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ABSTRACT 

Using Unmanned Aerial Systems to Classify Land Cover and Assess Productivity in 

Forested Wetlands in Nova Scotia  

 

by 

 

Iain M.J.C. Wilson 

 

Forested wetlands in Nova Scotia are an understudied and ephemeral ecosystem type with high 

predicted ecological value. They are thought to cover a broad geographical area; however, their 

distribution is difficult to quantify, partly due to their similarity to drier forested landscapes in 

ordinary RGB aerial imagery. This study used unmanned aerial systems (UAS) imagery to 

attempt to classify and quantify the distribution of forested wetland communities, differentiate 

forested wetlands from drier forested communities, and assess productivity levels using the 

normalized difference vegetation index (NDVI). This study is one of the first known examples of 

UAS use in forested wetland ecosystems. NDVI imagery was captured in the Musquodoboit 

River valley during the summer of 2018 using a consumer-grade UAS and processed into 

orthomosaic maps in Pix4D Mapper Pro. The maximum likelihood classifier algorithm was 

applied to the dataset to group similar pixels into land cover classes based on ground truth data 

collected in the same time frame as the UAS flights. The classification scheme was then put 

through a confusion matrix to assess its accuracy. Based on this assessment, the classification 

was not accurate. This may be due to several factors, including flaws in the ground sampling 

method, and the fact that forests are generally difficult to classify through pixel-based 

classification methods. NDVI values did not differ greatly across land cover classes, which may 

have played a role in the unsuccessful classification. Suggestions for future studies include using 

a more rigorous and quantitative ground sampling protocol and considering different 

classification methods, such as object-based image analysis (OBIA). 
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CHAPTER 1: Introduction 

1. Introduction 

In general, forested wetlands are an understudied ecosystem type due to their ephemeral and 

complex structure. Forested wetlands exist ubiquitously across Nova Scotia, but their distribution 

and extent are not well quantified (Brazner and Achenbach, n.d.). This may be because forested 

wetlands are generally indistinguishable from forested upland in typical aerial RGB imagery. 

However, differences in net primary productivity (NPP) between forested wetlands and forested 

uplands may help to discern their distribution through vegetation indices that employ non-visible 

bands of the electromagnetic spectrum, such as the normalized difference vegetation index 

(NDVI). Cronk and Fennessy (2009) note that productivity in wetlands varies from high levels 

(>2500 g/m2/y) to lower levels in colder climates (100 g/m2/y), while forested landscapes 

generally are moderately productive (800 g/m2/y). If these differences are detectable through 

remotely-sensed NDVI imagery, forested wetlands may be more easily inventoried and 

quantified. 

Unmanned aerial systems (UAS) represent a low-cost, user-friendly means of collecting 

high resolution multi-spectral data from forested wetlands compared to other remote sensing 

methods, such as LiDAR and satellite imagery. UAS studies in forested landscapes in general are 

sparse, and especially in forested wetland landscapes. Thus, one of the purposes of this study is 

to investigate the usability of UAS in forested wetland ecosystems. 

The three main questions that this study seeks to answer are: 1) can differences in NPP be 

used to discriminate between forested uplands and forested wetlands?; 2) can existing UAS-

based land classification techniques be used to classify forested wetland types?; and 3) do NDVI 
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values differ significantly between types of forested wetlands? Thus, the three main objectives of 

this study are: 1) classify an open wetland-forested wetland-forested upland mosaic landscape 

using NDVI maps derived from UAS imagery; 2) assess primary productivity in forested 

wetlands through the same NDVI maps; and 3) assess the effectiveness of UAS technologies in 

forested wetland landscapes. In relation to these questions, it is hypothesised that NDVI will 

differ significantly between forested wetland types. In addition, it is predicted that classification 

methods will succeed in classifying forested wetlands. 

 

1.1 Remote sensing 

Remote sensing has existed for several decades and has allowed humans to observe the 

world in revolutionary ways. As technology has progressed, remote sensing has become more 

and more accurate, and thus more and more integral to the study of the planet and its processes. 

Remote sensing as we know it today has existed since the 1950’s with the launch of the first 

Earth-observing satellites (Khorram et al., 2012). However, the general definition of remote 

sensing covers much more than just observing Earth’s surface. Khorram et al., 2012 define 

remote sensing as “…the acquisition and measurement of information about certain properties of 

phenomena, objects, or materials by a recording device not in physical contact with the features 

under surveillance.” Khorram et al. (2012) go on to note that this definition consequently 

includes things such as medical technologies, like X-ray and magnetic resonance imaging (MRI). 

To narrow this definition down to an environmental context, Khorram et al. (2012) specify that 

remote sensing of the environment is specifically measuring levels of electromagnetic radiation 

that emanates from areas or objects on (or in) Earth’s surface, in its oceans, or in its atmosphere. 

Differences in the levels of electromagnetic radiation that is emanated from different surfaces 
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and objects allow different areas and objects to be discriminated from one another. This is the 

core concept of remote sensing in this context.  

 

1.2 UAS  

In recent years, UAS have proliferated significantly through geospatial sciences in a myriad 

of applications, including coastal geomorphology monitoring (Clark, 2017), invasive species 

mapping (Michez et al., 2016a), classification and health assessment of vegetation (Michez et al., 

2016b), and forest inventory (Puliti et al., 2015). These wide and varied uses are largely the 

result of the relatively low cost and simple operation of UAS platforms compared to other 

platforms that collect similar data, such as LiDAR and manned aircraft imagery. In addition, 

UAS are capable of capturing data at spatial and temporal scales that were previously impossible 

with established remote sensing methods. For example, Michez et al. (2016b) recently utilized 

high-resolution multi-temporal UAS imagery to classify and assess vegetation health in riparian 

forests with a high rate of success. The authors credit the ability of UAS methodology to capture 

events at very local scales and in finite time-frames as a major step forward in environmental 

science and ecology (Michez et al., 2016b). Similarly, Kuželka and Surový (2018) were able to 

use off-the-shelf consumer grade UAS to successfully create a 3D model of forest structure for 

use in sustainable forestry. This further confirms the versatility of UAS and speaks to the ever-

increasing accuracy of these tools. 

Several studies have sought to assess the spatial accuracy of UAS data in relation to more 

well-established techniques of describing Earth’s surface, such as differential global positioning 

systems (DGPS). Lucier and Harwin (2012) found that high degrees of accuracy could be 

achieved using georeferenced point clouds generated from UAS imagery. In their accuracy 



4 
 

 

assessments, the point cloud accuracy strayed from DGPS reference measurements by only 2.5-

4cm. Similarly, Clark (2017) used UAS imagery to assess coastal change on Prince Edward 

Island. The author used two types of UAS – fixed-wing and quadcopter – to generate digital 

elevation models of coastal erosion dynamics to compare their respective accuracies (Clark, 

2017). In reference to real-time kinematic (RTK) GPS coastal traces, they achieved average 

horizontal accuracies of 25cm for the fixed-wing UAS and 21cm for the quadcopter UAS, and 

average vertical accuracies of 11cm for the fixed-wing UAS and 2.24cm for the quadcopter 

UAS.  

