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Man is a little germ that lives on an unimportant rock ball that revolves about a small star 

at the outskirts of an ordinary galaxy. ... I am absolutely amazed to discover myself on 

this rock ball rotating around a spherical fire. It's a very odd situation. And the more I 

look at things I cannot get rid of the feeling that existence is quite weird. 

_______________________________________________________________________  

 Alan Watts 
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Abstract 

 

The Origins and Fate of Archaeal Intact Polar Lipids in Hydrothermally Altered 

Sediments of Cathedral Hill, Guaymas Basin, Gulf of California 

By Jeremy N. Bentley 

 This study provides a survey of archaeal intact polar lipids (IPLs) and core lipids 

(CLs), focusing on archaeal lipids extracted from surface sediments within a push core 

transect that was collected at the Cathedral Hill hydrothermal vent complex in Guaymas 

Basin, Gulf of California. The main objectives of this study were to: 1) detect the 

subsurface microbial communities present, 2) determine the thermochemical stability of 

the lipids and, 3) evaluate if the thermochemical stability of these molecules influence 

lipid-based proxies used for the reconstruction of environmental change. In this study, a 

lipidome was detected providing evidence for the presence of archaeal communities that 

extend to sediment depths at ~145°C. These conditions are currently outside the known 

habitability of life. Evidence is provided that the archaeal communities adapt to the harsh 

conditions by modifying the core lipid structures of their cellular membranes. However, 

this adaptability appears to also impact the lipid-based proxies that are used to reconstruct 

present and past environmental conditions. These results suggest that an overprinting of 

original allochthonous signals is possible.     
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Structure of Thesis 

 

This study is comprised of four Chapters: Chapter 1 offers an outline to this 

thesis, providing background knowledge of the study area and key objectives. Chapter 2 

describes the bulk of the organic geochemistry regarding the lipids that were found within 

the Cathedral Hill hydrothermal vent complex. This Chapter represents a stand alone 

manuscript that will likely be coupled with other data from a complementary study to 

produce a more robust paper. The submission of this manuscript to a publisher will be 

determined once the complementary study is complete. Chapter 3 describes the 

overprinting of molecular signatures that are frequently used in numerous molecular 

proxies. Since Chapters 2 and 3 are prepared as separate and independent manuscripts for 

journal submission, there is overlap between these two chapters. This is most noticeable 

with the introductions and methodology. Chapter 4 provides a brief summary of the key 

findings of this study and outlines future work.   
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Chapter 1: Introduction and background information 

1.1. Introduction 

 

1.1.1. General introduction  

 

The deep ocean sediments are one of the most extensive microbial habitats on the 

planet, covering approximately 66% of the Earth’s surface and extending downwards to 

approximately 4 km (Roussel et al., 2008). Single celled microorganisms from the 

domain of Archaea are thought to make-up a majority of the subsurface communities 

(representing ~ 87 %; Lipp et al., 2008). Along with the marine subsurface, Archaea are 

dominant components of the microbial biosphere in many other settings such as in soils, 

water columns of lakes and rivers, swamps, bogs and oceans, as well as in the sediments 

of these aquatic environments (Offre et al., 2013). The ubiquitous nature of Archaea may 

be related to the resiliency of these organisms based on their ability to survive in some of 

the most inhospitable settings, such as hot springs and hydrothermal vents (Erauso et al., 

1993; Pearson et al., 2004). Archaea found in these extreme environments have been used 

as case studies to define the limits of life on Earth (Blöchl et al., 1997; Kashefi & Lovley, 

2003; Takai et al., 2008). These studies are mostly based on culture experiments that 

often neglect, or cannot experimentally mirror, the complexity of natural environmental 

conditions.  

To target microbial community dynamics within the natural environment, 

genomics-based techniques are frequently employed. These approaches amplify the 

extractable DNA of host sediment cells via polymerase chain reactions and match the 

resulting product DNA to gene libraries (Cann and Ishino, 1999). The result is a highly 

diverse phylogenetic tree that shows the genetic relationship between the detected 
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microbial taxa. These techniques can be scaled to reconstruct community compositions 

and metabolic or other biochemical activity by utilizing quantitative PCR and 

metagenomics strategies. These techniques are limited, however, in that they still 

represent an amplified signal that may not be representative of the actual natural habitat. 

Alternative approaches that focus on the cellular membrane constituents may be used to 

further define the upper limits of life. These approaches have less diagnostic information, 

but may provide key components (information) that are not possible with genomics.   

The cellular membranes of Archaea can be found as both intact polar lipids (IPLs) 

and core lipids (CLs). Both of these compounds, either unmodified (in the case of IPLs). 

Alternatively and more commonly CLs, when found in sediments are the diagenetically 

modified components which can become fundamental molecular markers of sedimentary 

organic matter due to their relatively high preservation potential. IPLs are composed of a 

CL chemically bound to a polar head group (Figure 1.1). When IPLs are found in the 

geosphere, they are considered to be sourced from cells living within the porewaters and 

on the surfaces of sediment grains (Sturt et al., 2004). Upon cell lysis under ambient 

conditions, the polar head-groups quickly hydrolyze within days to weeks to yield more 

stable CLs (White et al., 1979; Harvey et al., 1986). Both IPLs and CLs are an attractive 

set of molecules to study, as they can be taxonomically distinct in the biological sense and 

useful in potentially reconstructing organic matter source inputs and environmental 

conditions. Along with taxonomic information that may be useful to establish 

environmental conditions, archaeal-based lipid proxies have been used to both make 

inferences about current and paleoenvironmental conditions. These proxies will be further 
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discussed in Chapter 3. Furthermore, these lipids may also be used to address the 

habitable range of life as direct products of cellular activity.  

 

 

Figure 1.1 – Components of an IPL (1G-GDGT) showing a polar head group (1G or monoglycosidic 

headgroup) attached to a core lipid (GDGT) via an ether bond to the glycerol unit. This example contains 

two isoprenoidal hyrocarbon skeletons, ether bonded to the glycerol units.  

 

This study primarily evaluates the diversity of archaeal lipids in a push core 

transect at a hydrothermal vent complex called Cathedral Hill within the Guaymas Basin, 

Gulf of California (Figure 1.2 A&B). We analyzed the sediments collected at depth and 

across the transect. This hydrothermal system provides a unique look into a highly 

productive subsurface that is a result of an influx of nutrients from vent fluids that 

produce elevated temperatures upwards of 155°C, which is currently out of the known 

habitability of Archaea.  
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Figure 1.2 – A) View from the deep submergence vehicle (DSV) Alvin. Photo (A) taken from the 

submersible observation window showing the microbial mat present at Cathedral Hill with push cores 

pressed into the ocean floor sediments. B) - Schematic of the push core transect (the numbers are the ones 

assigned to the cores for reference). 

 

 

 



 

5 

 

1.1.2. Objectives 

 

The main objectives for this thesis are to answer the following questions: 

 

1) Can a subsurface microbial community at Cathedral Hill be detected using lipidomic 

techniques? If so, what can be learned about the community composition and the 

environmental controls that may limit its habitat? 

 

2) What is the thermochemical stability of detectable polar lipids that are exposed to 

elevated vent pore water temperatures, and are the structures of those lipids preferentially 

selected by their surrounding environment?  

 

3) Are lipid-based paleoclimate proxies influenced by hydrothermal subsurface sediment 

pore water temperatures? If so, to what degree does this occur and can constraints on the 

valid use of these proxies be defined?  

 

1.2. Lipid signatures in sediments 

 

Lipidomics is the comprehensive study of membrane lipid constituents. In this 

study, we focus on the archaeal membrane lipids extractable from ocean floor sediments. 

Lipids comprise the fundamental building blocks of cellular membranes that are 

responsible for providing structural rigidity and storage of energy to the cell. 

Environmental lipidomic studies are often used to characterize the in situ microbial 

communities in sediments to either identifying present-day environmental conditions, or 
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to generating paleo-environmental reconstructions (Schouten et al., 2013; Wörmer et al., 

2017). Both the head group and the CL may be useful in describing the type of 

environment that may have ultimately played a role in the production of the molecule of 

interest. These molecules may be unique based on the conditions they are subjected to, 

and may often provide information on metabolism (Lipp & Hinrichs, 2009). Lipids 

provide valuable information, but when they are combined with other data sources, such 

as geochemical analyses or genomic analyses, the combined results tends to result in a 

more robust study.  

The detection of lipids in environmental settings is a function of preservation and 

the analytical method chosen. The stability of an IPL is determined by the chemical 

structure of a lipid and its exposure to chemical and biological reactants from the external 

environment. In this regard, the lifespan of IPLs are often limited by the bond strength 

and potential chemical reactivity of the lipid’s head group. In this regard, the head group 

linkage occurs either as an ester- or ether-bond to the glycerol of the core lipid. Studies 

have found that ester-bonded headgroups degrade more quickly than ether-bonded lipids 

(Schouten et al., 2010, Logemann et al., 2011). Nevertheless, when an IPL degrades there 

is still a high probability that the CL will survive. Therefore, the production of archaeal 

CLs often occurs after a cell’s death, when the individual lipids that make up the cellular 

membrane separate from one another and the head groups are no longer attached (White 

et al., 1979). The resulting CLs that are incorporated into sediments are often referred to 

as “geo-lipids” or “fossil lipids”. 

The next three sections will briefly describe the differences between lipid 

membrane chemical signatures associated with archaeal, eukaryotic, and bacterial cells. 
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Their initial biological structures dictate the types of molecules that can be produced in an 

environment such as a hydrothermal vent system. Detailed descriptions of these 

molecules can be found in Chapter 2.     

 

1.2.1. Archaeal signatures 

 

Archaea are often composed of membrane-spanning (monolayer) lipids unlike 

bacterial or eukaryotic membranes that are often composed of lipid bi-layers. The 

signatures produced from Archaea are further distinct from that of a bacterial and 

eukaryotic signatures by being composed of hydrophobic chains of isoprene units rather 

than acyl (C2) units. In this regard, archaeal IPLs often occur as tetraethers containing two 

biphytanes, but can also occur as diethers with two phytanyl chains. The polar head 

groups for archaeal lipids tend to be either glycosidic or phosphate based or potentially a 

mix of both (Rossel et al., 2008, Schouten et al., 2008, Strapoc et al., 2008). This limits 

the potential outcomes that may occur in our analysis as the diversity of head groups may 

be limited when investigating archaeal lipids. If an archaeal IPL containing a tetraether is 

hydrolyzed, the core lipids are liberated from the head groups forming glycerol-dialkyl-

glycerol-tetraethers or GDGT’s, one of the most common markers for Archaea (Figure 

1.1; De Rosa & Gambacorta, 1988, Schouten et al., 2013). These molecules have been 

studied extensively as they tend to be the most abundant archaeal lipid present in marine 

sediments (Gliozzi et al., 1983; Kate 1993; Hanford & Peeples 2002; Pancost et al., 2009; 

Lipp et al., 2008; Schouten et al., 2013).  
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Due to the variable chemical complexities, their ubiquity, and ease of analytical 

detection, the different classes of GDGT biomolecules have been used to form a wide 

range of lipid-based indexes based on archaeal membrane adaptations that allow for better 

understanding of environmental conditions. These proxies have been used to reconstruct 

paleo-climate records (Schouten et al., 2002), anaerobic oxidation of methane (AOM; 

e.g., Zhang et al., 2011), or environmental stresses such as increased pH, redox, and 

salinity (Gliozzi et al., 1983; Quinn et al., 1986; Macalady et al., 2004; Pearson et al., 

2004). The resilience of these proxies when applied to extreme sedimentary environments 

will be discussed in greater detail in Chapter 3.  

 

 

1.2.2. Bacterial signatures 

 

The Cathedral Hill hydrothermal vent site in Guaymas Basin is host to microbial 

mats that contribute bacterial IPLs to the sediments. These microbial mats are composed 

dominantly of Beggiatoa, which are sulfur oxidizing filamentous bacteria that are on the 

order of 25-35 µm in width, with some of the largest widths being around 120 µm 

(Nelson et al., 1989, MacGregor et al., 2013, Teske et al., 2016). These mats tend to range 

in thickness from 1-10 cm, extending into the subsurface with root like structures that 

provide stability; however, these mats can often form permeability barriers, which 

prevent the exchange of both fluids and gasses from the subsurface (Judd & Hovland, 

2007). These mats migrate upwards to avoid burial from the rapid sedimentation rate and 

continually re-establish themselves at the surface of the seafloor (Mckay et al., 2012).  

The majority of bacterial lipids are ester bound, which is less stable and limits the thermal 
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stability of these molecules. This means that bacterial signatures should be excluded in 

areas that experience sufficiently elevated temperatures.  

The mats at Cathedral Hill have been studied fairly extensively, because they 

show unique variations in color. This color sequence is due to a pigment within a filament 

in the mats (McKay et al., 2012, McGregor et al., 2013). However, there are some debates 

on the mechanism that creates this change in color. McKay et al. (2012) suggests that the 

color is related to a temperature process because the orange portion of the mats tend to be 

closer in proximity to the vent edifice. However, there is also speculation that it is related 

to a metabolic pathway, and that the color is due to the storage of elemental sulfur within 

vacuoles.   

 

1.2.3. Eukaryotic signatures 

 

Eukaryotes produce an array of lipids that serve various functions. Some examples of 

the biota responsible for eukaryotic lipid signatures include: terrestrial plants (e.g. waxes), 

heterokonts, Apicomplexa, diatoms, dinoflagellates, ciliates, Acantharea, other 

Radiolaria, and many others (Volkman & Johns, 1977; Edgcomb et al., 2002). However, 

the vast majority of marine organic matter is created by phytoplankton (Romankevich, 

1984). A common marker for these organisms are chlorophylls, which become deposited 

and incorporated in the sediment. Chlorophyll likely comes from the upper water column, 

as deeper benthic organisms would not be capable of photosynthesis due to the water 

depth.  
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1.3. Geological setting 

 

Guaymas Basin in the Gulf of California (Figure 1.3) is a large marginal rift 

between Baja California and Mexico formed by crustal extension between the Pacific and 

the North American plate boundaries (Lonsdale and Becker, 1985). This area has been 

actively spreading over the last 4 million years forming a series of smaller subbasins 

(Moore, 1973). Guaymas Basin is semi-enclosed, roughly in the middle of the Gulf of 

California, approximately 240 km in length and 60 km wide, and reaches depths between 

1500-2000 m. The basin contains “Northern” and “Southern” troughs (Figure 1.4) that 

span approximately 40 and 20 km in length, respectively, and are a result of the extensive 

system of axial-parallel fault lines, which bound the troughs (Lonsdale and Becker, 

1985). These troughs allow for the intrusion of basaltic sills into the sediments that 

perturb the heat-flow gradients of the larger surrounding area (Einsele et al., 1980; Teske 

et al., 2013). Studies have provided a range for the sediment thickness overlying the 

intrusive magmatic bodies of 300-500 m (Curray et al., 1979; Williams, 1979; Judd & 

Hovland, 2007). 

The Cathedral Hill vent system is considered a sedimented hydrothermal system 

(Teske et al., 2014), resulting in the hydrothermal fluids propagating more diffusely 

through shelf sediment rather than faults that intersect the basaltic ocean floor as is 

observed with the Lucky Strike ridge segment near the Mid-Atlantic Ridge (Escartin, 

2015) or the Lost City hydrothermal field (Kelley et al., 2005). For Guaymas Basin, most 

of the active hydrothermalism occurs within the Southern Trough (Lonsdale and Becker, 

1985).  Cathedral Hill represents one of many vent sites in the Southern Trough, that is 
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covered by a microbial mat (Teske et al., 2016). The push cores obtained for this study 

extend outward from the central vent complex into more distal sediments. Unfortunately, 

the descriptions for these cores are only basic description of their stratigraphy (Appendix 

A-2). However, there are no 

indications from these core 

descriptions that would indicate a 

large influx of sediments into the 

systems such as turbidites deposits. 

Thus the sedimentation is likely to 

be defined by normal 

sedimentation processes.     

Figure 1.3 - Map of the Gulf of California, showing the tectonic regime (Castillo et al., 2002). 

 

A) B)

 

Figure 1.4 - Seafloor map of the Southern Trough in Guaymas Basin (A), Cathedral Hill is highlighted in 

yellow (B) (modified from Teske et al. 2016).  
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1.4. Sediment influx  

 

The Guaymas Basin experiences high sedimentation rates (Curray et al., 1979; 

Gieskes et al., 1988) from the run-off of five major rivers that accounts for 50-90% of the 

total sedimentation along the eastern margin of the central and southern Gulf (Williams et 

al., 1979; Dean, 2006). Sediment is also produced by the deposition of organic matter in 

the highly productive water column mainly by diatoms and coccoliths (Figure 1.5; 

Williams et al., 1979). With all of this input, the organic carbon content in the Guaymas 

Basin is thought to be approximately 3-4% in surficial sediments (De la Lanza-Espino 

and Soto, 1999). Biological life on the seafloor or within the shallow sediment may also 

affect the organic matter content and volume through biodegradation and through the 

inevitable death and burial of the sediment macro and microfauna. The sedimentation rate 

within the Guaymas Basin is variable and not well constrained, with reported rates 

ranging from 0.4-2cm/yr (Calvert, 1966; Williams, 1979; Simoneit, 1985). Direct 

measurements of sedimentation rates at Cathedral Hill have not been made.  

Figure 1.5 - Images of a smear slide produced for the surface of Core 3 (plane polarized light), showing a 

radial centric diatom (left) and a silicoflagellate and sponge spicules with diatoms (right). 

 

50µm

50µm
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1.5. Hydrothermal vent fluid chemistry 

 

Hydrothermal vent fluids bring an array of dissolved ions and neutral molecules 

from depth to the surface where they may interact with the biological activity occurring at 

or near the seafloor. This chemical influx likely support the in situ biological systems in 

the subsurface sediments by supplying the right nutrients for chemotrophic life; it may 

also affect the surrounding rocks and sediments, altering them chemically (Gartman et al., 

2014). These reactants can provide metabolic energy and fixed carbon for microbial 

communities to thrive (McCollom & Seewald, 2007). Dombrowski et al. (2017) suggests 

that there are biogeochemical interdependencies in organic matter utilization for systems 

within Guaymas Basin microbial communities, as determined by metagenomics 

assemblages. The presence of these assemblages suggests that there could be hydrocarbon 

degradation and sulfur cycling at Cathedral Hill.   

There has been some documentation of hydrothermal fluid chemistry in Guaymas 

Basin. Studies such as Dick et al. (2009) and Dick & Tebo (2010) show that these fluids 

are enriched in NH4
+, CH4, Mn2+ and low molecular weight hydrocarbons CnH2n+1. They 

also indicate that sulfide forming metals such as copper and iron are often precipitated out 

and removed resulting in high Mn/Fe ratios within these fluids. Even so, little is known 

about how microbial communities respond to the influx of energy sources and nutrients 

such as H2, NH4
+, CH4, H2S, Fe2+, Mn2+ and many others. 

The temperature achieved by these fluids drastically impacts the life that is present 

at these types of systems. A study by Blöchl et al. (1997) extended the upper limit of life 

by finding Archaea that could persist at temperatures upwards of 113oC at the Mid 

Atlantic Ridge. This is a noteworthy study, because previously it was thought that 
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biological life would be pasteurized at such high temperatures. More recent culture 

experiments by Kashefi & Lovley (2003) have extended the upper limit of life to 121°C 

demonstrating life’s (archaea) surprising temperature resilience well into temperatures 

traditionally regarded as within the catagenic zone (60°C – 225°C; Tissot & Welte 1984) 

of hydrocarbon generation.   

 

1.6. Methods 

 

 

1.6.1. Push core sampling 

 

A transect of push cores, of ~2 m spacing, was collected at the Cathedral Hill 

hydrothermal vent system in Guaymas Basin, Gulf of California (Figure 1.2 A&B). These 

push cores were collected by DSV-2 Alvin, a manned submersible from the Woods Hole 

Oceanographic Institution (WHOI) on Dive 4462 (10/22/08). The push cores are labeled 

Cores 5, 6, 3, and 8.  The cores 5, 6, and 3 trend outboard from the vent complex, but are 

still within the region covered by the microbial mat, and Core 8 was collected furthest 

away from the vent within ambient temperatures and exterior to the mat. Accompanying 

these push cores are in situ pore water temperature measurements obtained by a thermal 

probe inserted into the sediments directly adjacent to each push core. Once the samples 

were collected they were subsampled into 2-3 cm intervals and immediately stored at 

−80°C.  The subsamples were then freeze-dried, homogenized, and kept at −80°C until 

extraction. 
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1.6.2. Sediment extraction 

 

 Chemical extractions to isolate lipids have been done for decades, and initial 

protocols were first developed by Bligh & Dyer (1959). This liquid-liquid extraction 

method was first developed to isolate lipids from fish; however, with slight modification 

of the solvent mixes, as outlined by Sturt et al. (2004), lipids from sediments can be 

isolated. The principle idea of a chemical extraction is to isolate a molecule of interest, in 

this case IPLs and CLs of bacteria and archaea. This is done by using two immiscible 

liquid phases to distribute sample components of interest (Cantwell & Losier, 2002).  

All samples were extracted using the modified Bligh and Dyer protocol after Sturt 

et al. (2004; Figure 1.6). Prior to extraction, the samples were spiked with a recovery 

standard (1-alkyl-2-acetoyl-sn-glycero-3-phosphocholine (PAF); Avanti Polar Lipids, 

Inc.). The samples were then extracted in six steps using 3 different solvent mixtures. For 

the first four steps, solvent mixtures of methanol/dichloromethane/buffer [2:1:0.8; v/v] 

were used. The first two steps used a phosphate buffer (5.5g/L Na2HPO4; Avantor 

Performance Materials, LLC.) adjusted to pH of 7.4 with HCl (Anachemia Co.), while the 

third and fourth steps employed a trichloroacetic acid buffer (50 g/L C2HCl3O2; Avantor 

Performance Materials, LLC. (pH of 2)). The final two steps used a solvent mixture of 

methanol/dichloromethane [5:1; v/v]. Each extraction step used 6 ml of solvent mixture, 

which was sonicated for 5 minutes and centrifuged down for 5 minutes. After each 

extraction step, the solvent was decanted and combined in a separation funnel. Once all of 

the isolates from each step were combined, the extract was then purified with milliQ 
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water (Figure 1.6) and evaporated until dryness under a gentle steam of nitrogen while 

being heated at ca. 60°C. The resulting total lipid extract (TLE) was then spiked with 1, 

2-diheneicosanoyl-sn-glycero-3-phosphocholine (C21-PC; Avanti Polar Lipids, Inc.; for 

quantification) and subsequently stored at -20°C until time of mass spectral analysis. 

