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Abstract 

Genetic diversity of the DREB1 gene in Hordeum vulgare and Hordeum spontaneum 

By Taylor Hicks 

Environmental stresses often disrupt and alter the growth of plants and their life cycles. This 

causes molecular responses to upregulate gene expression, inducing important stress 

responsive genes.  Dispersal and continuous domestication of crop plants may cause a loss of 

genetic diversity that may be detrimental to these stress responsive genes. A population-based 

resequencing and phylogenetic analysis of the dehydration responsive element binding 1 

(DREB1) stress responsive gene was used to determine its genetic diversity in three populations 

of wild and cultivated barley. Variation between China wild, China cultivated, and Middle 

Eastern wild populations were examined to understand gene-pool exchanges with the spread 

and development of barley cultivation. My results showed genetic differentiation among and 

within the three populations of barley by examination of nucleotide diversity (π), theta (per 

site) (θ), and number of haplotypes. Middle East wild-type and China wild-type were 

statistically significant with Fu and Li’s D and F tests however, China cultivated-type was not. 

It was found that the highest diversity occurred in Middle Eastern wild-type, with the second 

highest diversity value as China wild-type, and lowest diversity in China cultivated type. These 

results provide important observations about the domestication processes of crop plants like 

barley where selection processes may be detrimental to the survival of stress responsive genes. 

After this thesis was completed, some questions arose about sequence clarity and reliability, 

and how they affected alignment and phylogenetic analysis. These questions were analysed at 

the end of this thesis in an addendum (page 40). 
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1. Introduction 

1.1 Environmental Stress in Plants 

Plants are often subjected to biotic and abiotic stresses that can alter their growth and 

development throughout their life cycle (Sachs and Ho 1986). This may be especially 

concerning for farmers who grow and sell crop plants for food as it may lower the quality of 

their yield (Sachs and Ho 1986). In recent years, climate trends in many agricultural areas 

around the world show an increase in atmospheric carbon dioxide (CO2) and ozone levels (O3) 

(Flamant et al. 2005; Lobell and Gourdji 2012). Due to the growth of the world’s human 

population, urban development, agricultural, economic, and industrial activities have caused 

this increase in these gas emissions and result in atmospheric warming, global temperature 

increases, changes in wind events and altered precipitation patterns (Manning and Tiedemann 

1995). Increased temperatures may cause crops to develop at a faster rate, thus leading to a 

shorter crop duration which has been known to correlate with lower yields. (Stone 2001). 

However, increased global temperatures are not always associated with warm temperatures in 

a particular area. North America, Europe and east Asia have experienced extremely cold 

conditions as well as heavy snowfall during their winter months (Liu et al. 2012). One 

particularly interesting explanation for this phenomenon is that diminishing Artic sea ice is 

responsible for these colder conditions and increased snowfall due to disruption on midlatitude 

atmospheric circulation (Liu et al 2012). 

Domesticated and native plants may experience a direct biological effect from climate 

change (Krupa and Manning 1988). Direct effects of climate change may occur through the 

normal process of gas exchange between a leaf and its natural environment (Rich et al. 1970). 

Increased amounts of O3 may enter plant leaves through open stomata changing the 

composition of cells due to alterations in membrane permeability (Lee 1985). The result of 

these changes may lead to cells collapsing and eventual death (Krupa and Manning 1988). 
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Alternatively, increased CO2 atmospheric levels influences stomatal function and closes the 

stomatal aperture causing the cells to collapse (Rogers et al. 1994). Several studies also suggest 

that CO2 and O3 can indirectly affect the severity of plant diseases induced by biotic agents 

(Dowding 1988; Manning and Keane 1988; Colls and Unsworth 1992; Rogers et al. 1994; 

Runeckles and Krupa 1994). In their review, Manning and Tiedemann (1985) found that 

increasing CO2 may result in canopy structure becoming denser due to more biomass 

accumulation which combined with changing precipitation, causes the microclimate to become 

moister and provides a breeding ground for bacteria and pathogens.  

The combination of direct factors (salinity, drought and temperature) and indirect 

factors (plant diseases) from climate change can be detrimental to the growth and survival of 

both domesticated and native plants (Rich et al. 1970; Dowding 1988; Manning and Keane 

1988; Colls and Unsworth 1992; Rogers et al 1994; Runeckles and Krupa 1994). It is often 

assumed that direct or indirect climate change factors affecting plants is the predominant 

determinant of ranges and may limit species (Louthan et al. 2015).  

Gene flow from pollen and seed dispersal are important sources of genetic variation 

throughout species range and selection against poorly adapted genotypes and genetic 

recombination are expected throughout species range as the plant species attempt to migrate 

and adapt to new locations (Davis and Shaw, 2001). To counter the challenges climate change 

imposes on plants, they will require proper responses and defence mechanisms. 

1.2 Plant Responses to Stress 

Plants respond to stresses such as cold, heat, drought, and high salinity at the molecular 

and cellular levels, as well as the physiological and biochemical level (Kidokoro et al. 2015), 

where responses are often interconnected (Wang et al. 2003). Physiological changes 

experienced by plants under stress include leaf wilting, reduction in leaf area, leaf abscission, 
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and stimulation of root growth (Lata and Prasad 2011). At the cellular level, osmotic stress 

induced by drought and salinity may result in the disruption of ion distribution and homeostasis 

by causing a decrease in potassium uptake and an increase in sodium influx (Serrano et al. 

1999; Zhu 2001). Some metabolic reactions may be compromised by an influx of sodium such 

as the Hal2p phosphate in sulphate metabolism, forcing the salt stressed plant to maintain 

homeostasis (Serrano et al 1999). As a response to these changes, activation of cell signalling 

pathways (Figure 1) and cell responses occur (Shinozaki and Yamaguchi-Shinozaki 2000) 

where defence mechanisms may then activate functional proteins due to changes in protein and 

nucleic acid conformation, membrane fluidity and nutrient uptake (Chinnusamy et al. 2007). 

Functional proteins that aid in cellular stress response include chaperones, Late Embryogenesis 

Abundant (LEA) proteins, detoxification enzymes, transporters, and enzymes for metabolite 

biosynthesis (Kidokoro et al. 2015). For example, salinity stress may induce severe oxidative 

stress in the leaves of plants causing protective antioxidant enzymes to act against the salt 

stress. This happens by producing high amounts of hydrogen peroxide to eliminate toxicity of 

superoxide radicals (Lee 2001).  

Other signalling mechanisms used by plants when subjected to abiotic stress include 

regulatory proteins and abscisic acid (ABA) (Lata and Prasad 2011). ABA is a plant growth 

regulator and stress hormone responsible for regulating leaf stomata closure to reduce water 

loss which decreases the photosynthetic rate to improve water-use efficiency (Lata and Prasad 

2011). ABA also plays a role in seed development, seed and bud dormancy, seed germination, 

root growth, fruit ripening and the activation of stress-responsive genes (Agarwal and Jha, 

2010). Alongside the ABA hormone, regulatory proteins also play a role in response to stress 

and include various transcription factors and cis-acting elements that function as molecular 

switches (Kidokoro et al. 2015), protein kinases, and other signalling molecules (Akhtar et al. 

2012). Some transcription factors important in stress response include myelocytomatosis 
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oncogene (MYC), myeloblastosis oncogene (MYB), basic leucine zipper (bZIP) and 

dehydration responsive element binding protein (DREB) (Lata and Prasad 2011).  

Although ABA treatment induces regulatory genes in response to dehydration and cold 

(Zhu 2002; Shinozaki et al. 2003) genes also exist that do not respond to ABA treatments (Zhu 

2002; Yamaguchi-Shinozaki and Shinozaki 2005) suggesting there is an ABA-dependent and 

ABA-independent signalling pathway. These may be pathways that control acclimation to 

stress through the activation of regulons which are a group of genes controlled by the same 

regulatory gene. These included the myelocytomatosis oncogene/Myeloblastosis oncogene 

(MYC/MYB) regulon in the ABA-dependent pathway (Abe et al. 1997; Busk and Pagés 1998) 

and the cold-binding factor/dehydration responsive element binding (CBF/DREB) regulon in 

the ABA-independent pathway (Saibo et al. 2009). Although there are many known regulons 

and transcription factors responsive to stress, the best studied group of transcription factors are 

the dehydration responsive element binding (DREB) genes due to their ability to activate the 

expression of various target genes during times of abiotic stress (Hussain et al. 2011). 

