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ABSTRACT

ON THE THEORY OF AMBIPOLAR DIFFUSION, WITH APPLICATIONS TO
ASTROPHYSICAL JETS
by Michael Thomas Power

submitted on June 27, 2018:

Numerically simulated magnetohydrodynamical jets are not at all morphologically
similar to most of those which are observed in nature. Jets in nature are actually
quite morphologically similar to pure hydrodynamical simulations. However, it is well
known that jets in nature are launched magnetically and likely transport dynamically
important magnetic fields. Therefore, a gap seems to exist in the model of jets based
upon a pure magnetohydrodynamical outflow. In this thesis, I show that the theory
of ambipolar diffusion may provide a plausible solution to the morphology problem
by running simulations which use the non-isothermal single fluid approximation of
ambipolar diffusion. However, using resolution studies on the numerical simulations,
I show that there exists a numerical instability caused by the single fluid approxima-
tion which produces unreliable results when applied to this problem. Accordingly, I
develop a full non-isothermal two-fluid model of ambipolar diffusion from first prin-
ciples and show that this reduces correctly to the single fluid model of ambipolar
diffusion widely used in the literature. Suggestions on how this may be incorporated
into a numerical model are then made.
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Chapter 1

INTRODUCTION

The problem of star formation is fundamental to our understanding of the uni-
verse. Stars are the nuclear engines that produce the heavier elements from which
the planets and all life is eventually made. Stars begin to form through the gravi-
tational collapse of molecular clouds, clumps, and cores in the interstellar medium
(ISM), into what is known as a protostar, which is an object of insufficient density
to ignite nuclear fusion in its core because of the high rate of angular spin acquired
through the formation process (Larson, 2003; McKee & Ostriker, 2007). At this stage
in stellar formation, the protostar has developed an accretion disk on its equatorial
plane, condensed from the ambient medium in which it resides. This was a theory

first developed by Hoyle & Lyttleton (1939) and furthered by Bondi (1952).

The angular momentum problem is one of two classical problems in star formation
and its solution eluded researchers for many years. Ultimately, the answer was found
to involve ‘jets’. Astrophysical jets are long, collimated, supersonic flows of plasma
emanating from compact celestial objects (Snell et al., 1980; Bridle & Perley, 1984).
Within the accretion disk of the protostar, the hot partially ionized material under-
goes rotational motion. At the same time, the magnetic field within the accretion

disk is being coiled around and strengthened, which ultimately launches the jet (Hen-
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riksen & Rayburn, 1971; Blandford & Payne, 1982). In fact, even a trace magnetic
field in the accretion disk will eventually build up enough strength to launch a jet
(e.g. Ramsey & Clarke, 2011). Blandford and Payne (1982) showed that a sufficiently
strong magnetic field threading the accretion disk can act like a wire, on which the
ionized material is magneto-centrifugally accelerated away like a bead because of the
fact that ionized particles can only gyrate around magnetic field lines without crossing
them. Thus, for any rotating, magnetized plasma collapsing under its own gravity,

jets are inevitable (e.g. Ustyugova et al., 1995).

The main focus of this thesis is to study and attempt to solve what I shall refer
to as the “morphology problem” between the jets observed in the universe and those
which are simulated numerically. To illustrate the nature of this problem, Figures
1.1 and 1.2 showcase the typical structure of astrophysical jets emanating from a
galactic nucleus and a protostar respectively. As can be seen particularly in Figure
1.1, the two large lobes of material associated with the jets, are emitted from the
comparatively small central objects Cygnus A and HH-34. Morphologically the lobes
of material span a very large volume and are quite oblate with blunt leading edges.
By comparison, Figure 1.3 shows a ZEUS-3D simulation of a two-dimensional, purely
hydrodynamical, axisymmetric jet which bears some key morphological similarities
to the observations. In particular, the “cocoon” (Norman et al., 1982)—which cor-
responds to the lobes in the extragalactic jets—fills a large volume, is quite oblate
and presents a blunt leading edge. By contrast, Figure 1.4 shows a two-dimensional,

axisymmetric, purely magnetohydrodynamical simulation of a jet, which has a dy-
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namically active toroidal magnetic field (e.g. Clarke et al., 1986).! Here, the cocoon
of the magnetically dominated jet doesn’t fill as large of a volume and presents a
very pointed, almost needle-like leading edge and advances significantly faster than
the pure hydrodynamical counterpart. This makes the jet pierce through the ambient
medium. From this qualitative comparison, one might conclude that the majority of
jets appear to be purely hydrodynamical in nature, not exhibiting the confined, more
ordered appearance that many magnetically dominated jets exhibit.? This however, is
contrary to the widely held view that a dynamically active magnetic field is required
to launch a jet (e.g. Blandford & Payne, 1982). As Ramsey and Clarke (2011) found,
the active magnetic field required to launch their jets is subsequently transported
by the material which forms the jet. Therefore, the observable jets should provide
morphological evidence of this dynamically active magnetic field. Thus, the hydro-
dynamical appearance of most jets presents a bit of a morphological conundrum, and

one this thesis attempts to address.

The question, then, is how can one make a magnetically dominated jet appear mor-
phologically hydrodynamical. Is there a mechanism by which fluid could dynamically
“cross” magnetically field lines, thereby escaping its confinement and inflating the

needle-like nosecones into the large cocoons (lobes) so often observed?

!The phrase ‘dynamically active magnetic field’ means that the magnetic energy density is greater
than the thermal energy density in the plasma. Specifically, the ‘plasma beta’ is defined as the ratio
of the thermal to magnetic pressure 8 = P/Pg. Thus, for f < 1 the material entering the ambient
medium has Pg > P and therefore is ‘magnetically active’.

2An exception to this is the jet from the object 3C273. However, jets such as these are very much
the exception, not the rule. For further details and a wealth of other information on jets see the
website: www.jb.man.ac.uk/atlas/, by J.P Leahy, A.H Bridle, and R. G. Strom.
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A possible solution may be found in the physical process known as “ambipolar dif-
fusion” (AD), which was first suggested in a seminal paper by Mestel and Spitzer
(1956) who posited a more realistic way to treat plasmas. They suggested that astro-
physical gases could be partially ionized as opposed to completely neutral—as a pure
HD treatment assumes—or full ionization, as assumed by a pure MHD treatment.
Indeed, many astrophysical gases are at temperatures where one would expect a sig-
nificant component of the gas to be composed of neutral particles. Since the neutral
component of the gas is not tied to the magnetic field lines via Larmour precession
as the ions are, this would suggest that the neutral particles—although impeded by
collisions with ionized particles—could escape into regions of even strong magnetiza-

tion and thus make the jets appear more “hydrodynamical”.

Related to the aforementioned collisions, Mestel and Spitzer (1956) postulated that
there should exist a friction-like coupling force between the neutral and ionized par-
ticles in the gas. In the decades that followed, a significant amount of progress was
made in the theory of ambipolar diffusion by Draine (1980), who determined the value
of the coupling constant between the neutral and ionized particles, which mediates
the strength of the friction-like coupling force. As it turns out, this coupling constant
was originally derived by none other than James Clerk Maxwell (1860a; 1860b) whilst
working on scattering theory, and the numerical value of this constant was determined

by Langevin (1905). After Draine, more progress was made by Shu et al. (1987), as

3See §2.3.1 for further details.
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well as two-dimensional advancements by Fiedler & Mouschovias (1993), and Basu &
Mouschovias (1994). Eventually, Mac Low et al. (1995) developed what has become
known as the ‘single fluid approximation’ for ambipolar diffusion, where the ioniza-
tion level is assumed to be low and thus only the neutral particles are needed to track
the dynamics, although some coupling terms remained to account for the mutual
coupling force. This theory is discussed further in §2.6. Subsequently, Mac Low &
Smith (1997) performed the first three dimensional simulations involving ambipolar
diffusion using the full two-fluid model, albeit isothermal and thus not accounting
for ionization or recombination, as discussed in §2.3.1. All subsequent applications of
AD to astrophysics then built upon the ideas of Mac Low & Smith (1997), by either
applying their two-fluid equations to specific astrophysical situations, or by further
developing the mathematics associated with the theory (Falle, 2003; Li et al., 2006;
Oshi & Mac Low, 2006; O’Sullivan & Downes, 2006, 2007). However, each of these
efforts assumed a completely isothermal fluid and didn’t account for ionization and

recombination of neutral and ionized particles in a physical manner.