 

Figure 1.6 - The full protocol for the modified Bligh & Dyer extraction (left), An example of phase 

separation (right) 

 

1.6.3. Liquid chromatography and mass spectrometry  

 

High performance liquid chromatography (HPLC) is an analytical technique 

used to separate molecules, allowing them to be individually identified and quantified. 

The separation principle of an HPLC is based on the distribution of a sample between the 

mobile phase and the stationary phase or column. This allows for the sorting of molecules 
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as some molecules are slowed as they pass through a stationary phase before entering 

some form of detector, allowing for systematic change with retention time.   

For our study, a reverse phase electrospray ionization (ESI) method with a 

scan range from 100-3000 m/z was chosen due to its ability to obtain simultaneous 

analysis of core lipids (CLs) and intact polar lipids (IPLs) of archaeal lipids. An aliquot of 

each sample representing 1% of the TLE was analyzed using an Agilent Technologies 

1260 Infinity II HPLC coupled to an Agilent Technologies 6530 quadruple time-of-flight 

mass spectrometer (qToF-MS). Separation was achieved following the method described 

by Zhu et al. (2013) using an Agilent Technologies ZORBAX RRHD Eclipse Plus C18 

(2.1 mm × 150 mm × 1.8 µm) reverse phase column, fitted with a guard column and 

maintained at 45°C. The flow rate was set to 0.25 mL/min. and the gradients were: mobile 

phase A (methanol/formic acid/ammonium hydroxide [100:0.04:0.10] v/v held at 100%  

for 10 min., followed by a linear gradient to 24% mixing with mobile phase B (propan-2-

ol/formic acid/ammonium hydroxide [100:0.04:0.10] v/v extending for 5 min., a linear 

gradient to 65% B for 75 min., followed by 70% B for 15 min., that finished by re-

equilibrating with 100% A for 15 min. The injection solvent was methanol. This reverse 

phase method produces chromatograms that start with molecules that are more polar and 

become less polar over the duration of the sample run.  

 

 

1.6.4. Identification and quantification of lipid concentrations  

 

Analyte identification was achieved by the interpretation of diagnostic ion and 

their fragmentation patterns (e.g., Knappy et al., 2009; Liu et al., 2010; Yoshinaga et al., 

2011) using Agilent Technology’s MassHunter software. Quantification was achieved by 
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summing the integration of peak areas of adducts [M+H]+, [M+NH4]+, and [M+Na]+ for 

the respective lipid class of interest. Once the integrated peak areas were determined for 

each lipid class of interest, concentration values were obtained relative to the internal C21-

PC standard and reported in µg/g dry weight sediment (concentration formula below).  

 

Ccomp. = Mstd. × Acomp. / Astd. × Msed  

 

Where the variables are: 

Ccomp. = concentration of compound [µg/g sed. dw.] 

Mstd. = mass of standard [µg] 

Acomp. = area of compounds peak 

Astd.  = Area of standard peak 

Msed. = Dry weight (dw.) of sediment [g] 

 

After concentrations were calculated a response factor was applied to the lipid 

class of interest as the ionization potential for lipid classes changes due to its chemical 

structure. Thus, these response factors were determined by a series of injections of 

standard solutions containing; 1,2-diacyl-3-O-(α-D-galactosyl1-6)-β-D-galactosyl-sn-

glycerol (DGDG), 1,2-diacyl-3-O-β-D-galactosyl-sn-glycerol (MGDG), 1-alkyl-2-

acetoyl-sn-glycero-3-phosphocholine (PAF), 1,2-di-O-phytanyl-sn-glycerol (Archaeol), 

1',3'-bis[1,2-dimyristoyl-sn-glycero-3-phospho]-glycerol (14:0 Cardiolipin), 1,2-

diheneicosanoyl-sn-glycero-3-phosphocholine (C21-PC) from Avanti Polar Lipids, Inc., 

USA, and  2,2’-di-O-decyl-3,3’-di-O-(1’’,ω’’-eicosanyl)-1,1’-di-(rac-glycerol) (C46-

GTGT) from Pandion Laboratories, LLC) in amounts ranging from 100 pg to 30 ng. 

Concentrations of the standard mix were calculated from peak areas of molecular ions in 
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mass chromatograms. Response factors were calculated relative to C21-PC, and the 

appropriate correction factor was applied to the particular lipid class of interest. 
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Abstract  

 A survey of intact polar lipids (IPLs) and core lipids (CLs) with a particular focus 

on archaeal lipids was conducted on a push core transect at the Cathedral Hill 

hydrothermal vent complex. This study was conducted by extracting sediments using a 

modified Bligh and Dyer extraction protocol and analyzing the resulting extract on an 

HPLC-QTOF-MS. Lipids were identified based on their elution patterns and mass 

spectral fragmentation as outlined in the literature. The IPLs from archaea, specifically 

monoglycosyl glycerol dialkyl glycerol tetraethers (1G-GDGTs), were identified 

indicating that archaeal communities extend into intervals that experience ~145°C, which 

is currently outside the known habitability range for life. This findings was supported by 

indications that these communities were adapting to the extreme conditions. For example, 

the ring index of 1G-GDGTs shows a preferential selection of core structures containing 

either GDGT-3, 4 or 5’, which is likely as an adaptation strategy influence by lipid 

packing. Similar trends have been observed in the core lipid that are found in the 

sediments. Additionally this study suggests that GDGT recycling or assimilation occurs 

within the sediments of Cathedral Hill.   

 

Highlights  

 

1 – Archaeal intact polar lipids found at Cathedral Hill are limited to mono and 

diglycosidic head groups, ultimately showing a lack of diversity in IPLs within the 

system.   

 

2 – The ring index for both IPLs (modified ring index) and core GDGTs show an 

adaptation to the environmental stresses, by increasing ring moieties. 

 

3- 1G-GDGTs show a preference for GDGT-3, 4 and 5’ in samples that experience 

elevated heat, which is likely related to lipid packing.   

 

4 - 1G-GDGTs are found at ~145°C, potentially pushing the boundary for life. 
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1. Introduction 

 

Signature lipids, such as phospho- and glycolipids are fundamental 

components of cellular membranes. These lipids are incorporated into soils and sediments 

from organisms living within the substrate or are components from senescenced cells that 

have been deposited as a component of immature sedimentary organic matter (Killops 

and Killops, 2005). Membrane lipid contributions in sediments are sourced from the three 

domains of life (Archaea, Bacteria and Eukarya). The membrane lipids of Archaea 

fundamentally differ from that of Eukarya and most bacteria in their structural 

configuration. For example, archaeal membrane lipids are composed of isoprenoidal 

phytanyl or biphytanyl hydrocarbon skeletons that are connected via ether bonds to a 

glycerol backbone (Koga et al., 2007). Alternatively, the membrane lipids of Eukarya and 

most bacteria are composed of acyl hydrophobic tails that are ester bound to a glycerol 

(White et al., 1992). Both ether and ester bonds help stabilize the lipid’s hydrocarbon 

skeleton. However, ester bound lipids are less thermodynamically and kinetically stable. 

As such, the structural configuration of a cellular membrane plays an integral role in the 

stability of a membrane when exposed to environmental stress (Chang, 1994). Many 

Archaea also tend to form monolayers instead of lipid bilayers membranes, which are 

prominent in bacteria and Eukarya. The presence of a membrane-spanning lipid or 

monolayer allows for tighter packing of the cellular membrane, which increases the 

rigidity of the membrane itself (Vieille, & Zeikus, 2001; Gliozzi et al., 2002; Jeworrek et 

al., 2011). 

 Lipidomic studies tend to focus on both intact polar lipids (IPLs) and core 

lipids (CLs), which ultimately represent two different pools of life, the living (IPLs) and 
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the dead or fossil lipid (CL). This is due to the nature of the polar headgroups of IPLs, 

which are only stable for days to several weeks in the environment outside a living cell 

(Sturt et al., 2004; Lipp et al., 2008; Lipp and Hinrichs, 2009; Huguet et al., 2010). With 

such short longevity, these labile compounds represent diagnostic biomarkers of living 

microorganisms in sedimentary environments. IPLs are therefore commonly used to track 

the habitable range and thermal limits of the deep biosphere (Biddle et al., 2006; Lipp et 

al., 2008; Lipp and Hinrichs, 2009; Sollich et al., 2017). The archaeal communities appear 

to adapt their core lipids structures to the high temperature conditions of the surrounding 

environment (Gliozzi et al., 1983; De Rosa and Gambacorta, 1988) and these lipids may 

become preserved as fossil geolipids after cell death. Additionally, core lipids may be 

deposited from the water column and subsequently buried and preserved.  

The thermochemical stability of a lipid ultimately determines its preservation 

potential. The potential for lipids to be preserved in sediments is much greater compared 

to the potential of carbohydrates, proteins, and simple to complex nucleic acids such as 

DNA, which are rather labile in nature. However, the amount of information that can be 

obtained out of an organism from its lipids is limited when compared to more detailed 

RNA and DNA signatures. This is mainly due to the biosynthesis of lipid classes 

overlapping across multiple phyla. Thus, it is not possible to fully constrain living 

subsurface communities with lipidomics alone.    

Guaymas Basin has been an area of interest for a number of microbiological 

studies, as vent complexes that are dominated by microbial mats are present within the 

basin and at our study area of Cathedral Hill (Canganella et al., 1998; McKay et al., 2012; 

Meyers et al., 2013). However, for a comprehensive overview of the basin and the biota 
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present, specifically within the Southern Trough region, the reader is referred to Teske et 

al. (2016).   

Archaeal core lipids in Guaymas Basin have been investigated by Schouten et 

al. (2003) who documented the distribution and isotopic compositions of GDGTs, finding 

that anaerobic oxidation of methane by methanotrophic Archaea occurs in the subsurface 

and hot sediment layer of active hydrothermal sites. This indicates that thermophilic 

Archaea in the area are capable of oxidizing methane at temperatures greater than 30°C. 

Another study is by McClymont et al. (2012), who used sediment traps to reconstruct sea 

surface temperatures (SST) which have demonstrated that seasonal variations occur 

within glycerol dialkyl glycerol tetraethers (GDGTs) based proxies. Additionally, 

degradation products of GDGTs in Guaymas Basin samples were determined by Liu et al. 

(2016), showing the plausible degradation pathways from glycerol ethers to isoprenoidal 

fatty acids.  

This study investigates the stratigraphic trends of archaeal lipids, and to a 

much lesser extent, bacterial and eukaryotic lipid diversities observed within a push core 

transect collected at the Cathedral Hill hydrothermal vent system at Guaymas Basin, Gulf 

of California. This transect traverses a wide range of pore water temperatures that result 

from mixing of the hydrothermal vent fluids that have been reported to reach up to 350°C 

(Campbell et al., 1985; Haberstroh & Karl, 1989; Teske et al., 2014) with cold 2°C ocean 

bottom waters. High sedimentation rates coupled with high upper water column 

productivity have resulted in near uniform accumulations of organic-rich sediments 

(Calvert, 1966; Gieskes et al., 1988; Williams et al., 1979). The sediments of this transect 

enable assessment of organic matter preservation and microbial community structure 

through a system that experiences similar inputs from sedimentation. However, the 
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sediments experience vastly different subsurface geochemical conditions that are largely 

driven by exposure to hydrothermal vent fluids and the associated high temperatures. In 

addition to potentially identifying community differences, the thermal stability of these 

lipid classes are also evaluated in a natural setting. This study attempts to shed light on 

the upper limits on the thermostability of these lipids, which may be useful in better 

understanding the upper temperature limits of life.  

 

2. Material and methods 

 

2.1. Samples  

 

A transect of four push cores sampled at ~ 2 m spacing was collected at 

Cathedral Hill (27°0.629’ N, 111°24.265’ W), within the Guaymas Basin, Gulf of 

California at a water depth of approximately 2000 m using the DSV-2 Alvin, a manned 

submersible from Woods Hole Oceanographic Institution (WHOI) on Dive 4462 

(10/22/08). Accompanying these push cores was also the collection of in situ thermal-

probe measurements collected every 5 cmbsf. These data points were then extrapolated 

linearly producing the thermal model for the system (figure 2.1). Once collected, the push 

cores were sectioned into 2-3 cm intervals. The sediments were transferred to combusted 

glass vials stored at −80°C until samples could be freeze-dried and again stored under the 

same refrigerated conditions.  



 

31 

 

 

Figure 2.1- Reconstructed temperature model generated from in situ temperature 

measurements using a thermal probe. Horizontal position is approximately over an 8 m 

distance, but exact lateral position of the cores is not accurate. Dots represent the middle 

of the depth interval for each sample. 

 

2.2. Sample extraction 

 

Each dry-powdered, sediment sample was homogenized and spiked with an 

internal standard (1-alkyl-2-acetoyl-sn-glycero-3-phosphocholine (PAF)) prior to 

extraction by a modified Bligh and Dyer (MBD) protocol as outlined in Sturt et al. 

(2004). Lipids were extracted in six steps with varying solvent mixtures. The first four 

steps were performed with ~ 6 ml of methanol/dichloromethane/buffer [2:1:0.8; v/v] with 

steps one and two employing a phosphate buffer (5.5g/L Na2HPO4 adjusted to pH of 7.4) 

and steps three and four using a trichloroacetic acid buffer (50 g/L C2HCl3O2 with a pH of 

2). The final two steps used a ~ 6 ml methanol/dichloromethane [5:1; v/v]. Each 

°C 
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extraction step was sonicated for 5 minutes followed by 5 minutes of centrifugation at 

1250 rpm. The solvent was then decanted and combined in a separation funnel. The 

resulting total lipid extract (TLE) was purified with milli-Q water and evaporated to 

dryness under a continuous stream of dry nitrogen at 60 °C. The TLE was then spiked 

with 1,2-diheneicosanoyl-sn-glycero-3-phosphocholine (C21-PC) and stored at -20°C until 

analysis. For each extraction, approximately 2-3 grams of freeze-dried sediment was 

used. 

 

2.3. Analysis of lipids 

 

An aliquot of each sample representing 1% of the TLE was injected into an 

Agilent 1260 infinity high performance liquid chromatography-quadrupole time of flight 

mass spectrometer (HPLC-qToF-MS). The HPLC was fitted with a ZORBAX RRHD 

Eclipse Plus C18 column (2.1 mm × 150 mm × 1.8 µm) with an Agilent Guard Column 

maintained at 45 °C using a flow rate of 0.25 mL/min. The reverse phase electrospray 

ionization (ESI) method for this study was modified from Zhu et al. (2013). Each analysis 

started with mobile phase A (methanol/formic acid/ammonium hydroxide [100:0.04:0.10] 

v/v) held at 100% for 10 min., which was then progressively mixed with a second mobile 

phase B (propan-2-ol/formic acid/ammonium hydroxide [100:0.04:0.10] v/v) following a 

linear gradient that transitioned from: 100% A to 76% A and 24% B over 15 min., 35% A 

and 65% B to 90 min., that finished by reverting back to 100% A for column cleaning to 

complete a 120 minute run.  
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2.4. Quantification of lipids 

 

Quantification was achieved by summing the integration peak areas of 

[M+H]+, [M+NH4]
+, and [M+Na]+ for the respective lipids of interest. Once the values for 

the integrated sample peak were measured, analyte concentrations were calculated 

relative to the internal C21-PC standard and reported in µg/g sediment. For simplicity, 

identification of lipids in section 3 are reported only as [M+H]+; however, concentration 

values are based on the sum of all three adducts. 

   Response factors from the instrument were determined by a series of 

injections of standard solutions containing: (1,2-diacyl-3-O-(α-D-galactosyl1-6)-β-D-

galactosyl-sn-glycerol (DGDG), 1,2-diacyl-3-O-β-D-galactosyl-sn-glycerol (MGDG), 1-

alkyl-2-acetoyl-sn-glycero-3-phosphocholine (PAF), 1,2-di-O-phytanyl-sn-glycerol 

(Archaeol), 1',3'-bis[1,2-dimyristoyl-sn-glycero-3-phospho]-glycerol (14:0 Cardiolipin), 

1,2-diheneicosanoyl-sn-glycero-3-phosphocholine (C21-PC) from Matreya, USA; Avanti 

Polar Lipids, USA and  2,2’-di-O-decyl-3,3’-di-O-(1’’,ω’’-eicosanyl)-1,1’-di-(rac-

glycerol) (C46-GTGT) Pandion Laboratories, LLC) in amounts ranging from 100 pg to 30 

ng. Concentrations of the standard mix were calculated from peak areas of molecular ions 

in mass chromatograms. Response factors were calculated relative to C21-PC, and the 

appropriate correction factor was applied to the particular lipid class of interest.  
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3. Results  

 

3.1. Total lipid extract 

 

 The TLEs obtained from the MBD are reported in µg/g sediment (Table 1). 

These values were also plotted with depth (Figure 2.2). Cores 5, 6, and 3 show similar 

trends of decreasing TLE with depth. Core 5 has the highest TLE concentration observed 

at the surface interval (~11550 µg/g sediment). The TLE concentrations in Core 5 

decreases with depth to concentrations of ~ 1700 µg/g sediment. Furthermore, within all 

of the cores within the microbial mat (5, 6 and 3) the TLE concentration levels off with 

depth, to yield a uniform recovery of ~1800 µg/g of sediment.  These trends are not 

observed in Core 8 in which the TLE progressively increases with depth.   

 

 

Figure 2.2 – Down core profiles of TLE concentrations for each core showing systematic 

decreases in Core 5, 6 and 3 with depth, and a gradual increase in TLE with depth for 

core 8. 
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Table 1 - overview of sample set 

Core ID Depth 

Interval  

(cmbsf) 

Pore water 

temperature 

(°C) 

Dry sediment 

weight (g) 

Total lipid 

extract (TLE) 

weight (µg/g) 

     

GB4462-5 0-2  19 2.40 11552.30 

GB4462-5 2-4  67 2.10 7648.24 

GB4462-5 4-6  85 2.04 9266.01 

GB4462-5 6-8  105 2.83 2088.34 

GB4462-5 8-10  117 2.48 4378.05 

GB4462-5 10-12  125 2.52 1972.22 

GB4462-5 12-15  135 2.62 1992.37 

GB4462-5 15-18  145 3.01 1691.03 

GB4462-5 18-21  153 2.94 1722.03   
   

GB4462-6 0-2  11 2.12 8476.19 

GB4462-6 2-4  22 2.30 8653.51 

GB4462-6 4-6  20 3.30 2509.15 

GB4462-6 6-8  47 2.84 3383.80 

GB4462-6 8-10  60 3.34 1480.48 

GB4462-6 10-12  73 2.39 4185.87 

GB4462-6 12-15  87 3.50 1694.29 

GB4462-6 15-18  105 3.50 2011.56 

GB4462-6 18-21  125 3.48 1382.18   
   

GB4462-3 0-2  3 2.81 7313.17 

GB4462-3 2-4 8 2.88 3909.72 

GB4462-3 4-6  15 2.45 2864.75 

GB4462-3 6-8  26 2.80 5003.58 

GB4462-3 8-10  34 2.80 2017.99 

GB4462-3 10-12  43 3.15 1863.49 

GB4462-3 12-15  54 3.15 1777.78 

GB4462-3 15-18  66 2.45 1428.57 

GB4462-3 18-21  80 2.80 1981.95   
   

GB4462-8 0-2  0 2.80 3440.43 

GB4462-8 2-4  8 2.80 3166.06 

GB4462-8 4-6  16 2.55 4000.00 

GB4462-8 6-8  18 2.80 4185.45 

GB4462-8 8-10  21 3.33 4755.29 

GB4462-8 10-12  23 2.44 4843.62 

GB4462-8 12-15  25 0.32 5741.94 
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Table 2 - Summary of lipids present within the transect 

Peak 

# 

Domain Chemical name Abbreviated 

name 

Rt 

(Min) 

Molecular ion [M+H]+ Diagnostic fragment 

ion 

References  

1 A Diglycosidic Archaeol 2G-AR 20 977.7862 653, 373 Lipp and Hinrichs, 2009; 

Yoshinaga et al., 2011 

2 A Monoglycosidic 

Archaeol 

1G-AR 22 815.7334 653, 373 Lipp and Hinrichs, 2009; 

Yoshinaga et al., 2011 

3 E Hydroxychlorophyll a OH-Chlo 22 909.5502 593.3, 533.5 Chen et al., 2015 

4 E Hydroxypheophytin a OH-Pheo 23 887.5782 591, 609 Chen et al., 2015; Milenkovic et 

al., 2012 

5 E Chlorophyll a Chlo  26 893.5422 593.3, 533.5 Chen et al., 2015; Milenkovic et 

al., 2012 

6 E Pheophytin a Pheo  28 871.5721 591, 609 Chen et al., 2015 

7 A Archaeol AR 30 653.6806 373.3   Lipp and Hinrichs, 2009; 

Yoshinaga et al., 2011 

8 E Unknown ceramide - 1 U-Cer-1 38.9 *946.9543 510.5, 492.5 Yurkova et al., 2005; Burla et al., 

2018 

9 E Unknown ceramide - 2 U-Cer-2 40 *948.9718 512.5, 494.5 Yurkova et al., 2005; Burla et al., 

2018 

10 A Methoxy-Archaeol 1MeO-AR 41 667.6963 373.3, 355.4 Elling et al., 2014 

11 B? Unknown diglyceride - 

1  

U-DAG-1 48 *829.7251 551.5 - 

12 B? Unknown diglyceride - 

2  

U-DAG-2 55 *855.7200 579.5, 551.5, 441.4 - 
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13a-c A Hydroxylated glycerol 

dialkanol diether 

OH-GDD 

 (0-2) 

57 1262.2913, 1260.2757, 

1258.2601,  

686.6 Liu et al., 2012 

14a-c A Hydroxyl diglycosidic 

glycerol dialkyl 

glycerol tetraether 

2G-OH-

GDGT-0; 2G-

OH-GDGT-2 

59 1642.4283, 1640.4075, 

1638.3919  

1318.3, 760.7, 668.7 Lipp and Hinrichs, 2009; Liu et 

al., 2012c 

15 B & A? Branched glycerol 

dialkyl glycerol 

tetraether 

brGDGT 63 1022.01, 1019.99, 1017.98, 

1036.03, 1034.01, 1031.99, 

1050.04, 1048.03, 1046.01 

Ia) 525.5, 489.6 Schouten et al., 2000; Hopmans 

et al., 2004, De Jonge et al., 2013 

16 A Hydroxyl 

monoglycosidic 

glycerol dialkyl 

glycerol tetraether 

1G-OH-GDGT 

(0-2) 

65 1480.3704, 1478.3548, 

1476.3391 

1318.3, 760.7, 668.7 Lipp and Hinrichs, 2009; Liu et 

al., 2012c 

17 A Diglycosidic glycerol 

dialkyl glycerol 

tetraether 

2G-GDGT-0; 

2G-GDGT-2 

71 1626.4283, 1624.4127, 

1622.3970,  

1302.3, 743.7, 651.7 Stuart et al., 2004; Meador et al., 

2014 

18a-f A Glycerol dialkanol 

diether 

GDD 72 1246.2965, 1244.2808,  

1242.2652, 1240.2495, 

1238.2339, 1236.2182 

669.6 Liu et al., 2012a  

19a-c A Hydroxyl Glycerol 

dialkyl glycerol 

tetraether 

OH-GDGT-0; 

OH-GDGT-2 

79 1318.3176, 1316.3019. 