 

1.3 Forested wetlands  

The term forested wetland covers a wide variety of ecosystems globally. However, in the 

context of this research, it will refer only to forested wetland communities in Nova Scotia. In 

general, forested wetlands are an understudied and undervalued ecosystem type that are often 

overlooked in the discourse of wetland conservation (Smith, et al. 2007). For example, in Nova 

Scotia’s Wetland Conservation Policy, the term forested wetland is only mentioned twice (The 

Government of Nova Scotia, 2011). Despite the scarcity of studies related to forested wetlands, 

they are believed to hold high conservation value relative to other types of forests in Nova Scotia 

(Brazner and Achenbach, n.d.; Harper et al., 2016). Forested wetlands are ubiquitous across 

Nova Scotia, but their distribution is not well characterized or well known. Based on Nova 

Scotia’s wetland inventories, Brazner and Achenbach (n.d.) estimate that forested wetlands make 

up at least 6% of Nova Scotia’s land cover – although this estimate is considered to be very 

conservative, as certain types of forested wetlands are severely under-represented in the 

inventories. 
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Forested wetlands hold high levels of biodiversity in both flora and fauna, and provide 

habitat for some at risk species, especially birds. Westwood (2016) found that three bird species 

at risk – the Canada Warbler, Rusty Blackbird, and Olive-sided Flycatcher – are known to nest in 

forested wetland ecosystems. In addition, forested wetlands provide many important ecosystem 

services, such as recreation and flood storage (Faulkner, 2004). In addition, their biogeochemical 

processes can retain and transform pollutants, which are effective means of enhancing water 

quality (Faulkner, 2004, cited in Faulkner 2004). 

 

1.4 Net primary productivity  

NPP is a measurement used to determine the production of biomass by vegetation. It is 

usually measured in grams of dry weight biomass per square meter per year (g/m2/year) 

produced both above and below ground less losses to respiration, herbivory, and mortality 

(Cronk and Fennessy, 2009; Scurlock and Olson, 2002). NPP is a widely used ecosystem 

variable that is generally more readily available than other biosphere-atmosphere carbon 

exchange metrics, such as gross primary productivity (GPP) and net ecosystem exchange (NEE; 

Scurlock and Olson, 2002). The importance of NPP is that it quantifies the availability of plant 

matter for consumer species (Scurlock and Olson, 2002). Due to its relevance to human interests, 

NPP studies began in the commercial goods sector, with the monitoring of agricultural and 

forestry products (Olson, 1964; cited in Scurlock and Olson, 2002). Since then, its use has 

expanded into a wide range of ecosystem monitoring and assessment applications.  
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1.5 Normalized difference vegetation index 

The normalized difference vegetation index (NDVI) is a vegetation index generally used as 

a proxy measurement for NPP and is calculated using the NIR and red bands of the sensor in use 

(Equation 1).  

 

Equation 1: Normalized Difference Vegetation Index 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

Adapted from GIS Geography (2018). What is NDVI (Normalized Difference Vegetation Index)? 

 

NDVI values range from -1 to 1, with negative values indicating unhealthy or senescent 

vegetation (or no vegetation), and higher values indicating dense healthy (green) vegetation. 

NDVI derived from satellite imagery has been used for over two decades to monitor and assess 

vegetation health at large scales (see Goward et al., 1985). Hobbs et al. (1995) used NDVI 

derived from the National Oceanographic and Atmospheric Administration's Advanced Very 

High-Resolution Radiometer satellite imagery set to assess vegetation production in Australia’s 

arid rangelands. From the results, the author determined that NDVI imagery can be used to 

assess vegetation patterns and productivity in arid regions and can help inform property 

managers on vegetation-related decisions (Hobbs, 1995). In another early study utilizing NDVI, 

Ricotta et al. (1999) set out to map and monitor NPP of vegetation using satellite-derived NDVI 

measurements. The authors compared three cumulative vegetation indices (the integral of NDVI 

(ΣNDVI), the vectorial representation of NDVI sequential observations in a multidimensional 

space (|NDVI|) and Fourier analysis (NDVIS) to determine if they were equivalent in terms of 

decision-making (Ricotta et al., 1999). All three indices resulted in the same set of decisions, 
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indicating that these cumulative indices are statistically equivalent for mapping and monitoring 

NPP (Ricotta et al., 1999). 

Despite the widespread use of NDVI, there are still some concerns with its applicability as a 

measurement of NPP. Xu et al. (2012) argued that there are significant differences in the spatial 

and temporal distribution of NPP measurements compared to NDVI measurements. To 

determine this, the authors used satellite imagery-derived NDVI measurements to compare with 

NPP field measurements. From the results, Xu et al. (2012) found that NDVI values were 

correlated with NPP measurements, but the spatial distribution of the two metrics varied to a 

significant degree. The authors concluded that NPP approximation using NDVI to assess 

vegetation health can be applicable in some cases, but it depends on the ecological context of the 

study (Xu et al., 2012). However, this position is held by the minority of researchers, and NDVI 

is still widely accepted as an approximation of NPP. For example, Goward et al. (1985) 

determined that NPP patterns matched those of NDVI measurements across North America 

based on the unique spectral characteristics of vegetation in the red and NIR spectrums. 

 

1.6 Land cover classification methods 

Classification of land cover types via remote sensing data is often accomplished through one 

of two main methodologies: supervised classification, and unsupervised classification. Both 

involve using computer learning algorithms that group the pixels of a raster layer into categories 

based on the similarity of their spectral signatures (Peacock, 2014). The key distinction between 

the two methods is that supervised classification involves user input prior to the algorithm being 

applied to the dataset, whereas unsupervised classification does not (Peacock, 2014). This input 

requires a priori knowledge of the land cover types in the study area. This knowledge is often in 
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the form of field data that are collected prior to the classification, usually referred to as “ground 

truth data”. These data are collected and recorded with known geographic locations, and thus can 

be identified in the dataset (G. Baker, personal communication, June 23rd, 2018). Once 

identified, these areas of known land cover are selected as “training polygons” for the algorithm. 

The algorithm then builds a signature file that is applied to the dataset. 

Peacock (2014) recently compared the accuracy of unsupervised and supervised land cover 

classification methods using LANDSAT imagery in Little Rock, Arkansas. The author used 

confusion matrices to assess the accuracy of the two methods and found that unsupervised 

classification led to generally higher classification success. This result contradicts the generally 

held conception that supervised classification is more accurate than unsupervised classification. 

However, flaws in training sites and the skill of the user may have played a factor in the result, as 

higher skill levels are generally required for proper supervised classification. When properly 

conducted, supervised classification can be more reliable and allows for more control over the 

grouping of pixels by the user. For example, Weih et al. (n.d.) found that supervised 

classification outperformed unsupervised classification in accuracy assessments, with an average 

accuracy of 64.1% for supervised classification versus 60.1% for unsupervised classification.  

