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ABSTRACT 

An Analysis of Multispectral Unmanned Aerial Systems for Saltmarsh Foreshore Land 

Cover Classification and Digital Elevation Model Generation 

by  

Logan D. Horrocks 

 

Recent advances in Unmanned Aerial Systems (UAS), and increased affordability, have 

proliferated their use in the scientific community. Despite these innovations, UAS attempts to 

map a site’s true elevation using Structure from Motion Multi-View Stereo (SFM-MVS) software 

are obstructed by vegetative canopies, resulting in the production of a Digital Surface Model 

(DSM), rather than the desired Digital Elevation Model (DEM). This project seeks to account for 

the varying heights of vegetation communities within the Masstown East saltmarsh, producing 

DEMs for mudflat/saltmarsh landscapes with an accuracy comparable to that the DSM. DEM 

generation has been completed in two separate stages. The first stage consists of land cover 

classifications using UAS derived, radiometrically corrected data. Respective land cover 

classifications are assessed using confusion matrices. Secondly, surveyed canopy heights and 

function derived heights are subtracted from their respective classes, generating the DEMs. DEM 

validation has been performed by comparing topographic survey point values to those modeled, 

using the Root Square Mean Error (RMSE) measure. The project then compares the various 

parameters implemented for land cover classifications, and DEM accuracy. DEM generation 

methods were then coupled to produce a final DEM with a RMSE of 6cm. The results suggest 

consumer grade Multispectral UAS can produce DEMs with accuracies comparable to the initial 

DSMs generated, and thus merit further studies investigating their scientific capacities.  
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RÉSUMÉ 

Une analyse des systèmes aériens multispectraux téléguidés pour la classification de 

la couverture terrestre et la génération numérique de modèles d’élévation dans le cas de 

marais estuariens  

Par Logan D. Horrocks 

 

Les progrès récents dans les systèmes aériens téléguidés (UAS) et leur accessibilité 

croissance ont favorisé leur utilisation au sein de la communauté scientifique. Malgré ces 

innovations, les UAS tentent de cartographier l’élévation de la surface d’un site obstrué par la 

végétation à partir du logiciel « Motion Multi-View Stereo » (SFM-MVS); aboutissant à la 

création d’un Modèle Numérique d’Élévation (MNE) au lieu du Modèle Numérique de Terrain 

(MNT) souhaité. Ce projet vise à quantifier les différentes hauteurs des communautés végétales 

dans le marais salé de Masstown Est, en produisant des MNE pour les paysages de 

marais/vasières avec une précision comparable à celle des MNE. La génération des MNT a été 

réalisée à partir de deux étapes distinctes. La première étape repose sur des classifications de la 

couverture terrestre à partir de données UAS dérivées, corrigées radiométriquement et 

géométriquement. Les classifications de la couverture terrestre sont évaluées à partir de matrices 

de confusion. Dans un second temps, les hauteurs de la canopée étudiée et les hauteurs dérivées 

de la fonction sont soustraites de leurs classes respectives, générant les MNT. La validation des 

MNT a été réalisée en comparant les valeurs des relevés topographiques avec les valeurs 

modélisées, en utilisant la mesure de l’erreur quadratique moyenne (EQM). Le projet compare 

ensuite les différents paramètres mis en place pour les classifications de la couverture terrestre et 

la précision du MNT. Les méthodes de génération de MNT ont ensuite été couplées pour 

produire un MNT final avec une EQM de 6 cm. Les résultats indiquent que les UAS 

multispectraux « Grand public » peuvent produire des MNT avec des précisions comparables aux 

MNE initiaux générés, et mériteraient ainsi d’autres études quant à leur valeur scientifique. 

Le 11 Avril, 2018 
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CHAPTER 1  
 

Introduction and Literature Review 

 

1.1. Introduction 

Recent advances and increased affordability in Unmanned Aircraft Systems (UAS) 

technology have rendered their use widespread in the scientific community (Colomina and 

Molina, 2014; Crutsinger et al., 2016). UAS are comprised of Unmanned Aerial Vehicles 

(UAVs), the respective controller system, and the communication system which connects the two 

(ICAO, 2011). UAS have been used for numerous applications and disciplines ranging from 

agriculture (Horton et al., 2017; Wu et al., 2017), forestry (Hogan et al, 2017), land degradation, 

(Yengoh et al., 2015) and conservation (Husson et al., 2017).  

The products generated from remote sensing systems are largely limited by vegetation 

cover when trying to acquire true landform elevations for Digital Elevation Models (DEMs), 

creating Digital Surface Models (DSMs) instead (Carrivick et al, 2016).  DEMs of a suitable 

accuracy may be used for numerous geomorphic, landform, and hydrographic analyses 

(Gonçalves & Henriques, 2015; Jaud et al., 2016). DEMs captured over a successive timespan 

may reveal further change within a landscape (Lucieer & Jong, 2014; Haas et al., 2016). Those 

who employ remote sensing techniques are faced with the availability of ever-increasing 

precision and accuracy of their instruments, coupled with the emergence of new innovations 

(Crutsinger et al., 2016). Having examined the tool kits, practices and classifications of others 

with larger UAS craft and more refined sensors, it has been suggested that consumer grade 

multispectral sensors merit investigation on their capacity to classify saltmarsh covers and 
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produce DEMs (Harwin and Lucieer, 2012; Jaud et al., 2016; Long et al., 2016; Kalacska et al., 

2017). Means of incorporating variables beyond reflectance values (such as elevation) in 

multivariate classifications also supported the idea that surface cover delineation could be 

successfully performed with a high degree of accuracy (Grebby et al., 2010). 

This research will determine what combination of parameters for a multispectral equipped 

UAS will yield the most accurate and useful land cover classifications and DEM for the 

saltmarsh landscape. These parameters include flight altitudes of 50, 70, and 90 meters, 

classification schemes with different five and six landcover classes, and two canopy adjustment 

methods for the present species of vegetation. The objective of this project is to produce a DEM 

with a tolerable accuracy through generating the suite of geospatial products required. An ideal 

accuracy for the DEM would rival the accuracy of the DSM in areas if bare surface (lacking 

vegetative cover).   

This study employed DJI Phantom 3 Drone modified to carry a Parrot Sequoia 

Multispectral Sensor to classify surface covers in the Masstown East Saltmarsh. Following the 

classifications of surface covers in the site with kappa coefficients greater than 0.8, the study 

seeks to derive DEMs from DSMs for the site by accounting for varying heights of vegetative 

communities. The derivation of DEMs with classified covers has been completed with two 

separate methods representing canopy height(s). Further analysis exploring supervised 

classifications, DEM generation, and their errors has been performed to quantitatively assess the 

potential of UAS mounted multispectral sensors. The results from this project may then serve as 

guidelines or recommendations regarding project and flight set up for future studies seeking to 

employ UAS for scientific research.  
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1.2. Literature Review 

This literature review will commence its investigation with an overview of remote 

sensing, examining the various impacts of resolution, and the different classification processes. 

The development of the Structure from Motion Multi-View Stereo (SfM-MVS) processing and 

multispectral sensors for UAS will then be investigated.  The review considers the components of 

a saltmarsh, followed by investigation of feedbacks within the system using concept of 

Ecogeomorphology. Finally, the application of remote sensing systems for mapping saltmarshes 

will be examined, illustrating the variety of disciplines that may benefit from the geospatial 

products.  

 

1.2.1. Remote Sensing Overview 

1.2.1.1.  Recent History and Application  

In the last twenty years, there have been tremendous developments within the field of 

remote sensing of vegetation (Crutsinger, 2016; Aguilera and González, 2017). High resolution 

imagery from various sources has reached the most accessible levels in history in terms of price 

and availability (Colomina and Molina, 2014), furthering the demand for high quality end 

products from a multitude of fields and across various sectors. Among the many uses of remotely 

sensed data, the identification and monitoring of land covers and vegetative species remains a key 

component for practices such as conservation and restoration (Peacock, 2014; Whitehead and 

Hugenholtz, 2015). The ability to produce secondary products such as DSMs and DEMs is also 

of high importance for numerous other applications such as the production of slope maps, 

average insolation and windspeed maps, used in a variety of other domains (Carrivick et al., 
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2016). The ability to produce DEMs of a suitable accuracy for further analysis is a function of the 

levels of resolution of the sensor and platform in use.  

 

1.2.1.2. Resolution 

When acquiring remotely sensed data, there are a few primary considerations which will 

guide the entire acquisition process: the purpose of the data, the subject being studied, and the 

context. One must have a clear purpose in their pursuit to generate a useful end-product that 

properly addresses the fundamental research question. Once addressed, one can start to determine 

the resolution needed to observe the desires phenomena. For this to be accomplished, there must 

be a solid understanding of the components that make up resolution. Four types of resolution 

exist and allow users to determine the suitability of a set of imagery for their selected purpose; 

spatial, spectral, radiometric and temporal (Fox III, 2015).  

Spatial resolution refers to the size of ground resolution cell (area on the earth), 

represented by each pixel in the image. The term ground sample distance (G.S.D) refers to the 

distance on earth between the midpoints of pixels. Small objects can be identified in high or fine 

spatial resolution (NRCAN, 2013). Following the example in Figure 1.1, there are more pixels 

Figure 1.1: Spatial Resolution Example. Reproduced from Giles, P. (2016). 

Remote Sensing of the Environment, Class 6: Radiometric Resolution; 

Atmospheric influences; Image enhancement. 
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making up a feature in a high spatial resolution image than a low-resolution image (Spring et al., 

2016).  

Radiometric resolution refers to the relative widths of brightness intervals. These intervals 

can be visualized as the quantity of brightness steps utilized by the image, as shown in Figure 1.2. 

A higher radiometric resolution will have more steps than a low-resolution image, thus better 

representing the variation in brightness and rendering it more informative (Fox III, 2015). This 

can be directly observed in the brightness steps of Figure 1.2.  

Spectral resolution describes the wavelength range of spectral bands that make up the 

image, with each band denoting a certain range of radiation the sensor is receptive to (Fox III, 

2015). An image may be comprised of multiple bands, yet it is only possible to display three at a 

time due to the three color guns available (R,G,B) available for display on LCD monitors. Figure 

1.3 displays various sets of sensors and their respective spectral resolutions.  