1314.2863 

1302.3, 743.7, 651.7 Liu et al., 2012a  

20a-f A Monoglycosidic 

glycerol dialkyl 

glycerol tetraether 

1G-GDGT-0; 

1G-GDGT-

5+5’  

82 1464.3755, 1462.3598, 

1460.3442, 1458.3285 

1456.3129, 1454.2972  

1302.3, 743.7, 651.7 Stuart et al., 2004  

21a-f A Glycerol dialkyl 

glycerol tetraether 

GDGT-0; 

GDGT-5+5’ 

95-

100 

1302.3226, 1300.3070, 

1298.2914, 1296.2757, 

1294.2601, 1292.2444 

1302.3, 743.7, 651.7 Hopmans et al., 2000; Schouten 

et al., 2013; Lengger et al., 2018 

*all reported mass fragment ions are of structures containing no cyclization.  

5’ indicates the regioisomer of the lipid of interest.  

Domains are reported as letters where A represents Archaea, B represents Bacteria and E represents Eukarya. The “?’ is used to define current uncertainty in the 

literature.  
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Figure 2.3 - Reconstructed base peak chromatogram (BPC) indicating the detectable lipids extracted from the Cathedral Hill 

sediments (corresponding identification from the numbered peaks is provided in Table 2). 
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Table 3 - Lipid concentrations by core (µg/g sediment) 
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GB4462-5 

0-2 cm 

506.01 5.19 25.76 14.86 1.41 2.46 4.28 31.37 2.59 13.68 0.77 1.60 0.73 4.09 0.28 6.21 1.09 

GB4462-5 

2-4 cm 

459.21 5.75 24.07 13.37 1.86 1.74 2.97 35.39 3.16 31.52 1.37 1.49 0.75 1.21 0.06 1.74 0.28 

GB4462-5 

4-6 cm 

204.18 2.37 10.38 6.00 0.82 0.00 1.10 17.71 1.18 6.81 0.80 0.57 0.41 0.04 0.00 0.06 0.00 

GB4462-5 

6-8 cm 

153.66 1.98 6.69 4.31 0.97 0.00 0.66 14.84 0.87 4.89 0.94 0.40 0.30 0.00 0.00 0.00 0.00 

GB4462-5 

8-10 cm 

60.10 1.07 2.41 3.19 0.78 0.00 0.07 8.59 0.17 2.49 0.67 0.07 0.03 0.00 0.00 0.00 0.00 

GB4462-5 

10-12 cm 

49.73 1.52 1.63 1.66 0.28 0.00 0.00 8.62 0.18 2.14 0.32 0.05 0.00 0.00 0.00 0.00 0.00 

GB4462-5 

12-15 cm 

84.29 3.29 1.39 1.39 0.06 0.00 0.00 10.29 0.00 3.75 0.12 0.10 0.00 0.00 0.00 0.00 0.00 

GB4462-5 

15-18 cm 

44.91 1.12 0.43 0.11 0.00 0.00 0.00 9.89 0.00 2.11 0.00 0.06 0.00 0.00 0.00 0.00 0.00 

GB4462-5 

18-21 cm 

39.84 0.86 0.26 0.00 0.00 0.00 0.00 9.75 0.00 2.17 0.00 0.05 0.00 0.00 0.00 0.00 0.00 
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GB4462-6 

0-2 cm 

595.98 7.05 28.84 16.20 1.53 2.32 3.62 37.37 3.60 11.19 0.94 1.97 1.08 9.75 0.56 12.53 1.99 

GB4462-6 

2-4 cm 

267.74 4.00 14.81 6.69 0.78 1.03 1.77 22.93 1.97 4.84 0.53 0.88 0.25 1.64 0.10 2.25 0.28 

GB4462-6 

4-6 cm 

88.12 1.68 4.67 2.27 0.49 0.31 0.47 13.93 0.69 3.18 0.47 0.17 0.23 0.02 0.00 0.03 0.00 

GB4462-6 

6-8 cm 

71.46 2.80 3.08 3.33 0.93 0.08 0.24 10.55 0.37 4.28 1.04 0.10 0.23 0.00 0.00 0.00 0.00 

GB4462-6 

8-10 cm 

49.63 1.29 1.81 1.98 0.59 0.00 0.03 10.25 0.18 2.46 0.58 0.07 0.04 0.00 0.00 0.00 0.00 

GB4462-6 

10-12 cm 

53.18 1.51 2.07 1.97 0.35 0.00 0.00 8.26 0.21 3.43 0.60 0.08 0.02 0.00 0.00 0.00 0.00 

GB4462-6 

12-15 cm 

45.19 1.12 1.37 1.00 0.16 0.00 0.00 10.40 0.14 2.80 0.31 0.07 0.00 0.00 0.00 0.00 0.00 

GB4462-6 

15-18 cm 

22.95 0.66 0.12 0.00 0.00 0.00 0.00 9.66 0.00 1.74 0.00 0.03 0.00 0.00 0.00 0.00 0.00 

GB4462-6 

18-21cm 

31.82 1.00 0.35 0.00 0.00 0.00 0.00 9.95 0.00 2.63 0.00 0.04 0.00 0.00 0.00 0.00 0.00 
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GB4462-3 

0-2 cm 

513.50 7.73 30.60 14.17 1.22 1.72 3.28 42.46 4.07 4.21 0.43 2.00 0.26 17.28 0.62 20.51 2.07 

GB4462-3 

2-4 cm 

309.79 4.07 15.89 7.56 0.84 0.98 1.63 20.98 1.97 3.64 0.65 0.98 0.21 10.42 0.39 11.32 1.15 

GB4462-3 

4-6 cm 

284.17 3.82 14.77 6.38 0.63 0.74 1.23 21.76 1.84 3.46 0.43 0.83 0.19 4.16 0.34 5.32 1.17 

GB4462-3 

6-8 cm 

276.48 4.18 15.24 6.79 0.79 0.94 1.43 24.89 1.76 5.02 0.52 0.72 0.17 2.05 0.20 2.79 0.69 

GB4462-3 

8-10 cm 

252.32 5.19 13.69 5.18 1.00 0.73 1.25 24.48 2.11 5.03 0.91 0.66 0.11 0.37 0.00 0.63 0.08 

GB4462-3 

10-12 cm 

229.71 5.20 13.21 5.33 1.70 0.66 1.12 21.74 1.84 7.88 1.32 0.28 0.15 0.12 0.00 0.28 0.00 

GB4462-3 

12-15 cm 

180.75 5.11 10.08 6.53 1.85 0.00 0.28 16.93 1.00 8.58 1.47 0.19 0.13 0.01 0.00 0.03 0.00 

GB4462-3 

15-18 cm  

254.38 10.99 12.38 6.45 1.92 0.00 0.41 14.47 1.18 11.47 2.59 0.21 0.16 0.00 0.00 0.00 0.00 

GB4462-3 

18-21 cm 

186.72 4.88 9.31 5.22 1.29 0.00 0.18 15.08 0.80 11.02 1.80 0.18 0.00 0.00 0.00 0.00 0.00 
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GB4462-8 

0-2 cm 

486.08 6.36 27.77 11.12 0.95 1.14 1.67 36.92 3.37 3.22 0.42 1.46 0.08 14.65 0.41 18.73 1.60 

GB4462-8 

2-4 cm 

419.45 5.43 21.35 8.83 0.85 0.87 1.28 30.56 2.57 3.11 0.45 1.05 0.08 7.83 0.41 10.32 1.74 

GB4462-8 

4-6 cm  

482.69 6.64 26.81 11.03 1.17 1.18 1.86 35.20 3.41 4.19 0.53 1.35 0.16 8.96 0.47 11.50 1.64 

GB4462-8 

6-8 cm 

361.13 4.68 18.60 8.82 0.94 0.84 1.26 26.61 2.23 3.16 0.42 0.79 0.11 6.40 0.29 8.27 0.98 

GB4462-8 

8-10 cm 

154.65 2.22 9.66 2.42 0.42 0.37 1.52 16.27 0.80 2.41 0.32 0.15 0.00 1.04 0.06 1.27 0.16 

GB4462-8 

10-12 cm 

462.82 6.77 23.28 6.47 1.15 2.01 3.43 34.16 3.43 6.23 0.79 0.68 0.00 7.64 0.19 9.20 0.47 

GB4462-8 

12-15 cm 

517.35 6.27 22.57 6.05 0.75 0.00 0.00 29.61 3.67 5.61 1.01 0.60 0.00 4.72 0.00 8.11 0.00 
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Figure 2.4 - Chemical structures of lipids of various archaeal and bacterial lipids identified at 

the Cathedral Hill vent site. 
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3.2. Archaeal lipids 

3.2.1. Intact archaeal lipids 

   

All archaeal IPLs within the push core sample set are tentatively identified by their 

mass spectral characteristics and elution pattern as previously presented from the literature (Table 

2). The identified archaeal IPLs are exclusively glycolipids containing either monoglycosyl (1G) 

or diglycosyl (2G) head groups linked to either a C40 glycerol dialkyl glycerol tetraether (GDGT) 

or a C20 diphytanyl diether (archaeol). Monoglycosyl IPLs include 1G-GDGT, which is 

represented by peak 20 in Figure 2.3 and adjacent peaks 20 a-f structures with isoprenoid core 

lipid having 0-4 cyclopentyl moieties. The last GDGT structure (peak 20f) contains four 

cyclopentyl and one cyclohexyl moiety (Figure 2.3). The signals for these compounds were 

monitored as [M+H]+ on the m/z 1464.38, 1462.36, 1460.34, 1458.33 1456.31, 1454.30 mass 

chromatograms. Additionally, mass fragments consistent with the loss of a biphytane (m/z 743.7) 

were observed. Mass spectral identification and quantification of 1G-GDGTs was potentially 

impacted by co-elution of core OH-GDGTs, however, stratigraphic trends do not appear to be 

affected, indicating that these values are likely not impacted. 1G-GDGTs in Core 8 have an 

average concentration of ~ 8 µg/g sediment (Table 3) with slightly elevated concentrations of 11 

µg/g sediment at the surface and slightly depleted concentrations of 6 µg/g sediment at the 

bottom of the core. The surface concentrations for Cores 5, 6 and 3 (within the microbial mat) 

have concentrations of ~ 15 µg/g sediment, however, the subsurface concentrations of 1G-GDGT 

varies slightly from core to core. In Core 5 the signature for 1G-GDGTs extends to 15-18 cm 

below seafloor (cmbsf) having a concentration of 0.11 µg/g sediment at 145°C. In Core 6 the 
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signature for 1G-GDGTs extends to 12-15 cmbsf having a concentration of 1.00 µg/g sediment at 

87°C. In Core 3, the signature of 1G-GDGT persists all the way down core (18-21 cmbsf) having 

a concentration of 5.22 µg/g sediment at 80°C.  

Tentatively identified 2G-GDGTs represented by peak 17 (Table 2) (with 17 a-c being 

associated with increasing number of cyclopentyl moieties (0-2) (Figure 2.3) within the core 

structure) were also identified based on their molecular ions [M+H]+ monitored by m/z 1626.43, 

1624.41, 1622.39 ion chromatograms, having similar fragments as previously discussed. 2G-

GDGTs appear to be one of the more stratigraphically zoned and less thermodynamically stable 

archaeal lipids as it is only found in the top 4 cm of Core 5 having 2.46 µg/g sediment at 0-2 cm 

and 1.74 µg/g sediment at 2-4 cmbsf (Table 3), before falling below the level of detection in the 

next interval. In Core 6, 2G-GDGTs extend deeper to 6-8 cmbsf (0.08 µg/g sediment) and, lastly 

in Core 3, 2G-GDGT extends to 10-12 cmbsf (0.66 µg/g sediment). 

The hydroxylated counterparts of 1G and 2G-GDGT elute approximately 20 minutes 

earlier (peaks 14 and 16; Table 2 ). However, 1G- and 2G-OH-GDGTs are limited to 0-2 

cyclopentyl moieties represented by a-c in Figure 2.3. Both IPLs were tentatively identified based 

on their molecular ions [M+H]+ monitored by m/z 1480.3704 and 1642.4283 mass 

chromatograms, respectively.  Both of these IPLs have characteristic fragments of m/z 1318.37 

(characterized by the loss of head groups or head group). 

Intact polar lipids 1G- and 2G-archaeol (AR; identified as peaks 1 and 2; Table 2) 

were tentatively identified based on their molecular ions [M+H]+ monitored by m/z 977.78 and 

815.73 mass chromatograms, respectively.  Both of these IPLs have characteristic fragments of 

m/z 653 (characterized by the loss of head groups or head group) and m/z 373 (loss of a phytane 
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chain). Both of these IPLs respond similarly to 1G- and 2G-GDGTs in regards to their occurrence 

with depth and laterally across the transect. In Cores 5 and 6 the surface concentrations are ~1 

µg/g sediment for both 1G and 2G-AR. However, in both cores 1G extends to 12-15 cmbsf (~0.2 

µg/g sediment), whereas 2G-AR only extends to 8-10 cmbsf in Core 5 and 10-12 cmbsf in Core 

6. 1G-AR persists all the way down both Core 3 and 8, going from ~0.42 µg/g sediment at the 

surface for both cores to 2.59 µg/g sediment at 15-18 cmbsf (Core 3) and 1.01 µg/g sediment at 

12-15 cmbsf (Core 8).       

 

3.3.2. Archaeal core lipids 

  

The most common CLs of the Cathedral Hill transect are isoprenoidal GDGTs 

(iGDGTs) with 0-4 cyclopentyl moieties and crenarchaeol, GDGT-5, and the regioisomer of 

crenarchaeol GDGT-5’ containing four cyclopentyl moieties and one cyclohexyl moiety. These 

iGDGTs are one of the most dominant lipid classes within Figure 2.3 represented by peak 21a-f 

with signals at m/z 1302.32, 1300.31, 1298.29, 1296.28, 1294.26, 1292.24 [M+H]+. In addition to 

the iGDGTs, hydroxylated versions of this compound class are also present. Similar to their IPL 

precursors, the OH-GDGTs exclusively contain 0, 1, and 2 cyclopentyl moieties. The OH-GDGTs 

are represented by peak 19a-c at a m/z signal of 1318.32, 1316.30, and 1314.28 [M+H]+ (Figure 

2.3; Table 2). Both iGDGTs and OH-GDGTs follow similar stratigraphic trends with Core 8 

having consistent concentrations of ~ 400 (iGDGTs) and ~ 20 (OH-GDGTs) µg/g sediment all the 

way down the core. However, in Core 5, 6 and 3 there is a systematic decrease in both iGDGT 

and OH-GDGT with depth, though these compounds exist all the way down core.     
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 Archaeol (AR), a core lipid comprised of two phytanyl chains ether bonded to a single 

glycerol, has been found in all three groups of archaea, (methanogens, halophiles and 

thermophiles Kate, 1993) and is commonly found in marine settings (Gambacorta et al., 1995). 

Archaeol, tentatively identified as peak 7 (Figure 2.3), was monitored with a m/z signal of 653.68 

and further constrained by the presence of a dominant fragment of m/z 373.37, which corresponds 

to the cleavage of one phytanyl chain. AR is another lipid that starts with high surface 

concentrations in both Cores 5 and 6, of 13.68 and 11.19 µg/g sediment respectively, which 

decreases to ~ 2 µg/g at the bottom of both cores. However, in Core 3 there is a systematic 

increase from 4.21 µg/g sediment at the surface to ~11 µg/g near the bottom of the core. Core 8 is 

different as it has an average value of ~ 4 µg/g sediment all the way down core.   

Lastly, a methoxy derivative of archaeol (1MeO-AR) that was reported by Elling et al. 

(2014) to be methylated at the sn-1 position of the headgroup attachment site, was likewise 

observed. Methoxy-archaeol is thought to be produced in the water column via a currently 

unknown biosynthetic pathway by planktonic Archaea and its biological function is also currently 

unknown (Elling et al., 2014). We have tentatively identified 1MeO-AR as peak 10 with a m/z 

signal of 667.68 [M+H]+, with dominant fragments of m/z 385.3, 355.4. 1MeO-AR occurs rather 

uniformly across the whole transect surface at ~ 2 µg/g sediment at the surface. In each core the 

concentration of 1MeO-AR decreases with depth, never being completely eliminated. The 

decrease for this molecule is much more drastic in cores that experience elevated temperatures.  
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3.3.3. Archaeal core lipids degradation products 

 

Another common core lipid class found within sediments are glycerol dibiphytanol 

diethers (GDDs), which are composed of two biphytanyl chains bonded to a glycerol via two 

ether linkages. The terminal carbon atoms on the biphytanyl chains are bonded by hydroxyl 

groups. GDDs lack a direct biological IPL precursor. As the structure of GDD is similar to that of 

a GDGT minus a second glycerol backbone, it has been suggested that these compounds are 

partial GDGT degradation products (Liu et al., 2012a; Meador et al., 2014). GDDs have been 

tentatively identified and are represented by peaks 18a-f (Figure 2.3), which once again are 

associated with an increasing number of cyclopentyl moieties (0-5). The suite of GDDs were 

identified by monitoring the m/z signals of 1246.29, 1244.28, 1242.27, 1240.25, 1238.23, 1236.2 

[M+H]+ (Table 2). These peaks show the characteristic m/z 669.67 fragment ion associated with 

the loss of a phytane from the original GDD structure (Liu et al., 2012a). GDDs concentration 

patterns follow similar trends to the concentration patterns of GDGTs. Both have increased 

surface values, with the highest concentration being found at the surface of Core 3, having 42.46 

µg/g. Both Core 5 and Core 6 have surface concentrations of ~ 35 µg/g sediment that decrease to 

~ 9 µg/g sediment at the bottom of the cores. Once again, Core 8 has a rather consistent GDD 

concentration of ~ 30 µg/g sediment all the way down the core with a minor decrease in 

concentration with depth (Table 3).  

 In addition, a variety of GDD structures hydroxylated at the sn-3 position were also 

tentatively identified as peak 11a-c (Figure 2.3) containing 0, 1, and 2 cyclopentyl moieties 

exclusively. OH-GDDs were monitored by m/z signals of 1262.29, 1260.28, and 1258.26 [M+H]+ 
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(Table 2). OH-GDDs are observed to have the highest concentration at the surface of Core 3, 

having 4.07 µg/g sediment. Both Cores 5 and 6 show slightly lower surface OH-GDD 

concentrations of 2.59 and 3.60 µg/g sediment, respectively. The signal at depth in Core 5 

dissipates after 10-12 cm where the concentration is 0.18 µg/g sediment, whereas the signal in 

Core 6 extends slightly deeper to the 12-15 cm interval having 0.14 µg/g sediment. In Core 8 

OH-GDDs concentrations remain fairly consistent down core having concentrations of ~ 3 µg/g 

sediment.  

   

3.4. Bacterial and eukaryotic lipids 

 

Bacterial and eukaryotic lipids do not achieve ideal separations with the selected 

method. However, a number of bacterial and eukaryotic lipids which may act as a marker for the 

microbial mat, have been identified (see Table 2).  

 

3.4.1. Bacterial lipids 

 

Two bacterial IPLs with unknown head groups have been tentatively identified (peak 

11 & 12) (Table 2; Figure 2.3) as having a signal m/z of 829.73 (UDAG-1) and 855.72 (UDAG-2) 

[M+H]+ (Figure 2.5). Fragments from these extracted ion chromatograms show dominant 

fragments of m/z 551.5, which are consistent with core structures of C32:0 diacylglycerol. Both 

UDAG-1 and UDAG-2 are found in Core 5. At the surface of Core 5 UDAG-1 has a 
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concentration of 1.82 µg/g sediment where UDAG-2 has a concentration of 5.77 µg/g sediment 

(Supplementary Table A3-6). Both of these unknown lipids extend to 4-6 cm in Core 5 having 

concentrations of 0.43 (UDAG-1) and 0.29 (UDAG-2) µg/g sediment. However, UDAG-1 does 

extend slightly deeper into the subsurface (8-10 cm) the concentrations of the two deeper 

intervals are 0.07 and 0.02 µg/g sediment. Similar concentrations are found in Core 6 and extend 

to the same interval as Core 5. Furthermore, similar to the above observations, the surface 

sediment of Core 3 has the highest concentrations of both unknown lipids 4.25 µg/g sediment of 

UDAG-1 and 7.18 µg/g sediment of UDAG-2. In this core both unknown lipids extend further 

into the subsurface reaching 10-12 cm with ~ 0.70 µg/g sediment concentrations. For Core 8 

these unknown compounds remain consistent down core with concentrations of ~ 3 (UDAG-1) 

and ~ 4.5 (UDAG-2) µg/g sediment.       

 

Figure 2.5 - Mass spectra for UDAG-1 and UDAG-2. 
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Additionally, bacterial core lipids in the form of branched GDGTs (brGDGTs) were 

identified in all transect samples. These non-isoprenoidal compounds were first discovered with 

new LC-MS techniques and unambiguously identified with NMR by Damsté et al. (2000). 

Membrane-spanning lipids have been used as taxonomic indicators of Archaea (Weijers et al., 

2006). However, these membrane spanning lipids are thought to be a result of a biosynthetic 

pathway produced from anaerobic bacteria. Currently, the exact source and biological function is 

unknown, but thought to be related to acidic conditions in peat bogs and soils (Weijer et al., 

2006). More recent studies have demonstrated that brGDGTs can be found in the water columns 

of both oxic and anoxic lakes (Sinninghe Damsté et al., 2009; Bechtel et al., 2010) adding 

complexity to their sourcing. These lipids and their associated proxies are further discussed in 

section 2.4. and 3.4. in Chapter 3.  

 Within the Cathedral Hill transect samples brGDGT Ia (m/z 1022.01), Ib (m/z 

1019.99), Ic (m/z 1017.98), IIa (m/z 1036.03), IIb (m/z 1034.01), IIc (m/z 1031.99), IIIa (m/z 

1050.04) and IIIb (m/z 1048.03) [M+H]+ were tentatively identified. These lipids are represented 

as peak 15 (Table 2; Figure 2.3) and the associated lipid structures are provided in Figure 2.4. 

