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An Investigation of Spectral Broadening by Nonlinear Optical Effects  

in Photonic Crystal Fibers 

 

by 

MacAulay James Harvey 

 

Abstract 

 

 When a pulse of light with sufficient power moves through optical fiber its spectrum 

broadens as a result of nonlinear optical effects such as self-phase modulation, self-steepening, 

and stimulated Raman scattering. This spectral broadening is of great interest because it can be 

used to construct a simple wavelength tunable laser source for nonlinear optical microscopy. 

Nonlinear optical microscopy is a form of microscopy which utilizes nonlinear optical effects 

within a sample as a contrast mechanism. This includes effects such as second-harmonic 

generation, third-harmonic generation, and coherent anti-Stokes Raman Scattering. These forms 

of microscopy have been shown to have applications in medical imaging, including as possible 

tools for accurately diagnosing certain cancers. 

 This thesis explores the use of nonlinear optical effects to broaden the spectrum of 

ultrashort pulses of light. This is done through experimental work in which the effects of pulse 

energy, pulse duration, and fiber length on spectral broadening are explored. Numerical 

simulations of the equations of optical pulse propagation are also used in order to evaluate which 

effects dominate the spectrum of an ultrashort optical pulse, and to investigate the effect of pulse 

shape on the resulting spectrum. These results will be helpful in evaluating the usefulness of 

spectral broadening in optical fiber in the construction of a wavelength tunable laser source for 

nonlinear optical microscopy. 
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Chapter 1: Introduction 

 

1.1 Background and Motivation 

The field of fiber optics has its roots in the mid-19th century when Swiss physicist Jean-

Daniel Colladon demonstrated that a beam of light could be confined to a jet of water through 

total internal reflection. Over the next hundred years light guiding by total internal reflection was 

used for various applications, for example bent glass rods where often used to guide light into 

body cavities during surgery.  Modern optical fiber with a dielectric cladding surrounding a core 

was first produced in the 1950s, the addition of a cladding enabled the production of very thin, 

flexible fibers which are now commonplace. Slowly over the next thirty years low loss optical 

fibers suitable for telecommunications applications began to be mass produced, with the most 

common fibers having a core and cladding made from glass where the cladding has a slightly 

lower refractive index than the core [1].  

The widespread availability of low loss optical fibers, with losses of 0.2 dB/km or less [2], 

led to the ability to produce various nonlinear optical effects within the fiber including four-wave 

mixing, stimulated Brillouin scattering, stimulated Raman scattering (SRS), and self-phase 

modulation [3]–[6]. The development of commercial pulsed lasers, which are currently able to 

produce optical pulses on the scale of femtoseconds, enable the production of optical pulses with 

high peak powers while keeping average power low. These high peak powers allow nonlinear 

effects to have a great effect on the spectrum of an optical pulse as it moves through optical 

fiber. These nonlinear effects are of great interest since they can be used to modulate the 
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spectrum of a pulse of light that is propagating through a fiber, which enables the construction of 

a simple wavelength tunable laser source. Although several techniques currently exist for the 

production of a wavelength tunable laser source, for example the optical parametric oscillator, 

these techniques often require very complicated and expensive set ups which require frequent 

maintenance. Through fiber-based wavelength tuning laser sources can be produced which are 

much cheaper, and simpler to construct than currently available alternatives. A potential 

application of this is in the construction of a wavelength tunable laser source for nonlinear 

optical microscopy. 

Nonlinear optical microscopy includes various microscopy techniques which utilize 

nonlinear optical effects within the sample being imaged as a contrast mechanism, this includes 

three wave mixing techniques such as second harmonic generation and sum-frequency 

generation, as well as four-wave mixing techniques such as third harmonic generation, and 

coherent anti-Stokes Raman Scattering (CARS) microscopy. Pulsed laser sources are needed for 

nonlinear optical microscopy since nonlinear effects require very high peak power, but average 

power must be kept low to avoid damaging biological samples. These microscopy techniques are 

advantageous since they can allow a sample to be visualized without the need for dyes and can 

reduce the effect of photobleaching compared to fluorescence microscopy techniques. The 

addition of a wavelength tunable laser source would allow for a greater range of samples that 

could be imaged using these techniques and would enable investigations into the wavelength 

dependence of nonlinear optical phenomena. This has some very exciting applications 

particularly in the field of medical imaging since several forms of nonlinear optical microscopy 

have been shown to be effective tools in the diagnosis of certain forms of cancer, as well as other 

diseases [7], [8]. The investigation of the nonlinear optical properties of optical fiber has also 
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been shown to have applications in areas such as telecommunications, fast analogue to digital 

conversion, and slow light [9], [10].  

 

1.2 Methods for Spectral Broadening 

 Various methods have been used to alter spectrum laser pulses using optical fiber. The 

simplest of these methods relies primarily on self-phase modulation, the dominant nonlinear 

optical effect in optical fiber which occurs as a result of the optical Kerr effect. Self-phase 

modulation has the effect of splitting a pulse spectrum with an initially Gaussian profile into two 

dominant spectral lobes, one of which is shifted to the shorter wavelengths, the other to the 

higher wavelengths as shown in Fig 1.1. This technique has been shown to be very effective at 

producing a broad spectrum laser source, previous results have shown that spectral broadening 

from self-phase modulation can be used to broaden an initially narrow pulse spectrum centered at 

1030 nm such that the spectrum ranges from 825 to 1210 nm [11]. By using spectral filters to 

isolate either of the dominant spectral lobes self-phase modulation has been used to produce 

optical pulses with center wavelengths shifted nearly     200 nm with 20 nJ pulse energies and 

less than 90 fs pulse durations (from 190 fs initial duration), this was shown to be an effective 

laser source for use in nonlinear optical microscopy applications [12]. For ultrafast laser pulses 

on the order of 5 ps or less, other dispersive and nonlinear optical effects start to affect how the 

fiber changes the pulse spectrum. It will be necessary to consider these other effects since laser 

sources for nonlinear optical microscopy typically have pulse durations ranging from 50 to 500 

fs.  These higher order effects lead to much more complicated output spectra which usually 

require numerical simulations to be accurately predicted [11]. 
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Fig 1.1: Simulation showing a spectrum which has been broadened by self-phase modulation.  

 

 Another commonly used technique for modifying the wavelength spectrum of a laser 

pulse is known as supercontinuum generation. Supercontinuum generation utilizes a large variety 

of optical effects acting together on the pulse in order to create a very broad pulse spectrum an 

example of which is shown in Fig 1.2. Experimental work has shown that a supercontinuum 

from 1100 to 1700 nm can be generated in silica photonic crystal fibers using pulse with a peak 

power of 1.38 kW, initial center wavelength of 1300 nm, and duration of 600 fs [13]. Numerical 

simulations are also commonly used to give a more detailed picture of how supercontinuum form 

within optical fiber [13], [14]. Supercontinuum generation has been shown to be useful in 

microscopy applications such as optical coherence tomography and CARS microscopy [13], 

[14], and is generally used in applications where a very broad spectrum is required. However, 
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due to the broadness of the spectra generated, the power density of the spectrum is greatly 

reduced. This means that supercontinuum generation is not an efficient method of laser 

wavelength tuning if only a small range of wavelengths is desired.  