Duffin & Pudritz (2008), were the first to develop a mathematically rigorous, non-
isothermal theory for ambipolar diffusion, and applied their model to the problem of
fragmentation of a gravitationally collapsing star formation region.* Like Mac Low &
Smith, the idea of Duffin & Pudrtiz’ single fluid approximation is restricted to track
only the dynamics of the neutral particles, which greatly simplifies the computational

resources required. This can be justified physically by assuming a low ionization level

4See MacMackin (2015) for further details.
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for the overall gas, as first suggested by Mestel & Spitzer (1956) whose arguments
are based upon plasma recombination times. In the single fluid approximation, one
can neglect terms in the equations proportional to the ion density and pressure. For

mathematical details on the single fluid approximation see §2.6.

So far in the literature, it seems that no simulations involving ambipolar diffusion
have been performed upon astrophysical jets. Thus, the main thesis of the present
work is twofold. First, I develop the mathematics of AD, to include a non-isothermal
energy equation into the two-fluid model and to incorporate a realistic model of ion-
ization and recombination. Second, I investigate what effect, if any, AD in its one
fluid form has on the morphological nature of simulated MHD jets, and if it can help

address the “morphological problem”.
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Figure 1.1: 6cm observations of the extragalactic object Cygnus A, located nearly
600 million light-years away. At its core, Cygnus A hosts a super-massive
black hole whose accretion disk emits dual jets, expelling plasma into the
ambient medium at velocities near that of light. As can be seen, the lobes
of these jets have very large volumes and the leading edges are very blunt.
Image courtesy of NRAO/AUI (http://images.nrao.edu/110); R. Perley,
C. Carilli & J. Dreher.
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Figure 1.2: Three colour composite—B, H-a and S-II-—of the object HH-34 located
in the constellation orion. HH-34 is a protostar which is seen to emit dual
jets, expelling plasma into the ambient medium at velocities approaching
250 kms~!. As can be seen, the leading edges of the jets which are marked
by bow shocks in the ambient medium, which are rather blunt. Image
courtesy of ESO (http://www.eso.org/public/images/es09948b/).
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Figure 1.3: High resolution (40 x 100 scale-free grid with 400 x 1000 computational
zones) two-dimensional axisymmetric ZEUS-3D simulation of a pure hy-
drodynamical jet showing density contours, with white/red indicating a
high density and blue/green low. The density ratio of the incoming ma-
terial compared to the ambient medium is 7 = 0.01, and the speed of the
incoming material compared to the sound speed in the ambient medium
is M = 10. The highest density region forms shock front advancing into
the ambient medium, with a blunt leading edge, similar to those seen in
HH-34, Figure 1 for example.
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Figure 1.4: Same setup as Figure 1, except the jet transports a dynamically active
toroidal magnetic field of 5 = 0.1. Unlike the pure hydrodynamical case,
MHD jets are magnetically driven and form a piercing “nosecone” (Clarke
et al., 1986) which gives the jet a more pointed appearance, contrary to
observations such as Figures 1 and 1.
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Chapter 2

THE THEORY OF AMBIPOLAR
DIFFUSION

2.1 GENERALIZED MAGNETOHYDRODYNAMICS

Normally, magnetohydrodynamics (MHD) can be encapsulated in four equations.
However, this is only the case under the conditions of ‘ideal MHD’, where most im-
portantly it is assumed that the plasma is fully ionized. Often, in reality, this of course
will not be the case and to have a more realistic model, one must account for the
possibility that neutral particles may also reside in the fluid, interacting with ionized
particles. Further, each ion or neutral particle may not stay in their original state
indefinitely, as they can recombine and ionize according to the local dynamics. Of
course, these generalizations greatly complicate the physics, but incorporating them
may help to uncover results which would normally be hidden by a strictly ideal study

of MHD.

The most general method by which one can derive equations associated with MHD
is through the species dependent, collisional Vlasov equation (e.g. Colonna, 2016),

namely,

Oufs + -V + %(E + 7 x B) - Vafs = (0ufs)eo, (2.1)

S



Chapter 2. THE THEORY OF AMBIPOLAR DIFFUSION 12

where f; represents the distribution function for species s as a function of the phase-
space coordinates 7, ¥ and t. E and B represent the electric and magnetic fields
respectively, with ¢, and mg as the charge and mass of particles of each respective
species. Finally, the term on the right hand side of the equation, (0 fs)con is a term

representing the interactions among all the particles present.

2.1.1 GENERALIZED EQUATIONS

Given a neutral species represented by subscript n, and an ionized species represented
by subscript i, it can be shown (e.g. Shu, 1992) that by assuming equations of state
and taking the zeroth, first and second moments of equation (2.1) for each species, as
well as assuming the electric and magnetic fields are ‘frozen into’ the fluid, one gets

the following set of generalized equations:

neutral and ion continuity,

Otpn + V- (pnTn) = Sh con; (2.2)
owpi + V- (pith) = Sicolt; (2.3)
neutral and ion momentum,
O3+ V- (3a) = =V Pu = puaV + Focon (2.4)
5+ V- (5i) = —VR - pVo+ —(V x B) x B+ Fey  (25)

Ho
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neutral and ion internal energy,

aten +V. (6nﬁn) = _an : ﬁn + gn,coll; (26)

oei + V - (ei0h) = =BV - 0 + G con; (2.7)

neutral and ion equations of state,

Py = (7 — Dew; (2.8)
P = (71 1)€i§ (2 9)

induction equation,
8B +V x E =0; (2.10)

neutral and ion total energy equation,
a15@Tn + V. |:(6Tn + Pn) 17n:| - (QS — %Uﬁ) Sn + ﬁn : fn,coll + gn,coll; (211)

1 1 = = o
Oer, +V- [<6T1+H—2—B2)171+—E><B}: <¢—%v12>31+771-}‘1,c011+gi,c011, (2.12)
Mo Mo

where p; and p, are the fluid densities, #, and @; are the fluid velocities, S, con and
Sicon are the generalized continuity source terms to be derived in 2.2, 5, and §; are
the fluid momenta, P, and P; are the fluid pressures, ¢ is the gravitational potential,
ﬁn,coll and .7?17(:011 are the generalized momentum source terms to be derived in section

2.3, o is the permeability of free space, B is the magnetic induction, E=—#xDBis
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the induced electric field, e, and e; are the fluid internal energies, and G, con and Gi con

are the generalized internal energy source terms to be derived in section 2.4. Finally,

€T, = 3Puvs + Pud + €n;

1
er, = 300 + pid + e + ﬂBQ,
0

are the fluid total energies.

Equations (2.2) to (2.12) represent a set of completely general MHD equations, al-
lowing for both a neutral and ionized fluid. The goal of the following sections in this
chapter is to derive all of the aforementioned ‘generalized source terms’;, beginning

with those of the continuity equation.

2.2 CONTINUITY SOURCE TERMS

For our model, it is desirable to allow the ion and neutral particles to recombine and
ionize in a realistic way. The way which I've chosen to model this is by utilizing the
Saha equation, which requires the assumption of thermodynamic equilibrium and, in
particular, that the co-spatial neutral and ion fluids are at the same well defined tem-
perature. This is tantamount to assuming that the timescale for the fluid to return
to thermodynamic equilibrium is much less than any other significant timescales of

the problem.
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Multiplying by the mass of each species and taking the zeroth moment of the right

hand side of the Vlasov equation (2.1) gives,

ms / d*v (O fs)con = (@ / me fs dgv) = (9¢ps)con
7 7] coll

Thus, for each species one may define the continuity source terms as:
Sn,coll = (atpn)coll; (213)

Si,coll = (atpi)coll' (214)

Since the overall system mass must be conserved,

S = Si,coll = _Sn,coll- (215)

2.2.1 (CONSIDERATIONS ON THE SAHA EQUATION

A common form of the Saha equation is (e.g. MacDonald, 2015):

= o (2.16)