1.3 DREB 1 Gene Expression 

Some of the most important transcription factors for regulating plant responses to stress 

are contained within a family known as the APETLA2 (AP2)/ethylene responsive element 

binding protein (EREBP) which consists of a total of 145 genes (Yamaguchi-Shinozaki and 

Shinozaki 2005). The AP2 transcription factors are known to consist of an AP2 binding domain 

which is a three-dimensional structure consisting of approximately 60 amino acid residues in 

the form of three β-sheets and one α-helix (Allen et al. 1998). Within the AP2/EREBP family 

there are separate sub families known as AP2 (14 genes), DREB (56 genes), ERF (65 genes), 

RAV (6 genes) and others (Sakuma et al. 2002). The DREB subfamily was first discovered in 

the genus Arabidopsis, and homologs have since been found in several other plants (Khan 
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2011). The DREB subfamily was discovered in a response element in the promoter region of 

the rd29A gene which is responsible for drought resistance (Yamaguchi-Shinozaki and 

Shinozaki 1993) and can be further divided into six small groups termed A-1 to A-6. Of these 

small groups, A-1 and A-2 make up the two largest groups that are involved in two separate 

signal transduction pathways (Sakuma et al. 2002). The DREB1 gene, which is the focus of 

this study, belongs to the A-1 subgroup which is most commonly expressed during periods of 

cold and drought stress, whereas the DREB2 gene belongs to the A-2 subgroup and is most 

commonly expressed during periods of salt stress and drought (Khan 2011).  

When under stress, functioning DREB transcription factors activate target genes that 

have cis-acting dehydration-response elements/C-repeats (DREs/CRTs; A/GCCGAC) in their 

promoters, which results in an improved tolerance to drought and cold through regulated gene 

expression (Agarwal et al. 2006) (Figure 1). These genes are activated in an ABA-independent 

pathway during drought and cold stress, however it has been suggested 

that some DRE/CRT motifs can respond to ABA-dependent pathways 

resulting in a crosstalk between these regulatory systems (Xu et al. 2009). 

The induction of DREB1 transcripts are organ specific and correlated to 

the length of stress treatment. For example, DREB1 in rice is expressed 

in almost all tissues and organs (Wang et al. 2008), whereas in wheat, 

DREB1 is highly expressed in roots but less in leaves and stems (Shen et 

al. 2003). 

 

 

Figure 1: Visual representation of the DREB1 stress signal perception and gene expression 

in response to stress. 
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1.4 Structural Analysis of DREB1 

All transcription factors have a DNA-binding domain comprised of a conserved amino 

acid sequence containing a small region called the DNA-binding motif that is responsible for 

recognizing single or double-stranded DNA (Alberts et al. 2002; Akhtar et al. 2012). The 

DREB proteins ERF/AP2 DNA-binding domain contain amino acids that show high sequence 

similarity in the nuclear localization signal at the N-terminal region and some similarity in the 

C-terminal acidic domain. Xu et al. (2009) demonstrated that the DREB1 gene in barley 

(HvDREB1) could specifically bind DRE/CRT elements, and that the acidic N-terminus is 

critical for the ability of DREB1 to act as a potential transcriptional activator (Khan 2011) and 

the entry of the DREB proteins occurs by one or two nuclear localization signals (NLS) (Akhtar 

et al. 2012). Within the ERF/AP2 domain, two amino acids, the 14th valine (V14) and the 19th 

glutamic acid (G19) play a significant role in the determination of DNA-binding specificity to 

the DRE core sequences and are a characteristic of the DREB proteins (Liu et al. 1998; Cao et 

al. 2001; Sakuma et al. 2002). The DREB1-type proteins also have two highly conserved motifs 

known as the DSAW motif and the LWSY motif and are located at the one end of the ERF/AP2 

domain and at the opposite end of the C-terminal (Rasool and Ahmed 2014) (Figure 2).  

 

Figure 2: Illustration of DREB1 transcription factor structure and domains from Akhtar et al. 

(2012). 

There are also other amino acids that are conserved in the DREB1-type transcription 

factors that facilitate direct contact with DNA for DNA binding activity which include:  

arginine (6), arginine (8), tryptophan (10), glutamic acid (16), arginine (25) and tryptophan 

(27) (Allen et al. 1998). Conservation of alanine at the position 37 in the AP2/ERF domain 
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indicates that it plays an important role in binding to the DRE element (Liu et al 2006). 

Furthermore, adjacent to the ERF/AP2 domain is a conserved Ser/Thr-rich region that is 

responsible for phosphorylation of the DREB proteins (Liu et al. 1998) which is important for 

regulation of protein function in response to stress (Nestler and Greengard 1999). 

1.5 The Domestication of Wild barley (Hordeum spontaneum) to Cultivated barley (Hordeum 

vulgare) 

The genus Hordeum, is in the tribe Triticeae of the grass family, Poaceae and contains 

32 species (total 45 taxa), and 51 cytotypes exist at three ploidy levels (diploid, tetraploid or 

hexaploidy) with a basic chromosome number of x = 7 (Taketa et al. 1999). At least 4 different 

genomes were identified by meiotic analysis of interspecific hybrids, cpDNA, karyotypes, 

isoenzymes, and sequence analysis and were given the names: H, I, X, and Y in the Hordeum 

species (Bothmer et al. 1986). Interestingly, the genus Hordeum contains both annual species 

(e.g.: Hordeum vulgare), as well as perennial species (e.g.: Hordeum bulbosum) (Bothmer 

1986). Barley (Hordeum vulgare), often referred to as cultivated barley, is known to be a 

founder crop of Old-World agriculture and is a model experimental system due to its short life 

cycle (Bothmer 1986). Hordeum spontaneum is a wild barley, from which cultivated barley 

originated, and can be found in various areas around the globe including south western Asia 

and the Mediterranean (Bothmer 1986). It has been speculated that barley was domesticated 

around 8,000 BCE. in the East Fertile Crescent. Today, the wild form of barley still exists in 

the East Fertile Crescent including but not limited to the locations: Israel, Jordan, south Turkey, 

Iraq, and Iran (Harlan et al. 1992). Cultivated barley and wild barley are morphologically 

similar including three, one-flowered spikelets at each rachis node known as a triplet (Von 

Bothmer et al. 2003) however some differences are detectable. The domestication (genetic 

modification of a wild species to create a new altered form) and genetic isolation led to 

differences in the wild and cultivated form of barley. As cultivated barley was domesticated, 
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larger leaves, smaller stems and awns, tough ear rachis, smaller and thicker spike, and larger 

grains were eventually selected (Zohary, 1969). The genetic distribution of diversity of 

cultivated barley corelates with genes for adaptation to various areas and ecological needs (Von 

Bothmer et al. 2003). 

The geographical distribution of wild barley in the near East Fertile Crescent was 

considered the only location where barley was domesticated, however other domestication 

centres such as Tibet, central Asia, Morocco, Libya, Egypt, Crete, and Ethiopia have also been 

suggested (Molina-Cano et al. 2002; Azhaguvel and Komatsuda. 2005; Molina-Cano et al. 

2005; Morrell et al. 2007; Orabi J et al. 2009; Bjornstad and Abay et al. 2010; Von Bothmer et 

al. 2011; Dai F et al. 2012; Ren et al. 2013). The spread of these crops from their domestication 

areas involved the dispersal of crop plants far beyond their native range and may need to adapt 

to new environments (Jones et al. 2008). As the plants disperse, their response to stress may 

vary given the location. Zhen and Ungerer (2008) suggested that as range expansion of thale 

cress (Arabidopsis thaliana) into warmer climates occurred, relaxed selection on the DREB1 

resulted in multiple mutations that arose independently in both regulatory and coding regions 

and that these mutations persisted in local populations. The mutations then resulted in 

diminished freeze tolerance among populations in southern regions of the species range (Zhen 

and Ungerer, 2008). It may be possible that wild barley plants that originated in warmer 

climates such as the middle eastern countries (Zhang et al. 2005) and expanded their range into 

colder climates may have experienced changes in gene expression patterns to accommodate 

colder climates. Range expansion combined with domestication of plants may reduce the plants 

ability to adapt due to mutations in important stress responsive genes. 

Domestication of plants by humans often reduces genetic diversity and can lead to a 

bottleneck effect (an event that drastically reduces the size of a population) where one 

population’s gene pool is slowly reduced through continuous selection (Doebley et al. 2006). 
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Often, each generation during the domestication process, just one seed from the desirable plants 

forms the next generation (Doebley et al. 2006). Because of domestication, bottlenecked crops 

contain around 70% of the neutral genetic diversity seen in their wild ancestors (Bucker et al. 

200+1). Analysis of the DREB1 gene in Hordeum vulgare and Hordeum spontaneum from 

different environmental conditions could reveal natural selection and adaptive genetic diversity 

of the DREB1 gene in barley populations. Analysis may also reveal the loss of genetic diversity 

due to selection pressures created by domestication bottlenecks. The importance of examining 

and researching these variations in gene expression may be useful as crop domestication and 

modern breeding strategies continue to result in serious reductions of genetic diversity in many 

different species (Gross and Olsen 2010). This may cause a loss of alleles that may contribute 

to stress tolerance in crops (Dwivedi et al. 2017) and as climate change becomes more 

prominent, domesticated plants may be less responsive to stressful conditions through 

mutations and the loss of genetic diversity (Zhen and Ungerer, 2008). 