 

 

Fig 1.2: Simulation showing a typical supercontinuum spectrum. 

 

 A major disadvantage of both pure self-phase modulation and supercontinuum generation 

for many applications is that they both produce very broad spectra. This makes these methods 

inefficient for wavelength tuning if an output with a similar spectral power density to the input 

and a shifted center wavelength is desired. In this case a better way of tuning laser wavelength 

utilizes an effect known as soliton self-frequency shift. This effect uses a soliton, a pulse of light 
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which is able to propagate with no change to its temporal profile or spectrum, which is being 

influenced by SRS. This results in the pulse spectrum being continuously redshifted as it 

propagates through an optical fiber [15] such as that shown in Fig 1.3.   This technique has been 

used extensively for wavelength tuning in nonlinear optical microscopy applications, and has can 

used to shift the center wavelength of a pulse by up to 200 nm with pulse energies of 

approximately 140 nJ  [16], however higher pulse energies have been shown to yield a shift in 

center wavelength of nearly 1000 nm [17]. Soliton self-frequency shift has been applied to a 

variety of optical microscopy techniques such as two-photon excited fluorescence imaging, 

second harmonic generation, and third harmonic generation microscopy [16], [17]. Numerical 

simulations are often used to predict the amount of wavelength shift which can be achieved for a 

given fiber, and to study the stability of optical solitons  [18]. Soliton self-frequency shift is 

advantageous because ideally the pulse spectrum is not broadened and has its center wavelength 

shifted, meaning that wavelength tuning can be done more efficiently than by other methods. 

However, in order to take advantage of soliton self-frequency shift the optical effects acting on a 

pulse as it propagates through optical fiber must balance in such a way that SRS is the dominant 

effect on the pulse. Otherwise, other optical effects would be dominant, and the resulting 

spectrum would look more like a self-phase modulation broadened, or a supercontinuum 

spectrum. 
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Fig 1.3: Simulated spectrum showing the effect of soliton self-frequency shift. 

 

1.3 Objectives 

The goal of this thesis is to investigate how the spectrum of a 1030 nm laser with 245 fs 

pulse duration is changed by nonlinear optical effects in a photonic crystal optical fiber. An 

emphasis is placed on how these effects can be used for laser wavelength tuning for applications 

in nonlinear optical microscopy. This is accomplished through experimental work in which 

commercially available photonic crystal fibers are free space coupled to the laser. The pulse 

energy and duration of the laser are then varied, and the spectrum of the output pulse is 
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measured. This allows for the gathering of data on how to optimize the various laser and fiber 

parameters in order to achieve efficient laser wavelength tuning.   

This experimental work is augmented by the use of simulations in which the equations 

governing pulse propagation in optical fiber are solved numerically. These simulations give more 

detailed knowledge on how the various effects within optical fiber change the spectrum of a laser 

pulse as it propagates. The effects of laser pulse shape, and duration can also be studied more 

easily through the use of simulations.



                                    Theory of Light-Matter Interactions in Optical Fibers                               17 
____________________________________________________________________________ 
 

Chapter 2 : Theory of Light-Matter Interactions 

      in Optical Fibers 

 As an optical pulse moves through optical fiber it is acted on by a large variety of optical 

effects. This chapter will provide a brief overview of the dominant optical effects for optical 

pulses with durations of less than a few picoseconds. An equation which can be used to model 

the propagation of pulses in optical fiber will also be discussed.   

 

2.1 Introduction to light-matter interactions 

2.1.1 Group Velocity Dispersion 

 The simplest optical effect within optical fiber is group velocity dispersion (GVD). To 

understand how this effect comes about consider the formula for the speed of light in a medium. 

                                                               𝑣 =
𝑐

𝑛
                                                               (2.1) 

Where 𝑣 is the phase velocity of light in the medium, 𝑐 is the speed of light in a vacuum, and 𝑛 is 

the refractive index of the material. Typically, the refractive index of a material will be 

dependent on the wavelength of the incident light, as a result of this the different spectral 

components of an optical pulse will propagate at different speeds through a medium. This can 

result in pulses becoming significantly broadened in time as they propagate as shown in Fig 2.1. 

This effect is known as group velocity dispersion. 
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 To get an idea of how GVD effects the propagation of a pulse of light we expand the 

propagation constant, which represents the change in phase per unit length of a pulse traveling in 

a medium, of the pulse in a power series about the pulse’s center frequency 𝜔0 [2].  

                      𝛽(𝜔) = 𝑛(𝜔)
𝜔

𝑐
=  𝛽0 + 𝛽

1
(𝜔 − 𝜔0) +

1

2
𝛽

2
(𝜔 − 𝜔0)2 +  

1

6
𝛽

3
(𝜔 − 𝜔0)3                  (2.2) 

                  Where                                          𝛽𝑛 = (
𝑑𝑛𝛽

𝑑𝜔𝑛
)

𝜔=𝜔0

, 

and 𝜔  represents frequencies within the spectral width of the pulse, and 𝛽  is the propagation 

constant which is assumed to be frequency dependent. Here 𝛽1 is related to the group velocity (𝑣𝑔) 

of the pulse 𝛽1 =
1

𝑣𝑔
,  𝛽2 represents the dispersion of group velocity and is therefore known as the 

GVD parameter. Here it is assumed that the pulses have a small enough spectral width that 

(𝜔 − 𝜔0)2 ≫ (𝜔 − 𝜔0)3 and therefore terms of third order and above are neglected (the effects 

of third order terms are discussed in section 2.2.1).  

For visible light the refractive index of a material typically decreases with increasing 

wavelength meaning that 𝛽2 is positive this is referred to as normal dispersion. If the refractive 

index increases with increasing wavelength then 𝛽2 is negative, this is referred to as anomalous 

dispersion. Fused silica, a very common material in optical fibers, exhibits normal dispersion for 

wavelengths less than 1270 nm and anomalous dispersion at wavelengths greater than 1270 nm 

where 1270 nm is the zero dispersion wavelength of fused silica [2]. 

 The effect of GVD is especially noticeable for ultrashort optical pulses with durations of 

several picoseconds or less. This is due to the time-bandwidth product, which arises as a result of 

the uncertainty principle. The time bandwidth product states that the product between the pulse 

duration and spectral bandwidth must be greater than or equal to a constant (where the value of 

the constant is determined by the pulse shape). A pulse which has the minimum spectral width 
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for its duration is said to be transform limited. The consequence of the time-bandwidth product is 

that as the pulse duration is decreased its spectral width must increase. This results in GVD 

having a greater effect on shorter optical pulses. 

 

 

Fig 2.1: Simulations showing the effect of GVD on a pulse at three fiber lengths. 