Concentrations of brGDGTs follows similar stratigraphic trends to other reported compounds 

with higher lipid concentrations at the surface of Cores 5, 6 and 3 of 5.19, 7.05 and 7.73 µg/g 

sediment respectively (Table 3). In both Cores 5 and 6 the concentrations at the bottom of the 

core systematically decrease until reaching 0.86 and 1.00 µg/g sediment. The bottom of Core 3 

has a concentration of 4.88 µg/g, still showing a decrease down core but are not as drastic as 

Cores 5 and 6. In Core 8, the consistency down core continues with an average concentration of ~ 

6 µg/g sediment.           
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3.4.2. Eukaryotic Lipids 

 

Two tentatively identified ceramide lipids with unknown structural configurations 

were identified (peak 8 & 9; Supplementary Table A2-6; Figure 2.3) based on signal m/z 946.96 

(U-Cer-1) and m/z 948.97 (U-Cer-2) [M+H]+ (Figure 2.6), respectively. The target masses are 

consistent with core structures comprising of 18:0/14:0 (m/z 512.5, 494.5 mass fragments), and 

18:1/14:0 (m/z 510.5, 492.5 mass fragments) as seen in Fig 3.3-1 & Fig 3.3-2.  The observed 

spectra likewise match those of Yurkova et al. (2005) and Burla et al. (2018), suggesting that 

these peaks are ceramide lipids. Ceramide lipids have the potential to be human contamination 

within the samples. However, if this was the case the concentrations would be uniformly 

distributed in all samples or found in deeper intervals that were sterilized by nature. Both U-Cer-

1 and U-Cer-2 are found in Core 5, at the ocean bottom surface layer.  U-Cer-1 has a 

concentration of 5.77 µg/g sediment, where U-Cer-2 has a concentration of 11.00 µg/g sediment 

(Supplementary table A2-6). In Core 5, U-Cer-1 extends to 4-6 cm having concentrations of 0.29 

µg/g sediment, whereas U-Cer-2 extends slightly deeper to 10-12 cm having a limited 

concentration of 0.03 µg/g sediment. Similar concentrations are found in Core 6 and extend to the 

same interval as Core 5. In Core 3 the concentrations at the surface for both unknown lipids 

remain the same, but extend deeper in the subsurface. U-Cer-1 extends to 10-12 cm having a 

concentration of ~ 0.77 µg/g sediment, where U-Cer-2 extends to the bottom of the core having a 

concentration of 0.83 µg/g sediment. Lastly, in Core 8 these unknowns remain consistent down 

core having concentrations of ~ 5 (U-Cer-1) and ~ 9 (U-Cer-2) µg/g sediment. These trends 

indicate the ceramide lipids represent primary sourced lipid signatures and not contamination.  
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Figure 2.6 - Mass spectra of U-Cer-1 and U-Cer-2. 

 

3.5. Chlorophyll & Pheophytin  

  

 An integral pigment within photosynthetic organisms such as plants and algae is 

chlorophyll a. Pheophytin a, is a breakdown product of chlorophyll a, and is formed when the 

central magnesium atom of the tetrapyrrole ring is replaced by two hydrogen atoms via a 

catabolic reaction (Schelbert et al., 2009). In addition to this breakdown product, both 

chlorophyll a and pheophytin a can have a hydroxyl group substituted for a hydrogen atom at the 

C-132 position.  This carotenoid derivative is thought to be an oxidation product of the precursor 
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molecule, which may be associated with declines in algal populations (Steele et al., 2015). Other 

varieties of chlorophyll were not identified within the transect sediments. Observed peaks 3-6 

(Table 2; Figure 2.3) respectively at m/z of 909.54, 887.57, 893.54 and 871.57 [M+H]+ have been 

tentatively identified as hydroxy-chlorophyll a, hydroxy-pheophytin a, chlorophyll a and 

pheophytin a. Fragmentation patterns from Chen et al. (2015) and Milenkovic et al. (2012) are 

consistent with the observed mass spectra, showing the characteristic m/z fragments of 593.3 and 

533.5. The concentrations for all of the chlorophyll derivatives follow similar trends to that of the 

unknown bacterial and eukaryotic lipids, with the exception that the surface concentrations vary 

more drastically with Core 5 surface concentrations being half that of Core 6, and of Core 6 

having approximately half of Core 3 and Core 8 (Table 3). For example, OH-chlorophyll a in the 

surface sediments of Core 5 is 6.21 µg/g sediment, and in Core 6 the concentration is 12.63 µg/g 

sediment, whereas in Cores 3 and 8 the concentrations are 20.51 and 18.73 µg/g sediment 

respectively. In Core 5 these pigments are limited to the upper 4 cm, with the exception of the 

hydroxylated derivatives extending slightly deeper to 6 cm, being found in trace concentrations 

of ~ 0.05 µg/g sediment. This same trend is observed in Core 6, extending to the same intervals, 

having minor traces in hydroxylated derivatives one interval deeper. In Core 3 the hydroxylated 

derivatives extend to 12-15 cm, once again having minuscule concentrations of ~0.02 µg/g 

sediment. Their non-hydroxylated counterparts only extend to 6-8 cm. In Core 8 these 

compounds react rather uniquely. The concentrations of the bottom of this core essentially 

represents a halving of the surface concentration (excluding the last interval due to limited 

sample). For example, OH-chlorophyll a has a concentration of 18.73 µg/g sediment at the 

surface and 9.20 µg/g sediment at 10-12 cm.      
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3.6. Transect trends 

 

3.6.1. Across transect trends 

 

Trends across the push core transect for both IPLs and CLs can primarily be observed 

at the ocean bottom surface (0-2 cmbsf), having similar values for most lipids. However, this 

pattern is quickly lost as deeper intervals experience varying temperatures with proximity to the 

vent. Since the surface concentrations for all cores show similar concentration values regardless 

of being on or off the microbial mat (Table 3), this likely represents the relative input of terrestrial 

and water column input. Core 8, representing the ambient sedimentation and also the background 

benthic community, has similar lipid concentrations (Figure 2.7). However, across transect 

concentration trends quickly fade with depth likely due to the exposure to higher thermal 

gradients.             

 

3.6.2. Stratigraphic trends 

 

The IPLs and CLs display well defined stratigraphic trends across the transect. The 

IPL and CL abundances in Core 8 are fairly consistent down core with the exception of the 

interval of 8-10 cm. This sample is thought to be heavily affected by oil staining, which in turn 

has resulted in ion suppression during analysis. The bottom of that core, interval 12-15 cm is also 

problematic as the sample only contained 0.31 g of sediment, which makes the integrity of this 

sample questionable. Compound specific concentrations were addressed in sections 3.2-3.5, but 
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this section will highlight the more important trends and investigate variations within the 

structures of IPL and CL GDGTs.     

As previously described, down core trends follow a general pattern of decreasing IPL 

and CL diversity and concentration with depth that is tightly coupled to the sediment pore water 

geothermal gradient. This is demonstrated in Figure 2.7, a summary plot of each lipid of interest.  

With respect to IPLs, lipids with 2G head groups are observed to be less abundant and are 

potentially less stable with respect to changes to the thermal gradient. In Core 5, for example, 

they are not observed past the upper 4 cm, which reaches upwards of ~ 70°C. In addition to this, 

2G-IPLs progressively extend deeper extending outward from the hydrothermal vent edifice 

reaching depths that experience similar temperature. The hydroxylated counterpart of 2G-IPLs 

extend slightly deeper into the subsurface, often one interval (2 or 3 cm) deeper. 

Comparatively, 1G-IPLs extend further into the subsurface than 2G-IPLs. The 1G-

GDGTs extends down into the 15-18 cm interval in Core 5, with corresponding pore water 

temperatures of up to ~ 145°C. The mass spectral signal at this interval is low and close to the 

instrument’s limit of detection (less than 100 pg/µl; likely close to 10 pg/µl). The measured lipids 

are also limited to only 1G-GDGT-0.  However, all 1G-GDGT structures were detected at the 12-

15 cm interval (~ 135 °C) with confidence. In addition, 1G-OH-GDGTs extend into the subsurface 

to the same intervals as its non-hydroxylated counterpart, unlike the 2G-OH-GDGT, which are 

found deeper than 2G-GDGT.     

The archaeal core lipids such as iGDGTs, OH-GDGTs, GDDs, AR, MeO-AR along with 

bacterial brGDGTs, persist all the way down core in all cores, similar to iGDGTs. However the 

most dominant lipid present are iGDGTs, which represent ~ 70% of all observed lipids (Figure 2.7) 
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the large percentage of iGDGT leads to scaling issues when displaying core lipid data; thus, core 

lipids are depicted as relative abundance.  

 

 

Figure 2.7 - Summary of all compounds of interest within the Cathedral Hill vent site. Relative 

abundance of all lipids (Left), abundance of IPLs, temperature (black line), and pore fluid sulphate 

concentration (purple line) (middle), abundance of pigments and unknowns (right). The horizontal 

green bars in the background represent the thermal zones that are currently outside the known 

habitibility for Archaea (121°C).  

 

The total and relative abundances of individual 1G-GDGTs and core GDGTs 

systematically change with depth (Figure 2.7 and 2.8). The most notable variations are a systemic 
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decrease in lipid abundance with elevated pore water temperatures, and the increase in 1G-

GDGT-3, 4 and the 5’ structures with depth (a trend most pronounced in core 5 that decreases 

outwards from the vent center). Concomitant with this is a systematic decrease of the 1G-GDGT-

5 isomer in samples that experience elevated temperatures (Figure 2.8).  This change does not 

appear in ambient sediments of Core 8.  

The GDGT core lipids have a similar trend of increasing, GDGT-3 and 4 in Cores 5 

and 6, however, GDGT-5’ does not significantly increase as observed with the 1G-GDGT. Unlike 

the 1G-GDGT structures that are absent in Core 8, all GDGT structures are observed in Core 8.       

 

 

Figure 2.8 - Relative abundance of 1G-GDGT structures (left) and core GDGT structures (right). 
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4. Discussion 

 

4.1. Intact polar lipid diversity  

 

The polar head groups for archaeal lipids tend to be either glycosidic or phosphate 

based, or potentially a mix of both (Rossel et al., 2008; Schouten et al., 2008; Strapoc et al., 

2008). However, the diversity of the IPLs in this study appears to be limited to 1G and 2G 

derivatives and contains no phosphate head groups. However, the purpose of a glycosidic head-

group is to some degree enigmatic. Sollich et al. (2017) suggested that sugar head groups may 

represent a microbial strategy to conserve energy at the cellular membrane level in environments 

that include high temperature, low pH, phosphate limitations, and potentially, substrate 

limitations. Furthermore, glycolipid-rich membranes may also be more resilient in high 

temperature environments because the hydrogen bonds between the head groups are tighter than 

that of phospholipids (Kleinschmidt & McMahon, 1970; Murga et al. 1999; Kanduč et al. 2017).  

 Various hyperthermophiles ferment sugars via unique pathways that do not include 

phosphorylated intermediates (Lewalter & Müller 2006).  Such strategies may explain the lack of 

phosphate headgroups with the Cathedral Hill sediments. Additionally, other forms of anaerobic 

respiration with nitrate or forms of acetogenesis (He et al., 2016) may be present, further 

negating the need for phosphate head groups to obtain energy, as it appears that there are rather 

unique metabolic pathways that exist in Archaea as outlined in studies such as Sakuraba et al. 

(2004) and Siebers et al. (2002).   
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4.2. Lipid sourcing 

 

The detected Cathedral Hill lipids from mass spectral analysis are likely sourced from 

the shallow sediment microfauna or as a detrital, marine snow from the overlying water column. 

In aquatic environments, CLs are often sourced from the water column (Wuchter et al., 2005).  

However, CLs can also be produced within terrestrial soils and marine sediments (Hopmans et 

al., 2004; Schouten et al., 2013).   

To untangle these various CL pools, the sum of terrestrially-derived brGDGTs 

(biomarkers for terrestrial soil input; Hopmans et al. 2004) were compared to the mixed sourced 

core iGDGTs with sediment depth (Figure 2.9). For Core 8, a near equal offset between these 

two lipid classes is observed, suggesting their source inputs are fundamentally related and mostly 

allochthonous. Additionally, the concentrations of brGDGTs are also similar in the 0-2cm layer 

of surface sediments across the transect, indicating there is little spatial heterogeneity to the 

upper-water column input across the transect and that the expulsion of vent fluids does not 

disrupt sedimentation patterns. Down-core covariations of Core 8 brGDGTs and iGDGTs 

requires that these lipids be predominantly sourced from the upper water column. In this regard, 

an average water column GDGT input can be calculated from the average brGDGT and iGDGT 

concentration differences of Core 8. This iGDGT weighting parameter was then applied to the 

down core brGDGTs yields of the other transect sediments to estimate the detrital input of 

iGDGTs (grey line on Figure 2.9). The predicted iGDGTs values closely match the actual 

iGDGT recoveries of the surface sediments along the transect (Figure 2.9). However, the 

predicted iGDGTs values progressively overestimate the actual iGDGT recoveries with depth 

(grey shaded area of Figure 2.9). These trends suggest the system is preferentially losing 
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iGDGTs over brGDGTs. The addition of archaeal lipids from the sediment microfauna should 

yield an overproduction (not underproduction) of these lipids. Furthermore, thermogenic decay, 

diagenetic alteration, or biodegradation would not be expected to preferentially affect isoprenoid 

over branched GDGTs. Alternatively, GDGTs are thought to potentially recycle core structures as 

described in Takano et al. (2010). This recycling and or assimilation of core GDGTs may be a 

common adaptive strategy for these organisms, allowing them to survive in harsh conditions 

such as those at Cathedral Hill. This appears to be the case, as thermogenic decay should be 

reflective in the RI for core GDGTs, ultimately producing lower RI values as pyrolysis 

experiments from Schouten et al. (2004) have demonstrated a preferential destruction of GDGTs 

3-5+5’. Likewise, it has been stated that thermal maturation of GDGTs is only thought to occur 

in temperatures above 240˚C (Schouten et al., 2004), well above the temperatures at Cathedral 

Hill. 

 Furthermore, if the majority of GDGTs were produced in the water column then the 

degree of GDGT ring cyclization of core GDGTs in the vent interior should match that of the 

Core 8 sediments of the vent exterior. The RI values for Core 8 cluster rather closely with values 

of ~2.55 (Figure 2.10) with the exception of the two problem intervals 8-10 cm (oil 

impregnation?) and 12-15 cm (0.32 g of material). However, Cores 5, 6, and 3 all show 

systematic increases in RI with increased temperature. This change in RI appears to be tracking 

the subsurface archaeal communities and thus the majority of GDGTs must be produced in situ. 

This once again suggests the potential for recycling or assimilation of the GDGTs as the ring 

index would not adjust if the signal was predominately detrital. Alternatively, these GDGTs 

could potentially be broken down into intermediates, which were not detected with the current 

methodology, but will be a point of interest for a follow up study.     
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Figure 2.9 - Comparison of the sum of cGDGTs and brGDGTs. Predicted values of iGDGTs 

(grey line) were calculated based on the ratio of the offset in Core 8 as described in the text. The 

grey area represents the potential loss of GDGTs with increased depth. 
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Figure 2.10 - Ring index versus temperature of core GDGTs. The plot shows systematic increases 

in RI values in cores exposed to elevated temperatures. Note that in Core 8 the highest ring index 

value (outliers indicated with *) is likely related to the extraction of a small amount of material 

from this sample. Where the lowest ring index value is likely due to ion suppression. The lines of 

best fits were obtained using a linear fit (color coded) where equations are the following; Core 

5(y = 0.002x + 2.36), Core 6(.y = 0.002x + 2.52), Core 3 (y = 0.003x + 2.47) and Core 8 (y = 

0.0113x + 2.43). 

 

4.3. Lipid indicators of physiological adaptations to temperatures stress 

 

 A comparative ring number metric to assess cellular membrane compositions in relation 

to environmental conditions was first employed by de Rosa et al. (1980) to demonstrate that the 

degree of lipid cyclization was an organismal response to growth temperature. The ring index is 

a weighted average of the number of rings spanning 0-5 found within GDGTs core lipids 

structure (Eq. (1)). The index calculated after Pearson et al. (2004) is linked to an adaptive 

strategy that regulates the flow in and out of a cellular membrane by decreasing fluidity, but 

increasing rigidity (Gliozzi et al., 1983). The GDGTs of Core 5 and 6 compositionally change to 
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higher ring numbers in conjunction with elevated temperature of the pore waters (Figure 2.10). 

The RI values obtained are supportive of adaptation to environmental stress in both Core 5 and 

Core 6 where calculated R2 values of 0.87 and 0.75 were respectively obtained (Figure 2.10) 

(where an R2 value greater than 0.6 is considered to be well correlated). However, this finding is 

not new as increasing ring index values with in situ temperature has been previously investigated 

in studies such as Pearson et al. (2004) and Boyd et al. (2010).  

 

𝑅𝐼 =  
0 x (GDGT 0) +1 x (GDGT 1) + 2 x (GDGT 2) + 3 x (GDGT 3) + 4  x (GDGT 4) + 5  x (GDGT 5  + GDGT 5′) 

(GDGT 0)+(GDGT 1)+(GDGT 2)+(GDGT 3)+(GDGT 4)+(GDGT 5+5′)
  (1) 

 

Both of these cores appear to show an adapting microbial community as it was 

previously suggested, but the values are slightly lower for Core 5 than Core 6. The difference 

between core 5 and 6 can potentially arise by specific archaeal communities inhabiting different 

biozones outbound from the vent center. Alternatively, the more central core could be exposed to 

higher ammonia concentrations. Evans et al. (2018) demonstrated RI suppression when archaeal 

cultures were exposed to high levels of ammonia. Various localities within Guaymas Basin, such 

as Balsamico Mat, have well-documented high ammonia porewaters (Von Damm et al., 1985; 

Jeffery Seawald, personal communication).  

When the RI is applied to the 1G-GDGTs as an attempt to evaluate only lipids that are 

considered to be living, the trends observed do not support the theory of adaptation with 

temperature (Figure 2.11). This outcome is counter to the observed trend of a systematic increase 

in 1G-GDGT-3, 4 and 5’ along with a decrease in 1G-GDGT-5 (Figure 2.8). However, the RI is a 

weighted average; therefore, the function is negatively impacted by the decrease in 

concentrations of 1G-GDGT-5 with depth. This observed trend of decreasing 1G-GDGT-5 is 
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potentially due to lipid packing, and, or, limited to mesophilic Archaea, thus it would not be 

present in elevated temperature, which is the ability to tightly pack lipids together in a cellular 

membrane. The reason for a systematic decrease in 1G-GDGT-5 is unknown. However, a 

possible cause could be that the organism that biosynthesizes 1G-GDGT-5 are mesophilic. 

Alternatively, the presence of a fifth ring might not be advantageous to survival at elevated 

temperatures. Cellular packing is also another explanation, which has been previously 

investigated by Damsté et al. (2002). The specific molecule that impacts the packing is an 

archaeal lipid containing the core structure of GDGT-5. This structure contains a cyclohexane 

ring, which decreases its ability to densely pack the cellular membrane, due to the “bulge” that is 

produced with the cyclohexyl ring. The packing of these membranes is another form of 

adaptation to increased environmental stress, decreasing fluidity and permeability while 

increasing rigidity and making these membranes more thermally stable. Thus with the relative 

increase in 1G-GDGT-3, 4 and 5’ and the notion that the relative decrease in 1G-GDGT-5 is 

likely due to lipid packing there is sufficient evidence to support the idea of adaptation to 

environmental stress from these archaeal membrane lipids.   
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Figure 2.11 - Ring index (1G-GDGT) vs temperature showing decreasing values with increased temperature (left). Lowest ring index 

value in Core 8 of 1.71 is outlined with an * to indicate that it is an outlier due to ion suppression. The negative slopes are likely due 

to a decrease in 1G-GDGT-5. Equations of these lines are the following; Core 5 (y = -0.0051x + 2.88), Core 6 (y = -0.0034x + 2.72), 

Core 3 (y = -0.0044x + 2.67) and Core 8 (y = -0.0281x + 2.70) A modified ring index (excluding 1G-GDGT-5 and 5’) vs. Temperature 

(right), shows that there is first an increase, then a peak RI value, with slightly decreased values with increased temperature. This plot 

shows lower values that increase, followed by a jump followed by a decrease in high temperatures. Equations of these lines are the 

following; Core 5 (y = 0.0095x + 0.45), Core 6 (y = 0.018x + 0.70), Core 3 (y = 0.0118x + 0.59) and Core 8 (y = -0.012x + 0.46). 
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4.3. Lipid indicators to metabolic responses in the subsurface 

 

All correlation coefficients obtained from the linear relationships between 

methane index (MI; Equation 2, Zhang et al. 2011) and temperature are between 0.20 and 

0.38 (Figure 2.12), which is not supportive of significant anaerobic oxidation of methane 

(AOM) at this site. However, Zhang et al. (2011) has suggested that MI values of 0.30-

0.50 mark a boundary between normal marine and high AOM conditions.  The Cathedral 

Hill values could ultimately represent methanotrophs present in some intervals where 

higher MI values were obtained. Schouten et al. (2003) has indicated that there is AOM in 

hot sediments in the Guaymas Basin. Even though our data indicates that it is plausible 

based on the MI values (>0.3), it is inconclusive without additional information.  

𝑀𝐼 =  
(𝐺𝐷𝐺𝑇 1) + (𝐺𝐷𝐺𝑇 2) + (𝐺𝐷𝐺𝑇 3)

(𝐺𝐷𝐺𝑇 1) + (𝐺𝐷𝐺𝑇 2) + (𝐺𝐷𝐺𝑇 3) + (𝐺𝐷𝐺𝑇 5) + (𝐺𝐷𝐺𝑇 5′) 
                                 (2) 
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Figure 2.12 - Methane Index (Zhang et al., 2011) vs. Temperature. Values above 0.30 

indicate a transition between normal marine and areas with high AOM (>0.50). 

Equations of these lines are the following; Core 5 (y = 7E-05x + 0.35), Core 6 (y = -

0.0003x + 0.32), Core 3 (y = -0.0007x + 0.33) and Core 8 (y = -0.004x + 0.35). The 

lowest methane index value from Core 8 is denote with an * which indicates low sample 

material.  

 
 

We further suggest that there is the potential for ammonia oxidizing archaea 

(AOA) as they are some of the most abundant microbes in the world’s oceans (Karner et 

al., 2001; Schattenhofer et al., 2009) and that the vent fluids in Guaymas Basin tend to be 

rich in ammonia (Von Damm et al., 1985). However, genetic studies would be needed to 

confirm this claim.     

