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Molecular phylogeny of the RPB2 gene in five Elymus species with the StH genome  
 

Katherine Irene Purvis 
 

Abstract 
 

Elymus is a polyploid genus within the grass tribe (Triticeae) and is thought to 
have originated from the hybridization between species in other Triticeae genera. As 
Elymus originated from processes such as hybridization and polyploidization, it is an 
ideal model species for studying how these processes lead to plant diversification and 
speciation. However, due to the taxonomic complexity of Elymus, many of the 
relationships within this genus are still under investigation. This study investigates 
allotetraploid Elymus species with the genome from the hybridization between 
Pseudoroegneria (St) and Hordeum (H). Specifically, the phylogenetic relationship 
among five Elymus species of the StH genome, E. caninus, E. mutabilis, E. fibrosus, E. 
alaskanus and E. trachycaulus, and their genome donor genera, Pseudoroegneria and 
Hordeum, were analyzed using the second-largest subunit of RNA polymerase II (RPB2) 
gene. Phylogenetic analysis revealed two distinct clades. One clade was formed with the 
St genome sequences of Elymus and sequences from Pseudoroegneria. A second clade 
was formed with the H genome sequences of Elymus and sequences from Hordeum. 
Phylogenetic analysis also revealed a close association between E. mutabilis and E. 
fibrosus, as well as with H. bogdanii; indicating H. bogdanii as a possible genome donor 
species. Furthermore, high nucleotide diversity was found within E. caninus and E. 
trachycaulus. The lowest nucleotide diversity was detected within E. mutabilis. Overall, 
the phylogenetic analysis proved a complex and diverse evolutionary history among the 
five Elymus species. The study demonstrates how the hybridization between two 
genetically distinct genera can lead to the production of a new genus encompassing 
numerous species with varying levels of genetic diversity through mutations and possibly 
subsequent hybridizations. 
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1. Introduction 

1.1 Hybridization and polyploidization 

Polyploidization and hybridization are two interconnected processes (Albertin and 

Marullo 2012). Hybridization refers to the crossbreeding of two genetically distinct 

species (Harrison and Larson 2014). Polyploidization refers to organisms with greater 

than two chromosome sets (Woodhouse et al. 2009). There are two main forms of 

polyploids: autopolyploids and allopolyploids (Alix et al. 2017). Autopolyploids are 

organisms with more than two sets of chromosomes, in which all sets are from the same 

genome. Allopolyploids have more than two sets of chromosomes as well; however, the 

chromosome sets are derived from various genomes (Shaked et al. 2001). Allopolyploids 

are formed when two or more genetically distinct species crossbred with one another to 

form a hybrid (Kawashima 2019). 

Hybridization and polyploidization are of importance as they can lead to 

diversification and speciation (Wu et al. 2015).  When an allopolyploid is formed, there 

are numerous challenges that the organisms must overcome in order to maintain 

successful functioning with multiple distinct genomes (Feldman and Levy 2009).  For 

example, the organism must ensure intragenomic pairing at meiosis in order to provide 

viable offspring and conduct intergenomic gene expression and DNA replication (Levy 

and Feldman 2004). As a result, the genetic contents of the newly formed allopolyploid 

organism undergo immediate alterations. Previous studies have demonstrated that when 

an allopolyploid is produced, numerous genomic changes may arise. These genetic 

changes may include rapid elimination of specific low-copy DNA, retrotransposon 

activation, intergenomic conversion, and epigenetic modifications (Feldman et al. 1997; 

Comai et al. 2000; Lee and Chen 2001; Shaked et al. 2001; Guo et al. 2014). 
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The rapid genetic alterations must occur to increase the fitness of the allopolyploid to 

guarantee its survival in nature (Feldman and Levy 2012). However, the rapid and diverse 

genomic changes that can result from allopolyploidization can quickly lead to speciation. 

In addition, allopolyploidization also leads to distinctive evolutionary dynamics, which 

can cause genetic asymmetry evolution. As a result of genetic asymmetry evolution, 

conformity and convergent effects may be observable (Feldman et al. 2012).  

 

1.2 Triticeae 

Triticeae Dumort. is a tribe within the grass family Poaceae (Bothmer and Salomon 

1994). Triticeae is a significant tribe within Poaceae as it contains some of the world’s 

most important cereals such as wheat, barley, rye, and triticale (Lu and Ellstrand 2014). In 

addition to cereal crops, Triticeae also contains essential grains for animal fodder and 

grazing, as well as problematic weeds (Sun and Li 2006). Previously, morphological traits 

were used to classify the genera within Triticeae which posed issues as numerous genera 

within Triticeae are highly morphologically variable (Dewey 1984). Löve (1984) and 

Dewey (1984) proposed a classification system for Triticeae based on genomic 

relationships. Since this classification system was proposed, it has remained the 

predominant accepted classification system of Triticeae (Helfgott and Mason-Gamer 

2004). Genomic analysis has revealed that Triticeae is highly variable in the genetic 

systems that exist within the tribe. Triticeae consists of diploids, allopolyploids, 

autopolyploids, and hybrids (Eilam et al. 2010). The proper classification of genera 

within Triticeae is important as it will increase our understanding of how the biological 

mechanisms and genetic systems within Triticeae lead to speciation in plants (Bothmer 

and Salomon 1994). The proper classification of Triticeae is also significant as it will 
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increase the ability to use the genetically diverse genera within Triticeae as genetic 

resources for domesticated cereal crops (Bothmer and Salomon 1994).  

 

1.3 Elymus 

The genus Elymus L., commonly known as wheatgrass or wild rye, belongs to the 

Triticeae tribe. The origin of Elymus is thought to have arisen from the hybridization of 

other Triticeae genera (Díaz 1999). Elymus is globally distributed and contains over 150 

different species, making it the largest and most widely spread genus in Triticeae (Sun 

and Li 2006). Elymus can be found in nearly every continent, including Europe, Asia, 

North America, South America, and Australia. However, it grows prominently in the 

northern temperate climates of Asia and North America (Dewey 1984). Elymus occupies 

numerous different habitats, such as grasslands, semi-deserts, mountain slopes, valleys, 

and along forest edges (Sun and Li 2006).  

Previously, Elymus has been used as a “taxonomic wastebasket” for Triticeae; 

meaning that undetermined polyploids without distinct morphological characteristics that 

could not be included into other Triticeae genera often were placed into Elymus (Lu 1993; 

Svitashev 1997). As a result, Elymus is a large and extremely diverse genus. The 

taxonomic classification of Elymus has proven to be complicated due to the high 

morphological variations, and the recurrent hybridizations between species that exist 

within this genus (Tzvelev 1976; Love 1984; Barkworth 1992; Díaz 1999).  

The classification of Elymus is important as it will allow for the appropriate 

construction of conservation strategies. Conservation strategies can be improved by 

proper taxonomy as classification provides knowledge into the species’ life history, 

species’ threats, and different abiotic and biotic factors that affect the species (Falk 1992; 
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Given 1994). Determining the phylogenetic relationships of Elymus is also important for 

proper conservation as it will allow for the protection of the evolutionary potential within 

Elymus and species related to Elymus (Barrett and Kohn 1991).  

The appropriate classification of Elymus will also improve the ability to use Elymus as 

a genetic resource for other Triticeae taxa. The species within Elymus have a close 

relationship with various Triticeae species and as a result can be used for interbreeding 

for improvements in genetic diversity as well as for the genes within Elymus for disease 

resistance, stress tolerance, wide adaptation, high protein and lysine contents, and high 

productivity under environmental stresses (McGuire and Dvorak 1981; Dewey 1984; 

Crane and Carman 1987; Dong et al. 1992; Liu et al. 1994; Lawrence 2011). Since the 

domestication of crops within Triticeae has led to a loss in genetic diversity due to the 

bottleneck effect, methods to enhance crops’ diversity are a highly valuable field of 

research (Kilian et al. 2010). The phylogenetic analysis of Elymus is also beneficial as 

Elymus serves as a valuable model species for studying how hybridization and 

polyploidization lead to plant diversification and speciation (Wu et al. 2016). 