 

 

CHAPTER 2: Methods 

2. Study area 

The study site was selected from a set of previously sampled forested wetland landscapes in 

Nova Scotia. Factors taken into account during the selection of the site include: 1) proximity to 

built-up areas and aerodromes, as Transport Canada regulations state that UAS operation under 
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the exemption from the Special Flight Operations Certificate must take place at least three 

nautical miles from any built-up area, and 5 nautical miles from any aerodrome; 2) site 

accessibility and; 3) amount of forest canopy cover, as ground control points (GCPs) must be 

placed in areas where they are visible from above. 

The study area is located near Musqoudoboit Harbour, Nova Scotia, in the Musquoudoboit 

River Valley. The Musquodboit River Valley runs through Colchester and Halifax Counties, 

extending approximately 56 km until its terminus at the Atlantic Ocean on the eastern shore of 

Nova Scotia (Lin, 1970). The site is bordered by Highway 357 to the west, and by the 

Musquodoboit River to the east (Figure 1). The land cover in the area is a mosaic of different 

habitat types, including treed bog, alder thicket, shoreline thicket, shoreline meadow, open bog, 

mixedwood upland forest, spruce-hemlock forest, spruce-pine forest, wet coniferous forest, and 

wet deciduous forest (The Nature Conservancy of Canada, 2016). The understory vegetation is 

comprised of a variety of moss species (largely Sphagnum species in wet areas); shrubs, such as 

lambkill (Kalmia angustifolia), false holly (Nemopanthus mucronatus), and speckled alder 

(Alnus incana); and ferns, including cinnamon fern (Osmundastrum cinnamomeum) and eastern 

bracken fern (Pteridium aquilinum).  

The site is a protected conservation area owned by the Nature Conservancy of Canada, and 

represents habitat for several species of concern, such as the Canada Warbler (Cardellina 

canadensis), and black-footed reindeer lichen (Cladonia stygia). Despite its protection, there is 

evidence of use by humans in the form of foot paths and all-terrain vehicle trails that criss-cross 

through the open areas of the bog. There is also an old logging road (now mostly overgrown) that 

runs approximately east-west from Highway 357 toward the Musquodoboit River. However, no 



10 
 

 

significant current anthropogenic uses have been identified (The Nature Conservancy of Canada, 

2016). The topography in the area is mostly smooth or flat, which is characteristic of inland  

bogs, marshes, and swamps in Nova Scotia, and is underlain mostly with organic soils (The 

Nature Conservancy of Canada, 2016).  

 

2.1 Ground control point placement 

GCPs are points on the ground with a known geographic location and are visible in the 

processed imagery (Clark, 2017). During processing, the coordinates of the GCPs are uploaded 

into the processing software, and each GCP is identified in the imagery and selected as a 

reference point. This georeferences the imagery by linking the known location of the GCP to the 

image. In this case, the GCPs were sheets of plywood painted with a checkerboard pattern. G. 

Baker (personal communication, June 22, 2018) noted that the checkerboard pattern is best as it 

allows the centre of the target to be better identified in the imagery than other patterns (e.g. 

bullseye pattern) if there is any kind of distortion (e.g. if the image is washed out, pixelated, 

etc.). Prior to any UAS flights, anticipated GCP locations were selected via visual assessment 

using the free software Google Earth. To ensure that each GCP appeared in a sufficient number 

of images, GCPs were placed in a “double-X” pattern, and spaced so that no GCP was greater 

than 6 times the distance of the shortest image edge from any adjacent GCP, and GCPs at the 

border of the study site were no more than 1.5 times the distance of the shortest image edge from 

the border of the study site. This rationale was developed through trial and error during previous 

studies carried out by technicians and researchers at the Maritime 
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Figure 1: Study area at Gates 1 Nature Preserve. The white shaded area represents the extent of 

the study area. 

 

Provinces Spatial Analysis Research Centre (MP_SpARC; G. Baker, personal 

communication, June 22, 2018). In this case, the shortest edge of any image collected was 35m 

ground distance at a flying height of 90m (G. Baker, personal communication, June 22, 2018). 

Thus, each anticipated GCP location was selected such that they would be no more than 

approximately 210m (6 x 35m = 210m) from any adjacent GCP, and that GCPs at the border of 

the site were no greater than approximately 52.5m (1.5 x 35m = 52.5m) from the edge of the 

study site. 
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The coordinates of the anticipated GCP locations were inputted into a Garmin GPSMAP 64s 

handheld GPS (+/- 5m) for use in the field. The high amount of canopy cover and topographical 

variation within the study site required some adjustment of the location of the GCPs from the 

anticipated locations that were selected (Figure 2). For example, there may not have been a 

sufficient break in the forest canopy at the anticipated location, and thus it was required that the 

GCP be shifted to a nearby area with a canopy break. In addition, there was one significant 

change in elevation within the study site (a sharply rising hill/outcropping near the middle of the 

site), and thus a GCP was required at that location to capture all the topographical variation. As 

the GCPs were placed, the absolute location of the centre of each GCP was surveyed using a 

Leica GS-14 GNSS RTK Rover at sub-centimetre accuracy. 

 

2.2 Ground truth plot point generation 

In order to quantify land cover types, ground truth plots were distributed throughout the 

study site. To capture the variability in land cover within the study site and to avoid any potential 

bias in the selection of ground truth plots (e.g. selecting areas with greater ease of access over 

other harder to access areas), a systematic grid of points was generated using the Create Fishnet 

tool in ArcMap 10.6 GIS software. The study site was broken up into two polygons and the 

following process was repeated for each polygon. First, a polygon of the study site was uploaded 

into the ArcMap project and selected as the output feature class for the fishnet. The size of the 

fishnet grid was then selected as 5x5, and all other settings were left as default. Once the fishnet 

was generated, the Clip (Data Management) tool was used to eliminate all generated points that 

did not fall within the study area polygons. Due to the orientation of the polygons (i.e. not 

positioned perfectly north-south), the points were distributed on an angle. This process resulted 
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in the generation of 14 points in the first polygon, and 13 points in the second polygon for a total 

of 27 ground truth data collection points (Figure 3). The coordinates of each point were then 

inputted into a Garmin GPSMAP 64s handheld GPS (+/-5m) for use in the field. 

 

 

Figure 2: Ground control points at Gates 1 Nature Preserve. Green points represent the location 

of ground control points. 



14 
 

 

 

Figure 3: Ground truth plots at Gates 1 Nature Preserve. Red dots represent training polygon 

locations at the study site. 