 

4.4. MeO-AR/MeO-AR+cAR 

 

Methoxy archaeol (MeO-AR) is a potential biomarker of planktonic marine 

thaumarchaea (Elling et al., 2014).  The biosynthesis and biological function of MeO-AR 
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is still currently unknown (Evans et al., 2018), but its presence in ocean floor sediments 

likely indicates upper-water column inputs of organic matter. Figure 2.13 depicts elevated 

MeO-AR/MeO-AR+cAR (Calculated after Evans et al. (2018) (Eq. (3)) in less 

hydrothermally impacted, surficial sediments. The warmer intervals in Cores 5 and 6 

show lower values that appear to taper out towards zero. However, the most prominent 

depositional signature is observed in Core 3, where there is a systematic decrease in the 

ratio with temperature and depth. This curve could indicate that MeO-AR is likely being 

deposited, buried and then either biodegraded or there is some other unknown zonation 

that is forcing this function to approach zero above 40°C. These findings are consistent 

with Elling et al. (2014) who suggested that MeO-AR is limited to the upper water 

column. However, more knowledge of MeO-AR is needed to draw inferences on the 

origin of this potential marker, and ultimately what the application for this equation could 

be.   

𝑀𝑒𝑂 − 𝐴𝑅/𝐷 =  
𝑀𝑒𝑂 − 𝐴𝑅

𝑀𝑒𝑂 − 𝐴𝑅 + 𝐴𝑅
                                                                                                    (3) 
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Figure 2.13 - MeO-AR/MeO-AR+cAR vs. Temperature, showing the ratio approaching 

zero with elevated temperature. Equations of these lines are the following; Core 5 (y = -

0.0006x + 0.11), Core 6 (y = -0.001x + 0.12), Core 3 (y = -0.0037x + 0.25) and Core 8 (y 

= -0.0103x + 0.35), where R2 values are found below the corresponding core in the 

legend.  

    

 

4.6. Thermal limit of life 

 

The ultimate thermal limit of life on Earth is of interest for identifying new 

target locations to look for microbial life on extra-terrestrial planets, learn more about the 

potential origins of life, and to more accurately constrain how deep the deep biosphere 

goes. Many archaea appear to be the most adapted to life in extreme heat due to the 

natural chemical stability of their biomolecules, but also in the assembly of these 

molecules. Currently, the highest temperatures recorded for a hyperthermophile is around 
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120˚C as recorded in culture experiments by Kashefi & Lovley (2003). These authors 

found that for a cultured strain of Archaea from a hydrothermal vent site growth occurred 

up to 121°C. However, a more recent study found a slightly higher threshold of 122°C 

(Takai et al., 2008), which was produced by hyperthermophilic methanogens under high 

pressure (40 MPa) cultivation.        

The presence of 1G-GDGTs in cores 5 and 6 at ~145˚C suggests that the 

boundary for the upper thermal limit of life may once again be shifted. This is because 

IPLs are not stable outside of the cellular membrane and the head groups hydrolyze 

within days to weeks in normal marine environments (White et al., 1979; Harvey et al., 

1986). There are thoughts that IPLs may be stable for longer durations outside of a 

membrane, however, the harsh conditions of Cathedral Hill would likely promote 

degradation. The 1G-GDGT-0 is the only structure observed in this interval, and in low 

concentrations, which is consistent with intact polar GDGTs tending to have higher 

abundances of acyclic GDGT-0 core structures (Liu et al., 2011). However, pressure is a 

factor that may potentially play a role in the preservation of these lipids. There is 

evidence that Archaea experiencing elevated pressure may slightly increase the window 

for life, allowing them to persist into the observed temperatures as outlined in culture 

experiments by Kashefi & Lovley (2003) and Takai et al. (2008). The seafloor 

environmental pressures at Cathedral Hill are 20 Mpa (from a gradient of 1 Mpa /100m), 

which is likely a conservative estimate. It is expected that with the upward flow of vent 

waters the shallow subsurface could results in higher pressures as the venting fluids are 

not able to bubble. Pressure was not directly measured for Cathedral Hill, but other 

Guaymas Basin sites of similar water depths have reported values reaching 35 Mpa 
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(Canganella et al., 1997). Such elevated pressures enhance the thermo-tolerance of 

various hyperthermophiles (Holden and Baross 1995; Marteinsson et al., 1997).  

Other metrics such as the RI as described in section 4.2., suggest that the 

Archaea are indeed adapting to the increase in temperature by increasing lipid packing. 

This line of evidence refutes the idea that there is mechanical smearing in the sample 

collection or some other analytical error that might allow for the signature to appear in a 

depth that extends past the known habitable zone. There is the potential to have 

inaccuracies in the thermal probe data, however, even with error in that measurement 

there is still a high probability that the observed lipids are above the 121˚C or 122°C limit 

recorded by Kashefi & Lovley (2003) and Takai et al. (2008) respectively. One factor that 

is not constrained is the flow of hydrothermal fluid. There is a possibility that there are 

cyclic events that occur, which temporarily decrease the temperature for durations that 

allow for those organisms to establish themselves at those core depths. They can then 

subsequently be exposed to the observed elevated temperatures that would pasteurize 

even the most resilient of hyperthermophiles. This is a major consideration especially at 

the scale at which this study was conducted. The slightest variations within the fluid flow 

and or temperature of those fluids may drastically affect the upper 21 cm of sediment.  

Additionally, stratigraphic trends show systematic decreases with depth suggesting that 

the lipids observed are in fact a true signal, indicating that cyclic events likely have not 

impacted the study area since the microbial community has established itself.    
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5. Conclusions  

 

 The Cathedral Hill push core transect is heavily controlled by the in situ 

temperatures that reach upwards of ~155˚C within the first 21 cmbsf in the most extreme 

case of Core 5. This extreme temperature drastically limits the diversity of life, however 

signatures of the living archaeal community in the form of 1G-GDGTs have been found 

near the bottom of the interval that represent 15-18cmbsf. This interval experiences 

temperatures up to 145˚C, which is currently outside the known realm of habitability.  

 This study further suggests either a form of lipid recycling or assimilation as the 

sources appear consistent with initial influx of sediment at the surface, but this signature 

decreases with depth to where archaeal communities are thought to thrive. This claim is 

strongly supported by the ring index trends that point to thriving archaeal communities in 

the subsurface that are adapting to environmental stress. Ultimately this study highlights 

the thermal stability of archaeal lipids and their potential extension to the boundary of 

life. This has implications for the depth that the deep biosphere can extend and the range 

of conditions in which life could evolve on Earth or on other planets and moons. 
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Abstract  

The diversity of tetraether lipids found in soils and sediments is increasingly used to 

assess environmental change. For instance, the TetraEther indeX of 86 carbon atoms 

(TEX86) paleoclimate proxy, based on archaeal glycerol dialkyl glycerol tetraether 

(GDGT) lipids is frequently used to reconstruct sea-surface temperatures (SST). 

However, in recent years, TEX86 temperature reconstructions have not always been 

representative of sea-surface conditions and its integrity as a paleo-proxy has been 

questioned. Here we show, with a series of push cores collected at the Cathedral Hill 

hydrothermal vent system in Guaymas Basin, Gulf of California that the TEX86 proxy is 

strongly influenced by in situ hydrothermal temperatures (R2 = 0.83) indicating the proxy 

can be heavily attenuated by subsurface rather than upper water-column factors. In this 

regard, we have also found that branched isoprenoid tetraether (BIT), cyclization of 

branched tetraethers (CBT), and degree of cyclization (DC) indices are also affected by 

the high-temperature vent settings, demonstrating that GDGT proxies have to be treated 

with caution when sourced from marine sediments that are undergoing secondary 

alteration by hydrothermalism. We have therefore modified the TEX86 with the inclusion 

of hydroxlated GDGTs that are less stable at higher temperatures. The HydrOxy 

Tetraether index with 86 carbon atoms (HOT86) is calibrated for hydrothermal vent 

systems and appears to track in situ temperatures (R2 = 0.89)  better than the TEX86.  This 

novel proxy may provide the ability to monitor sediment pore water profiles within 

hydrothermal environments without the use of thermal probes. It may also provide 

additional information to evaluate the integrity of sea-surface temperatures and other 

parameters calculated with GDGTs long after the sediments have been removed from 

their site of collection. As an extension of these outcomes, we suggest that reconstructed 
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SST profiles derived from sediments initially buried deep enough to be exposed to >60°C 

(HOT86 >= 0.7; TEX86 >= 0.56) may need to be corrected for in situ geothermal offsets 

caused by GDGT overprinting.   

 

 

 

 

 

Highlights  

1- GDGT and brGDGT proxies are influenced by geothermal temperatures when 

exposed to temperatures above ~ 60-70°C. 

2- We suggest these proxies are influenced by in situ production of GDGTs. 

3- We suggest that the newly developed HOT86 describes geothermal temperatures. 

4- With this proxy, negative effects on GDGT and brGDGT proxies can be quality 

controlled and corrected. 
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1. Introduction 

  

Intact polar lipids (IPLs) and core lipids (CLs), which lack a polar head group 

attachment to the glycerol of the lipid, have become common molecular markers for 

tracking the presence of living and dead archaea and bacteria within the geosphere (e.g., 

Lipp et al., 2008, Schouten et al., 2013). For example, archaeal CLs in the form of 

GDGTs and, in some cases, bacterial CLs comprised of branched GDGTs (brGDGTs) are 

widespread and easily detectable in the water columns of lakes, rivers, swamps, bogs as 

well as in soils and sediments of terrestrial and aquatic landscapes (Schouten et al., 2013). 

The structural diversity and chemical stability of GDGTs has resulted in the development 

of several geochemical lipid proxies (Schouten et al., 2002; Hopmans et al., 2004). The 

most commonly used GDGT-based proxy is the TetraEther indeX with 86 carbon atoms 

(TEX86) introduced by Schouten et al. (2002). The TEX86 proxy is now frequently used to 

reconstruct sea-surface temperatures (SST), aiding in paleo-oceanography studies in 

many different regions around the world (i.e. Huguet et al., 2006; Kim et al., 2008; 

McClymont et al., 2012). This proxy measures variations in the number of cyclopentyl 

rings within the hydrocarbon skeleton of the CLs (excluding caldarchaeol and 

crenarchaeol) with the assumption that cyclization is an organismal response to changing 

temperature conditions in the external environment. However, for this proxy to be a 

viable SST indicator, the archaea producing the GDGTs extracted from ocean bottom 

sediments must be almost exclusively sourced from marine planktonic Euryarchaeota, 

such as Thaumarchaeota, that inhabit the pelagic zone (Tierney 2014). These lipids are 

similarly required to be efficiently transported to the sediment surface after cell death to 



 

84 

become consecutively buried and preserved to allow for a chemostratigraphic record of 

changing SSTs (Wuchter et al., 2005).  

Over the last 10 years, this proxy has encountered numerous issues. These 

include SSTs reconstructed from archaea harvested within deeper portions of the water 

column (Lipp & Hinrichs 2009). For example, artificially hydrolyzed headgroups of 

marine archaeal IPLs harvested from a sediment trap indicate the production of GDGTs 

by microbial communities living within ocean bottom sediments. These may impact 

TEX86 values because offsets were demonstrated between sedimentary communities and 

fossil remains from planktonic communities (Lipp & Hinrichs, 2009). Similarly, Elling et 

al. (2015) demonstrated that TEX86 values can represent a mixed GDGT signal from both 

active microbial production in shallow sediments and fossil lipids sourced from the water 

column, ultimately suggesting that the sedimentary community compositions may exert 

controls on the TEX86 signal. Besseling et al. (2019) extended these concerns, suggesting 

TEX86 reflects subsurface temperatures rather than SSTs, as the input of GDGTs in 

marine settings are not exclusive to Thaumarchaeota, because a majority of marine group 

I (MGI) archaea also reside in subsurface waters. Collectively, these observations indicate 

that sub-pelagic zone microbial fauna may overprint the GDGT signals used to calculate 

the TEX86 proxy.  

It is likely that the particles settling in the water column contain GDGTs. 

However, SSTs are subject to a seasonal bias from the increased production of GDGTs in 

the summer and the lack of production in the winter (Shintani et al. 2011). Additionally, 

many studies have neglected the impact of in situ production of GDGTs and of the 
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potential for post depositional transformations or degradation of upper water column 

inputs (Schouten et al., 2013).  

The transport and transformation of GDGTs have also been investigated. 

Specifically, both stomachs and intestines of decapods were studied by Huguet et al. 

(2007). These authors highlighted a resilience of this class of molecules as TEX86 values 

did not show significant differences between the stomach and intestines of decapods. This 

also implies that there is minimal modification to the GDGT compositions as they pass 

through the gut of an organism and are deposited as fecal pellets. This transport 

mechanism can occur in the water-column and with other benthic organisms that may 

rework seafloor sediments.  

The effects of thermal maturity has long been thought to influence proxy-

based paleo-reconstructions. Schouten et al. (2004) conducted a hydrous pyrolysis 

experiment, which showed that at extreme temperatures (ca. >160°C), the TEX86 is 

negatively influenced producing lower values than their reference material. The outcome 

of their study was due to the preferential destruction of GDGT 2-5+5’. These 

temperatures are more extreme than those of our study area, however preferential 

destruction may still occur. Combining all the criticism of the TEX86 proxy, there seems 

to be a fundamental issue on the appropriate constraints for its use. 

Other tetraether lipid proxies, such as the Branched Tetraether Index (BIT), 

which is used as an indication of terrestrial input have also received criticism. Xing et al. 

(2016) demonstrated the BIT index, does not always indicate soil organic matter in 

marine sediments as their study area should have had considerable amounts of brGDGTs, 

but did not. More recent studies using brGDGTs likewise appear to indicate water-
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column rather than terrestrial sources for these molecules (Sinninghe Damsté et al., 2009; 

Tierney et al., 2012). The Methylation of Branched Tetraethers (MBT) and the 

Cyclization of Branched Tetraethers (CBT) proxies, which are often used to identify soil 

temperature and pH, are subject to seasonal bias because they seem to reflect soil 

temperatures rather than air temperatures (Schouten et al., 2013). Thus, reconstructing 

mean annual air temperatures (MAAT) with these proxies may not actually be reflective 

of true air temperatures. It also appears that these proxies also lack constraints on their 

use.   

We examined near-surface ocean floor sediments from the Cathedral Hill 

hydrothermal vent complex located in the Guaymas Basin, Gulf of California (Figure 3.1) 

to determine if sea surface signals are impacted by the subsurface production of GDGTs 

in highly productive sites such as a hydrothermal vent. This type of site allows for an 

investigation of the potential maximum of a subsurface overprint. The Guaymas Basin 

experiences high sedimentation rates between 0.4-2 cm/yr (Curray et al., 1979; Gieskes et 

al., 1988), which should, in principle, enable a high-resolution archaeal lipid-based 

climate record. Seafloor spreading over the last 4 million years has resulted in the 

formation of a series of smaller sub-basins (Calvert, 1966; Moore, 1973). Deeply buried 

sediments within these sub-basins are intersected by magmatic sills. In the case of the 

Southern Trough, these sills promote the discharge of hydrothermal fluids that reach the 

ocean floor (Lonsdale and Becker, 1985). Many of the hydrothermal vents are covered by 

Beggiatoa spp. microbial mats. These mats have been extensively studied (McKay et al., 
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2012; Meyers et al., 2013; Teske et al., 2016).                                                          

           

 

In this study, we evaluate the distribution of GDGTs and their corresponding 

proxy signals within the push core transect that were collected at the Cathedral Hill 

hydrothermal vent system, providing an opportunity to evaluate the response of the 

TEX86 and other proxies with exposure to increasing vent temperatures. Such a setting 

would not typically be ideal for paleo-environmental reconstructions. However, this 

unique setting allows for the ability to test the stability of the TEX86 proxy and to 

determine if overprinting and thermal decay of the proxy-based lipids occurs from the 

flourishing subsurface communities and extreme thermal gradients. Additionally, we have 

investigated a modified TEX86 thermometer termed HOT86 that includes a larger suite of 

Figure 3.1- A) Location map of Guaymas Basin (red). Cathedral Hill in the Southern 

Trough is denoted as a yellow star. B) Schematic of the push core transect. 
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iGDGTs, particularly incorporating hydroxylated GDGTs (OH-GDGTs). We suggest it 

can be used to determine a wide gradient of sediment porewater temperatures (~20-160°). 

We further identify biological irregularities that influence the obtained TEX86 and HOT86 

values. Lastly, we present confidence intervals for the use of tetraether lipid proxies and a 

correction factor for SST reconstructions using TEX86 values to back out the original 

signal in areas where in situ biota may be overprinting the upper water column thermal 

signature. 

 

2. Material and methods 

 

2.1. Study location and sampling  

 

 A four push core transect sampled with ~2m spacing was collected at the Cathedral 

Hill hydrothermal vent system in Guaymas Basin, Gulf of California (Figure 3.1). These 

push cores were collected by DSV-2 Alvin, a manned submersible from the Woods Hole 

Oceanographic Institution (WHOI) on Dive 4462 (10/22/08). The push cores were labeled 

Cores 5, 6, 3, and 8. Cores 5, 6, and 3 trend outboard from the vent complex, but are still 

within an area covered by white-, orange, and yellow filamentous Beggioatoa spp. 

microbial mat. Core 8 was collected furthest away from the vent and exterior to the mat. 

The sediments in Core 8 were exposed to more ambient pore water temperatures. 

Accompanying these push cores are in situ pore water temperature measurements obtained 

with a thermal probe that was inserted into the sediments directly adjacent to each push 

core. Once the samples were collected they were subsampled into 2-3 cm-thick intervals 

(Table 4) and immediately stored at -40°C (onboard the ship) and -80°C (within the 
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laboratory) temperatures.  The subsamples were then freeze-dried, homogenized, and kept 

at -80°C until extraction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4. Details of the sample set  
  

  Depth (cmbsf) Location  Temperature (°C)  

GB4462-5 0-2 Near vent  19 

GB4462-5 2-4  Near vent 67 

GB4462-5 4-6 Near vent 85 

GB4462-5 6-8 Near vent 105 

GB4462-5 8-10  Near vent 117 

GB4462-5 10-12 Near vent 125 

GB4462-5 12-15 Near vent 135 

GB4462-5 15-18 Near vent 145 

GB4462-5 18-21 Near vent 153 

GB4462-6 0-2 Mid microbial mat 11 

GB4462-6 2-4  Mid microbial mat 22 

GB4462-6 4-6 Mid microbial mat 20 

GB4462-6 6-8 Mid microbial mat 47 

GB4462-6 8-10  Mid microbial mat 60 

GB4462-6 10-12 Mid microbial mat 73 

GB4462-6 12-15 Mid microbial mat 87 

GB4462-6 15-18 Mid microbial mat 105 

GB4462-6 18-21 Mid microbial mat 125 

GB4462-3 0-2 Fringe of microbial mat 3.2 

GB4462-3 2-4  Fringe of microbial mat 8 

GB4462-3 4-6 Fringe of microbial mat 15 

GB4462-3 6-8 Fringe of microbial mat 26 

GB4462-3 8-10  Fringe of microbial mat 34 

GB4462-3 10-12 Fringe of microbial mat 43 

GB4462-3 12-15 Fringe of microbial mat 54 

GB4462-3 15-18 Fringe of microbial mat 66 

GB4462-3 18-21 Fringe of microbial mat 80 

GB4462-8 0-2 Ambient sediment 0 

GB4462-8 2-4  Ambient sediment 8 

GB4462-8 4-6 Ambient sediment 16 

GB4462-8 6-8 Ambient sediment 18 

GB4462-8 8-10  Ambient sediment 21 

GB4462-8 10-12 Ambient sediment 23 

GB4462-8 12-15 Ambient sediment 25 
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2.2. Sample extraction 

 

The samples were spiked with a recovery standard (1-alkyl-2-acetoyl-sn-glycero-

3-phosphocholine (PAF); Avanti Polar Lipids, Inc.) and extracted using a modified Bligh 

and Dyer protocol after Sturt et al. (2004). The extraction involved six steps using 3 

different solvent mixtures. For the first four steps solvent mixtures of 

methanol/dichloromethane/buffer [2:1:0.8; v/v] were used. The first two steps used a 

phosphate buffer (5.5g/L Na2HPO4; Avantor Performance Materials, LLC.) adjusted to 

pH of 7.4 with HCl; Anachemia Co.), while the third and fourth steps employed a 

trichloroacetic acid buffer (50 g/L C2HCl3O2; Avantor Performance Materials, LLC. (pH 

of 2). The final two steps used a solvent mixture of methanol/dichloromethane [5:1; v/v]. 

Each extraction step consisted of a 6 ml of solvent mixture, which was sonicated for 5 

minutes and centrifuged for 5 minutes at 1250 rpm. After each extraction step, the solvent 

was decanted and combined in a separation funnel. Once all of the steps were combined, 

the extract was purified with milliQ water, heated at ca. 60°C, and evaporated to dryness 

under a gentle steam of dry nitrogen. The resulting total lipid extract (TLE) was then 

spiked with 1, 2-diheneicosanoyl-sn-glycero-3-phosphocholine (C21-PC; Avanti Polar 

Lipids, Inc.) and subsequently stored at -20°C before it was injected for mass spectral 

analysis. 

 

2.3. High performance liquid chromatography – mass spectrometry (HPLC-MS)  

 

 A reverse phase electrospray ionization method with a scan range from 100-3000 

m/z was chosen for its ability to simultaneously resolve archaeal IPLs and CLs. An 
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aliquot of each sample representing 1% of the TLE was analyzed using an Agilent 

Technologies 1260 Infinity II HPLC coupled to an Agilent Technologies 6530 quadruple 

time-of-flight mass spectrometer (qToF-MS). Separation was achieved following the 

method described by Zhu et al. (2013) using an Agilent Technologies ZORBAX RRHD 

Eclipse Plus C18 (2.1 mm × 150 mm × 1.8 µm) reverse phase column, fitted with a guard 

column and maintained at 45°C. The flow rate was set to 0.25 mL/min. and the gradients 

were: mobile phase A (methanol/formic acid/ammonium hydroxide [100:0.04:0.10] v/v) 

held at 100%  for 10 min., followed by a linear gradient to 24% mixing with mobile 

phase B (propan-2-ol/formic acid/ammonium hydroxide [100:0.04:0.10] v/v) extending 

for 5 min., a linear gradient to 65% B for 75 min., followed by 70% B for 15 min., that 

finished by re-equilibrating with 100% A for 15 min. The injection solvent was methanol. 

