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Root lesion nematode (Pratylenchus penetrans) mitigation through application of 
oligo-chitin and Ascophyllum nodosum extract in the soil prior to seeding red 

clover (Trifolium pratense L.) and birdsfoot trefoil (Lotus corniculatus L.). 
 

by Zoshia Leigh Fraser 

 

Abstract  

Root lesion nematodes (RLN) are a major pest in agriculture with no 
effective mitigation strategy. This research assessed the effect of a soil drench with 
chitin or Ascophyllum nodosum extract (ANE) on RLN infection and compared RLN 
abundance among varieties of birdsfoot trefoil (Lotus corniculatus L.) and red 
clover (Trifolium pratense L.). ANE and chitin treatments both resulted in lower 
populations of RLN/g dry root than the control; ANE had the lowest RLN population 
at 5185 RLN/g dry root, 30% less than the control. Red clover varieties (3877/g) 
had lower RLN abundance than birdsfoot trefoil cultivars (11276/g). TRC12-156, a 
red clover bred to be high in isoflavones, had the least RLN (2088RLN/g); 63% 
less than TRC12-157, a low isoflavone red clover variety. These results indicate 
the potential for new RLN mitigation strategies through application of novel soil 
treatments and selection of forage species and cultivar. 
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Chapter 1: Introduction 

Soil organisms are important contributors to agricultural systems. Among 

these organisms are nematodes, commonly referred to as roundworms. They are 

the members of phylum Nematoda. These organisms are found throughout a wide 

range of environments (Reece et al. 2011). In order to survive, certain nematodes 

require a host from which they can draw nutrients. These nematodes are referred 

to as parasitic nematodes and are a major concern within the agriculture industry 

(Davies and Curtis 2011). Plant-parasitic nematodes can reduce crop yield by over 

15% (Stirling 2014), while animal-parasitic nematodes have negative impacts on 

animal welfare and productivity as well (Holden-Dye and Walker 2014). 

Farmers have been managing parasitic nematodes for generations. 

Traditional mitigation of parasitic nematodes in plant agriculture includes the 

application of crop rotation and crop nematicides. However, there are concerns 

surrounding both of these methods. For example, the use of nematicides has lost 

popularity due to harsh environmental impacts and reduced efficacy (Duncan and 

Moens 2013); while crop rotations are often difficult as the host range of many 

parasitic nematodes remains unknown. In addition to a lack of effective treatments, 

populations of these parasites are also predicted to increase as a result of climate 

change (Van Dijk et al. 2010). Shorter, warmer winters, with higher rainfall and 

fewer ground frosts, will extend the range of the parasites north due to improved 

overwintering of parasites in fields (Kenyon et al. 2009). In the face of a growing 

population and demand for food, efficient and sustainable agriculture systems must 

be developed. One potential element in these systems, which will be addressed in 
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the following research, is the development of new and effective parasitic nematode 

mitigation strategies. 

1.1 Organisms in agricultural systems 

Agricultural systems are made of many complex relationships between 

organisms. In general, organisms can be classified into three categories: 

productive biota, resource biota and destructive biota (Altieri 1999; Swift and 

Anderson 1994). Swift and Anderson (1994) have laid out the frame work through 

which these classifications are based. The productive biota is the group of 

organisms chosen by the farmer, such as crop plants and livestock, that are used 

for the production of food, fibre and other products intended for human use or 

consumption. These organisms are a major determinant of the complexity and 

diversity of the organisms within the agriculture ecosystem. The second group are 

the resource biota. This group of organisms is beneficial to the production system 

but do not produce a product themselves. Organisms in this group include 

pollinators, cover crops, decomposers and the predators of pests. The final group 

of organisms are the destructive biota. They are a detriment to the productivity of 

the agricultural systems. Weeds, microbial pathogens, insect pests and parasitic 

nematodes are all considered destructive biota. It is the goal of many agricultural 

management practices to limit and reduce the latter group of organisms within the 

ecosystem. 
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1.1 Soil organisms  

Soil organisms can be classified as either resource or destructive biota and 

include bacteria, fungi and animals, such as nematodes and earthworms. These 

organisms play a major role in the productivity and sustainability of agricultural 

systems due to their effects on nutrient availability through organic matter 

breakdown and as destructive biota (Altieri 1999). Both resource and destructive 

biota are part of the soil fauna. Management practices of agricultural lands 

influence the populations and diversity of soil fauna (Swift and Anderson 1994). 

For example, the use of pesticides in agriculture can result in loss of soil organisms 

and the input of fertilisers can suppress nitrogen-fixing bacteria and the breakdown 

of soil organic matter (Thiele-Bruhn et al. 2012).  

This research will focus on root lesion nematodes in forage legumes, which 

is a soil organism and a member of the destructive biota. However, nematodes, in 

general, are a diverse group of organisms and may be either resource or 

destructive biota (Smiley 2015). A general overview of nematodes is given in 

section 1.2 while specific information on root lesion nematodes and the role in 

agricultural systems will be provided in section 1.2.5.   

 

 

 

 



   

4 
 

1.2 Nematodes  

Nematodes range in size from less than 0.1mm to over 1m long, such as 

Placentonema gigantissima found in sperm whales which can grow to be over eight 

meters in size (Gunn 2012). Nematodes are found in a variety of environments, 

including fresh and saltwater, soil, and throughout the bodies of plants and animals 

(Reece et al. 2011). Nematodes require moisture for locomotion; therefore, their 

survival and active life depends on environmental moisture content (Decraemer 

and Hunt 2013). Nematode bodies are cylindrical, typically come to a tip at the 

anterior end and are covered by an exoskeleton called the cuticle (Reece et al. 

2011). Terrestrial nematodes are the main type found throughout agricultural 

systems. This group of nematodes tend to be more prolific in sandy soils due to 

larger pore sizes of the substrate, making it a suitable environment for nematode 

locomotion and reproduction (Decraemer and Hunt 2013).  Estimates show that as 

many as 3,000,000,000 nematodes may be present in every acre of agricultural 

soil (Decraemer and Hunt 2013).  

 Nematodes can be further divided into free-living, such as rhabditids, and 

parasitic nematodes. While most nematodes are beneficial, contributing to the 

breakdown of soil organic matter, parasitic nematodes can be devastating to 

agricultural production systems (Smiley 2015). Parasitic nematodes can be 

subsequently divided into plant-parasitic, such as Pratylenchus, and animal-

parasitic nematodes, such as strongylida (Blaxter et al. 1998). Originally, parasitic 

nematodes were thought to be the more common form, with fewer species of free-

living nematodes being found (Filipjev 1934). However, this was largely due to the 
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focus of nematode research being on important parasitic nematodes, while little 

was being done in the way of identifying and characterizing the numerous free-

living species (Filipjev 1934). It is now theorized that parasitic nematodes 

developed from their more common free-living counterpart and that this likely 

occurred several times from different free-living nematodes. However, the origin 

and closest free-living relatives of many parasitic nematodes are still unknown 

(Blaxter et al. 1998).   

1.2.1 Nematode life cycle 

The basic nematode life cycle is common to all forms of nematodes. There 

are a few variations and extended life cycles, but typically nematode species hatch 

from eggs then develop through a series of four larval stages before advancing to 

adult male and female nematodes (Decraemer and Hunt 2013; Stasiuk et al. 2012). 

The presence of male and female nematodes results in mainly bisexual 

reproduction (Wallace 1963). Stage one juveniles emerge from their shells and 

moult to advance to stage two, three and four juveniles. The life cycle of parasitic 

nematode species includes a juvenile stage that is better adapted to long-term 

survival against harsh conditions such as cold and desiccation (Decraemer and 

Hunt 2013). This stage, referred to as the infective stage juvenile, is often where 

the transition from free-living to living inside a host organism occurs. (Stasiuk et al. 

2012). The infective stage larva has a hardened cuticle for protection against 

environmental stress. Rhoades and Linford (1961) showed that some stage four 

larva individuals of Paratylenchus projectus were able to survive at soil moisture of 

2.5% and temperature as low as - 19°C when all other larva stages were no longer 
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present in the samples. This is likely to be the infective stage larva and is the most 

numerous in field sites and aged laboratory samples (Rhoades and Linford 1961). 

Infective stage larva are typically non-feeding and therefore, must be capable of 

surviving on internal food stores alone (Decraemer and Hunt 2013).  Throughout 

the nematode lifecycle, there are two structures exposed to the environment: the 

egg shells and the cuticle. 

 

Figure 1-1: Life cycle of Parastrongyloides trichosuri, an intestinal nematode 

species which may develop into either short lived free-living nematodes or into 

infective larvae (iL3) of parasitic nematodes (Stasiuk et al. 2012). 
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1.2.2 Nematode egg shells 

Egg shells represent one of two structures throughout the nematode life 

cycle which are directly exposed to the environment. Nematodes may lay their 

eggs individually or secrete them in groups. Alternatively, the female nematode 

body may develop into a hardened protective cyst with the eggs inside (Decraemer 

and Hunt 2013). Nematode egg shells have been said to be one of the strongest 

biologically produced structures (Wharton 1980). Shells of nematode eggs typically 

have three layers; an outer lipoprotein vitelline layer, a chitinous layer that provides 

shape and structure, and the inner lipid layer that controls the permeability of the 

egg (Decraemer and Hunt 2013; Wharton 1980). In a 1967 study on the egg shells 

of the cyst nematode Heterodera rostochiensis, their egg shells were separated 

from the cyst wall then further separated from any larva. These shells were then 

subjected to a series of chemical tests which determined that the primary 

component was amino acids. The study also found that there was chitin present in 

the egg shells but not within the larva. The shells also contained lipids, 

carbohydrates and ash (Clarke et al. 1967). The presence of chitin in the shell was 

also reported in a review by Wharton (1980). Chitin is produced by chitin synthase, 

which is controlled through the activation of one gene in nematodes. When this 

gene is interfered with, reduced larva hatching occurs (Fanelli et al. 2005). The 

presence of chitin in egg shells is significant, as it creates a vulnerability to egg 

breakdown via chitinase enzymes produced by microbes, fungi and plants 

(Sahebani and Hadavi 2008; Sharp 2013). 
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1.2.3 Nematode cuticle 

Nematode bodies are covered in an exoskeleton known as the cuticle, which 

is present in all larva and in fully developed adults (Reece et al. 2011). After hating 

from the egg, it is the cuticle that is in contact with the nematodes external 

environment. The cuticle is shed periodically to allow for nematode growth (Reece 

et al. 2011). It is secreted by the epidermis and consists of four layers: the epicuticle 

which is a glycoprotein coat on the outer surface, a cortical zone, a median zone 

and a basal zone (Decraemer and Hunt 2013). The cuticle has a range of functions 

including maintaining body form, locomotion, growth, maintaining osmotic pressure 

and protection from environmental stressors and pathogens (Davies and Curtis 

2011). Due to the surface coat of the cuticle being in contact with the environment, 

it is a critical part of the nematode immune system, primarily through preventing 

attachment of pathogens (Blaxter et al. 1992). The epicuticle is of even greater 

importance in parasitic nematodes because it is a dynamic surface capable of 

adapting to allow the nematode to adhere to host tissues and to avoid detection by 

the host immune response (Davies and Curtis 2011). For this to be possible, the 

surface coat of parasitic nematodes must be capable of rapid transformations. In 

the infective stage larva, it is presumed that in order to make the transition from the 

free-living environment to the host body, the surface coat must be changed 

completely to allow survival in the host (Blaxter et al. 1992). The adaptability of the 

cuticle is key to the success of parasitic nematodes. 
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1.2.4 Plant parasitic nematodes in agriculture 

Parasitic nematodes are a major concern in agriculture, causing losses in 

both plant and animal agricultural systems. Losses are the result of the feeding 

habits of parasitic nematodes. Nematode losses in agricultural crops are commonly 

thought to be substantial. In 1965, the United States Department of Agriculture 

estimated crop losses due to nematodes to be $388 million (USDA 1965). 

However, estimates of global crop and economic losses are difficult to predict 

because there are many limiting factors contributing to crop yield loss (Turner and 

Subbotin 2013; Wallace 1963); although, estimates of smaller production regions 

have been made. Root parasitic nematodes are particularly devastating because 

as they attack the plant's root system, they limit total nutrient uptake, resulting in 

the suppression of yield potential (Karssen et al. 2013). Yield losses due to cyst 

nematodes have been documented in a variety of crops, such as potatoes. For 

example, in Europe, losses due to potato cyst nematodes are estimated to be 

around nine percent, while some estimates of losses due to the cereal cyst 

nematode, Heterodera averae, are over 90% in heavily nematode-infested wheat 

crops (Turner and Subbotin 2013). 