 

2.2.1 Ground truth plot and sampling design 

The ground truth protocol was carried out at each of the ground truth plots. The chosen 

ground truth data collection method was adapted from Brazner and Achenbach (n.d.). The 

protocol is largely based upon the Forest Ecosystem Classification guide for Nova Scotia, and 

the Canadian Wetland Classification System, with some modifications by Brazner and 

Achenbach (n.d.) to better reflect field observations of forested wetlands and to avoid 

misclassification due to overly broad vegetation categories (Brazner and Achenbach, n.d.). 
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As discussed in Brazner and Achenbach (n.d.), there are generally 4 types of forested 

wetland ecosystems as classified under the CWCS found in Nova Scotia – wooded bogs, wooded 

fens, wooded swamps, and shrub swamps. However, given the close similarity in vegetation 

structure between wooded bogs and wooded fens, Brazner and Achenbach deemed it 

unnecessary to distinguish between them and grouped these two types into one category as 

peatlands. Thus, Brazner and Achenbach (n.d.) used three main classes of forested wetlands in 

their study: 1) treed swamps; 2) shrub swamps and; 3) peatlands. For the present research, in 

addition to the wetland classes described by Brazner and Achenbach (n.d.), any area that was 

clearly not a wetland area (i.e. had unsaturated soil, 0cm peat depth) was classified simply as 

forested upland. Table 1 below shows the criteria for each land cover class. 

 

Table 1: Land cover class criteria. 

Class Criteria 

Peatland 
<30% cover in tree layer and >40cm peat 

depth 

Shrubbed swamp 
>30% cover in high shrub layer and <30% 

cover in tree layer 

Treed swamp >=30% cover in tree layer 

Treed upland 
Any forested area with 0cm peat depth and 

relatively dry soil (i.e. unsaturated) 

 

The first step of the protocol outlined in Brazner and Achenbach (n.d.) consists of 

delineating a circular plot with a 30m radius from a central point and completing a rapid visual 

survey of the area to estimate the cover of six distinct vegetation strata: 1) moss layer; 2) fern 
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layer; 3) herbaceous layer; 4) low shrub layer (woody vegetation <2m in height); 5) high shrub 

layer (woody vegetation 2-7m in height) and; 6) tree layer (woody vegetation >7m in height). 

Due to time constraints for this project and the relatively large amount of points that were to be 

sampled (in contrast, Brazner and Achenbach (n.d.) only sampled one point per wetland), the 

radius of the plot was reduced to 15m. The second step of the protocol was to dig a soil pit and 

measure peat depth to determine if the area is considered a peatland. Each of these steps was 

carried out at each of the 27 ground truth points. 

 

2.2.2 Training polygon delineation 

Once the ground truth data had been collected, training polygons to be used in the 

supervised classification were delineated within each of the 15m radius plots. To do this, a 5x5m 

square was created by taking four compass bearings at 0o, 90o, 180o, and 270o, measuring 2.5m 

from the centre of the ground truth plot in each of the four directions, and placing a survey flag. 

These flags served as the vertices for the training polygon, and the location of each vertex was 

recorded using a Leica GS-14 GNSS RTK Rover. Some areas selected for ground truth data 

collection had higher land cover variability than others, and so multiple polygons were surveyed 

within the 15m radius plot at some of the points to better capture the land cover characteristics at 

these points.  

 

2.3 UAS imagery capture 

Aerial imagery was captured using a DJI Phantom 4 Pro off-the shelf, consumer grade 

quadcopter. The full system consisted of the quadcopter, imagery payload, and two-way link 

controller. The relevant imagery payload equipped to the quadcopter consisted of a 1.2-
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megapixel Sentera Single-NDVI sensor mounted on a fixed nadir gimbal. The Sentera sensor 

captures imagery at two very specific bands in the electromagnetic spectrum: the red band at 

625nm centre wavelength with a 100nm bandwidth, and the near-infrared (NIR) at 850nm centre 

wavelength with a 40nm bandwidth (Sentera, 2017). This imagery is then converted into NDVI 

imagery in post-processing. 

Pix4D Capture – a free UAS flight mapping software that can be downloaded onto any 

smartphone operating on Android or iOS – was used to map flight plans prior to flights and 

autonomously control the UAS during flights. Fraser and Congalton (2018) found that a flying 

height of 100m above the canopy was ideal for forested environments. However, due to 

restrictions on flying height for pilots operating under the exemption from the Special Flight 

Operations Certificate, the flying height was set to 90m. Conversely, lower flying heights would 

result in higher battery usage and lower image alignment success (Fraser and Congalton, 2018). 

Image overlap for the Sentera Single-NDVI sensor had to be set manually through the firmware 

installed on the SD card that is inserted into the sensor. Various options for image overlap 

settings exist within the firmware, such as GPS Distance trigger, GPS Time trigger, and GPS 

Overlap trigger (Sentera, 2017). Given that the GPS onboard the sensor only has an accuracy of 

+/- 5m, the GPS Time trigger option was selected in an effort to maintain the greatest possible 

accuracy of image capture during the flights. To achieve 80% overlap for proper orthomosaic 

stitching, the maximum speed of the quadcopter during its grid-pattern flights and the image 

ground footprint size of the Sentera Single-NDVI sensor were identified. In this case, the 

maximum speed of the quadcopter during the grid-pattern flights at 90m flying height was 

approximately 5m/s, and the image ground footprint of the sensor was 104x35 m at a flying 
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height of 90m. Therefore, to attain 80% overlap, the amount of time between each shutter trigger 

was set to 1.4 s. 

One set of two flights was completed on July 13th, 2018, and the second was completed on 

August 24th, 2018. Calibration images were captured before and after each flight using an 

Airinov radiometric calibration target. This calibration process allows for images from different 

flights, days, and sites to be comparable to one another, which is especially important for multi-

spectral imagery (G. Baker, personal communication June 26, 2018). Reflectance values of the 

Airinov radiometric calibration target for the bandwidths at which the Sentera Single NDVI 

sensor. Prior to going into the field, an Ocean Optics USB 2000 spectrometer was used to 

measure the reflectance values of the target across a wide range of the electromagnetic spectrum. 

From these results, the reflectance values were identified for the bandwidths of the Sentera 

Single NDVI sensor.  

 

2.4 Image pre-processing  

The imagery was uploaded into the Pix4D Mapper Pro imagery processing software suite to 

undergo orthomosaic stitching via a Structure-from-Motion Multi-View Stereopsis (SfM-MVS) 

workflow. SfM-MVS is a workflow technique to derive georeferenced densified 3D point clouds 

from 2D imagery. It is distinct from typical photogrammetry – the science of deriving reliable 

spatial measurements from aerial imagery (Khorram et al., 2012) – in that many of its aspects 

stem from advances in 3D computer vision algorithms, rather than advances in photogrammetry 

itself (Smith et al., 2016). Another key distinction between SfM-MVS and traditional 

photogrammetry is that much of the SfM-MVS workflow is automated, including the 

computation of the camera orientation and position, and internal camera geometry, which 
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requires manual inputs from the user in traditional photogrammetry techniques (Micheletti et al., 

2015). However, it should be noted that many photogrammetric philosophies and methods are 

embedded in SfM-MVS workflows (Micheletti et al., 2015). A wide variety of means of 

achieving the end goal of SfM-MVS exist, although the general concept remains constant across 

all methods. At the core, multiple views of an object are captured using a digital camera from 

multiple positions (Micheletti et al., 2015). Common features in the images are then identified by 

computer algorithms in sufficient detail to define their spatial relationships in an arbitrary 3D 

coordinate system (Micheletti et al., 2015). From these spatial relationships, a sparse 3D point 

cloud is created. The sparse point cloud is then densified using MVS techniques. 

