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Second Harmonic Generation Microscopy of Inner Ear Otoconia 

 

      By: Kennedy Brittain 

 

 

 

ABSTRACT 

 

 

 

Otoconia are microscopic biocrystals located within the vestibular system of the 

inner ear, that allow vertebrates to detect gravity and linear acceleration. When otoconia 

become degraded due to factors including aging, disease, and consumption of ototoxic 

medications, vestibular pathologies arise, and the body’s ability to maintain balance is 

significantly impaired. Vestibular pathologies such as benign-paroxysmal positional 

vertigo are a significant health concern across Canada. These pathologies lead to falls 

which cause debilitating conditions such as bone fractures, neurological damage, and 

negative social impacts. To develop methods to prevent degeneration of otoconia, and to 

induce and promote repair and regeneration, it is important to study their crystalline 

ultrastructure. In this study, we investigate the origin of second harmonic generation (SHG) 

signal in otoconia and their internal structural properties using SHG microscopy. SHG 

microscopy allows for optical sectioning of otoconia providing a 3D image of them, unlike 

previously used imaging techniques. To determine the origin of SHG signal of otoconia, 

calcite, the principal component of otoconia (>90 wt. -%) was imaged using SHG 

microscopy. Calcite gave ~41× less SHG signal compared to otoconia. Therefore, it was 

determined that calcite is unlikely the origin of SHG signal in otoconia. This finding 

indicates that proteins in otoconia are likely causing the SHG signal in otoconia as they 

make up the remaining portion of otoconia (<5 wt. -%). SHG images of otoconia revealed 

that they are polarization-dependent. This indicates that the proteins emitting SHG in 

otoconia are radially arranged, extending from a central region. Otoconia were also imaged 

after exposure to 0.5M ethylenediaminetetraacetic acid (EDTA), which degrades calcium 

carbonate. SHG signal increased over time, further supporting that proteins are causing the 

SHG signal in otoconia. It was concluded that SHG microscopy is a promising technique 

for investigating the internal structural properties of otoconia.  
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1. INTRODUCTION 

 

 

1.1 The Vestibular System 

 The vestibular system is classified as a sensory system and therefore functions to 

translate environmental stimuli into biological signals (Baloh et al. 2011). The specific 

functions of this system are to maintain spatial orientation and stabilize vision and balance 

(Baloh et al. 2011). The vestibular system is located within the inner ear and consists of 

five primary structures. These structures shown in Figure 1 include the anterior, posterior, 

and horizontal semicircular canals (all approximately 90° apart), and two otolith organs, 

the utricle and saccule (Agrawal et al. 2012).  

 

Figure 1: A schematic of the vestibular system of the inner ear. The vestibular system 

detects motions of the head, allowing vertebrates to maintain balance (Casale and Gupta 

2019). This image was modified using BioRender.  

 

 The semicircular canals located within the bony labyrinth of the inner ear function 

to detect rotational movements of the head. Each of the semicircular canals consists of an 
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expansion known as the ampulla, which houses a sensory epithelium called the crista 

(Rabbitt 2019). The crista contains stereocilia, which are hair-like cells that extend into a 

gelatinous mass called the cupula (Rabbitt 2019). Due to its gel-like composition, the 

cupula is highly flexible and becomes distorted by force produced by the movement of 

external endolymph, which is the major fluid component found in the inner ear (Purves et 

al. 2001). The distortion of the cupula causes the stereocilia within it to be displaced, 

allowing for the detection of rotational acceleration through axon activation (Purves et al. 

2001).  

 Unlike the semicircular canals, the otolithic organs detect linear movements rather 

than rotational (Christopher and Rosenberg 2018). The saccule, one of the two otolithic 

organs, is globular and smaller in shape compared to the oblong utricle (Okeke et al. 2016). 

The saccule and utricle are not directly connected, but remain linked through ducts that 

lead to the endolymphatic sac, which stores endolymph and removes any excess fluid that 

may be present within the inner ear (Brauer 2003). The ionic composition of the endolymph 

is highly regulated to ensure that the depolarization of hair cells caused by movements can 

occur as efficiently as possible (Hopkins 2015). The main ionic component of this fluid is 

potassium, and it acts as the depolarizing agent in this region of the inner ear (Fettiplace 

2017). The high concentration of potassium in the endolymph is regulated by 

sodium/potassium ATPase’s, located on dark cells in the cristae of the semicircular canals 

(Casale and Agarwal 2019). Together these structures allow the body to perceive gravity 

and adjust its movements and posture to maintain balance and orientation (Glover 2004).   
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1.2 Otoconia Function 

 The otolithic organs: the utricle and the saccule, are two complementary organs 

found in the vestibule of the inner ear that allow for the detection of gravity and linear 

acceleration, respectively (Dakin and Rosenberg 2018). In particular, the saccule detects 

acceleration along a vertical axis in addition to detecting gravity, while the utricle detects 

horizontal acceleration (Casale and Gupta 2019). Both organs consist of a sensory 

epithelium called the macula, which contains bundles of stereocilia. Similarly to those 

found in the semicircular canals, they detect and respond to mechanical stimuli 

(Lundberg et al. 2015). The macula of the utricle is horizontally oriented, whereas the 

saccule macula is more vertical (Purves et al. 2001). 

 Above the stereocilia lies a gel-like layer called the cupula, similar to the one 

found in the semicircular canals. The cupula is found just below the otolithic membrane, 

which houses approximately 200 000 small biocrystals, called otoconia (Mason 2017). 

Due to the large mass of these otoconia relative to the other nearby structures and fluids, 

when a person’s head moves, their membrane becomes displaced as well (Purves et al. 

2001). When the body is in motion, the stereocilia are either bent towards or away from a 

structure known as a kinocilium. The kinocilium is the longest cilium in each of every 

hair-like cell bundle and is surrounded by approximately 40-70 stereocilia (Casale and 

Gupta 2019).  

 The displacement of this bundle caused by a shift in the otolithic membrane 

causes the potassium channels of the stereocilia to open when they are shifted towards the 

kinocilium (Lundberg et al. 2015). This event leads to depolarization of the stereocilia 

and opening of voltage-gated calcium channels allowing signals to be sent to the central 
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nervous system through the afferent vestibular nerve (Lundberg et al. 2015). If the 

stereocilia are shifted away from the kinocilium, the cells will hyperpolarize. As a result, 

firing rates will be reduced compared to when there is no motion, and the stereocilia 

remain upright (Casale and Gupta 2019). These signals sent to the central nervous system 

or a reduction in firing rate, gives the body the information it requires to adjust its 

movements and posture in order to maintain balance and stabilize vision (Barral et al. 

2009).  