1.6 Objective of Study 

The objective of this study was to compare the genetic variation of the DREB1 gene in 

Hordeum vulgare and Hordeum spontaneum amongst and within three different populations: 

The Middle East wild-type, China wild-type and China cultivated-type. This was completed to 

determine whether domestication processes of wild barley into cultivated barley resulted in the 

reduction of genetic variation of the stress responsive gene DREB1. This is important because 

without the stress responsive genes that allow pants to acclimate and adapt, survival against 

the increasing rate of climate change may become impossible. These results may provide 

further insight into the challenges barley and other crop plants may face as the rate of climate 

change increases. Whether or not the adaptation of barley to different regions resulted in 

DREB1 changes has never been assessed, I expected to see higher levels of genetic diversity 

in wild barley compared to cultivated barley. 
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2. Materials and Methods  

2.1 Plant Materials: Hordeum vulgare and Hordeum spontaneum 

Seeds of each species were obtained from the United States Department of Agriculture 

(Table 1) and were randomly selected to be planted in three-by-three-inch pots. Twenty seed 

packets from different locations across the globe were chosen for each of the three species, 

resulting in a total of 119 samples. Each pot was filled with value-tier Signal Potting Mix 

leaving approximately five cm of space at the top. A glass stir rod was then used to create seven 

holes in each pot roughly one inch deep. The seven smallest seeds from each packet were then 

placed in each hole and covered over with the potting mix. The plants were watered with 50 

mL of tap water every two days for four weeks and left by a window to grow at room 

temperature (approximately 25°C -28°C).  

2.2 DNA Isolation 

Samples were collected by cutting leaves from the plants and placed into labelled 

centrifuge tubes. The leaf samples were snap frozen and crushed into a fine powder by adding 

liquid nitrogen and using an autoclaved metal rod. The metal rod was sterilized between each 

sample by putting it over a flame after being dipped in 70% ethanol. After all samples were 

ground, DNA was isolated using an EZ-10 Column Plant Genomic DNA Purification Kit 

according to the manufacturer’s instructions (Bio Basic Inc.).  

2.3 DNA Amplification of DREB1 with Polymerase Chain Reaction  

I designed primers for amplifying the DREB1 gene based on Triticum aestivum AP2-

containing protein (DREB1) mRNA (GeneBank: AF303376.1) using Primer 3 software. The 

forward primer sequence was 5’-GAAGAAAGTGCGCAGGAGAAG-3’ (DREB1F) starting 

at bp 305, and the reversed primer was 5’- TCCCTATTGCTCCGCATGAC-3’(DREB1R) 

starting at bp 1130 (Figure 4). The resulting product size of the amplified gene was roughly 

825 bp. The sequence was amplified in a 50 µL reaction containing: 30 ng template DNA, 0.25 
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mM dNTPs, 2.0 mM MgCl2, 0.25 M of each primer and 2.0 U Taq polymerase which were 

all acquired from New England BioLabs Ltd. Taq polymerase was kept on ice and added last. 

Each reaction was vortexed for approximately 30 s and placed into a BioRad T100TM Thermal 

Cycler PCR machine. PCR settings were set-up such that initial denaturation occurred at 95°C 

for 5 min and 36 cycles of 95°C for 45 s, 58°C for 50 s, and 72°C for 150 s. The cycling ended 

with 72°C for 10 min. 

2.4 Preparation of Gel Electrophoresis 

After amplifying the PCR product, a gel was prepared using 150 mL of 1x Tris/Borate/ 

0.5 M EDTA pH 8.0 (TBE) solution and 1.8 g of Agarose A (BioBasic Inc. Canada) and mixed 

together in an Erlenmeyer flask. The gel solution was microwaved for two min then left to cool 

for 15 min. Next, the solution was poured into a gel mould with a 15 well comb piece. After 

solidifying, the comb was taken out of the gel and the gel was placed into the electrophoresis 

chamber. 

2.5 Gel Electrophoresis  

To begin, 5 µL of DNA tracker 100 – 1500 bp size standard (BioBasic Inc. Canada) 

was added into the first well in the agarose gel. Then, 2 µL of gel dye solution consisting of 

0.05% bromophenol blue and 30% glycerol in water (Sambrook et al, 2001) were added onto 

a sheet of Parafilm along with 5 µL of PCR product and mixed together. The product was 

transferred into the second well in the prepared agarose gel and then repeated for each sample. 

The gel was completely covered with 1x TBE solution. The power supply was set to 130V and 

left for 45 minutes. The remaining 45 µL of amplified product was stored at -20°C until 

commercial sequencing was performed. 

After gel electrophoresis, the gel containing the PCR product was carefully transferred 

to a container consisting of 200 mL of distilled H2O with 30 µL ethidium bromide (10 mg/mL) 
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for 30 minutes. The gel was then placed in a BioRad Molecular Imager Transilluminator 

System to view single bands at approximately 825 bp.  

2.6 Sequence and DNA Analysis 

After detection of visible bands on the electrophorized gel, amplified PCR products 

were sent for commercial sequencing by the company Eurofins Genomics (Toronto, Ontario, 

Canada). After receiving the sequenced product, chromatographs received from the company 

were used to determine the quality of sequences. An NCBI BLAST search was conducted on 

each clean sequence to ensure that the amplified product was DREB1.  

The DREB1 sequences were then aligned using ClustalX software (Larkin et al. 2007) 

and imported to GeneDoc software (Nicholas and Nicholas, 1997) where genetic variation 

between each sequence could be examined. Number of haplotypes, haplotype diversity, theta 

(per site) (θ), and nucleotide diversity (π) were calculated using DNAsp5 software (Librado 

and Rozas 2009) to determine the genetic diversity between and within each species of 

cultivated and wild barley. DNAsp5 was also used to perform statistical tests: Fu and Li’s D 

and F test and Tajima’s D test. Fu and Li’s D tests statistic is based on the differences between 

the number of singletons (mutations appearing only once among the sequences) and the total 

number of mutations and Fu and Li’s F statistic is based on the haplotype frequency distribution 

conditional the value of theta. Tajima D statistic is calculated by determining the differences 

between two measures of genetic diversity; the mean number of pairwise differences and the 

number of segregating sites. Statistical significance was determined using * for P <0.05 and ** 

for P <0.01.  

A phylogenetic analysis was conducted using the Neighbour Joining (NJ) and 

maximum parsimony methods from PAUP software (Swofford, 2002) to determine bootstrap 

percentages and relatedness among the samples. 
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Figure 3: Global locations of wild barley (Hordeum spontaneum)      and cultivated barley 

(Hordeum vulgare)      used in this study.  

Table 1: The code, accession number, origin and characteristic of 119 barley used in this 

study. 

Code Accession 

Number 

Origon  Characteristic Code Accession 

Number 

Origon Characteristic 

HS1 PI212305 Afghanistan wild, two-row HS69 PI662080 Tajikistan wild, two-row 

HS3 PI219796 Iraq wild, two-row HS70 PI662109 Tajikistan wild, two-row 

HS4 PI220664 Afghanistan wild, two-row HS71 PI662118 Tajikistan wild, two-row 

HS5 PI227019 Iran wild, two-row HS72 PI662138 Turkey wild, two-row 

HS7 PI236386 Syria wild, two-row HS73 PI662158 Turkey wild, two-row 

HS8 PI244772 Pakistan wild, two-row HS74 PI662170 Turkey wild, two-row 
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HS9 PI244774 Afghanistan wild, two-row HS75 PI662178 Turkey wild, two-row 

HS10 PI244776 Afghanistan wild, two-row HS76 PI662188 Turkey wild, two-row 

HS11 PI244777 Afghanistan wild, two-row HS77 PI662204 Turkey wild, two-row 

HS12 PI245739 Turkey wild, two-row HS78 PI662214 Turkey wild, two-row 

HS13 PI253933 Iraq wild, two-row HS79 PI662218 Turkey wild, two-row 

HS14 PI254894 Iraq wild, two-row HS80 042 Sichuan, 

China 

cultivated, six-

row 

HS15 PI268243 Iran wild, two-row HS81 043 Sichuan, 

China 

cultivated, six-

row 

HS18 PI284752 Israel wild, two-row HS82 045 Sichuan, 

China 

cultivated, six-

row 

HS19 PI293411 Tajikistan wild, two-row HS83 046 Sichuan, 

China 

cultivated, six-

row 

HS20 PI293412 Tajikistan wild, two-row HS84 0177 Hunan, 

China 

cultivated, six-

row 

HS24 PI296849 Israel wild, two-row HS85 087 Henan, 

China 

cultivated, six-

row 

HS25 PI296862 Israel wild, two-row HS86 091 Sichuan, 

China 

cultivated, six-

row 

HS27 PI296908 Israel wild, two-row HS87 0274 Sichuan, 

China 

cultivated, six-

row 

HS28 PI354948 Israel wild, two-row HS88 0276 Shandong, 

China 

cultivated, six-

row 

HS31 PI391100 Israel wild, two-row HS89 0384 Zhejiang, 

China 

cultivated, six-

row 

HS32 PI401368 Iran wild, two-row HS90 056 Sichuan, 

China 

cultivated, 

two-row 

HS34 PI420911 Jordan wild, two-row HS91 0248 Sichuan, 

China 

cultivated, 

two-row 

HS35 PI420912 Jordan wild, two-row HS92 0252 Sichuan, 

China 

cultivated, 

two-row 
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HS37 PI420915 Jordan wild, two-row HS93 0279 Sichuan, 

