolland, 2007a; Pace et al., 2017).  

The true level of understanding regarding the right whale population is controversial. Some 

researchers believe that the data available accurately represent the species as a whole, while others are 

more skeptical (Frasier, Hamilton, et al., 2007; Kraus & Rolland, 2007a). For example, the photo-

identification data suggests that the majority of individuals have been identified, because few adults are 

added to the photo-identification catalog, and most “new” individuals represent known births (Hamilton 

et al., 2007). Additionally, based on over 40 years of sightings histories, 5 critical habitats have been 

identified, ranging from the Gulf of Mexico to Iceland (Kraus & Rolland, 2007a). These habitats include: 

(1) Southeast USA as the only known calving ground; (2) Cape Cod Bay as a winter and spring feeding 

ground; (3) the Great South Channel as a spring feeding ground; (4) the Bay of Fundy as a summer 

feeding ground, and as a summer nursery ground for females with lactating calves; and (5) Roseway 

Basin as a summer feeding area (Kraus & Rolland, 2007a). Each year, the majority of photo-identified 

individuals are sighted at least once during surveys of these critical habitats. Individuals have been 
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sighted in other habitats (e.g. Jeffery’s ledge), but these areas are not frequently surveyed as a result of 

funding and surveying limitations (Kraus & Rolland, 2007a).  

The researchers that are more sceptical, however, point out that some data suggests that there 

may be additional individuals, and/or habitats, that have gone unidentified (Frasier, Hamilton, et al., 

2007; Kraus & Rolland, 2007a). For example, during the winter months, right whale habitat use patterns 

are not well understood (Kraus & Rolland, 2007a; Schaeff, Kraus, Brown, & White, 1993). This is a crucial 

period of the right whale life cycle as it includes both mating and birthing periods (Cole et al., 2013). 

While new mothers are usually seen with calves off of the coast of Florida, other individuals of the 

population are not typically sighted during the winter and their location is unknown (Brillant, 

Vanderlaan, Rangeley, & Taggart, 2015; Brown et al., 2001; Kraus & Rolland, 2007a). The mating ground 

of this population has yet to be discovered (but some data suggest it is in the Gulf of Maine (Cole et al., 

2013). These are crucial aspects of the right whale life cycle that have yet to be discovered (Frasier, 

Hamilton, et al., 2007; Kraus, Pace III, & Frasier, 2007).  

There also exists a group of individuals who are sighted so infrequently they are commonly 

referred to as “irregular” whales (Kraus & Rolland, 2007a). These individuals can go multiple years 

without being sighted, suggesting that for every season there are critical habitats yet to be identified 

(Kraus & Rolland, 2007a). These irregular whales include a number of females that do not take their 

calves to the common nursery area, the Bay of Fundy (Kraus & Rolland, 2007a). Irregular calving females 

have been speculated to use the Gulf of Saint Lawrence (Kraus & Rolland, 2007a) and/or Jeffery’s ledge 

(Weinrich, Kenney, & Hamilton, 2000) but this has not been confirmed (Cole et al., 2013). Recent 

evidence suggests that nursery habitat use is maternally directed in offspring (Cole et al., 2013; Kraus & 

Rolland, 2007a). This means that all calves born to irregular females are not detected in their first year 
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(Schaeff et al., 1993). Additionally, these calves will not use the Bay of Fundy with their calves. Thus, 

identification of an additional nursery ground could significantly increase our knowledge of this species 

(Frasier, Hamilton, et al., 2007; Kraus & Rolland, 2007b). Irregular whales represent another vital gap in 

our understanding of this species (Kraus & Rolland, 2007b).  

Combined, despite our wealth of knowledge on this species, at any given time of year the 

location of at least one-third of the individuals is not known (Brown, Kraus, Slay, & Garrison, 2007). The 

implication is that for every time of year there must exist critical habitats that have yet to be identified. 

This raises the question of how many whales only use these unidentified areas and are therefore never 

photo-identified or included in abundance estimates or other species assessments. Again, there are 

different thoughts regarding how big of a pool these individuals represent, with some researchers 

suggesting that the numbers of such individuals are negligible, while others think that they may 

represent a significant portion of the species. 