 

1.3 Vestibular Pathologies  

 Vestibular pathologies are a significant health concern across Canada and the world 

but are especially detrimental to our senior population. Loss of coordination and balance 

leading to falls causes several debilitating conditions such as bone fractures, neurological 

damage, and can have lasting negative social impacts on seniors who fear they may fall 

again (Fasano and Plotnik 2012). Falls due to vestibular-related disorders lead to increased 

hospitalization rates and wait times, which is especially detrimental in provinces such as 

Nova Scotia, where the health care system is already strained (Watson et al. 2015) (Wilson 

and Rosenberg 2002). In Nova Scotia alone, 61% of injury-related hospital admissions are 

due to the result of seniors falling (Nova Scotia Health Promotion and Protection 2007). In 

addition to the strain that these falls place on our health care system, they also place a 

substantial economic burden on the province as well. Data from 1999 showed that falls 

cost Nova Scotians 72 million dollars per year alone (Atlantic Network for Injury 

Prevention 2003). 
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 Benign paroxysmal positional vertigo (BPPV) is the leading cause of vestibular 

malfunction. It is, therefore, one of the most significant contributors to dizziness and 

imbalance in the elderly (Iwasaki and Yamasoba 2015). BPPV is a debilitating condition 

that causes symptoms such as dizziness, nausea, and a sense that one’s surroundings are in 

motion (Parnes et al. 2003). It is currently thought that BPPV is caused by canalithiasis. 

Canalithiasis is the phenomenon that occurs when otoconia, or pieces of otoconia, become 

dislodged from the utricle and saccule and are trapped within the semicircular canals 

(Parnes et al. 2003). 

 There are three leading causes of BPPV, including head trauma, infection, and 

degeneration of otoconia (Johnson 2009). Firstly, when an individual suffers a forceful 

injury to the head, it can cause the otoconia to become released from their membrane into 

the endolymph, where they make their way to the semicircular canals (Johnson 2009). 

There is also evidence that there is a link between viral infections and BPPV, although the 

exact mechanisms are unknown (Hancı et al. 2015) Lastly, BPPV can also occur as a result 

of otoconia degeneration (Hain 2007).  

 Otoconia degeneration can be caused by several factors, including aging, disease, 

and consumption of ototoxic medications (Palmeri and Kumar 2019). This degeneration 

on its own can lead to dizziness and imbalance as it alters the mass of the otoconia leading 

to poor perception of gravity. This impairs the body’s ability to adjust its movements and 

posture correctly (Hughes et al. 2006). In addition, this degeneration leads to pieces of 

fragmented otoconia, making their way to the semicircular canals (Kao et al. 2017). Since 

otoconia are not regenerated, current therapies have limited effect and are only able to treat 
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symptoms temporarily. The mechanism of how otoconia degenerate and become dislodged 

is currently unknown and requires further investigation (Walther et al. 2014). 

 

1.4 Otoconia Structure 

 Mammalian otoconia have a barrel-shaped body that ends in three rhombohedral 

faces that join at a point on each end (Lins et al. 2000). Current research shows that the 

inner structure of otoconia is comprised of three dense branches extending from a central 

point towards each of the two ends (Kniep et al. 2017). This dense region is surrounded by 

a porous and more vulnerable belly region due to a disorganized nanocomposite crystal 

organization (Figure 2) (Kniep et al. 2017). The branched region of the otoconia is denser 

due to a more ordered nanocomposite crystal pattern, which is strengthened further by 

parallel fibers made of proteins that run adjacent to the densely packed crystal units 

(Walther et al. 2014). This is different from the previous assumption that otoconia had an 

inner core from which crystal growth would occur (Walther et al. 2014).  

 Otoconia can vary in length, but the mean length of human otoconia is ~10 µm 

(Walther et al. 2014). Otoconia are primarily composed of calcium carbonate crystal in the 

polymorphic form of calcite (Lim 1973). In addition to their crystallinity, mammalian 

otoconia are composed of an organic matrix of proteins that is embedded within the 

otoconium and continues to extend outwards from their surface as fibrils, which help to 

join neighbouring otoconia together (Kourosh 2014). The organic fraction of the otoconia 

only represents a small portion of their mass (<5 wt. -%) compared to its calcite 

composition (>90 wt. -%) (Walther et al. 2014). The organic fraction consists mainly of 

glycoproteins and glycosaminoglycans (Walther et al. 2014). The most abundant soluble 
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protein (>90%) within the crystals is otoconin-90. Otoconin-90 is a glycoprotein that is 

thought to function in collecting and assembling the necessary components for the 

development of the remaining organic matrix (Hughes et al. 2006). This in turn helps direct 

the morphology of otoconia (Hughes et al. 2006) (Lu et al. 2010). Another essential protein 

in otoconia development is otolin, which is structurally and chemically similar to collagen 

and makes up part of the fibrils that help anchor and join otoconia together (Murayama et 

al. 2005).  

 Otoconia have a 3-fold rotation axis and a center of symmetry making them an 

overall centrosymmetric structure with a symmetry point group close to -3m (Kniep et al. 

2017). However, recent research suggests that the overall symmetry of these crystals may 

not be as close to -3m as previously thought due to uneven size observations of their 

rhombohedral faces (Kniep et al. 2017). To investigate the structural properties of otoconia, 

mice are commonly used as a model species due to their structural and compositional 

similarities to humans along with analogous mechanisms of otoconia formation (Hughes 

et al. 2006). Despite recent advancements, there is still limited and conflicting information 

regarding the internal structural properties of otoconia such as the crystal and protein 

arrangement (Walther et al. 2014). 
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Figure 2: Diagram of the current proposed 3D model of the internal structure of 

mammalian otoconia. The crystals exhibit an approximate -3m crystal point symmetry and 

a dense 3+3 branching pattern extending from a central point towards the rhombohedral 

faces at each end of the otoconium. The belly-region of the otoconium is porous and less 

dense due to a disorganized nanocomposite crystalline structure. Figure modified from 

(Kniep et al. 2017). 

 
 

1.5 Otoconia Development  

 Current research shows that the organic matrix of proteins located within the 

otoconia is most likely the causative agent of otoconia formation, along with additionally 

having roles in directing the shape and size of the crystals (Lundberg et al. 2015). Otoconin-

90 has been found to be very closely related to a secretory enzyme called phospholipase 

A2 (sPLA2) (Wang et al. 1998). While otoconin-90 did not retain the enzyme’s catalytic 

activity, it did keep the enzyme’s ability to bind calcium due to the acidic amino acid side 

chains located within the active site (Yang et al. 2011). Due to its binding abilities, 

otoconin-90 begins the crystal seeding process by recruiting additional matrix proteins and 

sequestering calcium (Yang et al. 2011). Calcium is abundant in the endolymph near the 

otolithic membrane due to calmodulin-sensitive plasma membrane calcium ATPases 

(PMCA), that exchange H+ for Ca2+ to ensure there is sufficient Ca2+ in the region for 

otoconia growth (Lundberg et al. 2015).  
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 Carbonic anhydrase is also an essential component of otoconial development and 

is expressed in the macula of the otolithic organs (Hughes et al. 2006). Carbonic anhydrase 

provides carbonate in order to form the calcite crystal and helps to create an optimal pH 

environment for otoconia growth (Hughes et al. 2006). Seeding of otoconia typically begins 

at embryonic day 14.5 (E14.5) for humans, and the seeds consist of a calcium carbonate 

core surrounded by an organic matrix (Lundberg et al. 2015). Otolin is thought to then 

create a scaffold of collagen-like proteins so that the crystallites are deposited in the correct 

orientation to ensure the characteristic otoconia structure is maintained (Deans et al. 2010). 