As of 2013, 4000 plant parasitic nematodes had been identified (Decraemer 

and Hunt 2013). Plant nematodes may be ectoparasitic, feeding on the exterior of 

the plant, or endoparasitic, entering the host plant tissue for all or part of the life 

cycle (Wallace 1963). This thesis will deal with the root lesion nematodes (RLN), 

which are considered the number one parasite of the Maritime potato industry 
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(Kimpinski 1979) and are also considered the most economically important 

nematode in the American corn-belt (Decraemer and Hunt 2013).  

1.2.5 Root lesion nematode 

Root lesion nematodes (Pratylenchus) are migratory endoparasites and the 

third most damaging plant parasitic nematode behind root knot and root cyst 

nematodes. There are more than 70 identified species of Pratylenchus. They are 

considered medium sized nematodes with body lengths typically being less than 

0.9mm (Duncan and Moens 2013). They are distributed throughout the world in all 

environments and soil types and are thought to have the largest host range of any 

plant parasitic nematode including fruit crops, potato, vegetables, cereals, forage 

crops, coffee and soybean. (Duncan and Moens 2013). In a study by Kimpinski 

(1979), root lesion nematodes were determined to be the most common plant-

parasitic nematode in both potato roots and soil on Prince Edward Island, Canada. 

They also found large population of root lesion nematodes in forage legumes and 

grasses grown in the recommended potato crop rotation (Kimpinski 1979; 

Townshend and Potter 1976). The root lesion nematodes are the most common 

form of parasitic nematode associated with forage legumes in Nova Scotia (Willis 

et al. 1971). 

 Root lesion nematodes typically reproduce through parthenogenesis, a 

form of asexual reproduction, although sexual reproduction has been observed in 

some species on occasion (Duncan and Moens 2013). Eggs are typically laid within 

the root tissue between cortical cells and on the root surface. Females typically lay 

one to two eggs per day (Zunke 1990). Multiplication of root nematodes is slow 
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relative to stem and leaf nematodes. Therefore, to cause significant reductions in 

crop yield, nematodes must already be present in the soil at harmful densities prior 

to the production year (Schomaker and Been 2013).Root lesion nematode lifespan 

is 22-46 days on clover roots but can last as long as 12 weeks in cooler temperate 

climates (Norton 1978).  

Root lesion nematodes penetrate the roots from the surrounding soil by 

placing lips on the root surface and thrusting through the outer cell wall. It is typical 

for multiple nematodes to enter through one hole in the root wall. Once inside, 

nematodes alternate periods of feeding, migration and rest (Zunke 1990). Root 

lesion nematodes are able to move freely through the root tissue and into the soil 

throughout the life cycle (Wallace 1963). As a result, all juvenile and adult stages 

of root lesion nematodes can be observed both in plant roots and in the soil 

environment (Duncan and Moens 2013). Nematode feeding can be for elongated 

or brief periods. Cells may survive brief feeding periods; however, after an 

elongated feeding period, plant cell death is the typical outcome and surrounding 

cells may also experience cell shrinkage (Zunke 1990). Nematode feeding results 

in necrotic lesions within the root tissue. These lesions often become infected with 

a secondary fungal or microbial infection (de la Peña et al. 2008). The feeding 

habits of root lesion nematodes result in root loss and disease leading to a 

reduction in overall plant health and yield. In the American Corn Belt, heavily 

infected fields are thought to experience one tonne per hector in yield losses 

(Duncan and Moens 2013). This parasite is also a major problem in potatoes, 

because not only is there a reduction in plant yield, but also a reduction in quality 
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due to potato surface scabbing caused by the nematode feeding (Duncan and 

Moens 2013; Kimpinski 1979).  

1.2.5.1 Current mitigation techniques 

Strategies currently available to mitigate threats from plant parasitic 

nematodes are breeding for resistance, soil cultivation and, most commonly, the 

use of nematicides and crop rotation. Any one of these strategies alone is unlikely 

to eliminate the nematode population, thus diverse strategies must be developed 

(Norton 1978).  The level of success of any mitigation strategies is dependent on 

the target nematode species.  

Techniques specific to managing RLN are limited. Common techniques 

included crop rotation and nematicides. Due to the diversity of root lesion 

nematodes and their ability to infect multiple hosts, crop rotation is difficult and 

often ineffective  (Marks and Townshend 1973). Nematicides have proven too 

costly and can have harsh environmental effects (Duncan and Moens 2013; 

Holden-Dye and Walker 2014; Kerry 1990; Kimpinski 1979; Kimpinski et al. 1999). 

Environmental concerns are centred around the risk for contamination of 

groundwater, soils and food products (Kimpinski et al. 1999), as well as the threat 

to both non-target nematode species and safety of human applicators (Stirling 

1991). In spite of the drawbacks to both techniques, these are still the only 

strategies recommended in root lesion mitigation associated with potato crops by 

both the Ontario and New Brunswick provincial governments (Government of New 

Brunswick 2017; Government of Ontario 2009). Due to the shortcomings of the 

current parasitic nematode mitigation strategies, research is required to continue 
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developing new alternative mitigation strategies that consider both their 

effectiveness and sustainability for the future of agriculture. Through the following 

section, potential avenues for natural alternatives using the plant's system and bio-

stimulant applications will be explored. 

1.2.5.2 Breeding for root lesion nematode resistance 

 Breeding for resistance to root knot nematodes has proven successful in the 

past (Hedin et al. 1984). However, due to differences in the host-parasite 

relationship, the same success has not been enjoyed in efforts to breed for 

resistance to root lesion nematodes (Christie and Townshend 1992; Kimpinski et 

al. 1999). Previous studies have identified potential for resistance or tolerance to 

root lesion nematode infections (Kimpinski et al. 1999; Papadopoulos et al. 2003; 

Papadopoulos et al. 2002; Potter et al. 1984). In a study of peach root stock by 

Potter et al. (1984), it was determined that different genetic groups seemed to be 

more able to tolerate infection of root lesion nematodes. They determined that two 

varieties of peaches, Tzim Pee Tao and Rutgers Red Leaf, had reduced response 

to nematode invasion. The progeny of these varieties also showed a favourable 

response to nematode invasions. This is interpreted as potential to improve 

tolerance through plant breeding (Potter et al. 1984), a potential that was further 

supported by work with forage crops (Christie and Townshend 1992; Kimpinski et 

al. 1999; Papadopoulos et al. 2002).  

Resistance to root lesion nematodes has been found in alfalfa and resistant 

germplasms are available (Christie and Townshend 1992). Red clover is thought 

to be a preferred host of nematodes (Townshend and Potter 1976). In a one year 
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study of 18 red clover cultivars, no cultivar was determined to be immune to root 

lesion nematodes. However, there were some breeding lines that displayed partial 

resistance to invasion of root lesion nematodes (Papadopoulos et al. 2002). In a 

similar study of red clover, variations between cultivars were again observed 

(Papadopoulos et al. 2003). However, there were discrepancies between the two 

studies. For example, in 2002, AC Christie was found to be susceptible to root 

lesion (Papadopoulos et al. 2002) nematodes; while in 2003, the same cultivar 

displayed partial resistance in both the greenhouse and field trials (Papadopoulos 

et al. 2003). Inoculation rates from the two studies varied by only 0.5 nematodes 

per gram of soil; therefore, inoculation rate is unlikely to be the reason for variations 

in nematode invasion. The variation may be partly explained by genetic differences 

between the two groups of root lesion nematodes, demonstrating the challenges 

of breeding resistance to this pest. The work of Kimpinski et al. (1999) found 

variations in the incidence of root lesion nematode invasion in birdsfoot trefoil, a 

forage legume; however, they also found these results to be inconsistent from year 

to year, possibly due to the genetic diversity of both the trefoil and the nematodes 

themselves. 
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1.3 Isoflavone 

There is a possible alternative to chemical control of nematodes within the 

plant defence response. One of the groups of compounds produced by plants 

through the defence response is isoflavones. These are a group of diphenolic plant 

secondary metabolites, derived from flavonoids as a result of the movement of an 

aromatic ring from C-2 to C-3 (Baber 2013). Secondary metabolites are those 

which are non-essential to the plant basic survival (Weston and Mathesius 2013). 

Plants capable of producing these compounds are predominantly from the 

subfamily Papilionideae of the Fabaceae family, which includes common forage 

legumes such as red clover, alfalfa and birdsfoot trefoil (Bucar 2013). They are 

synthesised throughout the plant in the phenylpropanoid pathway (Bucar 2013; Du 

et al. 2010). Distribution of isoflavones within the plant is uneven and changes 

throughout the plant life cycle. However, greater concentrations seem to be located 

in the root tips of plants (Bucar 2013). Isoflavones were originally thought of as 

plant waste products stored in a vacuole until disposal; however, it has become 

more evident in recent years that isoflavones have a diverse range of functions 

including UV protection, pollinator attraction, establishment of symbioses with  

nitrogen fixing bacteria, and a role in antimicrobial defence (Dixon and Pasinetti 

2010; Du et al. 2010; Ohri and Pannu 2010; Rasmussen 2008). 
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1.3.1 Effects of isoflavones on nematodes 

Plant isoflavone content seems to play a role in resistance to nematode 

invasion (Cesco et al. 2012; Cook et al. 1995; Ohri and Pannu 2010; Valette et al. 

1998). Production of enzymes in the phenylpropanoid pathway is induced by the 

invasion of nematodes (Edwards et al. 1995; Klink et al. 2009; Wuyts et al. 2006). 

Through this pathway, isoflavonoids are produced. Legumes have been shown to 

accumulate isoflavones in response to nematode infections, with the greatest 

buildup of these compounds occurring in the roots (Cook et al. 1995; Edwards et 

al. 1995; Valette et al. 1998) In a study by Wuyts et al. (2006), phenylpropanoids 

in general were shown to reduce the hatch rate of plant parasitic nematodes, while 

daidzein, an isoflavone produced in the phenylpropanoid pathway, acted as both 

a hatch rate inhibitor and a nematode repellent. Resistant plants have been shown 

to have greater concentrations of mRNA required for the enzymes of isoflavonoid 

phytoalexins synthesis, which are known to have a role in resistance against 

nematodes (Ohri and Pannu 2010). Resistant plants also have elevated 

concentrations of isoflavones and activity levels of phenylalanine ammonialyase 

(Edwards et al. 1995). This agrees with the finding of Klink et al. (2009) in 

soybeans. In a study by Baldridge et al. (1998), they determined that the root 

tissues of alfalfa with resistance to the root lesion nematode, Pratylenchus 

penetrans, had a higher content of the isoflavone derivative medicarpin, which 

hindered the nematodes motility and reduced the scope of damage (Baldridge et 

al. 1998). Due to these effects, breeding forages for increased isoflavone content 

could give plants increased nematode resistance, an alternative to chemical 
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nematicides. At the same time, it should be noted that in a study by Cook et al. 

(1995), when white clover was infected with a stem nematode, resistant and 

susceptible plants yielded the same concentrations and varieties of isoflavones, 

suggesting that resistance was being obtained through other mechanisms. 

1.4 Tannins  

Tannins are another group of naturally produced plant compounds that have 

a negative effect on nematodes. They are water-soluble polyphenols that are able 

to form a precipitate with proteins; however, not all tannins react with all proteins 

(Niezen et al. 1998a; Van Soest 1994). The ability of tannins to precipitate protein 

is capable of preventing frothy bloat, commonly associated with the grazing of 

legumes by ruminants (Broadhurst and Jones 1978; Chiquette et al. 1988). 

Therefore, increasing the tannin content became a selection goal of many legume 

breeders. However, it became evident that elevated tannin content decreases the 

palatability of forage, leading to reduced animal intake (Broadhurst and Jones 

1978), meaning, tannin content must be balanced to achieve optimal results (Hoste 

et al. 2006). 

 Tannins traditionally have been used in leather making processes due to 

their antibacterial and antifungal properties (Seigler 2012). These antimicrobial 

properties allow tannins to function as a form of protection for plants from 

herbivores, fungi, bacteria and nematodes (Lewis and Yamamoto 1989; Ohri and 

Pannu 2010). Tannins are produced throughout the plant and have a wide range 

of functions and structures but can be classified into two general categories: 

hydrolyzable and condensed tannins (Hoste et al. 2006; Seigler 2012; Van Soest 
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1994). Hydrolysable tannins are derived in the shikimate pathway and deter large 

herbivores and insects. Condensed tannins are derived from flavonoid precursors 

and are thought to defend against microbes (Seigler 2012). Tannins are also 

capable of reacting with enzymes to deactivate them; however, the enzymes of 

many herbivores have adapted to this (Van Soest 1994; Wink and Schimmer 

2010). 

1.4.1 Effects of tannins on nematodes  

Aside from preventing bloat, tannins have displayed some nematicide and 

anthelmintic properties (Athanasiadou et al. 2001; Molan et al. 1999; Molan et al. 