 

2.1.2 Self-Phase Modulation 

 While GVD is the dominant time domain effect on a pulse propagating in optical fiber the 

dominant frequency domain effect is known as self-phase modulation (SPM). SPM is a nonlinear 

effect which comes about as a result of the optical Kerr effect, an effect in which the refractive 

index of a material changes with an applied electric field through the following relation [19], 
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                                                                 𝑛 = 𝑛0 + 𝑛2𝐼                                                             (2.3) 

where 𝐼 is the optical intensity given by 𝐼(𝑡) = 2𝑛0𝜖0𝑐|𝑈(𝑧, 𝑡)|2 and  𝑛2 is known as the 

nonlinear refractive index and is used to quantify the change in refractive index 𝑛0 induced by an 

applied electric field. The nonlinear refractive index arises as a result of the third order electronic 

susceptibility of the material. Typically, the value of 𝑛2 is much smaller than that of 𝑛0.  

 This change in the refractive index of the material results in a change in the phase of an 

optical pulse. The magnitude of this phase change is given be the following equation 

                                                        𝜙(𝑡) =  −𝑛2𝐼(𝑡)𝜔0𝐿/𝑐                                                    (2.4) 

where 𝐿 is the length of the nonlinear medium that the pulse moves through. This phase change 

results in a change to the instantaneous frequency. 

                                                         𝜔(𝑡) =  𝜔0 +  
𝑑

𝑑𝑡
(𝜙(𝑡))                                                   (2.5) 

This results in a change in an initially Gaussian pulse spectrum with the pulse splitting into two 

dominant spectral lobes, one of which becomes redshifted, and the other blue shifted in a 

symmetric manner as shown in Fig 2.2.   
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Fig 2.2: Simulations showing the effect of SPM (neglecting GVD) on a pulse over three lengths 

of fiber. 

 

2.1.3 The Nonlinear Schrodinger Equation 

 By considering how the effects of GVD and SPM simultaneously effect the electric field 

envelope of an optical pulse the following equation can be derived, 

                                                          
𝜕𝑈

𝜕𝑧
= −

𝑖𝛽2

2

𝜕2𝑈

𝜕𝑡2
+ 𝑖𝛾|𝑈|2𝑈                                                (2.6) 

where 𝑈 is the electric field envelope of the pulse, 𝛾 is known as the nonlinearity of the fiber and 

is given by 𝛾 =  
2𝜋𝑛2

𝜆𝐴𝑒𝑓𝑓
 and 𝐴𝑒𝑓𝑓 is the effective mode area of the fiber. 
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This equation is known as the nonlinear Schrodinger equation. This equation is often 

written such that 𝑃 =  |𝑈|2 where 𝑃 is power, the equation can then be expressed in a 

dimensionless form [18]. 

                                                       −𝑖
𝜕𝑈

𝜕𝑧
=  

1

2

𝜕2𝑈

𝜕𝑡2 + |𝑈|2𝑈                                                       (2.7) 

In the dimensionless form time, distance, and power are expressed in the soliton units defined 

below 

                                                        𝑡𝑐 =
𝜏

1.763
    𝑧𝑐 =

𝑡𝑐
2

|𝛽2|
    𝑃𝑐 =  

𝛾

𝑧𝑐
                                            (2.8) 

where 𝜏 is pulse duration at full width half maximum (FWHM).  

 When expressed in this form equation 2.7 has the particular solution                 

                                                                   𝑈(𝑧, 𝑡) = sech (𝑡)𝑒
𝑖𝑧

2                                                       (2.9) 

This solution is interesting since its temporal profile does not change as the pulse propagates 

along 𝑧 as shown in Fig 2.3. Physically this means that the effects of GVD and SPM must cancel 

such that the pulse is able to propagate undisturbed. This is known as the fundamental soliton, 

and solutions of this form have been shown to have applications in telecommunications, and 

under the influence of higher order nonlinear effects can lead to soliton self-frequency shift (the 

effect which leads to self-frequency shift will be covered in section 2.2.2). The nonlinear 

Schrodinger equation also has solutions known as higher order solitons. These solutions exist for 

higher pulse powers than the fundamental soliton, and result in the pulse spectrum changing in a 

symmetric manner but periodically returning to its original shape [2]. 
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Fig 2.3: The power profile of the fundamental soliton as it propagates through optical fiber. Note 

that the effects of GVD and SPM balance allowing the pulse to move undisturbed through the 

fiber. 

 

2.2 Higher Order Optical Effects 

 The previous section provided a brief overview of the dominant effects on a pulse of light 

as it propagates in optical fiber. Generally, the nonlinear Schrodinger equation presented in 

equation 2.7 provides a good approximation of the behaviour of pulses that are longer than a few 

picoseconds. However, for pulses with a duration on the order of picoseconds or less there are 
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several other optical effects including higher order dispersion, SRS, and self steepening, which 

should be considered in order to accurately predict how pulses of light propagate in optical fiber. 

 

2.2.1 Higher Order Dispersion 

 When the power series representation of the propagation constant was considered in 

equation 2.2 only terms up to 𝛽2 which represents group velocity dispersion were considered. 

This approximation is justified for longer pulse durations since these pulses have shorter spectral 

widths as a result of the time-bandwidth product. However, when pulses become very short their 

spectral width becomes sufficiently large that we can no longer say that (𝜔 − 𝜔0)2 ≫

(𝜔 − 𝜔0)3 since there is now a greater difference between the different spectral components of the pulse. 

Because of this for ultrashort pulses of less than 5ps typically the effect of third order dispersion is 

considered in addition to GVD and the equation describing how an optical pulse is changed due to 

dispersive effects becomes: 

      
𝜕𝑈

𝜕𝑧
=  −

𝑖𝛽2

2

𝜕2𝑈

𝜕𝑡2
+

𝛽3

6

𝜕3𝑈

𝜕𝑡3
                                                   (2.10)      

where 𝛽3 is known as the third order dispersion parameter. Fig 2.4 shows the effect of third order 

dispersion on an optical pulse with an initially Gaussian temporal profile. 

It is important to note that many materials have a zero-dispersion wavelength at which 

the value of 𝛽2 approaches zero. This can result in third order dispersion becoming the dominant 

dispersive effect, which might lead to instability in the temporal behaviour of the pulse.  

In some applications, such as supercontinuum generation, where extremely broad spectra 

are produced it may also be necessary to consider dispersive terms of fourth order and above. 
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However, these higher order dispersive effects are usually found to be negligible [20], and will 

not be considered here. 

 

Fig 2.4: Simulation showing the effect of GVD and third order dispersion on a pulse over 

different lengths of fiber. 

 

 

2.2.2 Stimulated Raman Scattering 

 As a pulse with high peak power propagates through optical fiber the molecules that 

make up the fiber can gain vibrational energy by inelastically scattering photons. This is known 

as spontaneous Raman scattering, and it has the effect of shifting the wavelength of the incident 
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photon from its original wavelength (known as the pump wavelength) to a higher wavelength 

(know as the Stokes wavelength). Spontaneous Raman scattering is a very inefficient process, 

and usually results in only a small fraction (typically 1 in 106) of pump power being transferred 

to the Stokes wavelength [2]. However, the small number of Stokes photons resulting from 

spontaneous Raman scattering can stimulate further Raman scattering. In stimulated Raman 

scattering (SRS) a pump photon and a Stokes photon are both incident on a molecule at the same 

time. The pump photon is then scattered by the molecule and the presence of the Stokes photon 

results in the production of a further Stokes photon through stimulated emission. SRS is much 

more efficient than spontaneous Raman scattering and can result in 10% or more of incident 

photons being converted to the redshifted Stokes wavelength [19], these Stokes photon will then 

go on to stimulate further Raman scattering. This means that, if SRS is the sole effect acting on 

an optical pulse, longer lengths of optical fiber will result in a greater percentage of the input 

pulse photons being converted to the redshifted stokes wavelength. Electron energy level 

diagrams for spontaneous and stimulated Raman scattering are shown in Fig 2.5. 