Elymus can be genetically defined as an allopolyploid in which at least one genome 

set is derived from Pseudoroegneria, designated as the St genome. In addition to the St 

genome, there are four other genome donor genera to Elymus: Hordeum (H), Agropyron 

(P), Australopyrum (W), and an unknown donor (Y) (Mason-Gamer 2013). Elymus 

comprises tetraploids, hexaploids, and octoploids (Dong et al. 2015). The genus is 

primarily tetraploids, as they comprise 75% of the genus. Fewer Elymus species are 

hexaploids and octoploids, as they comprise 20% and 5% of the genus, respectively 

(Dewey 1984; Löve 1984). The tetraploids within Elymus have the genome combination 

of either StStHH or StStYY (Dong et al. 2015). This study will be focusing on the 



 12 
 
 
 
 

tetraploid Elymus species with the StStHH genome, which can be abbreviated as the StH 

genome. Specifically, we will be analyzing E. caninus, E. trachycaulus, E. fibrosus, E. 

alaskanus and E. mutabilis. 

It has been under investigation as to whether the StH species of Elymus resulted from 

a single origin or from multiple origin events. A single origin event describes one parental 

hybrid species which differentiated to form all other Elymus species. Multiple origin 

events refer to more than one hybridization event that leads to the creation of different 

Elymus species. Molecular phylogenetic analysis can reveal the mode of species 

origination. Evidence for a single origin can be provided if the St genome sequences for 

each Elymus species appear similar, and the H genome sequences for each Elymus species 

appear similar. If at least one species has an H genome sequence or a St genome 

sequence that significantly diverges from the rest, then it is likely that species of Elymus 

has descended from multiple hybridizations (Helfgott and Mason-Gamer 2004). Current 

phylogenetic analysis suggests that multiple origins have occurred within Elymus (Sun et 

al. 2008; Mason-Gamer and Naum 2010; Sun and Komatsuda 2010; Sun and Zhang 

2011).  

 

1.4 Elymus alaskanus 

Elymus alaskanus (Scribn. and Merr.) Á. Löve is commonly known as Alaskan 

wheatgrass, is an Artic-alpine species that is naturally distributed across the Circumpolar 

North (Zhang et al. 2002). Specifically, it is found in the northern parts of the former 

Russian Federation, Greenland, United States of America, and Canada, and as well as in 

Norden, Siberia, and Alaska (Sun and Salomon 2003). E. alaskanus is perennial, self-

fertilizing, and typically grows in environments with minimal competition. E. alaskanus 
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can be found on limestone outcrops, screes, moraines, and dry meadows (Sun and 

Salomon 2003), typically displays a clumped dispersion pattern with inconsistent 

population sizes (Díaz et al. 1999a). Morphologically, E. alaskanus is highly diverse. 

However, among species populations, E. alaskanus typically appears homogenous (Sun 

and Salomon 2003). As a result, several arguments for the classification of E. alaskanus 

into different taxa have been proposed based on morphological and cytological studies 

(Tzvelev 1976; Melderis 1978; Löve 1984, Baum et al. 1991; Barkworth 1994; Cody 

1996). Currently, 15 taxa have been identified in the E. alaskanus complex (Sun and 

Salomon 2003).  

Although the genetic diversity within E. alaskanus has been widely investigated, the 

origin and phylogeny of E. alaskanus is still not well understood (Díaz et al. 1999a; Sun 

et al. 2002; Zhang et al. 2002; Sun and Salomon 2003; Gaudett et al. 2005; Stevens et al. 

2007). A study by Alobeid (2017) attempted to analyze the origins of E. alaskanus using 

the second-largest subunit of RNA polymerase II (RPB2) gene and two chloroplasts genes 

(RPS16 and RP0A). However, no conclusions could be made as to whether E. alaskanus 

resulted from single or multiple origins, and as to which species within the genome donor 

genera Pseudoroegneria and Hordeum were responsible for the hybridization that lead to 

E. alaskanus. These findings were due to the lack of sequence data for the RPB2 gene 

analyzed for E. alaskanus. Using random amplified polymorphic DNA (RAPD) markers, 

E. alaskanus has been found to have close relations with E. mutabilis (Sun et al. 1997) 

and E. trachycaulus (Gaudett et al. 2005).  
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1.5 Elymus fibrosus 

Elymus fibrosus (Schrenk) Tzvelev is perennial and self-pollinating. E. fibrosus can 

be found across the northern and central regions of the former Russian Federation, and in 

northern Scandinavia (Tzvelev 1989). The habitats of E. fibrosus include damp meadows, 

riverside pebbles and sand, and between shrubs. E. fibrosus typically distribute either 

alone or sympatrically alongside E. caninus, E. sibiricus and E. repens (Díaz et al. 2000).  

E. fibrosus has low genetic diversity; it has been speculated this could potentially be 

caused by the bottleneck effect (Sun et al. 1999; Díaz et al. 2000). A study by Wu et al. 

(2016) suggested that the St and H genomes within E. fibrosus are likely derived from a 

single origin. In addition, the single origin for the E. fibrosus genome is a probable 

explanation for its low genetic diversity when compared to other Elymus specieswhich 

have comparable ecological preferences and breeding systems to E. fibrosus (Wu et al. 

2016).  

 

1.6 Elymus mutabilis 

Elymus mutabilis (Drobov) is a caespitose, meaning it forms dense tufts. E. 

mutabilis is also perennial and self-fertilizing (Díaz et al. 2004). E. mutabilis is found in 

northern Europe, and the northern and central regions of Asia (Tzvelev 1976). The 

populations of E. mutabilis typically have clumped distributions with irregular sizes. The 

typical habitats of E. mutabilis include meadows and birch forests, and among willows. E. 

mutabilis either grows in isolation or sympatrically with E. caninus, E. alaskanus, and E. 

fibrosus (Díaz et al. 2004). 

In a study by Díaz et al. (2004), genetic variation within E. mutabilis was 

analyzed using allozymes. The study revealed that at both the species and population 
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levels of E. mutabilis, genetic variations were absent (Díaz et al. 2004), which did not 

agree with the predictions based on the comparisons towards other self-pollinating plants, 

as well as other species of Elymus (Sanders et al. 1979; Hamrick and Godt 1990; 1997; 

Knapp and Rice 1996; Díaz et al. 1998, 1999a,b). The phenomenon was rationalized as 

the species-level analysis of E. mutabilis had a small sampling distribution, which could 

have led to a lack of genetic diversity to be represented within the species. At the 

population level, Díaz et al. (2004) proposed that perhaps the absence of genetic variation 

observed in E. mutabilis could be due to the bottleneck effect or from genetic drift.  

Díaz (1999b) and Sun et al. (2001) both observed a large number of hybrids 

between E. caninus and E. mutabilis or E. fibrosus. The interspecific hybridization 

between E. caninus and E. mutabilis would indicate an increase in gene flow (Díaz 

1999b; Sun et al. 2001). The degree of gene flow between E. mutabilis and other 

members of Elymus, including E. alaskanus, E. caninus, and E. fibrosus, was determined 

by Wu et al. (2015). Within this study, simple sequence repeat (SSR) markers were used 

to analyze the level of gene flow between these species. The results revealed that genetic 

diversity within E. mutabilis was considered to be relatively low. E. mutabilis had the 

lowest genetic diversity when compared to E. alaskanus, E. caninus, and E. fibrosus (Wu 

et al. 2015). 

 

1.7 Elymus caninus 

Elymus caninus (L.) L. is perennial, self-pollinating and can be found throughout 

Iceland, the British Isles, southern Siberia, Subartic and Mediterranean (Wu et al. 2016). 