During growth, the otoconia are anchored to the otoconial membrane and linked to the 

sensory epithelium that will later allow for the detection of mechanical stimuli (Kao et al. 

2017). Growth of otoconia is complete approximately one-week post-parturition 

(Lundberg et al. 2015).  

 

1.6 Ototoxic Medications  

 Ototoxicity is the occurrence of adverse side-effects caused by therapeutic drugs 

and other chemical agents, leading to impaired function of the cochlear and vestibular 

portions of the inner ear (Bisht and Bist 2011). Many effective prescription medications 

are known to cause ototoxicity, including aminoglycoside antibiotics, platinum-based 

chemotherapeutic drugs, loop diuretics, macrolide antibiotics, and antimalarial medications 

(Rybak and Ramkumar 2007).  

 Ototoxicity contributes to degeneration of otoconia leading to the development of 

pathologies such as BPPV. It is thought that the degeneration caused by ototoxicity leads 

to fragmented pieces of the damaged otoconia becoming trapped inside the semicircular 
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canals leading to the development of BPPV (Walther et al. 2014). There is also evidence 

that ototoxicity and otoconia degeneration leads to weakening of the protein filaments that 

anchor otoconia to their membrane, further increasing the likelihood of developing BPPV 

(Kao et al. 2017). The development of vestibular pathologies from ototoxicity may occur 

quickly or slowly over time and is irreversible once the otoconia are damaged (Cianfrone 

et al. 2011).  

 Degeneration of otoconia due to ototoxicity has been observed using scanning 

electron microscopy (SEM) in previous studies (Walther et al. 2014). Information using 

SEM imaging reveals that minor degeneration is characterized by a rough surface and 

fissures on the belly region of the otoconia along with a slight reduction of calcite material 

(Walther et al. 2014). More severe degeneration is characterized by fractures along the 

otoconia, and significant degeneration of calcite material (Walther et al. 2014). The porous 

and more vulnerable belly region of otoconia is disintegrated first, and the denser branches 

of the rhombohedral faces are last (Walther et al. 2014). There is very limited information 

regarding the mechanism of how ototoxic drugs act to degrade otoconia and therefore, 

should be further investigated in order to develop suitable treatments (Pearson et al. 2019).  

 

1.7 Second Harmonic Generation Microscopy  

 Second harmonic generation (SHG) microscopy is a valuable in vivo biological 

imaging technique that allows for longer duration scans compared to other common 

processes such as fluorescence, due to its ability to reduce photobleaching and 

photodamage (Mohler et al. 2003). The first observation of SHG occurred in 1961 when 

Franken, Hill, Peters, and Weinreich observed that light with twice the frequency of its 
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incident beam was detected when a ruby laser was focused into crystalline quartz (Franken 

et al. 1961). Since this observation, the development of SHG microscopy has been used to 

image numerous biological structures such as collagen (Mostaço-Guidolin et al. 2017), 

plant starch granules (Cisek et al. 2017 ), and muscle tissue (Rehberg et al. 2011).  

 SHG signal is produced in structures that exhibit non-inversion symmetry. Since 

SHG is produced in structures that exhibit this symmetry naturally, label-free imaging is 

possible (Sriram et al. 2019). SHG signal is produced in these structures when two photons 

of the same frequency interact with a material at a virtual state and combine to release one 

photon with twice the frequency, or one-half the wavelength (Figure 3) (Bueno et al. 2016). 

Since there is no absorption of a photon, there is in turn, no Stokes shift. Without a Stokes 

shift, no rotational and vibrational energy of the molecules is released as heat, and therefore 

photodamage and phototoxicity to the sample is significantly reduced (Pantazis et al. 2010). 

With the small focal volumes used in SHG microscopy, information regarding the semi-

crystalline material being imaged such as its organization and ultrastructural properties can 

be determined (Cisek et al. 2017). 
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Figure 3: Energy state diagrams of single-photon excitation fluorescence (SPF) on the left 

and second harmonic generation (SHG) on the right. In SPF, a photon is absorbed, and 

therefore heat is released due to vibrational and rotational movements that occur during the 

Stokes shift. In SHG, two photons are converted to one, and as a result, no Stokes shift 

occurs, and no energy is dissipated into the system as heat (Pantazis et al. 2010).  

 

 The strength of the SHG signal is measured by the second-order nonlinear optical 

susceptibility tensor, 𝜒(2) (Samim et al. 2014). The 𝜒(2) value is a material property, and a 

non-zero value is dependent on the asymmetry of the molecules or the microcrystalline 

structure of the material (Ray 2010). In order to maximize the 𝜒(2) value, a few strategies 

can be used, such as optimizing the symmetry of the molecules or aligning them in such a 

way that an overall non-centrosymmetric macrostructure is achieved (Bueno et al. 2016). 

Calcite, the primary material found in otoconia is a centrosymmetric crystal and therefore 

based on previous theory, otoconia would not be expected to give SHG signal (Baconnier 

et al. 2002).  

 

1.8 Study Objectives  

 The first objective of this study is to determine the origin of the SHG signal found 

in otoconia. By using polarization-sensitive SHG microscopy, the internal crystalline 
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properties of otoconia will be determined. SHG microscopy will allow for entire 3D 

imaging of the otoconia, and therefore using the organizational and structural information 

found by analyzing the polarization-sensitive images, the origin of the SHG signal will be 

determined (Tokarz et al. 2015). It is predicted that the SHG signal produced by otoconia 

is caused by the proteins embedded within the otoconia, which would indicate they are 

organized in a non-centrosymmetric fashion. Alternatively, the calcite could be giving 

SHG due to a quadrupole SHG effect, which does not have the symmetry restriction. A 

quadrupole occurs when molecules within the structure have two dipoles rather than just 

one, with alternating polarity. This allows SHG signal to be given off despite the symmetry 

of the structure (Stevenson and Maurice 2011). This effect is typically insignificant 

compared to standard dipole SHG so it would be surprising if this were the case (Bauer and 

Hingerl 2017). By determining the origin of the SHG signal in otoconia, information 

regarding the internal crystalline structure and how it interacts with the organic matrix will 

be deduced.   