2003; Novobilský et al. 2013; Ohri and Pannu 2010). There are many studies on 

the effects of tannins on nematodes within animal production systems 

(Athanasiadou et al. 2001; Marley et al. 2003; Molan et al. 2003). In a review by 

Hoste et al. (2006), it was noted that the majority of studies conducted on the effect 

of ruminants consuming tannin rich forages resulted in reduced fecal egg counts, 

commonly attributed to a reduced nematode reproduction rate. This could be 

occurring through direct effects on the nematode or through a host reaction to the 

tannins (Athanasiadou et al. 2001; Marley et al. 2003; Molan et al. 2003; Niezen et 

al. 1995). This positive host reaction could be a result of tannins increasing the 

protein available to the animal in the small intestine. The enhanced protein 

availability would enhance the host immune responses, including response to 

nematode parasites (Athanasiadou et al. 2001; Marley et al. 2003; Molan et al. 

1999). It has also been suggested that changes to the pasture stand’s 

microenvironment due to the addition of legumes, which commonly have elevated 
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tannin content and are typically more leafy than grasses, could also play a role in 

reduction of infective stage larva (Hoste et al. 2006; Marley et al. 2006; Molan et 

al. 1999; Niezen et al. 1998b). These environmental changes could include 

moisture content, temperature and sunlight exposure; all of which are important 

factors in larval development (Zajac 2006). In a 2006 study by Marley et al., it was 

found that 31% fewer gastrointestinal nematode larvae were able to successfully 

develop on birdsfoot trefoil than rye grass. Considering the antiparasitic properties 

of tannins and the elevated levels of tannins in birdsfoot trefoil relative to rye grass, 

it is possible that these tannins contributed to the decrease in larva development 

(Marley et al. 2003).  

While work with tannins on animal parasitic nematodes is more common, 

there has also been some documentation of tannins having an effect on plant 

parasitic nematodes (Cesco et al. 2012; Chen et al. 1997; Chitwood 2002; 

Collingborn et al. 2000). In a study of banana response to the burrowing nematode 

Radopholus similis, it was determined that condensed tannins are produced in 

response to nematode infection and that resistant cultivars contain elevated levels 

of condensed tannins before and after nematode infection (Collingborn et al. 2000). 

A study by Chen et al. (1997) found that low concentrations of tannic acid (39mg/L) 

resulted in increased root knot nematode hatch rates while high concentrations (10 

000mg/L) inhibited nematode hatch rates though it was unclear if the stage two 

juveniles were killed within the eggs. Tannic acid may be effective at mitigating soil 

nematodes; however, soil amendments can also result in phototoxic effects to the 

plants (König et al. 1994; Mian and Rodriguez-Kabana 1982). 
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The mechanism through which tannins interfere with nematodes is not yet 

clear. One theory is that the ability of tannins to bind to proteins and change the 

shape of the protein could play a role in their defence against nematodes. As the 

nematode cuticle is protein rich, it is possible that upon contact of the nematode 

with tannins, the integrity of the cuticle could be compromised (Athanasiadou et al. 

2001; Hoste et al. 2006). It is also possible that when nematode larvae consume 

tannins, the tannins bind to the mucosa of the nematode digestive track and cause 

cells to die in a manner similar to the effects on insect larva (Athanasiadou et al. 

2001). Tannins could also bind with the nematode internal and external enzymes 

and denature them as enzymes are made of protein. The addition of tannin rich 

plant by-products to the soil has also been shown to reduce plant parasite 

incidence in squash, although there also appears to be some toxic effects to the 

plant as reduced plant weights were observed at high concentrations of tannic acid 

(Mian and Rodriguez-Kabana 1982). In contrast, a study on cotton for resistance 

to root knot nematodes found that there was no connection between condensed 

tannin content and resistance. Instead, they propose that resistance was being 

mediated by terpenoids, an additional compound produced by plants (Hedin et al. 

1984).  

The effectiveness of tannins on nematodes has been shown to vary 

depending on both the target nematode parasite and the chemical properties of the 

different types of tannins present. This has been shown in animal parasitic 

nematodes by Niezen et al. (1998b). The study showed that different species of 

nematodes respond to tannins in the diet of lambs. They found that lambs on a diet 
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which included condensed tannins had fewer female Ostertagia circumcincta but 

that Trichostrongylus colubriformis populations were unaffected.  

In addition to variation in nematode susceptibility to tannins, chemical 

structures of tannins play a role in their ability to inhibit nematode development 

(Hoste et al. 2006). This is supported by de Oliveira et al. (2011), who found that 

all tested tanniniferous plant extracts were able to cause similar inhibition of 

Haemonchus contortus despite varying amounts of both total phenolics and 

tannins. Molen et al. (2003) found that the prodelphinidin to procyanidin ratios of 

tannin extracts affected the inhibition of nematodes. Legume extracts from Lotus 

pendunculatus and sainfoin, composed primarily of prodelphinidin tannins, were 

more active against Trichostrongylus colubriformis, an intestinal nematode, than 

plants containing mostly procyanidin tannins (Molan et al. 2003).  Prodelphinidin 

tannins contain either gallocatechin or epigallocatechin, while procyanidin tannins 

contain either catechin or epicatechin (Molan et al. 2003). 

1.5 Bio-stimulants 

Bio-stimulants could be another alternative to the chemical control of 

nematodes. They are a group of compounds that, when applied to a plant in small 

quantities, cause a response in crops that enhances plant growth and development 

which cannot be attributed to traditional plant nutrients. Bio-stimulants cause plant 

responses by enhancing the activity of various physiological processes of the plant 

(Sharma et al. 2014). These compounds can be derived from various sources 

including macroalgae and the exoskeleton of arthropods. Macroalgae bio-

stimulants have been shown to influence plant respiration, photosynthesis, nucleic 



   

22 
 

acid synthesis, and ion uptake resulting in enhanced nutrient availability, water-

holding capacity and metabolism, as well as increased antioxidant and chlorophyll 

production (Sharma et al. 2014).  Among macroalgae bio-stimulants, those derived 

from brown algae are the most common, notably extracts of Ascophyllum nodosum 

and will be explained in section 1.5.1, while products created from the chitin in 

exoskeletons of arthropods will be discussed in section 1.5.2.  

1.5.1 Ascophyllum nodosum 

The term seaweed refers to multicellular species of algae. Among these, the 

largest and most complex are the brown algae (Reece et al. 2011). Ascophyllum 

nodosum, or rockweed, is a species of brown algae. A. nodosum is found on the 

rocky shores of the north Atlantic and has a dominating presence on the coasts of 

Nova Scotia and New Brunswick (Ugarte et al. 2009). In Atlantic Canada, A. 

nodosum is the most important economic contributor of the seaweed industry due 

to the demand for fertilizers and animal feed derived from it (Ugarte et al. 2009). A. 

nodosum is known for forming symbiotic relationships with the fungi 

Mycosphaerella ascophylli (Craigie 2011; Xu et al. 2008). As a result, fertilisers 

developed from A. nodosum have interesting features due to the components of 

the fungi, such as the presence of chitin, which can contribute to the benefits of the 

product to agriculture. 
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1.5.1.1 Ascophyllum nodosum extract (ANE) 

Ascophyllum nodosum extract (ANE) is the most commonly produced and 

studied of macroalgae extracts (Abetz and Young 1983; Craigie 2011; Verkleij 

1992).  A worldwide review of seaweed extracts by Sharma et al. (2014), found 

that of 47 commercially available macroalgae extracts, 28 were produced from A. 

nodosum. This included products produced in Canada. 

A. nodosum can be harvested either by hand or machine. Ten to 15 

centimetres must be left unharvested to allow for regrowth and rest periods of four 

to six years are recommended in sustainable production (Sharma et al. 2014). 

Once harvested, seaweed must then be converted to the extract form. There are 

a number of extraction methouds such as water extraction, acid and alkaline 

processing cryo-processing, enzyme extraction, fermentation and cell rupture with 

high pressure treatment (Goñi et al. 2016). The most common extraction process 

involves heating an aqueous suspension of milled macroalgae with a potassium 

carbonate solution in pressurized reaction vessels (Craigie 2011; Sharma et al. 

2014; Verkleij 1992). The extract produced contains carbohydrates, proteins, 

lipids, minerals, hormones and other organic compounds (Abetz and Young 1983; 

Sharma et al. 2014). Extracts can be applied during seed priming, directly to 

established plants or to the soil prior to planting (Sharma et al. 2014; Verkleij 1992).  
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1.5.1.2 ANE as a bio-stimulant 

ANE has a range of effects on plants that include: improved germination, 

yield, root development, mineral absorption, tolerance to biotic and abiotic stress, 

enhanced shoot growth and photosynthesis (Blunden et al. 1979; Craigie 2011; 

Paracer et al. 1987; Sharma et al. 2014; Verkleij 1992). These effects combined 

lead to an increase in profit at the farm level; however, as ideal growth conditions 

are approached, the benefits are decreased (Craigie 2011). These effects are 

putatively caused by a number of active components within the extract including 

alginates, carbohydrates, hormones, growth regulators and signalling molecules, 

such as chitin (Blunden et al. 1979; Sharma et al. 2014). The hormone fraction of 

seaweed extracts, particularly cytokinins, has been identified as one of the active 

components of the extract having a role in increasing yields following application 

(Abetz and Young 1983; Hanssen et al. 1987; Verkleij 1992). The fungal symbiot 

of A. nodosum gives ANE some unique properties and benefits that are not present 

in other seaweed extracts. This is supported by Hannssen et al. (1987) who 

compared ANE to extracts produced from Laminaria, an alternative type of brown 

algae with no symbiont. Even so, it was found the ANE is more effective at 

increasing the yield of lettuce plants through foliar applications than the Laminaria 

alternative (Hanssen et al. 1987). 
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1.5.1.3 Effects of ANE on nematodes 

ANE has been shown to have direct effects on nematodes (Morgan and 

Tarjan 1980; Verkleij 1992; Whapham et al. 1994). When plants are treated with 

ANE, the number of Meloidogyne javanica, a root knot nematode, present is 

significantly reduced and can be further reduced when nematode eggs are 

exposed to a seaweed extract solution during the hatching process (Radwan et al. 

2012; Whapham et al. 1994; Wu et al. 1998). This is supported by the work of 

Morgan and Tarjan (1980), who found a significant reduction in sting nematode 

populations after soil treatments with ANE. After this, plants contain elevated levels 

of phenolic components, flavonoids and antioxidants, which are known deterrents 

of nematodes in spinach (Craigie 2011). This suggests that the ANE application 

stimulated the plant's internal defence system (Cramer et al. 1993; Morgan and 

Tarjan 1980; Wu et al. 1998).  

There are several active compounds that have been credited with a role in 

ANE induced nematode resistance in plants including betaines, auxins and oligo-

chitin (Ali et al. 2016; Khan et al. 2009; Wu et al. 1998). It has shown that betaines 

stop nematode development, in a similar way to many antihelminthics or de-

wormers (Peden et al. 2013). Also, the use of oligo-chitin in agriculture has been 

studied in depth and its effects on nematodes have been well documented (Sharp 

2013). 
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1.5.2 Chitin 

Chitin is a known component of ANE thought to originate from the cell walls 

of the Mycosphaerella ascophylli, the fungi found within Ascophyllum nodosum. It 

is the second most abundant polysaccharide on the planet, behind only cellulose 

(Sharp 2013). Chitin is a structural polysaccharide common to fungal cell walls and 

the exoskeleton of arthropods (Reece et al. 2011). Similar in structure to cellulose, 

except, chitin has an amino group attachment on carbon two of the glucose 

monomer. Pure chitin is leathery and flexible but becomes rigid when combined 

with calcium carbonate (Reece et al. 2011). As outlined earlier, chitin is also a 

component of nematode eggs and gut linings (Cronin et al. 1997; Sharp 2013; 

Spiegel et al. 1986; Veech 1977). 

1.5.2.1 Chitin as a bio-stimulant 

Chitin can be used as a bio-stimulant. It acts as a signalling molecule for 

plants through receptors in the cell membrane. These receptors signal to the host 

plant that a fungal infection is approaching. This is done through the binding of 

chitin to a plasma membrane receptor, typically a protein with high affinity for it. 

Using this mechanism, the plant begins to prepare a series of defence responses 

(Kaku et al. 2006). Chitin can affect many of the physiological pathways of the 

plant, such as: inducing early and increased flowering, reducing transpiration, 

increasing yield and improving nutritional quality (Mendoza-Sánchez et al. 2016; 

Sharp 2013). In spite of the many benefits of chitin treatment, treatment above the 

optimal chitin level can have detrimental effects on the plants, such as reduced 

yield, tissue death or organism death (Mian et al. 1982; Sharp 2013; Tian et al. 
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2000). In a study by Godoy et al. (1983), chitin treatments of 0.4% and above 

reduced root galling as a result of the root knot nematode Meloidogyne arenaria; 

however, treatments above 0.8%, resulted in phytotoxicity. 