3/2
nj+1ne . 29]+1 <27TmekBT) / €7Xj+1/kBT
n; g; 7

where n; is the number density of the element in ionization stage j, n. is the number
density of electrons, g; is the degeneracy of the ionization stage j, m. is the electron
mass, kg is the Boltzmann constant, h is Planck’s constant and ; is the energy re-

quired to remove the j* electron. Equation (2.16) must be written down for every
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ionization stage of each element under consideration. For the purposes of this thesis,
I wish to demonstrate the general method which can be used to solve for the conti-
nuity source terms by considering the simplest non-trivial case, namely hydrogen and
helium. Thus, take the number of free electrons to be ne = ny+ + N+ + 2n4e++, and

to accompany this, the following three Saha equations are required:

nyg+ (TLH+ + Nye+ + QnHe++)

i . 217)
Nyget (TLH+ + Nye+ + QnHe++) _ QH . (2 18)
nHe €
N+ (Mt + Mgt + 2Ngge++)
= Qe+, (2.19)

nHeJr

which need to be solved for ny+, ny.+ and ny.++, the ion number densities and where:

3/2
O (T) = 27 (QmekBT) et o
9gH

3/2
(1) = 2 (H D) e
JHe
3/2
1) =280 (Y
Het

Next, divide equation (2.17) by (2.19), and (2.18) by (2.19) to get:

Q
GLLLUE— (2.20)

et = — o M (2.21)
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Substitution of equations (2.20) and (2.21) into any one of equations (2.17)-(2.19)

gives an expression for nyp,++:
~1/2
Npget+ = Npget et (nHQH + Neue + 2np+ QHe+) : (2.22)

Our analysis is still incomplete, as ny.+ has not been properly isolated. Acting
both as an ion number density to be solved for and a parent density to ny.++, it
appears explicitly on both sides of equation (2.21). However, it can be shown that

by combining equations (2.21) with (2.22), one can find a cubic equation for ny.+:
(ZQHe+>n?{e+ + (nHQH + nHeQHe)n?{e+ - n%IeQ%{e = 0. (223)

By taking the first derivative of (2.23), one can also show (since «, § and Q¢ are pos-

_ (nuQutnpeQue)

itive definite quantities) that there exists a local maximum at ny.+ = 30 .
He

and a local minimum at nyg.+ = 0. Thus, equation (2.23) admits only one real, pos-
itive, and thus physically admissible solution, which can be determined by Cardano
formula or by a root finding method in which one searches for the unique real, positive

root.

In practice, it is unlikely that the number densities of each individual neutral particle
will be available and thus equation (2.23) may still not be solvable. If instead, the

total number densities of the neutral n, and ion fluids n; are known, one must carry
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out an additional analysis to find ny and ng.. To this end, one can write:
NHe = Nn — NH, (2.24)
and the fractional abundance of hydrogen gas within the overall fluid:
N+ N+
R
which can be used to give:
ng = &u(nn + ni) — ng+. (2.25)
Now, combining equations (2.24) and (2.25) to eliminate ny, one finds:
NHe = N — Eu(Nn + 1) + Mg - (2.26)

Here, one must assume the values of the neutral and ion densities, n, and n; are

known. Computationally, one may think of these as the fluid number densities at the

current time-step ¢ of the problem, which will have a specific temperature 7®). Thus,

the following equations take the current time-step’s number densities, and outputs

the number densities of the individual ions which make up the ionized fluid at the

new time-step t + 0, which heralds a new temperature T¢+%) . Combining equations

(2.23), (2.25) and (2.26) to eliminate the unknown individual neutral particle number
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densities, one finds the cubic equation:

(ZQHe+)n?{e+ + {[€u(nn + 1) — np+|Qu + [ — Eu(nn + 1) + TLH+]QHe}n2He+ .27

— [nn — Eu(ng + i) + nge 23, = 0.

This cubic equation contains the two unknowns ny+ and ny.+, which must be solved
for and to accomplish this, one more equation relating these variables is required.

Combining equations (2.20) and (2.21), one finds the relationship:

nuu

ng+ = Nyets

nHeQHe

which, when used with equations (2.25) and (2.26) to eliminate the unknown individ-

ual neutral number densities, becomes:

[ — &u(nn + 1) + g+ ] Qe
[u(nn +ni) — ng+ | Qu

NHet = Mg+ (2.28)

Thus, there are now two non-linear, coupled equations (2.27) and (2.28), which must
be solved simultaneously for the unknown individual ion densities ny+ and ng+.
With these ion individual densities known, one may simply use equations (2.21) and

(2.26) (or equivalently equations (2.20) and (2.25)) to get:

Nter+ = L[ — &a(nn + ni) + nyp+ ] Que} ™ Qe Ny (2:29)
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Now that all of the individual particle number densities are known, it is a simple task

to determine the ion fluid density at the next time-step, namely:

pi(t+6t) = Z meng. (2.30)
¢

Here, ¢ = H", He", He™™; m, is the mass of ion species ¢ and n is the number density
of species ( calculated by virtue of equations (2.27), (2.28) and (2.29). Finally, with
the ion fluid density at the next time-step, one may take a finite-difference of equation

(2.14) and use equation (2.15) to find the continuity source term to be:

b — P
S = 5 (2.31)

0
(t+4t) p(t)

2.3 MOMENTUM SOURCE TERMS

The term ambipolar diffusion is actually a reference to the form of the momentum
source terms, since it is what allows neutrals and ions to interact and diffuse through
each other. During this diffusive process, there exists an interaction potential between
the neutral particles and the ions, which in turn defines a scattering cross section and
thus a rate at which momentum is transferred between the ensemble of particles on
average. In addition, in §2.2 a mass transfer rate between the neutral and ion fluids
was defined. Because the ions and neutrals move at their own velocities, v, and ;
respectively, those ions which are converted to neutrals, or vice-versa, must be ac-

celerated to the frame of reference of the other, thereby introducing another force
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density into the momentum equations.

Consider the total impulse density imparted to the neutral fluid fn, caused by neutral

particles becoming ionized:

T = 0Py AT(nosiy.- (2.32)

Here, 0pm—i) represents the mass density of the neutral fluid which is becoming ion-
ized, and A, is the change in velocity which these particles feel as they move
from the neutral fluid to the ion fluid. Since these particles end in the ionized fluid
with velocity ¢, and start in the neutral fluid with velocity vy, equation (2.32) can

be written as:

Jo = (B — )6 pnsiy. (2.33)

By definition:

j=7ot, (2.34)

where f is the average force density caused by the momentum change. Thus, com-
bining equations (2.33) and (2.34), one finds that the force density imparted to the

neutral fluid during ionization processes is:

fo = (U5 — U) (—) , (2.35)
ot (n—1i)
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and invoking Newton’s Third Law, the force density imparted to the ionized fluid

during ionization processes is then:
- 4]
fi = (0o — ) (5—’)) : (2.36)
t (n—1i)

Here, if the ionized fluid is faster than the neutral fluid, and the neutral particles
are turning into ions, according to equation (2.36), the ions will feel a force density
which acts to decrease their momentum. Conversely, if neutral particles are faster
than the ions and neutrals are turning into ions, equation (2.36) indicates the force
on the ions feel will act to increase their momentum, precisely what one would expect
intuitively. Now, examining this impulse density from another perspective, namely,
that of recombination; consider the total impulse density imparted to the ionized fluid

;’i, caused by ionized particles recombining:
j_)'i = (Sp(iﬁn)Aﬁ(iﬁn). (2.37)

Similar to equation (2.32), 0p(_n) represents the mass density of the ionized fluid
which is recombining to form neutrals, and At;_,,) is the change in velocity which
these particles feel as they move from the ionized fluid to the neutral fluid. Since
these particles end in the neutral fluid with velocity v, and start in the ionized fluid

with velocity i, equation (2.37) can be written as:

Ji = (Ta = B)0p(sm)- (2.38)
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Once again, using equation (2.34) and combining it with equation (2.38), one finds
that the force density imparted to the ionized fluid during recombination processes

1S:
. Sp
= (i — ) 22 2.
J (Un Ul)(ét)(i%n)’ ( 39)

and invoking Newton’s Third Law, the force density imparted to the neutral fluid

during recombination processes is then:

> . . (op
fo= (U — 1) (—) : (2.40)
ot (i—n)