 In addition to the red shifting which was considered here (known as stimulated Stokes 

Raman) it is also possible for SRS to result in a blue shift (known as stimulated anti-Stokes-

Raman), however this is rarely seen in optical fiber due to phase-matching conditions which 

must be satisfied [2].  
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Fig 2.5: Electron energy level diagrams for spontaneous (left) and stimulated (right) Raman 

scattering. Here 𝜆𝑝is the pump wavelength and 𝜆𝑆 is the Stokes wavelength.  

  

SRS is the main effect responsible for soliton self-frequency shift. Since in the case of a 

soliton pulse GVD and SPM effectively cancel each other out SRS can become the dominant 

optical effect. This results in the soliton becoming continuously redshifted as it propagates 

through the fiber. The effect of SRS on the spectrum of an optical pulse, where SPM and GVD 

are also considered, can be seen in Fig 2.6. 

 

Fig 2.6: Simulations showing effects of GVD and SPM acting on a pulse (left) and GVD, SPM 

and SRS (right). 
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2.2.3 Self-Steepening 

 The group velocity of an optical pulse moving through optical fiber is typically 

dependent on the intensity of the pulse as a result of the intensity dependence of the refractive 

index shown in equation 2.3. As a result of this the center of a pulse will travel at a different 

speed than the two wings. This causes the temporal profile of the pulse to take on an increasingly 

asymmetric shape as it moves through the fiber, with one edge of the pulse appearing much 

steeper than the other. If self-steepening is allowed to be the dominant effect on an optical pulse 

it can lead to extremely short pulse durations, which can result in the formation of an optical 

shock wave [21]. Self-steepening acting in conjunction with SPM is known to cause the pulse’s 

spectrum to broaden asymmetrically, rather that the purely symmetric broadening generated by 

SPM alone [2]. The effect of self steepening on the temporal profile and spectrum of an optical 

pulse is shown in Fig 2.7. 

 

 

Fig 2.7: Time domain (left) and frequency domain simulations of self-steepening acting with 

SPM. 
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2.2.4 The Higher Order Nonlinear Schrodinger Equation 

 When equation 2.6 is corrected to include the higher order effects of third order 

dispersion, SRS, and self-steepening it take the following form [2], 

                           
𝜕𝑈

𝜕𝑧
=  −

𝑖𝛽2

2

𝜕2𝑈

𝜕𝑡2 +
𝛽3

6

𝜕3𝑈

𝜕𝑡3  + 𝑖𝛾(|𝑈|2𝑈 +
𝑖𝜆

2𝜋𝑐

𝜕|𝑈|2𝑈

𝜕𝑡
− 𝑇𝑅𝑈

𝜕|𝑈|2

𝜕𝑡
)               (2.11) 

where 𝑇𝑅 is a constant that approximates the Raman response of the fiber. This equation is 

known as the higher order nonlinear Schrodinger equation.  

 This equation has no simple analytic solution; however, section 3.1 will provide an outline 

of a simple, fast, and accurate numerical method for solving this equation.
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Chapter 3: Materials and Methods 

 The methods used in this type of investigation can often be quite complicated. This 

chapter will provide a brief overview of the experimental and numerical methods used, as well as 

some background information on how the optical fiber used in this investigation works.  

 

3.1 The Split-Step Fourier Method 

 Since the higher order nonlinear Schrodinger equation presented in equation (2.11) does 

not have any simple analytic solutions it must be solved numerically in order to simulate the 

propagation of a pulse of light in optical fiber. A common numerical method used for solving the 

higher order nonlinear Schrodinger equation is known as the split-step Fourier method [2]. 

 In order to understand this method first consider equation 2.11 rewritten in the following 

form. 

                                                                 
𝜕𝑈

𝜕𝑧
= (𝐷̂ + 𝑁̂)𝑈                                                         (3.1) 

 

Here 𝐷̂ is a differential operator which represents dispersive effects within the fiber given by 

                                                          𝐷̂ = −
𝑖𝛽2

2

𝜕2

𝜕𝑡2
+

𝛽3

6

𝜕3

𝜕𝑡3
                                                (3.2) 

And 𝑁̂ is a nonlinear operator representing the nonlinear effects within the fiber given by 

                                                  𝑁̂ =  𝑖𝛾(|𝑈|2 +
𝑖𝜆

2𝜋𝑐

1

𝑈

𝜕|𝑈|2𝑈

𝜕𝑡
− 𝑇𝑅

𝜕|𝑈|2

𝜕𝑡
)                                  (3.3) 

In general, dispersive and nonlinear effects act together on a pulse as it propagates through fiber, 

however over a short distance dispersion and nonlinearity can be treated as independent of each 

other. Therefore, in order to determine how a pulse evolves over a short distance first consider 
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the effect of dispersion assuming no nonlinearity, and then consider the effect of nonlinearity 

assuming no dispersion. Integrating the differential equation in equation 3.1 over a small step 

size ℎ  gives the following equation, which describes how the electric field envelope of an 

optical pulse changes over a short distance. 

                                                𝑈(𝑧 + ℎ, 𝑡) ≈ 𝑈(𝑧, 𝑡)exp(ℎ𝐷̂)exp(h𝑁̂)                                    (3.4)  

The nonlinear operator 𝑁̂ can be evaluated quite simply by plugging in values and 

computing the derivatives numerically, while the differential nature of 𝐷̂ means that it can not be 

evaluated directly and is typically evaluated in the Fourier domain. Hence the pulse evolution 

over a short distance is given by the following expression. 

                            𝑈(𝑧 + ℎ, 𝑡) ≈ 𝐹𝑇−1[exp(ℎ𝐷̂(𝑖𝜔))𝐹𝑇(𝑈(𝑧, 𝑡))]exp (ℎ𝑁̂)                        (3.5) 

Where 𝐹𝑇 is the Fourier transform operator, and 𝐷̂(𝑖𝜔) is the dispersion operator converted to 

the Fourier domain by replacing all instances of 
𝜕

𝜕𝑡
 with 𝑖𝜔, where 𝜔 is the Fourier domain 

frequency.  

 The expression given in equation 3.5 provides an approximation for the evolution of a 

pulse in optical fiber which can be evaluated quickly using the fast Fourier transform algorithm. 