1.5.2.2 Effects of chitin on nematodes 

Chitin application can have a positive effect on a plants ability to withstand 

or combat parasitic nematodes. The application of chitin directly to 

plant tissues signals the plant to activate the internal defence mechanisms. These 

defence mechanisms include the production of chitinase (Cramer et al. 1993), 

which breaks down nematode eggs and causes lesions within the gut of plant 

parasitic nematodes (Gan et al. 2007; Sahebani and Hadavi 2008; Sharp 2013). 

When eggs of the nematode Meloidogyne hapla were incubated with chitinases 

isolated from Lecanicillium psalliotae fungi, hatch rates of the nematode eggs were 

reduced (Mian et al. 1982). Chitinases are produced in both the apoplast 

and symplast of the plant (Sharp 2013). Not all chitinase are the same as they are 

produced for different functions (Li et al. 2006). Therefore, some chitinases may 

be more effective on different nematode species, as demonstrated by the 

nematode species Tylenchorhynchus dubius being more susceptible to 

degradation by commercial chitinase in vitro than Pratylenchus penetrans (Miller 

and Sands 1977). Chitin also stimulates the production of known nematode 

deterrents, such as phenolic compounds and isoflavones (Khan et al. 2003). In a 

study where tomato plants were treated with chitosan, a chitin derivative, it was 

shown to reduce egg hatching, live larvae and nematode parameters of root knot 

nematodes in the soil and plant. It also enhances tomato growth parameters and 
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increased the activity of the antioxidant enzymes peroxidase and phenoloxidase 

(El-Sayed and Mahdy 2015). 

The addition of chitin to soil has effects on the soil environment, in part due 

to the increase in nitrogen availability. In a 1996 study where the soil was amended 

to have one percent chitin, ryegrass had elevated yields and decreased root 

growth, while clover decreased nodulation, evidence of the elevated nitrogen 

content in chitin amended soil (Sarathchandra et al. 1996). This agrees with the 

previous studies of Mian et al. (1982) and Miller (1976). Addition of chitin to soils 

is able to reduce total soil parasitic nematode counts and damage to crops by 

nematodes (Godoy et al. 1983; Kerry 1990; Mian et al. 1982); however, the mode 

of action is not entirely clear.  

One theory is that the nematicidal effect could be due to growth promotion 

of chitinolytic microbes and fungi which then feed on nematode eggs (Cronin et al. 

1997; Gan et al. 2007; Godoy et al. 1983; Kerry 1990; Mian et al. 1982; Sahebani 

and Hadavi 2008; Sarathchandra et al. 1996; Sharp 2013). In a 1999 study, chitin 

amendments of one percent (w/w) were able to reduce damage from Meloidogyne 

incognita in the first planting of cotton and positive effects were carried over to a 

second cotton planting. This was primarily due to an increase in population size of 

chitinolytic fungi and bacteria compared to populations in non-amended soils 

(Hallmann et al. 1999).  A second theory is that breakdown of chitin in the soil 

produces ammonia, which at a high level, would have nematicidal effects (Godoy 

et al. 1983; Kerry 1990; Rodriguez-Kabana et al. 1987; Sharp 2013; Spiegel et al. 

1987).  In a study by Tian et al. (2000), there was no consistent effect of chitin 

additions below one percent (w/w) on the reduction of hatch rate in the absence of 
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chitinolytic microbes. However, after the addition of chitinolytic microbes, Tian et 

al. were able to isolate five bacteria isolates capable of consistently reducing 

Heterodera glycines,(Tian et al. 2000). Rodriguez-Kabana et al. (1987) also found 

that chitinolytic microbes reduced Meloidogyne arenaria in tomatoes when soil was 

amended with chitin supplementation below one percent. 

1.6 Conclusion 

Parasitic nematodes are a large source of agricultural losses. Root lesion 

nematodes, a crop parasite, are responsible for substantial losses annually, and 

are considered the most common parasite of the maritime potato industry. Current 

mitigation recommendations of the combination of crop rotation and nematicides 

for the treatment of root lesion nematodes are currently unable to adequately 

combat this growing pest problem. Alternatives could be investigated through plant 

isoflavones and tannins. Both have been identified as components of the plant 

defence response to nematodes. These compounds exist naturally at varying 

levels in all plants. Additionally, bio-stimulants, such as ANE and chitin, have 

proven to be effective in the mitigation of nematodes through the stimulation of the 

plant defence system. In this study, we will evaluate the effectiveness of forage 

with elevated levels of isoflavones and different tannin profiles, coupled with the 

application of ANE and chitin as alternatives to nematicides in the control of root 

lesion nematodes in forage legumes. 
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1.6.1 Objectives 

1. Compare incidence of root lesion nematodes in two birdsfoot trefoil and two red 

clover varieties. 

2. Assess the effects of treatment with oligo-chitin and ANE on root lesion 

nematode infection in red clover and birdsfoot trefoil. 

Chapter 2: Materials and methods 

2.1 Experimental site description 

All experiments were carried out at the Kentville Research and Development 

Centre, Agriculture and Agri-Food Canada, Kentville, Nova Scotia, Canada (lat. 

45.1 Long. −64.5).  

2.1.1 Growth chamber description 

Growth chambers used in this study were large walk-in chambers with 120” 

x 120” of floor space, allowing for ten rows of six trays. Trays contained ten plants 

of the same cultivar and treatment group, each in their own individual four-inch pot 

(Figure 2-1). Trays were placed directly on the floor of the growth chamber. The 

chambers were maintained at a photoperiod of 16 hours of daylight (425 μmol m–2 

s–1) at 21 ± 2⁰C and eight hours of dark at 16 ± 2⁰C. 
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Figure 2-1: Replicates three and four in one half of a walk-in growth chamber at 

the Kentville Research and Development Centre, Agriculture Agri-foods Canada.  

2.2 Soil 

Soil with a high root lesion nematode, Pratylenchus penetrans (Cobb) Filip 

& Schur. Stek., population of 19/g dry soil was obtained from a soybean field at the 

Harrington Research Farm, Agriculture and Agri-Food Canada, Crops and 

Livestock Research Centre, Charlottetown (lat. 46.2 long. −63.1). The soil at this 

site is a Charlottetown fine sandy loam (70% sand, 20% silt, 10 % clay, 2.7% 

organic matter; pH 5.9). It was determined to be free of both root knot and clover 

cyst nematodes to prevent suppression of root lesion nematodes.  The soil was 

collected in December of 2015 using a round mouth shovel to remove only the top 

layer of soil. It was placed into plastic shipping containers then transported by truck 

to Kentville Research and Development Centre, Agriculture and Agri-Food 
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Canada, Kentville, Nova Scotia, Canada. Soil has been stored in the plastic 

shipping containers at environmental temperatures and approximately 60% soil 

moisture until being used in August 2016.  

2.3 Plant material 

Two species of legume from the family Fabaceae were used, birdsfoot trefoil 

(Lotus corniculatus L.) and red clover (Trifolium pratense L.). Two varieties of each 

species were used for a total of four forage varieties. Two experimental varieties 

of red clover were used; TRC12-156 (Papadopoulos, unpublished data) and 

TRC12-157 (Papadopoulos, unpublished data), respectively selected for high or 

low above ground plant tissues isoflavones. Two commercially available birdsfoot 

trefoil cultivars, AC Langille (Papadopoulos et al. 1997) and Leo (Bubar 1964), 

were used.  

2.4 Plant growth protocol 

Experiment was carried out in four sequential replicates and included plant 

growth at three stages and in three types of environmental conditions across a 

period of 5 months (August 2016 – January 2017). 

2.4.1 Germination 

Seeds of the four varieties were allowed to germinate for one week in 

separate Petri dishes. Seeds of both cultivars of birdsfoot trefoil had been 

pretreated with bacterial inoculum, while seeds of TRC 12-157 were scarified and 

scraped, using a nail file to improve poor germination rates. Scarifying was not 

required for the TRC12-156. Seeds were then placed on filter papers moistened 



   

33 
 

with water and kept damp but not submerged for the entire germination process. 

At the end of germination, seedlings possessed green cotyledons which are the 

first embryonic leaves (Figure 2-2).  

 

Figure 2-2: Red clover seedlings with green cotyledons prior to transplant into 

rootainers of soil infected with RLN. 

2.4.2 Establishment 

 Emerged seedlings were then transplanted into rootainers containing 

approximately 110mL of the infected soil and 15mL of the designated treatment 

(Figure 2-3). Treatments are described in section 2.5. Transplanting was 

completed by forming a shallow hole in the surface of the soil placing the young 

root of the seedling in the hole using forceps. Soil was gently packed around the 

root, ensuring the cotyledons remained above the soil surface. This occurred on 

August 9, 2016 (Reps 1 & 2) and August 16, 2016 (Reps 3 & 4). Plants were 
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allowed to establish and grow for six weeks in the rootainers on a greenhouse 

bench.  

 

Figure 2-3: Plants TRC 12-156 treated with chitin and ANE establishing on a 

greenhouse bench in rootainers filled with RLN infected soil. 

2.4.3 Transplanting 

Six-week-old seedlings were removed from the rootainers, roots were gently 

loosed by hand and placed in standard four-inch round pots (Figure 2-4). Pots were 

then filled with the infected PEI soil to approximately 0.5” from the top, leaving room 

for watering. All root materials were placed below the soil surface while the green 

plant material was left above the soil surface. The soil was lightly packed and the 

pots were then transferred in trays of ten pots per tray to the growth chamber. This 

occurred on September 12, 2016 (reps 1 & 2) and September 19, 2016 (reps 3 & 

4). 
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Figure 2-4: Transplanting of six-week-old red clover seedling to four inch pot to be 

filled with soil infected with RLN. 

2.5 Treatments 

This experiment included two treatment groups and one control; all 

treatments were administered as a liquid root drench.  

2.5.1 Treatment preparation 

2.5.1.1 Chitin 

Treatment one was oligo-chitin prepared from powdered oligo-chitin. This 

powder was obtained from Dr. Yuguang Du of the Institute of Process Engineering, 

Chinese Academy of Sciences, Beijing, China. The chitin was extracted from 

lobster shells in the form of oligo-chitin. The chain length of oligo-chitin is 2-10 N-

acetylglucosamine monomers with an average of four polymerizations and the 

powder is no less than 70% oligo-chitin (Wang 2016).  Chitin powder was diluted 
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with distilled water directly from powder to a concentration of 0.36g/L oligo-chitin 

solution (Y. Du [Institute of Process Engineering, Chinese Academy of Science. 

Beijing], personal communication) to be used in the root drench.  

2.5.1.2 Ascophyllum nodosum extract 

Treatment two using ANE treatment was prepared from Acadian® 100% 

liquid seaweed concentrates, this is a commercial seaweed extract available from 

Acadian Seaplants Ltd., and is guaranteed to contain 0.1% total nitrogen and 5% 

total potash. Pure ANE extract was diluted with distilled water directly to 3g/L 

(Alghamdi 2017; Wang 2016). Vigorous mixing was required to completely dissolve 

the viscous ANE into the solution.   

2.5.2 Treatment calibration 

The volume of soil per individual rootainer was determined to be 

approximately 110 mL. Using trial and error the volume of water required to reach 

approximate field capacity was determined. Known volumes of water were poured 

over 110 mL of lightly packed soil in a sealed bottom container and allowed to 

percolate through the soil. Once the water had moved through the soil in its entirety 

water content was estimated. It was determined that 15 mL of liquid is required to 

reach field water capacity. 

2.5.3 Treatment application 

Treatments were applied directly to the soil in rootainers prior to transfer of 

established seedlings from petri dish.  Fifteen millilitres of treatment was applied 

slowly to the top of the rootainers using a syringe in three intervals to allow time for 

the treatment to seep into the soil without overflowing the top of the rootainers 
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(Figure 2-5). Treatment was applied no more than 12 hours ahead of transplanting 

one week old seedlings.  

 

Figure 2-5: Example of rootainer soil treatment drench of water control with syringe. 

2.6 Harvest I 

Each replicate was harvested on separate days to allow adequate time for 

nematode enumeration (Section 2.8) and the Christmas vacation of lab staff. The 

first harvest of rep one was completed on November 7, 2016 and harvest of 

replications were completed on November 14, 2016 (Rep 2), December 5, 2016 

(Rep 3) and December 13, 2016 (Rep 4). 
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2.6.2 Vigour score 

 Vigour scores were used to assess the health of the above ground plant 

matter. Plants were scored on a scale of one to ten, one being dead and ten being 

very vigorous (Figures 2-6 - 2-8). Criteria taken into consideration were height, 

number of leaves and shoots, colour, bloom stage and signs of disease such as 

wilting and leaf spots.  

 

Figure 2-6: A) Example of vigour score of nine and B) example of vigour score of 

eight for red clover plants at the first harvest. 

 A B 
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Figure 2-7: Example of vigour score of A) seven, B) six and C) five of red clover plants at the first harvest. 