Here, if the ionized fluid is faster than the neutral fluid, and the ionized particles
are recombining into neutrals, according to equation (2.40), the neutral fluid will
feel a force density which acts to increase its momentum. Conversely, if the neutral
particles are faster than the ions and ions are recombining into neutrals, equation
(2.40) indicates the force on the neutrals will act to decrease their momentum. Once
again, this is what one would expect intuitively, because if one adds slow particles to
a fast moving fluid, one would expect the fast moving fluid to slow down accordingly.
At the present time, there exists two separate equations for both the neutral and ion
fluid densities. Equations (2.35) and (2.40) for the neutrals, and equations (2.36)
and (2.39) for the ions. Examining these equations carefully, one notices that they
dp

are identical, save for the term representing the density rate of change (7)) for

ionization, or (%)(Hn) for recombination. Recalling that for both cases, ionization and

recombination, these density rates of change were assumed to be explicitly positive,
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one may use equations (2.13), (2.14) and (2.15) to relate the density rates of change to
the continuity equation source terms, giving the neutral force density during ionization

processes, equation (2.35) to be:

fn = (171 - 1711)(_8) (2'42)

Since the continuity source term S, as defined by equation (2.31), is positive for ioniza-
tion processes and negative for recombination processes, one may examine equations
(2.41) and (2.42) to find that the requirement of the density rate of change to be pos-
itive, is satisfied in both cases. Thus, equations (2.41) and (2.42) may be combined
to give:

fo= (@ — )8, (2.43)

and similarly for the ions:

fi= (G —1)|S]. (2.44)

Equations (2.43) and (2.44) are now valid for both ionization and recombination

processes.
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2.3.1 GENERALIZED AMBIPOLAR DIFFUSION

The ambipolar diffusion force caused by the interaction of the ions and neutrals is
derived by considering the fact that neutral particles are made of a positively charged
nucleus, as well as a negatively charged electron cloud. When a positively charged ion
comes into close proximity with a neutral atom, the electron cloud feels an attractive
force toward the ion, while the nucleus feels a repulsive force away from the ion
creating an electric dipole. This phenomena is known as polarization. One can find

from e.g. Ramazanov et al. (2006), that the potential energy of this interaction is:

S ZS ~2
V(r) = - 212%C

where ag, is the polarizability of the neutral atom, Zg, is the integer charge of the
ion, € is the elementary charge, and r is the distance between the particles. It was
Ludwig Boltzmann (1896) who showed that when the first moment of equation (2.1)

is taken, the right hand side becomes the ‘collisional integral’:

ﬁ,sﬁz = Mg, /bfslfsz (65/1 - 1751)[(652 - ’Usl) ’ (1782 - Usl)]l/Z d¢ db d/JSQ dﬁsl' (246)

Here, ﬁsm represents the net body force on ion species sy caused by the collision
(interaction) with neutral species s;, ¢ is the azimuthal angle in the scattering plane
and b is known as the impact parameter which is used in scattering theory.! As orig-

inally shown by Langevin (1905), in “Annales de Chimie et de Physique”, which was

1See Goldstein (1984) for further details.
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subsequently translated and modernized by MacDaniel in Appendix II of “Collision

Phenomena in Ionized Gases” (McDaniel, 1964), the solution is:

<O-V>slsg psl pSQ

ff,Slsz =
Mg, + M,

(Us, — Usy)s (2.47)

where the ‘Langevin Rate’, (ay>51 , between neutral species s; and ion species s is

S

defined by:

7 s Zs 2\ '/
(ov), ., = 7l (u) , (2.48)
Hsiso

where 14,5, 1s the reduced mass between the neutral and ion species in question and
Iy is a numerical constant, originally derived to be 2.21, but corrected by Osterbrock

(1961) to be 2.41, to account for electron shielding of the nucleus during scattering.

Equations (2.47) and (2.48) are completely species dependent. Thus, for a neutral
fluid composed of multiple species all traveling at velocity ¢, and an ion fluid com-
posed of multiple species traveling at velocity #%, one may perform a sum over each
species of neutral atom where § = 1,2, 3 represents (H, He, Li, ...), as well as each
ion where ¢ = 1,2, 3 represents (H*, He™, He™™, ...) upon fis,s, which will give the

total body force exerted on the ions by the neutrals. This summation gives:

Nn N

fii =Y papcTac(is — ), (2.49)

B=1 ¢=1
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where N, and N; are the total number of neutrals and ions respectively, and where:

ov I 762\ /2
T = m< oo _ 7o (0‘5 ¢ ) . (2.50)
g+ me mg + mg B¢

To make this force more compatible with the equations of MHD, define:

nﬁ
= —; 2.51
56 nﬂ? ( )
ng
= = 2.52
5( ni’ ( )

as the fractional abundance of neutral species § and ion species ( respectively. Note

that they are defined in terms of the total number density of neutrals and ions such

that:
Ng N¢
D b=1=) & (2.53)
B=1 ¢=1

From equations (2.51) and (2.52), it should be clear that the total neutral and ion

densities are:

Nn

Pn = Ny Z Egmeg; (2.54)
B=1
N;

Pi = N4 Z &-mg. (255)
¢=1

If we assume that every neutral particle in the ensemble travels at the same average
velocity 7, (so too does every ion in the ensemble travel at ), one may exclude the

velocities from the double sum by setting vs = v, and ¥ = ;. Now, expanding
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equation (2.49) one finds:

fei = (¥ Znﬁmﬁncmcrﬁc
5 1¢=1
Using equations (2.51) and (2.52), one can extract the neutral and ion number den-

sities from the double sum, which gives:

Nn N

ffl nnn1< Up — Ul ZzgﬁmﬁngCrﬁQ

p=1 ¢=1

and, upon substitution of equations (2.54) and (2.55), this becomes:

=

n Ni
Z Eemp&emelse
fei = pupi(Un — )

(o) Ee)

Defining the ambipolar diffusion coefficient:

Nn N
2 Z Egmp&emelpe

T Bem)Een)

the net body force delivered to the ions by the neutrals is:

(2.56)

ﬁ,i = VADPnPi(Un - 171) = ft. (2-57)
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Finally, invoking Newton’s third law, the net body force delivered to the neutrals by

the ions is:

fin = Yappupi(T — T) = — fr. (2.58)

Thus, in summary, combining equations (2.43) with (2.58), as well as (2.44) with
(2.57), the generalized momentum source terms for our model of ambipolar diffusion

become:

-

-Fn,coll = (171 - Un)”s‘ - ﬁu (259)

-}:;,coll = (Uh, — 0)|S| + ﬁ (2.60)

2.4 INTERNAL ENERGY SOURCE TERMS

Physically, the internal energy source terms represent the dissipative power losses or
gains to the internal energy. To begin, the source term that always appears in ideal
HD or MHD is —PV - ¢, which represents an adiabatic compression or expansion of
the fluid. When the fluid undergoes expansion, the divergence of the velocity field is
a positive quantity and with the pressure being positive definite, this implies that the
source term is negative, decreasing the internal energy of the system. The opposite

is true for adiabatic compression.

For two-fluid ambipolar diffusion, there are two methods by which energy in the
system is dissipated. Similar to the momentum source terms, equations (2.59) and

(2.60), one is associated with the Saha term, and the other is associated with the
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ambipolar diffusion term. Thus, one can write the total collisional source terms as:

Gicoll = GiAD + Gi Saha, (2.61)

gn,coll = gn,AD + gn,Saha' (262)

2.4.1 AMBIPOLAR INTERNAL ENERCY SOURCE TERM

Just like a drag or friction force, ambipolar diffusion essentially describes the forces
associated with molecules ‘rubbing against each other’. With this, let us consider the

power term associated with a drag force:

gDrag - URel,Drag . ﬁDrag- (263)

Drag forces always need to be considered from the frame of reference of the particles
feeling the drag. Consider two surfaces sliding relative to each other, one may think
of this as ‘rubbing their hands together’, which is analogous to the ion and neutral
fluids interacting in this thought experiment. Thus, take two surfaces moving with
velocities v, and 7, representing the neutral and ionized fluid respectively. They also
exert forces on each other f; oni = ff and ﬁ onn = — ﬁ, representing the ambipolar
force density, equation (2.57). In general, the relative velocity of a frame A with
respect to B is:

—

1_}:4/3 =Vyg — 173. (264)
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Now, let us determine the drag source term given by equation (2.63). Surface i feels
the drag force ﬁl oni = ff applied in the frame of the drag, at relative velocity ;.
The exact opposite is true for surface n. It feels the drag force f_: onn = — ﬁ applied
in the frame of the drag, at relative velocity @i/,. This thought experiment with

equations (2.63) and (2.64) yields:

GDrag,i - (Un - 171) ’ ﬁ - GDrag; (265)

GDrag,n = (Q_fl - Un) ’ (_ﬁ) = GDrag- (266)

Therefore, the internal energy source terms associated with ambipolar diffusion are:

gAD = G'(Drag = (Un - 171) . ff' (267)

Relating to the discussion at the beginning of §2.4, one can combine equations (2.57)
and (2.67) to give

GAD = PipuYaD (Un — B) - (U — 1), (2.68)

which is a positive definite quantity. Therefore, similar to any frictional energy dis-
sipation such as viscosity or ‘rubbing your hands together’, ambipolar diffusion may
only take kinetic energy from the bulk system and increase the internal energy of
both the ion and neutral fluids. Thus, this term represents a one-way conversion of

kinetic energy to thermal energy, meaning mechanical energy is not conserved.
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2.4.2 SAHA INTERNAL ENERGY SOURCE TERMS

As mentioned in §2.2, assuming a Saha ionization equation requires the definition of
an overall temperature, which in turn means that there exists a thermal equilibrium

between the neutral and ion fluids. Thus for, T, = T} = T the ideal gas law requires:

miPpn = maPapi = mi(%i — 1)eipn = mu(m — Denps. (2.69)

Just like the continuity and momentum source terms associated with the Saha equa-

tion, the corresponding internal energy source terms are conservative in that:

g = gSaha - gi,Saha = _gn,Saha~ (270)

This statement of conservation simply means that whatever energy is lost by the neu-

tral fluid due to ionizations is gained by the ion fluid and vice-versa for recombinations.

To uncover the source term, I argue that consistency is required between the neutral
internal energy equation (2.6), ion internal energy equation (2.7) and the equilibrium
temperature condition defined by the ideal gas law (2.69). This is because, when
solving the full set of generalized MHD equations, there is the choice to use both in-
ternal energy equations, or one of the internal energy equations with the equilibrium
temperature condition. No matter which of the three combinations chosen, they all
give the same results. Thus, I shall proceed by substituting the pressure and inter-

nal energy conditions given by equations (2.69) into the internal energy equation for
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the neutrals (2.6) and demand for consistency, that the end result is the ion internal

energy equation (2.7). Following this logic,

o () Gz e o () Gz e
my ) \Wm—1/ pi My ) \Wm—1/ pi

=—(mi)@av-ﬁn+(ﬁn—a>-ﬁ—g;

my Pi

= (&> 8tei + eiat (&> —|—&V . (eiUn) + 611_]}1 -V <&)
i i Pi Pi
n — 1 n - my n — 1 N _ > My n — 1
n—1/ pi mi )\ 7 — 1 mi )\ 7 — 1
Defining;:
Ug = U — Up; (2.71)
My
= ; 2.72
e = 2.72)
~ fyn - 1
= 2.73
! v—1’ (2.73)

where vy is the relative velocity of the ions with respect to the neutrals, and both m,

and 7 are convenient constants, one may continue by writing:

Prdver + 2 - (eh) = 3PPV T — Amads - fr — ed, (@> — ey - v(@>
Pi Pi Pi i Pi

+ OV (@) + 5BV = G

— APV - — Am. Ly fi — e 20, (p—) ey (f’_)
p .

n n i n Pi

YV (eT) + APY - Ty — Am 6.

n
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Comparing this with the ion internal energy equation (2.7), gives:

—Rv-a—ﬁd-f?w:—mv-a—&mrﬁﬁd-ﬁ—eiﬁat(@—eiﬁﬁn-v(@)

n n i n Pi

+ V- (ety) + YRV - Ug — erﬁg;

n

) ) o, o 1 1
e — [_ (7 - 1RV - — (’Ymrﬂ - 1) Ua - fr— e <_atpn - _8tpi)
Pn + Yy Pi n n i

1 1
— GiUn . <p—Vpn - ;Vg) +V . (Giﬁd) + ’?RV . 17d:| .
(2.74)

Using the continuity equation for each fluid, (2.2) and (2.3), as well as the associated

source term (2.2), equation (2.74) becomes:

n . . - P I 11
S N (¥ —=1PRV -0 — <7mrﬂ - 1)Ud'ff‘|‘€i(_ +—)S
Pn Y p; Pn Pn Pi

i R i . . 1 1
+ AV (pii) — e—_V - (pith) — et - (—Vpn - —Vm)

n 1 n 1

+ V- (ety) + PV - Ud] :

n - . - i Lz 1 1
- [—(7—1)RV-vi—(vmrp——l)vd-ff+ei<—+—)5
Pn T YNy P; On Pn P

€i o €, -
+6V- U+ —0,- Voo — &V -0 — =0 - Vp + V - (6,74)

n 1

1 1
p

n i

pn+7mrpi n

—i—ei(i + 1)8— 6117(1 V(ln(@))}
pn Pi pi

(2.75)
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For practical purposes, the adiabatic index of both the ion and neutral fluid should

be the same. Thus equation (2.73) gives 4 = 1, which simplifies equation (2.75) to:

gzL{Rv-ﬁd— (mrﬁ—l)ﬁd-ﬁ
pn+mrpi n

‘i‘€i<i + 1)5— eiﬁd . V(ln(&))l
Pn Pi Pi

2.5 SUMMARY OF THE TwoO-FLUID EQUATIONS

(2.76)

With all source terms now accounted for, I rewrite all equations from §2.1.1 with each

of the source terms given explicitly. The neutral and ion continuity equations are:

p_(t) B p.(t-&-ét)
Oipn + V- (puty) = =8 = ITI; (2.77)
p_(t+5t) B p(t)
The neutral and ion momentum equations:
050 + V - (8aThn) = =V Py — puVo — 48 — fr; (2.79)
1 R, .
08+ V- (5ith) = =VP, — piVo+ —(V x B) x B+ 43S + fr. (2.80)

Ho
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The neutral and ion internal energy equations are:

n . L 1 1
Oen + V- (enty) = =P,V - U, + S — {—RV “Ug — 20q - fr— ei(— + —>S
Pn + mypi Pn pi

e s(u(2)]

(2.81)

n — 2 M - r 1 1
8t6i+V-(eiz7i):—PiV-ﬁmLp—[PiV-vd— mpvd-ff+ei<—+—)8
pn+mrpi n Pn Pi

o)

Mi€iPn = Myenpi, (2.83)

(2.82)

with only two of equations (2.81), (2.82) and (2.83) being chosen. The neutral and
ion equations of state:

Py = (7 = Dea (2.84)
R=(y—1e. (2.85)

The induction equation:

B+ V x E=0. (2.86)
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For the sake of completeness, the neutral and ion total energy equations are:

Dren, + V- K ; PHM (1S = SR — 68 + - S| — 7 - fi

n — - R 1 1 - n
+ p—|:—PiV'Ud — 2"Ud . ff—ei(— + —)S+eivd . V<ln(p—)):|,
pn+mrpi Pn Pi Pi

(2.87)

Ho Ho

e n . 2 rMi ¢ 1 1 N n
v P e (L )s v (w(2))]
pn+mrpi ,On pn pi pi

1 1 o =
oier, +V - [(eTi+R—2—BQ)Ui+—E X B]z —(3S + |87 + ¢S + T, - TS|

(2.88)
Computationally, the two-fluid model has twice as many variables as an ordinary,
single-fluid MHD solver like ZEUS-3D, meaning it would also double the number of
computations per cycle. Although the two-fluid model with appropriate chemistry
would be completely general, it comes at a very high computational cost. Thus, as
mentioned in §1, if one can make the assumption that the ionization level of the fluid
is low p; < pn, then a single-fluid approximation can be developed. Also of note,
during the derivation of the two-fluid equations, I found that one of the expressions
in Duffin & Pudritz (2008) had an unfortunate switch in subscripts. Specifically, if
one assumes like Duffin & Pudritz (2008) that there exists no source terms in the
two-fluid continuity equations, then one can take S = 0 and Ggun, = 0, allowing us

to re-write the neutral and ion total energy equations (2.87) and (2.88) as:

Dyer. +V - [( - pn)an} G et e - (2.89)
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1 1~ = . . .
(9teT.l + V. |:(€Ti + Pl — —B2)1_))1 + —F X B:|: —171 . ff—l_fd . ff = ﬁn . ff. (290)
2410 o

Comparing these to equations (8) and (9) from Duffin & Pudritz (2008) shows that
where they have a neutral subscript in the neutral total energy equation, there should
in fact be an ion subscript vice versa in the ion total energy equation. This subscript
switch actually causes one not to be able to derive much of what follows in their

paper—results which are in agreement with our independent derivations summarized

in §2.7.