Management of this highly endangered species requires accurate estimates of abundance and 

trends over time (Caughley & Gunn, 1996; Kraus & Rolland, 2007a). However, because most survey 

efforts are focused within 5 main habitats, individuals who do not use these habitats at all, or during 

survey periods, will continue to go unidentified (Kraus & Rolland, 2007a). Failure of conservation efforts 

to improve the outlook for this population may be related to misunderstanding of important habitats, 

population estimates, and undetected population limiting factors due to survey efforts being 

geographically limited. Thus, researchers may choose to include previously overlooked habitats in 

population surveys if scientific evidence supports the existence of undetected individuals. If this species 

is more abundant than what current estimates suggest, then efforts to re-evaluate where surveys are 

focused could be initiated.  
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In this study I used both genetic and photo-identification data from the North Atlantic Right 

Whale Consortium to estimate abundance of the right whale population using a method developed by 

Creel and Rosenblatt (2013). By using this method, I hoped to obtain more accurate abundance 

estimates by incorporating individuals that can only be inferred by genetics or have never been 

documented in the right whale photo-identification catalog. If the population is found to be larger than 

current estimates have predicted, then this has the potential to alter the way that the species and its 

habitat use patterns are interpreted and analysed. Additionally, this could change the management 

systems currently being used to protect this species. A re-evaluation of this species as a result of these 

data could push other researchers of other species to conduct similar analyses to judge if their 

knowledge is as accurate as they have assumed.  

 

Methods 

The Right Whale Database: 

Photo-identification data of North Atlantic right whales have been collected almost year-round, 

and in many of the known habitats, since 1979 (Hamilton et al., 2007). Photo-identification for this 

species is primarily based on callosity patterns (Kraus & Rolland, 2007a). Callosities are grey to black 

patches of thickened skin that may be located on the rostrum, near the blowholes and eyes, and lining 

the upper lips (Kraus & Rolland, 2007b). These callosity patterns are specific to each individual, but differ 

among individuals, thus providing a means on which individuals can reliably be identified (Hamilton et 

al., 2007). Calves cannot be photo-identified until their callosity pattern is developed, which occurs 

between 7-10 months of age (Hamilton et al., 2007). Therefore, unless genetic samples are obtained, 
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calves cannot be added to the catalog until this pattern is developed, which in some cases, is after they 

have been weaned by their mothers (Hamilton et al., 2007; Schaeff et al., 1993).  

The photo-identification and genetic data used for this study were obtained from the North 

Atlantic Right Whale Consortium (NARWC). This is a collaboration of researchers, government, and non-

governmental organizations that curates all data collected on this species from 1935 to the present 

(Kraus & Rolland, 2007b). The primary method used to study this species is photo-identification (Kraus & 

Rolland, 2007a; Reeves, Read, Lowry, Katona, & Boness, 2007). The protocol for photo-identification is 

standardized and the method is laid out by Kraus et al. (1986). Individuals are added to the photo-

identification database when there is certainty that they have not already been identified and have an 

accurate and clear picture that can function as a reliable reference for identification in the future (i.e. the 

majority of the individual’s identifiable characteristics are captured clearly) (Hamilton et al., 2007). 

Individual profiles in the database include the individual’s identification number, as well as a detailed 

drawing showing their identifying features (e.g. callosity patterns, scars, pigmentation patterns, and 

ridges along the upper lip), which is updated annually. Additionally, individual profiles include: age, sex, 

genetic sample (if obtained), sightings history, reproductive status, calving history, mortality, and any 

other relevant information (Kraus & Rolland, 2007b). These data are obtained via ship and/or aerial 

surveys which are conducted annually (Kraus & Rolland, 2007b). Surveys are conducted in the 5 critical 

habitats identified for this species (Kraus & Rolland, 2007a). This database has been essential to right 

whale research and has helped establish a better understanding of this species (Kraus & Rolland, 2007a; 

Pettis, Pace, Schick, & Hamilton, 2017).  

Genetic profiles of each sampled individual are maintained by the NARWC as a data set 

(Hamilton et al., 2007). The protocols for genetic sampling and analysis were laid out by Brown et al. 