China 

cultivated, 

two-row 

HS38 PI420916 Jordan wild, two-row HS94 0353 Sichuan, 

China 

cultivated, 

two-row 

HS39 PI420917 Jordan wild, two-row HS95 065 Sichuan, 

China 

cultivated, 

two-row 

HS40 PI466040 Syria wild, two-row HS96 0381 Sichuan, 

China 

cultivated, 

two-row 

HS41 PI466048 Syria wild, two-row HS97 0382 Zhejiang, 

China 

cultivated, 

two-row 

HS42 PI466060 Syria wild, two-row HS98 0383 Zhejiang, 

China 

cultivated, 

two-row 

HS43 PI466086 Syria wild, two-row HS99 0385 Zhejiang, 

China 

cultivated, 

two-row 

HS44 PI466118 Syria wild, two-row HS100 01 Tibet, 

China 

wild, two-row 

HS45 PI466130 Syria wild, two-row HS101 03 Tibet, 

China 

wild, two-row 

HS47 PI466206 Syria wild, two-row HS102 04 Tibet, 

China 

wild, two-row 

HS48 PI466238 Syria wild, two-row HS103 013 Tibet, 

China 

wild, two-row 

HS49 PI466249 Lebanon wild, two-row HS104 018 Tibet, 

China 

wild, two-row 

HS50 PI466256 Lebanon wild, two-row HS105 022 Tibet, 

China 

wild, two-row 

HS51 PI466264 Lebanon wild, two-row HS106 023 Tibet, 

China 

wild, two-row 

HS52 PI466296 Israel wild, two-row HS107 026 Tibet, 

China 

wild, two-row 

HS53 PI466328 Israel wild, two-row HS108 027 Tibet, 

China 

wild, two-row 

HS54 PI466388 Israel wild, two-row HS109 028 Tibet, 

China 

wild, two-row 

HS55 PI466498 Israel wild, two-row HS110 02 Tibet, 

China 

wild, six-row 
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HS56 PI466524 Israel wild, two-row HS111 05 Tibet, 

China 

wild, six-row 

HS57 PI466554 Israel wild, two-row HS112 06 Tibet, 

China 

wild, six-row 

HS58 PI466586 Israel wild, two-row HS113 07 Tibet, 

China 

wild, six-row 

HS59 PI466605 Iran wild, two-row HS114 09 Tibet, 

China 

wild, six-row 

HS63 PI554426 Turkey wild, two-row HS115 010 Tibet, 

China 

wild, six-row 

HS64 PI466632 Iran wild, two-row HS116 011 Tibet, 

China 

wild, six-row 

HS65 PI466699 Iran wild, two-row HS117 014 Tibet, 

China 

wild, six-row 

HS66 PI554428 Turkey wild, two-row HS118 015 Tibet, 

China 

wild, six-row 

HS67 PI559556 Turkey wild, two-row HS119 019 Tibet, 

China 

wild, six-row 

HS68 PI662052 Tajikistan   wild, two    

row 

    

 

 

 

 

 

 

 

 

Figure 4: Triticum aestivum AP2-containing protein (DREB1) Gene, complete cds 

GenBank: AF303376.1 containing 1250 base pairs. Forward primer started at 305 bp and 

reverse primer started at 1130 bp resulting in an 825 bp strand.   
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3. Results 

3.1 Amplified DNA Samples 

Thirty of the 119 DNA samples were successfully amplified with the DREB1 primers 

(Figure 5). An example sequence is shown in Figure 6. The 30 sequenced samples were from 

three populations of barley: The Middle East wild-type, China wild-type and China cultivated-

type.  Their origin, code, accession number and characteristics are listed in Table 2. The Middle 

East population consisted of accessions from Syria, Israel, Lebanon, Iran, and Turkey and were 

all wild-type barley. China cultivated-type populations consisted of accessions from Sichuan 

and Zhejiang and China wild-type populations consisted of accessions from Tibet. Each 

accession included their own code to make labelling easier and their own accession number for 

identification from the manufacturer.  
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Table 2: The region of seed origin, code, accession number, origin and characteristics of the 

30 successfully sequenced accessions out of 119 barley accessions amplified in this study. 

 

 

Region Code Accession Number Origin Characteristics 

 HS7 PI236386 Syria wild, two-row 

 HS18 PI284752 Israel wild, two-row 

 HS24 PI296849 Israel wild, two-row 

 HS51 PI466264 Lebanon wild, two-row 

 HS53 PI466328 Israel wild, two-row 

 HS55 PI466498 Israel wild, two-row 

 HS57 PI466554 Israel wild, two-row 

Middle East wild-

type 
HS64 PI466632 Iran wild, two-row 

 HS72 PI662138 Turkey wild, two-row 

 HS73 PI662158 Turkey wild, two-row 

 HS74 PI662170 Turkey wild, two-row 

 HS75 PI662178 Turkey wild, two-row 

 HS76 PI662188 Turkey wild, two-row 

 HS77 PI662204 Turkey wild, two-row 

 HS78 PI662214 Turkey wild, two-row 

 HS79 

HS 54 

PI662218 

PI466388 

Turkey 

Israel 

wild, two-row 

wild, two-row 

 
HS80 42 

Sichuan, 

China 

cultivated, six-

row 

 
HS81 43 

Sichuan, 

China 

cultivated, six-

row 

 
HS83 46 

Sichuan, 

China 

cultivated, six-

row 

China cultivated-

type 
HS89 384 

Zhejiang, 

China 

cultivated, six-

row 

 
HS97 382 

Zhejiang, 

China 

cultivated, two-

row 

 
HS98 383 

Zhejiang, 

China 

cultivated, two-

row 

 
HS99 385 

Zhejiang, 

China 

cultivated, two-

row 

 HS102 4 Tibet, China wild, two-row 

 HS103 13 Tibet, China wild, two-row 

 HS104 18 Tibet, China wild, two-row 

China wild-type HS105 22 Tibet, China wild, two-row 

 HS106 23 Tibet, China wild, two-row 

 HS118 015 Tibet, China wild, two-row 
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3.2 Sequence Analysis 

 

 

 

 

 

 

Figure 5: Image of an electrophorized gel showing amplified DNA from PCR at 800 to 1000 

bp indicated by a red arrow. Samples included in the gel from left to right were HS 89, 97, 

98, 99, 80, 81 and 83 China cultivated-type.   

DNA from 17 accessions of Middle East wild-type, seven accessions of China 

cultivated-type and six accessions of China wild-type were PCR amplified using the DREB1 

primer pair. By visually analyzing the electrophorized gel in Figure 5, clear bands were present 

indicating the amplified product was around 800 to 1000 bp. An NCBI BLAST search found 

that the 30 sequences (Table 2) shared 90 to 100% identity with Hordeum vulgare subsp. 

vulgare DREB1 complete coding sequences (DQ012941.1).  

 

Figure 6: Colour coordinated chromatograph of a partial sequence of the DREB1 gene 

amplified in HS 7 wild-type barley produced by sequence manufacturer.  

The 30 amplified DNA sequences                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     

were aligned with the program ClustalX. This illustration of a partial sequence can be seen of 

sample HS 7 (wild-type barley) at around 300 to 400 base pairs. Each strand of DNA had its 

own chromatograph with clear distinguishable, high peaks that indicated each nucleotide was 

reliable (see addendum, page 40). Unclear chromatographs were discarded, and DNA 
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amplification will need to be repeated. Green, blue, black, and red peaks represented 

nucleotides A, C, G, and T respectively.  

 

Figure 7: Example of comparison of partial sequences within China cultivated barley 

formulated by GeneDoc software. Samples include HS 89, 97, 98, 99, 80, 81, 83 and show 

base pairs 20 to 80.  

After determining which sequences were reliable from the chromatographs in Figure 6, 

sequences from the amplified products were all aligned and compared using GeneDoc software 

(Figure 7). This example of a comparison of partial sequences was comprised of China 

cultivated barley. Code numbers of the samples include HS 89, HS 97, HS 98, HS 99, HS 80, 

HS 81, and HS 83 and show variation between sequences from base pair numbers 40 to 60 and 

grey highlighted base pairs 40 to 60 indicate positions with differences. The dashes occurring 

between base pairs 40 to 60 in sequence HS 97, HS 99, HS 80, HS 81 and HS 83 and between 

base pairs 60 to 80 in sequence HS 80 indicate that a deletion of a nucleotide occurred. 