This work utilizes a more accurate version of this method, known as the symmetrized split-step 

Fourier method. This method first evaluates the dispersive effects over a half step, then evaluates 

the nonlinear effects over a full step, and finally evaluates the dispersive term over another half 

step. This method has been shown to be more accurate than the non-symmetrized split-step 

Fourier method, with the symmetrized version having an error proportional to the cube of the 

step size whereas the non-symmetrized version has an error proportional to the square of the step 

size [2]. 
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3.2 Photonic Crystal Fiber 

 The optical fibers used for this work are large mode area polarization-maintaining 

photonic-crystal fibers. Photonic crystal fibers are optical fibers which utilize the properties of 

photonic crystals (crystals which have a nanostructure that affects the motion of photons in a 

similar way to how an ionic lattice affects the motion of electrons in solids) in their design. The 

properties of these crystals enable the production of optical fibers with lower attenuation, larger 

mode areas, and higher damage thresholds than traditional glass fibers. There are a large variety 

of different fiber types that fall under the category of photonic-crystal fiber some examples of 

categories of photonic-crystal fiber include hollow core fiber, and photonic bandgap fiber. The 

fiber used in this work falls under a category known as hole-assisted fiber, which uses a solid 

core surrounded by a cladding containing a pattern of periodically spaced holes. These holes 

allow the cladding to have a very low refractive index, which allows the core to have an effective 

area up to ten times greater than what is possible in conventional fibers. Because fiber 

nonlinearity is inversely dependent on the fiber’s mode area large mode area fibers have much 

lower nonlinearity than standard optical fibers. 
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Fig 3.1: A brightfield microscope image of a fiber face with the various components labeled. 

 

 Figure 3.1 shows a microscope image of one of the fibers used in this work, with the air 

holes surrounding the core visible. On either side of the core there are two stress rods which run 

down the length of the fiber. These stress rods are used to induce strong birefringence within the 

fiber, because of this only light with polarization aligned with the stress rods is able to move 

through the fiber. This means that the input beam of light is able to propagate through the entire 

length of the fiber with no change to its polarization. This is useful for the application of spectral 

broadening to nonlinear optical microscopy since many forms of nonlinear optical microscopy 

require the laser source being used to have a well defined polarization. 
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3.3 Experimental Set Up 

 

 

Fig 3.2: Diagram of the experimental set-up. 

 

 Fig 3.2 provides an overview of the major components of the experimental set up.  A 

pulsed laser (Femtolux 3, EKSPLA) is directed through a half-wave plate and a polarizing beam 

splitter. This allows the beam power to be adjusted by rotating the half wave plate. A flip 

mounted mirror is then used to direct the beam towards either the fiber or the spectrometer. On 

the fiber beam path, a glass cover slip is used to reflect approximately 2% of the beam power 

onto an optical power meter which can then be calibrated to measure the power of the beam at 

the fiber. The main beam then goes through a half wave plate which rotates linearly polarized 
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light in order to obtain the correct polarization for polarization maintaining fibers. A telescope 

and focusing lens then focus the beam to the correct size and numerical aperture so that it can be 

coupled to the fiber. 

 The fiber is mounted to a three-axis fiber stage (Nanomax 300, Thorlabs) this stage 

allows the fiber to be positioned in three dimensions by adjusting three differential micrometers 

each having a resolution of 0.5 µm.  A mirror mount (SC100-F3H, Newport) is attached to the 

fiber stage, the angle of the mirror mount can be adjusted in order to change the tilt angle of the 

fiber. By adjusting the fiber position and tilt angle the fiber can be placed such that its coupling 

efficiency is maximized (see section 3.2.2). 

 At the fiber output the beam is collimated by a lens and the output power is measured 

using another glass cover slip and power meter. The beam is then directed into the spectrometer 

(Wavescan NIR, APE) using a flip mounted mirror. 

  

 

3.4 Fiber Preparation and Coupling  

3.4.1 Measurement of Beam Diameter 

 In order to select the appropriate lenses to focus the laser beam into the fiber the laser 

beam diameter must first be measured. A simple and accurate method for doing this is known as 

the knife edge method. In this method the beam power is measured using an optical power meter. 

A razor blade is then inserted into the beam using a translation stage, and the position of the 

blade is measured at the points where the beam power drops to 90% and 10% of its original 
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value. This can then be used to calculate the 1/𝑒2 diameter of the beam using the following 

formula [22]. 

                                                             𝑑 = 1.561(|𝑥10 − 𝑥90|)                                                (3.6) 

Using this method, the 1/𝑒2 beam diameter at the fiber was determined to be 3.17 ± 0.03 mm. 

This can now be used to determine what lenses are needed in order to couple the beam into the 

fiber. 

 

3.4.2 Fiber Cleaving 

 To achieve good coupling efficiency the fiber must be cleaved properly, this ensures that 

the fiber face is uniform, and free from dust. Cleaving optical fiber by hand can be very difficult 

and often takes several attempts to ensure a proper cleave. It is important to note that photonic 

crystal fiber is often very expensive and cleaving it removes a small part (typically up to 2 cm), 

so great care should be taken during the cleaving process. The procedure used for cleaving 

optical fiber by hand is outlined below. 

 First the protective coating must be stripped from the end of the fiber using a fiber 

stripping tool. Next secure the end of the fiber to a surface using tape, leaving the position where 

the cleave will be made exposed. Now while keeping tension on the fiber gently drag a fiber 

scribe across the fiber, it is important that the right amount of pressure be used here as to much 

will cut through the fiber, and too little will result in the fiber not breaking cleanly in the next 

step. Next apply tension on the fiber back until it breaks, ensure that the fiber does not bend 

during this process as that could lead to an uneven break. The fiber face should be inspected 

using a microscope to ensure that the cleave is uniform and that there is no obvious damage. 

Here the fiber cladding should be free from scratches or debris, and the scribe mark should be no 
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larger than 5% of the cladding diameter. Fig 3.3 shows images of a fiber which has been 

properly cleaved, as well as one which has been poorly cleaved. 

 

o  

Fig 3.3: Brightfield microscope images showing a well cleaved fiber (left) and a poorly cleaved 

fiber (right). Note that the well cleaved fiber is free from damage on the face, and the scribe 

mark does not extend far onto the fiber face.  

 

3.4.3 Fiber Coupling 

 To couple the beam to the fiber lenses must be used to focus the beam such that it meets 

two conditions. The beams width must be less than the mode field diameter of the fiber (the 

effective diameter of the fiber core), and the numerical aperture of the beam must be less than the 

numerical aperture of the fiber. If a focusing lens with focal length 𝑓  is used, then the minimum 

beam width (𝑤) and numerical aperture (𝑁𝐴) are given by the following formulae [22]. 
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                                              𝑤 =  
4𝜆𝑀2𝑓

𝜋𝑑
       𝑁𝐴 =  𝑑2/√𝑑2 + 4𝑓2                                        (3.7) 

Where 𝜆 is the laser wavelength 𝑑 is the beam diameter and 𝑀2is the beam quality factor 

(assumed to be 1.2 for the Femtolux 3 laser). In order to achieve good coupling using 

commercially available lenses it may be necessary to use a telescope before the focusing lens to 

change the diameter of the input beam and get a more favourable minimum beam width. For the 

fiber used in this work (LMA-PM-15, NKT Photonics) the beam width must be smaller than  

12.6 µm, and the numerical aperture of the beam must be less than 0.07. Here a lens with a focal 

length of 25 mm was used to achieve a minimum beam width of 11.4 µm and a numerical 

aperture of 0.06. 