 

 

A C 
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Figure 2-8: Example of vigour score of A) four, B) three and C) two of red clover plants at the second harvest.

A C 
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2.6.1 Yield 

Plants were then trimmed with scissors to five centimetres in height, while 

root material was left in pots to regrow for the second harvest date described in 

section 2.7. Harvested shoot material from replicates one and two were placed in 

individual paper bags and dried in a large drying oven at 70°C for at least one 

week. The mass of shoot material was taken immediately following removal from 

the oven (Figure 2-9A). Shoots from replications three and four were placed in 

whirl packs and plant material was freeze dried in a small Edwards freeze drier 

(Figure 2-9B). Freeze drying was performed to prevent denaturing of plant 

phytochemicals for analysis at a later date. After freeze drying, bags were sealed 

and placed in a minus 80°C freezer and the mass was taken at a later date.    
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Figure 2-9: A) First cut forage legume samples in paper bags in the drying oven 

and B) first cut forage legumes samples in whirl packs in Edwards freeze drier at 

the Kentville Research and Development Centre, Agriculture Agri-foods Canada. 

2.7 Harvest II 

Final harvest began on December 5, 2016 (Rep 1), and repeated starting 

on December 13, 2016 (Rep 2), January 2, 2017 (Rep 3) and January 9, 2017 

(Rep 4). 

 

 

A B 
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2.7.1 Plant materials 

Vigour scores were repeated in the same manner as harvest I. Yield 

measurements were repeated with above ground plant material being trimmed to 

two centimetres. Above ground plant material from all replications was placed in 

paper bags, dried at 70°C in a large drying oven for at least one week and massed 

immediately after being removed from the oven. 

2.7.2 Root material 

 Pots containing root material were left to dry overnight (approximately 18 

hours) after the removal of shoots. The following day root samples were removed 

from the pot (Figure 2-10A) and soil was loosened from the roots by hand, 

removing as much soil as possible without losing major portions of the root system 

(Figure 2-10B). The remaining above ground plant material was then removed with 

scissors leaving only soil and roots. The roots were then inserted into a Gillison's 

Variety Fabrication root washer for seven minutes (Figure 2-11). Using water 

pressure, the root washer creates a whirlpool, which gently removes the dirt from 

roots while causing minimal damage to the root system (Figure 2-10C).  When 

roots were removed from the washer, they were checked and any remaining soil 

was removed by hand with a water hose. Excess water was then removed from 

the root with the combination of air drying and patting dry with paper towels. Roots 

were then packaged individually in plastic bags and placed on ice for shipment to 

Prince Edward Island Potato Quality Institute, Charlottetown, Prince Edward 

Island, Canada.  
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Figure 2-10: Birdsfoot trefoil root sample A) immediately after coming out of the pot, B) after hand removal of dirt and C) 

after seven minutes in the root washer. 

 

A B  
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Figure 2-11: Gillison's Variety Fabrication root washer at the Kentville Research 

and Development Centre Agriculture Agri-foods Canada. 
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2.8 Nematode extraction and enumeration  

Nematode extractions were carried out at the Prince Edward Island Potato 

Quality Institute Charlottetown, Prince Edward Island, Canada, by Claude Gallant. 

Nematodes were extracted from clean root material using the modified Baermann 

funnel method (Kimpinski 1993). Roots were trimmed from the primary tap root 

then cut laterally into smaller pieces. Root systems were then placed on screens 

with 80mL of water. Pans containing screens, roots and water were then stacked 

in sets of 20 and placed in plastic bags to incubate for seven days. Incubation 

temperature ranged from 21-24°C.  After a seven-day incubation period, extraction 

suspensions were collected into 100mL test tubes and root material was dried and 

weighed. Suspensions were allowed to settle, with nematode fractions settling to 

the bottom. Samples were then reduced in volume to 20mL. This was done by 

syphoning water from the top of the solution. The remaining sample was then re-

suspended with a vortex. A five millilitre subsample was then pipetted onto a grid-

lined counting petri dish and observed with a stereomicroscope for the purpose of 

nematode identification and enumeration. Data was collected with a data reduction 

computer program. 
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2.9 Statistical Analysis 

The experimental design was a latinized nested design. The main plots were 

forage varieties, and the sub-plots were bio-stimulant treatment groups, resulting 

in a total of 12 experimental groups. The experiment was carried out in four 

replicates with ten plants per group for a total of 480 plants. Data analysis was 

completed in GenStat®. Analysis of variance (ANOVA) was used to determine 

standard errors of the mean and compared at a probability level of p < 0.05. Before 

the final ANOVA, large residuals were removed to meet the conditions of normality 

required for the ANOVA test. A log10 transformation was applied to the root lesions, 

rhabditid and other nematode populations, again to meet the normal distributions. 

Log10(x+75), as used in Papadopoulos et al. (2003), was used for this 

transformation as the +75 provides a means of dealing with zeros in the data set. 

Seventy five was selected based on an approximation of the number of nematodes 

if the sample was re-read or re-extracted and resulted in the presence of a single 

nematode. Transformation was not required for stunt or spiral nematodes as the 

data was already normally distributed. Orthogonal contrasts were used to evaluate 

the differences between both chemicals and varieties tested. After statistical 

analysis, means were de-transformed from the log10(x+75) scale. Cluster analysis 

was preformed to compare the differences between populations. Figures and 

tables were produced in Microsoft® Excel 2016 and SigmaPlot® 13.0. 
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Chapter 3: Results 

The results of the ANOVA test (Sections 3.1-3.3) show that both forage 

variety (p = <0.001) and treatment (p = 0.025) are affecting the population densities 

of root lesion nematodes as well as dry matter yield. There were no significant 

interaction effects. ANOVA tables can be found in Appendix E. 

3.1 Forage varieties 

To demonstrate the main effects of forage variety on the measured 

parameters, means across the three treatment groups are displayed for each of 

the four forage varieties in figure 3-1 to 3-3. Cluster analysis (section 3.4) reviled 

three clusters forming based on forage variety. 

3.1.1 Root lesion nematode populations 

Means of root lesion nematodes extracted from plant roots on the 

log10(x+75) scale for the four forage varieties are displayed in Figure 3-1. The RLN 

counts ranged from 12370 RLN/g (AC Langille) to 2088 RLN/g (TRC12-156) 

(Figure 3-2). The tested trefoil had significantly (p = <0.001) higher populations of 

root lesion nematodes at 11276 RLN/g root dry matter where red clover contained 

65.6% fewer root lesion nematodes with an average of only 3876 RLN/g. TRC12-

156, the high isoflavone red clover, had the lowest population of root lesion 

nematodes; 63.2% less then TRC12-157 (5666 RLN/g), the low isoflavone variety 

(p = 0.001). There were no significant differences in root lesion nematode 

population between the birdsfoot trefoil cultivars. 
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Figure 3-1: Number of root lesion nematode (RLN) per gram root dry matter of four forage legume varieties on a 

Log10(x+75) scale. Forage was grown in growth chambers and soil infected with 19 RLN per gram dry soil.  

Note: SEM = two times standard error of the mean. 
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Figure 3-2: Detransformation of means from Log10(x+75) of the population density of root lesion nematodes (RLN) per gram 

root dry matter of four forage legume varieties. Legumes were grown in growth chambers and soil infected with 19 root 

lesion nematodes per gram dry soil.  
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3.1.2 Regrowth dry matter yield 

Forage regrowth dry matter yield from the second plant harvest can be 

observed in figure 3-3. Yield ranged from 1.525g (TRC12-156) to 1.026g (AC 

Langille). Red clover varieties had significantly (p = 0.006) higher regrowth yield 

with 1.413g, while the birdsfoot trefoil produced only 1.108g of regrowth. TRC12-

156 had a greater yield than TRC12-157 (1.301g), this is not a significant difference 

but can still be considered a trend (p = 0.099)). 
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Figure 3-3: Mean dry matter yield (g) of forage regrowth from legume varieties grown in growth chambers and soil infected 

with 19 root lesion nematodes per gram dry soil. Note: SEM = two times standard error of the mean. 
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3.1.3 Other nematode populations 

Rhabditis showed similar trends to the root lesion nematodes. Their 

population size ranged from 1198 Rhabditis/g root dry matter (AC Langille and Leo) 

to 309 Rhabditis/g root dry matter (TRC12-156). The red clover had significantly (p 

= <0.001) lower populations of Rhabditis at 337 Rhabditis/g root dry matter, 

whereas birdsfoot trefoil cultivars contained 71.9% greater populations of Rhabditis 

with 1198 Rhabditis/g root dry matter. Spiral and stunt nematodes were found in 

the samples at abundances of less than 40 per gram root dry matter. Data for all 

other nematodes is available in Appendix A. 

3.2 Soil treatments 

To demonstrate the main effects of treatment on the measured parameters, 

means across the four forage varieties are displayed for each of the three treatment 

groups in figure 3-4 to 3-6.  

3.2.1. Root lesion nematode populations 

The log10(x+75) transformation of mean abundances of root lesion 

nematodes per gram of dry root in each treatment group are displayed in figure 3-

4. The RLN counts ranged from 7424 RLN/g root dry matter (control) to 5185 RLN/g 

root dry matter (ANE) (figure 3-5). There were significant (p = 0.02) differences 

between the control and the oligo-chitin and ANE treatments. Plants treated with 

ANE had 30% fewer RLN/g root dry matter than the control. Oligo-chitin treatment 

(6278/g root dry matter) also caused a 15% reduction in root lesion nematodes. 

There were no significant differences between the ANE and oligo-chitin treatments. 
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Figure 3-4: Abundance of root lesion nematodes (RLN) per gram root dry matter of three treatment groups applied to four 

forage legume varieties displayed on a Log10(x+75) scale. Forage was grown in growth chambers and soil infected with 19 

root lesion nematodes per gram dry soil. Note: SEM = two times standard error of the mean. 
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Figure 3-5: Detransformation of means from Log10(x+75) of the root lesion nematodes (RLN) population density per gram 

root dry matter of three treatment groups applied to four forage legume varieties. Forage was grown in growth chambers 

and soil infected with 19 root lesion nematodes per gram dry soil. 
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3.2.2 Regrowth dry matter yield 

The mean dry matter yields of individual plants in each of the three treatment 

groups are displayed in figure 3-6. Dry matter yields ranged from 1.345g (ANE) to 

1.189g (Chitin). The ANOVA revealed that there is a trend in treatments (p = 

0.093), with ANE having a greater yield than chitin with an increase of 11.6% (p = 

0.033). There were no significant differences between the control (1.274g) and 

either treatment.
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Figure 3-6: Mean dry matter yield (g) of forage regrowth of three treatment groups averaged from four legume varieties 

grown in growth chambers and soil infected with 19 root lesion nematodes per gram dry soil. Note: SEM = two times standard 

error of the mean. 
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3.2.3 Other nematode populations 

There were no significant differences for any other nematode populations 

found in the samples with regards to the treatments applied. Results for these 

populations can be seen in Appendix A. 

3.3 Interactions 

There were no significant interactions between forage variety and the 

treatment applied in this experiment on any of the tested parameters. Forage 

variety by treatment interaction data can be found in Appendix C. 

3.3.1. Root lesion nematode populations 

The root lesion nematode abundances per gram root dry matter for each of 

the possible 12 forage treatment combinations are displayed in the log10(x+75) 

scale in figure 3-7. The range in abundance was 16106 RLN/g root dry matter (AC 

Langille x oligo-chitin) to 1745 RLN/g root dry matter (TRC12-156 x ANE) (figure 

3-8). The treatment-forage variety combination with the lowest population of root 

lesion nematodes occurred in TRC12-156 and ANE with 39% less RLN/g root dry 

matter than the TRC12-156 control (2856 RLN/g root dry matter). The second most 

effective combination was TRC12-156 and oligo-chitin (1822 RLN/g root dry 

matter), which had 36% less than the control. The TRC12-156 control was the third 

most effective combination. The combination with the greatest population of root 

lesion nematodes was AC Langille and oligo-chitin, showing a 29% increase 

relative to the AC Langille control (12456 RLN/g root dry matter). The AC Langille 

control was the second highest combination. The combination that had the third 
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highest number of RLN per gram was in Leo and oligo-chitin (12003 RLN/g root 

dry matter), with a 10% higher population than the Leo control (10915 RLN/g root 

dry matter). 
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Figure 3-7: Abundance of root lesion nematodes (RLN) per gram root dry matter of three treatment groups applied to four 

forage legume varieties on a Log10(x+75) scale. Samples were grown in growth chambers in soil infected with 19 root 

lesion nematodes per gram dry soil. Note: SEM = two times standard error of the mean. 
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Figure 3-8: Detransformation of means from Log10(x+75) of the number of root lesion nematodes (RLN) per gram root dry 

matter of three treatment groups applied to four forage legume varieties. Samples were grown in growth chambers and soil 

infected with 19 root lesion nematodes per gram dry soil. 
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3.4 Cluster analysis of root lesion nematode populations 

 Cluster analysis was performed on mean root lesion nematode counts of 

the 12 treatment forage variety combinations. The result of this analysis is 

displayed in a dendrogram in figure 3-18. The cluster analysis revealed three 

groups which are related by forage variety. The first group includes the red clover, 

TRC12-156 under all three treatment groups. This group is different from all other 

conditions, represented by a separate branch on the dendrogram. The second 

branching separates TRC12-157 treated with chitin and ANE from the remaining 

treatment conditions. The final group includes all Birdsfoot trefoil and TRC12-157 

control (DH2O). The second and third group are more closely related to each other 

than to the first group. There are some other minor separations; however, these 

are not strong enough to require further divisions of the main clusters. It should be 

noted that there is some separation between the Birdsfoot trefoil treated with ANE 

and the control and chitin treatments. Cluster analysis on all other parameters are 

available in appendix B. 
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Similarity 

Figure 3-9: Dendrogram of the results of a cluster analysis, performed on the mean 

abundance of root lesion nematodes (RLN) per gram root dry matter, of three 

treatment groups applied to four forage legume varieties on a Log10(x+75) scale. 