The number of haplotypes of DREB1 sequences from wild-type and cultivated-type 

barley were calculated (Table 3). A total of 20 haplotypes were identified in the 30 accessions 

which included: 9 haplotypes from 17 sequences of Middle East wild-type, 5 haplotypes from 

6 sequences of China wild-type and 6 haplotypes from 7 sequences of China cultivated-type. 

The highest haplotype diversity was seen in China cultivated-type as 0.952, with the second 

highest seen in China wild-type as 0.933 and the smallest haplotype diversity seen in Middle 

East wild-type as 0.787.  
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3.3 Nucleotide Diversity  

Nucleotide diversity π and θ were calculated for each of the wild and cultivated species (Table 

3). The highest nucleotide diversity value for π was found in China wild-type barley as 0.01002, 

followed by Middle East wild-type as 0.00619, and the smallest value found in China 

cultivated-type as 0.00618. The highest nucleotide diversity value for θ was found in Middle 

East wild-type as 0.01466, followed by China wild-type as 0.01139 and the smallest value 

found in China cultivated-type barley as 0.00602. Tajima (1989) and Fu and Li’s (1993) D and 

F statistics were also calculated for each of the wild and cultivated barley species. Tajima’s D 

values for Middle East wild-type, China wild-type and China cultivated-type were calculated 

to be -2.14252, -0.71767 and 0.1321 respectively. Tajima’s D values for Middle East wild-type 

and China wild-type were found to be statistically significant, however China cultivated type 

was not statistically significant. Fu and Li’s D values for Middle East wild-type, China wild-

type and China cultivated-type were calculated to be -2.72204, -0.7751, and 0.22792 

respectively and Fu and Li’s F values for Middle East wild-type, China wild-type and China 

cultivated-type were calculated to be -2.95194, -0.82236 and 0.22446 respectively. Fu and Li’s 

D and F values were both statistically significant for Middle East wild-type and China wild-

type but not statistically significant for China cultivated-type. 
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Table 3: Estimates of nucleotide diversity within each barley population. Number of 

haplotypes, haplotype diversity, theta (θ) and nucleotide diversity (π) were calculated with 

DNAsp5 software. Tests used to determine statistical significance include Fu and Li’s D and 

F test and Tajima’s D test where * indicates P < 0.05 and ** indicates P < 0.01 which were 

also created using DNAsp5 software.  

 

3.4 Phylogenetic Analysis 

 

Figure 8: Phylogenetic tree and bootstrap values indicating percent support of 30 sequences 

in the DREB1 gene created with PAUP software.  

Populations 

No. of 

Haploty

pes (H) 

Haploty

pe 

Diversit

y (Hd) 

Theta 

(per 

site) (θ) 

Nucleot

ide 

Diversit

y (π) 

Fu and 

Li's D 

Test 

Fu and 

Li's F Test 

Tajima's 

D Test 

Middle 

East, Wild-

type 9 0.787 0.01466 0.00619 -2.72204* -2.95194** -2.14252** 

China, 

Wild-type 5 0.933 0.01139 0.01002 -0.7751* -0.82236* -0.71767* 

China, 

Cultivated-

type 6 0.952 0.00602 0.00618 0.22792 0.22446 0.1321 
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Table 4: Organization of 5 groups of related DREB1 DNA samples from phylogenetic tree 

(Figure 8). Regions include China wild-type, China cultivated-type and Middle East wild-

type.  

 

 

A phylogenetic tree based on Neighbour Joining (NJ) method was modelled and 

illustrates the relatedness of the 30 sequenced DREB1 genes from Middle East wild-type 

populations, China wild-type populations and China cultivated-type populations of barley 

(Figure 8). Based on relatedness, groups were formed and were recorded in Table 4. The 

composition of the 1st group was found to be primarily wild-type, however one cultivated-type 

(HS 83) was present. The 2nd group was found to be mostly wild-type with one cultivated-type 

(HS 80). The composition of the 3rd group was comprised of primarily wild-type with one 

cultivated-type (HS 81) present. The composition of the 4th group was wild-type with one 

cultivated-type (HS 97) present. The 5th group was primarily wild-type with three cultivated-

type including (HS 89, 99 and 98). The Middle East wild populations and China cultivated 

populations were represented in all five groups and the China wild-type population was only 

represented in group 4 and 5. 

The phylogenetic relationship of the 30 DREB1 sequences from cultivated and wild-

type barley was also analyzed using the maximum parsimony method. The maximum 

parsimony analysis resulted in 183 most parsimonious trees (263 constant characters, 83 

Location Group 1 Group 2 Group 3 Group 4 Group 5 

    HS 106 HS 103 

     HS 102 

China wild-type     HS 105 

     HS 104 

     HS 118 

 HS 83 HS 80 HS 81 HS 97 HS 89 

China cultivated-type     HS 99 

     HS 98 

 HS 77 HS 51 HS 75 HS 54 HS 24 

 HS 78 HS 57 HS 72 HS 7  
Middle East Wild-type HS 64 HS 55 HS 76 HS 73  
 HS 18 HS 53    
 HS 24     
 HS 79     
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parsimony-informative characters, 42 parsimony uninformative characters, CI = 0.885; RI = 

0.886). 

The strict consensus phylogenetic tree (Figure 8) yielded bootstrap values for group 1 

(Table 4) Middle East wild-type samples HS 77 and HS 18 which had 77% support. Group 2 

yielded highly supported bootstrap values between Middle East wild-type samples HS 53 and 

HS 51, HS 57, and HS 55 which was determined to be 99% support. Even higher bootstrap 

values of 100% were among Middle East wild-type samples HS 51, HS 55 and HS 57; however, 

the bootstrap value between HS 57 and HS 51 was only 68%. Group 3 yielded one bootstrap 

value of 67% between HS 72 and HS 75 samples in Middle East wild-type. Group 5 yielded 

bootstrap values between China wild-type samples HS 102, HS 105 and HS 103 which was 

determined to be 65%.  Also belonging to group 5, bootstrap values were given for samples 

HS 104 and HS 118 which showed 54% support.  

4. Discussion 

Cultivable lands that are important factors for contributing to food security in the 

developing world have been greatly suffering due to the exploitation of the population and 

urbanization (Govindaraj et al. 2014). Agricultural practices have been domesticating and 

exploiting crop species from the beginning of industrialization to meet preference, food 

requirements and surplus for the growing population. These activities over time have led to an 

extinction of primitive and adaptive genes and a loss of genetic diversity (Govindaraj et al. 

2014). Genetic diversity is important in almost all aspects of biology including molecular 

genetics, evolutionary adaptation, gene expression, conservation and many others. It allows 

natural selection to decrease or increase the frequency of alleles already in the population 

through genetic and drift or selection by humans. This loss of genetic diversity may cause 

deleterious mutations (Wang, 2016). The objective of this study was to compare the genetic 

diversity among the Middle East wild-type, China wild-type and China cultivated-type where 
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we expected to see more genetic diversity contained within the wild species compared to the 

cultivated species. 

4.1 Sequence Analysis 

 Plant molecular, cellular, physiological, and biochemical level responses to stress 

(including cold, heat, drought and high salinity) may fail to activate defence mechanisms like 

important cell signalling pathways and cell responses if functional and regulatory proteins are 

compromised from deletions and mutations in their genes. This could lead to the plants inability 

to acclimate to new areas and eventually become unadaptable. Within a partial sequence of 

China cultivated barley (Figure 7), deletions were indicated by dashes and nucleotides 

mutations were indicated by grey highlight. These deletions and mutations within the DREB1 

gene in cultivated barley show they are no longer similar to their wild form. This may be a 

result of the barley attempting to acclimate to a new area, or the barley has mutated through 

domestication processes.  

In this study, the combined wild population of barley (23 accessions) showed 14 

haplotypes of the DREB1 gene in the 30 sequenced accessions (Table 3, also see addendum, 

page 40). This was compared to the 6 haplotypes found in the cultivated barley (7 accessions). 

This agrees with previous statements made that these domesticated lines have lost most alleles 

compared to the wild species. Also included in Table 3 is per site nucleotide diversity which 

indicated there was around a 57.8% reduction in the China cultivated barley compared to the 

Middle East wild barley, and a 22.3 % reduction between the Middle East wild species and the 

China wild species. These results agree with Fu (2012) and Morrell et al. (2003), that suggested 

barley landraces may have suffered a population bottleneck causing a reduction of genetic 

diversity due to domestication. This loss is apparent in the Tajima’s D values for the China 

cultivate-type population because the values shift towards positive values compared to both 
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wild species. These results also match other studies (Wright et al. 2005) and supports that the 

bottleneck effect may result in a loss of genetic diversity (Govindaraj et al. 2014). The results 

from Table 3 reveal that wild germplasms originating in the Middle East (East Fertile Crescent) 

are of great importance when it comes to contributing to cultivated barley gene pool (Wang et 

al. 2016). The DREB1 gene showed statistically significant negative values of Fu and Li’s F 

and D test which may indicate that there was a deviation from neutrality that could be due to 

positive selection in the wild species (Kilian et al. 2006). Because the negative values for the 

Middle East wild-type are more negative than China wild-type, they may have more positive 

selection through genetic diversity. Positive values in the cultivated-type may indicate the 

opposite is happening. Tajima’s D and both of Li and Fu’s tests are all statistically insignificant 

and positive in the cultivated-type which may have resulted from the bottleneck effect (Wang 

et al. 2016). 