Since NDVI is a time dependent index, the following process was carried out for both sets of 

imagery from flight days 1 and 2 separately. Steps 1 and 2 of the Pix4D Mapper Pro processing 

workflow were run to generate key points and point clouds. The GCP coordinates were then 

entered in the GCP/MTP Manager, and the GCP coordinates were manually confirmed using the 

GCP Editor. Next, the final processing step was run to densify the point cloud and generate the 

initial orthomosaic and digital surface models.  

Once the initial orthomosaics and digital surface models were generated, the Index 

Calculator in Pix4D Mapper Pro was used to generate reflectance maps. Reflectance values 

(expressed in values between 0 and 1 to represent percentages from 0% to 100%) for the red 

band and the NIR band were entered into the calculator and the final processing step was re-run 

to generate the reflectance maps.  
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2.5 Image post-processing  

The completed reflectance maps were uploaded into ArcMap 10.6 to generate NDVI maps. 

The Sentera Single NDVI sensor is a modified RGB sensor which results in some “bleed-over” 

between the red and NIR channels (Sentera, 2017). Thus, a raster calculation was performed to 

isolate the red and NIR bands, compensate for unequal irradiance between the red and NIR 

bands, and compute NDVI values. Equation 2 is a reduction of several formulas that accomplish 

these tasks (see Sentera, 2017).  

 

Equation 2: Calculating NDVI from original pixel digital number 

𝑁𝐷𝑉𝐼 =
(1.236 × 𝐷𝑁𝑐ℎ3)− (0.188 × 𝐷𝑁𝑐ℎ1)

(1 × 𝐷𝑁𝑐ℎ3) + (0.044 × 𝐷𝑁𝑐ℎ1)
 

Adapted from: Sentera. (2017). False color to NDVI conversion: precision NDVI single sensor. 

Technical document received via email. 

 

The calculation was input into the Raster Calculator tool in ArcMap10.6 with the reflectance 

maps as the raster input. 

 

2.5.1 Image classification 

To perform the land cover classification, the training polygon vertex coordinates were 

uploaded into ArcMap 10.6 and the Image Classification toolbar was enabled. The NDVI rasters 

for flight days 1 and 2 were also uploaded. Once again, these steps were performed separately for 

flight days 1 and 2. The raster was selected in the toolbar as the subject of analysis, and polygons 

were drawn using the training polygon vertex points as reference. The polygons were then 

merged into their corresponding classes based on the ground truth data (peatland, shrubbed 
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swamp, treed swamp, or treed upland). Polygons were also drawn over the known non-

consequential land cover types – open water and the small amount of paved road in the western 

part of the day 1 map – to account for all types of cover in the scene. Approximately half of the 

polygons were used as training data to generate the signature file, while the other half were saved 

for testing data for the accuracy assessment. The signature file was generated using the training 

data, and the Maximum Likelihood Classification tool was run using the NDVI raster as the input 

to generate the land cover classification raster. The maximum likelihood algorithm functions by 

assuming a normal distribution among the pixel values in each band. It then compares the pixel 

values of the classes within the signature file with those of the unclassified pixels in the dataset, 

and groups them based on the means and covariances of the unclassified pixels (ESRI, 2018). 

 

2.5.2 Image classification accuracy assessment 

To assess the accuracy of the classification system, the imagery underwent a series of steps 

to generate quantitative values of accuracy. The Create Accuracy Assessment Points tool 

generates random points within a feature and creates a table with two columns – 

GROUND_TRUTH and CLASSIFIED – which are populated with the corresponding class 

values of the generated points. The user may select this first step to be either ground truth data or 

classified data. In this case, the ground truth points were created first so that the classified points 

would be generated within the test site polygons, rather than distributed throughout the entire 

study area. The tool was run with the test data polygons as the input to populate the 

GROUND_TRUTH field of the table. The number of points was set to 1600, and the sampling 

strategy was selected as equalized stratified random so that the same number of points would be 

generated within each class. Next, the Update Accuracy Assessment Points tool was run using 
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the generalized classified raster as the input raster and the output of the Create Accuracy 

Assessment Points tool as the input table. With both fields populated, the final table was used as 

the input for the Compute Confusion Matrix tool and a confusion matrix was generated. 

 

2.5.3 Imagery generalization 

To improve the visual appearance of the NDVI maps after the accuracy assessment, the 

following series of steps were undertaken to filter, smooth, and generalize the imagery: 1) the 

Majority Filter tool was run to remove single isolated pixels; 2) the Boundary Clean tool was run 

to clump regions and smooth ragged edges; 3) the Region Group tool was run to assign unique 

values to each region in the image with a lower threshold of 300 pixels selected to identify 

unnecessary small areas; 4) a mask was created to remove these small areas using the Set Null 

tool to set the small areas of <= 300 pixels to a null pixel value; and 5) the Nibble tool was run 

on the land cover classification raster with the mask raster from the previous step as the input 

mask raster to dissolve the small regions from the image. 

 

2.5.4 NDVI value assessment 

The secondary objective for this project was to assess the NDVI values (i.e. productivity) 

within each class. To accomplish this, the completed classification raster was transformed into a 

polygon using the Raster to Polygon tool in ArcMap. The Create multipart features box was 

checked to ensure that only a single multipart polygon was created for each class, rather than 

several small polygons representing each region of classified pixels. Each of these multipart 

polygons was then exported to its own feature class. The road and water classes were left out of 

this process because the NDVI values of these classes were irrelevant. These separated polygons 
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were then used as the inputs for the zonal data in the Zonal Statistics tool which was run on each 

class. The original pre-classification NDVI raster was used as the input value raster, and the zone 

field was selected as the object ID of the polygon.  

 

 

CHAPTER 3: Results 

3. Results 

The ground truth surveys yielded some initial insight into the proportion of land cover at the 

site. Based on the classification scheme adapted from Brazner and Achenbach (n.d.), the most 

abundant land cover surveyed was the shrubbed swamp class, which accounted for 

approximately 44% of the surveyed plots. The next most abundant land cover classes were 

peatland (30%) and treed swamp (22%). Treed upland accounted for the least amount of land 

cover, with only approximately 4%. These proportions were in congruence with general field 

observations during sampling. 