E. caninus grows in deciduous forests, forest glades, between shrubs, and occasionally 

within the meadows in the subalpine regions. The populations of E. caninus have a patchy 
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distribution pattern (Díaz et al. 1999b). Throughout previous studies of E. caninus, it has 

been found to be highly genetically and structurally variable. Variations within E. caninus 

have been found in morphology, prolamine and glutelines quantities, and polymorphisms 

within isozymes, RAPD, and microsatellite (Díaz et al. 1998; Kostina et al. 1998; Sun et 

al. 1998).  

A study by Sun and Yan (2012) investigated the origins of E. caninus using the RPB2 

gene, phosphoenolpyruvate carboxylase (PepC), and the TrnD/T region within 

chloroplast DNA (cpDNA). Three distinct sequences of the RPB2 gene were found within 

two accessions of E. caninus; one for the H genome sequence and two different 

sequences for the St genome, St1 and St2. The article concludes that the most likely 

explanation for this finding is that E. caninus with the original genome of StH, likely 

acquired additional sequence exchanges from another species with a different St genome 

copy. As a result, a St1St2HH species of E. caninus was created. The PepC gene sequence 

analysis confirmed that the St genome in E. caninus has two origins and that the most 

probable St2 genome donors are either P. spicata or P. stipifolia. The H genome 

sequences also indicated multiple origins of the E. caninus.   

 
1.8 Elymus trachycaulus 
 

Elymus trachycaulus (Link) Gould ex Shinners is perennial, self-pollinating, and 

is the most variable of all of the North American Elymus species in both morphology and 

distribution (Dewey 1982). E. trachycaulus is distributed across Eurasia and extends to 

Alaska, Newfoundland, and Mexico. The typical habitat of E. trachycaulus ranges from 

coastal to alpine regions, as well as from dry hillsides to damp meadows (Sun and Li 

2006). The high morphological and geographical variability in E. trachycaulus has led 
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taxonomists to separate E. trachycaulus into subspecies, as well as to describe new 

species that were previously classified as E. trachycaulus (Tzvelev 1976, 1977). 

Currently, there are 3-6 subspecies within the E. trachycaulus complex; however, there 

previously was a significantly larger number of intraspecific taxa that have been included 

(Barkworth 1994). 

Another issue adding to the complexity of the E. trachycaulus complex is that the 

subspecies can produce hybrids with other subspecies of E. trachycaulus, as well as with 

other tribe members of Triticeae (Jozwik 1966; Sun and Li 2006). As a result, E. 

trachycaulus often has close associations with other species of Elymus and Triticeae. 

Morphologically, E. trachycaulus is very similar to E. alaskanus, E. glaucus, and E. 

caninus (Sun and Li 2006). Whether or not E. trachycaulus should be considered a 

member of E. caninus has been debated by several taxonomists in the past (Malte 1932; 

Hitchcock and Chase 1950; Hitchcock 1969; Dewey 1975). However, in the present date, 

E. trachycaulus and E. caninus remain as separate species.  

Sun and Li (2006) used RAPD to investigate the genetic diversity and the 

relationships among species within the E. trachycaulus complex and compared to other 

species of Elymus. E. trachycaulus was found to have the highest genetic diversity, even 

more so than the previously reported findings for E. caninus (Sun et al. 1999). 

Interestingly, E. trachycaulus showed more genetic similarity to E. caninus, E. alaskanus, 

and E. mutabilis, than it did within the species complex of E. trachycaulus. The authors 

also stated that although previous studies have found a genetic distinction between E. 

caninus and E. trachycaulus, further research on the relationship between the two species 

should be completed as the studies only included a few accessions of E. caninus (Dewey 

1975; Larson et al. 2003; McMillan and Sun 2004). 
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A study by Zuo et al. (2015) examined the origins of E. trachycaulus using the 

RPB2 and PepC genes and the TrnD/T region within cpDNA. Prior to this study, the 

origins of E. trachycaulus had been minimally explored. Multiple sources were found 

within the H genome sequences of the PepC gene from E. trachycaulus. It was then 

concluded that this finding is likely due to multiple origins or from successive 

hybridizations within E. trachycaulus. Multiple accessions of E. trachycaulus did not 

have St genome sequences that were recovered from the PepC gene sequences suggesting 

that E. trachycaulus may have undergone convergent evolution. Overall, it was concluded 

that E. trachycaulus has a very complicated evolutionary history. 

  

 1.9 Molecular phylogeny 

Molecular phylogeny refers to the comparison of DNA sequences to determine 

evolutionary relationships (Brown 2002). Molecular phylogeny functions on the principle 

that mutations within DNA increase over time (Brown 2002). Therefore, variations within 

DNA can be used to determine evolutionary relationships. A recent divergence from an 

ancestor would have little variations when the genomes are compared, whereas an ancient 

divergence would have significantly greater nuclear variations (Brown 2002).  

The selection of the DNA type or region to conduct the phylogenetic analysis is 

dependent on the goal of the phylogenetic study (Brown 2002). For intraspecific studies, 

the same members of a species are extremely genetically similar (Brown 2002). The 

highly conserved region of genome makes phylogenetic analysis difficult as typically no 

genetic variations can be detected, which leads to a lack of phylogenetic information 

(Brown 2002). However, relatively fast-evolving portions of the genome can be used for 

intraspecific analysis as a higher amount of DNA mutations occur within these regions 
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(Brown 2002). Examples of highly variable portions of the genome include repeated 

sequences, microsatellites, multiallelic genes, and intergenic regions of gene sequences 

(Lindsay 1995; Brown 2002; Small et al. 2004).  

 For analysis of interspecific phylogenetic relationships, highly conserved regions 

of the genome are typically used. Chloroplast DNA has been widely used within plant 

molecular phylogenetic studies (Small et al. 2004). Chloroplast DNA is highly conserved 

as it is haploid and does not undergo recombination (Small et al. 2004). However, 

cpDNA is donated solely by the maternal species. This possesses an issue for studying 

allopolyploids as the genome is a result of two genetically distinct parental species. Thus, 

the use of cpDNA within analysis of allopolyploids will only contain genetic information 

about the maternal species and will lack the paternal genome (Small et al. 2004).  

In addition to cpDNA, nuclear ribosomal DNA (rDNA) has also commonly been used 

when determining interspecific phylogeny (Small et al. 2004). Ribosomal DNA contains 

both slow- and fast-evolving regions. However, rDNA is highly susceptible to concerted 

evolution in polyploids (Small et al. 2004). Concerted evolution refers to the 

homogenization of a repetitive multigene family (Liao 1999). Homogenization of a 

repetitive multigene family within a species requires the genetic exchange among 

homologous or nonhomologous chromosomes (Liao 1999). The most common method of 

genetic exchange for chromosomes is through gene conversion (Liao et al. 1997). Gene 

conversion occurs when similar sequences of DNA on chromosomes non-reciprocally 

transfer genetic information. As a result, the DNA sequences become more homogenized 

to one another (Liao 1999). This poses issues in the use of rDNA within allopolyploids, 

as nonhomologous chromosomes are present from each donor parent genome (Sang 

2002). Concerted evolution can lead to the homogenization of nonhomologous 
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chromosomes, causing the chromosome pair to become more similar to one another, and 

more distinct from their parent donor species (Sang 2002). As a result, rDNA can be 

problematic when studying interspecific relationships within allopolyploids (Sang 2002).  

Another issue with the use of rDNA within allopolyploids is that concerted evolution is 

more probable within polyploids, and the chromosomes become increasingly more 

concerted as the number of genome sets increases (Small et al. 2004). This solution to 

studying interspecific relationships within allopolyploids is likely low-copy nuclear 

genes. Low-copy nuclear genes are less likely to produce concerted evolution and are still 

maternally and paternally inherited (Sang 2002). 