4.2 Phylogenetic Analysis  

 A phylogenetic analysis of the 30 accessions of barley used in this study was conducted 

and resulted in the construction of a phylogenetic tree (Figure 8, also see addendum, page 40). 

Relatedness of the 30 accessions were illustrated and show the closest related sequences with 

the bootstrap values. This phylogenetic tree was then divided into groups based on their 

relatedness (Table 4). Accessions HS 80, HS 53, HS 51, HS 57 and HS 55 show a close 

relationship with a bootstrap value of 99%. These accessions were collected from the same 

region (The Middle East, wild) except for accession HS 80 which is China cultivated-type 

(Table 4). This may indicate that not much genetic change on the DREB1 gene sequence 

occurred among these accessions. Accessions HS 51, HS 57 and HS 55 from group 2 come 

from the same region (The Middle East, wild) and share a 100% bootstrap value indicating 

they have a high certainty of being related. HS 51 (Lebanon) and HS 57 (Israel) was grouped 

together with 68% support (Table 2). Cultivated accessions were grouped together with wild 
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accessions from different regions and may indicate multiple contributions from gene pools 

from wild-type to domesticated barley.  

4.3 Conclusion 

In summary, this study shows a clear pattern of genetic diversity difference in the DREB1 gene 

between wild and cultivated barley populations, supporting the bottleneck effect of genetic 

diversity during domestication. As previously mentioned, loss of diversity in the DREB1 gene 

may cause reduction in acclimation to stress especially as the rate of climate change increases 

from urbanization and human population growth. The pattern of domestication in barley is still 

controversial and information on geographically based genetic differentiation of barley 

populations is not well documented (Wang et al. 2016). The purpose of this study was to help 

understand the complications with domestication of barley and to provide further 

understanding to successful crop production in the future. To further this research and to 

provide more insight to the issues surrounding the loss of genetic diversity in the DREB1 gene, 

both wild and cultivated species may be subjected to stress treatments (i.e. cold) and sequenced 

once again to compare between each population. In a study such as this, the genetic diversity 

from the Middle East wild, China cultivated and China wild barley should be compared from 

the DREB1 gene after subjection to cold stress as well as comparing any mutations that 

occurred.   
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5. Addendum 

Found in the promoter region of target stress responsive genes such as rd29a, there is a 

cis-acting element responsible for cold and dehydration induced expression. The 9 bp 

conserved sequence TACCGACAT, termed the dehydration responsive element (DRE) is 

responsible for the regulation of this gene expression. cDNAs encoding DRE binding proteins, 

known as DREB1 specifically interact with the DRE sequence in the promoter region of the 

rd29a gene from dehydration and cold stress where DREB1 acts as a transcriptional activator 

for DRE-dependent transcription. Should this conserved region become altered, it is possible 

the function of the gene may be altered or lost. 

At the beginning of this study, the goal was to examine adaptive mutations in the 

DREB1 gene in all 119 barley accessions after subjecting the plants to cold stress. To achieve 

this goal, I amplified and sequenced the coding region of DREB1 in cultivated and wild barley. 

Within this coding region, it may have been possible that we would see a silent mutation, where 

a base substitution occurs in the third position of the codon producing greater chances of 

generating a synonymous codon. This would mean the amino acid sequence encoded by the 

gene is not changed and the mutation would be deemed “silent.” These mutations may be seen 

in conserved regions of genes such as in the AP2 DNA-binding domain in DREB1 genes as it 

is an important attachment site to the promoter of stress responsive target genes. Another 

mutation we may have seen is a deletion or insertion where a base pair is taken out or added to 

the sequence, respectively. This could result in a frameshift if the number of nucleotides added 

or removed is not a multiple of 3. In this case the resulting translation frame leaves a non-

functional product. We expect to observe deletions and insertions more commonly in non-

coding regions of the gene (i.e. promoter region, introns, untranslated regions), however, 

should it occur in conserved regions, the gene may no longer function properly as it should.  
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In eukaryotic DNA, coding regions (exons) are interrupted by non-coding regions 

(introns). During transcription, the gene is copied into pre- mRNA which excludes the exons 

and introns and eventually during RNA-splicing, introns are removed, and exons joined to form 

a mature coding sequence. Once this occurs, the mRNA is ready for translation. In Figure A1 

of this addendum, the DREB1 intron is indicated in the Genebank sequence (DQ012941.1) 

with green highlight and based on the PCR primers also indicated in Figure 1, the intron is not 

located in the DNA amplified by PCR in this study. The PCR product in this study is in exon 

2. Mutations in introns are less likely to affect gene function because the intron sequence is 

discarded before the mRNA is translated. Although this may be the case for introns, if the 

mutation causes the intron to be incorrectly spliced out of the mRNA, there may still be a 

negative effect on the gene expression, as sequences from the intron could be translated into 

the protein. Mutations in exons may be especially detrimental to the function of a gene as the 

segment of DNA or RNA molecule contains information coding for a protein or peptide 

sequence thus directly affecting the function. 

CAAAACCAAGGCGGCGGCAGCGGGGTGGGAGAGCCGGGAGCACCGACCGACACCGGGGGCTGCATGCGGAGCTGAGGCGAGGCGAGGAG
GATCCGGCGCGGGTGCCACCGCCGCCCGCCCGCGGGAGATCTGGTTGGCGGCGCCGCCGCCCGGACAAGGAAGCGGCCGCGGAGGCGGC
GTGGGGCGAGCTGCCGGGGAGGCCGACGAAGCTAGAGGAGATCTCTCTCTCCCTTCCTCCCTCCTCTTCCGCCTCGATGGAGACCGGGGGTAG
CAAGCGGGAAGGAGACTGCCCCGGGCAGGAAAG|GACGAAGAAAGTGCGCAGGAGAACCACTGGTCCAGATTCGGTTGCTGAAACTATCAAGA
AGTGGAAGGAGCAAAACCAGAAGCTCCAGCAAGAGAATGGATCCCGGAAAGCGCCCGCCAAGGGTTCCAAGAAAGGGTGCATGGCAGGGAAA
GGAGGTCCAGAGAATTCAAACTGCGCTTACCGCGGTGTGAGGCAGCGCACGTGGGGCAAATGGGTGGCTGAGATCCGTGAGCCCAACCGTGGC
AACCGGCTGTGGCTTGGTTCATTCCCTACCGCAGTCGAAGCTGCACGTGCATATGATGATGCCGCAAGGGCAATGTATGGCGCCACAGCGCGTG
TCAACTTCCCAGAGCATTCCCCAGATGCCAACTCTGGTTGCACGATGGCACCTTCACTGCTGACGTCTAATGGGGCAACCGCTGTGTCACATCCGT
CTGATGGGAAGGATGAATCAGAATCTCCTCCTTCTCTTGTCTCAAATGCGCCGACAGCTGCGCTGCATCGGTCTGATGCCAAGGATGAGTTTGAGT
CTGCAGGGACTGTGGCGCATAAGGTGAAAACAGAAGTGAGCAATGATTTGGGAAGTACCCATGAGGAGCACAAGGCCCTGGAAGTATTCCAACC
AAAAGGGAAGGCTTTACATAAAGAAGCGAACGTAAGTTATGATTACTTCAACGTTGAAGAAGTTGTCGACATGATAATTGTGGAATTGAGTGCTGAT
GTAAAAATGGAAGCACATGAAGAGGTCATGTACCAAGAGGGCGATGACGGGTTTAGTCTTTTCTCATATTAGGGTTCTAGCTATGAGGGTTGTATG

GCGGAGCAATAGGGATAACTTCATTCTAGCTGCTAGGAAATACTTCAAATTATCTGCAACCTGAAGCTTTGTAGTCACTTATGGTTTTAATCTTACTG
GAGAGAATAGCTTTATACCATAAGTCAACGGGTACAAGAAGTTGTCCTGTGTGTCGAGTTCATGTACTGTGGTAAAAATTGAGTCCATATTTAATGAG
CTTACTCTGTTGA 

 

Figure A1: Hordeum vulgare DREB1 mRNA complete cds (DQ12941.1). Indicated in bold 

and underlined are the PCR primers used in the methods of this study. The green highlight 

and vertical line indicate the position of the intron. The amplified region does not span the 

intron and it lies between the start and stop codon (indicated by yellow highlight). 
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After receiving only 30 clear samples that were relatively short, we chose to study the 

nucleotide diversity in the DNA sequences to examine the genetic variation between wild 

barley and cultivated barley, instead of translating the sequences to examine the effects of 

adaptive mutations. Although we changed the focus of our study, it is important to note that 

these variations in nucleotide sequences may have a resulting effect on the sequences of the 

amino acids. In Figure A2 and A3 of this addendum, I have aligned amino acid sequences of 

cultivated barley and wheat as well as mRNA sequences. This is to show their similarities and 

differences especially in important regions such as the AP2 DNA-binding domain. Highlighted 

in turquoise in each of these sequences (Fig. A3) is the AP2 DNA-binding domain that shows 

very similar sequences between the comparisons. Cultivated barley and wheat only have one 

mutation in the sequences comparison as they are closely related and belong to the same family 

and tribe. This provides evidence that a significant amount of variation in these regions should 

not occur as it may alter the stress responsive effect of the gene.  