Overall, the quality reports generated by Pix4D Mapper Pro indicated that the orthomosaic 

generation was successful with a sufficient number of overlapping images for flight days 1 and 2 

(Figure 4). However, 2D key point matches between individual images were low in many areas 

for flight days 1 and 2 (Figure 5). Generally, these low match areas corresponded to areas of 

denser forest cover. Ground cell distance (i.e. resolution) was reported to be 7.90cm for flight 

day 1, and 8.05cm for flight day 2. 
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(a) 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

Figure 4: Number of overlapping images computed for each pixel of the orthomosaic for flight 

day 1 (a) and flight day 2 (b). Red and yellow areas indicate low overlap for which poor results 

may be generated. Green areas indicate an overlap of over 5 images for every pixel.  
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(a) 

 

(b) 

 

Figure 5: Computed image positions with links between matched images for flight day 1 (a) and 

flight day 2 (b). Dark areas indicate a high number of links between images, and bright areas 

indicate low numbers of links between images. 
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The initial NDVI maps (Figure 6) showed NDVI values that extended beyond the range of 

the scale (max of 1.07 and min of -4.27 for day 1, and a min of -4.27 for day 2). Upon closer 

examination of the data, there were virtually no pixels with these erroneous values present in the 

image and were thus deemed outliers due to processing error. Visually, the NDVI values 

appeared very similar across the study area (i.e. monochromatic), which was backed up by the 

NDVI value assessment. The mean NDVI values from day 1 were fairly similar between classes, 

ranging from 0.76 in the shrubbed swamp class, to 0.82 in the treed swamp class (Figure 7). The 

mean NDVI values from day 2 were also quite similar, ranging from 0.79 in the peatland class to 

0.84 in the treed upland class (Figure 7).  

The classification map of flight day 1 (Figure 8) indicates the dominance of the treed swamp 

class (dark green), with smaller areas of peatland (brown) and shrubbed swamp (light green) in 

the first half of the site. The small amounts of paved road and open water in the imagery appear 

to be confused by the classification algorithm. The classification map of flight day 2 (Figure 8) 

indicates the dominance of the peatland and treed upland class throughout the other half of the 

site, with some treed swamp and virtually no shrubbed swamp present. The water in the day two 

map is correctly classified, aside from distortion in the far right of the image, likely due to 

warping and stretching during the Pix4D processing stage. 
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(a) 

 

(b) 

 

Figure 6: NDVI values from flight day 1 (a) and flight day 2 (b) at 

Gates 1 Nature Preserve. 
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(a) 

 

(b) 

 

Figure 7: Mean NDVI values from flight day 1 (a) and flight day 2 (b) with 

standard deviation. 
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(a) 

 

(b) 

 

Figure 8: Classification of ecosystems from flight day 1 (a) and flight 

day 2 (b) at Gates 1 Nature Preserve. 
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Confusion matrices are a means of assessing the accuracy of a supervised classification. 

They examine if a given pixel was correctly classified based on a predicted result, and provide a 

percentage of success of the classification, known as the kappa coefficient. In the matrix, rows 

represent user accuracy, while the columns represent producer accuracy. User accuracy is a 

measure of error by commission – otherwise described as a false positive. These false positives 

are pixels that are classified as one class, while they should have been classified as another based 

on the classification scheme. It indicates the probability of the pixel representing the actual land 

cover (Jensen, 2005). Producer accuracy is a measure of error by omission, or false negatives. It 

indicates how accurately reference pixels were classified (Jensen, 2005). The kappa coefficient 

measures how well the classified map matches the ground truth data (Jensen, 2005). It takes into 

account both chance success and overall accuracy. 

The confusion matrix for flight day 1 (Table 2) indicates user accuracies between 0.13 

(shrubbed swamp class) and 0.90 (road class), and producer accuracies between 0.076875 

(shrubbed swamp class) and 0.96 (water class). The confusion matrix for flight day 2 (Table 3) 

indicates user accuracies between 0.27 (shrubbed swamp class) and 0.99 (water class), and 

producer accuracies between 0.14 (shrubbed swamp class) and 1 (water class). 
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Table 2: Confusion matrix for flight day 1. 

Class Peatland Shrubbed 

swamp 

Treed 

swamp 

Road Water Total User 

Accuracy 

Kappa 

Peatland 684 471 519 0 0 1674 0.41 0 

Shrubbed 

swamp 

577 123 223 27 8 958 0.13 0 

Treed swamp 293 990 856 0 0 2139 0.40 0 

Road 10 3 1 666 58 738 0.90 0 

Water 36 13 1 907 1534 2491 0.62 0 

Total 1600 1600 1600 1600 1600 8000 0.00 0 

Producer 

Accuracy 

0.43 0.08 0.54 0.42 0.96 0.00 0.48 0.00 

Kappa 0 0 0 0 0 0 0.00 0.35 
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Table 3: Confusion matrix for flight day 2. 

Class Peatland Shrubbed 

swamp 

Treed 

swamp 

Treed 

upland 

Water Total User 

Accuracy 

Kappa 

Peatland 1102 226 55 15 0 1398 0.79 0 

Shrubbed 

swamp 

336 216 223 29 0 804 0.27 0 

Treed swamp 152 474 640 193 0 1459 0.44 0 

Treed upland 0 684 682 1363 0 2729 0.50 0 

Water 10 0 0 0 1600 1610 0.99 0 

Total 1600 1600 1600 1600 1600 8000 0.00 0 

Producer 

Accuracy 

0.69 0.14 0.40 0.85 1.00 0.00 0.62 0.00 

Kappa 0 0 0 0 0 0 0.00 0.52 

 

 

CHAPTER 4: Discussion and recommendations 

4. Image classification 

The classification was far less than satisfactory. The Kappa values of 0.35 and 0.52 for flight 

days 1 and 2, respectively, are well below the desired accuracy (0.9+). Even when simply 

visually examining the classified imagery, there are evident errors. Based on field observations 

and ground truth data, there was far more of the shrubbed swamp class than any other class 

present at the site. However, almost no pixels of this class value appear in the imagery from 

either flight day. In addition, both the user and producer accuracy in the confusion matrices 
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indicate that the shrubbed swamp class was a large source of error. The producer and user 

accuracies for the treed swamp class are also low, which indicates that these two classes are 

likely being confused for one another during the classification, leading to false land cover 

information. Field observations also indicated that these two classes often shared plant species 

and were sometimes very similar in structural make-up. In addition, the ground truthing protocol 

that was employed relied almost solely on subjective assessments of vegetation cover, which 

could have led to misclassification on the ground, further confounding the imagery classification.  

Training polygon delineation was also potentially problematic for pixel-based classification 

methods. To ensure proper signature file generation, training polygons should be comprised of 

homogenous cover across their extent (G. Baker, personal communication, June 22, 2018). 