Temporal resolution describes the frequency (timespan) between data collections the 

sensor and platform are capable of (Fox III, 2015). Depending on the platform in use, the return 

time between data collection can vary greatly. Multiple image sets are required to observe, 

measure, and compare changes in observed phenomena.  

Value Range Number of Brightness Levels  Bits 

Figure 1.2: Radiometric Resolution Example. Reproduced from: Geographisches 

Institut der Universität Bonn. (n.d.). Radiometric Resolution. Retrieved from 

http://www.fis.unibonn.de/en/recherchetools/infobox/professionals/resolution/radiomet

ric-resolution 
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Temporal resolution can range anywhere from a 15-minute interval (a drone flight and 

replacing batteries), to semi-annually, and potentially even infinitely depending on the platform. 

As seen on Table 1.1, there exists a range of temporal resolutions for various satellites. UAS 

offer new levels of temporal resolution; the term is increasingly irrelevant for UAS 

photogrammetry as flights can be performed as the user desires. A major benefit of UAS is that 

the timing and frequency of data collection is under the user’s control. With an understanding of 

the four characteristics of resolution and the demands of one’s project, one can start to evaluate 

the suitability of different sensors and the host platforms for their desired data (Fox III, 2015).   

 

1.2.1.3. Pre-Processing: Calibrations 

As recent advances in the remote sensing industry have led to widespread implementation 

and combination of technologies, it becomes increasingly important to objectively evaluate the 

products generated. Measures can be taken before and after the flight to achieve the highest 

quality of data; these processes are calibration, pre-processing, and post-processing (Kumar, 

Figure 1.3: Spectral Resolution Example via Different Sensors. Reproduced 

from: Harris Geospatial. (2013). Figure 3: Spectral Resolution of Different 

Sensors  

Comparison of Sensor’s Spectral Resolution  

Table 1.1: Temporal Resolution Examples via 

Satellite Return Period. Reproduced from: 

Obregon, R. (2009). Table 4: Current and 

proposed sensor systems for identifying and 

mapping urban features.  

Comparison of Sensor’s Temporal Resolution  
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2012). The calibration process takes place before any flights, while both pre-processing and post-

processing occurs after flights. Calibration ensures that the data collected are accurate and 

representational of the observed surface. Pre-processing includes rectification, restoration, and 

image enhancement, while post-processing concerns itself with information extraction (Kumar, 

2012).  

Calibration is employed to standardize the results gathered based on the specifics of the 

sensor, lens and platform in use. Calibrating a multispectral sensor radiometrically ensures that 

the radiance in the images are representative of true surface reflectance (Kumar, 2012), adjusting 

for uneven response across the sensor (Crisp, 2001). Targets with standardized reflectance values 

can be employed to calibrate the sensor, ensuring it portrays values as intended. Radiometric 

calibrations for illumination differences differ greatly for sensors and platforms in use. For 

satellites, little can be done in the way of accounting for solar exposure at that given site, while 

for UAS, sunlight sensors can be attached atop the platform to account for incoming radiation 

(Parrot, 2016). For example, the Parrot Sequoia utilizes a sunlight or ‘irradiance’ sensor to 

account for illumination and give absolute measurements (Parrot, 2016).  

Geometrical calibration attempts to account for variations in spatial accuracy within an 

image as a result of lens distortion. The typical method for geometric calibration includes the 

generation of an image distortion map to see where and in what magnitude distortions are present 

(Berni et al., 2009). An image with uniform points distributed throughout is used as the control, 

an image is taken and then a distortion map is generated to show areas of stretch and squeeze 

(Berni et al., 2009).  
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1.2.1.4. Spectral Response Curves  

Every material absorbs, reflects and emits radiations in unique regions of the 

electromagnetic spectrum as a function of its physical state and chemical composition (Avery and 

Berlin, 1992). The field of remote sensing relies heavily upon the phenomena of unique 

absorption to identify and monitor land covers. Remote sensors can plot a graph for each cover 

with the electromagnetic spectrum on the X axis, and respective reflectance on the Y axis. As 

observed in Figure 1.4, reflectance values for a surface can vary across the spectrum (e.g., 

conifers), where other surfaces may remain relatively consistent (e.g., water). By creating a 

spectral response curve for each surface, one can start to observe how each surface reflects and 

emits light uniquely. These spectral response curves are utilized in the creation of spectral 

signatures, which are then used to help classify imagery per land cover, acting as an input or set 

of rules to help the computer distinguish and recognize surfaces. With suitable spatial and 

spectral resolution, these signatures also have the potential of classifying different vegetation 

covers. 

 

Figure 1.4: Spectral Response Curves, Reproduced from: 

Eumetrain. (2010). Spectral signature of an object.  

Spectral Response Curves for Various Covers 
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There exist many examples where the creation of spectral response curves has been 

performed with a high degree of success using high resolution satellite imagery taken with a 

hyperspectral sensor (Kokaly 2007, Berni et al., 2008; Grebby et al, 2010; Parent et al., 2015). 

There is also a growing trend in UAS based signature generation with the advancements of both 

sensor platform and technology (King et al., 2005; Berni et al., 2008; Whitehead and 

Hugenholtz, 2015; Heipke 2016; Aguilera and González, 2017). Hyperspectral sensors have 

traditionally been the popular choice for species level classifications due to the high spectral 

resolution; with narrower and more bands, it is easier to find some region in which the spectral 

reflectance properties of species may differ.  

 

1.2.1.5. Post Processing: Unsupervised and Supervised Classification 

Post processing involves information extraction processes such as unsupervised and 

supervised classification. These processes automate identification of covers quantitatively 

(Kumar, 2012). Although some suggest this may replace visual analysis (Kumar, 2012), there 

exists limits to the accuracy and reliability of the technology (Crutsinger, 2016).  

In remote sensing, image classification is generally grouped into two categories: 

unsupervised and supervised classification. Unsupervised Classification “investigates data 

statistics by subdividing the image into clusters of pixels with similar characteristics” (Li et al., 

p.1, 2015), most commonly through Iterative Self-Organizing Data Analysis (ISODATA) or K-

mean classification (Li et al., 2015). On the other hand, “Supervised techniques are characterized 

by finding explicit relationships between samples and classes” (Li et al., 2015). Unsupervised 

classification typically requires less initial time input, but the output is of a different nature than a 
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supervised classification as there is no user defined training datasets (Peacock, 2014). Quality of 

the supervised classification is also found to have improved if the user has a previous 

understanding of the type of cover in the image (Jensen, 2005).  

Signature generation is a process that comes about in the steps of supervised 

classification. Supervised classification works with the user specifying pixels that belong to a 

certain cover class, (e.g., water). Small polygons are constructed over the raster surface with a 

representative range of Digital Number (DN) values within the cover. These are the input training 

pixels the computer will use to generate the signatures used for the classification (Rumiser et al., 

2013). Once a representative number of polygons have been constructed to show a representation 

of the variation within a class (comprising multiple signatures), a new signature that combines all 

is created to be representative of the entire class. For each class and thus each cover, the process 

is repeated to make a representative class signature. The class signatures are then saved as a 

signature set (Rumiser et al., 2013), and are ready for their first implementation.  

The signature set is applied to the image data as the input signature file. Analysis of the 

classification can then be performed to determine the number of pixels in each class (Rumiser et 

al., 2013), and if any pixels were misclassified in the classification. Following the initial 

signature generation, the classification may be repeated with slight modifications to the input 

signatures depending on the results. Signatures would be modified by selecting additional 

training sites, to include representative pixels omitted (Rumiser et al., 2013). The signature set 

and the algorithm are selected to perform the classification. Different algorithms serve as 

different guiding rules which will be used to assign all pixel values in the image to a class. This 

project has selected the Maximum Likelihood Algorithm. 
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One of the essential steps required in the remote sensing process is ground truthing. 

Ground truthing is the selection of ground resolution cells with known cover characteristics as 

training sites (NRCAN, 2013). By selecting a plot with known vegetation covers, one can be 

certain that the output signatures are as accurate as possible (Rumiser et al., 2013). There is no 

set number of training pixels ‘required’ for a supervised classification, however studies often 

employ 10n-100n pixels per class, where n is the number of bands input into the classification 

(Jensen, 2005).  In selecting these pixels, one attempts to select as many sites as required to 

represent the entire range of DN values within the cover. Assessments of the sizes and 

distribution of plant communities should be considered before any flight as the spatial resolution 

of the imagery must be finer than the phenomena that is to be observed.  

 

1.2.1.6. Classification Algorithms and Accuracy Assessments  

As different algorithms exist to assign unknown pixels to a class, it becomes increasingly 

important to understand the logic and the assumptions upon which the algorithms operate. The 

algorithm used in this process is the Maximum Likelihood classification. Figure 1.5 graphically 

displays how this algorithm operates. Maximum Likelihood assigns unknown pixels to a class by 

computing the standard deviations from the multivariate mean for each class and placing pixels in 

their most probable class (Kumar, 2012). This algorithm assumes that each class has a normal 

distribution in each band. If the data displays a bi-modal or tri-modal distribution, it is likely the 

modes should be separate classes (Kumar, 2012). This method of classification is considered to 

be the most statistically accurate, and the most computationally demanding (Peacock, 2014).  
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1.2.2. SfM-MVS and UAS Development  

1.2.2.1. History/Application SFM MVS 

This section will briefly introduce and explore the developments of both SfM-MVS and 

UAS technologies. Recent studies successfully employing both UAS and SfM-MVS in varying 

degrees will then be examined. 

 Structure from Motion Multi-View Stereo (SfM-MVS) is a two-part method of generating 

3-D models from 2-D images (Westoby et al, 2012). The method has undergone numerous 

developments and innovations since its debut in the 1980s, largely due to advancements in 

software and graphical user interfaces (Carrivick et al., 2016). SfM employs algorithms to 

identify matching or common pixels in overlapping sets of imagery, calculating the orientation 

and location of the camera from the differential position of common pixels (Carrivick et al., 

2016). These calculations are then utilized to create a 3D point cloud model of the scene from the 

various overlapping 2D images. The initial sparse point cloud is densified and rendered to a finer 

Figure 1.5: Maximum Likelihood Classifier. 