 In Figure 7 of the thesis, partial sequences of cultivated barley were aligned that show 

possible deleterious mutations that could have resulted in a loss of function for the DREB1 

gene. In Figure 4 of the addendum, I have aligned all sequences from Figure 7 in the thesis 

including their amino acids to show variation between the reference gene found on GeneBank 

(DQ012941.1) and the accessions I tested of cultivated barley. Indicated by yellow highlight 

are changed in sequence or deletions which have resulted in frameshift mutations, thus 

changing the amino acid sequence. As previously mentioned, the sequences in this study did 

not include introns, and are therefore coding regions where any change to the coding region 

may cause a loss of function for the protein. The barley sequences in Figure A4 are expected 

to contain less variation than between barley and wheat because cultivated barley originated 

from wild barley and is a subspecies, however, this is not what we observed. While the wheat 

species only had one difference in sequence, the barley sequenced in our study had multiple. 
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This analysis is important because it may indicate the sequences in this study may not be 

accurate and should be retested. Low sequence quality such as this will also create changes to 

the phylogenetic tree (Fig. 8) in the results of the thesis. In the future, to check the reliability 

of the phylogenetic tree a reference sequence such as those in GeneBank should be added. 

Barley vs. Wheat: DREB1 mRNA 

Cultivated Barley (Top) 

 

Wheat (Bottom) 

 

DQ012941.1 CAAAACCAAGGCGGCGGCAGCGGGGTGGGAGAGCCGGGAGCACCGACCGACA-------- 52 

AF303376.1 CAAAACCAAGGCGGCGGCAGCGGGGCGGGAGAGCGGGGAGCACCGACCGACACCGGCCGA 60 

           ************************* ******** ***************** 

DQ012941.1 --CCGGGGGCTGCATGCGGAGCTG----------AGGCGAGGCGAGGAGAGATCCGGCGC 100 

AF303376.1 CAGGGTGGGCTGCATGCGGAGCTGAGGCGAGGCGAGGCGAGGCGGGGAGAGATCCGGCGC 120 

               * ****************** ********** *************** 

DQ012941.1 GGGTGCCACCGCCGCCCGCCCGCGGGAGATCTGGTTGGCGGCGCCGCCGCCCGGACAAGG 160 

AF303376.1 GGGTGCCACCGCCGGCCGGCCGCGGGAGATCTGGTTGGTGGCGCCGCCCGGATAAGGGAG 180 

           ************** *** ******************* ********* * * 

DQ012941.1 AAGCGGCCGCGGAGGCGGCGTGGGGCGAGCTGCCGGGGAGGCCGACGAAGCTAGAGGAGA 220 

AF303376.1 AGGCGGCGA------------GGGGAGAGCAGCCGGGGG--AGACCGAGGCGAGAGGAG- 225 

           * ***** **** **** ******* *** ** ******* 

DQ012941.1 TCTCTCTCTCCCTTCCTCCCTCCTCTTCCGCCTCGATGGAGACCGGGGGTAGCAAGCGGG 280 

AF303376.1 ---------ATCTCTCTCGTCCCTCTTCTCGCTCCATGGAGACCGGGGGTAGCAAGCGGG 276 

                      ** *** ******* *** ************************* 

DQ012941.1 AAGGAGACTGCCCCGGGCAGGAAAGGACGAAGAAAGTGCGCAGGAGAACCACTGGTCCAG 340 

AF303376.1 AAGGAGACTGCCCCGGGCAGGAAAGGAAGAAGAAAGTGCGCAGGAGAAGCACTGGTCCTG 336 

           *************************** ******************** ********* * 

DQ012941.1 ATTCGGTTGCTGAAACTATCAAGAAGTGGAAGGAGCAAAACCAGAAGCTCCAGCAAGAGA 400 

AF303376.1 ATTCGGTTGCTGAAACCATCAAGAAGTGGAAGGAGGAAAACCAGAAGCTCCAGCAAGAGA 396 

           **************** ****************** ************************ 

DQ012941.1 ATGGATCCCGGAAAGCGCCCGCCAAGGGTTCCAAGAAAGGGTGCATGGCAGGGAAAGGAG 460 

AF303376.1 ATGGATCCCGGAAAGCACCGGCCAAGGGTTCCAAGAAAGGGTGCATGGCAGGGAAAGGAG 456 

           **************** ** **************************************** 

 

 



44 
 

DQ012941.1 GTCCAGAGAATTCAAACTGCGCTTACCGCGGTGTGAGGCAGCGCACGTGGGGCAAATGGG 520 

AF303376.1 GTCCAGAGAATTCAAACTGCGCTTACCGCGGTGTGAGGCAGAGGACGTGGGGGAAATGGG 516 

           ***************************************** * ******** ******* 

DQ012941.1 TGGCTGAGATCCGTGAGCCCAACCGTGGCAACCGGCTGTGGCTTGGTTCATTCCCTACCG 580 

AF303376.1 TTGCTGAGATCCGTGAGCCCAACCGTGGCAATCGGCTGTGGCTTGGTTCATTCCCTACCG 576 

           * ***************************** **************************** 

DQ012941.1 CAGTCGAAGCTGCACGTGCATATGATGATGCCGCAAGGGCAATGTATGGCGCCACAGCGC 640 

AF303376.1 CAGTCGAAGCTGCACGTGCATATGATGATGCGGCAAGGGCAATGTATGGCGCCAAAGCAC 636 

           ******************************* ********************** *** * 

DQ012941.1 GTGTCAACTTCCCAGAGCATTCCCCAGATGCCAACTCTGGTTGCACGATGGCACCTTCAC 700 

AF303376.1 GTGTCAACTTCTCAGAGCAGTCCCCGGATGCCAACTCTGGTTGCACGCTGGCACCTCCAT 696 

           *********** ******* ***** ********************* ******** ** 

DQ012941.1 TGCTGACGTCTAATGGGGCAACCGCTGTGTCACATCCGTCTGATGGGAAGGATGAATCAG 760 

AF303376.1 TGCCGATGTCTAATGGGGCAACCGCTGCGTCACATCCTTCTGATGGGAAGGATGAATCGG 756 

           *** ** ******************** ********* ******************** * 

DQ012941.1 AATCTCCTCCTTCTCTTGTCTCAAATGCGCCGACAGCTGCGCTGCATCGGTCTGATGCCA 820 

AF303376.1 AGTCTCCTCCTTCTCTTATCTCAAATGCGCCGACAGCTGCGCTGCATCGGTCTGATGCTA 816 

           * *************** **************************************** * 

DQ012941.1 AGGATGAGTTTGAGTCTGCAGGGACTGTGGCGCATAAGGTGAAAACAGAAGTGAGCAATG 880 

AF303376.1 AGGATGAGTCTGAGTCTGCAGGGACCGTGGCACGTAAGGTGAAAAAAGAAGTGAGCAATG 876 

           ********* *************** ***** * *********** ************** 

DQ012941.1 ATTTGGGAAGTACCCATGAGGAGCACAAGGCCCTGGAAGTATTCCAACCAAAAGGGAAGG 940 

AF303376.1 ATTTGAGAAGTACCCATGAGGAGCACAAGACCCTGGAAGTATCCCAACCAAAAGGGAAGG 936 

           ***** *********************** ************ ***************** 

DQ012941.1 CTTTACATAAAGAAGCGAACGTAAGTTATGATTACTTCAACGTTGAAGAAGTTGTCGACA 1000 

AF303376.1 CTTTACATAAAGCAGCGAACGTAAGTTATGATTACTTCAACGTCGAGGAAGTTCTTGACA 996 

           ************ ****************************** ** ****** * **** 

DQ012941.1 TGATAATTGTGGAATTGAGTGCTGATGTAAAAATGGAAGCACATGAAGAGTACCAAGAGG 1060 

AF303376.1 TGATAATTGTGGAATTGAGTGCTGATGTAAAAATGGAAGCACATGAAGAGTACCAAGATG 1056 

           ********************************************************** * 

DQ012941.1 GCGATGACGGGTTTAGTCTTTTCTCATATTAGGGTTCTAGCTATGAGGGTTGTAGTCATG 1120 

AF303376.1 GTGATGATGGGTTTAGTCTTTTCTCATATTAGGGTTTTAGCTATGAGGGTTGCAGTCATG 1116 

           * ***** **************************** *************** ******* 

DQ012941.1 CGGAGCAATAGGGATAACTTCA-TTCTAGCTGCTAGGAAATACTTCAAATTATCTGCAAC 1179 

AF303376.1 CGGAGCAATAGGGATAACTTTCATTCTAGCTGCTAGGAAATACT---TCAAATCTGCAAC 1173 

           ******************** ********************* ********* 
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DQ012941.1 CTGAAGCTTTGTAGTCACTTATGGTTTTAATCTTACTGGAGAGAATAGCTTTATACCATA 1239 