 The second objective of this study is to determine how the structure of otoconia is 

altered when subjected to degrading chemical agents. Otoconia will be subjected to 

degrading agents such as ethylenediaminetetraacetic acid (EDTA), which is known for its 

ability to degrade calcium carbonate. Polarization-sensitive SHG microscopy will be used 

to determine how the ultrastructural properties of otoconia change at varying levels of 

degradation which can contribute to the development of an automated system for 

distinguishing between normal and altered otoconia. In future studies, this information 

could lead to improved treatments and drug delivery advancements for ototoxicity. 
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2. MATERIALS AND METHODS 

 

 

 

2.1 Methods Summary 

 In order to complete the first study objective of determining the origin of SHG 

signal from otoconia, SHG microscopy images were taken of both otoconia and calcite 

crystals. By analyzing polarization-resolved images of these structures and comparing their 

SHG intensity levels, the origin of SHG signal was deduced.  

 The second study objective of this experiment was to determine how otoconia 

composition and structure is altered with degradation. This study objective was completed 

by exposing otoconia and calcite crystals to ethylenediaminetetraacetic acid (EDTA) which 

is a chemical known to degrade calcite. The otoconia and calcite crystals were imaged 

during degradation, and differences in SHG intensity levels of images were analyzed.  

 

2.2 Temporal Bone Isolation  

 Mus musculus, or the common house mouse, was chosen as the model species to 

extract otoconia. The strain of mice used was Thy1-YFP B6TgCg 16Jrs/J, and all mice 

used were female. The mice were originally obtained from The Jackson Laboratory and 

bred at the Brain Repair Centre of Dalhousie University. The strain of origin of the mice 

was C57BL/6J, which is a very commonly used strain of laboratory mice due to their ability 

to breed quickly and their robustness (The Jackson Laboratory 2009) (Maga 2016). To 

avoid age-related structural irregularities, mice between 40-60 days old were used (Jang et 

al. 2006). The mice were housed two per cage with food and water as needed, prior to being 
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sacrificed for the purpose of this pilot study (Protocol #I20-04). All procedures described 

were approved by the Dalhousie University Animal Care and Use Committee.  

 To begin isolation of otoconia, a mouse was given a lethal intraperitoneal injection 

of 340 mg/mL Euthasol® pentobarbital (Merck Animal Health) with a dose of 250 mg per 

kg. It was then placed back into its enclosure for approximately two minutes until fully 

unresponsive. Next, the mouse was pinned down and transcardially perfused in order to 

remove all blood from the body. It was essential to perfuse the mouse as quickly as possible 

to ensure the heart continued beating for the procedure to be effective.  

 To begin perfusion, an incision, approximately 5 centimeters long, was made 

through the integument and abdominal wall directly below the rib cage using surgical 

scissors. The liver was then separated from the diaphragm. Using the same scissors, an 

incision was made along the entire length of the diaphragm in order to expose the pleural 

cavity. A longitudinal cut was made from the bottom of the rib cage up to the collarbone. 

The sternum was then carefully lifted and cut out of the way so that the heart was 

adequately exposed. Any tissue surrounding the heart was trimmed away to allow better 

access for perfusion. A 26-gauge butterfly perfusion needle was then inserted into the left 

ventricle, and a small incision (~2 mm) was made into the right atrium. Next, 300 mL of 

isotonic saline prepared in house was carefully pushed into the left ventricle until all blood 

exited the right atrium. It was essential not to push the solution through the body too 

forcefully to prevent bursting any blood vessels.  
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2.3 Otoconia Isolation  

 Following perfusion, the mouse’s head was removed using large surgical scissors. 

In addition, the external auditory canals were cut off, and the skin was pulled forward 

towards the nose. The following procedure for otoconia isolation was modified from that 

used by Ou, Lin, and Rubel (2013). After decapitation, the skull was bisected along the 

sagittal suture using a #11 scalpel. The brain and any excess muscle were removed from 

both sides of the skull. The temporal bones were then isolated by trimming away any 

surrounding areas of the skull. Isolated temporal bones were stored in 0.1 M sodium 

cacodylate buffer (pH 7.4) (Sigma Aldrich) until completion of otoconia isolation took 

place. The 0.1 M sodium cacodylate buffer (pH 7.4) was prepared by measuring 2.14 g of 

sodium cacodylate powder (Sigma Aldrich) and then adding ~80 mL of deionized water. 

HCl was then added until a pH of 7.4 was achieved by monitoring with a pH meter and the 

final volume was brought to 100 mL using deionized water. To begin isolation, the 

temporal bone was placed onto a petri dish under a VanGuard® dissecting microscope. 

The anterior semicircular canal was located in order to be used as a landmark to find the 

utricle. As shown in Figure 4, perpendicular to the anterior semicircular canal lies the 

petrous ridge. Just above the petrous ridge, there is a small area of translucent bone that 

was carefully removed using a fine bone pick. Just below this bone lies the utricle, which 

was removed using #5 forceps. 
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Figure 4: The temporal bone of a common house mouse (mus musculus), before removal 

of the utricle. Mice specimens were obtained and dissected at the Brain Repair Centre of 

Dalhousie University. The area to be removed as indicated in the figure was carefully lifted 

using forceps and the utricle containing otoconia was then removed for imaging. 

 

 

2.4 Second Harmonic Generation Microscopy  

 

 In order to acquire images using SHG microscopy, a custom built non-linear optical 

microscope was used. The laser source used was a 1030 nanometer (nm) wavelength, 

ultrafast laser (FemtoLux 3, Ekspla) with a 5-megahertz (MHz) repetition rate, and 240 

femtosecond (fs) pulse duration. The laser was coupled to a custom non-linear optical 

microscope. Galvanometric scanning mirrors were used to raster scan the laser beam across 

the sample. For focusing, an air immersion objective lens with a 0.8 numerical aperture 

(NA) (Plan-Apochromat 20×, Carl Zeiss AG) was used. SHG signals were filtered using 

interference and absorptive filters (65-129 and 48-637, Edmund Optics Inc.) and were 
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collected using a custom-built 0.8 NA objective lens. The signals were detected using a 

photomultiplier tube in photon counting mode (H1062-210 Hamamatsu). In order to 

perform polarization measurements, the microscope was modified by adding a linear 

polarizer, a quarter-wave plate, and a liquid crystal polarization retarder before the 

excitation objective lens (Figure 5), which functioned to form circularly polarized light or 

rotate the orientation of the linearly polarized incident beam. The beam was subsequently 

focused to a small spot via a microscope objective lens. SHG images were analyzed by first 

defining an XYZ coordinate system with respect to Y, which is the primary propagation of 

the laser beam and XZ, which is the image plane (Figure 5).  

 

Figure 5: A schematic of the home-built non-linear optical microscope set-up used to 

acquire SHG images. The following abbreviations are used: LP- linear polarizer, QWP- 

quarter-wave plate, LC- liquid crystal, F- filter and, PMT- photomultiplier tube. Schematic 

of the XYZ coordinate system used.  