(1991) and Frasier et al. (2006) respectively. While typical DNA samples are obtained via skin biopsy 
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samples, genetic information can also be obtained from fecal samples and dead carcasses (Best et al., 

2005). Skin biopsies are collected from free-swimming whales with a crossbow and modified bolt 

(arrow), which contains a hollow tip and a stop collar that also acts as a float. In this way, the bolt hits 

the whale, penetrates the skin ~1cm, and bounces out with a small piece of skin inside, and floats. The 

bolt can then be retrieved with a net from the boat. Although this method is slightly invasive, intensive 

and long-term studies have shown that it does not have any negative short- or long-term effects on the 

whales, other than an initial startle response, which itself is only seen a small portion of the time (e.g. 

Best et al., 2005; Brown, Kraus, & Gaskin, 1991; Noren & Mocklin, 2012). This allows skin samples to be 

obtained from a distance. Biopsy sampling can be useful for obtaining genetic samples from calves that 

are too young to be photo-identified (Frasier, McLeod, Gillett, Brown, & White, 2007). As of 2009, it was 

thought that about 75% of photo-identified individuals had also been genetically sampled (Gillett, 

Frasier, Rolland, & White, 2010). Genetic analyses include analysis of a sex-specific region for gender 

determination, sequence analysis of the mitochondrial control region, and genotype analysis at 35 

microsatellite loci (Frasier, McLeod, et al., 2007). Microsatellite loci are highly variable regions of non-

coding DNA that contain repeated segments of 1-6 base pairs (Frasier, McLeod, et al., 2007). These loci 

are inherited in a Mendelian fashion, where one copy is inherited from the mother, and one from the 

father (Frasier, McLeod, et al., 2007). Thus, these samples are useful for individual identification as well 

as assessing parentage and relatedness within the population (Frasier, McLeod, et al., 2007).  

Annual sightings data from the NARWC are used on an annual basis to produce an estimate of 

abundance for this species (Kraus & Rolland, 2007b). Abundance estimates produced from this 

information are based on individuals which are “presumed alive” which refers to any individuals that 

have been seen within the past 6 years (Hamilton et al., 2007). This method is used because not all 

individuals are seen in each year, but 99% of those that are alive are seen within a 6-year time frame. On 
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the other hand, most whales not seen for over 6 years are never seen again (and are therefore 

presumably dead) (Hamilton et al., 2007; Pace et al., 2017). It should be noted that as a result of this 

method, data from earlier years are more robust than those from recent years. This is because 

individuals have a better chance of being added to abundance estimates as time continues. For example, 

for the abundance estimate of 1990, individuals included in this estimate have had 28 years to be seen. 

However, for the abundance estimate of 2016, there are still many individuals that were likely alive in 

that year, but have yet to be seen, resulting in a downward bias for that year’s estimate. Therefore, 

earlier abundance estimates can be considered more robust compared to more recent abundance 

estimates (Pace et al., 2017). This can also result in a lag in detection of population trends, as the data 

can become more robust with time (Pace et al., 2017). This “presumed dead” method therefore provide 

a coarse view of abundance, but which also results in fairly accurate estimates when compared with 

those obtained using more robust statistical procedures (e.g. estimates are lower than in reality if the 

“presumed dead” individuals undergo a longer than typical sightings gap) (Pace et al., 2017) and thus is 

stated to not be considered as an “absolute” abundance estimate (Frasier, McLeod, et al., 2007; Pettis et 

al., 2017). 

Explanation of Analyses: 

The photo-identification and genetic data from 1980-2016 were obtained from the NARWC and 

imported into a MySQL relational database. To obtain reference abundance estimates based solely on 

the photo-identification data, the database was queried for all whales that were alive (or presumed to be 

alive) during each year. The database was additionally queried for the number of individuals known to be 

sampled or not-sampled, broken down by males, females, and for the total population. Non-sampled 

individuals result from individuals that are known to be alive and are believed to still be alive (i.e. have 

been identified and sighted a maximum 6 years prior to this year), but have not yet been sampled. 
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Next, I estimated abundance based on pedigrees. For each year I obtained all genetically 