 

1.10 RPB2 gene 

The RPB2 gene is a low-copy nuclear gene that encodes for the second-largest subunit 

within RNA polymerase II (Kolodziej et al. 1990). RNA polymerase II is an enzyme 

responsible for the catalysis of messenger RNA (mRNA) synthesis within eukaryotes 

(Sun et al. 2007). According to a study on yeast by Ishiguro et al. (1998), the second-

largest subunit of RNA polymerase II was found to interact with the largest subunit, along 

with other smaller subunits, to form RNA polymerase II.  

The RPB2 gene was first fully sequenced by Larkin and Guilfoyle (1993) in 

Arabidopsis thaliana. Larkin and Guilfoyle (1993) reported that the RPB2 gene was 3,563 

base pair (bp) long and had 24 introns and 25 exons, which vary in lengths. Several 

studies have reported that in eukaryotes, the RPB2 gene has numerous regions that are 

exceptionally conserved (Sweetser et al. 1987; Kolodziej et al. 1990; Denton et al. 1998). 

Gibson and Spring (1998) postulated that the multiple interactions between the subunits 

of an enzyme lead to the genes encoding for the subunits to remain conserved. If a 
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mutation occurred at gene encoding for a domain within an enzyme, it would alter the 

interactions between the domain and the other subunits within the enzyme complex. 

Altering the interactions within the enzyme complex could lead to a deficiency in the 

functioning of the enzyme. A deficient enzyme would decrease the fitness of an organism 

(Gibson and Spring 1998). If the comments of Gibson and Spring (1998) were to be 

applied to the RPB2 gene, a mutation would lead to a deficiency in RNA polymerase II. 

As a result, there would be a decrease in the effective synthesis of messenger RNA 

(mRNA), and thus would result in an organism that is less evolutionary fit. As a result, 

individuals with mutations within the RPB2 gene should not be naturally selected.  

The RPB2 gene is biparentally inherited and is a single and low-copy gene. These 

characteristics of the RPB2 gene lead it to be ideal for analyzing phylogenetic 

relationships within allopolyploids and their parental genome donors (Small et al. 2004). 

Sun et al. (2007) were the first to demonstrate the use of the RPB2 gene for the analysis 

of the phylogenetic relationships within the StH genome species of Elymus. Within this 

study, the RPB2 gene was proven to be exceptional for examining the phylogeny, 

evolutionary dynamics, speciation, nucleotide polymorphism, and type of polyploidy 

within Elymus (Sun et al. 2007).  

Allotetraploid species of Elymus with the StH genome are expected to have copies of 

the RPB2 gene. The RPB2 gene should be present in the St haplomes and the H 

haplomes. The five Elymus species studied are primarily self-pollinators. Self-pollinating 

plants typically contain homozygous alleles for a gene. As a result, there should be 

minimal genetic variation between the haplomes within each of the genomes (Hartl and 

Clark 1997). The RPB2 gene sequences for the St and H genomes should differ 

significantly as the genomes originate from genetically distinct sources (Wendel 2000). 
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1.11 Phylogenetic trees and analysis 

 A phylogenetic tree is a geometric representation of evolutionary relationships 

(Brown 2002). A clade on a phylogenetic tree refers to a branch which groups together 

organisms from a common ancestor (Baum 2008). A subclade is a branch extending from 

a member of a clade that further groups together organisms (Baum 2008). An outgroup on 

a phylogenetic tree is a species that is thought to be the most genetically unrelated to the 

ingroup of study and functions as a genetic reference point for the phylogenetic tree 

(Maddison et al. 1984). 

A phylogenetic tree is constructed by first aligning the compared sequences of the 

chosen region of DNA (Brown 2002). After the alignment is performed, comparative data 

of the sequences is obtained (Brown 2002). The comparative data is used to construct the 

phylogenetic tree to represent the genetic relatedness of the compared sequences (Brown 

2002).  

Saitou and Nei (1987) created the algorithm for the NJ tree. The NJ tree 

implements the distance matrix method to determine the position of each sequence on the 

tree (Brown 2002). The distance matrix refers to a matrix that is created using calculated 

nucleotide differences, also known as polymorphisms, between all possible pairs of the 

sequences analyzed. The calculated nucleotide differences are used to determine the 

evolutionary distances among the compared sequences. The evolutionary distances are 

represented on the NJ tree in the length of the branches connecting the two sequences. 

The NJ tree uses one starting point from which all of the branches form. All possible pairs 

are determined by choosing a pair of sequences at a time and placing them at a second 

internal node. The total branch length of the second internal node for this pair is 

calculated using the distance matrix (Brown 2002). After all of the possible pairings have 
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been analyzed, the tree is constructed with the pairing that produced the shortest total 

branch length at the second internal node. This decision is based on the principle that the 

more genetically related two organisms are, the fewer genetic mutations should be 

observed. The pair of sequences that are chosen are also known as ‘neighbours’ to one 

another on the tree. This process is then repeated for the consecutive internal nodes until 

all of the sequences analyzed have been placed on the tree (Brown 2002). 

 The next step within the construction of a phylogenetic tree is to determine 

bootstrap (BS) values for each branch. Bootstrap values function as confidence limits to 

indicate the likeliness of each component of the reconstructed tree (Halliburton 2004). 

Within the determination of BS values, 1000 new gene alignments are created, in which 

1000 phylogenetic trees are reconstructed. The BS value indicates how many times out of 

the 1000 tree reconstructions, each branch present on the final tree was incorporated 

(Brown 2002). The BS values are represented as percentages out of 100. A BS value of 

less than 70% are considered low, whereas a BS value greater than 80% is considered 

high (Daley 2006).   

 

1.12 Study objectives 

The objectives of the study were to: 1) determine the molecular phylogeny among 

five Elymus species with the StH genome: E. caninus, E. mutabilis, E. fibrosus, E. 

alaskanus, and E. trachycaulus using the RPB2 gene sequences; 2) identify their genome 

donor from Pseudoroegneria and Hordeum; 3) determine and compare the nucleotide 

diversity among the Elymus species studied, as well as to their genome donor genera. 
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2. Methods 

2.1 Plant materials 

The species used in this study were: Elymus alaskanus, E. caninus, E. fibrosus, E. 

mutabilis, E. trachycaulus, Hordeum bogdanii, H. chilense, H. intercedens, H. 

stenostachys, H. euclaston, H. pusillum, H. roshevitzii, Pseudoroegneria spicata, P. 

stipifolia, P. libanotica, Agropyron cristatum, Lophopyrum elongatum, and Bromus 

catharticus (Table 1). The origins of the seeds used in this study were from various 

locations globally (Figure 1). The seeds were obtained from the Swedish University of 

Agricultural Sciences. The seeds were germinated and grown within a greenhouse at 

Saint Mary’s University, Halifax, Nova Scotia.  
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Table 1: The species names, accession numbers, origin, and genome constitution of 
the Elymus, Hordeum, Pseudoroegneria, Agropyron, Lophopyrum, and Bromus 
species used in this study. 