Analyte identification was achieved by mass spectral analysis via spectra with 

accurate mass resolution and similarities of fragmentation patterns as presented in the 

literature (e.g. Knappy et al., 2009; Liu et al., 2010; Yoshinaga et al., 2011) using Agilent 

Technology’s MassHunter software. Quantification was achieved by summing the 

integration of peak areas of adducts [M+H]+, [M+NH4]
+, and [M+Na]+ for the respective 

GDGTs of interest. Once the integrated peak areas were determined for each GDGT, 

concentration values were obtained relative to the internal C21-PC standard and reported 

in µg/g dry sediment weight. 

Response factors were determined by a series of injections of a standard 

solution containing: 1,2-diacyl-3-O-(α-D-galactosyl1-6)-β-D-galactosyl-sn-glycerol 

(DGDG), 1,2-diacyl-3-O-β-D-galactosyl-sn-glycerol (MGDG), 1-alkyl-2-acetoyl-sn-

glycero-3-phosphocholine (PAF), 1,2-di-O-phytanyl-sn-glycerol (Archaeol), 1',3'-bis[1,2-
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dimyristoyl-sn-glycero-3-phospho]-glycerol (14:0 Cardiolipin), 1,2-diheneicosanoyl-sn-

glycero-3-phosphocholine (C21-PC) from Avanti Polar Lipids, Inc., USA, and  2,2´-di-O-

decyl-3,3´-di-O-(1´´,ω´´-eicosanyl)-1,1´-di-(rac-glycerol) (C46-GTGT) from Pandion 

Laboratories, LLC in amounts ranging from 100 pg to 30 ng. Concentrations of the 

standard mix were then calculated from peak areas of molecular ions in mass 

chromatograms. Response factors were calculated relative to the C21-PC, and the 

appropriate correction factor was applied to the particular lipid class of interest.  

A series of samples were re-run to identify or confirm deviations in the data 

set. The variations between the concentrations of GDGTs in the re-run and the initial runs 

yielded a maximum difference of ~ ± 4 µg/g per GDGT compound, providing confidence 

in the initial results and confirming the presence of two outlies in the data set. These 

outliers are Core 8 at 8-10 cm, with abnormally low concentrations of all compounds that 

is likely ion suppression in the analysis from a sample heavily impregnated with oil, and 

Core 3 at 15-18 cm, which contains relatively high lipid concentrations that are yet to be 

explained. 

 

2.4. Tetraether environmental proxies     

 

The following section will outline the various tetraether proxies that have been 

investigated. The numbers in the equations represent the specific GDGTs structures 

(Figure 3.2) whereas brGDGTs are referred to in Roman numerals (Supplementary Fig. 

S1-1). The TEX86 paleoclimate proxy (Schouten et al., 2002) (Eq. 1):  
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(1)  TEX86 = 
2+3+5′

1+2+3+5′      

 

 

is widely used to reconstruct SSTs. TEX86 values tend to range from 0.2-0.9 in both 

marine and lake sediment (Damsté et al., 2009; Powers et al., 2010; Schouten et al. 2013). 

However, TEX86 reconstructions in lakes can be problematic in settings lacking 

Crenarchaeota as the production of these archaea is water-depth dependent (Powers et al. 

2010; Zink et al., 2010).    

The ring index (RI) (Eq. 2): 

 

(2)   RI = 
𝟎 𝒙 (𝑮𝑫𝑮𝑻−𝟎) + 𝟏 𝒙 (𝑮𝑫𝑮𝑻−𝟏) + 𝟐 𝒙 (𝑮𝑫𝑮𝑻−𝟐) + 𝟑 𝒙 (𝑮𝑫𝑮𝑻−𝟑) + 𝟒 𝒙 (𝑮𝑫𝑮𝑻−𝟒) + 𝟓 𝒙 (𝑮𝑫𝑮𝑻−𝟓) + 𝟓 𝒙 (𝑮𝑫𝑮𝑻−𝟓’) 

𝒔𝒖𝒎 𝒐𝒇 𝒂𝒍𝒍 𝑮𝑫𝑮𝑻𝒔
 

is a weighted average of the number of rings within a sample (calculated after Pearson et 

al., 2004; Eq 2). This ratio records the increasing number of rings within the archaeal 

core lipid pool, which can be used to infer the adaptive strategy that regulates the flow in 

and out of a cellular membrane by decreasing fluidity but increasing rigidity. 

Rigidification of the cellular membrane serves as an adaptive strategy within 

environments that have elevated temperatures or increased acidity (Gliozzi et al., 1983; 

Macalady et al., 2004; Boyd et al., 2013).   

 

The Methane index (MI) as described by Zhang et al. (2011) (Eq. 3): 

 

(3) MI = 
𝟏+𝟐+𝟑

𝟏+𝟐+𝟑+𝟓+𝟓′        
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describes areas of normal marine conditions and active anaerobic oxidation of methane 

(AOM). MI values between 0-0.3 are characteristic of normal marine conditions. Values 

greater than 0.5-1 are observed for hydrate impacted areas or within environments where 

high levels of AOM occur.   

  

Various proxies are based on distributions of brGDGTs. The Cyclization ratio 

of Branched Tetraether (CBT) index (Eq. 4): 

 

(4)  CBT =  −𝒍𝒐𝒈
𝑰𝒃+𝑰𝑰𝒃

𝑰𝒂+𝑰𝑰𝒂
 

 

 calculated after Weijers et al. (2007) is often used to evaluate soil pH where values range 

from 0 - 2.2.  

 

The Methyl Branched Tetraether (MBT) index calculated after Weijers et al. 

(2007) (Eq. 5): 

 

(5)  MBT = 
𝑰𝒂+𝑰𝒃+𝑰𝒄

𝑰𝒂+𝑰𝑰𝒂+𝑰𝑰𝑰𝒄+𝑰𝒃+𝑰𝑰𝒃+𝑰𝑰𝑰𝒃+𝑰𝒄+𝑰𝑰𝒄+𝑰𝑰𝑰𝒄
 

 

 represents the degree of methylations that occurs at the C-5 and C-5’ positions with 

values that range from 0.15-1. 

 

The Degree of Cyclization (DC; after Sinninghe Damsté et al., 2009) (Eq. 6): 
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(6)  DC = 
𝑰𝒃+𝑰𝑰𝒃

𝑰𝒂+𝑰𝑰𝒂+𝑰𝒃+𝑰𝑰𝒃
           

 

measures the amount of cyclopentane moieties within brGDGTs and has values that range 

from 0-0.4. 

 

The branched isoprenoid tetraether (BIT) index (Hopmans et al., 2004; Eq. 7): 

 

(7)  BIT = 
𝑰+𝑰𝑰+𝑰𝑰𝑰

𝑰+𝑰𝑰+𝑰𝑰𝑰+(𝑮𝑫𝑮𝑻−𝟓)
 

describes input of terrestrial soil organic matter. The brGDGTs are predominantly 

produced in terrestrial settings and thus represent depositional of terrestrial organic 

matter. BIT values range from 0-1. 
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Figure 3.2 - Chemical structures of GDGTs and their elution patterns on a reconstructed BPC from 500-

3000 m/z (note that 1G-GDGTs in blue were obtained from an EIC and overlayed on the BPC to denote 

their elution positions). 

 

3. Results and discussion 

 

3.1. Core lipid concentrations  

 

 Assessing GDGT concentrations, independent of ratio based comparisons, 

spatially (both across the transect and with depth) is vital to understand how these 

molecules are changing and how this may inevitably be influencing tetraether-based 

proxies. Core 8 of the transect offers the closest approximation to an ambient ocean 

bottom sediment and can therefore be considered equivalent to a water-column sediment 

trap. Summed concentrations of all GDGTs in Core 8 are consistent at ~ 400 µg/g 

sediment from top to bottom of the core (Table 5), which indicates a relatively constant 
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input of organic matter. The other three transect cores (5, 6, and 3) have higher summed 

concentrations of GDGTs. For these surface sediments, yields of ~ 500 µg/g are likely 

resulting from the rapid redox changes and the presence of metabolically-important 

substrates and metabolites within the vent fluids that enables the growth of Beggiatoa 

colonies, whose filaments penetrate ~ 4 - 8 cm into the underlying sediment. The three 

cores experience dramatic increases in down core temperatures. The temperature 

increases closely parallel decreasing GDGT concentrations with depth.  At the bottom of 

Core 5 and 6 (18-21 cmbsf) GDGTs record roughly 90-94% reductions in yields with 

concentrations of ~ 40 µg/g at 153°C and ~ 30 µg/g at 125°C, respectively. The depletion 

is less extreme with a ~ 60% loss in Core 3 (18-21 cmbsf), where GDGT concentrations 

are ~200 µg/g at 80°C.  

OH-GDGTs follow similar trends, but these lipids are in much lower 

concentrations than that of the GDGTs. For instance, in Core 8 the summed OH-GDGTs 

are ~20 µg/g all the way down core.  Similar elevated concentrations are observed at the 

surface of Cores 5, 6, and 3 with OH-GDGT concentrations of ~ 28 µg/g sediment and 

similar to GDGTs a decrease in concentration is observed with depth. The bottom of Core 

5 and 6 (18-21 cmbsf) have OH-GDGT concentrations that are near detection limits at ~ 

0.25 µg/g at 153°C and ~ 0.35 µg/g at 125°C, respectively. OH-GDGT concentrations are 

~ 9.3 µg/g at 80°C at the bottom of Core 3 (18-21 cmbsf). 

 The brGDGTs in Core 8 have a consistent range of concentrations (~ 5.5 µg/g).  

For cores 6 and 3 concentrations are ~ 7 µg/g at the surface. Core 5 has a lower 

concentration of ~ 5 µg/g observed within the surface sediment. Subsurface depletion 

trends in Cores 5 and 6 are similar with the bottom of each core (18-21 cmbsf) having a 
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brGDGT concentration of ~ 0.86 µg/g at 153°C, and ~ 1 µg/g at 125°C, respectively. The 

brGDGT concentration at the bottom of Core 3 (18-21 cmbsf) has a concentration of 4 

µg/g at 80°C.  

 There are two notable outliers in the sample set as previously discussed in section 

2.5, one being in Core 8 and one being in Core 3. The outlier in Core 8 (8-10cm) is likely 

an analytical artifact attributed to matrix effects from in situ petroleum. This would likely 

cause ion suppression in HPLC runs. The outlier in Core 3 (15-18 cm) is less explainable, 

providing concentrations for cGDGT and brGDGTs that are approximately double the 

intervals above and below it. Absolute concentration values can be found in Table 5 

below, however individual structure concentrations can be found in the supplementary 

data (Appendix A-3). In some cases, the bottom of Core 8 (12-15 cm) has the potential to 

be an outlier as the sample extracted only contained 0.32 g of material compare to ~3 

grams, which was the target weight for extraction.   

 Unlike GDGTs and OH-GDGTs, monoglycosidic-GDGTs (1G-GDGTs) 

concentrations follow slightly different trends. In Core 8, the concentrations of 1G-

GDGTs are rather consistent and average concentration are ~ 8 µg/g with slightly 

elevated concentrations of 11 µg/g sediment at the surface and slightly depleted 

concentrations of 6 µg/g sediment near the bottom of the core. The same enrichment 

occurs at the surface of Cores 5, 6, and 3, where concentrations are ~ 15 µg/g. However, 

the subsurface concentrations display deviations. In Core 5, 1G-GDGTs extend to 15-18 

cmbsf having a concentration of 0.11 µg/g at 145°C. In Core 6, the signature for 1G-

GDGTs extends to 12-15 cmbsf having a concentration of 1 µg/g at 87°C. In Core 3, the 
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signature of 1G-GDGT persists all the way down core (18-21 cmbsf) having a 

concentration of 5.22 µg/g at 80°C.  

 

Table 5 - Concentrations of lipids of interest in µg/g sediment. 

Sample Id and Temp (°C) cGDGT OH-GDGT 1G-GDGT brGDGTs 

GB4462-5-0-2cm-19°C 506.01 25.76 14.86 5.19 

GB4462-5-2-4cm-67°C 459.21 24.07 13.37 5.75 

GB4462-5-4-6cm-85°C 204.18 10.38 6.00 2.37 

GB4462-5-6-8cm-105°C 153.66 6.69 4.31 1.98 

GB4462-5-8-10cm-117°C 60.10 2.41 3.19 1.07 

GB4462-5-10-12cm-125°C 49.73 1.63 1.66 1.52 

GB4462-5-12-15cm-135°C 84.29 1.39 1.39 3.29 

GB4462-5-15-18cm-145°C 44.91 0.43 0.11 1.12 

GB4462-5-18-21cm-153°C 39.84 0.26 0.00 0.86 

     

GB4462-6-0-2cm-11°C 595.98 28.84 16.20 7.05 

GB4462-6-2-4cm-22°C 267.74 14.81 6.69 4.00 

GB4462-6-4-6cm-20°C 88.12 4.67 2.27 1.68 

GB4462-6-6-8cm-47°C 71.46 3.08 3.33 2.80 

GB4462-6-8-10cm-60°C 49.63 1.81 1.98 1.29 

GB4462-6-10-12cm-73°C 53.18 2.07 1.97 1.51 

GB4462-6-12-15cm-87°C 45.19 1.37 1.00 1.12 

GB4462-6-15-18cm-105°C 22.95 0.12 0.00 0.66 

GB4462-6-18-21cm-125°C 31.82 0.35 0.00 1.00 
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GB4462-3-0-2cm-3.2°C 513.50 30.60 14.17 7.73 

GB4462-3-2-4cm-8°C 309.79 15.89 7.56 4.07 

GB4462-3-4-6cm-15°C 284.17 14.77 6.38 3.82 

GB4462-3-6-8cm-26°C 276.48 15.24 6.79 4.18 

GB4462-3-8-10cm-34°C 252.32 13.69 5.18 5.19 

GB4462-3-10-12cm-43°C 229.71 13.21 5.33 5.20 

GB4462-3-12-15cm-54°C 180.75 10.08 6.53 5.11 

GB4462-3-15-18cm-66°C 254.38 12.38 6.45 10.99 

GB4462-3-18-21cm-80°C 186.72 9.31 5.22 4.88 

     

GB4462-8-0-2cm-0°C 486.08 27.77 11.12 6.36 

GB4462-8-2-4cm-8°C 419.45 21.35 8.83 5.43 

GB4462-8-4-6cm-16°C 482.69 26.81 11.03 6.64 

GB4462-8-6-8cm-18°C 361.13 18.60 8.82 4.68 

GB4462-8-8-10cm-21°C 154.65 9.66 2.42 2.22 

GB4462-8-10-12cm-23°C 462.82 23.28 6.47 6.77 

GB4462-8-12-15cm-25°C 517.35 22.57 6.05 6.27 

     

 

3.2. Core lipid based proxies and the impact of temperatures 

 

The TEX86 values for Core 8 span a narrow range of values (0.52 to 0.54). 

These values extend down the entirety of the 15 cm length of the core, which translates to 
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~ 7.5 to 37.5 yrs with sedimentation rates estimated to be maximum of 2 cm/yr or 

minimum of 0.4 cm/yr (Curray et al., 1979; Gieskes et al., 1988). The TEX86 values 

equate to reconstructed SST of ~ 19°C following the calibration model of Kim et al. 

(2010) (Supplementary Table A 3-7), which is between the recorded modern winter and 

summer sea surface conditions reported for the Gulf of California (McClymont et al., 

2012). These results strongly suggest the GDGTs in the ambient sediments are largely 

sourced by settling of particles from the upper water column. 

The TEX86 values as recorded in the other transect core sediments have a 

considerably larger range of values from 0.52 and 0.63 that systematically increase with 

sediment pore water temperatures that range from 2 to 153°C (R2= 0.83; Fig. 3.3A, where 

an R2 value greater than 0.6 is considered significant). In this regard, Cores 5, 6, and 3 

that are most closely associated with the hydrothermal system record progressively high 

TEX86 values with sediment depth. This is most noticeable in Core 5 where the highest 

TEX86 values are obtained for the bottom core sediments (0.55-0.63; Fig 3.3A). These 

results suggest the source of the archaeal CLs progressively becomes more dominated by 

a subsurface microbial community that is itself responding to the hotter geothermal 

temperatures of the venting hydrothermal fluids. As such, the results indicate that in some 

settings the TEX86 SST-proxy is recording in situ geothermal temperatures. This concept 

has been discussed in several studies (Lipp & Hinrichs, 2009; Elling et al., 2015; 

Besseling et al., 2019). However, to our knowledge it has not yet been systematically 

demonstrated. 

These results show a direct impact on the TEX86 values by hydrothermalism. 

Higher TEX86 values obtained in the hotter intervals at Cathedral Hill are supported by 
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earlier observations by studies such as Huguet et al. (2007), Kim et al. (2012) and others 

who reported that the TEX86 values may be representative of subsurface temperatures 

rather than sea-surface temperatures. Alternatively, various GDGT core lipids could be 

thermally unstable and preferentially removed from the lipid pool when exposed to the 

sharp geothermal gradient of Cathedral Hill. However, hydrous pyrolysis experiments 

conducted by Schouten et al. (2004) indicate that only at extreme temperatures greater 

than 160°C does the TEX86 values become negatively influenced due to the preferential 

destruction of GDGT 2-5+5’. The preferential destruction does not appear to be occurring 

nor do temperatures reach this threshold.  

To better interpret the TEX86 trends and to ensure that reconstructed 

temperatures were not influenced by other forcing factors such as, the RI and MI (Figure 

3.3, B, D) were plotted against recorded in situ pore water temperatures. As seen in 

Chapter 2, both Cores 5 and 6 have RI values that are highly correlated with temperature 

(R2 = 0.87 and 0.75, respectively).  However, a single trend line (R2 = 0.16) to evaluate 

the whole system indicates that temperature is not the primary driving force for the RI 

across the transect of the core. Furthermore, these results are consistent with a significant 

proportion of measured GDGTs being sourced from the shallow sediments. The 

relationship between the RI and temperature may be coupled with optimal growth 

temperature, as demonstrated in Wuchter et al. (2004) and Elling et al. (2015). In this 

regard, the lipid cyclization pattern could reflect stratigraphically discrete thermophile to 

extremophile communities that are selectively adapted to more extreme temperature 

conditions. RI values in core sediments with elevated temperatures show the best 

correlations and appear to reach a maximum RI value at ~ 120°C in Core 5 and ~ 80°C in 
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Core 6. These values may potentially be the optimal growth for the dominant Archaea 

present. The cyclization pattern may also be a microbial response whereby Archaea 

selectively modify their lipid structures through the incorporation of new ring cycles in 

order to decrease membrane fluidity within the thermally stressed environment (Gliozzi 

et al., 1983; De Rosa and Gambacorta, 1988; Uda et al., 2001; Schouten et al., 2002).    

The MI describes areas that experience high levels of AOM (Zhang et al., 

2012). The data suggests that there is no correlation between MI and temperature for the 

Cathedral Hill system (R2= 0.09). The Cathedral Hill sediment samples have moderate to 

low MI values (0.25 - 0.38). This suggests that the MI likely has little influence on the 

TEX86 values obtained in the push core transect as in situ production of GDGTs from 

methanotrophic archaea should be minimal. Conversely, in areas where higher MI values 

are obtained, SST reconstructions may be influenced by the in situ production of GDGTs 

as previously described by Zhang et al. (2011).  

The incorporation of OH-GDGTs into a paleoclimate proxy has previously 

been suggested as an alternative to the TEX86 SST proxy (Huguet et al., 2013) even 

though the physiological function of OH-GDGTs is relatively unknown (Huguet et al., 

2017). Following on this, we have similarly modified the TEX86 to include both OH-

GDGTs and GDGT-4, since these molecules are thought to potentially be produced under 

different environmental stress (Liu et al., 2012) and have different thermochemical 

stabilities (Sollich et al., 2017). In this regard, we introduce the HydrOxy Tetraether 

index with 86 carbon atoms (HOT86): 

(8)  HOT86 =
2+3+4+5′+(1−𝑂𝐻)+(2−𝑂𝐻)

1+2+4+5′+(0−𝑂𝐻)+(1−𝑂𝐻)
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with this modification a slightly stronger linear correlation is observed between the 

HOT86 values and measured temperatures (R2 = 0.89; p = 2.2e-16) (Fig. 3.3C), suggesting 

the new index is sensitive to a large range of hydrothermal vent fluid temperatures with a 

higher goodness of fit. Additionally, %GDGT was calculated (Table A3-7), which were 

found to be under the outline 67% which is thought to be an indicator of non-water 

column sources if greater than this assigned value (Sinninghe Damste et al., 2012).      

 

 

To evaluate the potential impact of reconstructing past environments in 

settings that are deemed unreliable due to hydrothermallism, we have calculated SST 

Figure 3.3 - Indices vs. temperature, A) TEX86 vs. temperature, B) Methane index vs. temperature, C) HOT86 vs. 

temperature, D) Ring index vs. temperature. Trend lines for this data are present as single trend lines for the whole 

data set to demonstrate the overall control or lack of control over the system. Equations of these lines are; A (y = 

0.0005x + 0.53), B (y = 0.0003x + 0.30), C (y = 0.0014x + 0.61), and D (y = 0.0009x + 2.55). 
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values using the global core top calibration model of  Kim et al. (2008) with SST = - 

0.178 + 56.2 * TEX86 and compared our predicted temperature values with the measured 

pore water vent temperatures (Figure 3.4). A systematic increase in reconstructed SST 

with increased in situ temperature is observed (R2 = 0.83; Figure 3.4). All the cores in the 

push core transect are arguably expected to receive the same input from the upper water 

column and their respective reconstructed SSTs should be comparable to Core 8. 

However, it is clear that the cores that are thermally influenced produce SST values that 

are much higher than the ambient cores (Figure 3.4) suggesting an overprinting of the 

original SST signal. Thus, we suggest that within hydrothermal environments, samples 

with HOT86 values >0.7 and likewise TEX86 values >0.56 may likely record geothermal 

temperatures (Fig. 3.3 A & C).  In an attempt to make this new proxy usable to evaluate 

SSTs in areas where GDGT pools may be influenced by in situ production or in situ 

destruction of GDGTs (i.e. sediment cores deeper than ~2500 m, pockmarks, mud 

volcanoes) we have established a correction factor that can be applied to SSTs calculated 

with the original TEX86. The correction factor (CF; Eq 10) is calibrated for hydrothermal 

vent systems and is described as follows: 

(9)  SSTreal = SSTTEX86 + CF 

(10)  CF = TEX86/LOG(HOT86)+2.65 

However, this correction factor still needs to be applied to other study areas to test its 

validity, but appears promising.  