2.6 THE SINGLE FLUID APPROXIMATION

Following both (Spitzer & Mestel, 1956), as well as (Duffin & Pudritz, 2008) who
provide justification based upon plasma recombination times when p; < p,, one may
neglect inertial terms involving the ions when compared to magnetic and frictional
forces, ion pressures when compared to total pressures, ion gravitational terms, and

ion energies when compared to magnetic energies.

Following Duffin & Pudritz (2008) and MacMackin (2015), I take & = 0 and keep
track of the neutral particles only, and use an expression for the corresponding ion

density:

k -2
n n
=K —2— K|—"—) , 2.91
" (105cm—3) * (103cm_3> (2.91)

where K = 3x1073cm ™3, K/ = 4.64x10™*cm ™ and k = 1/2 (Fiedler & Mouschovias,

1993).
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Starting with the two-fluid ion momentum equation (2.80),

1 — — —
05+ V- (5) = =VP = pVo+ (Y x B) x B+ fr (2.92)
0

assuming that the ion inertia, ion pressure gradient and ion gravitation are negligible,

this collapses immediately to:
f} = PuPiYADUd = —J x é, (2.93)
with the current density J defined as:

J = (V% B), (2.94)

Solving for the velocity of the ions, one can find that:
1_)} = 1_);1 + [,L()ﬁADjX g, (295)

where,

1
PnPiYAD '

fofap = (2.96)

Since the single fluid approximation is associated with only the neutral particles,

the induction equation (2.86), must be transformed such that it only contains terms
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pertaining to the neutrals. Thus, substitution of equation (2.95) into (2.86) gives:
Oté =V x {(Un + Mo@ADjX é) xé];

— 9,B=V x (U X E) +V x [MoﬂAD (fx é) xg]. (2.97)

Equation (2.97) represents the coupling of the neutrals to the magnetic field under

via the low population of ions, under the single fluid approximation.

2.6.1 SINGLE FLUID INTERNAL ENERGY EQUATION

Addition of equations (2.81) and (2.82) gives:
Orlen +e) + V- (el + &) = —PuV - Ty — PV - & — 204 - fr.

Using equation (2.95) to eliminate the ion velocity with equation (2.93), one can find

that:

Oy(en + ) + V - [enla + €i(Ta + p0Band X B)] = — PV - (G + pofBapJ x B)

— P,V - @ + 2u0Bap||J x B|%.

Taking e, + e; =~ e, and P, + P, = P, quickly results in the single fluid internal energy
equation:

Ohen +V - (enlly) = =P,V - 0, + 2uu0fanl||J x B|%. (2.98)
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2.6.2 SINGLE FLuiD ToTtAL ENERGY EQUATION
Defining the total energy of the overall system to be:

2

er = 307 + 5outy + €+ en + pid + pud + 5.
2 2 2,&0

Differentiation with respect to time gives:

ateT = %szatpi + /11171 : at,l_fl + %Uiatpn + pnﬁn : 8tUn + ¢atpi + (batpn

— —

+ Oi(en + &)+ —B - 0,B.
Mo

(2.99)

Substituting the continuity equations (2.2) and (2.3), as well as the Euler equations

gives:
— _,Si 1.2 - N ]_ ]. - — ]_ —
Oer = pith - |—ti— — V(507) +1i x (Vx04) = —=VPR +—J x B+ —ff — V¢
pPi Pi Pi Pi
- = Sn 1.2 . 5 1 1 -
+ pnty - —vnp— — V(5305) + % X (V x ¥,) = —VP, — —fy = V¢

+ ¢[81 -V (,01771)] + ¢[Sn -V (pnﬁn)] + %U?[Sl -V (:01771)]

1~ -
+ 202[S0 = V- (puT)] + Or(en + &) + ,u_B - O, B;
0

= 302V - (pidh) — i - V(307) = 302V - (puBla) = puthy - V(307)
—pith - V= ¢V - (piT3) — putin - Vo — SV - (pulhn)
it - [B 5 (V5 B)] 4 patia « [Ba X (VX )] + (8 - fr = T - fo)
+(¢— 3018+ (¢ — 3v3)Su + G - (J x B) = % - VP, — 1, - VP,

1~ -
+ 0i(en +6€)+ —B-0,B.
Ho
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Due to orthogonality, p;t} - [t X (V X ;)] = 0 = pu¥y - [Uh X (V X ¥,)]. Thus:

drer ==V - [ 2T + Lpav?T, + piohT + pudta] + Ta - fr + 0 - (J x B)
+ (¢ — 30))S + (¢ — 102)Su—0 - VP, — @, - VP, (2.100)

]_ — —
+ 0(en +6)+ —B-0,B.
Ho

Invoking the single fluid approximation, S; =0= S, and —v; - VP, — ¢, - VP, =

—, - VP,. Then, using equation (A.1) from Appendix A, one gets:

Brer = — V- [ 02 + Lpav2T, + piot + padT] + 7 - (T x B

~—

— U, - VP,

—V - (enT) — PaV - T 4 2110Bap||J % B|[*~0, - (J x B) =V - (E x B)

~V - [BapB*(J x B)] — pofanl|J x B>~ poBapl|.] x Bl

Eliminating the ion velocity with equation (2.95), one gets:

Orer = — V- [(2pi0} + pid) (T + poBand x B) + (3puv? + pud + eq + € + By,
+ E x B+ BapB*(J x B)] + (U + poBapJ x B) - (J x B) — @, - (J x B);

==V - {(3piv} + pidd + 2puv2 + pud + € + en + Po) 0,

1 L. L. L
+ MOBAD[(%piviQ + pid + %32)@] x B)] + E x B} + poBap||J x B||*.

Using equation (2.99), as well as noting that the ion gravitational and kinetic terms are

negligible when compared to twice the magnetic pressure, the total energy equation
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finally becomes:

1 — — - — =g —
oer +V-[(er+ P, — ﬂBQ)ﬁn—l—E x B+ BapB*(J x B)] = uoBapl||J x B||?. (2.101)
0

Note that one can’t simply combine the two-fluid neutral and ion total energy equa-
tions (2.87) and (2.88) to give the result, since the ion total energy equation (2.88) is
derived assuming the ideal induction equation (2.86), as opposed to the AD induction

equation (2.97).

2.7 SUMMARY OF THE SINGLE FLUID EQUATIONS

Continuity equation:

Orpn + V- (pnthn) = 0; (2.102)
momentum equation:
- S B? 1 52
Sy + V- |Syy+ | Ph+— |I— —BB| =—p,V¢; (2.103)
240 Ho
internal energy equation:
Bhen + V- (enln) = =PV - T + 2u08an||J % B|J%; (2.104)

induction equation:

OB =V x (¥, x B) + V x |:/J,0ﬁAD (fx §> XB}; (2.105)
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total energy equation:

1 — =g g — - —
Orer+V- Keﬁpn—ﬂB?) U+ E x B+ BapB%(J x B)} = woBapl|J x B||%; (2.106)
0

constitutive density equation:

1/2
n; = (3 x 10—3cm—3)( fin 3) +(4.64 x 10‘4cm‘3)(

2
Ny

_m ) 2.107

105cm— 3) ( )

103cm—
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Chapter 3

NUMERICAL SIMULATIONS OF
ASTROPHYSICAL JETS

To perform the numerical simulations which follow, I used ZEUS-3D, which is a multi-
physics computational fluid dynamics code capable of solving the equations of single
fluid MHD. Once again, I follow MacMackin (2015), who augmented the ZEUS-3D
code to include the equations of single fluid ambipolar diffusion. As discussed by
MacMackin (2015), there were issues with the single fluid internal energy equation
for AD, namely, that the source term could not be determined analytically. How-
ever, as shown in §2.6, when the single fluid approximation is derived from the full
two-fluid equations, there is no issue in determining the source term for either the
total, or internal energy equation. Thus, it was a simple task to correct the existing
in ZEUS-3D, by including the term 2u08ap||J x B||? in the internal and total en-
ergy equations, allowing ZEUS-3D to solve the full suite of single fluid AD equations

(2.102)-(2.107).