Reproduced from: Lillesand, T. M., and Kiefer, R. W. 

(1987). Remote sensing and image interpretation 

(2nd ed.). New York: J. Wiley (Fig b). 
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resolution, or ‘Dense Point Cloud’ with MVS methods. Carrivick et al. (2016) emphasize that 

SFM-MVS methods are still in their infancy, requiring more research and analysis of accuracy to 

reach their true potential in the geosciences.  

 

1.2.2.2 Development of UAS Platforms and Respective Sensors 

The term UAV has been deemed obsolete by the International Civil Aviation 

Organization (2011), yet it is still appearing in much of the academic literature published of late 

(Long et al., 2016; Crutsinger et al., 2016). Advancements in sensor and platform technologies 

have resulted in the widespread deployment of UASs for multiple purposes, including data 

acquisition. As explored by various authors including Colomina and Molina (2014) and Fox III, 

(2015), these sensors and platforms are continually becoming less expensive, while delivering 

finer and higher resolution data. There has been growing demand for the application and 

utilization of UAS technology within the academic community, as more academics learn what 

sorts of projects and data acquisition these technologies can perform for them. One of the greatest 

advancements this may yield is a shift towards “Remote Sampling” for many disciplines (UK 

Marine, 2001). This trend is partially due to the fact UAS technology can acquire high resolution 

data without disturbing or negatively impacting the landscape under observation when physically 

taking samples from it, or reducing the total area required to physically visit. As the associated 

sensor technology increases in terms of both spectral and spatial resolution, so will further 

demand for UAS based observation.  
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1.2.2.3. Applied UAS Studies: Multivariate Classifications and Accuracy Assessments 

Yengoh et al. (2015) explore the ways in which the NDVI (Normalized Difference 

Vegetation Index) can be incorporated in generation of spectral signatures for monitoring land 

degradation, agricultural and ecosystem resilience, and desertification. Combined with other 

indexes (such as the Normalized Difference Water Index, NDWI), trained analysts can utilize 

NDVI further monitor drought, land productivity, carbon stocks, and habitat fragmentation 

(Yengoh et al, 2015; Stow et al, 2007). Other have sought higher spatial and spectral resolution 

data for precision application, such as Viticulture. Satesteban (2016) incorporated thermal 

imagery retrieved from a UAS to generate a crop water stress index (CWSI) representative of the 

site. Signatures can also be created using additional variables if they are in the exact same raster 

format; this process is called multivariate classification (Roe, 2006). Integrating the multispectral 

rasters with both NDVI and elevation data can yield a more accurate classification (Sturari et al., 

2017). A study done by Grebby et al., (2010), attempted this, and generated lithological maps 

using the relationship between plants and topography. They found upon incorporating elevation 

data that they were about to improve their kappa coefficient from 65.5 to 88%. Furthermore, 

thermal imagery and the Normalized Difference indexes it can generate can be incorporated into 

the multivariate classification for an even more detailed product (Berni et al., 2008). Although 

additional variable inputs for a multivariate classification can produce more accurate and detailed 

products, there remains sets of assumptions and limits for every product.  

 

 

 



15 

 

 

1.2.3. Saltmarsh Landscape, Form and Ecogeomorphology  

1.2.3.1. Macrotidal creek form and zonation of vegetation 

This section will provide a review of the components that make up the dynamic system of 

the saltmarsh landscape and their interactions. Fagherazzi et al. (2002) describe the saltmarsh as a 

system in which the feedback between biota and landscape is extremely strong. They state that 

this relationship is strong enough to play a role in how these landscapes evolve, as well as their 

fate (Fagherazzi et al., 2002).  

Thus, to understand the landscape and its morphology requires an understanding of the 

biota, and vice versa. The Masstown Saltmarsh may be described as a finger marsh; a long marsh 

existing along a tidal channel (UMaine, 2017). Saltmarsh landscapes have been categorized by 

Amos (1995) into three main zones: the subtidal zone, the intertidal zone and the supratidal zone. 

As their names suggest, the subtidal zone occurs below the low water mark, while the supratidal 

zone occurs above the high tide mark. The intertidal zone is located between the other two, the 

high and low marks water respectively (Amos, 1995). The intertidal zone can be divided into 

three main zones: Tidal Flat/ Channel, Low Marsh and High Marsh (UMaine, 2017).  Within the 

intertidal zone there exist a common zonation of vegetation. As noted by Fagherazzi et al. (2004), 

the zonation of vegetation species within the saltmarsh is a function of hydroperiod and salinity, 

and thus elevation and distance from tidal creeks also plays a role in determining what species 

will grow in a given location. For the case of the majority of salt marshes within the Minas basin, 

the low marsh is dominated by Spartina alterniflora; a marsh grass that thrives in the saline 

conditions and diurnal inundation (Allen, 2000). The high marsh is host to a larger diversity of 
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species with various salt tolerances but is generally dominated by Spartina patens and Juncus 

geradii (UMaine, 2017).  

 

1.2.3.2. Ecogeomorphology: the Saltmarsh Landscape  

 The dynamic nature of the saltmarsh giving rise to its form and function is better 

understood through the concept of Ecogeomorphology. The discipline is defined as “the study of 

the coupled evolution of geomorphological and ecosystem structures” Fagherazzi, (2004, p. vii). 

 As a dynamic system, a saltmarsh with the proper conditions can keep pace with sea level 

rise (Throne et al., 2013). This process requires adequate accretion, either by minerogenic, 

surface deposition, or organogenic, subsurface accumulation (Allen, 1990), or a combination of 

the two. Saltmarsh vegetation such as Spartina alterniflora and Spartina patens exert a source of 

friction on the flowing tide, reducing flow velocity and wave action (Lightbody and Nepf, 2006). 

Pending an adequate reduction in velocity, the suspended particles in the water column can settle 

on the marsh surface (Lightbody and Nepf, 2006). The same vegetative covers account for 

subsurface accretion, through an accumulation of organic matter as rhizomatic root mats undergo 

their life cycles (Allen, 1990). Vegetative covers contribute to the composition of the marsh; 

Rinaldo et al., (2004) found interactions between the patterns in vegetation and the morphology 

of the marsh surface are key components of the landscape’s dynamics. As tidal platforms accrete 

to elevation levels conducive of colonization by halophytic species (e.g., Spartina alterniflora), 

the network reaches a form of dynamic equilibrium and experiences only minor alterations 

afterwards (Rinaldo et al., 2004.) 
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1.2.4. Application of Remote Sensing in Saltmarshes 

1.2.4.1. Application of UAS and Remote Sensing in Saltmarshes 

This section will investigate the various projects within saltmarsh ecosystems that have 

employed UAS technology. These projects can be divided into two broad classes: orthomosaics 

and elevation models.  As reviewed in previous sections, SFM -MVS and UAS technologies have 

undergone significant advancements in the past five years (Crutsinger, 2016; Aguilera and 

González, 2017; Carrivick et al., 2016). This has allowed some to claim that SFM-MVS will 

'revolutionize' analysis of tidal systems (Kalacska et al., 2017). Numerous projects utilizing UAS 

and SFM-MVS have reported elevation error values ranging from 1.5cm - 10cm (Harwin and 

Lucieer, 2012; Jaud et al., 2016; Long et al., 2016; Kalacska et al., 2017) within saltmarsh 

landscapes, with sensors ranging from Red, Green Blue (RGB); Multispectral; and Light 

Detection and Ranging (LIDAR) capabilities.  

When comparing the DSMs of saltmarshes derived from LiDAR and SFM-MVS to DGPS 

surveyed elevations, Kalacska et al. (2017) found UAS average elevation error in the range of 

2.1-3.6 cm, and 13-29 cm for LiDAR respectively. They claim LiDAR coverage, although 

quicker that SFM-MVS and DGPS surveys and less intrusive, does not provide the required 

resolutions required to analyze features of interest (Kalacska et al., 2017).  

 Notably, Medeiros et al. (2015) and Hladik and Alber (2012) attempted to produce valid 

DEMs representative of the tidal flats elevation by accounting for the varying heights and 

biomass of vegetation species. Medeiros et al., (2015) employed a methodology that examined 

the relation between biomass measurements to remotely sensed data for each class and created 

species independent LiDAR DSM adjustment values to more accurately determine tidal platform 
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elevation. RMSE of the LiDAR derived DEM was improved from 0.65m to 0.40m when 

incorporating the adjustment values (Medeiros et al., 2015).   

Recent development in the field of remote sensing describes the new possibilities 

emerging for both researchers and practitioners (Colomina and Molina, 2014). Remote sensing 

researchers are faced with an ever-increasing precision and accuracy of their instruments, coupled 

with the emergence of new ones (Crutsinger et al., 2016).  The examination of the tool kits and 

practices of others suggest that multispectral imagery is effective for generation of monoculture 

specific spectral signatures and image classification. Means of incorporating variables beyond 

multispectral imagery (such as elevation) in a multivariate classification also supports the idea 

that species identification can be successfully performed (Grebby et al., 2010). Further research 

attempting supervised classification, comparing outputs and their errors, needs to be performed to 

quantitatively asses the suitability and accuracy of UAS mounted multispectral sensors for 

vegetation species identification.  

 

1.2.4.2. The Anthropogenic and Ecological Importance of Saltmarshes  

 As complex and diverse ecosystems, saltmarshes provide food and habitat to a vast range 

of species. Saltmarshes provide humans with countless benefits, quantified as ecosystem services 

(Biodiversity Information System for Europe, 2010). These services range in their nature and 

output, yet many aspects of our culture and economy are dependent upon them (JCU, 1995; 

Sousa et al., 2016). Their ecological importance and our dependence on these systems has led 

many to call for their conservation and continued monitoring (Chmura, 2013; Hopkinson et al., 

2012; Deegan et al., 2012; Beaumont et al., 2013).  
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 Saltmarshes have been found to be tremendous sequesters of carbon (Macreadie 2014; 

Beaumont et al., 2013). The plant communities within the marsh, largely Spartina alterniflora 

and Spartina patens, perform photosynthesis and convert C02 in the atmosphere into sugars, 

which are stored in their root masses. As these undergo cycles of thriving and perishing, carbon is 

accumulated below ground (Allen, 1990). It is estimated that saltmarshes sequester 4.6 – 8.7 

teragrams of carbon dioxide annually (Quintana-Alcantara and Eduardo, 2014). The system is 

important for other nutrient cycles, including that of nitrogen and potassium (Sousa et al., 2010). 