 

106 

 

Figure 3.4- Reconstructed SST from TEX86 values vs pore water temperatures, showing 

that the cores that experience higher pore water temperatures, reconstruct higher sea 

surface temperatures ( y = 0.0005x + 0.53). 

 

3.3. Signal sourcing       

 

As an attempt to validate the dominant signature (detrital or in situ) in the 

TEX86 and HOT86, we compare the values obtained from core GDGTs and 1G-GDGT 

(Figure 3.5). The 1G-GDGTs are produced by marine benthic archaea, which are still 

alive (e.g., Schouten et al., 2013), representing a living signal that can be used to 

calculate the tetraether indices. Where the core GDGT is likely to represent the signal 

from the dead. Furthermore, we observed three clusters of points (A1, B1, C1; Figure 3.5 

A), suggesting there is a mixed signal for sourcing of archaeal GDGTs from living and 
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dead pools of archaea. This is consistent with observations of Shah et al. (2008), who 

suggested that in situ production of core GDGTs from microbial communities contribute 

to the general GDGT pool producing a of mixed origins. In this plot an assumption was 

made that clusters that fall on the 1:1 line likely indicates the living biota is contributing 

to the “dead pool” of GDGTs, thereby masking the proxy’s intended sea-surface 

temperature value. Overall, three clusters were observed which appear to be representing 

the ambient sea floor (Core 8) and the surface of Core 3 as well as Core 6 (A1), an active 

archaeal communities (B1), and sediment that are likely heavily influenced by the in situ 

biota (C1) as the signal is likely driven by the living biota overprinting the original 

GDGT signal, ultimately producing high TEX86 values. The process of how this occurs is 

currently unknown but we speculate that recycling may account for this phenomena. 

There is a possibility that archaea are recycling lipid in the environment and modifying 

them only to subsequently reintroduce them back into the environment.   

Cluster C1 is one of the more interesting clusters, which we suggest has new 

implications for the reliability of the TEX86. The samples in these intervals would 

experience similar thermal gradients as samples in locations, which may include, but are 

not limited to hydrothermal vents, near mid-ocean spreading ridges, submarine 

volcanoes, pockmarks, accretionary melanges, or samples at depth that experience 

geothermal gradients resulting in temperatures higher than 60°C. A similar comparison 

with HOT86 values of CLs and IPLs was done and this plot generates similar clusters (A2, 

B2, C2; Figure 3.5 B). The clustering shifts to the left, which we believe is evidence that 

this new proxy tracks the living extremophile benthic communities closer than TEX86. 

Consequently, the clusters may represent the broad classification of the subsurface 
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communities present, potentially distinguishing mesophilic and hyperthermophilic 

archaea. We believe that A2 represents a similar classification of ambient or surficial 

sediments just like A1 of the TEX86 clusters. Cluster B2 likely represents mesophilic 

archaea and cluster C2 likely represents hyperthermophilic archaea. Archaea such as 

Methanopyrus kandleri may be a potential candidate for a hyperthemophilic source as 

outlined in Teske et al. (2014), a study conducted in the Guaymas Basin. These 

hyperthermophic archaea may produce the signal of cluster C2 in our study.
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Figure 3.5 - A) TEX86 values and B) HOT86 proxy values of core GDGTs vs 1G-GDGTs. Clusters A1-C1 and A2-C2 represent different 

archaeal communities that are contributing to the GDGT lipid pool. The diagonal line indicates equal contribution of both 1G-GDGT 

and Core GDGT to the GDGT pool. A shift between convention TEX86 clusters and HOT86 clusters indicating a closer tracking of 

subsurface communities with the HOT86.
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3.4. Thermal impact on brGDGTs  

 

We also investigated the potential impact of brGDGT proxies. In Figure 3.6 

the values of the BIT, CBT, DC, and MBT indices are compared. In an attempt to 

evaluate the influence of other indices with both depths and temperatures we have plotted 

these indices against the value of depth divided by temperature. The BIT index, for 

instance, can change with depth as the source input of terrestrial soil organic matter is 

variable due to seasonal fluctuations and upwelling events (Hopmans et al., 2004), but 

should not be affected by temperature. However, in Figure 3.6 A, there is a greater 

variability with BIT values in Core 5, which experienced the most elevated temperatures. 

The variability of this proxy becomes less drastic outwards from the vent center. When 

evaluating the integrity of the DC index (Figure 3.6 B), the index is negatively affected 

by increased temperature, producing lower DC values. The CBT index appears to be 

influenced similarly to the BIT index, having increased proxy values in the hotter cores, 

with minimal variation in Core 8. On the other hand, it appears that MBT is less affected 

by increased temperatures (Figure 3.6 C) as there is no systematic increase in any 

particular core.  Therefore the MBT may be a more reliable proxy that does not require a 

correction factor at higher geothermal temperatures.  
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Figure 3.6 - brGDGT proxies vs Temperature (T) / Depth (D). A) BIT vs T/D B) DC vs 

T/D C) CBT vs T/D and D) MBT vs T/D. These plots show that there tends to be a wider 

variation of the proxy values with increased thermal gradients (T/D values). 

 

3.5. Potential limitations to the use of tetraether-based proxies 

 

GDGTs have varying thermochemical stabilities (Schouten et al., 2004) and 

the use of proxies that relate to archaeal-based paleoclimate proxies may be compromised 

if one or more of the core lipid isomers within the proxy is selectively degraded. This will 

lead to statistical loading of one structural isomer. We therefore suggest sediments with 

HOT86 values >0.7 are likely influenced by elevated temperatures. A HOT86 value of 0.7 

(TEX86 value of ~ 0.56) approximately translates to 60°C, suggesting that any samples 

subjected to this temperature may be influenced by the in situ production, partial 
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destruction, and or recycling of GDGTs as proposed by Takano et al. (2010), providing 

biased SSTs. Figure 3.7 outlines potential depths of concern in systems that experience 

varying thermal conditions. This schematic shows hypothetically where tetraether lipid 

proxies may have been affected by geothermal temperatures provided that there is 

evdience of a strong enough subsurface archaeal community signature to overprint the 

paleoclimatological signal. The grey intervals represent the area of uncertainty. If a 

sediment is exposed to geothermal gradients producing temperatures above ~60°C then it 

may potentially be compromised by biological overprinting and or destruction of certain 

GDGT structures. This figure shows two different continental margins with varying 

geothermal gradients. In continental margins, geothermal gradients of ~ 60°C are 

achieved at ~ 900 - 2750 m depending on the geothermal gradient present (~23.1°C/km, 

Long et al., 2008; and ~70°C/km, Vanneste et al., 2005). The thermal gradient around 

mud volcanoes are often elevated, an example of a geothermal gradients present at this 

type of site location is ~60°C by around 250 m (Feseker et al., 2008). Pockmarks are 

another feature that can have elevated temperatures. For instance, a pockmark cluster on 

the continental margin of Nigeria as described by Wei et al. (2015), suggests that around 

240-250 m, samples would be thermally influenced for paleo-reconstruction using 

tetraether lipids. The last thermal gradient that may influence samples is near spreading 

ridges as outlined in Wilson et al. (2019) which indicates that in some cases samples 

deeper than approximately 125 m are exposed to temperatures that may cause these 

proxies to be thermally influenced.  
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Figure 3.7 - Thermal gradients for varying marine settings. The greyed out area represents depths that may yield compromised proxy 

values due to overprinting and or destruction of specific molecules when they exceed temperatures of approximately 60°C.
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4. Conclusions 

 

In this study, we demonstrate that all of the commonly used GDGT proxies 

(isoprenoidal and branched) excluding the MBT are highly impacted by in situ pore water 

temperature at the Cathedral Hill hydrothermal vent site at Guaymas Basin. The 

mechanism for this is likely degradation, but also the contribution of the living subsurface 

archaeal community. This suggests that vent fluid temperatures may be capable of being 

estimated in GDGT hosted sediments independent of direct physical temperature 

sampling techniques. We therefore modified the TEX86 to include hydroxylated GDGTs 

as a novel proxy, namely the HOT86 which appears to track the geothermal temperatures. 

Ultimately, this study suggests that the TEX86 is more sensitive than previously thought at 

sample sites that may be affected by perturbed temperatures such as hydrothermal vents 

or by deeper samples that experience increased geothermal temperatures. These types of 

sites may provide a signal from the subsurface and not from the sea surface, as previously 

thought. This implies the reconstructed SSTs in settings where geothermal gradients are 

elevated by heat sources may ultimately provide compromised results. This process leads 

to the higher number of rings that may be produced in a hyperthermophilic Archaea. 

However, this phenomenon needs to be further investigated to fully understand the loss of 

the SST signature and the overprinting of the in situ temperature. We have also identified 

a potential correction factor using the newly developed HOT86 proxy which may be able 

to back out the original SST value. We also speculate that the HOT86 may be useful for 

reconstructing hydrothermal temperatures, but this will need to be further tested to 

understand its potential applications.  
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Figure S1- 1 – Chemical structures of brGDGTs 
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Figure S1- 2 – Corrected SSTs using new correction factor 
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Core Depth interval 

(cmbsf) 

Temperature  SST (Kim et al., 2010) Corrected 

SST 

GB4462-5 0-2  19 20.52 20.01 

GB4462-5 2-4  67 21.97 20.99 

GB4462-5 4-6  85 21.71 20.57 

GB4462-5 6-8  105 21.61 19.97 

GB4462-5 8-10  117 22.34 20.19 

GB4462-5 10-12  125 21.17 19.69 

GB4462-5 12-15  135 23.33 18.67 

GB4462-5 15-18  145 23.46 18.54 

GB4462-5 18-21  153 24.67 17.75 

GB4462-6 0-2  11 19.92 19.72 

GB4462-6 2-4  22 19.65 19.55 

GB4462-6 4-6  20 19.71 19.49 

GB4462-6 6-8  47 20.85 19.76 

GB4462-6 8-10  60 21.71 20.21 

GB4462-6 10-12  73 21.30 20.02 

GB4462-6 12-15  87 21.21 19.66 

GB4462-6 15-18  105 22.03 19.51 

GB4462-6 18-21  125 22.17 19.92 

GB4462-3 0-2  3.2 19.50 19.44 

GB4462-3 2-4 8 19.11 19.27 

GB4462-3 4-6  15 19.20 19.28 

GB4462-3 6-8  26 19.57 19.45 

GB4462-3 8-10  34 19.20 19.14 

GB4462-3 10-12  43 19.57 19.33 

GB4462-3 12-15  54 20.77 20.42 

GB4462-3 15-18  66 20.19 19.31 

GB4462-3 18-21  80 20.96 19.63 

GB4462-8 0-2  0 19.65 19.57 

GB4462-8 2-4  8 19.26 19.25 

GB4462-8 4-6  16 19.48 19.41 

GB4462-8 6-8  18 18.60 18.86 

GB4462-8 8-10  21 19.19 19.06 

GB4462-8 10-12  23 19.06 19.08 

GB4462-8 12-15  25 18.98 18.98 

Table S1- 1 - Sample set SST values and corrected SST values produced from the 

correction factor in this study. 
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Chapter 4: Key conclusions and future work 

 

4.1. Key conclusions  

 

This section is used to address the questions proposed in the objectives section (Chapter 1 

section 1.1.2).  

 

1) Subsurface microbial communities were detected at Cathedral Hill using lipidomic 

techniques. The results from the survey indicates that the lipids from the subsurface 

communities have a limited diversity of IPLs and CLs that make up their cellular 

membranes. However, these lipids indicate that these organisms are adapting to their 

harsh environments as seen in the ring index.  

 

2) The thermochemical stability of detectable polar lipids indicate a preference for higher 

numbers of rings within core GDGTs. The highest relative abundances of GDGT-3, 4 and 

5’ are found in Core 5, with the most extreme thermal gradient. Additionally, 1G-

GDGTs, which are markers for living cells, are found in intervals that experience up to 

~145°C, potentially pushing the boundaries for life.   

 

3) Lipid-based paleoclimate proxies become progressively compromised with elevated 

subsurface sediment pore water temperatures as the adapting archaea overprint the 

original GDGT signal that is often used for reconstructions, and possibly selective 

thermal degradation. This led to the development of the HOT86 proxy, a modification of 

the TEX86 proxy, which appears to track this adaptation and thermal effect. However, the 

potential use of this new proxy to reconstruct hydrothermal temperatures or recalculate 

SSTs from compromised SSTs using our correction factor are still to be determined.    
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4.2. Future work  

 

 

The Guaymas Basin sediment samples were analysed using a reverse phase-HPLC-

ESI-MS method. By using only a single LC-MS method the full range of potential 

detectible lipid signatures was limited. Re-running the samples with a HILIC (hydrophilic 

interaction liquid chromatography) method as outlined in Wörmer et al. (2017) to identify 

bacterial lipids can help improve the range of lipid markers that represents the 

microbiome at Cathedral Hill. This technique will also allow for a more accurate thermo-

tolerability comparison between the bacterial and archaeal domains of life. The upper 

limit for both Bacteria and Archaea have been tentatively set to 110°C (Jorgensen et al., 

1992) and 122°C (Takai et al., 2008), respectively, however there is always a potential 

for a new discovery which may push this boundary further. Additionally, analyzing the 

samples with a normal phase HPLC method is required to determine if core glycerol 

monoalkyl glycerol tetrathers (GMGTs) are present (Wormer et al., 2017), which are 

thought to be a further adaptation to increase stability within a lipid. The identification of 

GMGTs may be useful in further understanding the adaptation mechanisms at Cathedral 

Hill. 

This hydrothermal setting provides the possibility that the thermal degradation of 

IPLs to intermediate products of GDGTs, hydrocarbons, and ultimately oxidation to CO2 

is possible at deeper sediment depths at Cathedral Hill. Tracking the diagenetic to 

metagenetic fate of membrane lipids is worthy of a follow-up study. The resulting IPL, 

CL and hydrocarbon oxidation products likely contribute to the production of 

hydrocarbons. The precise set of reactions that break down organic material to generate 

hydrocarbons is largely unknown and thus makes an interesting topic for a future study. 
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In addition to this, if the intermediate products are not found then there is a potential to 

define assimilation or recycling pathways within Archaea. Currently this idea has been 

considered but to the best of our knowledge it has not been demonstrated in any natural 

samples.  
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Appendix 
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A-1 Pre-experiment oil influence study  

 

A preliminary data set produced by another masters student investigating the 

aliphatic fraction obtained from the same sample set indicated the potential for 

hydrocarbon staining within a few of the intervals. This potential for hydrocarbon 

staining within the samples raised concerns with LC analysis specifically with the 

electrospray ionization (ESI) source. The presence of oil within a sample can cause ion 

suppression which relates to the presence of non-volatile species which can cause co-

precipitation of analyte in the droplet which ultimately prevents ionization. It can also 

prevent the droplets from evaporating properly within the nebulizer preventing efficient 

ionization. To identify the potential effects of ion suppression within an environmental 

sample, a series of oil spiked samples were prepared to identify the effects that may 

occur.  

This microstudy was conducted by taking our Bay of Fundy reference material 

which is a bulk estuary mud sample that was collected and homogenized, extracted and 

compound classes were identified within the samples prior to this microstudy. This 

reference material was then spiked with either 100, 1,000 or 10,000 ppm oil. The oil used 

to spike these samples was a light oil from Hebron I-18. A duplicate of each amount was 

analysed (Table A1-1) to ensure the values obtained were accurate.  
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Sample ID ppm oil added Oil added 

(mg) 

μg/g sediment 

of TLE 

Relative 

standard deviation 

OSS-1 10,000 35 7265.25 0.42% 

OSS-2 10,000 35 7222.70 - 

OSS-3 1,000 3.495 2412.74 4.39% 

OSS-4 1,000 3.495 2567.42 - 

OSS-5 100 .355 1903.41 0.67% 

OSS-6 100 .355 1921.57 - 

Standard - - ~ 1500 - 

 

Table A1- 2 - Experiment parameters and yield 

 

 The result of this microstudy indicates that if a sample does contain oil staining 

there is a potential for ion suppression within a sample and thus the values of those 

samples may be vastly under represented when integrated. As seen in figure A1-1, 

GDGTs are visible within the highlighted area of “a” where it is almost non existent in 

“b”. In addition to this BPCs were generated for this sample set from 100-500 m/z and 

500-3000 m/z. The 100-500 m/z range represents the hypothetical hydrocarbon range, 

this shows that the increase in oil spike results in unresolved complex mixtures (UCMs). 

This is clear in the 10,000 ppm sample. Furthermore, the BPCs for the 500-3000 m/z 

range represents the hypothetical lipid range as they tend to be larger organic molecules. 

The increased amounts of oil added to the sample results in a decrease in lipid resolution 

which may once again under evaluate the actual abundance present.      
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Figure A1- 3 - Chromatograms showing ion suppression with increasing amounts of oil 
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A-2 Core descriptions 

 

 

 

Core

Lithology

0

2

4

6

8

10

12

14

16

18

20

D
e

p
th

 (
c
m

)

GB 4462 - Push 5 Core 

Very unconsolidated, sediment has an H2S smell, very dark black liquified mud with 
white filament

Brownish dark green siliceous mud some black mud (no black mud between 4-6 cm)

Greenish brown mud with silica silt

Greenish grey brown mud

Greenish brown consolidated mud with yellow green clay shards 

Very consolidated clay brownish green 
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Core

Lithology

0

2

4

6

8

10

12

14

16

18

20

D
e

p
th

 (
c
m

)

GB 4462 - Push 6 Core 

Greenish brown liquified mud with yellow and white granules with black flecks ~ 0.25cm
thick top layer below its all black (top layer maybe oxidized    

oil slick, top black siliceous mud some fragments of microbial siliceous mat 

more consolidated mud very strong H2S smell
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Note the description for Core 8 reads 

“same as others” and was left open 

for some interpretation, thus is 

closely mirrors Core 3 in the 

depiction. 
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A-3 Supplementary data 

 

 

 

This appendix is for the individual concentration data of lipids that are observed 

having varying number of cyclizations occurring in their structure. These compounds 

have been identified and discussed in Chapter two.  

 

Table A3-1 – Core GDGTs 

Table A3-2 – 1G-GDGTs 

Table A3-3 – 2G-GDGTs 

Table A3-4 – BrGDGTs 

Table A3-5 – GDDs  

Table A3-6 – Unknown lipids 

Table A3-7 – GDGT proxy values 
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Table A3-1 – Individual concentrations of GDGT compounds, values are reported in µg/g sediment with response factors included. 

 

 

 

GDGT-0 GDGT-1 GDGT-2 GDGT-3 GDGT-4 GDGT-5 GDGT-5' OH-

GDGT-0 

OH-

GDGT-1 

OH-

GDGT-2 

 

Core 5 

 

          

0-2 cm 184.78 49.03 41.76 12.61 15.50 192.17 7.26 13.09 8.17 4.51 

2-4 cm  160.85 48.87 44.80 15.74 13.24 170.49 7.73 12.39 7.76 3.91 

4-6 cm 71.50 20.14 17.86 6.58 7.49 76.55 3.15 5.21 3.38 1.79 

6-8 cm 50.75 13.97 11.99 4.67 9.77 55.07 2.35 3.39 2.22 1.08 

8-10 cm  19.71 5.35 4.67 2.12 3.22 23.04 0.89 1.17 0.80 0.44 

10-12 cm 16.41 4.36 3.47 1.51 2.52 19.72 0.76 0.81 0.54 0.27 

12-15 cm 24.28 7.01 6.64 3.21 8.83 27.71 0.98 0.69 0.50 0.20 

15-18 cm 13.23 3.81 3.51 1.84 4.17 15.43 0.59 0.21 0.15 0.07 

18-21 cm 11.70 3.45 3.36 1.98 3.42 13.94 0.55 0.13 0.08 0.05 

 

Core 6 

 

          

0-2 cm 208.96 58.31 47.78 12.21 17.23 236.25 10.22 15.08 8.70 5.06 

2-4 cm  94.13 26.69 21.65 5.22 6.65 107.31 4.66 7.31 4.87 2.64 

4-6 cm 30.87 8.79 6.80 1.93 2.64 34.70 1.69 2.33 1.55 0.79 

6-8 cm 23.54 5.84 4.70 1.71 3.41 29.43 1.11 1.55 1.02 0.51 

8-10 cm  16.19 4.05 3.36 1.30 2.29 20.55 0.90 0.87 0.64 0.30 

10-12 cm 17.24 4.33 3.60 1.24 2.36 22.37 0.92 0.95 0.74 0.38 

12-15 cm 14.43 3.68 2.96 1.18 2.13 19.13 0.72 0.63 0.46 0.29 

15-18 cm 7.30 1.88 1.63 0.70 1.38 9.08 0.30 0.05 0.05 0.02 

18-21 cm 10.18 2.46 2.14 0.91 1.55 13.49 0.45 0.17 0.12 0.06 

 

 

 

 

          



 

135 

 

 

 

 GDGT-0 GDGT-1 GDGT-2 GDGT-3 GDGT-4 GDGT-5 GDGT-5' OH-

GDGT-0 

OH-

GDGT-1 

OH-

GDGT-2 

 

Core 3 

 

          

0-2 cm 182.40 58.57 47.30 11.97 14.16 187.75 9.15 15.44 9.76 5.40 

2-4 cm  109.85 27.00 20.89 4.72 5.64 135.69 5.07 8.21 5.09 2.60 

4-6 cm 101.52 28.02 22.08 4.88 5.58 116.33 5.06 7.22 4.88 2.67 

6-8 cm 98.79 27.50 22.38 5.40 6.55 110.21 4.50 7.35 4.93 2.96 

8-10 cm  89.25 24.74 18.96 4.89 6.15 102.63 4.44 6.67 4.24 2.78 

10-12 cm 80.39 19.37 15.09 3.92 5.92 99.31 3.72 6.31 4.30 2.60 

12-15 cm 66.03 17.19 13.99 4.31 0.43 78.97 3.71 4.42 3.44 2.22 

15-18 cm 154.30 38.95 30.34 9.35 19.59 212.44 8.11 10.31 8.14 5.07 

18-21 cm 60.66 15.83 12.84 4.37 8.79 76.47 3.34 4.01 3.24 2.07 

 

Core 8 

 

          

0-2 cm 176.52 51.76 41.96 10.04 10.74 185.22 9.14 13.58 8.71 5.47 

2-4 cm  146.40 39.72 31.19 7.04 8.73 177.32 7.36 10.25 6.83 4.28 

4-6 cm 169.92 47.40 37.07 9.00 11.11 196.83 9.24 13.04 8.47 5.30 

6-8 cm 129.68 33.76 26.00 5.60 7.08 152.16 5.39 9.54 6.07 2.99 

8-10 cm  53.35 12.39 9.41 2.73 3.93 69.63 2.02 3.17 2.05 1.06 

10-12 cm 166.36 42.70 32.74 8.68 11.97 190.17 6.91 12.04 7.61 3.63 

12-15 cm 168.78 34.67 25.85 6.69 8.90 263.79 6.47 11.01 7.33 4.23 
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Table A3-2 – Individual concentrations of 1G-GDGT compounds, values are reported in µg/g sediment with response factors 

included. 