During sampling, it was not ensured that the cover contained within the vertexes of the polygon 

was homogenous, but simply that the polygon was within a zone of known cover. The polygons 

were within an area of a known land cover class based on the ground truth protocol (e.g. 

shrubbed swamp), but at times contained several different plant species and other aspects of 

ground cover – both within the same polygon (e.g. a polygon with both maple and alder), and 

between different classes of polygons (e.g. a polygon with all maple trees within it was classified 

as a shrubbed swamp, and a polygon with all alder individuals was also classified as a shrubbed 

swamp). If more ground truth samples had been taken to account for this variation within and 

between polygons, errors might have been minimized. However, with only a small sample of 

ground cover, these errors were amplified.  

The similarity in NDVI values in the maps used for the classification likely also contributed 

to the poor performance of the classification. The Maximum Likelihood Classification algorithm 

operates based on differences in pixel values of each band in the image. If the distribution of 
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digital numbers within a band does not fit the assumed normal distribution, the algorithm places 

these pixels into different classes (ESRI, 2018). Thus, if the digital numbers of the bands are 

very similar (as they are in this case), the algorithm may not properly assign each pixel.  

 

4.1 NDVI value assessment 

NDVI values were similar across all classes from both flight days, with a range of 

approximately 0.08. This is peculiar, as it was expected that the open area of the peatland would 

have much lower productivity than the forested areas of the wetland. While this could be a 

significant result (i.e. productivity does not greatly differ between forested and unforested 

wetlands), the poor quality of the classification suggests that these values may not hold much 

meaning. This may be due to issues with the equipment used, and the pre- and post-processing 

techniques employed during the study. The sensor employed for this study was not designed for 

use with the Pix4D Mapper Pro software suite, and consequently required some “Jerry-rigging” 

to derive a functional workflow. Particularly, the raster transformation formula provided by 

Sentera may not have accounted for the calibration that takes place during the Pix4D Mapper Pro 

reflectance map generation process. Since the calibration was applied before the raster 

transformation formula, the NDVI values may be erroneous. In addition, SfM-MVS techniques 

are not well-suited to the forested landscape, as the structure of a forest canopy is too complex to 

construct an accurate orthomosaic from aerial imagery (G. Baker, personal communication, June 

22nd, 2018). The complexity across the surface of the tree canopy makes it difficult for the 

software to compute enough unique key points to create a high-quality image.  

Mean NDVI values were also much higher than expected. Generally, high NDVI values 

(0.6-0.8) are seen in areas of highly productive vegetation, such as tropical rainforest (NASA, 
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2000). The mean NDVI values found during this study (approximately 0.75-0.83) do not align 

with the expected values for a temperate bog ecosystem with moderate productivity. White et al. 

(2016) found NDVI values in wetlands in Australia ranging between 0.11 and 0.8. This indicates 

that there are possible issues with some part of the NDVI calculations in the workflow of this 

study. However, NDVI is a highly time-dependant variable that can change greatly over the 

course of a few days or weeks (C. Ross, personal communication, February 25, 2019), and at the 

height of the growing season it is not unlikely for a highly productive wetland to display these 

values. More imagery from different sites is required to determine if these NDVI values are truly 

erroneous. 

 

4.2 UAS effectiveness in forested wetland landscapes 

Based on the results produced during this study, this particular methodology was not 

effective in classifying this specific forested wetland landscape. Overall, the orthomosaic 

generation was successful. However, areas of dense forest cover appeared to reduce the quality 

of the orthomosaic, indicated by the low number of 2D key point matches. The complex nature 

of forest canopy structure tends to make SfM-MVS-based orthomosaic stitching challenging (G. 

Baker, personal communication, June 26th, 2018). Fraser and Congalton (2018) recently 

investigated aspects of UAS data collection in forested landscapes that contribute to spatial 

accuracy and output quality. In the data collection stage, the authors tested three different heights 

for UAS flights above the forest canopy: 50m; 100m; and 120m (Fraser and Congalton, 2018). In 

the processing stage, two software suites were tested for output quality and accuracy: Pix4D 

Mapper Pro; and Agisoft Photoscan. The results showed that the 100m flying height led to 

improved photo alignment success, higher average number of tie points per image, and ideal 
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planimetric model ground sampling distance compared to other flying heights (Fraser and 

Congalton, 2018). In addition, Agisoft Photoscan was found to be superior in its output quality to 

that of Pix4D Mapper Pro with 11.8% greater image alignment success and a 9.91% finer 

planimetric model resolution (Fraser and Congalton, 2018). Based on these findings, future 

attempts to classify forested wetlands could benefit from a higher flight height and the use of 

Agisoft Photoscan, instead of Pix4D Mapper Pro. However, for the present study, Pix4D Mapper 

Pro was the only photogrammetry software available for use, and flying height was restricted by 

Transport Canada regulations surrounding UAS use.  

Further, overall classification performance was poor, and various technical issues added up 

to a less-than-efficient workflow. NDVI values were successfully assessed across the various 

classes of land cover, although the high level of confusion across classes indicates that these 

values are essentially meaningless. In terms of comparable studies, there are very few examples 

of remote sensing being applied in forested wetlands, and fewer examples of UAS use – possibly 

due to the complex structure and ephemeral nature of forested wetlands. However, some relevant 

instances exist. Wang (2018) recently used UAS imagery in conjunction with historical air 

photographs and point pattern analysis to determine the extent of tree encroachment in bogs in 

Nova Scotia. While the focus of the study was not UAS imagery, the author employed UAS in a 

novel approach to analyzing forested wetland communities (Wang, 2018). In addition, there are 

some relevant examples of UAS use in drier forested environments that have led to some 

success. Dandois and Ellis (2013) used UAS to map and assess forest canopy structure and 

spectral dynamics in 3D. The authors carried out a study that employed off-the-shelf UAS 

equipped with a standard digital camera to collect data on forest structure and spectral attributes. 

The goal of the research was to develop a methodology that could assess forest canopy dynamics 
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over the course of a growing season (Dandois and Ellis, 2013). This required repeated flights 

over the study area to collect the temporal dynamics of both the canopy height and canopy 

spectral characteristics. The results showed that UAS imagery measurements were highly 

correlated with satellite NDVI measurements (R2 = 0.87), demonstrating strong evidence that 

this novel methodology can capture vegetation structural and spectral phenological dynamics at 

the spatial scale of individual trees, which was an important breakthrough in terms of forest 

ecology (Dandois and Ellis, 2013).  

Separate from UAS-based approaches, satellite-based remote sensing has also been applied 

to forested wetlands. Townsend and Walsh (2001) utilized multispectral and multitemporal 

satellite imagery to determine plant community structure and composition in forested wetlands in 

the southeastern USA. The authors developed a hierarchal classification scheme using imagery 

collected by the Landsat Thematic Mapper in different parts of the growing season (March-April, 

May-June, and July-August) so as to take advantage of phenological differences in forest 

community structure (Townsend and Walsh, 2001). Interestingly, the study employed an 

unsupervised ISODATA classification approach to iteratively classify different land covers as 

opposed to supervised classification methods, which are more widely used. The process began at 

the broad scale, and eventually narrowed the classification down to the single-species level 

(Townsend and Walsh, 2001). The result was a highly accurate classification method for forested 

wetlands backed up by field surveys. Townsend and Walsh (2001) provide a novel means of 

classifying forested landscapes through unsupervised classification, which seems to go against 

the grain of most ecological classification studies that employ supervised classification methods. 