The saltmarsh is also the habitat of many vegetative, invertebrate, fish, and bird species (Wiegert 

et al., 1981). Atlantic Canadian saltmarshes are home to rare and endangered species including 

the piping plover (Environment Canada, 2012) and Eastern Lilaeopsis and Eastern Baccharis 

(GOC, 2017).  

 The saltmarsh provides a valuable coastal barrier for any feature immediately upland of 

the marsh (Pendle, 2013). Not only does the saltmarsh thrive on regular tidal inundations, but the 

vegetation within the marsh dissipates oncoming wave energy (Lightbody and Nepf, 2006). 

Moreover, saltmarshes are increasingly valuable when they are in front of a dyke feature, as they 

can greatly reduce maintenance costs associated with waves and storms (Gedan et al., 2011; 

Pendle, 2013).   
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CHAPTER 2  

Study Area: Masstown East 

 

2.1. Masstown East Overview 

The area of study is the eastern portion of the Masstown Saltmarsh, located in the Minas 

Basin, Nova Scotia. The Minas Basin is in the upper reach of the Bay of Fundy as seen in Figure 

2.1. It is a macrotidal system, possessing a tidal range of 16m at its peak (NOAA, 2017). The site 

has high concentrations of suspended sediment, with maximums in the range of 6 g/l (G. 

Matheson, personal communication, August 2017). The marsh is minerogenic, with organic 

matter contents ranging from 0.5% - 4 % respectively (Matheson, personal communication, 

August 2017). The site has experienced a historic trend of progradation (Matheson, personal 

communication, March 2018), as well as having been dyked and being historically managed this 

way (Landscape of Grand Pre, 2017). Within the marsh, the practice of digging borrow pits has 

been employed to provide material to top the dykes, keeping the agricultural land behind the 

structure from flooding.  This practice requires excavating channels in the marsh, or ‘pits’ as a 

source of material for dyke topping (Bleakney, 2004).  The borrow pits within the Masstown East 

saltmarsh have demonstrated trends of infill of 10-15 cm/year over the past year (Matheson, 

personal communication, March 2018), and being colonized by the low marsh species Spartina 

alterniflora. The borrow pit and dyke features result in cross sectional elevation profiles that are 

atypical relative to non-modified marsh platforms.  
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 The study site contains the remnants of a historic dyke feature running through the middle 

of the platform, east to west. The dyke was abandoned when the current one was built further 

behind it (Matheson, personal communication, March 2018). This has resulted in a greater 

accommodation space for the marsh. The area of study is approximately 12.5 acres.  

 

2.2. Masstown East Vegetation 

 The vegetation found at the site is a typical assortment of species seen in saltmarshes in 

the Bay of Fundy, and many of the Atlantic Provinces (Roberts and Robertson, 1986). The low 

marsh is dominated by Spartina alterniflora, while the high marsh is far more diverse. The high 

Figure 2.1 (A-C): Study Site, Masstown East Salt Marsh. Maps showing study area of Masstown East and where it is 

situated in the province.  

A B 

C 
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marsh at the site is covered predominately in Spartina patens and Juncus Geradii. Other species 

within this zone include Solidago sempervirens (Seaside goldenrod), Limonium vulgare (Seaside 

Lavender), Triglochin maritima (Arrowgrass), Glaux maritima (Sea Milkwart), and Spartina 

pectinata.  

The distribution and assortment of vegetation is visibly distinguishable in RGB imagery, 

appearing as bands parallel to the thalweg and running East-West in the site. The first band 

adjacent to the channel is the Spartina alterniflora monoculture, while the next higher band 

above it is largely Spartina patens with some Spartina alterniflora and Trilochin maritima. The 

last and uppermost zone is the High Marsh mix, largely consisting of patched of healthy and dead 

Juncus geradii, and small mixes of the mentioned high marsh species.  

 

  

Figure 2.2: Saltmarsh zones of vegetation. Low to high marsh 

transition, low marsh in foreground, high marsh in background. 

Reproduced from: Zottoli, R. (2015, April 14). Spartina patens (Zone 

3). 

Saltmarsh 
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CHAPTER 3  

Methodology and Data 

 

3.0. Project Methodology   

 While the field of UAS remote sensing and SFM-MVS are still in their infancy, there 

lacks the extensive body of research on methods and accuracy that exists for satellite platforms. 

This project couples both methodologies previously tested in UAS applications with those 

inspired by methods used for other platforms and sensors. Methods and sequences in this project 

have been adopted from previous work and the respective findings, when possible. For example, 

G.C.P. orientation and deployment has been optimized from previous Maritime Provinces Spatial 

Analysis Research Center (Mp_Sparc) UAS flights and their outputs. The remaining sequences 

(such as orientation and deployment of training/testing polygons) were informed by the academic 

body of knowledge on the specific subject (e.g. training pixels for UAS derived data), and the 

broader subject (e.g. training pixels for data derived from all platforms) where additional 

information is required. The rigor of the sample set up was constrained by the time and funds 

available for the project and seeks to maximize product accuracy. The project consists of three 

core aspects: field work and ground truthing, Pix4D processing, and ArcGIS processing.  

 

3.1. Field Work and Ground Truthing  

A segment of the marsh spanning an area feasible to cover by foot was selected for the 

study site, spanning about 600m by 50- 90m. The segment of marsh was then divided into three 

cells labeled A, B and C, about 200m each in length as shown in Figure 3.1. The sample set of 
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one training polygon (2x2m) for each vegetated cover in each cell was then configured. The 

potential locations for polygons were determined using freely available satellite imagery of the 

site on Google Earth. Points with these locations for each polygon were then input into a Garmin 

handheld GPS unit for the field (+/- 5m).  

Vegetation survey quadrats of 0.5m by 0.5m were constructed and strung. Each quadrat 

was divided into a 5x5 square grid, with 25 squares measuring 10x10cm each. This area 

corresponds roughly to the G.S.D. of the Parrot Sequoia when flown at an altitude of 90m.   

Polygon measuring ropes to deploy training polygons were crafted using 8m segments of 

nylon rope with the ends tied together. The rope was marked at a one-meter interval with flagging 

Figure 3.1: Site Sample Setup 



25 

 

 

tap to allow square and rapid deployment of the polygon. In the field, dowels were used to deploy 

the polygon. Following the vegetation survey, the dowels were replaced with flags for the 

topographic survey. The rope was then removed and used to guide the next training polygon. 

This method ensured all polygons were of a comparable area and geometry. 

The vegetation surveys were performed three times in each polygon to validate the 

certainty of cover in the area. The locations of the vegetation survey with the polygon were 

chosen by a Random Number Generator (RNG) between 1-16. Each polygon of 2x2m can be 

divided into a grid of 4x4 with 16 cells measuring 0.5m by 0.5m each. These configurations were 

chosen as vegetation surveys require a minimum of 15% of an area to be surveyed to quantify 

covers within (USGS/NPS, 1994). As each of the three quadrats was 0.25 m2, roughly 19% of 

each 4m2 training polygon was sampled. Tables and images from the vegetation survey are 

included in the appendix 

The orientation of G.C.P.s attempts to minimize the number of G.C.P.s deployed, while 

spacing them appropriately through the study site. A minimum spacing of G.C.P.s is calculated as 

1.5 times the smallest image dimension (Mpsparc, 2017). This calculated spacing ensures there is 

an adequate number of G.C.P.s visible in each image. As this project flew at various altitudes, the 

lowest altitude image dimensions were used for the G.C.P. spacing calculation. G.S.D. is the term 

used by the Pix4D program to describe the GRC of a given project. The G.S.D. of the UAS at 

50m was 6.2cm, while the smallest dimension of image is 960 pixels. The product of the G.S.D. 

and pixels was multiplied by 1.5 to suggest a spacing of 90m.Therefore, G.C.P.s were not spaced 

more than 90m from the edge of the study site, or each other. This ensures that there is minimal 

warping and distortion within the DSM of the study site.  
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 G.C.P.s were deployed on September 14th, and the UAS flights completed between the 

14th and the 15th. The flights were completed with a 85% frontlap and a 70% sidelap between 

images, nadir, and at altitudes of 50, 70, and 90m respectively. All G.C.P.S, polygon vertices, 

and vegetation survey locations were surveyed using the Leica GS-14 GNSS RTK Rover, with 

sub-centimeter horizontal and vertical accuracies.  

 Vegetation surveys included a list of species, hits (where species intersects with the 

survey grid), percent cover, plant height (height of the entire plant), and canopy height (the height 

at which the plant stands). Canopy height and plant height may be identical or may vary greatly if 

the plant ‘lays’ on the ground. An image was taken with a GPS camera at the location of each 

survey. The images include the plot, the quadrat, and a labeled whiteboard detailing the survey 

number. Percent cover was estimated based on visual observation, while all other measurements 

were collected quantitatively. Canopy heights were measured with a metal rod that had an 

adjustable and locking perpendicular piece (the arm). The rod was planted vertically in the 

ground and the arm locked at a height estimated to be representative of the mean canopy height. 

The rod was gently rotated, and the arm adjusted to intersect the maximum amount of canopy 

tops within its radius. The arm’s final height above the surface is the mean canopy height for the 

area.  

 

3.2. Pix4D Processing 

 The images collected from the various flights were uploaded into Pix4D mapping 

software, where initial point clouds are generated. The point clouds are then georeferenced with 

DGPS coordinates for each G.C.P. visible in the imagery set. The projected error for these 
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coordinates are also input into this process. For multispectral imagery sets, images taken prior to 

each flight of an Airnov calibration target (with known reflectance values) were used to 

radiometrically correct the Sequoia image and sunshine sensors. The processing parameters for 

the project are then set and run, generating the dense point cloud. From this point cloud, the 

DSM, orthomosaics and reflectance maps were generated and exported.  