 

2.5 Calcite  

 Two small pieces (approximately 2 cm × 2 cm) of impure and pure calcite were 

acquired from Prof. Hanley of the Geology department at Saint Mary’s University. Using 

a porcelain mortar and pestle, the crystals were separately ground down until a fine powder 

resulted. Approximately 0.2 g of the calcite powder was placed into an Eppendorf tube 
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containing 1 mL of 0.1 M sodium cacodylate buffer (pH 7.4) to expose the calcite crystals 

to the same environment that the otoconia samples were placed in. The solution in the 

Eppendorf tube was mixed by closing the lid and shaking the solution. Quickly, while the 

crystal powder was still suspended in the buffer solution, 50  μL was removed using a 

micropipette and placed onto a 75 × 25 mm microscope slide (Fisher Scientific). The 

solution was then covered by a 24 × 40 mm coverslip (Fisher Scientific) and sealed with 

clear Sally Hansen® nail polish for SHG imaging. This procedure was performed for both 

the pure and impure calcite samples. 

 In order to simulate a similar environment to the gel-like region of the cupula that 

otoconia reside in, calcite particles were also imaged while suspended in polyacrylamide 

gel. A mixture of polyacrylamide mix was assembled by combining 1.5 g acrylamide 

powder (Sigma Aldrich), 0.04 g bisacrylamide powder (Sigma Aldrich), and 5 mL of 

deionized water. APS mix was next assembled by combining 0.1 g of ammonium persulfate 

(APS) (Sigma Aldrich) and 0.9 mL of deionized water. Next, 200 μL of the 0.1 M sodium 

cacodylate buffer pH 7.4 (Sigma Aldrich) with calcite powder solution, 40 μL of 

polyacrylamide mix, 10 μL of APS mix, and 1 μL of tetramethylethylenediamine 

(TEMED) (VWR) was placed into an Eppendorf tube using a micropipette. After the 

addition of TEMED, the Eppendorf tube was immediately closed and shaken to mix. A 

micropipette was then used to remove 20 μL of the solution and was placed onto a glass 

slide for SHG imaging before complete gelling occurred. The solution was covered with a 

coverslip and sealed using Sally Hansen® clear nail polish.  

 Due to the small particle size of the pure calcite powder larger pure calcite crystals 

were grown in house in order to ensure SHG signal could be detected. The crystals were 



 26 

grown by supersaturating the pure calcite powder using deionized water and ethanol 

separately to determine the most effective solvent. The most effective solvent was 

determined to be deionized water. Once supersaturated, each solution was placed onto a 

separate petri dish with a paperclip to be used as a nucleation site for crystal formation. 

The petri dishes were then left for 48 hours until crystallization was complete. The powder 

was then placed onto a glass slide and then covered with a coverslip and sealed using Sally 

Hansen® clear nail polish to be imaged. 

 

2.6 Otoconia and Calcite Degradation Experiments  

 The effects of chemical degradation on otoconia were studied by exposing them to 

EDTA (Sigma Aldrich). To begin, otoconia were placed onto a 75 × 25 mm microscope 

slide (Fisher Scientific) immersed in 0.1 M sodium cacodylate buffer (pH 7.4). They were 

then covered with a 24 × 40 mm coverslip (Fisher Scientific), which was then sealed onto 

the slide for imaging using clear Sally Hansen® nail polish. SHG images were then taken 

to act as a control before degradation of the otoconia took place. Once sufficient images of 

three control otoconia were acquired, and their positions were recorded, the slide was 

removed.  

 In order to degrade otoconia, a 5 mL BD® syringe with a 25 G needle was carefully 

inserted approximately 0.5 cm forwards underneath the coverslip just above the sample on 

the slide, and the plunger was slowly pushed in order to flush the otoconia with 0.5 M 

EDTA. Immediately after exposing the otoconia to EDTA, a timer was started to keep track 

of how much time had elapsed. The slide was then quickly placed back onto the microscope 

stage, and the same three control otoconia were located using a home-built program on 
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LabVIEW to move the stage between their previously recorded positions. Data collection 

took place over approximately 90 minutes. Images were taken approximately every ten 

minutes, alternating between the three located otoconia in order to observe EDTA 

degradation over time.  

 A similar procedure was followed in order to observe EDTA degradation of calcite 

with time. Calcite mineral was crushed using a marble mortar and pestle and placed onto a 

75 × 25 mm microscope slide (Fisher Scientific). The calcite was then covered with a 24 × 

40 mm coverslip (Fisher Scientific), which was then sealed onto the slide for imaging using 

clear Sally Hansen® nail polish. Control images of calcite were then taken prior to EDTA 

exposure. Once adequate control images were taken the slide was removed. A 5 mL BD® 

syringe with a 25 G needle was next carefully inserted approximately 0.5 cm forwards 

underneath the coverslip just above the sample on the slide, and the plunger was slowly 

pushed in order to flush the calcite with 0.5 M EDTA. A timer was immediately started, 

and the slide was placed onto the microscope stage for SHG imaging. A suitable region of 

calcite was chosen to image over a period of ~90 minutes in order to observe degradation 

of calcite with time.   

 

2.7 Analysis Methods  

 SHG intensity of the otoconia and calcite was deduced by analyzing the SHG 

images on ImageJ (NIH). Using ImageJ, the maximum SHG intensity of background noise 

in the image was determined by increasing the brightness until the maximum noise level 

could be determined. Using the thresholding function the lower threshold was set to the 

maximum background noise level. Mean SHG intensity of otoconia and calcite along with 
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their standard errors was then calculated using the remaining image after thresholding using 

the Analyze function in Image J. SHG intensity levels of otoconia were compared at both 

linear and circular polarizations. Trends were also visualized by plotting the calculated 

mean otoconia and calcite intensity over time after EDTA degradation.   
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3. RESULTS 

 

3.1 Calcite Mineral SHG Imaging  

 Calcite mineral was prepared and imaged following the procedures outlined in 

section 2.7 in order to determine if calcite crystal gives SHG signal. Due to the fact that 

calcite makes up >90 wt. -% of otoconia, it is likely that if calcite gives SHG signal, that it 

would be the origin of SHG signal. The calcite crystals were first imaged in 0.1 M sodium 

cacodylate buffer solution (pH 7.4). All images for this first experiment were obtained 

using linearly polarized laser light. It was observed that the entire calcite mineral gave SHG 

however, it was noted that there was intense SHG signal in localized regions rather than 

dispersed uniformly throughout the calcite crystal. This is surprising as it would be 

expected that the entire crystal would give similar SHG signal. For example, the bright 

region circled in red in Figure 6 had a mean SHG intensity of 333 ± 11 photon counts 

whereas the yellow circle (dashed) in the same image had an mean SHG intensity of 15 ± 

0.4 photon counts making it approximately 22× lower in intensity.  

Figure 6: Second harmonic generation microscopy images of calcite mineral in 0.1 M 

sodium cacodylate buffer (pH 7.4). The red circle in image A is indicating a region of high 

SHG intensity, compared to the yellow circle (dashed) that is showing a comparitively low 

region of SHG signal.  
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As shown in Table 1, when all of the SHG intensities are standardized to a 7.2 mW 

power level, image A had a mean SHG intensity approximately 16× greater than images B 

and C. It was noted that the high intensity observed in Image A was an anomally when 

compared to the intensity of calcite in other images taken in both calcite experiments. 