sampled mother-calf pairs from the database. Additionally, I also obtained the number of candidate 

males which were genetically sampled from the database. Candidate males (i.e. males who are potential 

fathers to calves) are males who were alive and older than 5 years of age during the calf’s year of 

conception. The age of 5 was used as the cut off for candidate males, as the actual age at which right 

whale males become sexually mature is unknown, but the average age at which females have their first 

calf is 8 (Frasier, Hamilton, et al., 2007). Therefore, this approach is conservative (i.e., it is considering 

more males as candidate fathers than likely actually exist). This reduced the probability that a true 

candidate male would be inappropriately excluded as a potential father (Frasier, Hamilton, et al., 2007). 

Pedigree analyses were conducted using a program called CERVUS which is a publically available computer 

program that is commonly used by molecular ecologists to assess paternity (Marshall, Slate, Kruuk, & 

Pemberton, 1997; Slate, Marshall, & Pemberton, 2000). CERVUS compares the genetic profiles of known 

mother-calf pairs, and from those, infers which alleles must have been inherited from the father. It then 

searches the list of candidates for males whose genetic profile is consistent with that inferred from each 

mother-calf pair. CERVUS allows paternity to be assigned using multiple techniques, and I used the 

exclusion method, which is the method used for this species, and is also the method used in human 

forensic paternity cases (Frasier, Hamilton, et al., 2007). An example of the exclusion method would be 

to compare the genetics of a mother-calf pair to the genetics of all potential candidate males. Each 

candidate male that has a genetic incompatibility with the mother-calf pair are excluded as the potential 

father. The elimination of candidate males continues until, in an ideal case, there is only one remaining 

male with no genotypic incompatibilities with the mother-calf pair. This male would then be assigned 

paternity of that calf.  
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For this study, pedigree analysis could result in one of three scenarios. In the scenarios where all 

but one male was excluded as a potential father, paternity was assigned. In scenarios where multiple 

males could not be excluded, paternity was not assigned (i.e. paternity was unresolved, but it was 

concluded that the true father was sampled). Finally, in cases where all candidate males were excluded 

(i.e. no candidate male had a genome which was compatible with the mother-calf dyad), paternity was 

not assigned and it was concluded that the true father has not been sampled. Thus, for each calf where 

all candidate males were excluded as the father, one male was inferred to exist (i.e. a male that has not 

been genetically sampled). These are referred to as “inferred individuals”.  

Pedigree analysis was also conducted for calves who had been genetically sampled, but whose 

mother was not. In these cases pedigree analysis was used to assign both maternity and paternity. The 

number of inferred individuals resulting from pedigree analyses were totaled for females, males, and for 

the whole population.  

Finally, the number of breeders for each year was calculated. This was divided into sampled 

breeders (Bs), which were sampled parents identified through photo-identification and/or pedigree 

analysis; and inferred breeders (Nin), which were the number of un-sampled breeders inferred through 

the pedigree analyses. These values were then organized for each year as the total number of breeders 

for females, males, and the whole population.  

Ideally, analyses of these data would have been conducted for each year. However, there were 

too few calves born in each year on which to base the inferred individuals. Therefore, I had to develop a 

strategy for how to group years appropriately. I chose to analyse the data in rolling sets of five years to 

result in larger sample sizes per period, but having the period lengths short enough so that an individual 

is not both a calf and a parent during the same time period. Right whale females become sexually 

mature at 8 years of age on average, with the youngest recorded mom being 5 (Kraus et al., 2007). This is 
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why 5-year periods were chosen. In this way, my estimate for 1990 included data from 1988-1992, the 

estimate for 1991 included data from years 1989-1993, and so on. 

Values obtained from queries from the MySQL Database were then organized to be used in the 

calculations of this study. The values needed for each 5 year period were the total number of individuals 

sampled (Ns), the total number of individuals inferred (Nin), and the total number of breeders sampled 

(Bs). The analyses were conducted three times, once for all individuals, a second time for just females, 

and a third time for just males. From these values, the probability of an individual being sampled (Ps) and 

the probability of an individual being a breeder (Pb) can be estimated as described in equations 2 and 3, 

respectively. 