 

3.3. ArcGIS Processing 

The data was amalgamated into an ArcGIS database. All data were input in the NAD 83 

CSRS Zone 20N horizontal coordinate system and the CGVD 2013 vertical datum. Once all 

reflectance maps were input, indices were generated. For this project, an NDVI raster was 

generated from the NIR and Red reflectance maps at the varying altitudes. The project also 

generated and utilized the Normalized Difference Red Edge (NDRE) index (Spiral Commercial 

Services, 2015; MicaSense, 2017), using the NIR and Red Edge reflectance maps.  

Following the generation of the indices, polygon and vegetation survey points were 

plotted. Polygons were created for each class by joining the surveyed vertices. Within these 

polygons, several iterations of random points were generated, with spacing corresponding to the 

G.S.D. Approximately 200 training and testing points were generated within each of the 

polygons. An intersection was then performed and all testing pixels within 13.3cm of a training 

pixel were deleted, ensuring no training or testing pixels exist in the same location and reducing 

the count below 200. The points served to break up the surveyed region into fragments, one set of 

shapefiles for testing pixels, and one set for training pixels. Shapefiles of training and testing 

pixels were also created using the pixels for each cover within Cells A and B, and Cell C.   
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Supervised classifications of the different flights were then completed with the randomly 

generated training pixels within sets of shapefiles, within the surveyed locations. Classifications 

were run using six classes for all three altitudes with all data available in the scene.  

Classifications were run using the 90m multispectral dataset using seven, six and five classes to 

represent to covers within the imagery. These classifications employed the Maximum Likelihood 

algorithm. Each classification then underwent an accuracy assessment with a confusion matrix to 

compare the error within each classification (Jensen, 2005). The various confusion matrices were 

then compared to consider error amongst different altitudes and training sample selections. Once 

a classification scheme with a minimum error and an extent that captured the entire area of study 

was selected, DEMs generation began.  

DEMs were generated by isolating the vegetation classes as shapefiles and applying 

canopy adjustments to respective classes on the DSM. Two methods were employed to determine 

canopy adjustment values: a flat subtraction method, and a function-based method. The flat 

subtraction method was produced using mean canopy height of the class at the time of the first 

vegetation survey. The second method utilized functions portraying relationships between 

reflection indices and canopy height for a given pixel.   

Canopy height was determined by subtracting RTK elevation values from the UAS 

derived canopy elevation values, at the polygon vertices. These heights were then plotted against 

remotely sensed variables (e.g., NDVI, NDRE) to examine any relationships that may exist 

between the two, and their strength. Adjustment functions were generated from the data that 

exhibited continually increasing function and a strong (>0.7) R value. The raster exhibiting the 

correlation was then clipped with the respective class shapefile or ‘mask’, and then transformed 
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with the respective function, generating a raster of canopy adjustment values. The raster 

generated for each class was subtracted from the DSM, generating the DEM.  

The results for the adjustments were then compared to elevation values of the origin 

points from the vegetation survey.  RMSE was then calculated for the adjustments and compared 

between DEM generation methods. RMSE was calculated for both DEMs with the following 

equation: 

𝑅𝑆𝑀𝐸 =  √
∑ (𝑃 − 𝑂)2𝑛

𝑖=1

𝑛
 

 

P is the predicted value, and O the observed value. The DEM generation methods were then 

coupled, utilizing the best of each method to produce a DEM with the maximum accuracy. The 

RMSE values for the surveyed bare surfaces was then added to the running error count, 

producing a final RMSE value for the DEM.  
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CHAPTER 4  

Results 

 

4.1. Vegetation Canopy Heights 

The results of the vegetation canopy height surveys are summarized in the following 

Table 4.1 and Figure 4.1. Survey 1 was completed between August 30th and 31st, while Survey 2 

was completed September 13th. The differences between the two surveys revealed growth for all 

three live classes, and a very slight decline for the dead class. The variation in heights between 

the two survey averages is depicted with standard error bars, spanning the greatest range for the 

S. alterniflora, and then J. geradii alive. The range and mean heights between surveys likewise 

revealed the most change in the S. alterniflora and J. geradii alive class; in terms of form they are 

the more variable and dynamic species in the landscape.  

 

 

 

 

 

Surveyed Canopy 

Heights (cm) 

Survey 1 

Mean 

Survey 2 

Mean 

Δ Mean 

(S2-S1) 

Survey 1 

Range 

Survey 2 

Range 

Δ Range 

(S2-S1) 

 

S. alterniflora 69.6 81.7 12.1 52 60 8 

 

S. patens 8.4 9.4 1 3 5 2 

 

J. geradii Alive 36.3 40 3.7 6 10 4 

 

J. geradii Dead 7.5 7.3 -0.2 3 3 0 

Table 4.1 Surveyed Monoculture Canopies Mean and Range 
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4.2. Pix4D Products 

The reports automatically generated from Pix4D gives a variety of information on the 

structure for motion process which constructs the reflectance maps and DSMs. The following 

table summarizes the Pix4D projects, allowing for comparison amongst the different datasets. All 

projects report a relatively low RMSE value for DSM elevation, from 1.6 and 2.6 cm. As the 

lower flights were unable to capture the entire marsh surface, the number of G.C.P.s and the area 

covered in those datasets are lower. The file size for the projects ranges 15gb for the 90m RGB to 

4.5gb for the 70m multispectral (MS). While the 90m RGB and MS flights cover nearly the same 

area, the file size for the 90m MS project is roughly two thirds the size of its RGB counterpart.  

Project  50m MS 70m MS 90m MS 90m RGB 

G.S.D. (cm) 5.26 7.22 9.41 3.84 

Extent (ha) 7.36 9.41 19.25 20.29 

Number of G.C.P.s 8 7 13 13 

RMSE (cm) 1.6 2.2 1.7 2.6 

Project File Size (GB) 5.55 4.57 10.2 15 
Table 4.2 Pix4D Project Details 
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4.3. DSM Generation (Bare Surface Validations) 

       The DSMs generated were assessed with various test points; the results have been 

summarised and displayed in the Figures 4.2, 4.3 and Table 4.3. The Root Mean Square Error 

(RMSE) method is an independent measure of error as to that generated in the PIX4D report. 

Comparing the DSMs generated at various altitudes to the RTK surveyed points at bare surface 

locations reveals RMSE is greater for the 50m MS and 90m RGB flight, and lowest for the 70m 

and 90m MS flight. Comparing the two 90m imagery sets (more similar spatial extents) with the 

figures further emphasises the greater error within RGB imagery set. There exists a 

large difference in RMSE values of PIX4D and those measured independently, ranging from 

5.4cm to 15.3 cm.  

 

Altitude RMSE (cm) RSM (Pix4D) (cm) ΔRMSE 

(Survey –Pix4D) 

(cm) 

50 m MS 16.9 1.6 15.3 

70m MS 7.6 2.2 5.4 

90m MS 7.5 1.7 5.8 

90m  RGB  15.8 2.6 13.2 
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Altitude RMSE (cm) 

(DSM and RTK Bare 

Surface Points) 

RMSE (Pix4D) (cm) 

(Pix4D Projection and 

GCP Points) 

50 m MS 16.9 1.6 

70m MS 7.6 2.2 

90m MS 7.5 1.7 

90m RGB  15.8 2.6 

Table 4.3: Comparison of DSM Error, Pix4D and Surveyed 

Figure 4.3: Comparison of DSM Error, 90m RGB and MS 
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4.4. Indices: 

Analysis of the NDVI map, Figure 4.4, reveals three distinct regions from foreshore to 

pasture. The foreshore mud has extremely low NDVI values, appearing dark. The saltmarsh has a 

low to mid-range of NDVI values and is less bright than the pasture and farmland with the 

highest NDVI values. There are some very low NDVI values visible as dark patches occurring in 

the middle of the saltmarsh platform. The NDRE map lacks the contrast the NDVI map provides 

between saltmarsh and pasture. 

 

Figure 4.4: NDVI and NDRE Maps generated from 90m MS flight 

Index 

Legends  
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4.5. Canopy Heights vs. Index Values 

The following section summarizes the process in which the relationships for the function-

based DEM subtraction were determined. Figures 4.5 (A-F) and 4.6 (A-F) display normalized 

differential index values on the X axis, and Canopy height (DSM Elevation - RTK elevation) on 

the Y axis. The trendlines describe a relationship between the variables, while the R values are 

used to asses the strength of the relationship. Comparison of DSM/RTK derived canopy heights 

and index relationships reveals a variety of both weak and moderately strong R values.  

The figures with a circled letter (Figure 4.5 C&E, Figure 4.6 B) display the functions with 

moderate R values and a trend of consistent increase (no instance of decrease in canopy height 

throughout the function); these are the functions utilized for DEM creation. Figure 4.5 E was 

generated using data from both J. geradii classes to obtain a function that that expresses both 

stages of the species lifecycle. The R value in Figure 4.5 E is higher than all other functions 

created in attempt to portray a consistently increasing relationship between J. geradii and a 

reflectance index. Rendering the axis of Figure 4.6 B to the same scale as the rest of the figures 

makes it hard to observe the binomial trendline; resembling a parabola approaching its vertex. 

The removal of two outliers in Figure 4.6 A to create 4.6 B raised the R value from 0.26 to 0.76.   

Most attempts to represent the relationship between canopy heights and reflectance index 

values yielded functions with low R values as seen in the Figures included in the appendix. Some 

attempts returned high R values, yet possessed fluctuating trendlines, such as Figure 4.5 D and 

4.6 E.  
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Figure 4.6 (A-F) NDRE Canopy Height Functions. Circled function used in DEM generation. 
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4.6. Isocluster Classification 

Isocluster classifications with various parameters were completed on the 90m MS dataset 

to make some initial observations about the data and its potential. The following Figures 4.7 and 

4.8 are the results of an eight class Isocluster classification using the 90m MS DSM, reflectance 

maps, NDVI and NDRE as input rasters.   

This initial classification managed to separate several key features out of the dataset, 

while classifying several unique features into the same class. For example, class 4 contains the S. 

alterniflora patches, borrow pits and a large section of pasture in the upper right of the map. 

Class 6 contains the high marsh community on the marsh platform and some patches of shrub and 

tree community in the upper half of the map. To further examine the classification, a black 

delineation of the foreshore from 2017 was applied over the map. As seen on Figure 4.7, the 

divide between classes 3 and 4 seems to portray the foreshore/saltmarsh edge. Shown in Figure 

4.8, the divide between classes 4 and 5 seems to correspond to the saltmarsh/burrow pit edge, and 

the S. alterniflora and S. patens zones.   