Species Accession Number Origin Genome 
E. caninus 

 
SV9714-15 Jamtland, Sweden StH 
SV9714-56 Jamtland, Sweden  StH 
FI9303-3 Pera-Pohjanmaa, Finland StH 
FI9303-7 Pera-Pohjanmaa, Finland StH 
H10096 Korgonskij, Altai, Russia StH 
H3915  Sobostiste, Slovakia StH 

DK9604-21 Sjoelland, Denmark  StH 
DK9604-29  Sjoelland, Denmark  StH 

H10404 Siberia, Russia  StH 
H2009 Fyledalen, Sweden  StH 
H8753  China StH 
H3857  Siberia, Russian Federation  StH 
H10125 USSR, Russian Federation StH 
H10359  Iceland StH 
FI9310-5 Kittilan, Finland  StH 

FI9310-13 Kittilan, Finland StH 
NO0308-15 Finnmark, Norway  StH 
NO0308-2 Finnmark, Norway  StH 

H3169  Vastmanland, Sweden  StH 
H10314 Finland  StH 
H7550 China StH 

E. fibrosus PI 531609 Germany StH 
PI 406467 Russian Federation StH 
PI 564933 Kazakhstan StH 
PI 564930 Russian Federation StH 
PI 598465 Russian Federation StH 
PI 406448 Russian Federation StH 
FI9306-2 Pera-Pohjanmaa, Finland StH 
FI9306-4  Pera-Pohjanmaa, Finland StH 
PI 439999  Russian Federation StH 
PI 564932 Russian Federation StH 
US9601 Washington, United States StH 
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Table 1 continued  

Species Accession Number Origin Genome 
E. mutabilis SV9319-3 Norrbotten, Sweden StH 

SV9318-4 Norrbotten, Sweden  StH 
SV9318-5 Norrbotten, Sweden  StH 
NO0305-3 Finnmark, Norway  StH 
NO0305-51  Finnmark, Norway StH 

E. trachycaulus 
 
 

H10140  Altai, Russian Federation StH 
H10665 United States StH 
H4228 Lincoln County, Utah, USA StH 

PI 232150 United States  StH 
PI 440101  Shorthandy, Kazakhstan StH 

H3995 Rich County, Utah, USA StH 
PI 387895 Beaverlodge, Alberta, Canada StH 
PI 232147 United States StH 

H3526  Nerungri, Russian Federation StH 
PI 440098 Tselinograd, Kazakhstan StH 

E. alaskanus Gr9720 Strømfjord, Greenland StH 
Gr9718  Julianehab, Greenland StH 

H. bogdanii H4014  Pakistan  H 
H. chilense H1816  Chile H 

H. intercedens H1941  United States H 
H. stenostachys H1780  Argentina H 

H. euclaston H2148  Uruguay H 
H. pusillum H2024  United States H 

H. roshevitzii H9152  China H 
P. spicata PI 506274  Washington, United States St 

PI 610986 Washington, United States St 
P. stipifolia PI 325181  Russia Federation St 
P. libanotica PI 330688  Sirak-Sar, Iran St 
Ag. cristatum PI 383534  Kars, Turkey P 
L. elongatum PI 142012  Russian Federation E 
B. catharticus CN32048  Germany N/a 
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Figure 1: Global map depicting the origins of the Elymus, Hordeum, 
Pseudoroegneria, Agropyron, Lophopyrum, and Bromus species used in this study. 
Image of map was obtained from Google Maps (2020).   
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2.2 DNA isolation 
 
Ms. Panpan Wu and Mr. Yi Xu performed the DNA isolation. To perform the DNA 

isolation, first, liquid nitrogen was used to snap freeze 300 mg of a leaf sample. The leaf 

sample was crushed into a fine powder using a mortar and pestle. The powder sample was 

transferred into a 2.0 mL centrifuge tube. Seven hundred fifty μL of lysis buffer was 

added to the tube. The lysis buffer consisted of 50mM Tris hydrochloride (Tris-HCl) (pH 

7.6), 100mM sodium chloride (NaCl), 50 mM ethylenediaminetetraacetic (EDTA), 0.5 % 

sodium dodecyl sulfate (SDS) and 10 mM 𝛽-mecaptoethanol. The tube then incubated for 

10 minutes at room temperature. Four hundred fifty μL of phenol-tris-chloroform (pH 

7.5) was then added to the tube. The tube was inverted several times to mix the solution. 

Four hundred fifty μL of (24:1) chloroform-isoamyl alcohol was added, and the tube was 

inverted several times again. The tube was then centrifuged for 5 minutes at 1,300 RPM. 

The supernatant was transferred to a new 2.0 mL centrifuge tube. Another 450 μL aliquot 

of chloroform-isoamyl alcohol was added, followed by centrifuging the tube for five-

minutes at 1,300 RPM. The supernatant was placed into a 1.5 mL centrifuge tube. One 

mL of chilled isopropanol was then placed in the tube. The tube then incubated at -20°C 

for 20 minutes. The tube was then centrifuged for 20 minutes at 1,300 RPM and 4°C. The 

supernatant was removed, and the pellet was washed. The pellet was washed twice with 

cold 70% ethanol. The pellet was left to dry to 10 minutes. Four hundred μL of TE buffer 

was then added to resuspend the pellet. The TE buffer consisted of 10 mM of Tris-HCl 

(pH 7.5) and 1.0 mM EDTA (pH 8.0). The tube was then left to incubate for 24 hours. 

Fifty μg/mL of RNase was then added to the test tube and incubated for 30 minutes at 

37°C. Four hundred fifty μL of phenol-tris-chloroform (pH 7.5) was then added to the 

tube. Four hundred fifty μL of (24:1) chloroform-isoamyl alcohol was added and the tube 
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was centrifuged for 5 minutes at 1,300 RPM. The supernatant was transferred to a 2.0 mL 

centrifuge tube. Another 450 μL aliquot of chloroform-isoamyl alcohol was added, 

followed by centrifuging the tube for 5 minutes at 1300 RPM. The supernatant was 

placed into a 1.5 mL centrifuge tube. One mL of chilled isopropanol was then placed in 

the tube. The tube then incubated at -20°C for 20 minutes. The tube was then centrifuged 

20 minutes at 1,300 RPM and 4°C. The supernatant was removed, and the pellet was 

washed twice using cold 70% ethanol. The pellet dried for 10 minutes at room 

temperature. The pellet was resuspended in 100 μL of TE buffer and stored at -20°C until 

further use. 

 

2.3 DNA amplification of the RPB2 gene with PCR 

The DNA amplification of the RPB2 gene was performed by Ms. Panpan Wu and 

Mr. Yi Xu. The primers used in this study were synthesized by Operon Technologies Inc. 

The primers used were: P6F (5’-TGGGGAATGATGTGTCCTGC-3’) and F6FR: (5’-

CGAACCACACCAACTTCAGTGT-3’) (Denton et al. 1998). The primers were used to 

amplify the RPB2 gene through Polymerase Chain Reaction (PCR). A Biorad iCycler® 

Thermal Cycler was used to conduct PCR. Taq DNA polymerase (M0267L) and reaction 

buffer (B90046S) were both obtained from New England Biolabs Ltd. The master mix for 

amplifying the RPB2 gene contained: 3.00 μL of 1.5 ng/μL DNA, 2.00 μL of 0.2 μM P6F 

primer, 2.00 μL of 0.2 μM F6FR primer, 2.00 μL of the reaction buffer, 4.00 μL of 0.2 

mM deoxynucleotides (dNTPs), 0.15 μL of 0.75 U Taq DNA polymerase, and 6.85 μL of 

autoclaved water. The samples were placed into the PCR. The PCR program consisted of 

an initial denaturing of the sample at 95°C for 5 minutes. Then the following three steps 

occurred for 35 cycles: denaturing of the sample at 95°C for 1 minute, annealing at 52°C 
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for 2 minutes, extension at 72°C for 2 minutes. After the cycles were complete, a final 

extension occurred at 72°C for 7 minutes. The samples were then incubated at 4°C.  

 

2.4 Gel electrophoresis 

The gel for electrophoresis was created using 1.5% agarose gel and 150 mL of 1x 

Tris/Borate/0.5 M EDTA (TBE) buffer (pH 8.0). The agarose gel and the TBE buffer was 

placed into an Erlenmeyer flask and microwaved for 2 minutes. The gel was placed into a 

15-well gel comb mould. Once the gel hardened, the gel was positioned in the 

electrophoresis chamber. Five μL of the DNA sample was mixed with 2 μL of 

bromophenol blue loading dye and loaded into each well. The gel ran at a consistent 180 

volts for 30 minutes. The electrophoresis gel was stained for 30 minutes in 30 μL 

ethidium bromide in 200 mL of distilled water (H2O). SynGene photographic equipment 

and a UV light was then used to view the PCR products. 