 

Table 1: The standardized SHG intensities of calcite mineral imaged in 0.1M sodium 

cacodylate buffer. Mean SHG intensity was calculated using ImageJ by thresholding the 

background noise level and obtaining the mean intensity of calcite mineral.  

Image Power (mW) Mean SHG 

Intensity (photon 

counts) 

Standardized 

SHG Intensity 

(7.2 mW) 

Standard Error 

(photon counts) 

A 1.6 84 650 20 

B 7.2 41 41 5 

C 7.2 37 37 7 

 

    

In a second experiment, the same calcite mineral was imaged using SHG 

microscopy; however, the calcite was imaged in acrylamide gel in addition to 0.1 M sodium 

cacodylate buffer (pH 7.4) in order to simlulate the gel-like environment within the inner 

ear. All calcite mineral images were taken using a linear polarization. Morphologically the 

calcite images for this experiment were very similar to the first experiment and SHG 

intensity was again localized to very intense regions rather than dispersed throughout the 

crystal. For example, in image A the bright region circled in red had an SHG intensity of 

320 ± 10 photon counts whereas the darker region circled in yellow (dashed line) had an 

SHG intensity of 27 ± 1 photon counts making it approximately 12 × lower (Figure 7).  
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Figure 7: SHG microscopy images of calcite mineral in acrylamide gel and 0.1M sodium 

cacodylate buffer (pH 7.4). The red circle in image A is indicating a region of high SHG 

intensity, compared to the yellow circle (dashed) that is showing a comparitively low 

region of SHG signal. 

 

The mean SHG intensities of these images shown in Table 2, were relatively similar 

with the average of the mean SHG intensities being 52 ± 5 photon counts. Due to the fact 

that all images were taken using the same power level, standardization of the signal was 

not necessary.  
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Table 2: Mean SHG Intensities for calcite mineral imaged with acrylamide gel and 0.1M 

sodium cacodylate buffer (pH 7.4). Mean SHG intensity was calculated using ImageJ by 

thresholding the background noise level and obtaining the mean intensity of calcite 

mineral. 

Image Power (mW) Mean SHG Intensity 

(photon counts) 

Standard Error 

(photon counts) 

A 7.2 47 5 

B 7.2 53 3 

C 7.2 48 3 

D 7.2 58 5 

 

3.2 Purified Calcite SHG Imaging  

 Due to the non-uniformity of signal observed in calcite mineral, a sample of purified 

calcite crystal powder was imaged in 0.1 M sodium cacodylate buffer (pH 7.4) following 

the procedures outlined in section 2.7. The imaging was performed using up to 26 mW 

power; however, no SHG signal was detected from the purified calcite sample (Figure 8). 

Image B was taken in the same position and zoom setting as image A; however, it was 

imaged using third harmonic generation (THG) microscopy to verify there were crystals 

within the image region. The crystals were visible using THG microscopy verifying that 

the lack of SHG signal in image A was not due to instrumental error.   
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Figure 8: Pure calcite crystals imaged using (A) second harmonic generation microscopy 

and (B) third harmonic generation microscopy. Purified calcite powder was immersed in 

0.1M sodium cacodylate buffer (pH 7.4) for imaging.  

 

Larger pure calcite crystals were also grown in house order to make sure the particle 

size of the pure calcite powder was not too small, following the procedures outlined in 

section 2.7. Low amounts of SHG signal were detected from the larger crystals as shown 

in Figure 9. Despite the SHG signal that was detected it is still ~41× lower than the signal 

observed with otoconia, so it is unlikely that calcite is responsible for the origin of SHG 

signal in otoconia.   

Figure 9: SHG microscopy images of pure calcite crystals grown to a larger particle size. 

The crystals in images A and B were grown in deionized water for 48 hours and immersed 

into 0.1M sodium cacodylate buffer (pH 7.4) for imaging.   
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3.3 Calcite EDTA Degradation Over Time  

 

 A sample of calcite mineral was imaged over a period of 90 minutes while exposed 

to 0.5 M EDTA, which is a chemical known to have the ability to degrade calcium 

carbonate (Figure 10). Calcite mineral was exposed to EDTA in order to determine how 

the degradation of calcite compares to that of otoconia, and how the SHG signal is affected 

in each case. The procedure outlined in section 2.6 was followed to prepare and image the 

sample. The calcite mineral was imaged using circularly polarized light. Images were taken 

using a zoom setting of 194 µm × 160 µm. 

Figure 10: Calcite mineral in 0.5M EDTA imaged using SHG microscopy over a period 

of 90 minutes. A-T represent subsequent images taken approximately every 4 minutes. 

Scale Bars from B-T are equivalent to that shown in A. All images were taken using 

circularly polarized light as indicated by the circle in the top right corner of image A.  
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As shown in Figure 11 there was no overall increase or decrease observed in mean 

SHG intensity over the 90 minutes of degradation. This figure was acquired from ImageJ 

and is showing the calculated mean SHG intensity for each of the 20 images taken over the 

90-minute period. Although slight fluctuations in signal were observed, they were very 

minor (the largest fluctuation was ~2.3 photon counts from the intensity of the first image). 

These fluctuations are likely due to the manual optimization of the Z plane which was 

performed for each image. Overall, the mean SHG intensity from the first image to the last 

shifted ~1 photon count and therefore it was determined that degradation of calcite mineral 

using EDTA does not cause a large increase or decrease in SHG signal.  

 

 

 

 

 

 

 

 

 

 

Figure 11: The mean SHG intensity of subsequent images of calcite mineral in 0.5M 

EDTA. Each slice of the graph represents approximately 4-minute intervals for a total of 

approximately 90 minutes . The mean SHG intensities were calculated using ImageJ.  

 

3.4 Otoconia SHG Imaging  

 Otoconia were isolated from the utricle of mice and imaged using SHG microscopy 

using the procedures outlined in section 2.3. When linearly polarized light was used on 
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otoconia it was observed that two lobes become visible with a darker region between them 

as seen in Figure 12. Using linearly polarized light otoconia were observed to give varying 

mean SHG signals with a range of 99 ± 5 photon counts to 1030 ± 30 photon counts at a 

standardized power level of 3.7 mW. Images A and B in Figure 12 are showing the same 

otoconia imaged using different polarization angles. A completely different portion of the 

otoconia becomes visible when using a different linear polarization. Images C and D are 

also the same otoconia imaged using different linear polarizations. In some otoconia it 

appears that there are fracture lines in certain regions within them. An example of these 

fracture lines can be seen in the red circled region of image A of Figure 12.  