AF303376.1 CCGAAGCTTTGTAGTCACTTATGGTTTTCATCTTACTGGAGAGAATAGCTTTATACCATA 1233 

           * ************************** ******************************* 

DQ012941.1 AGTCAACGGGTACAAGAAGTTGTCCTGTGTGTCGAGTTCATGTACTGTGGTAAAAATTGA 1299 

AF303376.1 AGTCAACGGGTACAAGAAGTTGTCCTGTGCGTTGAGTTCATGTACTATGGTAAAAGTTG- 1292 

           ***************************** ** ************* ******** *** 

Figure A2: DREB1 mRNA sequence in cultivated barley DQ012941.1 aligned with DREB1 

mRNA in wheat AF303376.1. Between the start and stop codons (green highlights) single 

nucleotide variation is evident (e.g. yellow highlights, no star in the third row). Some 

deletions and insertions are present in the 5’ and 3’ untranslated regions. 

 

Translations 

DREB1 Cultivated Barley (Top) 

DREB1 Wheat (Bottom)       

METGGSKREGDCPGQERTKKVRRRTTGPDSVAETIKKWKEQNQKLQQENGSRKAPAKGSK 60 

METGGSKREGDCPGQERKKKVRRRSTGPDSVAETIKKWKEENQKLQQENGSRKAPAKGSK 60 

*****************.******:***************:******************* 

 

KGCMAGKGGPENSNCAYRGVRQRTWGKWVAEIREPNRGNRLWLGSFPTAVEAARAYDDAA 120 

KGCMAGKGGPENSNCAYRGVRQRTWGKWVAEIREPNRGNRLWLGSFPTAVEAARAYDDAA 120              

************************************************************ 

 

RAMYGATARVNFPEHSPDANSGCTMAPSLLTSNGATAVSHPSDGKDESESPPSLVSNAPT 180 

RAMYGAKARVNFSEQSPDANSGCTLAPPLPMSNGATAASHPSDGKDESESPPSLISNAPT 180                              

******.***** *:*********:** *  ******.****************:***** 

 

AALHRSDAKDEFESAGTVAHKVKTEVSNDLGSTHEEHKALEVFQPKGKALHKEANVSYDY 240 

AALHRSDAKDESESAGTVARKVKKEVSNDLRSTHEEHKTLEVSQPKGKALHKAANVSYDY 240                  

*********** *******:***.****** *******:*** ********* ******* 

 

Figure A3: Translated protein sequences of DREB1 Hourdeum vulgare (cultivated barley) 

ABA08424.1 and Triticum aestivum (wheat) ABA08424.1 aligned. Turquoise highlighting 

indicates the AP2 DNA-binding domain amino acid sequence and yellow highlights indicates 

amino acids that are altered by mutations. The underlined region corresponds to the aligned 

sequences in Figures 7 and A4. 
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GeneBank Barley (DQ012941) 
 

AGGAGCAAAACCAGAAGCTCCAGCAAGAGAATGGATCCCGGAAAGCGCCCGCCAAGGGTTCCAAGAAAGGGTGCATG 

 

      E     Q      N     Q     K      L     Q      Q     E     N     G     S       R     K      A     P     A     K     G      S     K      K      G     C    Met 
GeneBank Wheat (AF303376.1) 
 

AGGAGGAAAACCAGAAGCTCCAGCAAGAGAATGGATCCCGGAAAGCACCGGCCAAGGGTTCCAAGAAAGGGTGCATG 

 

HS 83 (FS) 
AGGAGCAAAACCAGAAGCTCCAGCAAGAGAATGGATCC-GGAAAGGGCCCGCCAAGGGTTCCAAGAAAGGGTGCATG 

      E     Q     N     Q      K      L     Q     Q      E    N     G     S      G      K     G     P      P      R     V      P     R      K     G     A 
 

HS 80 (FS) 
AGGAGCAAAACCAGAAGCTCCAGCAAGAGAATGGATCCCGTAAAGCGCCC-CCAAGG-TTCCAAGAAA-GGGGCATG 

       E    Q     N     Q      K     L      Q     Q     E      N    G     S       R     K   A     P      P      R     F      Q      E      R    G      Met 
 

HS 99 (FS) 
AGGAGCAAAACCAGAAGCTCCAGCAAGAGAATGGATCCCGGAAAGCGCCC-CCAAGG-TTCCAAGAAAGGGTGCATG 

      E     Q      N    Q      K     L      Q     Q     E     N      G     S      R     K      A     P     P      R      F      Q    E    R   V    H  
 

HS 97 (FS) 
AGGAGCAAAACCNGAAGCTCCAGCAAGAGAATGGATCNNNNNNANNNNNNNNCAAGGGTTCCAAGAAAGGGTGCATG 

      E     Q      N       X     K    L      Q     Q     E     N     G     X              X X X X X                   K     G     S     K    K     G     C     M  
 

HS 98 
AGGAGCAAAACCAGAAGCTCCAGCAAGAGAATGGATCCCGGAAAGCGCCCGCCAAGGGTTCCAAGAAAGGGTGCATG 

      E     Q     N     Q      K     L     Q      Q     E     N      G     S     R     K    A     P     A     K    G     S     K      K     G     C       M  
 

HS 89 
AGGAGCAAAACCAGAAGCTCCAGCAAGAGAATGGATCCCGGAAAGCGCCCGCCAAGGGTTCCAAGAAAGGGTGCATG 

     E     Q      N     Q      K      L    Q      Q     E     N      G     S     R     K    A     P     A    K     G     S     K      K     G     C       M  
 

 

HS 81 (FS) 
AGGAGCAAAACCAGAAGCTCCAGCAAGAGAATGGATCGTGGAAAGCGCCCGCCAAGG-TTCCAAGAAAGGGTGCATG 

    E      Q     N      Q     K       L     Q      Q     E    N      G     S     W    K    A    P     A     K     V     P     R     K     G       A  
 

Figure A4: Partial sequences of cultivated barley from Figure 7 in results of thesis aligned 

with GeneBank reference sequence DQ012941 and AF303376.1. Yellow highlight indicates 

changes in barley reference sequence. (FS) indicated in each title represents a sequence 

containing a frameshift mutation. 

 

 PCR is an important tool in molecular biology; however, it is a process that can fail 

in a number of ways if not done properly. Weak bands, such as those seen in figure 5 of the 

thesis may be a result of various issues including degraded PCR primers, inaccurate 

concentrations, or inaccurate PCR settings (i.e. number of cycles or temperature). For example, 

if the denaturing time is too short, the DNA will not completely denature or if the annealing 

time is too short, the primers will not have enough time to bind to the template. Only bands 

https://web.expasy.org/cgi-bin/translate/dna_sequences?/work/expasy/tmp/http/seqdna.68437,3,1
https://web.expasy.org/cgi-bin/translate/dna_sequences?/work/expasy/tmp/http/seqdna.132805,3,1
https://web.expasy.org/cgi-bin/translate/dna_sequences?/work/expasy/tmp/http/seqdna.160863,3,1
https://web.expasy.org/cgi-bin/translate/dna_sequences?/work/expasy/tmp/http/seqdna.160863,3,25
https://web.expasy.org/cgi-bin/translate/dna_sequences?/work/expasy/tmp/http/seqdna.166531,3,1
https://web.expasy.org/cgi-bin/translate/dna_sequences?/work/expasy/tmp/http/seqdna.166531,3,25
https://web.expasy.org/cgi-bin/translate/dna_sequences?/work/expasy/tmp/http/seqdna.166531,3,1
https://web.expasy.org/cgi-bin/translate/dna_sequences?/work/expasy/tmp/http/seqdna.166531,3,25
https://web.expasy.org/cgi-bin/translate/dna_sequences?/work/expasy/tmp/http/seqdna.187704,3,1
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that are completely clear should be sent away for commercial sequencing to eliminate the 

chance of receiving inaccurate samples.  

 To conclude this addendum, it is important to acknowledge the importance of 

translating DNA sequences as it provides a quality check and is useful when finding amino 

acid changes that may be adaptive or detrimental to the function of a gene. Although variation 

was seen in the results of this thesis, a clearer result could be obtained by sampling all 119 

accessions rather than the 30 used in this study. Sequences should then be translated to 

determine any major changes to the amino acids and function of the gene. 