 

2.5 Cloning and sequencing 

The PCR products were cloned using a pCR8/GW/TOPO® TA Cloning kit (Cat. 

45-0642, Invitrogen, Carlsbad, CA). The procedure for cloning was adapted from the 

User Manual (Invitrogen 2012). In brief, to create the TOPO® Cloning reaction, 4 μL of 

the PCR product was incubated with 1 μL of TOPO® vector and 1 μL of salt solution and 

kept at room temperature for 10 minutes. The solution was then placed on ice. Two μL of 

the TOPO® Cloning reaction was placed in a vial of One Shot® of Escherichia coli, and 

gently mixed. The vial was then left to incubate on ice for 30 minutes, then the vial was 

heat-shocked by placing the mixture into a bath for 30 seconds at 42°C and then 

immediately back on ice. Two hundred fifty μL of Super Optimal broth with Catabolite 
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repression (SOC) medium was then added to the vial. The vial was placed into a bath for 

1 hour with shaking at 2,000 RPM and a temperature of 37°C. Fifty μL of the mixture 

from the vial was spread on a pre-warmed Lysogeny Broth (LB) with 100 μg/mL 

spectinomycin and x-gal, and incubated overnight at 37°C. 

The colonies were first cultured for 20 minutes in LB medium with 100 μg/mL 

spectinomycin. Two μL of the sample was then obtained and placed in the PCR. The 

primers for the PCR reaction were obtained from the TOPO® kit. For the PCR products 

that tested positive for the insert, 8 μL of the remaining solution was placed into a 5 mL 

LB broth with 100 μg/mL spectinomycin. The broth was left to incubate overnight in a 

bath at 37°C. 

To isolate the plasmid DNA, a Promega Wizard ® Plus Minipreps DNA 

Purification System (Promega Corporation, Madison, WI, USA- Cat # A7500) was used. 

The method for plasmid DNA isolation was adapted from the user manual (Promega 

2011). Five μL of the bacterial culture was centrifuged for 10 minutes at 10,000g. The 

supernatant was discarded, and the tube was blotted upside-down on a paper towel to 

eliminate any additional solution. The cell pellet was resuspended in 300 μL of Cell 

Resuspension Solution. Three hundred μL of Cell Lysis Solution and 300 μL of 

Neutralization Solution were then pipetted into the centrifuge tube. The centrifuge tube 

was then centrifuged for 5 minutes at 10,000g. The Wizard® Miniprep Column was 

prepared by placing a Syringe Barrel on the Luer-Lok® extension of the Minicolumn. 

One mL of the resuspended resin was pipetted in the Syringe Barrel. The supernatant 

from the centrifuge tube was then pipetted into the Syringe Barrel. The resin/lysate 

mixture was then slowly pulled through the Minicolumn by applying a vacuum. Two mL 

of Column Wash Solution was added to the Syringe Barrel and was pulled through the 
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Minicolumn by the vacuum. The Syringe Barrel was removed, and the Minicolumn was 

then transferred to a 1.5 mL centrifuge tube. The tube was centrifuged for 2 minutes at 

10,000g to remove the Column Wash Solution. The Minicolumn was moved to a new 1.5 

mL centrifuge tube. Fifty μL of deionized H2O was added to the Minicolumn. After 1 

minute, the tube was centrifuged for 10,000g for 20 seconds to elute the DNA. To ensure 

that the required DNA segment was properly isolated, a small sample was then placed 

into the electrophoresis apparatus with 1% agarose gel. The plasmid DNA was sequenced 

commercially.	

 

2.6 Data analysis 

 The sequences were aligned using the default parameters of ClustalX (1.81) 

(Thompson et al. 2003). The sequence alignment was imported to the program GeneDoc 

(2.7) for the removal of large gaps, followed by a manual realignment (Nicholas and 

Nicholas 1997). The PAUP* (4.0b10) program was used to construct the phylogenetic 

tree from the sequence alignment, as well as to determine a maximum parsimony score 

(Swofford 2002). Bromus catharticus was chosen as the outgroup for the phylogenetic 

analysis (Sun and Ma 2009). An NJ tree was selected to represent the phylogenetic 

relationships after several trees had been constructed. In order to determine the robustness 

of the branches, BS values with 1000 replicates were calculated (Felsenstein 1985). The 

maximum parsimony score was calculated to indicate the character congruency by 

determining the consistency index (CI), rescaled consistency index (RCI), and the 

retention index (RI). The CI is a mathematical algorithm that represents the smallest 

amount of homoplasy inferred by the tree (Farris 1989). The closer the CI value is to one, 

the more reliable the tree is (Nei and Kumar 2000). The RI describes how parsimonious 
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the tree is. The RI is determined by calculating the (maximum possible number of 

changes on the tree and subtracting the number of changes on the tree), and then by 

dividing this number by the (maximum number of changes on the tree subtracted by the 

number of the smallest changes within the data set) (Farris 1989). The RCI is determined 

by multiplying the CI value by the RI value. The RCI value allows for a CI with a 

rescaled minimal possible value of zero.  

 The sequence alignments were then imported into the software DnaSP5 (Librado 

and Rozas 2009) to determine the nucleotide diversity of Elymus, as well as within each 

Elymus species studied. The nucleotide variation was not determined within E. alaskanus 

as the study did not contain enough sequences for this species. DNAsp5 was used to 

calculate the number of sites without missing data (n), the number of segregating sites (s), 

Tajima’s statistics (𝜋), and Watterson’s 𝜃	(𝜃$). The 𝜋	and	𝜃$ values were selected as 

parameters of nucleotide diversity. Watterson’s 𝜃 is the diversity based on the number of 

segregating sites (Waterson 1975). Tajima’s statistic represents the average pairwise 

diversity (Tajima 1989). The Fu and Li’s D test and the Tajima’s D test were then 

calculated. The Fu and Li’s D test statistic is based on how many mutations appeared only 

once compared to the total mutations present in the data set (Fu and Li 1993). The 

Tajima’s D statistic is based on the difference between the mean number of pairwise 

differences and the number of segregating sites (Tajima 1989). Fu and Li’s D tests and 

Tajima’s D tests were considered statistically significant when the p-values were < 0.05. 
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3. Results 
 
3.1 Sequence alignment 
 

The aligned sequences of the RPB2 gene for the Elymus, Hordeum, and 

Pseudoroegneria species studied had a size of approximately 800-1000 bp. This finding 

agrees with previously published data (Sun and Komatsuda 2010). Remarkably, the 

sequence alignment showed a large deletion (indel) of 70 bp at the 50 position from the H 

genome (Figure 2). For the St genome, a 4 bp deletion was found at the 37 position. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: ClustalX sequence alignment of the RPB2 obtained from five Elymus StH 
species. The sequence alignment showed a large deletion (indel) of 70 bp at the 50 
position from the H genome. Black highlighting represented a nucleotide base position in 
which no difference was found among sequences. Dark grey highlighting represented a 
nucleotide base position in which one difference was found among sequences. Light grey 
highlighting indicated a nucleotide base position in which numerous differences were 
found. 
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3.2 Nucleotide variation 

DnaSP 5.0 was used to analyze nucleotide diversity within the RPB2 sequences 

from the H and St genomes of the five Elymus species studied (Table 2). The average 

pairwise diversity (𝜋) and the diversity based on the number of segregating sites (𝜃$) 

were used as estimates of nucleotide variations and were compared among sequences. 