Figure 4.7: Isocluster Classification, 90M MS 
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4.7. Supervised Classifications and Confusion Matrices 

Confusion matrices are implemented to assess error in the supervised classification 

process. The tool generates a chosen number of points within the map, for each class, where the 

cover is known. The tool then evaluates whether the classification assigned that point correctly, 

and if not, which class was there. The confusion matrix displays the classification data in the 

primary column, and the reference data in the top row. The matrix has several key attributes: 

overall accuracy, producer’s accuracy, user’s accuracy and the kappa coefficient. Overall 

accuracy is the quotient of correctly classified pixels and the total number of pixels utilized in the 

confusion matrix (Jensen, 2005). Overall accuracy is displayed at the intersection of producer’s 

accuracy and user’s accuracy. Producer’s Accuracy is a measure of omission, indicating how 

accurately reference pixels were classified (Jensen, 2005). It is calculated with the quotient of 

correct pixels in a class and the total number of reference pixels for that class. User’s accuracy is 

a measure of commission, indicating the likelihood of a classified pixel properly representing the 

0 20 40 60 80 10 Meters 

Figure 4.8: Isocluster Classification, 90M MS, Saltmarsh and Borrow Pit 
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land cover (Story and Congalton, 1986; Jensen, 2005). It is calculated with the quotient of correct 

pixels in a class and the total number of pixels assigned into the class (Jensen, 2005). The kappa 

coefficient is indicative of the agreement between the reference data and the classification map 

(Congalton, 1991, Jensen 2005). In its generation, both chance agreement and the overall 

accuracy are taken into account (Rosenfield and Fitzpatrick-Lins, 1986; Congalton, 1991; Jensen, 

2005). The tables are in part summarized by the kappa coefficient, a measure of how well the 

classification map fits the surveyed data. The number of test points was set to 1600 for each class 

in the following matrices comparing different flight altitudes but varied based on what was 

captured within the respective flight.  

 

4.7.1 Supervised Classifications and Confusion Matrices: Varying Flight Altitudes 

 As shown in the three confusion matrices, there is very little difference in the kappa 

coefficient amongst the three flight altitudes. All classifications possess very high kappa 

coefficients ranging from 0.98 to 1. Amongst these classifications, user and Producer’s Accuracy 

errors occur mainly in the J. geradii classes. Table 4.4 displays the multispectral 90m, six class 

classification utilized in DEM creation. 

 

Class Value Alterniflora Patens 

Geradii 

Alive 

Geradii 

Dead Mud BP Total 

User’s 

Accuracy Kappa 

Alterniflora 1600 0 0 0 0 0 1600 1  

Patens 6 1594 0 0 0 0 1600 0.9962  

Geradii 

Alive 0 0 1498 102 0 0 1600 0.9363  

Geradii 

Dead 0 0 0 1600 0 0 1600 1  

Mud 0 0 0 0 1600 0 1600 1  

Borrow Pit 0 0 0 0 0 1600 1600 1  

Total 1606 1594 1498 1702 1600 1600 9600 0  

Producer’s 

Accuracy 0.9962 1 1 0.94 1 1 0 0.9887  

Kappa         0.9865 

Table 4.4:Confusion Matrix, 90m MS, 6 Classes 
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Class Value Alterniflora Patens 

Geradii 

Alive 

Geradii 

Dead Mud BP Total 

User’s 

Accuracy Kappa 

Alterniflora 740 0 0 0 0 0 740 1  

Patens 0 1099 0 0 0 0 1099 1  

Geradii 

Alive 0 0 1034 0 0 0 1034 1  

Geradii 

Dead 0 0 0 758 0 0 758 1  

Mud 0 0 0 0 1118 0 1118 1  

Borrow Pit 0 0 0 0 0 841 841 1  

Total 740 1099 1034 758 1118 841 5590 0  

Producer’s 

Accuracy 1 1 1 1 1 1 0 1  

Kappa         1 

 

 

 

 

 

  

 

Table 4.5: Confusion Matrix, 70m MS, 6 Classes 

Class Value Alterniflora Patens 

Geradii 

Alive 

Geradii 

Dead Mud BP Total 

User’s 

Accuracy Kappa 

Alterniflora 740 0 0 0 0 0 740 1  

Patens 0 590 0 0 0 0 590 1  

Geradii 

Alive 0 0 550 15 0 0 565 0.973  

Geradii 

Dead 0 0 0 758 0 0 758 1  

Mud 0 0 0 0 1118 0 1118 1  

Borrow Pit 0 0 0 0 0 841 841 1  

Total 740 590 550 773 1118 841 4612 0  

Producer’s 

Accuracy 1 1 1 0.981 1 1 0 0.996  

Kappa         0.996 

Table 4.6: Confusion Matrix, 50m MS, 6 Classes 

Figure 4.9: Supervised Classification, 6 classes, 90m multispectral 
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As a means of assessing the training data distribution, a classification was performed with 

one third of the training data of all previous classifications. The kappa coefficient of this 

classification is relatively lower than all other classifications, at 0.80. The major source of error 

in this classification is found within the borrow pit class, with a Producer’s Accuracy of 0.14. 

The 430 borrow pit and 41 J. geradii pixels placed in the mud class result in its kappa coefficient 

of 0.51.    

 

Class Value Alterniflora Patens 

Geradii 

Alive 

Geradii 

Dead Mud Borrow Pit Total 

User’s 

Accuracy Kappa 

Alterniflora 493 0 0 0 0 0 493 1  

Patens 7 500 0 0 0 0 507 0.986  

Geradii 

Alive 0 0 496 0 0 0 496 1  

Geradii 
Dead 0 0 4 459 0 0 463 0.991  

Mud 0 0 0 41 500 430 971 0.514  

Borrow Pit 0 0 0 0 0 70 70 1  

Total 500 500 500 500 500 500 3000 0  

Producer’s 
Accuracy 0.986 1 0.992 0.918 1 0.14 0 0.839  

Kappa         0.807 

Table 4.7: Confusion Matrix using Cell C as training data, 90m, 6 classes 

 

4.7.2. Supervised Classifications and Confusion Matrices: Varying Test Pixel Locations 

Tables 4.8 and 4.9 detail classifications performed with five classes instead of six, as the 

Mud and Burrow Pit classes were merged. The classifications were performed with alternating 

testing and training datasets. The first classification was performed with training data selected 

from Cell C, and validation data from Cell A and B, the second was performed with the 

alternative. The confusion matrices produced from these classifications both reveal very high 

kappa coefficients, although that of the classification performed using training data from Cell C 

was slightly larger. Errors occurred predominately in the S. alterniflora and Mud class between 
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the two classifications, with errors having occurred in the J. geradii in either state. Among the 

two classifications, the S. patens class contains the least error.  

 

Class Value Alterniflora Patens 

Geradii 

Alive 

Geradii 

Dead Mud Total User’s Accuracy Kappa 

Alterniflora 469 0 0 0 0 469 1 0 

Patens 5 500 0 0 0 505 0.990 0 

Geradii 
Alive 0 0 493 0 0 493 1 0 

Geradii 

Dead 0 0 7 483 0 490 0.986 0 

Mud 26 0 0 17 500 543 0.921 0 

Total 500 500 500 500 500 2500 0 0 

Producer’s 
Accuracy 0.938 1 0.986 0.966 1 0 0.978 0 

Kappa 0 0 0 0 0 0 0 0.972 

 

 

 

 

 

 

 

 

4.8. Comparing Class Extents  

The extents for each class within the supervised classifications were converted into 

percentages showing how much of the scene each made up respectively.  Percentages were 

determined by dividing the number of pixels in the class by the total number of pixels in the 

scene and multiplying by 100.  

 

Table 4.8: Confusion Matrix using Cell C as training data, 90m, 5 classes 

Class Value Alterniflora Patens 
Geradii 
Alive 

Geradii 
Dead Mud Total User’s Accuracy Kappa 

Alterniflora 73 0 0 0 8 81 0.901 0 

Patens 0 86 0 0 0 86 1 0 

Geradii 
Alive 0 0 82 0 0 82 1 0 

Geradii 

Dead 0 0 5 78 0 83 0.939 0 

Mud 0 0 0 0 168 168 1 0 

Total 73 86 87 78 176 500 0 0 

Producer’s 
Accuracy 1 1 0.942 1 0.954 0 0.974 0 

Kappa 0 0 0 0 0 0 0 0.966 

Table 4.9: Confusion Matrix Using Cell AB as Training data, 90m, 5 classes 
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4.8.1. Comparing Class Extents: Varying Flight Altitudes 

Figure 4.9 displays percentages for each class in the varying altitude supervised 

classifications with six classes. The S. patens and Borrow pit classes remain consistent across all 

the classifications, accounting for 6-11% and 1-5% of the scenes. The mud class remains 

moderately consistent while changing altitudes, within the range of 16-24% of the scene.  The J. 

geradii dead and Borrow Pit classes near disappear in the 70m MS classification, yet J. geradii 

dead accounts for 19% of the scene in the 50m classification. The S. alterniflora and J. geradii 

alive class extents vary greatly across the different altitude flights, from 6-41% and 19-65% of 

the scenes, a difference of 35% and 46% respectively.    

 

4.8.2. Comparing Class Extents: Varying Test Pixel Locations 

Figure 4.10 displays the class extents for the supervised classifications performed on the 

90m MS dataset using five classes and alternating the selection of testing and training pixels. The 

Borrow Pit class that was in previous classifications was combined with the Mud class. The 

classifications both portray the S. patens class as 7% of the total scene. Between these 

classifications there is a 5% difference in the Mud class, and a 7% difference in the J. geradii 
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Figure 4.10: Class Extents for 50, 70 and 90m multispectral Supervised Classifications, 6 classes. 
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Dead class. There is a greater difference in the extents of the S. alterniflora and J. geradii alive 

classes between classifications, 13% and 15% respectively.  