A Bayesian approach was used to estimate the most likely estimates of Ps and Pb, as well as the 

uncertainty associated with these estimates. The two estimated parameters (Ps and Pb) are ratios where 

one of two outcomes are possible; a “success”, or a “failure”. For example, a “success” in the case of Ps, 

is when an individual has been sampled, and a “failure” is when an individual has not been sampled. The 

data therefore represent a binomial distribution, where the goal is to estimate the probability of 

“success” (p). As a prior for p I used a uniform distribution between 0 and 1 (i.e. I considered all values 

between 0 and 1 to be equality probable). All calculations and statistical analyses were conducted in the 

program R (R Core Team, 2017) via the RStudio (RStudio Team, n.d.) interface. A Markov Chain Monte 

Carlo (MCMC) was used to estimate the posterior distribution. The MCMC samples randomly selected 

values from the priors. The likelihood of a selected value is calculated given the data. Then, the MCMC 

selects a new value. If this new value has a higher likelihood than the current value, the MCMC selects 

this new value. In this way, the MCMC can find which values are most likely by calculating how long it 

remains at a value. The MCMC process thus finds the most likely value for a parameter through many 

random samples of values. Using this method, the MCMC finds the most likely probability of being 
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sampled (Ps) as well as the uncertainty around that estimate. This process is conducted with JAGS 

(Plummer, 2003) (communicating with R via the package runjags (Denwood, 2016) through R-studio. This 

process is again repeated to estimate Pb and the corresponding uncertainty. 

Finally, the values calculated above were used to estimate the number of invisible individuals 

(Niv) using equations 4-8. With all of the required values obtained (Ns, Nin, and Niv), the total abundance 

estimate for each period is then calculated (equation 1). 

 

Results 

The abundance estimates obtained for the total population using the pedigree-informed 

approach are similar to those based solely on the photo-identification data (Figure 1). These estimates 

show a slow increase from 1980-2010, followed by a decline in recent years (from 2011-2013). A similar 

pattern was also found by Pace et al. (2017). In addition to these total estimates, I also conducted the 

analyses independently for each sex because the patterns of inference may be different for each. 

For males, the pedigree-informed abundance estimates were generally larger than those 

obtained based solely on the photo-identification data, with the one exception being for 2014 (Figure 2). 

Despite this, in many years the photo-identification estimates still fall within the 95% highest density 

interval (HDI) of the pedigree-informed estimates. However, there are three clusters of years in which 

the pedigree data suggest a substantially larger number of males than does the photo-identification 

data. These are the periods of 1990-1991, 2000-2003, and 2007-2011. These three clusters correspond 

to years when calf numbers were particularly high, and therefore so was the ability to infer additional 

males.    
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For females, the pedigree-inferred estimates were generally lower than those based on photo-

identification (Figure 3). While both methods show a slow increase in female abundance, the widest 

range between these two estimates (i.e. where the photo-identification estimates fall outside of the 95% 

HDI of the pedigree-informed estimates) occur in the years 2004 – 2011. During these years there were 

not any inferred females, making the pedigree-informed method – as implemented – reduce to just the 

number of sampled individuals, which is known to be an under-estimate. 

 

Figure 1: Abundance estimates for the entire population, showing results from the pedigree-informed estimate compared to the 
presumed alive estimate (based off of sightings data alone). 
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Figure 2: Abundance estimates for the male population, showing results from the pedigree-informed estimate compared to the 
presumed alive estimate (based off of sightings data alone). 
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Figure 3: Abundance estimates for the female population, showing results from the pedigree-informed estimate compared to 
the presumed alive estimate (based off of sightings data alone). 