 

 



38 
 

 

4.3 Recommendations for future direction 

For future attempts to use UAS in forested wetlands, there are several recommendations for 

increasing success. One large source of error during the supervised classification was the 

similarity between the shrubbed and treed areas (both wetland and upland) in terms of their 

spectral signatures. Pixel-based classification methods rely solely upon the differentiation 

between these spectral signatures. Therefore, these methods are much better suited to areas with 

greater homogeneity within land cover types, and greater differentiation between land 

cover types. Furthermore, pixel-based methods may be better applied to large-scale imagery 

(e.g. air photos and satellite imagery) of forested wetlands with lower resolutions. While high-

resolution imagery is generally desirable as it provides greater levels of detail, at lower 

resolutions, land covers will appear generally more homogenous across their extents, leading to 

better differentiation between classes. In addition, pixel-based methods do not take into account 

textures, shapes, or heights of objects within the study area. Thus, much of the nuance that is 

present in high-resolution imagery is not utilized to its full extent (e.g. canopy crowns of trees). 

Other types of image classifications exist that may be better suited to high-resolution remotely-

sensed imagery of forested wetlands, such as object-based image analysis (OBIA) techniques. In 

general, pixel-based classification methods highlight noise, create a salt-and-pepper effect, and 

ignore important topological and contextual information in imagery (Pande-Chhetri et al., 2017). 

In contrast, OBIA methods use shapes in conjunction with spectral characteristics to classify 

imagery, which takes into account many of these aspects in addition to spectral information. 

Pande-Chhetri et al. (2017) recently compared OBIA classification techniques to pixel-based 

methods for classifying freshwater wetlands in Florida, USA, using high-resolution (8cm) UAS 

imagery. To achieve optimal performance in the classification, the authors also compared three 
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separate classification algorithms applied to each classification method (OBIA and pixel-based): 

1) support vector machine; 2) artificial neural network; and 3) maximum likelihood (Pande-

Chhetri et al., 2017). From the results, it was determined that OBIA methodologies using the 

support vector machine algorithm outperformed other algorithms within the OBIA methods, and 

all pixel-based methods with an overall accuracy of 70.8%. This study indicates that OBIA 

methods may greatly improve the performance of the classification of forested wetlands. 

Future attempts would also likely benefit from a multivariate analysis approach that 

incorporated canopy heights into the classification. Much of the confusion between classes 

resulted from similarities in spectral signatures. Thus, it can be concluded that vegetation in this 

particular location had similar productivity (i.e. NDVI values; assuming NDVI values are 

correct) across classes; however, field observations indicate that vegetation in the shrubbed 

swamp and treed swamp classes was much taller than in the open peatland areas. Therefore, if 

the vegetation height had been included as part of the classification, classes could have been 

distinguished more reliably.  

The ground truth protocol may have also been a source of error, resulting in flaws in the 

classification. The protocol was designed based on subjective assessments of vegetation ground 

cover in various strata which added up to an ecosystem description (e.g. peatland, shrubbed 

swamp, treed swamp). This likely resulted in high variability of spectral signatures within classes 

and high similarity between classes, contributing to the poor performance of the classification. 

Supervised classification methods often make use of vegetation species-based ground sampling 

to delineate homogenous areas or groups of single species, as opposed to the general land cover-

based approach used in this study. In this case, a species-based ground sampling approach would 

not have been practical. High species diversity at the site would have made it extremely 
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impractical given the time-frame allotted, and thus the general land cover-based approach made 

the most sense for this project. However, to increase the performance of the classification, a 

more rigorous and quantitative approach to land cover ground sampling is recommended for 

future attempts. For example, the Forest Ecosystem Classification (FEC) system that was 

developed for Nova Scotia uses a much more robust system of classifying ecosystem types based 

on a variety of aspects, including soil type, vegetation cover type, and moisture level (Neily et 

al., 2011). This system or an adaptation of this system may be better suited to this type of project. 

 

4.4 Conclusion 

Overall, this project was unsuccessful in achieving its objectives of classifying a forested 

wetland landscape and assessing productivity within it. However, the general concept of 

classifying forested wetlands through remote sensing is sound and could help to improve 

forested wetland inventorying and mapping. Having a good understanding of the spatial 

distribution of sensitive ecosystems is crucial in management and conservation decision-making. 

Without accurate maps and inventories, these ecosystems may suffer due to anthropogenic 

impacts, such as logging and development. Thus, improving our understanding of forested 

wetlands through remote sensing methods could help conserve and maintain important habitat 

and ecosystem services. 
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APPENDIX 

Site: Musq. Date: 08/08/2018 - 09/08/2018   
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Peat dpth Result: 

1 80 0 20 70 1 0 40+ Peatland 

2 80 0 10 70 20 1 40+ Peatland 

3 100 0 20 60 30 20 29 Shrubbed swamp 

4 100 60 30 50 50 10 35 Shrubbed swamp 

5 100 20 40 40 50 20 40+ Shrubbed swamp 

6 80 0 20 70 1 0 40+ Peatland 

7 80 0 20 70 40 10 40+ Shrubbed swamp 

8 70 10 20 80 30 5 40+ Shrubbed swamp 

9 70 0 10 70 50 20 24 Shrubbed swamp 

10 80 0 10 70 20 5 40+ Peatland 

11 60 30 10 40 10 40 22 Treed swamp 

12 100 0 10 40 30 30 40+ Treed swamp 

13 100 50 20 10 60 40 40+ Treed swamp 

14 100 90 10 5 10 30 40+ Treed swamp 

15 80 0 5 50 0 0 40+ Peatland 

16 80 0 5 50 0 0 40+ Peatland 

17 80 0 5 70 40 10 40+ Shrubbed swamp 

18 80 0 5 50 0 0 40+ Peatland 
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19 90 0 5 50 0 0 40+ Peatland 

20 100 60 30 30 20 40 35 Treed swamp 

21 90 60 20 30 30 50 20 Treed swamp 

22 100 0 5 70 40 20 40+ Shrubbed swamp 

23 100 0 0 5 5 50 0 Treed upland 

24 100 40 5 5 30 10 40+ Shrubbed swamp 

25 90 5 10 60 40 5 40+ Shrubbed swamp 

26 100 70 10 10 60 10 40+ Shrubbed swamp 

27 90 80 5 10 40 10 40+ Shrubbed swamp 

 

Figure A 1: Ground truth plot vegetation data. 
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(a) 

 

(b) 

 

Figure A 2: Pix4D Mapper Pro quality report summary for flight day 1 (a) and flight day 2 (b). 
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(a) 

 

(b) 

 

Figure A 3: Pixel value histograms for NDVI maps from flight day 1 

(a) and flight day 2 (b). 