 

 

 

1G-

GDGT-0 

1G-

GDGT-1 

1G-

GDGT-2 

1G-

GDGT-3 

1G-

GDGT-4 

1G-

GDGT-5 

 1G-

GDGT-5'  

 1G-OH-

GDGT-0  

 1G-OH-

GDGT-1  

 1G-OH-

GDGT-2  

 

Core 5 

 

          

0-2 cm 4.94 1.27 0.99 0.64 0.81 6.12 0.09 0.87 0.35 0.18 

2-4 cm  5.00 0.93 0.95 0.18 0.53 5.66 0.12 1.26 0.37 0.22 

4-6 cm 2.12 0.58 0.40 0.21 0.40 2.19 0.09 0.42 0.26 0.14 

6-8 cm 1.32 0.50 0.38 0.11 0.31 1.53 0.15 0.46 0.34 0.17 

8-10 cm  0.75 0.39 0.49 0.41 0.73 0.30 0.11 0.32 0.29 0.17 

10-12 cm 0.45 0.23 0.27 0.21 0.37 0.08 0.06 0.12 0.11 0.05 

12-15 cm 0.40 0.23 0.21 0.24 0.22 0.05 0.04 0.03 0.02 0.01 

15-18 cm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

18-21 cm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 

Core 6 

 

          

0-2 cm 5.94 1.51 0.97 0.19 0.86 6.63 0.11 0.78 0.50 0.25 

2-4 cm  2.32 0.43 0.35 0.12 0.29 3.06 0.12 0.39 0.27 0.12 

4-6 cm 0.77 0.21 0.18 0.09 0.11 0.88 0.04 0.22 0.18 0.09 

6-8 cm 0.65 0.36 0.39 0.37 0.99 0.45 0.11 0.38 0.34 0.21 

8-10 cm  0.36 0.26 0.34 0.23 0.57 0.17 0.05 0.29 0.24 0.06 

10-12 cm 0.40 0.29 0.37 0.20 0.47 0.19 0.06 0.02 0.22 0.10 

12-15 cm 0.28 0.11 0.17 0.07 0.18 0.14 0.05 0.01 0.09 0.05 

15-18 cm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

18-21 cm 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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 1G-

GDGT-0 

1G-

GDGT-1 

1G-

GDGT-2 

1G-

GDGT-3 

1G-

GDGT-4 

1G-

GDGT-5 

 1G-

GDGT-5'  

 1G-OH-

GDGT-0  

 1G-OH-

GDGT-1  

 1G-OH-

GDGT-2  

 

Core 3 

 

          

0-2 cm 4.95 1.09 1.15 0.00 0.62 6.26 0.10 0.67 0.39 0.15 

2-4 cm  2.91 0.55 0.30 0.14 0.59 2.98 0.08 0.37 0.26 0.22 

4-6 cm 2.36 0.38 0.31 0.10 0.20 2.96 0.07 0.30 0.20 0.13 

6-8 cm 2.56 0.49 0.34 0.14 0.22 2.95 0.09 0.37 0.27 0.15 

8-10 cm  1.74 0.45 0.54 0.00 0.31 1.98 0.17 0.42 0.36 0.22 

10-12 cm 2.11 0.43 0.81 0.31 0.00 1.55 0.12 0.84 0.51 0.35 

12-15 cm 1.59 0.79 0.84 0.58 0.86 1.56 0.31 0.59 0.77 0.48 

15-18 cm 3.46 1.25 1.73 1.12 1.28 2.78 0.61 1.21 1.57 0.86 

18-21 cm 1.54 0.72 0.85 0.31 0.58 0.99 0.22 0.44 0.55 0.30 

 

Core 8 

 

          

0-2 cm 4.34 0.75 0.61 0.27 0.00 5.16 0.00 0.48 0.32 0.14 

2-4 cm  3.73 0.70 0.41 0.00 0.00 3.98 0.00 0.40 0.25 0.20 

4-6 cm 4.25 0.72 0.53 0.00 0.00 5.54 0.00 0.47 0.41 0.29 

6-8 cm 3.81 0.64 0.53 0.00 0.00 3.84 0.00 0.40 0.31 0.23 

8-10 cm  1.26 0.22 0.00 0.00 0.00 0.93 0.00 0.18 0.15 0.09 

10-12 cm 3.73 0.66 0.00 0.00 0.00 2.08 0.00 0.55 0.37 0.23 

12-15 cm 2.98 0.00 0.00 0.00 0.00 3.07 0.00 0.47 0.16 0.13 
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Table A3-3 – Individual concentrations of 2G-GDGT compounds, values are reported in µg/g sediment with response factors 

included. 

 

 

 

 2G-GDGT-0 2G-GDGT-1 2G-GDGT-2  2G-OH-GDGT-0   2G-OH-GDGT-1   2G-OH-GDGT-2  

 

Core 5 

 

       

0-2 cm  0.65 0.78 1.04 1.85 1.67 0.76 

2-4 cm   0.51 0.50 0.73 1.34 1.08 0.54 

4-6 cm  0.00 0.00 0.00 0.44 0.43 0.23 

6-8 cm  0.00 0.00 0.00 0.28 0.25 0.14 

8-10 cm   0.00 0.00 0.00 0.03 0.03 0.01 

10-12 cm  0.00 0.00 0.00 0.00 0.00 0.00 

12-15 cm  0.00 0.00 0.00 0.00 0.00 0.00 

15-18 cm  0.00 0.00 0.00 0.00 0.00 0.00 

18-21 cm  0.00 0.00 0.00 0.00 0.00 0.00 

 

Core 6 

 

 0.65 0.78 1.04 1.85 1.67 0.76 

0-2 cm  0.77 0.72 0.83 1.54 1.38 0.70 

2-4 cm   0.25 0.35 0.43 0.76 0.68 0.33 

4-6 cm  0.06 0.10 0.15 0.20 0.18 0.09 

6-8 cm  0.00 0.00 0.08 0.09 0.10 0.05 

8-10 cm   0.00 0.00 0.00 0.01 0.01 0.00 

10-12 cm  0.00 0.00 0.00 0.00 0.00 0.00 

12-15 cm  0.00 0.00 0.00 0.00 0.00 0.00 

15-18 cm  0.00 0.00 0.00 0.00 0.00 0.00 

18-21 cm  0.00 0.00 0.00 0.00 0.00 0.00 
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  2G-GDGT-0 2G-GDGT-1 2G-GDGT-2  2G-OH-GDGT-0   2G-OH-GDGT-1   2G-OH-GDGT-2  

 

Core 3 

 

       

0-2 cm  0.55 0.46 0.71 1.47 1.22 0.58 

2-4 cm   0.27 0.32 0.39 0.69 0.60 0.34 

4-6 cm  0.16 0.24 0.34 0.51 0.45 0.27 

6-8 cm  0.24 0.30 0.40 0.59 0.54 0.29 

8-10 cm   0.18 0.22 0.33 0.52 0.47 0.25 

10-12 cm  0.17 0.20 0.29 0.50 0.42 0.20 

12-15 cm  0.00 0.00 0.00 0.13 0.12 0.04 

15-18 cm  0.00 0.00 0.00 0.30 0.32 0.17 

18-21 cm  0.00 0.00 0.00 0.07 0.08 0.04 

 

Core 8 

 

       

0-2 cm  0.34 0.37 0.43 0.74 0.59 0.35 

2-4 cm   0.24 0.27 0.36 0.51 0.49 0.27 

4-6 cm  0.28 0.37 0.53 0.77 0.67 0.42 

6-8 cm  0.25 0.29 0.30 0.48 0.49 0.28 

8-10 cm   0.15 0.00 0.22 0.63 0.57 0.32 

10-12 cm  0.47 0.51 1.03 1.43 1.36 0.63 

12-15 cm  0.00 0.00 0.00 0.00 0.00 0.00 
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Table A3-4 – Individual concentrations of brGDGTs compounds, values are reported in µg/g sediment with response factors included. 

 

 

 

brGDGT-1a brGDGT-1b brGDGT-1c brGDGT-2a brGDGT-2b brGDGT-2c brGDGT-3a brGDGT-3b  

 

Core 5 

 

        

0-2 cm 1.26 0.39 0.21 1.06 0.68 0.24 1.35 0.00 

2-4 cm  1.24 0.61 0.25 1.10 0.82 0.24 1.51 0.00 

4-6 cm 0.46 0.24 0.11 0.40 0.32 0.09 0.75 0.00 

6-8 cm 0.44 0.16 0.08 0.40 0.26 0.10 0.55 0.00 

8-10 cm  0.32 0.10 0.04 0.23 0.11 0.00 0.28 0.00 

10-12 cm 0.53 0.08 0.02 0.40 0.10 0.00 0.39 0.00 

12-15 cm 1.32 0.12 0.05 0.93 0.14 0.00 0.74 0.00 

15-18 cm 0.39 0.07 0.03 0.27 0.07 0.00 0.28 0.00 

18-21 cm 0.26 0.08 0.03 0.18 0.09 0.00 0.21 0.00 

 

Core 6 

 

        

0-2 cm 1.49 0.59 0.28 1.27 1.03 0.26 1.91 0.23 

2-4 cm  0.78 0.37 0.16 0.75 0.56 0.17 1.08 0.14 

4-6 cm 0.41 0.14 0.06 0.31 0.21 0.06 0.44 0.05 

6-8 cm 1.24 0.17 0.06 0.47 0.21 0.06 0.54 0.04 

8-10 cm  0.41 0.12 0.05 0.23 0.13 0.04 0.31 0.00 

10-12 cm 0.47 0.16 0.05 0.30 0.13 0.00 0.39 0.00 

12-15 cm 0.32 0.12 0.06 0.25 0.10 0.00 0.27 0.00 

15-18 cm 0.21 0.06 0.03 0.15 0.06 0.00 0.15 0.00 

18-21 cm 0.23 0.09 0.04 0.19 0.16 0.00 0.29 0.00 
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 brGDGT-1a brGDGT-1b brGDGT-1c brGDGT-2a brGDGT-2b brGDGT-2c brGDGT-3a brGDGT-3b 

 

Core 3 

 

        

0-2 cm 1.39 0.61 0.28 1.45 1.22 0.32 2.21 0.26 

2-4 cm  0.70 0.36 0.15 0.73 0.59 0.18 1.22 0.14 

4-6 cm 0.71 0.36 0.15 0.70 0.50 0.16 1.13 0.12 

6-8 cm 0.83 0.38 0.16 0.73 0.53 0.16 1.27 0.10 

8-10 cm  1.17 0.45 0.19 1.00 0.58 0.18 1.48 0.14 

10-12 cm 1.20 0.47 0.20 1.05 0.55 0.19 1.40 0.15 

12-15 cm 1.31 0.56 0.21 1.09 0.54 0.16 1.14 0.09 

15-18 cm 2.94 1.05 0.43 2.33 1.11 0.38 2.53 0.23 

18-21 cm 1.39 0.45 0.20 1.04 0.51 0.06 1.16 0.06 

 

Core 8 

 

        

0-2 cm 1.01 0.51 0.23 1.18 1.02 0.26 1.88 0.27 

2-4 cm  0.91 0.50 0.25 0.99 0.75 0.22 1.65 0.17 

4-6 cm 1.12 0.57 0.27 1.23 0.95 0.30 2.03 0.18 

6-8 cm 0.83 0.46 0.19 0.88 0.66 0.22 1.33 0.11 

8-10 cm  0.49 0.22 0.08 0.44 0.27 0.09 0.58 0.05 

10-12 cm 1.43 0.55 0.27 1.28 0.84 0.26 1.96 0.19 

12-15 cm 1.42 0.63 0.23 1.11 0.77 0.27 1.84 0.00 
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Table A3-5 – Individual concentrations of GDD compounds, values are reported in µg/g sediment with response factors included. 

 

 

 GDD-0      GDD-1      GDD-2      GDD-3      GDD-4       GDD-5      OH-GDD-0    OH-GDD-1    OH-GDD-2 

 

Core 5 

 

         

0-2 cm 6.92 1.60 0.97 0.48 1.21 14.14 1.06 0.87 0.66 

2-4 cm  7.94 2.02 1.30 0.78 0.99 17.11 1.30 1.11 0.76 

4-6 cm 3.52 0.84 0.45 0.25 0.34 7.22 0.49 0.41 0.28 

6-8 cm 2.27 0.53 0.24 0.15 0.30 4.27 0.34 0.32 0.21 

8-10 cm  0.75 0.16 0.07 0.03 0.06 1.33 0.08 0.06 0.04 

10-12 cm 0.73 0.17 0.06 0.04 0.06 1.28 0.08 0.06 0.04 

12-15 cm 1.15 0.28 0.12 0.06 0.16 1.98 0.00 0.00 0.00 

15-18 cm 0.73 0.18 0.08 0.03 0.07 1.27 0.00 0.00 0.00 

18-21 cm 0.66 0.15 0.09 0.05 0.12 1.34 0.00 0.00 0.00 

 

Core 6 

 

         

0-2 cm 8.55 2.07 1.07 0.62 1.12 18.65 1.47 1.28 0.85 

2-4 cm  4.72 1.13 0.51 0.29 0.44 10.08 0.79 0.66 0.51 

4-6 cm 1.64 0.40 0.18 0.08 0.13 3.26 0.30 0.23 0.17 

6-8 cm 1.08 0.25 0.10 0.03 0.08 1.92 0.15 0.12 0.10 

8-10 cm  0.58 0.13 0.05 0.02 0.05 1.07 0.08 0.07 0.04 

10-12 cm 0.71 0.17 0.07 0.02 0.06 1.26 0.09 0.07 0.05 

12-15 cm 0.51 0.12 0.05 0.02 0.05 0.91 0.06 0.04 0.04 

15-18 cm 0.31 0.08 0.03 0.01 0.03 0.47 0.00 0.00 0.00 

18-21 cm 0.42 0.10 0.04 0.00 0.03 0.65 0.00 0.00 0.00 
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 GDD-0 GDD-1 GDD-2 GDD-3 GDD-4 GDD-5 OH-GDD-0 OH-GDD-1 OH-GDD-2 

 

Core 3 

 

         

0-2 cm 9.34 2.39 1.21 0.64 1.11 20.73 1.70 1.44 0.93 

2-4 cm  3.90 0.89 0.43 0.16 0.34 8.05 0.79 0.69 0.48 

4-6 cm 4.19 0.97 0.45 0.23 0.36 9.44 0.80 0.66 0.39 

6-8 cm 4.89 1.16 0.58 0.29 0.39 10.59 0.76 0.55 0.45 

8-10 cm  4.84 1.11 0.52 0.26 0.40 10.35 0.88 0.73 0.50 

10-12 cm 4.14 0.91 0.41 0.13 0.33 7.95 0.76 0.65 0.43 

12-15 cm 2.65 0.60 0.28 0.15 0.22 5.16 0.41 0.37 0.21 

15-18 cm 6.30 1.48 0.67 0.26 0.52 12.14 0.86 0.84 0.54 

18-21 cm 2.37 0.55 0.23 0.11 0.21 4.60 0.32 0.30 0.18 

 

Core 8 

 

         

0-2 cm 7.66 1.96 0.97 0.43 0.79 18.10 1.39 1.04 0.94 

2-4 cm  5.94 1.49 0.67 0.35 0.51 14.61 1.06 0.85 0.66 

4-6 cm 7.42 1.86 0.87 0.45 0.70 17.53 1.45 1.14 0.81 

6-8 cm 5.24 1.24 0.59 0.22 0.55 11.77 1.00 0.68 0.55 

8-10 cm  2.11 0.50 0.24 0.15 0.27 4.69 0.34 0.29 0.17 

10-12 cm 7.38 1.72 0.83 0.48 1.10 16.54 1.46 1.17 0.80 

12-15 cm 7.09 1.64 0.60 0.26 1.01 18.22 1.50 1.38 0.78 
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Table A3-6 – Individual concentrations of unknown lipids, values are reported in µg/g sediment 

with response factors included. 

 U-Cer-1  U-Cer-2  U-DAG-1  U-DAG-2  

Core 5 

0-2 cm 5.77 11.00 1.82 5.77 

2-4 cm  4.84 11.41 1.58 4.84 

4-6 cm 0.29 3.79 0.43 0.29 

6-8 cm 0.00 1.77 0.07 0.00 

8-10 cm  0.00 0.25 0.02 0.00 

10-12 cm 0.00 0.03 0.00 0.00 

12-15 cm 0.00 0.00 0.00 0.00 

15-18 cm 0.00 0.00 0.00 0.00 

18-21 cm 0.00 0.00 0.00 0.00 

 

Core 6 

    

0-2 cm 6.34 11.12 3.07 6.34 

2-4 cm  2.47 5.22 1.01 2.47 

4-6 cm 0.07 1.27 0.12 0.07 

6-8 cm 0.02 0.56 0.01 0.02 

8-10 cm  0.00 0.12 0.01 0.00 

10-12 cm 0.00 0.05 0.00 0.00 

12-15 cm 0.00 0.02 0.00 0.00 

15-18 cm 0.00 0.00 0.00 0.00 

18-21 cm 0.00 0.00 0.00 0.00 

 

Core 3 

    

0-2 cm 7.18 11.52 4.25 7.18 

2-4 cm  3.74 6.07 2.05 3.74 

4-6 cm 3.05 5.27 1.59 3.05 

6-8 cm 2.66 5.04 1.18 2.66 

8-10 cm  1.86 4.52 0.81 1.86 

10-12 cm 0.77 3.99 0.72 0.77 

12-15 cm 0.00 1.61 0.14 0.00 

15-18 cm 0.00 1.23 0.08 0.00 

18-21 cm 0.00 0.83 0.04 0.00 

 

Core 8 

    

0-2 cm 5.82 9.39 4.01 5.82    

2-4 cm  4.61 8.08 3.01 4.61 

4-6 cm 5.09 8.90 3.27 5.09 

6-8 cm 3.57 6.40 2.10 3.57 

8-10 cm  1.36 2.68 0.57 1.36 

10-12 cm 5.26 9.62 2.22 5.26 

12-15 cm 5.40 9.96  3.68 5.40 
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Table A3-7 – GDGT proxy values  

Core 5 RI 

 

MI 

 

TEX86 SST(°C) HOT86 BIT MBT DC CBT %GDGT 

0-2 cm 2.44 0.34 0.56  21.21  0.67 0.02 0.36 0.32 0.34  49.02  

2-4 cm  2.45 0.38 0.58  22.56  0.69 0.02 0.36 0.38 0.21  48.54  

4-6 cm 2.48 0.36 0.58  22.32  0.7 0.02 0.34 0.39 0.19  48.29  

6-8 cm 2.55 0.35 0.58  22.23  0.73 0.02 0.34 0.33 0.31  47.96  

8-10 cm  2.60 0.34 0.59  22.90  0.75 0.03 0.42 0.27 0.43  46.10  

10-12 cm 2.63 0.31 0.57  21.82  0.73 0.06 0.42 0.16 0.73  45.42  

12-15 cm 2.65 0.37 0.61  23.77  0.83 0.1 0.45 0.1 0.95  46.70  

15-18 cm 2.66 0.36 0.61  23.88  0.83 0.06 0.45 0.18 0.66  46.17  

18-21 cm 2.66 0.38 0.63  24.92  0.86 0.05 0.44 0.28 0.42  45.62  

 

Core 6 

          

0-2 cm 2.52 0.32 0.55  20.64  0.64 0.02 0.35 0.37 0.23  46.94  

2-4 cm  2.52 0.32 0.54  20.38  0.64 0.02 0.34 0.38 0.21  46.73  

4-6 cm 2.52 0.33 0.54  20.44  0.65 0.03 0.37 0.32 0.32  47.08  

6-8 cm 2.68 0.29 0.56  21.52  0.71 0.07 0.54 0.18 0.66  44.44  

8-10 cm  2.69 0.29 0.58  22.33  0.73 0.04 0.45 0.28 0.40  44.06  

10-12 cm 2.71 0.28 0.57  21.95  0.72 0.05 0.45 0.27 0.43  43.52  

12-15 cm 2.73 0.28 0.57  21.86  0.73 0.04 0.45 0.28 0.40  42.99  

15-18 cm 2.68 0.31 0.58  22.61  0.77 0.05 0.45 0.27 0.44  44.55  

18-21 cm 2.74 0.28 0.59  22.74  0.76 0.05 0.36 0.37 0.23  43.00  

 

Core 3 

          

0-2 cm 2.41 0.37 0.54  20.23  0.63 0.03 0.31 0.39 0.19  49.28  

2-4 cm  2.62 0.27 0.53  19.85  0.61 0.02 0.31 0.40 0.18  44.74  

4-6 cm 2.53 0.31 0.53  19.93  0.62 0.02 0.33 0.38 0.22  46.60  

6-8 cm 2.50 0.33 0.54  20.30  0.64 0.03 0.34 0.37 0.23  47.27  

8-10 cm  2.54 0.31 0.53  19.93  0.64 0.03 0.36 0.32 0.32  46.52  

10-12 cm 2.64 0.27 0.54  20.29  0.65 0.04 0.37 0.31 0.35  44.74  

12-15 cm 2.56 0.30 0.56  21.45  0.65 0.04 0.41 0.31 0.34  45.54  

15-18 cm 2.77 0.26 0.55  20.90  0.70 0.04 0.41 0.29 0.39  42.07  

18-21 cm 2.68 0.29 0.56  21.63  0.72 0.04 0.42 0.28 0.40  44.24  

 

Core 8 

          

0-2 cm 2.43 0.35 0.54  20.38  0.63 0.02 0.29 0.41 0.16  48.80  

2-4 cm  2.59 0.30 0.53  19.99  0.63 0.02 0.31 0.40 0.18  45.23  

4-6 cm 2.55 0.31 0.54  20.21  0.63 0.02 0.30 0.39 0.19  46.33  

6-8 cm 2.55 0.29 0.52  19.33  0.60 0.02 0.32 0.40 0.18  46.01  

8-10 cm  2.69 0.26 0.53  19.92  0.64 0.02 0.36 0.35 0.28  43.38  

10-12 cm 2.54 0.30 0.53  19.79  0.63 0.02 0.34 0.34 0.29  46.66  

12-15 cm 2.90 0.20 0.53  19.71  0.63 0.02 0.36 0.36 0.25  39.02  

 

 