 Once appropriate lenses have been selected to focus the beam into the fiber the fiber must 

be aligned to the beam. To do this first the fiber is mounted to a fiber stage, and the end of the 

fiber is placed near the focal point of the focusing lens. An optical power meter is then placed at 

the output end of the fiber. By adjusting the position of the fiber using the fiber stage the fiber is 

then raster scanned across the area near the focal point until an increase in power is detected by 

the power meter. Once a small amount of coupling is achieved the coupling efficiency can be 

maximized by making fine adjustments to the position and tilt angle of the fiber input end. 

Typical coupling efficiencies using this method are in the range of 50-75%  however coupling 

efficiency can be severely affected by the quality of the fiber cleave, and by the goodness of the 

beam focusing.
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Chapter 4: Experimental Results 

4.1 Effect of Pulse Energy on Spectral Broadening 

 

 

 Fig 4.1: The spectrum of the laser that the fiber is coupled to, here the spectral width at 

full width half maximum is approximately 8 nm. 

 

 In order to understand how the spectrum of a 1030 nm laser with pulse duration between 

245 and 5000 fs is affected by nonlinear and dispersive effects within optical fibers a first 

experiment will consider how changes in pulse energy, while keeping pulse duration and initial 

spectrum constant, effect the spectrum of the output pulse. In this experiment a 115 cm length of 

LMA-PM-15 photonic crystal fiber from NKT Photonics was free space coupled to a pulsed 
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laser source. Pulses of light with a center wavelength of 1030 nm (as shown in Fig 4.1) are 

propagated through the fiber at varying pulse energies, and the output spectrum of the pulses was 

recorded using a spectrometer. The pulse duration is held constant during this experiment. 

 

 

 

 Fig 4.2: Normalized Output spectrum of 115 cm of LMA-PM-15 fiber at various pulse energies, 

the input pulse duration and spectrum were held constant during this experiment. 
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 The normalized experimental spectra shown in Fig 4.2 show several interesting features. 

Fig 4.2 panel (a) shows that at lower pulse energies the spectrum breaks into two symmetric 

spectral lobes, which is characteristic of a pulse under the influence of pure SPM (see Fig 2.2).  

As the pulse energy is increased the large number of distinct peaks that is expected from SPM 

however at these higher energies the spectra take on a much more asymmetric shape as seen in 

Fig 4.2 panels (b)-(d). This asymmetric shape is likely due to several higher order optical effects 

such as self-steepening, and SRS starting to be the dominant effects on the pulse as the pulse 

energy is increased. 

 It is also important to note that while the output spectra are mostly concentrated into a 

series of connected peaks, in Fig 4.2 panels (c) and (d) there is a feature between 1120 and 1140 

nm that is disconnected from the main spectrum. It is likely that this is a component of the pulse 

spectrum which has been redshifted due to SRS, however it is also possible that this feature is 

part of the input laser spectrum. 

 In order to get a quantitative idea of how spectral broadening is dependent on pulse 

energy the spectral width can be considered to be the distance between the leftmost and 

rightmost peak on the spectrum. The locations of the peaks can be approximately determined by 

using a Gaussian fit. Here features which are detached from the main spectrum, such as the peaks 

between 1120 and 1140 nm in Fig 4.2 panels (c) and (d), are not considered. The spectral widths 

determined using the technique are presented in table 4.1. 
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Table 4.1: Spectral widths of fiber output spectrum at various pulse energies. 

 

 The widths and center values presented in table 4.1 show that the spectral width of the 

output spectrum increases with pulse energy, and that this increase in spectral width is nearly 

symmetrical about the center wavelength of the input pulse. Assuming that this spectral 

broadening continues for higher pulse energies than this could be a possible method for 

wavelength tuning in microscopy applications where filters can be used to isolate different 

components of the spectrum. However, due to the symmetric nature of this broadening the 

spectral power density is greatly decreased compared to the input pulse, this will place some 

limitations on which wavelengths will be usable for practical applications. 

 

4.2 Effect of Pulse Duration on Spectral Broadening 

 In addition to investigating the effect of varying pulse energy on spectral broadening the 

effect of changing pulse duration can also be investigated. In section 4.1 the effect of increasing 

the pulse energy of a nearly transform limited pulse with a duration of 245 fs was considered. Here 

Fig 4.2 Panel Pulse Energy 

(nJ) 

Leftmost Peak 

(± 1 nm) 

Rightmost 

Peak (± 1 nm) 

Center Values 

(±0.7 nm) 

 Spectral 

Width (± 1 nm) 

(a) 8.57 1025  1036  1030.5  11 

(b) 51.52 1019  1037  1028.0  18 

(c) 80.90 1005  1052  1028.5  47 

(d) 143.29 1002  1063  1032.5  61 
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the effect of adding a chirp to the pulse such that it has a duration of 5 ps with no change to its 

initial spectrum will be considered using the same 115cm length of LMA-PM-15 fiber as was used 

in the previous section.  

 



                                                          Experimental Results                                                         44 

____________________________________________________________________________ 
 
 

 

Fig 4.3: Fiber output spectra at different pulse energies (rows) for 245 fs near transform limited 

pulses (left) and 5 ps chirped pulses (right). 
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Since the 5 ps pulse used in this experiment is not transform limited and has the same 

spectral width as the nearly transform limited 245 fs pulse it is expected that the higher order 

optical effects discussed in chapter 2 will still have a noticeable effect on the pulse. As an 

example of this the three spectra for 5 ps pulses (Fig 4.3 panels (b), (d), (f)) still show 

asymmetric broadening and not the symmetric spectral broadening characteristic of SPM. 

However, there are some key differences between the spectra for the 245 fs and 5 ps durations. 

For example, the 245 fs spectra (Fig 4.3 panels (a),(c), (e)) become much broader as the pulse 

energy is increased, while the 5 ps spectra become deformed but only undergo a very small 

amount of spectral broadening.  

Table 4.2 presents data for spectral broadening for each pulse energy and duration, the 

spectral width is defined as the distance between the leftmost and rightmost peaks on the 

spectrum, as in section 4.1. This data shows that the spectral broadening for the 245 fs pulses is 

much greater than that for the 5 ps pulses with the 245 fs pulses being broadened to over         

150 nm whereas the 5 ps pulses do not exceed 10 nm of spectral width. This is likely because 

although the spectra in Fig 4.3 were measured for three sets of similar pulse energies the increase 

in pulse duration leads to a decrease in the peak power of the pulse, with the peak power at 245fs 

being more than 20 times that at 5 ps with equal pulse energy. This means that adjusting the 

pulse duration could be an effective method of modulating the amount spectral broadening 

generated, which will be useful in wavelength tunning for microscopy applications.  
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Fig 4.3 Panel Pulse Duration (fs) Pulse Energy (nJ) Spectral Width (±1 nm) 

(a) 245 7.66 15 

(b) 5000 8.57 7 

(c) 245 77.84 193 

(d) 5000 80.90 10  

(e) 245 143.29 165  

(f) 5000 143.29 10  

Table 4.2: Comparison of spectral widths for pulses of similar pulse energy and different pulse 

durations. 