 

4.9. DEM Generation 

4.9.1 Class Masks  

Having performed the classifications and comparing the accuracies amongst them, the 

90m flight shows the greatest extent with a minimal sacrifice of accuracy. The 90m dataset has 

thus been selected for use in DEM creation. Figure 4.11 is a display of the class-shapes extracted 

from the 90m MS, six class classification. These class shapes or ‘masks’ were used for to subtract 

the canopy heights, thereby generating a DEM.  

Figure 4.11:Class Extents for Varying Test Pixel Location, 90m multispectral Supervised 

Classifications, 5 classes. 
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Figure 4.12: Class Masks Derived from the 90m, 6 Class Supervised Classification 

 

 

 

4.9.2. DEM Error   

 Following the generation of DEMs with both the Flat canopy subtraction and Canopy 

Function methods, DEM error was assessed. DEM error was calculated by subtracting the DEM 

elevation value from the known elevation value in a variety of locations. Error in the positive 

indicates where the DEM underestimated elevation, and therefore overestimated canopy height. 

Error in the negative indicates where elevation was overestimated, and canopy height 
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underestimated.  Figure 4.12 displays the error (in cm) for both DEM generation methods at 

origin point locations. There is greater error and higher extremes in the flat canopy subtraction 

method than its counterpart. The flat canopy DEM has maximum error near 60cm, while the 

canopy function DEM error reaches a maximum near 30cm. Both DEMs display more error in 

the positive than the negative, indicating canopy height was more often overestimated than 

underestimated. RMSE was calculated for both DEMs by squaring the error at each point, 

obtaining the average, and square rooting the product. RMSE of the flat canopy subtraction DEM 

was nearly double that of the canopy function DEM, at 25cm and 13cm respectively.   
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4.9.3. Calculating RMSE per Class 

RMSE was calculated for within the DEMs for each of the landcover classes to compare how 

accurately each method represented individual classes. Table 4.10 displays the RMSE within 

each class for both DEMs, and total RMSE at the bottom. The second column displays RMSE for 

the flat subtraction DEM calculated with Origin points, while the third is calculated with Vertex 

points. The fourth column displays RMSE per class for the function method DEM. The flat 

subtraction method most accurately portrays the S. patens class, while the other three vegetation 

classes are best represented with the function method. The fifth and sixth column represent ‘Post 

Results’ of the project. The fifth column represents a DEM crafted with the S. patens class of the 

first method, and all other classes using the second. The total RMSE for the resulting ‘coupled’ 

DEM is 6cm, roughly half that of the function method DEM. The sixth and final column adds the 

RMSE of the bare surfaces to the DEM to further assess the surface portrayal. RMSE does not 

significantly change with the addition of the Bare surface validation points, retaining a value of 

6cm. 

 

 

 Results Post Results 

RMSE PER CLASS 

(cm) 

Flat 

Subtraction 

DEM (Origin 

points) 

Flat Subtraction 

DEM (Vertex 

points)  

Function 

Subtraction 

DEM (Origin 

points)  

Flat and Function 

Subtraction DEM 

(Origin and 

Vertex points) 

Flat and Function 

Subtraction DEM  

(Origin, Vertex 

and Bare Surface) 

S. alterniflora 35 44 9 9 9 

S. patens 5 4 24 4 4 

J. geradii Alive 20 16 3 3 3 

J. geradii Dead 1 5 3 3 3 

Bare Surface RMSE NA NA NA NA 7 

RMSE TOTAL (cm) 26 25 13 6 6 

Table 4.10: Comparing DEM RMSE per Class 
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CHAPTER 5  

Discussion 

 

5.1. Project Review 

 This research sought to determine what combination of parameters for a multispectral 

equipped UAS would yield the most accurate and useful land cover classifications and DEMs for 

the saltmarsh landscape. This section sequentially investigates the various components of the 

project and their role in the achievement of the final goal. In the generation of the suite of 

geospatial products, error compounds, and must be reduced at each step along the way (Jensen, 

2005; Carrivick et al., 2016). The individual aspects of the project have been discussed in terms 

of their successes, the assumptions they rely on, and the limitations they are constrained by. 

Suggestions for improvements, future directions and considerations have been included for each 

of these aspects. This project was able to produce a final DEM with an RMSE comparable to that 

of its source DSM, 6cm.  

 

 

5.2. Field Work and Ground Truthing  

The vegetation surveys were completed in two sets, the first on August 30th and 31st, and 

the second on September 13th. The vegetation and topographic surveys would both have benefited 

from a more rigorous sample set up. Effort would have been better spent capturing more 

training/testing data than completing formal vegetation surveys. For this type of ground truthing, 

a simple validation of homogenous cover, DGPS survey and image would suffice. The formal 
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survey can take upwards of a half hour if multiple species were present. Those surveys were not 

used because of the significant diversity at those locations and the impact of mixed pixels on the 

classification (Jensen, 2005). This type of project may also benefit from a combination of formal 

and informal validations. A few formal validations would be performed followed by many 

informal validations, all surveyed with DGPS. In this case, species could be surveyed on the fly 

as one discovers it in a site. The canopy sampling method is somewhat subjective when trying to 

determine the mean canopy height for sparser and tall growing vegetation.  

The vegetation showed greater variability within the S. alterniflora and J. geradii Alive. 

These classes had a greater range and change in canopy height between the surveys than S. patens 

and J. geradii Dead classes. These findings compare to other studies examining the species 

(Smith et al., 1980; Mӧller, 2006). The growth for all live classes and decline in height for the 

dead class between surveys confirm their described states.  

 Drone flights were completed with varying degrees of difficulty. The 90m RGB flight 

was easy to accomplish, the UAS working as it was supposed to. The flights with the Parrot 

Sequoia sensor were far less user friendly and required several test flights for trouble shooting 

purposes. The issue remained an inability to completely load a mission grid, resulting in the craft 

hovering in a fixed location and wasting battery. As a result, all the multispectral flights were 

flown manually. The 90m MS flight was completed quickly with two batteries. The 50 and 70m 

MS flights would have taken more time than was available to cover the entire marsh surface, thus 

50 and 70m were only flown for half the site. These lower altitude flights cover less area, capture 

fewer G.C.P.s while requiring them to be closer together (MP_SpARC, 2017), but deliver a 

smaller G.S.D.. Radiometric calibration is less accurate for longer flights as more time elapses 
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between the calibration image and last image in the flight set; meanwhile illumination conditions 

change. Considering the feasibility, time, and resources, the slight improvements in G.S.D. do not 

merit flying at lower altitudes in the saltmarsh landscape. 

 

5.2. Pix4D: DSM Production and Limitations 

The SFM-MVS processing supplied via the Pix4D software was user friendly and easy to 

follow. The outputs were generated relatively fast; each project was processed within a night. The 

subscription fee for the Pix4D software is expensive but facilitates much of the SFM-MVS 

processing, requiring the user to set the project parameters and georectify.  The software is a bit 

of a black-box with some algorithms and processes not fully disclosed. This is not surprising 

given the developing nature of SFM-MVS software (Carrivick et al., 2016). Considering the 

Pix4D reports, the 90m MS delivered best ratio of coverage to file size, but at the sacrifice of 

G.S.D.  

The RMSE reported from Pix4D was inconsistent with independently measured RMSE 

values. Reported RMSE values ranged 5-15 cm less than the independently measured bare 

surface points. Validation points on the edge of the 70 and 50m DSMs were removed as the 

significantly higher values were due to the impact of the bowl like warp that exists on the edge of 

the DSM (MP_SpARC, 2017). Removing these outliers brought down the RMSE of the 50 and 

70m flight from 30 and 40cm to their current 15 and 7cm. There was more error in the 90m RGB 

than 90m MS which came across a slightly surprising. The difference in error may be a product 

of the georectification process. In the 90m RGB dataset, the center of G.C.P. flag may appear as 

1,2,4 or 9 pixels. In the 90m MS dataset it usually shows up as 1 or 4 pixels, making it much 
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easier for the user to remain consistent throughout the process (Jensen, 2005). Error was most 

similar between the 90m RGB and 50m MS set, and between the 70 and 90m MS sets. This may 

suggest that reducing flight altitude (thereby reducing G.S.D) may be related to increased error.  

 

5.3. Generation of Indices and Canopy Height Statistics 

A brief visual analysis of the indices shows the NDVI has more contrast amongst 

features, while the NDRE appears very grey and somewhat noisy. There seems to be some 

brightness banding in the NDRE which may be an artifact and sunlight reflecting off the wet mud 

surface. NDRE is supposed to reveal crop health in late season (Spiral Commercial Services, 

2015; MicaSense, 2017), yet there is not nearly as much variation in the marsh platform in NDRE 

as in NDVI. This is especially true for the center high marsh region where J. geradii is found 

both dead and alive. NDVI portrays the contrast between dead and alive J. geradii, suggesting 

perhaps NDRE is not as effective in observing saltmarsh phenology as the maturation of crops. 

The creation of functions for the DEM adjustment values operates under the assumption 

supported by Medeiros et al., (2015); as canopy height (and thus biomass) increases, so should 

reflectance, or brightness in the respective index. An ideal function would reach an asymptote as 

the maximum canopy height was reached and would possess a high R value (greater than 0.7), 

indicating a strong effect size (Moore et al., 2013). Simpler functions were sought, giving 

preference to linear and exponential functions over polynomial ones.  

The DEM creation could have benefited from the use of more points for determining 

relationships; more vegetation survey points with elevation values would allow for this. These 
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functions should employ 20-30 points per class, greater than the minimum population sample size 

(10 points per class) required for regression analysis (Statistics Solutions, 2018).  

  Strong R values were observed for some trends, but trends fluctuated as NDVI and 

NDRE increased. It was deemed fluctuations contradicted the assumption the relationships 

operated upon and are thus not used (Medeiros et al., 2015). In hindsight, fluctuations may have 

been the result of training site locations where the vegetation is blown over or laying down rather 

than upright (accounting for low canopy heights), thus exposing more of the plants surface to the 

sky above (accounting for higher index values). Outliers were removed from the S. patens class 

as the canopy height values did not correspond to those measured manually. It proved difficult to 

observe a strong relationship between the two variables for the S. patens class. J. geradii alive 

and dead proved difficult to derive functions for that didn’t fluctuate or have a low R value. J. 

geradii classes were then combined as they are the same species, producing an ideal trend line 

with a strong R value. 