Forage was grown in growth chambers and soil infected with 19 root lesion 

nematodes per gram dry soil. In the figure, chitin represents the oligo-chitin 

treatments and DH2O represents the control groups.  
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Chapter 4: Discussion  

Plant-parasitic nematodes can reduce crop yield by over 15% (Stirling 

2014). The root lesion nematode is the third most damaging plant parasitic 

nematode globally (Duncan and Moens 2013) and the most common parasite of 

the maritime potato industry (Kimpinski 1979). Populations of many parasitic 

nematodes are also predicted to increase as a result of mild, short winters with 

higher rainfall improving winter survival (Kenyon et al. 2009). Mitigation strategies 

for these nematodes are limited and often ineffective. For example, the use of 

nematicides is associated with harsh environmental impacts and low efficacy 

(Duncan and Moens 2013). While crop rotations are typically ineffective due to the 

wide host range of root lesion nematodes. The objective of this research was to 

examine alternative mitigation strategies through plant isoflavones and tannins and 

the application of ANE and oligo-chitin. 

The results of this study indicate that there are no interaction effects, 

meaning that differences in the data are explained by the main effects of forage 

variety and treatment applied. The lack of interaction can be interpreted as all 

forage varieties having the same response to the treatment application. 

Furthermore, the lack of difference between the oligo-chitin and ANE treatments 

indicates that the two treatments have the same effect. Among the cultivars 

examined, TRC12-156 consistently had the lowest root lesion nematode 

populations under all treatment conditions.   
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4.1 Forage varieties 

 Four forage varieties were tested; two red clovers, TRC12-156 and TRC12-

157, as well as two birdsfoot trefoils, AC Langille and Leo. Differences were found 

between forage varieties in the root lesion nematode and shoot yield. 

4.1.1 Root lesion nematodes 

Of the four forage varieties tested in this study, the two red clover varieties 

contained 34% fewer root lesion nematodes per gram dry root than the birdsfoot 

trefoil cultivars (11276 RLN/g root dry matter). This difference keeps consistent 

when the research of Papadopoulos et al. (2002) and Kimpinski (1999) are 

compared. In a study by Papadopoulos et al. (2002), red clover varieties were 

tested for resistance to root lesion nematodes, resulting in nematode abundances 

from 750 to 9800 RLN/g root dry matter and an average population of 3200 RLN/g 

root dry matter. These populations are much lower than those found in a similar 

study of birdsfoot trefoil varieties by Kimpinski et al. (1999), where the population 

of root lesion nematodes ranged from 7940 to 26920 RLN/g root dry matter. There 

are a number of possible explanations for these differences including genetic 

variation in the nematode inoculum, differences in the procedure of the 

experiments as well as differences in the in the composition of the two species 

themselves. 

One possible explanation for the reduced RLN counts in red clover could be 

a superior nematode response system relative to the trefoil. Red clover is 

traditionally high in phenolic compounds, including isoflavones. These 

concentrations are high even compared to soybean, which is commonly used in 
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human health supplements due to its high level of isoflavones (Kroyer 2004; 

Papadopoulos et al. 2006; Tsao et al. 2006). Phenolics in general, but especially 

isoflavones, have been linked to plant response to nematodes, leading to plant 

resistance (Ohri and Pannu 2010). This could enable red clover to react more 

efficiently and quickly to a nematode invasion. Isoflavones, in particular, have been 

linked to phytochemical nematode defence, which is the production of chemicals 

by the plant to protect it from nematodes. Isoflavones are produced in response to 

nematode invasion, with build-up of isoflavones occurring in roots (Cook et al. 

1995; Edwards et al. 1995; Ohri and Pannu 2010; Valette et al. 1998). Nematode 

resistant plants in previous studies have shown to have elevated levels of the 

enzymes within the phenylpropanoid pathway, phenylpropanoids and their 

derivatives, such as isoflavones (Baldridge et al. 1998; Edwards et al. 1995; Klink 

et al. 2009; Ohri and Pannu 2010). Wuyts et al. (2006) found that 

phenylpropanoids, in general, have reduced the hatch rate of plant parasitic 

nematodes, while daidzein, an isoflavone produced in the phenylpropanoid 

pathway, acted as both a hatch rate inhibitor and a nematode repellent. A study by 

Tsao et al. (2006) reported the presence of isoflavones and daidzein in the above 

ground plant material of 13 red clover cultivars.  

 The association of isoflavones with superior nematode response systems is 

further supported by the low abundance of root lesion nematodes in TRC12-156 

(2088/g root dry matter), a high isoflavone red clover variety. The two varieties of 

red clover used in this research were developed through a breeding program with 

the purpose of producing a high isoflavone line (TRC12-156) and a low isoflavone 

(TRC1-157) red clover. TRC12-156 had the lowest population of root lesion 
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nematodes (2088 RLN/g root dry matter) in the present research; 63.2% less then 

TRC12-157 (5666 RLN/g root dry matter). The work of Papadopoulos et al. (2006) 

show that breeding for isoflavone content is possible. They found that total 

isoflavone content among 13 red clover varieties had a broad sense heritability of 

80%; daidzein specifically was 40%. Thus, indicting the potential to improve the 

content of both total isoflavone and daidzein content through plant breeding. 

However, a small gene pool related to daidzein among the tested germplasm in 

the study could have affected heritability found for daidzein (Papadopoulos et al. 

2006). 

The separation of TRC12-156 from all the other cultivars was further 

confirmed through cluster analysis. A cluster was identified containing all three 

treatment groups of TRC12-156 and was the least similar to all remaining clusters 

containing the both TRC12-157 and birdsfoot trefoil cultivars. The increased 

isoflavone content could have contributed to the superior response to nematodes 

of TRC12-156. The mechanisms behind this reduction in nematodes are still 

unclear. 

 The other forage species tested in the research, birdsfoot trefoil, was 

chosen as a test cultivar because of its relatively high tannin content. Tannins are 

often associated with anthelmintic effects in the diets of ruminants (Hoste et al. 

2006) and have also been linked to plant resistance to plant parasitic nematodes 

(Chitwood 2002). In this study, the elevated tannin content does not seem to play 

a role in the root lesion nematode resistance, as both cultivars of birdsfoot trefoil 

had high numbers of root lesion nematodes per gram of root material. Furthermore, 

there were no differences identified between the two cultivars of birdsfoot trefoil. It 
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is assumed that the tannin profiles of the two tested cultivars are different. Not all 

tannins act on nematodes the same. Molen et al. (2003) found that a high 

prodelphinidin to procyanidin ratio of tannin extracts is more effective against 

Trichostrongylus colubriformis. While the tannin profiles of AC Langille and Leo are 

not yet defined, it is unlikely that these profiles are having an effect in this research.  

4.1.2 Other nematodes 

Since the soil was collected from a field, the presence of other nematode 

populations was expected. The primary purpose of evaluating other nematodes in 

the soil was to ensure that no nematodes were present in a great enough 

abundance to have interfered with the RLN populations in the soil. This was 

confirmed by all other nematodes occurring at relatively low abundances in 

comparison to the root lesion nematodes.  

The nematodes with the second highest population densities belong to the 

genus Rhabditis in the family Rhabditidae, which include both free-living and 

parasitic nematodes (Norton 1978). It is worth noting that, while relatively low in 

total abundance in the samples, the trends observed in RLN were also observed 

in the Rhabditis. There were lower counts in the red clover (337 Rhabditis/g root 

dry matter) than the birdsfoot trefoil cultivars (1198 Rhabditis /g root dry matter) 

which had a 71.9% greater population. This could be an indication that birdsfoot 

trefoil is more susceptible to nematode invasion in general, not just the root lesion 

nematodes. Also present in the samples were stunt, sprila and other nematodes. 

None of these populations were present at high magnitudes and had no impact on 

attributes recorded in plant performance. 
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4.1.3 Regrowth yield 

 The clover varieties in this study also had higher shoot yields than birdsfoot 

trefoil. Root lesion infection could be playing a role in the differences in yield. Willis 

and Thompson (1969) found that root lesion nematodes caused yield losses in 

forage crops in greenhouse conditions. They also determined that birdsfoot trefoil 

is more susceptible to yield loss than red clover. In addition, they found that 

birdsfoot trefoil had a lower yield than red clover in soil containing no RLN. This 

suggests that the high infection of RLN in birdsfoot trefoil could have resulted in 

yield loses but that existing differences between the two species is likely playing a 

major role as well.      

4.2 Treatments 

 Although selecting the correct forage variety could reduce root lesion 

nematodes by as much as 60%, the addition of treatment could offer an additional 

30% reduction. Treatments were applied to act as elicitors in an attempt to amplify 

the natural resistance to root lesion nematodes in the forage. To amplify the natural 

defence response, plant elicitors can be used to induce plant stress, therefore 

triggering the plant defence system (Khan et al. 2003).  In the present study, ANE 

and oligo-chitin were used as plant elicitors in an attempt to improve the plant's 

response to nematodes. Effects of treatment were observed in both root lesion 

nematode abundance and plant yield.  
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4.2.1 Root lesion nematodes 

Overall, across the four forage varieties, both the ANE treatments and the 

oligo-chitin treatments successfully reduced RLN abundance. ANE had the lowest 

population of root lesion nematodes with 5185/g root dry matter, a 30% decrease 

relative to the control. The reduction in population was expected based on the 

reduction of other parasites through ANE treatment in previous studies.  Research 

on the use of ANE to mitigate root lesion nematodes has been limited; however, 

ANE treatment has successfully reduced populations and hatch rates of 

Meloidogyne javanica, a type of root knot nematode (Radwan et al. 2012; 

Whapham et al. 1994; Wu et al. 1998). ANE is able to stimulate the plant's 

physiological pathways, including those involved in the plant defence systems, 

through several active ingredients such as betaines, auxins and oligo-saccharides, 

like oligo-chitin (Ali et al. 2016; Khan et al. 2009; Wu et al. 1998). After treatment 

with ANE, plants contain elevated levels of phenolic compounds, flavonoids and 

antioxidants, produced as a part of plant defence responses (Craigie 2011). 

The fungal components of ANE derived from Mycosphaerella ascophylli, a 

symbiote within Ascophyllum nodosum, may be among the active ingredients in 

ANE. When comparing plant performance in response to treatment, A. nodosum 

produced superior performance than treatment with Fucus vesiculosus and 

Laminaria. Both F. vesiculosus  and Laminaria are species of brown algae that lack 

fungal symbionts (Hanssen et al. 1987; Van de Reep 2015). One of the structural 

polysaccharides found in the cell wall of fungus is chitin. The ANE extraction 

process includes exposure to high temperatures and pH, which results in the 
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conversion of chitin to oligo-chitin and oligo-chitosan. Both of these chitin 

derivatives are capable of acting as plant elicitors though receptors on the cell 

membrane (Yin et al. 2016). When comparing the transcriptome profiles of 

soybeans twelve hours after treatment with ANE and serval oligo-saccharide 

components, it was found that oligo-chitin and oligo-chitosan have the capacity to 

partially mimic the effects of ANE. Oligo- alginate, the oligosaccharide form of 

alginate and a structural component of algae cell walls, did not have the capacity 

to achieve similar transcriptomes to ANE (Wang 2016). 

The lack of significant difference between the ANE and oligo-chitin 

treatments in the present study further supports the findings of Wang (2016), that 

oligo-chitin was capable of mimicking the effects of ANE. Oligo-chitin resulted in 

15% reduction in root lesion nematodes (6278/g root dry matter) across all forage 

varieties relative to the water control. A reduction in nematode population as a 

result of oligo-chitin treatment was anticipated due to evidence within the literature 

(Khan et al. 2003; Sharp 2013; Wang 2016). In previous studies, treatment with 

chitin is able to reduce nematode populations through stimulating the production 

of chitinase in the plant. Chitinase is an enzyme that can of breakdown the 

eggshells of nematodes (Sahebani and Hadavi 2008; Sharp 2013). Chitin also 

stimulates the production of known nematode deterrents, such as phenolic 

compounds and isoflavones (Khan et al. 2003). 