 

 

4.3 Effect of Fiber Length on Spectral Broadening 

 Another parameter which can be considered when investigating how nonlinear effects in 

optical fiber effect the spectrum of a pulse of light is the length of optical fiber used. In this 

experiment otherwise identical LMA-PM-15 fibers with length of 40 cm and 115 cm were used 

and near transform limited 245 fs pulses with a center wavelength of 1030 nm were propagated 

through the fibers at various pulse energies. The output spectrum from the fiber was then 

measured using a spectrometer.  
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Fig 4.4: Output spectra for the 40cm fiber (left) and the 115cm fiber (right) at various pulse 

energies. 
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 The results shown in Fig 4.4 provide some very interesting insight into how spectral 

broadening occurs within optical fibers. Table 4.3 provides the resulting spectral width for each 

fiber length and pulse energy. In this experiment the long fiber was nearly three times longer 

than the shorter fiber, and for the lower pulse energies in Fig 4.4 panels (a) and (b) the spectral 

width is approximately three times greater for the longer fiber. However, at the higher pulse 

energies shown in panels (c), (d), (e) and (f), there is a much smaller difference between spectral 

widths between the longer and the shorter fiber for similar pulse energies. It is particularly 

interesting that for panels (e) and (f) the resulting spectral width from the short fiber seems 

greater than that from the long fiber. From Fig 4.4 panels (e) and (f) it can be seen that this is in 

fact a result of the convention used for measuring spectral width. Spectrum e for the short fiber 

has peaks further from the center of the spectrum, however panel (f) has peaks closer to the 

center of the spectrum with more of a smoothly decreasing region on either side. This suggests 

that the added fiber length has an effect of ‘smoothing’ the spectrum, giving long continuous 

regions, rather than the rapidly oscillating structures that are seen near the center of each 

spectrum. This indicates that for applications where a broad and relatively uniform spectrum is 

desired, such as supercontinuum generation, a longer fiber might be desirable. 

 It is also interesting to note that the relatively small differences in spectral width between 

panels (c), (d) and panels (e), (f) indicates that the majority of the spectral broadening occurs 

within some initial short section of fiber. This is possibly a result of the overall spectral power 

density being reduced as the spectrum broadens. This is a useful result since it suggests that 

similar spectral widths could be obtained using only a few centimeters of fiber, this means that a 
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shorter fiber could be used in the future which would reduce the amount of power lost as a result 

of attenuation and bending losses within the fiber. 

 

Fig 4.4 Panel Fiber Length (cm) Pulse Energy (nJ) Spectral Width (nm) 

(a) 40 5.58 5 ± 2 

(b) 115 7.66 15 ± 1 

(c) 40 87.30 165 ± 1 

(d) 115 77.84 193 ± 3 

(e) 40 140.09 182 ± 4 

(f) 115 143.29 165 ± 4 

Table 4.3: Comparisons of spectral widths of pulses with similar energy using fibers of different 

two different lengths.
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Chapter 5: Numerical Simulations 

 In chapter 4 experimental data showing how nonlinear effects alter the spectrum of a 

pulse of light was considered. In this chapter numerical simulations using the method outlined in 

chapter 3.1 will be considered. Before any simulations can be carried out values must be selected 

for the various constants present in the higher order nonlinear Schrodinger equation (eq 2.13).  

 To start with these simulations will use an initial center wavelength of 1030 nm. A 

common core material for optical fibers is fused silica (this is the core material of the fibers used 

in chapter 4) at 1030 nm fused silica has a nonlinear refractive index of 𝑛2 = 2.19 ∙

10−20𝑚2𝑊−1 [23], and a GVD constant of 𝛽2 = 1.897 ∙ 10−26𝑠2𝑚−1 [24]. Values for the third 

order dispersion parameter and the Raman constant are generally less well defined than the other 

constants however the typical order of magnitude of these constants is generally known. For 

third order dispersion typically 𝛽3 ≈ 10−40𝑠3𝑚−1 [2]. The Raman constant has been measured 

by various authors and has been found to be within the range of 3-6 fs, in this chapter a value of 

𝑇𝑅 = 3 fs will be used [25]. All simulations in this section use a step size of 0.1 mm results with 

this step size were found to be nearly identical to results with smaller step sizes. 

 

5.1 Impact of Higher Order Effects on Spectral Broadening 

 In chapter 2 the assertion was made that higher order optical effects such as self-

steepening, third order dispersion, and SRS need only be considered for optical pulses with 

durations less than a few picoseconds. In this sections that assertion will be tested using 

numerical simulations. Here the propagation of transform limited optical pulses with various 

durations will be simulated once with all optical effects included, and once with only the effects 
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of SPM and GVD included. These simulations will use a fiber mode field diameter of 12.6 µm 

and a length of 30 cm. The simulated pulses have a Gaussian temporal profile and a constant 

peak power of 100 kW (this corresponds to a pulse energy of 25 nJ at 250 fs). 

The simulation results presented in Fig 5.1 and Fig 5.2 clearly show that the higher order 

effects of third-order dispersion, self-steepening, and SRS can be ignored for pulse durations of 

more than a few picoseconds. There are very obvious visual differences between the simulated 

spectra for 250fs, 500fs, and 1ps, as shown in panels (a) – (f) and the higher order terms are 

clearly needed to ensure accurate simulations at these pulse durations. However, for the spectra 

at 5 and 10 ps  as shown in Fig 5.2 panels (g) – (j) the differences between the spectra are more 

subtle. In order to characterize the differences between these spectra the magnitudes and 

positions of the left most and right most peaks can be considered.  
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Fig 5.1: Simulated spectra with GVD, SPM, third-order dispersion, SRS, and self-steepening 

(left) and simulated spectra with GVD and SPM (right). 
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Fig 5.2: Simulated spectra with GVD, SPM, third-order dispersion, SRS, and self-steepening 

(left) and simulated spectra with GVD and SPM (right). 

  

 For the 5 ps spectra (Fig 5.2 panels (g) and (h))  there is a difference of less than 0.01% 

between the wavelengths of the two maxima, and for the lower order spectrum there is a 

difference of approximately 0.0001% between the magnitude of the two peaks. For the higher 

order 5 ps spectrum (panel (h)) there is a difference of approximately 3.6% between the 
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magnitudes of the two peaks. There is a similarly small difference for the 10 ps spectra in panels 

(i) and (j). 

 From these numbers it is clear that there is little difference in the amount of spectral 

broadening between the two sets of spectra. However, there is an asymmetry between the peaks 

on the higher order spectra which is not present on the lower order spectra. This asymmetry is 

likely due to the effect of self-steepening which is known to cause asymmetry in SPM broadened 

spectra. As was discussed in section 2.2.3 self-steepening arises due to large differences between 

the center and the wings of the temporal profile of a pulse. Since in these simulations peak power 

and not pulse energy was held constant there is still quite a large difference between the peak and 

the wings of the pulse in the 10 ps case.  