As shown by Clarke (2010), choosing ZEUS-3D to solve the total energy equation
ensures that the total energy is conserved, but the pressure is not positive definite.
Conversely, choosing the internal energy equation ensures positive definite pressures,

but does not conserve total energy to machine roundoff error. The choice between the
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| State | p P Uy Uy B, |
Left | 1.000 0.010 5.000 0.000 2.507
Right | 7.976 0.500 0.627 0.830 23.313

Table 3.1: All values are taken to be in ‘cgs’ units. This table represents the initial
conditions used in ZEUS-3D as it solves the Riemann problem using the
single fluid AD equations. Here, ambipolar diffusion coefficient is taken
to be yap = 1.0 cm® g~ ! s7!, the sound speed is ¢ = 0.1 cm s}, the

pre-shock magnitude of the magnetic field is By = v4m G and finally, the

ion density was taken to be a constant p; = 107> g cm™3.

possibility of non-conservative total energies or negative pressures comes down to the
problem with which one is working, as extensively discussed in Clarke (2010). Thus,
it is important to have a working algorithm for both the total and internal energy

equations.

Following MacMackin (2015) and Duffin & Pudritz (2008), one can proceed by per-
forming the standard test for AD algorithms, known as the C-shock, a term widely
used in the literature as an abbreviation for “continuous shock”. Unlike pure HD
or MHD shocks which form discontinuities in the flow variables (e.g. Brio & Wu,
1988), shocks with AD form continuous transitions in all flow variables between the
upwind and downwind states. Table 3.1 shows the initial left and right states for
the C-shock test which was performed by ZEUS-3D, and Figure 3.1 shows the semi-
analytic solution detailed by MacMackin (2015) and Duffin & Pudritz (2008), plotted
against the ZEUS-3D solution when the single fluid internal energy equation (2.98)
is used. As one can see, the ZEUS-3D code resolves the C-shock problem almost

exactly according to the semi-analytic solution.
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Figure 3.1: Various plots of the C-shock variables. Here, the thin solid line represents
the semi-analytic solution discussed by both Duffin & Pudritz (2008) and
MacMackin (2015). The small circles represent the ZEUS-3D solution
of the C-shock problem, making use of the internal energy equation. If
one wishes to see the ZEUS-3D simulation of the C-shock problem using
the total energy equation, I refer the reader to MacMackin (2015), who
performed that exact test. As can be seen, the agreement of the ZEUS-
3D simulation using the internal energy equation, to the semi-analytic
C-shock solution is excellent.
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3.1 AD SIMULATIONS OF ASTROPHYSICAL JETS WITH

AN AcCTIVE TOROIDAL FIELD

To simulate all of the following astrophysical jets, the density ratio of the ambient
medium to the incoming jet material was assumed to be n = 0.05, and the Mach num-
ber of the incoming material with respect to the ambient medium was assumed to be
Ma = 10. For the rest of this discussion, all values are assumed to be dimensionless,
unless explicitly stated, because the ZEUS-3D MHD code operates using a set of
dimensionless variables, discussed further in Appendix B. Each of the following jet
simulations were conducted for the same scaled time, ¢ = 2, in order to comparatively
study the morphology of each situation. In general, the important aspects of a jet’s
structure are the cocoon, Mach stem, nose cone and leading bow shock, which are
illustrated in Figure 3.2. For the purposes of this thesis and the ‘morphology problem’
which it attempts to address, the most important aspect of a jet is the volume of its

cocoon, and how far its leading bow shock has progressed during the problem time t.

To model AD within ZEUS-3D, it is necessary to specify a ‘fiducial value’ for the
density D, length L and speed V', quantities which are supposed to be representative
of “real jets”. For all simulations which follow, I assume the values D = 1x 10" um™3
(u represents atomic mass units), L = 5.496 x 10*m and V = 3 x 10*ms™" in or-
der to maintain the ‘ambipolar Reynold’s number’; as defined in Appendix B, near

unity, which ensures that the effect of AD is comparable to other terms in the MHD

equations.
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When performing numerical simulations, one should always attempt a ‘resolution
study’, meaning each time a simulation is performed, the number of computational
zones is increased, and the results from each simulation are compared to ensure that
as the number of computational zones increases, the simulation begins to converge to
a set of values which represents the solution to the problem. If a simulation fails to
converge during a resolution study, it is usually a sign of some numerical instability,

bug in the code, or problem with the algorithm.

The first simulations performed were those of astrophysical jets with an active,
toroidal field of plasma-5 = 0.2. Here, I performed three simulations in which the jet
radius was resolved with four, six, and eight zones (Figures 3.3, 3.4 and 3.5 respec-
tively). Comparison of these AD simulations with corresponding ideal MHD (no AD)
simulations (Figures 3.6, 3.7 and 3.8 respectively) show some interesting non-physical
behavior. In particular, while the non-AD jets all advance roughly the same distance
in the alloted problem time (showing a resolution-independent result), the AD jets
clearly advance further for higher resolution. This indicates a resolution-dependent
behavior which implies a deficiency in the algorithm, and most likely a problem with
the physical assumptions of single-fluid AD. One can also notice that with higher grid

resolution, the core of the jet near the central axis tends to become more rarefied.

In particular, I believe the lack of numerical convergence comes from the nature

of how the toroidal field works under the single fluid approximation. To elaborate, I
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postulate that the toroidal magnetic field causes a high ‘hoop stress’ along the axis
of the jet which tends to ‘squeeze out’ the neutral particles and compresses the ion-
ized particles into the computational zones nearest the axis of the jet. This occurs
because without any thermal pressure remaining near the jet axis, the toroidal field
can squeeze as close to the axis as possible, which is then only limited by numerical
resolution. Thus, for high numerical resolution, the magnetic field can squeeze down
closer to the jet axis, thereby developing an ever finer jet tip. Further, it seems that
the higher the numerical resolution, the more rarefied the neutral density becomes in
places which have high magnetic field strength, and thus the more ionized these zones
become by virtue of the constitutive density, equation (2.107), at such low neutral
densities. I note that equation (2.107) is only valid for densities within a certain
threshold (Fiedler & Mouschovias, 1993), which these simulations violate in the most
rarefied region. Thus, this causes its own problems in the solution that I have not yet

been able to address.

3.2 AD SIMULATIONS OF ASTROPHYSICAL JETS WITH

AN AcTIVE POLOIDAL FIELD

A poloidal magnetic field is one entirely confined to the r-z plane. Unlike the toroidal
field (Oz(;g), it lacks any compressive hoop stress, which may help to avoid the lack of

numerical convergence discussed in the previous section.
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Figure 3.2: Cartoon drawing of an astrophysical jet, which showcases the location of
some morphological features.
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Figure 3.3: Simulation of an astrophysical jet with an active toroidal magnetic field
with a plasma beta of 8 = 0.2 including AD. The grid for this simulation
is 50r; x 100r;, resolved with four computational zones per jet radius (r;),
and simulated for problem time ¢ = 2. Note that after this time has
elapsed, the jet has progressed to x; ~ 27rj.
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Figure 3.4: Same as Figure 3.3, except the grid is resolved with six computational
zones per jet radius. Here, by increasing the resolution by a factor of %,
the jet has advanced to x; =~ 35rj, in the same amount of time as Figure
3.3.
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Figure 3.5: Same as Figures 3.3 & 3.4, except the grid is resolved with eight com-
putational zones per jet radius. Here, by increasing the resolution by a
factor of %, the jet has advanced to z;1 ~ 417y, in the same amount of time
as Figures 3.3 & 3.4.
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Figure 3.6: Ideal MHD (no AD) simulation of an astrophysical jet with an active
toroidal magnetic field with § = 0.2. Other than the lack of AD, this
simulation is identical to Figure 3.3, including resolution.
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Figure 3.7: Same as Figure 3.4, but with no AD.
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Figure 3.8: Same as Figure 3.5, but with no AD. Note that in Figures 3.6, 3.7 and
here, the jet has advanced to z; ~ 30rj, regardless of resolution. Note

further the lack of the highly rarefied regions present in the simulations
with AD.