In the cluster analysis, cluster formation seems to be more dependent on 

forage variety than treatment, indicating that, in this experiment, forage variety has 

a greater influence on the root lesion nematode population. This is to be expected 

as the forage variety controls provide the base susceptibility which may then be 
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improved by the treatments; yet, it would be unlikely that treatment application 

would lower nematode populations in all plant species to the same final population. 

4.2.2 Regrowth Yield 

Treatments had effects on the yield of forages. In this study, oligo-chitin 

treated plants had the lowest yield among treatment groups (1.189g). While 

nematode load could be contributing to the yield losses, it is unlikely the main factor 

as the control had higher yields (1.274g) and nematode load (7424 RLN/g root dry 

matter) than the oligo-chitin group (6278 RLN/g root dry matter). This could be 

interpreted as a possible chitin toxicity, reducing the growth rate of some plants in 

the experiment (Godoy et al. 1983; Sharp 2013). As a result, there was a trend 

observed that ANE treated plants (1.345g) had higher yields than oligo-chitin 

treated plants. The difference of 0.156g, while small, results in an 11.6% difference 

between the two treatments. This level of crop loss, plus the expenses of treatment 

with oligo-chitin, would be substantial to producers’ profit and further highlights the 

need to avoid chitin concentrations that result in phytotoxic effects. The increase 

in plant yield as a result of ANE application can also be attributed to ANE’s ability 

to influence the systems of the plant. Yield increases as a result of ANE application 

have been well-documented in a variety of crops, such as lettuce, tomatoes and 

barley (Craigie 2011; Hanssen et al. 1987; Khan et al. 2009).  
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4.3 Interaction 

 Although there were no significant interaction effects in this experiment, 

there were some points of interest in the data set that should be highlighted as they 

may be considered in further research.  

4.3.1 Root lesion nematodes 

In this study, the two plant species, red clover and birdsfoot trefoil, may have 

reacted differently to the treatments. Both oligo-chitin and ANE were able to reduce 

the root lesion nematode counts in red clover relative to water. However, this was 

not the case in the birdsfoot trefoil. ANE treatment still leads to a reduction in the 

number of root lesion nematodes, but, the oligo-chitin treatment caused increases 

in RLN populations relative to the water treatments. An increase in RLN per gram 

root dry matter of 29% was observed in the AC Langille relative to the control while 

a 10% increase was noted in Leo. This could be an indication that birdsfoot trefoil 

is more susceptible to chitin phytotoxicity. Treatment above optimal chitin levels 

can reduce germination, yields and cause tissue death (Sharp 2013; Tian et al. 

2000). The decrease in overall plant health due to chitin phytotoxicity could have 

contributed to the increase in nematodes per gram root dry matter, as plants would 

have fewer resources available to combat the nematodes. However, in previous 

studies, damage attributed to cyst nematodes continued to decrease in response 

to increasing soil chitin amendments in spite of a decrease in the overall plant 

health and productivity (Tian et al. 2000). Chitin used in these experiments were 

crustacean chitin flakes, which could have had a slower release than chitin solution 

in this study.  
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The combination with the lowest population of root lesion nematodes is the 

combination of TRC12-156 and ANE (1745 RLN/g root dry matter), followed by, 

the combination of TRC12-156 and oligo-chitin (1822 RLN/g root dry matter). 

Treatment resulted in a 39% and 36% reduction in nematodes, respectively, 

relative to the TRC12-156 water control (2856 RLN/g root dry matter). These 

reductions, due to treatment, were also displayed by the low isoflavone red clover 

TRC12-157. The combination with the greatest population of root lesion 

nematodes was AC Langille and oligo-chitin (16 106 RLN/g root dry matter), 

followed by AC Langille untreated (12 456 RLN/g root dry matter) and Leo oligo-

chitin (12 003 RLN/g root dry matter). Although these results were not significant, 

they do further support the trends that TRC12-156 consistently had the lowest 

nematode counts and the oligo-chitin had adverse effects when paired with 

birdsfoot trefoil. 

Chapter 5: Conclusion 

Root lesion nematodes continue to be a major pest in agriculture. The 

objectives of this research were to assess the effect of a soil drench with oligo-

chitin or Ascophyllum nodosum extract on RLN infection and, also, to compare 

levels of RLN infection among varieties of birdsfoot trefoil and red clover. This 

research showed that, of the tested forage varieties, red clover contained lower 

numbers of root lesion nematodes per gram root than the tested birdsfoot trefoil 

cultivars. It was also found that red clover high in plant above ground isoflavones 

(TRC12-156) had the lowest RLN abundance of all four of the tested forage 
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varieties. The TRC12-156 had 63% fewer RLN per gram root dry matter compared 

with the low isoflavone red clover (TRC12-157).  

This experiment treatment testing revealed that both ANE and oligo-chitin 

were able to reduce root lesion nematode populations in the forage legumes in this 

study. The reductions were 30% and 15%, respectively. Although, differences 

between the two treatments were not significant. Compiling the two results means 

that, in accordance with this experiment, the most effective way to reduce root 

lesion nematodes is to plant TRC12-156, a high isoflavone clover variety, and to 

treat the soil with either ANE or oligo-chitin prior to planting.  

5.1 Future consideration 

More research is required before the results of this study may be applied in 

an agricultural setting. One area of future work that should be considered is field 

testing. It is reasonable to expect nematode survival, populations and rate of 

infection to vary between the field and the greenhouse, as they have in previous 

work. In a study of vegetable crops in Spain, it was determined that root knot 

nematodes tended to have elevated survival rates in greenhouses despite lower 

total populations in the soil (Ornat et al. 1999). In a 1979 study by Kimpinski, the 

number of nematodes removed from an 11-week-old superior potato plant was 

greater in the greenhouse than from samples taken in the field, in spite of the fact 

that there were similar numbers of nematodes in the soil of both settings (Kimpinski 

1979). In an evaluation of peach rootstocks for root lesion nematode resistance, 

Culver et al. (1989) found that the resulting rootstock in pots created more rootlets 

and the optimal temperatures and moisture created the ideal conditions for root 
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lesion nematode invasion. This resulted in greater amounts of nematodes per gram 

of root in the greenhouse than in their field trials of the same genotypes (Culver et 

al. 1989). Taking these three studies into consideration, which all found that the 

greenhouse supported higher population and better survival of root parasitic 

nematodes, it is reasonable to expect that if this experiment were repeated in a 

field setting, root lesion nematode counts could be further reduced from the results 

of the present study. It should also be noted that a 2003 study on red clover 

cultivars found that greenhouse plants had lower root lesion abundance than plants 

that were placed in a field setting. However, it is unclear if there were differences 

in the population of root lesion nematodes in the two settings as soil RLN counts 

for the field trial is not given (Papadopoulos et al. 2003). 

Before any recommendations to producers can be made from the results of 

this study, repeats over many years will be required, which should include different 

population groups of root lesion nematodes. In previous work, variations from year 

to year in the level of resistance and sensitivity of forage crops to root lesion 

nematodes have been noted. Comparing a 2003 and 2002 study on red clover 

populations, cultivars identified to be susceptible in 2002 were deemed resistant in 

the following year (Papadopoulos et al. 2003; Papadopoulos et al. 2002). While in 

birdsfoot trefoil, Kimpinski et al. (1999) found that RLN populations in birdsfoot 

trefoil roots changed between years of observation, citing both genetic differences 

in the forage and the nematodes as the likely cause.  

The final recommendation for future investigation is to look deeper into the 

effects of isoflavones on nematodes. This study suggests that isoflavone content 

may be connected to plant resistance to nematodes due to the superior 



 

77 
 

performance of an experimental red clover variety, which has been bred to be high 

in above ground plant isoflavone content. However, this study makes no attempt 

to quantify or qualify these isoflavones and the exact mechanisms behind the 

reduction of RLN in these plants are still unclear. Future studies should consider 

the effects of different isoflavone species and how they reduce the incidence of not 

only root lesion nematodes, but also other species of plant-parasitic nematodes. 

There is evidence to suggest that not all isoflavones use the same mechanisms to 

reduce nematode damage, for example, daidzein, an isoflavone produced in the 

phenylpropanoid pathway, inhibits hatch rate and repels nematodes (Wuyts et al. 

2006), while medicarpin, an isoflavone derivative, hinders nematode motility and 

therefore, reduces the extent of damage (Baldridge et al. 1998). 

5.2 Potential application 

Through further development of this research and field trials, new mitigation 

strategies for root lesion nematodes could be developed through the use of new 

cultivars and treatment with ANE or chitin as a part of agriculture systems. The 

development of an effective method for reducing nematodes in forage crops is 

important for the use of forage in crop rotation with cash crops, such as corn and 

potatoes, which both suffer from yield loss as a result of RLN (Decraemer and Hunt 

2013; Kimpinski 1979). Forage legumes, in particular, are an appealing addition to 

crop rotation as they reduce erosion, add nitrogen back to the soil through nitrogen 

fixation and can be ploughed under as a green manure to contribute to the soil’s 

organic matter. However, their susceptibility to parasitic nematodes has caused 

soil nematode populations to increase (Kimpinski 1979). The two-step strategy laid 
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out in this study would be 1) select resistant forage varieties, such as TRC12-156, 

a high isoflavone red clover, and 2) a one-time treatment at seeding with either 

ANE or chitin. These two steps could be easily incorporated into corn and potato 

cropping rotations, resulting in the prevention of nematode increase and, in a best-

case scenario, reducing the total abundance of soil parasitic nematodes the 

following year, thereby reducing losses in the cash crop.
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Appendix A: Other nematode data 

Table A-1: Figure 3-6: Number of nematodes per gram root dry matter of four forage legume varieties. Forage was grown 

in growth chambers and soil infected with 19 RLN per gram dry soil.  

Name 

RLN Log10(x+75) 
/g dry root 
(detransformeda) 

Rhabditis Log10(x+75) 
/g dry root 
(detransformeda) 

Sprial 
/g dry 
root 

Stunt 
/g dry 
root 

Other 
Log10(x+75) 
/g dry root 

Birdsfoot Trefoil 4.053 (11276) 3.105 (1198) 5.114 8.7435 2.54 
          Langille 4.095 (12370) 3.105 (1198) 7.405 10.55 2.577 
          Leo 4.011 (10182) 3.105 (1198) 2.823 6.937 2.503 
Red Clover 3.547 (3877) 2.614 (337) 24.745 30.09 2.3745 
          TRC12-156 3.335 (2088) 2.584 (309) 35.06 22.21 2.326 
          TRC12-157 3.759 (5666) 2.644 (366) 14.43 37.97 2.423 

      
Grand Mean 3.8 2.86 14.93 19.42 2.457 
Standard error of the mean 0.06607 0.07331 7.892 5.649 0.08584 
p-values      
Variety <0.001 <0.001 0.074 0.015 ns 
    … Birdsfoot trefoil vs Red 
clover <0.001 <0.001 0.035 0.004 0.085 
    … AC Langille vs Leo ns ns ns ns ns 
    … TRC12-156 vs TRC12-157 0.001 ns 0.098 0.080 ns 
Notes: a De-transformation of means from the log10(x+75) scale. 
ns = F probability greater than 0.10.  
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Table A-2: Abundance of nematodes per gram root dry matter of three treatment groups applied to four forage legume 

varieties. Forage was grown in growth chambers and soil infected with 19 root lesion nematodes per gram dry soil. 

Treatment 

RLN Log10(x+75) 
/g dry root 
(detransformeda) 

Rhabditis Log10(x+75) 
/g dry root 
(detransformeda) 

Sprial 
/g dry root 

Stunt 
/g dry root 

Other 
Log10(x+75) 
/g dry root 

Control 3.875 (7424) 2.874 (673) 20.48 15.31 2.511 
ANE 3.721 (5185) 2.788 (539) 6.966 25.42 2.433 
Oligo-chitin 3.803 (6278) 2.918 (753) 17.34 17.53 2.428 
      
Grand Mean 3.8 2.86 14.93 19.42 2.457 
Standard error of the 
mean 0.03732 0.04754 5.803 6.58 0.05845 
p-value      
Treatment 0.025 ns ns ns ns 
    ..  Control vs ANE,  
         oligo-chitin 0.020 ns ns ns ns 
..  ANE vs oligo-chitin ns ns ns ns ns 
Notes: a De-transformation of means from the log10(x+75) scale. 
ns = F probability greater than 0.10, Ascophyllum nodosum extract (ANE) 
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Table A-3: Figure 3-1: Number of nematodes per gram root dry matter of three treatment groups applied to four forage 

legume varieties. Samples were grown in growth chambers in soil infected with 19 root lesion nematodes per gram dry soil. 