 

 

Figure 12: Otoconia imaged using SHG microscopy at two different linear polarizations 

indicated in the top right-hand corner of the images. Images A and B are showing the same 

otoconia but are different from the ones pictured in images C and D which are also the 

same. The red region circled in image A is showing what appears to be fracture lines within 

the otoconia.  
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Otoconia were observed to be polarization-dependent when using linearly polarized 

light. This polarization dependence means that as the angle of the laser beam linear 

polarization is rotated (i.e. the polarization is changed), a different region of the otoconia 

becomes visible within the two lobes. The images in Figure 13 are showing the otoconium 

at eight different polarization angles.  

 

Figure 13: A single otoconium imaged using SHG microscopy at eight polarization angles 

(A-H). The linear polarizations are indicated in the top right-hand corner of the images. 

The scale bars for images B-H are equivalent to that shown in image A.  

 

 When circularly polarized light is used on otoconia, the lobes disappear and the 

entire otoconia gives SHG signal allowing them to be seen as a whole. Outer rings along 

the outer edges of some otoconia were visible when using circularly polarized light was 

used as shown in the otoconia in image A of Figure 14. It was also noted that when otoconia 

were imaged with circularly polarized light there was a small dark circular region near the 

centre of each otoconia where no SHG signal was given (Figure 14). 
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Figure 14: Otoconia imaged with SHG microscopy using circularly polarized light. The 

circular polarization is indicated in the top-right corner. The entire otoconium is visible 

when using circularly polarized light.  

 

 

3.5 Otoconia EDTA Degradation Over Time 

 Three otoconia were imaged while being exposed to 0.5 M EDTA using the 

procedures outlined in section 2.6 in order to determine how SHG signal is altered with 

degradation. The SHG signal of each of the three otoconia was measured over a period of 

~80 minutes. All intensities for all three otoconia were standardized to a power level of 3.7 

mW to facilitate comparisons and all were imaged using the same linear polarization. As 

shown in Figure 15 in the beginning of the experiment otoconia #1 was determined to have 

a mean intensity of 147 ± 14 photon counts which then increased with time until after 53 

minutes had passed and the SHG signal was determined to be 203 ± 21 photon counts. 

After 53 minutes the signal began to plateau and did not increase or decrease in large 

increments for the rest of the experiment.   
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Figure 15: The SHG intensity of otoconium #1 imaged over a period of 84 minutes while 

being exposed to 0.5 M EDTA. The error bars represent +/- one standard error.  

 

 Figure 16 is showing otoconia #1 with image A being the first imaged taken after 

exposure to EDTA and image B showing the last. Image B has a visibly higher SHG 

intensity compared to image A. In particular one region that increased is circled in red on 

image A had a mean SHG intensity of 356 ± 1 photon counts whereas in image B the same 

region had a mean SHG intensity of 738 ± 6 photon counts.  
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Figure 16: Otoconium #1 imaged after exposure to 0.5 M EDTA at the (A) beginning of 

the experiment (first image taken) and (B) end of the experiment (last image taken) after 

84 minutes. The linear polarizations are indicated in the top right-hand corner of the 

images. 

 

 As depicted in Figure 17 a similar trend was observed for otoconia #2. At the 

beginning of the experiment otoconia #2 was determined to have a mean intensity of 650 

± 30 photon counts which then increased with time until after 29 minutes had passed where 

the SHG signal was determined to be 750 ± 30 photon counts. After 29 minutes the signal 

began to plateau and did not increase or decrease in large increments for the rest of the 

experiment.  
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Figure 17: The SHG intensity of otoconium #2 imaged over a period of 73 minutes while          

 being exposed to 0.5 M EDTA. The error bars represent +/- one standard error. 

 

Figure 18 is showing otoconia #2 with image A being the first imaged taken after 

exposure to EDTA and image B showing the last. Again, image B has a visibly higher SHG 

intensity compared to image A. In particular one region that increased is circled in red on 

image A had a mean SHG intensity of 1030 ± 10 photon counts whereas in image B the 

same region had a mean SHG intensity of 1249 ± 8 photon counts.  
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 Figure 18: Otoconium #2 imaged after exposure to 0.5 M EDTA at the (A) beginning of 

 the experiment (first image taken) and (B) end of the experiment (last image taken) after 

 73 minutes. The linear polarizations are indicated in the top right-hand corner of the 

 images. 

 

 Figure 19 is showing the mean SHG intensity of otoconia #3 after exposure to 0.5 

M EDTA for a period of 74 minutes. At the beginning of the experiment otoconia #3 was 

determined to have a mean intensity of 820 ± 30 photon counts which then increased with 

time until after 29 minutes had passed where the SHG signal was determined to be 1030 ± 

30 photon counts. After 29 minutes the signal began to plateau and did not increase or 

decrease in large increments for the rest of the experiment.   
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Figure 19: The SHG intensity of otoconium #3 imaged over a period of 74 minutes while 

being exposed to 0.5 M EDTA. The error bars represent +/- one standard error. 

 

Figure 20 is showing otoconia #3 with image A being the first imaged taken after 

exposure to EDTA and image B showing the last. Similarly, an increase in SHG signal was 

observed between the two images. In particular one region that increased is circled in red 

on image A had a mean SHG intensity of 421 ± 3 photon counts whereas in image B the 

same region had a mean SHG intensity of 501 ± 4 photon counts.  
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Figure 20: Otoconium #3 imaged after exposure to 0.5M EDTA at the (A) beginning of 

the experiment (first image taken) and (B) end of the experiment (last image taken) after 

73 minutes.  The linear polarizations are indicated in the top right-hand corner of the 

images. 
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4. DISCUSSION 

 

4.1 Study Objective 1: Determine the Origin of SHG signal in Otoconia  

 In order to determine the origin of SHG signal in otoconia, calcite mineral was 

imaged using SHG microscopy. The calcite mineral was observed to give ~8× less SHG 

signal when compared to otoconia. At first, this seemed like it could likely be responsible 

for the SHG signal given in otoconia as calcite makes up ~95% of the otoconia. However, 

as shown in Figure 5, the majority of intense signal was localized in small regions rather 

than dispersed uniformly throughout the crystal, which was unusual.  

 For this reason, pure calcite powder was imaged, and no SHG signal was detected. 

This indicates that the regions of high intensity from the calcite mineral may have been 

caused by inclusions. When a mineral is formed underground, impurities known as 

inclusions are often incorporated into developing crystals (Roedder 1962). Typically, 

inclusions are other minerals or rocks, but can sometimes be trapped fluids or gasses as 

well (Harnisch et al. 2000). This is a potentially interesting area of future research as SHG 

microscopy could be used in the future to detect inclusions trapped inside crystals. This 

explains why intense SHG signal was localized to particular regions rather than dispersed 

uniformly throughout the sample.  