When comparing the 𝜋 and 𝜃$ values of each Elymus species, higher nucleotide variation 

was found within the St genome sequences when compared to the H genome in E. 

caninus, E. fibrosus and E. mutabilis. In E. trachycaulus, the H genome was found to 

have higher 𝜋 and 𝜃$ values than the St genome, indicating higher nucleotide 

polymorphism in the H genome in E. trachycaulus. The Elymus species with the lowest 

nucleotide variation was found to be E. mutabilis (𝜃$ = 0.00121, 0.00062; 𝜋 = 0.00101, 

0.00047 for St and H, respectively). The Elymus species with the highest nucleotide 

variation within the St genome found to be E. caninus (𝜃$ = 0.02085; 𝜋 = 0.00898). The 

Elymus species with the highest nucleotide variation within the H genome found to be E. 

trachycaulus (𝜃$ = 0.01458; 𝜋 = 0.01458). Tajima (1989) and Fu and Li’s (1993) tests 

were then performed on RPB2 gene sequences for the Elymus species. Each species of 

Elymus had a Tajima’s and Fu and Li’s D values that were negative; signifying an excess 

of low-frequency polymorphisms. The Tajima’s and Fu and Li’s D values were found to 

be significant in both genomes of E. fibrosus and the St genome of E. caninus, suggesting 

for the directional selection or population expansion after a bottleneck for these species 

(Tajima 1989). The Tajima’s and Fu and Li’s D values were found to be not significant in 

both genomes of E. mutabilis and E. trachycaulus, as well as within the H genome of E. 

caninus.  
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Previous studies on the RPB2 gene nucleotide diversity of the H and St genomes 

in the Elymus species showed that the 𝜃$ values for the St and H genome within Elymus 

were similar, with values of 0.02423 and 0.02359, respectively (Table 2). The 𝜋 value for 

the H genome within Elymus was found to be higher than St value (0.013180 and 

0.00727, respectively). The nucleotide polymorphism within the St genome of 

Pseudoroegneria was obtained from previously published data (Sun et al. 2008).  The 𝜋 

and 𝜃$ values for Pseudoroegneria were found to 0.01711 and 0.01640, respectively. The 

𝜋 value for Pseudoroegneria was determined to be over 2.35-fold higher than for 𝜋 value 

for Elymus. However, the 𝜃$ value was found to be over 1.47-fold higher for Elymus 

when compared to Pseudoroegneria. A Fu and Li’s test was then performed for the St 

and H genome sequences within Elymus. The Fu and Li’s D value for the St genome was 

found to be -4.3121 and statistically significant (p<0.02). The Fu and Li’s D value for the 

H genome was found to be -3.4712 and statistically significant (p<0.02). Negative Fu and 

Li’s D values indicate that there is an excess of mutations in the external branches to the 

RPB2 sequences of the H and St genomes of the Elymus species studied (Fu and Li 

1993). A Tajima’s test was then performed on both genome types. For the H and St 

genomes, the Tajima’s D value was determined to be not statistically significant (p<0; 

p>0.10, respectively).   
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Table 2: Estimates of nucleotide polymorphism and test statistics for the RPB2 gene 
within each Elymus species of a St and H genome. n represents the number of sites 
without missing data, s is the number of segregating sites, 𝜋 is the average pairwise 
diversity,	𝜃$	is the diversity based on the number of segregating sites. 
 

#: Data for Pseudoroegneria was obtained using previously published data (Sun et al. 
2007).  
*: Indicates statistical significance 
 

3.3 Phylogenetic analysis  

 Phylogenetic analysis was conducted on 110 sequences of the RPB2 gene using 

Bromus catharticus as an outgroup. The data matrix consisted of 826 characters, 89 of 

which were parsimony-informative characters. Parsimony analysis of the data produced a 

CI of 0.754, a RI of 0.965, and an RCI of 0.582.  

An NJ tree was constructed and shown in Figure 3 with BS values above 

branches. The two distinct copies of sequences from each Elymus species were separated 

into two clades; one clade contained St genome sequences from Elymus and all 

Pseudoroegneria (St) with a 53% BS value. Several subclades were formed within the St 

Species Genome n s 𝜋 𝜃$ Fu and 
Li’s D 

Tajima’s 
D 

Elymus St 648 69 0.00727 0.02423 -4.3121* -2.4988 

H 549 58 0.01380 0.02359 -3.4712* -1.4434 

Pseudoroegneria# St 721 27 0.01711 0.01640 -0.0332 0.0364 

E. caninus St 741 54 0.00898 0.02085 -3.3396* -2.3232* 

H 695 26 0.01005 0.01054 -0.9290 -0.4490 

E. fibrosus St 795 28 0.00799 0.01412 -2.4581* -2.0785* 

H 705 16 0.00545 0.00975 -2.2777* -1.9649* 

E. mutabilis St 795 2 0.00101 0.00121 -0.9726 -0.9726 

H 705 1 0.00047 0.00062 -0.9502 -0.9330 

E. trachycaulus St 796 16 0.00560 0.00712 -0.4176 -0.9915 

H 704 40 0.01458 0.02008 -1.2643 -1.3297 
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(Pseudoroegneria + Elymus) clade. The sequences from the H genome of Elymus and all 

the Hordeum (H) sequences were placed in a clade with a 95% BS value. H genome 

sequences from E. caninus, E. alaskanus, and E. trachycaulus were placed in a subclade 

with all Hordeum sequences, excluding H. bogdanii (53% BS). H. bogdanii was found in 

a subclade with the H genome sequences from E. caninus, E. fibrosus, and E. mutabilis 

(83% BS).  
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Figure 3: Neighbor-joining (NJ) tree derived from the sequenced data of the RPB2 
gene in Elymus, Pseudoroegneria, Agropyron, and Lophopyrum. Numbers above the 
branches were bootstrap (BS) values. Bromus catharticus was used as an outgroup. 
Consistency index (CI) of 0.754, a retention index (RI) of 0.965 and a rescaled 
consistency index (RCI) of 0.582. 
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H10314 E. caninus (StH) 
FI9303 E. caninus (StH) 
NO0308 E. caninus (StH) 
H10096 E. caninus (StH) 
PI 531609 E. fibrosus (StH) 
PI 406467 E. fibrosus (StH) 
PI 439999 E. fibrosus (StH) 
PI 564932 E. fibrosus (StH) 
PI 564933 E. fibrosus (StH) 
PI 564930 E. fibrosus (StH) 
PI 598465 E. fibrosus (StH) 
SV9319 E. mutabilis (StH) 
NO0305 E. mutabilis (StH) 
FI9306 E. fibrosus (StH) 
NO0305 E. mutabilis (StH) 
SV9318 E. mutabilis (StH) 
SV9318 E. mutabilis (StH) 
FI9306 E. fibrosus (StH) 
H3915 E. caninus (StH) 
DK9604 E. caninus (StH) 
DK9604 E. caninus (StH) 
SV9319 E. mutabilis (StH) 
H4014 H. bogdanii (H) 
H3526 E. trachycaulus (StH) 
PI 406448 E. fibrosus (StH) 
H1816 H. chilense (H) 
H1941 H. intercedens (H) 
H10359 E. caninus (StH) 
H10404 E. caninus (StH) 
H2009 E. caninus (StH) 
H7550 E. caninus (StH) 
H8753 E. caninus (StH) 
H1780 H. stenostachys (H) 
H2148 H. euclaston (H) 
H3857 E. caninus (StH) 
H2024 H. pusillum (H) 
H9152 H. roshevitzii (H) 
Gr9720 E. alaskanus (StH) 
US9601 E. fibrosus (StH) 
PI 440098 E. trachycaulus (StH) 
H10140 E. trachycaulus (StH) 
H10665 E. trachycaulus (StH) 
H4228 E. trachycaulus (StH) 
PI 232150 E. trachycaulus (StH) 
PI 440101 E. trachycaulus (StH) 
H3995 E. trachycaulus (StH) 
PI 387895 E. trachycaulus (StH) 
Gr9718 E. alaskanus (StH) 
PI 232147 E. trachycaulus (StH) 
Gr9718 E. alaskanus (StH) 
PI 564933 E. fibrosus (StH) 
PI 440098 E. trachycaulus (StH) 
PI 440101 E. trachycaulus (StH) 
PI 406467 E. fibrosus (StH) 
PI 531609 E. fibrosus (StH) 
H10404 E. caninus (StH) 
PI 439999 E. fibrosus (StH) 
PI 564932 E. fibrosus (StH) 
PI 232147 E. trachycaulus (StH) 
PI 564930 E. fibrosus (StH) 
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SV9319 E. mutabilis (StH) 
SV9318 E. mutabilis (StH) 
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FI9303 E. caninus (StH) 
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SV9714 E. caninus (StH) 
NO0305 E. mutabilis (StH) 