 

5.4. Land Cover Classifications, Confusion Matrices and Class Extents 

The Isocluster classification proved effective for delineating the marsh/foreshore 

boundary as seen with the 2017 foreshore line. The classification incorrectly classifies some 

features, for example the vegetation in Figure 4.7 between the dyke road and ditch is classified 

the same as the high marsh region. The low marsh region is portrayed with lime green, red and 

dark green. In Figure 4.8, the red area in front of the marsh corresponds roughly to the S. 

alterniflora zone, and the dark green to the S. patens. The pasture behind the dyke is largely 

represented with the red and dark green classes. This may reflect the influence of the DSM on the 
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classification (Roe, 2016). Overall, the Isocluster classification displays promise for further 

accurately classifying the data 

It is recognized that the sample set up was not as extensive as it could have been and 

speaks to the balance of a robust sample set up, and what is physically possible. Classification 

kappa coefficients reflect a sample set up that could have been more robust with their very high 

values. Attempts were taken to assess the sample set up by varying and using portions of the 

training and testing data. In all supervised classifications produced, there is salt and pepper effect. 

The notion that one of the classifications scored a kappa coefficient of 1 sparks the 

interest to re-perform the classifications with a more robust training sample set up, as this result 

seems unobtainable (Jensen, 2005). All confusion matrices seem to demonstrate very high kappa 

coefficients, suggesting classifications accurately performed at the test point locations. The 

changes in altitude do not seem to have an impact in classification accuracy. These high kappa 

coefficients are likely a reflection of the training and testing pixel locations (Jensen, 2005). 

The next method used to assess the capacity of the training data was alternating test pixel 

locations. The classification run using six class and training data only from Cell C reveals a 

kappa coefficient of 0.8, a relatively successful classification (Jensen, 2005). The successes of the 

classification suggest that there is validity to the training sample set up, as a relatively successful 

map can be performed with one third of the input data.  

 High kappa coefficients were observed for the 90m 5 class classifications which 

employed alternating training and testing data. One classification utilized Cell AB and training 

data and cell C as validation, while the other utilized the opposite.  The high kappa coefficients 

suggest further classifications can be successfully performed with one to two thirds of the 
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training data (Jensen, 2005). Future studies should contain more testing and training sites 

scattered across the area of study if not constrained by time or resources. 

 Analysis of the class extents reveals one species that remains remarkably consistent 

across the scenes, while all other classes vary greatly. S. Patens remains near 7% for all 

classifications with alternating inputs. It seems unusual that two classes represent so little of the 

scene in the 70m MS scene, at 1% each. There is a greater variance in extents when changing 

altitudes than when changing training sample data, shown in the difference between the first 

three, and then the second two. The reduction in variance among class extents for the latter two 

classifications suggests the 90m flights with alternating input data more similarly portray the 

surface than the flights of varying altitude. 

  Regarding the research question, all altitudes have produced classifications of a very 

similar accuracy, well within the desired ranges of error. The aim was to produce a classification 

with a high User’s Accuracy and a kappa coefficient greater than 80%, as it indicates strong 

agreement between the classification and test data (Jensen, 2005). The question now considers 

which combination of parameters will yield the most useful classification. To answer this 

question, the extents (the area covered by each flight) and the flight time have been considered 

for each flight. The latter two flights (50 and 70m) do not display the same extent as the 90m 

flight as they were unable to cover the entire site in the given time. When considering the utility 

of UAS for mapping of these covers, the duration of time spent flying should be minimized to 

reduce variations in conditions across the scene (Aber et al., 2010). Thus, a 90m altitude flight 

that covers twice the area of a 50m flight in the same time span is favorable. Higher altitude 

flights result in smaller datasets to cover a common extent, requiring less time and computational 
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power to process, thus reducing time associated costs (Colomina and Molina, 2014; Crutsinger et 

al., 2016). Considering the similar accuracy outputs from these flights, the difference in extents 

and processing resources suggests the 90m flight produces the most useful land cover 

classification.  

 

5.5. DEM Generation: Assumptions, Constraints and Error  

 The two methods of DEM generation proved fruitful. Each method operates with its own 

assumption and is thus limited in one or another. The flat canopy subtraction assumes a static 

nature to a class, e.g., all S. alterniflora is 69 cm. The function canopy subtraction assumes a 

more dynamic and variable nature to a class, and compensates accordingly (Medeiros et al., 

2015). It was predicted the latter method would better represent the surface as many species of 

vegetation in the scene are heterogeneous in terms of canopy height (Smith et al., 1980; Mӧller, 

2006). 

The salt and pepper impact more observable in the individual and separated class masks 

than when the classification is whole. Isolated points are likewise easier to spot with highly 

contrasting colours, and their impact must be acknowledged (Jensen, 2005). If an isolated point 

appears within another class, the resulting DEM will have a jagged drop at that location. The 

class masks illustrate the importance of a reliable classification and User’s Accuracy as the 

DEMs build off it directly (Jensen, 2005). If the wrong cover is assigned to a location, the 

adjustment being made is for the incorrect species of vegetation and further increases error. The 

class masks are complex to produce, requiring the reclassify tool. One must account for the class 

value in all raster calculator functions.  
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Greater RMSE was observed in the first DEM compared to the second. This is not 

surprising as the first method assumed an entire species of vegetation grew at the same height. 

On a whole, DEM error was reduced in half by implementing function method. Error reached a 

maximum of around 60 cm for the first DEM. This error value was constrained by the DSM 

elevation and the subtraction value used. Error greater than the subtraction value in use is a 

product of error within the DSM for that location. Error reached maximum of 30 cm in the 

function subtraction, about half of its counterpart. 

Calculating the RMSE per class revealed where the error was coming from in the 

respective DEMs. RMSE was high for all classes except S. patens in the first DEM, while RMSE 

was low for all classes except S. patens in the second DEM. Coupling methods produced the 

most accurate product, reaching half the RMSE of the function-based method. A final DEM 

RMSE of 6 cm was determined. This is a desired accuracy as it compares to the RMSE of the 

DSM in bare earth locations. This reported RMSE merits further studies applying and 

investigating the capacity of emerging technologies to produce high quality geospatial products.  

S. patens and the J. geradii Dead are the least dynamic species in terms of canopy height 

range and change between surveys, while S. alterniflora and J. geradii alive are both very 

dynamic (Smith et al., 1980; Mӧller, 2006). It seems that the more dynamic a species is, the 

better it is represented with the function method (Medeiros et al., 2015). If a species has a 

relatively homogenous canopy height, it seems better represented with the flat subtraction 

method. 
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CHAPTER 6  

Conclusion 

 

This project initially set out to answer the question “What combination of parameters for 

a multispectral equipped UAS will yield the most accurate and useful landcover classifications 

and DEM for the saltmarsh landscape?”. Accuracy was similar across the landcover 

classifications of varying altitudes, but the DSMs from the flights with lower G.S.D. had higher 

RMSE values. The 90m RGB and MS flights are regarded as more useful flight altitudes as they 

were able to cover the entire area of study in a feasible time. For the purposes of this project and 

generating geospatial products, the 90m multispectral flight seems to strike the greatest balance 

of accuracy and practicality.  

This project has demonstrated the ability of a consumer grade multispectral UAS to 

produce a suite of geospatial products including reflectance maps, DSMs, land cover 

classifications, and DEMs with acceptable accuracy (in this study, a DEM with an RMSE of 

6cm). Future studies are required to further test and develop the capacity of multispectral sensor 

equipped UAS to produce accurate geospatial products within the saltmarsh landscape. Further 

studies investigating alternative methods of land cover classifications such as Object Based 

Image Analysis and determining the relationships between canopy height and reflectance values 

would serve to further increase the accuracy of DEMs generated.   

 

The advancements within domains of UASs, multispectral sensors and SFM-MVS 

software have collectively increased geoscientists’ ability to create accurate geospatial products 
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at a fraction of their previous cost (Colomina and Molina, 2014; Crutsinger et al., 2016). As these 

technologies become cheaper and of higher functionality, it remains ever important to test and 

push their limits, while scientifically questioning what they claim to do, and how. These further 

developing technologies, including multispectral UAS, demonstrate promise for researchers and 

practitioners across a variety of disciplines.  
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APPENDIX 

CHAPTER A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Monoculture Surveys S. alterniflora 

Table A.1: S. alterniflora vegetation survey, Cell A 
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Table A.2: S. alterniflora vegetation survey, Cell C 

Monoculture Surveys S. alterniflora 
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    Table  A.3: S. alterniflora vegetation survey, Cell B 

Monoculture Surveys S. alterniflora 
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                            Table A.4: S. patens vegetation survey, Cell A 

Monoculture Surveys S. patens 
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                            Table A.5: S. patens vegetation survey, Cell C 

Monoculture Surveys  S. patens 
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                     Table A.6: S. patens vegetation survey, Cell B 

Monoculture Surveys S. patens 
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                    Table A.7: G. geradii alive vegetation survey, Cell A 

Monoculture Surveys J. geradii alive 
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                    Table A.8: G. geradii alive vegetation survey, Cell C 

Monoculture Surveys J. geradii alive 
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                     Table A.9: G. geradii alive vegetation survey, Cell B 

Monoculture Surveys J. geradii alive 
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                           Table A.10: G. geradii dead vegetation survey, Cell A 

Monoculture Surveys J. geradii dying  
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                     Table A.11: G. geradii dead vegetation survey, Cell C 

Monoculture Surveys J. geradii dying  
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                       Table A.12: G. geradii dead vegetation survey, Cell B 

Monoculture Surveys J. geradii dying  
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Figure A.13 (A-F): Cell B S. alterniflora (A-C) and S. patens (D-F) survey images 
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Figure A.14 (A-F): Cell C S. alterniflora (A-C) and S. patens (D-F) survey images 



81 

 

 

 

 
 
 

A 

B 

C 

D 

E 

F 

Figure A.15 (A-F): Cell B J. geradii alive (A-C)  and dead (D-F) survey images 
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Figure A.17: Pix4D Report for 50 and 70m multispectral flights 
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Figure A.18: Pix4D Reports for 90m multispectral and RGB flights 