Similar to the toroidal field simulations, the same plasma-# of 0.2 is assumed. Com-
parison of the resolution study for AD simulations (Figures 3.9, 3.10 and 3.11 respec-
tively), to the ideal MHD (no AD) simulations (Figures 3.12, 3.13 and 3.14 respec-
tively), show that a poloidal field with AD does converge, meaning the immediate
problems of the toroidal field seem to be absent, and the volume of the cocoon is in-
creased in the AD simulations (Figures 3.9, 3.10 and 3.11) compared to those without
AD (Figures 3.12, 3.13 and 3.14). Thus, from the poloidal simulations, it seems plau-
sible that the equations of single fluid AD allowed jet material to slip past magnetic
field lines and inflate the cocoon to be more morphologically hydrodynamic in nature.
However, it should also be noted that the leading edge of the jet has advanced far

beyond what the ideal MHD jet has for the same problem time. Therefore, although
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it seems like there is convergence, and it is plausible that AD can help solve the mor-
phology problem, the lack of neutral density remaining in the cocoon is a concern.
Contrary to MHD, where one can see fine structure within the cocoon, the AD jet
appears to be almost completely void of neutral fluid. In fact, at its lowest, the sim-
ulations seem to suggest that there are only about 0.6 particles per cubic centimeter.
This is an unimaginably low number of particles and one may wonder if the single
fluid approximation holds considering that the constitutive density equation (2.107),
provided by Fiedler and Mouschovais (1993), implies that if the number density of
neutral particles is around 0.6 particles per cubic centimeter, then the number density
of ionized particles is around 2.0 x 10* particles per cubic centimeter. This is far from

low ionization.

There are two things here to consider. First, the ZEUS-3D simulations, which give
highly rarefied regions of neutral density, implies that the neutral particles have been
‘squeezed’ out of this region and almost all that remains is a sea of magnetically
confined ionized particles. Second, one must remember that the single fluid approxi-
mation only applies to cases for which there is a low ionization level, less than roughly
10%. Therefore, this highly rarefied region of neutral density, which actually gives us
a highly dense region of ionized particles, is in violation of the single fluid approxima-
tion by many orders of magnitude. Regardless, neutral particles seem to be slipping
through the field lines with the aim of inflating the cocoon, so it is plausible that
single fluid AD with a more general prescription for n;, or even two fluid AD with

self-consistent neutral and ion densities, may help solve the morphology problem.
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Figure 3.9: Simulation of an astrophysical jet with an active poloidal magnetic field
with a plasma beta of § = 0.2 including AD. The grid for this simulation
is 50r; x 100rj, resolved with four computational zones per jet radius.
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Figure 3.10: Same as Figure 3.9, except the grid is resolved with six computational
zones per jet radius.
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Figure 3.11: Same setup as Figure 3.9 & 3.10, except the grid is resolved with eight
computational zones per jet radius. Note that in Figures 3.9, 3.10 and
here, the jet has advanced to x; ~ 37r;j, regardless of resolution.
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Figure 3.12: Ideal MHD (no AD) simulation of an astrophysical jet with an active
poloidal magnetic field with § = 0.2. Other than the lack of AD, this
simulation is identical to Figure 3.9, including resolution.
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Figure 3.13: Same as Figure 3.10, but with no AD.
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Figure 3.14: Same as Figure 3.11, but with no AD. Note that in Figures 3.12, 3.13 and
here, the jet has advanced to z; ~ 157, regardless of resolution. Note

further the lack of the highly rarefied regions present in the simulations
with AD.
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Chapter 4

CONCLUSIONS

In §2.3.1 a fully, non-isothermal two-fluid model of AD with realistic chemistry gov-
erned by the Saha equation was developed. The only assumption made when deriving
the two-fluid equations, was a thermodynamic equilibrium between the neutral and
ionized fluids. Indeed this assumption is already implicit in finding the Langevin rate
coefficient used in determining the strength of the AD force, and thus thermodynamic
equilibrium is an underlying assumption of AD. Therefore, I argue that our two-fluid
model is completely general and, as shown in §2.6, reduces to the single fluid equa-

tions widely used in the literature.

Because of the poloidal field jet simulation substantially increases the volume of the
jet’s cocoon, I believe it is plausible that AD could help solve the jet morphology
problem. Between the poloidal and toroidal simulations, many non-physical situa-
tions manifested, namely, the lack of neutral particles anywhere there exists a strong
magnetic field—which violates the underpinning of the single fluid model—as well as
the numerical convergence problems found in the toroidal field simulations. Given the
success of the C-shock tests, it is unlikely that these issues are caused by a problem
with how AD is implemented. Rather, it is more likely a result of using the single

fluid model, and its requirement that the ionization remains low.
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Future work for this project should focus on resolving the inconsistency with the
constitutive ion density equation (2.107), and in particular, finding a way to cap the
ionization density realistically. Next, the full set of two-fluid equations derived in
§2.3.1 should be added to ZEUS-3D, and once operational, C-shock tests should be
made with a temperature consistent with a low ionization level, thus being compa-
rable to the single fluid C-shock test already performed. Unfortunately, it is highly
unlikely that there will ever exist an analytic or semi-analytic solution to the two-fluid

equations due to their complexity.

Next, work should then focus on attempting to re-run the same resolution studies
described in §3.1 and §3.2 for both the toroidal and poloidal fields. If T am cor-
rect, the results of the two-fluid equations working on these jets should address the
non-physical artifacts caused by the single fluid model, while still allowing neutral
particles to slip past magnetic field lines. Finally, if the toroidal and poloidal field
jets work when subjected to the two fluid model, a more realistic helical field with a

strong toroidal component should be attempted.
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Appendix A

MAGNETIC FIELD DERIVATIVE

An important part of deriving the single fluid approximation in §2.6, is the identity
M_loé - 0,B, calculated using various vector identities. Starting with equation (2.97)

and multiplying through by iﬁ , one gets:
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Which results in:
B-9,B=—0,-(JxB)—=V-(

1
Ho

used in equation (2.100), §2.6.2.

E

X

B

) — poBanl||J x B||> = V - [BanB*(J x B)],

(A.1)
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Appendix B

ZEUS-3D UNITS AND SCALING THE
SINGLE FLUID EQUATIONS

When simulating any equations in ZEUS-3D, one must be aware of the fact that the

units which ZEUS-3D operates in are scale free. In other words, they are of the form,

APh ical
A e = ysica ; B.1
z A, (B.1)
= Q sica
QZeus = Lhy 17 (B2)
Wo

where Aze,s represents some dimensionless scalar in ZEUS-3D, Appysical 1S a physi-
cal scalar with dimensions and Ag is a ‘fiducial value’ of the scalar. Similarly, QZeus
represents some dimensionless vector in ZEUS-3D, Qphysical is a physical vector with

dimensions and €2 is a ‘fiducial value’ of the vector.

Next, it is important to note that in ZEUS-3D, the convention of pg = 1 is cho-
sen so that the square magnitude of the magnetic field B? has units of pressure.
Lastly, the single fluid ambipolar internal energy equation, induction equation and

total energy equation can be rendered scale free to comply with the requirements of
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ZFEUS-3D. One must simply set,

S Un
Un,Zeus = 77 (B3)
— Fn
T'n,Zeus = fa (B4)
Pn,Zeus = p_Dn’ (B5)

where Uy, zeus, T, Zeus ad pn zeus are the now dimensionless ZEUS-3D variables, v, 7,
and p, are the physical variables, and V', D and L are the three fiducial values needed
to render the equations scale free. It is a simple exercise to show, that when equations
B.3, B.4 and B.5 are inserted into the single fluid approximation—equations defined

in §2.7—all occurrences of pyfap are replaced by the ‘ambipolar Reynold’s number’:

_ %4
Rap N LD pnpiyap '

toSap — (B.6)

Here, ‘Zeus’ subscripts have been dropped for convenience, and when this ‘ambipolar
Reynold’s number’ is used in place of ppBap all variables are then assumed to be
dimensionless except for constants and fiducial values—exactly analogous to the way
this is accomplished when viscosity is included in HD and MHD, except yap takes

the place of the dynamic viscosity.
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