DK9604 E. caninus (StH) 
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PI 406448 E. fibrosus (StH) 
PI 598465 E. fibrosus (StH) 
H3526 E. trachycaulus (StH) 
Gr9720 E. alaskanus (StH) 
H10140 E. trachycaulus (StH) 
PI 232150 E. trachycaulus (StH) 
PI 387895 E. trachycaulus (StH) 
H10665 E. trachycaulus (StH) 
H3995 E. trachycaulus (StH) 
H4228 E. trachycaulus (StH) 
PI 506274 P. spicata (St) 
PI 325181 P. stipifolia (St) 
PI 610986 P. spicata (St) 
PI 330688 P. libanotica (St) 
PI 383534 Ag. cristatum (P) 
H10359 E. caninus (StH) 
PI 142012 L. elongatum (E) 
CN32048 B. catharticus 
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4. Discussion 
 
4.1 Nucleotide variation  

The Elymus species with the lowest nucleotide variation was found to be E. 

mutabilis. This finding agrees with the results of Wu et al. (2015), in which E. mutabilis 

had the lowest genetic diversity when compared to E. alaskanus, E. caninus, and E. 

fibrosus using SSR markers. A possible explanation for the lack of genetic diversity 

within E. mutabilis is that the species could have experienced the bottleneck effect, 

genetic drift, or a high degree of inbreeding, as hypothesized by Díaz et al. (1999). 

The Elymus species with the highest nucleotide variation within the St genome 

was found to be E. caninus. High nucleotide diversity has been reported within E. caninus 

in several studies (Sun et al. 1998; Sun and Ma 2009; Sun et al. 2006). The Elymus 

species with the highest nucleotide variation within the H genome was found to be E. 

trachycaulus. This finding agrees with the previous results of Sun and Li (2006), in which 

E. trachycaulus was found to have the highest genetic diversity when compared to E. 

caninus, E. alaskanus, and E. mutabilis using RAPD. High genetic diversity within E. 

trachycaulus was also found by Díaz et al. (2000) and Zhang et al. (2002), in which E. 

trachycaulus was compared to E. fibrosus and E. alaskanus.  

When the 𝜋 values for Elymus were compared to the 𝜋 values for 

Pseudoroegneria determined by Sun et al. (2007), Pseudoroegneria had over twice the 𝜋 

value. A higher genetic diversity in Pseudoroegneria does not agree with current research 

(Barrier et al. 2001; Sun et al. 2007). Sun et al. (2007) suggested that Elymus is likely 

more genetically diverse than the diploid ancestor Pseudoroegneria as polyploids evolve 

faster than diploids. In addition, a polyphyletic origin within Elymus would lead to the 

species to evolve multiple times and thus increase diversity. A possible explanation for 
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the differences in genetic diversity within Elymus could be due to the differences in 

experimental design. In our study, five Elymus species were selected, and multiple 

accessions within each species were analyzed as it seeks to analyze both intra- and inter-

specific relationships of Elymus. In the study of Sun et al. (2007), 20 species of Elymus 

were examined, with single accessions used for each species. Therefore, a decrease in 

genetic diversity should be expected as genetic diversity is higher among species than 

within species.  

 

4.2 Phylogenetic analysis  

The St genome within Elymus is significant as several molecular studies have 

stated that Pseudoroegneria was the maternal genome donor during the speciation of 

Elymus (Jones et al. 2000; Mason-Gamer et al. 2002; Redinbaugh et al. 2000; McMillan 

and Sun 2004; Xu and Ban 2004; Liu et al. 2006a). Our phylogenetic study formed a 

clade with the St genome sequences of the Elymus species studied and Pseudoroegneria, 

providing support for Pseudoroegneria being a genome donor genus to Elymus. All 

Pseudoroegneria species sequenced were placed outside of the subclades within the St 

clade. It is difficult to figure out which Pseudoroegneria species examined here is likely 

the direct ancestor to the studied Elymus species. Agropyron cristatum was found inside 

of the St clade, along with Pseudoroegneria, and the St genome sequences of Elymus. 

This finding is likely due to the close association between Pseudoroegneria and 

Agropyron (Wang et al. 1985). Wang et al. (1985) first reported successful chromosome 

pairing from the cross-fertilization between Agropyron and Pseudoroegneria. 

Subsequently, introgression between the two genera is possible, which can lead to an 

increase in genetic similarities to develop. As a result of introgression, a loss of 
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phylogenetic distinctions is experienced between the two species, despite their different 

evolutionary histories (Rhymer and Simberloff 1996). 

The second major clade within our phylogenetic analysis was between the H 

genome sequences of Elymus and Hordeum, providing evidence that Hordeum is a 

genome donor genus to Elymus. In a subclade formed in the H clade, H. bogdanii was 

found with the H genome sequences from some E. caninus, and all of E. fibrosus and E. 

mutabilis. A close association between members of Elymus and H. bogdanii has been 

reported several times within literature (Dewey 1971; Yan 2007; Yan and Sun 2012; Wu 

et al. 2015). The phylogenetic analysis here suggests H. bogdanii as a possible genome 

donor species of E. fibrosus and E. mutabilis and some accessions of E. caninus. The 

phylogenetic analysis also indicates a close association between E. fibrosus and E. 

mutabilis, as they likely share the same H genome donor.  

 Several accessions were found outside of the H clade, including PI 232147, 

Gr9718, PI 564933, PI 440098, and PI 440101. All of the listed accessions were either 

members of E. alaskanus or E. trachycaulus. A possible explanation for that finding could 

be due to the introgression between the H and the St chromosomes within Elymus. As a 

result, the H genome within these accessions could have become genetically distinct from 

their genome donor genera. Several studies on Brassica napus reported this phenomenon 

(Pires et al. 2004; Udall et al. 2005; Leflon et al. 2006; Liu et al. 2006b; Nicolas et al. 

2007). B. napus is an allopolyploid, and it is reported that the genetic exchange among the 

homoeologous chromosomes may result in genetic asymmetry and convergent evolution 

of the two genetically distinct parental genomes (Gaeta et al. 2007). Other possible 

explanations could include that a Hordeum-like species donate H genome within E. 

trachycaulus and E. alaskanus, or that the H genome within these accessions is a result of 
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multiple or subsequent hybridizations, leading to an H genome radically different from 

any genome donor genera. 

 

4.3 Conclusions 

The phylogenetic relationship among the five Elymus species E. caninus, E. fibrosus, 

E. mutabilis, E. trachycaulus and E. alaskanus was successfully analyzed using the RPB2 

gene. The phylogenetic analysis proved a complex and diverse evolutionary history 

among these five Elymus species. The nucleotide diversity of the Elymus species, as well 

as their genome donor genera, was successfully determined. Further evidence was 

provided that Pseudoroegneria (St) and Hordeum (H) are genome donors of the five 

Elymus species studied. A close association between E. fibrosus and E. mutabilis was 

found within the H genome. The phylogenetic tree also suggests H. bogdanii as a 

potential H genome donor for E. caninus, E. fibrosus, and E. mutabilis. However, further 

investigation of the relationships among and between these species is required to form 

more consolidated conclusions.  

 Future investigations of the St and H genome sequences of the Elymus species 

studied at other nuclear genes should be analyzed to support the findings of this study. 

Different Pseudoroegneria species than those used in this study should be analyzed to 

determine the origin of the St genome within the Elymus species studied. Further research 

is required to identify possible H genome donor species for E. alaskanus, E. 

trachycaulus, and E. caninus. 
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