 The pure calcite powder that was used previously was extremely fine, so to ensure 

the lack of SHG signal seen was not due to the small particle size, larger crystals were 

grown. When the larger pure calcite crystals were imaged, some small regions of SHG 

signal were detected. However, the signal was ~41× weaker than that seen in otoconia. The 

extremely weak SHG signal given from the calcite crystal is indicative that calcite cannot 
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be solely responsible for the intense SHG signal seen in otoconia. Again, it is possible that 

this low signal is being caused by impurities becoming trapped within the crystals during 

the growth procedure. Based on this conclusion, we then hypothesized that the proteins 

embedded within otoconia, particularly otolin, which has been described to have collagen-

like structural properties, are responsible for the majority of SHG signal observed in 

otoconia (Lundberg et al. 2015). In addition, similar to collagen, otolin features a triple 

helix structure (Yang et al. 2011). Based on previous research, it is known that collagen 

intrinsically gives high SHG signal supporting the prediction that otolin may be causing 

the SHG signal in otoconia (Tokarz et al. 2015) (Mostaço-Guidolin et al. 2017).  

 Due to the fact that we could see signal using impure calcite mineral, we exposed 

it to 0.5 M EDTA and imaged over a period of approximately 90 minutes (Figure 8). The 

mean SHG intensity of the calcite mineral was calculated and plotted against the images 

over time (Figure 9). As shown in this figure, there was overall relatively no increase or 

decrease in the SHG signal, and the fluctuation in intensity was very minor. EDTA is 

known to degrade calcite, so initially, we hypothesized we would observe a decrease in 

signal (Walther, Blödow, Buder, et al. 2014). However, since it was determined that calcite 

itself is not responsible for the SHG signal in the impure sample, it makes sense that overall 

the signal would stay relatively stable. This further supports the finding that inclusions are 

responsible for the SHG signal seen in calcite mineral.  
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4.2 Study Objective 2: Determine the internal structural properties of otoconia and the 

changes that occur during degradation using SHG microscopy 

 

 When otoconia were imaged with SHG microscopy using linearly polarized light, 

it was observed that two lobe-like regions of the otoconia became visible (Figure 10). As 

the linear polarization was changed between eight different polarization angles, these lobes 

were observed to rotate with respect to the direction of the laser beam. This means that 

otoconia are polarization-dependent, which is a unique feature that only occurs with a few 

known structures, such as starch granules (Cisek et al. 2017).  

 This polarization-dependence facilitated the identification of otoconia from other 

structures such as collagen, present within the sample. This polarization-dependence also 

indicates that if proteins are responsible for emitting the SHG signal in otoconia that they 

are radially arranged extending from a central point, as shown in Figure 21. This is because 

previous research has shown that when SHG emitters are parallel with the laser beam, there 

will be strong signal, but as the emitters become more perpendicular to the beam, a loss in 

signal will result. By looking at Figure 11, the two visible lobes are always oriented the 

same way as the linear polarization, which is indicated by the arrows in the top right corner 

of each image. This finding is significant as previously, the arrangement of proteins within 

otoconia has been conflicting (Walther, Blödow, Bloching, et al. 2014). Previous research 

has suggested that otoconia are composed of a large central core of proteins (Deans et al. 

2010). However, this research supports more recent studies that indicate the proteins extend 

from a central point, but would not be considered a core and instead a region of overlap 

(Walther, Blödow, Bloching, et al. 2014). 
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Figure 21: A model of the hypothesized arrangement of proteins causing the SHG signal 

in otoconia.  

 

 This finding is further supported by looking at otoconia using circularly polarized 

light (Figure 12). When circularly polarized light is used, it rotates as it passes through the 

sample and therefore is not going in one single direction like what happens when using 

linearly polarized light. For this reason, when using circularly polarized light, we see the 

entire crystal rather than just two lobes. However, we noticed that in each of the otoconia 

imaged using circularly polarized light; there was a small dark spot in the central region of 

each of the otoconia. This dark region or cancellation of signal has been previously 

described in other structures such as starch granules (Cisek et al. 2017). It has been 

determined that this effect can be caused by oppositely oriented SHG emitters that will 

cause a localized cancellation of signal, which is what we would expect if the proteins were 

extending from a central location oppositely of one another (Moreaux et al. 2000).  

 The last experiment performed was to expose otoconia to 0.5 M EDTA for a period 

of ~90 minutes. The mean SHG intensity was calculated and plotted against time after 

EDTA exposure. For all three otoconia, it was observed that SHG intensity increased over 
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time with exposure to EDTA (Figures 14, 15, & 17). Images of the otoconia were taken at 

each data point, and when comparing the first and last image of all three otoconia, the last 

image is visibly brighter (Figures 14, 16, & 18). Since EDTA is known to degrade calcium 

carbonate, it makes sense that we observed an increase in signal if proteins are the SHG 

emitters (Walther, Blödow, Buder, et al. 2014). As the calcite is degraded, it is likely 

exposing more proteins and, in turn causing an increase in SHG signal. This further 

supports our theory that proteins are the SHG emitters in otoconia.  

 

4.3 Future Research and Applications   

 Several proposed ideas have been published to regenerate otoconia since they are 

unable to self-repair. These ideas include the re-expression of otoconial proteins and 

protecting or regenerating sensory hair cells which may be lost during otoconia 

degeneration such as generating hair cells from pluripotent stem cells (Lundberg et al. 

2015) (Kang and Tusa 2013)(Merchant et al. 2000)(Koehler et al. 2013). SHG microscopy 

will provide insight to the structure of otoconia, particularly on the arrangement of protein 

allowing for more accurate development of artificial otoconia to treat vestibular 

pathologies. Despite these advancements, more research on otoconia structure is required 

in order to prevent otoconia degeneration to begin with. 

 By performing this study, it was determined that SHG microscopy is a promising 

imaging technique for investigating the internal structural properties of otoconia. Future 

studies using SHG microscopy should include imaging otoconia over time after exposure 

to ototoxic medications such as streptomycin antibiotics. Aminoglycoside antibiotics such 

as streptomycin are often unable to be used by practitioners due to the fact that they degrade 
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otoconia and therefore contribute to the development of vestibular pathologies (Selimoglu 

2007).  

 By imaging otoconia with SHG their internal structure during antibiotic 

degradation can be observed to help visualize how their structure is altered. In addition to 

aminoglycoside antibiotics otoconia should be exposed to acidic solutions and observed 

using SHG microscopy. Previously, SEM was used to investigate how the surface structure 

of human otoconia changes with dissolution due to exposure to acidic conditions (using 

hydrochloric acid) (Walther, Blödow, Buder, et al. 2014). However, the internal structure 

of otoconia was not addressed in these studies and is needed to understand the results from 

aminoglycoside antibiotic structural alterations.  

 In addition to understanding more about the internal structure of otoconia these 

studies would allow us to create an automated measurement platform in order to objectively 

determine the stage of otoconia degeneration. Previous studies have determined levels of 

degradation by looking at surface morphology with SEM, but our technique will allow for 

an internal quantification as well (Walther, Wenzel, et al. 2014). By investigating the 

internal structural properties of otoconia researchers could apply this knowledge to try and 

find ways to prevent their degradation and design future therapies to treat vestibular 

pathologies.  
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