Treatment 
     Forage variety 

RLN Log10(x+75) 
/g dry root 
(detransformeda) 

Rhabditis Log10(x+75) 
/g dry root 
(detransformeda) 

Sprial 
/g dry root 

Stunt 
/g dry root 

Other 
Log10(x+75) 
/g dry root 

Control      
     Langille 4.098 (12456) 3.089 (1152) 8.16 6.271 2.509 
     Leo 4.041 (10915) 3.174 (1418) 8.467 0.004 2.657 
     TRC12-156 3.467 (2856) 2.611 (333) 48.48 17.22 2.464 
     TRC12-157 3.897 (7814) 2.62 (342) 16.82 37.73 2.415 
ANE      
     Langille 3.977 (9409) 3.037 (1014) 14.05 25.39 2.615 
     Leo 3.909 (8035) 2.968 (854) 0.00 3.697 2.405 
     TRC12-156 3.26 (1745) 2.596 (319) 8.347 16.87 2.316 
     TRC12-157 3.736 (5370) 2.55 (280) 5.463 55.72 2.394 
Oligo-chitin      
     Langille 4.209 (16106) 3.19 (1474) 0.001967 0.00 2.607 
     Leo 4.082 (12003) 3.173 (1414) 0.001542 17.11 2.448 
     TRC12-156 3.278 (1822) 2.547 (277) 48.35 32.55 2.198 
     TRC12-157 3.643 (4320) 2.762 (503) 21 20.45 2.46 
      

Grand Mean 3.8 2.86 14.93 19.42 2.457 
Standard error of the mean 0.08989 0.1068 12.33 12.14 0.1284 
p-value      
Treatment x variety ns ns ns ns ns 
Notes: a De-transformation of means from the log10(x+75) scale. 
ns = F probability greater than 0.10, Ascophyllum nodosum extract (ANE) 
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Appendix B: Cluster analysis 

 

Similarity 

Figure B-1: Dendrogram of the results of a cluster analysis, performed on the mean 

vigour scores taken prior to the first shoot harvest, of three treatment groups 

applied to four forage legume varieties. Forage was grown in growth chambers and 

soil infected with 19 root lesion nematodes per gram dry soil. In this figure, chitin 

represents the oligo-chitin treatments and DH2O represents the control groups.  
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Similarity 

Figure B-2: Dendrogram of the results of a cluster analysis, performed on the mean 

vigour scores taken prior to the second shoot harvest, of three treatment groups 

applied to four forage legume varieties. Forage was grown in growth chambers and 

soil infected with 19 root lesion nematodes per gram dry soil. In this figure, chitin 

represents the oligo-chitin treatments and DH2O represents the control groups.  
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Similarity 

Figure B-3: Dendrogram of the results of a cluster analysis, performed on the mean 

dry matter yield for shoot regrowth, of three treatment groups applied to four forage 

legume varieties. Forage was grown in growth chambers and soil infected with 19 

root lesion nematodes per gram dry soil. In this figure, chitin represents the oligo-

chitin treatments and DH2O represents the control groups.  
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Similarity 

Figure B-4: Dendrogram of the results of a cluster analysis, performed on the mean 

population of Rhabditis nematodes per gram root dry matter, of three treatment 

groups applied to four forage legume varieties on a Log10(x+75) scale. Forage was 

grown in growth chambers and soil infected with 19 root lesion nematodes per 

gram dry soil. In this figure, chitin represents the oligo-chitin treatments and DH2O 

represents the control groups. 
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Similarity 

Figure B-5: Dendrogram of the results of a cluster analysis, performed on the mean 

population of spiral nematodes per gram root dry matter, of three treatment groups 

applied to four forage legume varieties. Forage was grown in growth chambers and 

soil infected with 19 root lesion nematodes per gram dry soil. In this figure, chitin 

represents the oligo-chitin treatments and DH2O represents the control groups. 
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Similarity 

Figure B-4: Dendrogram of the results of a cluster analysis, performed on the mean 

population of stunt nematodes per gram root dry matter, of three treatment groups 

applied to four forage legume varieties. Forage was grown in growth chambers and 

soil infected with 19 root lesion nematodes per gram dry soil. In this figure, chitin 

represents the oligo-chitin treatments and DH2O represents the control groups. 
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Similarity 

Figure B-7: Dendrogram of the results of a cluster analysis, performed on the mean 

population of all other nematodes per gram root dry matter, extracted from root 

samples of three treatment groups applied to four forage legume varieties on a 

Log10(x+75) scale. Forage was grown in growth chambers and soil infected with 

19 root lesion nematodes per gram dry soil. In this figure, chitin represents the 

oligo-chitin treatments and DH2O represents the control groups.
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Appendix C: Interaction between treatment and forage variety 

Forage legume variety
AC Langille Leo TRC12-156 TRC12-157   
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Figure C-1: Mean dry matter yield (g) of forage regrowth of three treatment groups applied to four legume varieties. Legumes 

were grown in growth chambers and soil infected with 19 root lesion nematodes per gram dry soil. Note: SEM = two times 

standard error of the mean.
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Forage legume variety
AC Langille Leo TRC12-156 TRC12-157    
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Figure C-2: Mean vigour score of three treatment groups applied to four forage legume varieties. Scores were taken prior to 

the first harvest of above ground plant material. Forage was grown in growth chambers and soil infected with 19 root lesion 

nematodes per gram dry soil. Note: SEM = two times standard error of the mean. 
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Forage legume variety
AC Langille Leo TRC12-156 TRC12-157   
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Figure C-3: Mean vigour score of three treatment groups applied to four forage legume varieties prior to the second harvest. 

Forage was grown in growth chambers and soil infected with 19 root lesion nematodes per gram dry soil. Note: SEM = two 

times standard error of the mean.
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Appendix D: Vigour scores 

Forage legume variety
AC Langille Leo TRC12-156 TRC12-157   

V
ig

o
u

r 
S

c
o

re

0

1

2

3

4

5

6

7

SEM

 

Figure D-1: Mean vigour score of four forage legume varieties prior to the first harvest of above ground plant material. Plants 

were grown in growth chambers and soil infected with 19 root lesion nematodes per gram dry soil. Note: SEM = two times 

standard error of the mean. 
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Forage legume variety
AC Langille Leo TRC12-156 TRC12-157   
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Figure D-2: Mean vigour score of four forage legume varieties prior to the second harvest of above ground plant material. 

Plants grown in growth chambers and soil infected with 19 root lesion nematodes per gram dry soil. Note: SEM = two times 

standard error of the mean.
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Soil treatment
Control ANE Oligo-chitin   
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Figure D-3: Mean Vigour score of the treatment groups averaged across four forage legume varieties. Scores were taken 

prior to the first harvest of above ground plant material. Plants were grown in growth chambers and soil infected with 19 root 

lesion nematodes per gram dry soil. Note: SEM = two times standard error of the mean. 
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Soil treatment
Control ANE Oligo-chitin    
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Figure D-4: Mean vigour score of treatment groups across four forage legume varieties. Scores were taken prior to the 

second harvest of above ground plant material. Plants were grown in growth chambers and soil infected with 19 root lesion 

nematodes per gram dry soil. Note: SEM = two times standard error of the mean.
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Appendix E: ANOVA tables 

Table E-1: Analysis of variance for RLN populations (Log10(RLN+75)/ g dry root)  

Source of variation D.F. 
Mean squares 

RLN population 

Block stratum 3 0.09997 

Block.bCol.bRow stratum   

Variety 3 13.97*** 

    Birdsfoot trefoil vs Red clover 1 30.71*** 

    AC Langille vs Leo 1 0.4246 

    TRC12-156 vs TRC12-157 1 10.77** 

Residual 9 0.5238 

Block.bCol.bRow.sRow stratum   

Treatment 2 0.958* 

    Control vs ANE,Oligo-chitin 1 1.375* 

    ANE vs Oligo-chitin 1 0.5411 

Treatment.Variety   6 0.3633 

    Control vs ANE,Oligo-chitin.Birdsfoot trefoil vs Red clover 1 0.84 

    ANE vs Oligo-chitin.Birdsfoot trefoil vs Red clover 1 1.158 

    Control vs ANE,Oligo-chitin.AC Langille vs Leo 1 0.02207 

    ANE vs Oligo-chitin.AC Langille vs Leo 1 0.03614 

    Control vs ANE,Oligo-chitin.TRC12-156 vs TRC12-157 1 0.001172 

    ANE vs Oligo-chitin.TRC12-156 vs TRC12-157 1 0.1226 

Residual 24 0.2229 

Block.bCol.bRow.sRow.sCol.sPlant stratum   

Plant 9 0.08356 

Treatment.Plant 18 0.09673 

    Control vs ANE,Oligo-chitin.Plant 9 0.1265 

    ANE vs Oligo-chitin.Plant 9 0.06695 

Variety.Plant 27 0.1465* 

    Birdsfoot trefoil vs Red clover.Plant 9 0.2648** 

    AC Langille vs Leo.Plant 9 0.07147 

    TRC12-156 vs TRC12-157.Plant 9 0.1033 

Treatment.Variety Plant 54 0.08383 

    Control vs ANE,Oligo-chitin. Birdsfoot trefoil vs Red clover.Plant 9 0.08772 

    ANE vs Chitin.Birdsfoot trefoil vs Red clover.Plant 9 0.02502 

    Control vs ANE,Oligo-chitin. AC Langille vs Leo.Plant 9 0.2129 

    ANE vs oligo-chitin.AC Langille vs Leo.Plant 9 0.06923 

    Control vs ANE,Oligo-chitin.TRC12-156 vs TRC12-157.Plant 9 0.03759 

    ANE vs oligo-chitin.TRC12-156 vs TRC12-157.Plant 9 0.0705 



 

109 
 

Residual 323 0.08322 

Total 478  
Notes: Degrees of freedom (D.F.), Root lesion nematodes (RLN), Ascophyllum nodosum 
extract (ANE), significance probabilities: *(P < 0.05), **(P < 0.01), ***(P < 0.001). 
 

Table E-2: Analysis of variance for regrowth dry matter yield (g pre plant)  

Source of variation D.F. 
Mean squares 
Dry matter yield 

Block stratum 3 15.21 

Block.bCol.bRow stratum   

Variety 3 5.267* 

    Birdsfoot trefoil vs Red clover 1 11.17** 

    AC Langille vs Leo 1 1.609 

    TRC12-156 vs TRC12-157 1 3.022 

Residual 9 0.8944 

Block.bCol.bRow.sRow stratum   

Treatment 2 1.005 

    Control vs ANE,Oligo-chitin 1 0.04442 

    ANE vs Oligo-chitin 1 1.966* 

Treatment.Variety   6 0.1871 

    Control vs ANE,Oligo-chitin.Birdsfoot trefoil vs Red clover 1 0.5534 

    ANE vs Oligo-chitin.Birdsfoot trefoil vs Red clover 1 0.04753 

    Control vs ANE,Oligo-chitin.AC Langille vs Leo 1 0.003152 

    ANE vs Oligo-chitin.AC Langille vs Leo 1 0.002806 

    Control vs ANE,Oligo-chitin.TRC12-156 vs TRC12-157 1 0.299 

    ANE vs Oligo-chitin.TRC12-156 vs TRC12-157 1 0.2168 

Residual 24 0.3824 

Block.bCol.bRow.sRow.sCol.sPlant stratum   

Plant 9 0.2257 

Treatment.Plant 18 0.1166 

    Control vs ANE,Oligo-chitin.Plant 9 0.05424 

    ANE vs Oligo-chitin.Plant 9 0.1791 

Variety.Plant 27 0.1428 

    Birdsfoot trefoil vs Red clover.Plant 9 0.1353 

    AC Langille vs Leo.Plant 9 0.07849 

    TRC12-156 vs TRC12-157.Plant 9 0.2146 

Treatment.Variety Plant 54 0.1235 

    Control vs ANE,Oligo-chitin. Birdsfoot trefoil vs Red clover.Plant 9 0.1712 

    ANE vs Chitin.Birdsfoot trefoil vs Red clover.Plant 9 0.1169 

    Control vs ANE,Oligo-chitin. AC Langille vs Leo.Plant 9 0.1117 

    ANE vs oligo-chitin.AC Langille vs Leo.Plant 9 0.06779 
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    Control vs ANE,Oligo-chitin.TRC12-156 vs TRC12-157.Plant 9 0.1271 

    ANE vs oligo-chitin.TRC12-156 vs TRC12-157.Plant 9 0.1462 

Residual 323 0.1466 

Total 478  
Notes: Degrees of freedom (D.F.), Ascophyllum nodosum extract (ANE), significance 
probabilities: *(P < 0.05), **(P < 0.01), ***(P < 0.001). 
 