 It is interesting to note that the simulated spectra in Fig 5.1 panels (a), (c), and (e) all 

show very large blue shifted peaks. Similar blue shifted peaks can be seen in the experimental 

data presented in Fig 4.3 panel (e), and Fig 4.4 panels (c) and (f). However, the flat structure 

seen in these simulations between the blue shifted peak and the main peak is not present in any 

of the experimental spectra presented in chapter 4. 

  

 

5.2 Effect of Pulse Shape on Spectral Broadening 

 Depending on how a pulsed laser is constructed there are a variety of different pulse 

shapes which are possible. Most common are lasers whose pulse power profiles are best 

described by either a Gaussian or a 𝑠𝑒𝑐ℎ2 pulse shape (the power profiles of each of these pulse 

shapes can be seen in Fig 5.3). Here numerical simulations will be used to determine if the slight 
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differences between these pulse shapes leads to any change in the output spectrum from the fiber. 

This is of interest since the fundamental soliton has a 𝑠𝑒𝑐ℎ2 temporal profile (see section 2.1.3) 

hence any difference between the output spectra for these two pulse shapes could cause problems 

for applications involving optical solitons such as soliton self-frequency shift. 

 

Fig 5.3: The power profiles of Gaussian and 𝑠𝑒𝑐ℎ2 pulse shapes, both pulses have a peak power 

of 100 kW and a FWHM duration of 500 fs. 

 

 Here 500 fs pulses with both Gaussian and 𝑠𝑒𝑐ℎ2 will be simulated at various pulse 

energies over 30 cm of simulated optical fiber with a mode field diameter of 12.6 µm.  

 From the simulations presented in Fig 5.4 it is clear that there are minor qualitative 

differences in the structure of the output spectra between the Gaussian input pulses in panels (a), 

(c), (e) and the 𝑠𝑒𝑐ℎ2 input pulses in panels (b), (d), (f). One very notable feature of these spectra 
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is the peak in panels (c), (d), (e), (f) which is located between 1200 and 1400 nm and is 

disconnected from the main spectrum. As was discussed in section 2.2.2 these disconnected 

redshifted peaks are likely the result of SRS within the fiber. It is interesting that the redshifted 

peaks in panels (d), (e), (f) resemble the redshifted peaks that are expected as a result of soliton 

self-frequency shift, however, the main spectrum has clearly been greatly broadened, and not 

maintained its original shape as is expected from a soliton (nor does it show the symmetric 

broadening expected from a higher order soliton).  
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Fig 5.4: Simulated output spectra for Gaussian input pulse (left) and 𝑠𝑒𝑐ℎ2 input pulse (right) at 

various pulse energies. 
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 A likely explanation for this is that over some short initial section of the fiber the pulse is 

able to propagate relatively undisturbed, it is likely during this stage when the majority of the red 

shifting occurs. Eventually the effects of third order dispersion and self-steepening will cause the 

shape of the pulse to change significantly, this is what causes the broad central region of the 

spectra shown in Fig 5.4. This idea is supported by the simulations shown in Fig 5.5, in which 

the time domain behaviour of the pulse is seen to be somewhat stable over the first few 

centimeters (Fig 5.5 (a)), but after that the pulse becomes unstable and is rapidly broken up by 

higher order effects.  

 One question which remains here is why in Fig 5.4 is the redshifted peak very prominent 

in panel (d) whereas in panel (c) the redshifted peak is far less prominent. A likely reason for this 

is that Gaussian shaped pulses are less stable than 𝑠𝑒𝑐ℎ2 shaped pulses. This explanation makes 

sense since, as was discussed in section 2.1.3, soliton solutions to the nonlinear Schrodinger 

equation have a 𝑠𝑒𝑐ℎ2 shaped temporal profile. Because of this it is likely that a Gaussian shaped 

pulse will break up over a shorter length of fiber than a 𝑠𝑒𝑐ℎ2 shaped pulse meaning that the 

Gaussian pulse will be less influenced by SRS during this stable phase resulting in a smaller 

redshifted peak.  
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Fig 5.5: Simulations showing the time domain evolution of a 500 fs 𝑠𝑒𝑐ℎ2 shaped optical pulse 

through several lengths of optical fiber.
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Chapter 6: Conclusions and Future Work 

 

6.1 Conclusions 

  This investigation has provided some very interesting insights on how various factors 

influence the spectral broadening brought about by nonlinear optical effects in photonic crystal 

fiber. This includes results from both experimental work, and numerical simulations. 

 The experimental work done here has yielded a number of interesting results. This 

includes the result that higher pulse energies lead to a greater amount of spectral broadening, that 

increasing pulse duration, while keeping pulse energy and initial spectrum constant, leads to a 

decrease in the amount of spectral broadening in optical fiber. An experiment comparing the 

output spectra from fibers of different lengths showed that using a longer fiber does not 

necessarily increase the width of the output spectrum implying that the majority of the spectra 

broadening occurs within some short initial section of the fiber. It was also found that longer 

fibers have the effect of ‘smoothing’ the output spectrum, which indicates that longer fiber might 

be more useful for applications such as supercontinuum generation. It is interesting to note that 

the experimental spectra presented in chapter 4 do not closely match any of the methods of 

spectral broadening discussed in section 1.2, with most of the experimental spectra resembling a 

halfway point between pure SPM and supercontinuum generation. 

 The results of the experimental work done here were augmented through the use of 

numerical simulations. The results of these simulations have shown that higher order effects, 

such as third-order dispersion, self-steepening, and SRS, have greatly reduced effects on 

transform limited optical pulses with durations greater than 5 ps. This confirms that these higher 
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order effects only become dominant on a pulse whose duration is on the order of picoseconds or 

less. Simulations were also used to show that small differences in the temporal profile of the 

input pulse can lead to significant differences in the output spectra. Simulations of the temporal 

behaviour of optical pulses was used to show that these eventually become unstable. This 

behaviour is a possible explanation for why redshifted peaks, characteristic of SRS, appear in 

some spectra but not in others. 

 Overall, the work done here has provided some valuable insights into how optical fibers 

can be used to broaden the spectra of ultrashort optical pulses. These insights will be very useful 

going forwards in applying this spectral broadening to construct a wavelength tunable laser 

source for nonlinear optical microscopy. 

 

6.2 Future Work 

 This investigation has left various areas open for future work. The maximum pulse 

energy used in chapter 4 was unfortunately limited by technical problems to a maximum of 

approximately 220 nJ once these technical problems are resolved pulse energies of over 2000 nJ 

will be possible. This is expected to lead to much more spectral broadening than was recorded in 

chapter 4, which is extremely advantageous for microscopy applications. 

 Other varieties of optical fiber might also be evaluated for their applications in 

wavelength tunning for optical microscopy applications. This might include fibers of larger or 

smaller mode areas, and fibers with different core materials including hollow core fibers. The 

effectiveness of these fibers can be evaluated initially using numerical simulations in order to 

determine the possible value of using these fibers. 
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 Finally, the fiber output can be coupled to a microscope and used to tune the laser 

wavelength for the investigation of various samples. This is expected to give more information 

on the structure of the sample under investigation then is possible using a single wavelength. 
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