 

 

Discussion 

The abundance estimates found for the total population are similar to the presumed alive 

abundance estimates obtained from just the photo-identification data (Figure 1). Generally, the 

abundance estimate from the presumed alive method are within the range of the 95% highest density 

interval (HDI) of the pedigree-informed estimates. This result suggests that the presumed alive estimate 

is similar to the actual abundance of this population, and that, contrary to my expectations, there is not 

likely a large number whales who have not been photo-identified. 
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The pedigree-based abundance estimate for the female portion of the population is generally 

lower than that based just on the photo-identification data (Figure 2). This can be attributed to the data 

required for the pedigree-based method. As can be seen by equations 1, 2, and 3, the pedigree-based 

method is only appropriate when the number of inferred individuals is not zero. Otherwise, this estimate 

reduces to just Ns, the number of sampled individuals, which will almost always be smaller than the true 

abundance. In the majority of years, the number of females that could be inferred was very low, and in 

many cases was zero, and therefore resulted in underestimates for the number of females. This is likely 

due to the fact that there is just one calving ground for this species, which is intensively surveyed for 

management purposes. Therefore, this represents a critical habitat to which all mothers must go, 

resulting in most females being photo-identified at some point in their lives. There is no such 

“requirement” for males in this species, resulting in a higher probability of males not being photo-

identified than females.  

The pedigree-based abundance estimate for the male portion of the species is generally larger 

than the photo-identification estimate (Figure 3). This can be attributed to the inclusion of inferred 

individuals in this study. By inferring paternity of calves, males that have not been genetically sampled 

can be inferred to exist if all other genetically sampled males are excluded as a potential father. This 

allows the inclusion of males who have gone undetected via direct sampling methods to be included in 

the abundance estimate. The years where the largest difference is seen between the two methods (i.e. 

where the photo-identification estimate falls below the 95% HDI of the pedigree-based estimate: 1990-

1991, 2000-2003, and 2007-2011), correlate with years with the largest sample size of calves. This could 

result for two different reasons. First, these years correlate with the highest numbers of sampled calves, 

resulting in more opportunities to infer males (i.e., more power to infer individuals). Under this 

interpretation, these years would be more representative of “the truth” than in years with smaller calf 
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numbers. This suggests that there are indeed a substantial number of “missing” males in this species. 

The second possibility is that in these years it is possible that the same male fathered more than one calf, 

and therefore, our assumption of each inferred father being unique may be incorrect, resulting in an 

over-estimate of inferred males. Frasier et al. (2007) conducted analyses of calves (using data from 1980-

2006) and found that this assumption was valid. These authors concluded from analyses of calves for 

which all sampled males were excluded as fathers, that each of these calves was fathered by a different 

male. However, similar analyses should be conducted on this data set to test whether or not this 

assumption is still valid, and therefore to determine which of these two scenarios is the appropriate 

interpretation. 

The abundance estimates for all three analyses (total, male, and female) indicate a decline in the 

population from 2012-2014 (Figure 1, Figure 2, Figure 3). However, my results cannot be interpreted as 

support for the proposed population decline in recent years (Pace et al., 2017). This analysis did not 

include the calves born in 2015 and 2016 as they had not been included in the data set at the time of 

analysis. Thus, as a result of the 5 year method, estimates from 2014 and 2013 may be considered less 

accurate. Additionally, the abundance estimates produced from the photo-identification data can also be 

considered less robust for the end of the time series (Pace et al., 2017). This is because individuals have a 

better chance of being added to abundance estimates as time continues. Therefore, for recent years, 

abundance estimates will be lower than in reality.  

The exclusion method was used in this study to assign parentage. However, it should be noted 

that there are potential errors with using this method. For instance, a potential parent could be 

eliminated as the result of a genotyping error (Marshall et al., 1997). Since the method used to estimate 

abundance is highly dependent on the number of inferred individuals (i.e. paternity assignment), the 
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results of this study could potentially be influenced by this aspect. However, a study by Frasier et al. 

(2006) conducted an analysis of the genotyping errors within this database. This study concludes that the 

genotyping error of this database is <1%. Thus, if this aspect has influenced my results, it is unlikely to 

contribute significantly.  

Overall, these analyses suggest that there is not a substantial number of “missing” individuals for 

this species, as was hypothesized by some researchers in the past (e.g. Frasier, McLeod, et al., 2007; 

Hamilton et al., 2007). The total abundance estimates produced from both methods are very similar 

(Figure 1) which suggests that there are few un-sampled individuals that are not also accounted for in 

the photo-identification data. However, my results indicate the potential for more males than are 

currently accounted for, but more analyses are needed before any such statements can be made.  
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