
Regular Languages, Property Satisfiability, and

Shortcuts

Patrick Melanson

June 2021, Halifax, Nova Scotia

A Thesis Submitted to Saint Mary’s University, Halifax, Nova Scotia in Partial

Fulfillment of the Requirements for the Degree of Bachelor of Science, Double

Honours Mathematics and Computer Science

Copyright Patrick Melanson, 2021

Dr. Stavros Konstantinidis

Professor, Supervisor

Dr. Mitja Mastnak

Professor, Reader

Date: June 6th 2021

1

Regular Languages, Property Satisfiability, and Shortcuts

By: Patrick Melanson

Abstract

The Language Server (LaSer) is a website created to ask and answer

various questions pertaining to regular languages. One of its main fea-

tures is testing property satisfiability, that is, does a given regular lan-

guage satisfy a particular property. If a regular language does satisfy the

property, we can then ask if the language is maximal with respect to the

property. That is, L is maximal if it is not properly contained in any lan-

guage satisfying the property. Deciding if a language is maximal reduces

to deciding if a language is universal, which is known to be PSPACE-

complete. However, for some practical purposes, we need only know if

a language is approximately maximal. That is p%−maximal. Using a

randomized algorithm, we can check if a language is as maximal as we

want, by repeatedly adding words and testing whether the language still

satisfies the property. This new property is called pseudo-maximality, and

is much easier to test.

Date: June 6th 2021

2

Contents

1 Introduction 4

2 Preliminary Definitions 5

3 Regular Languages and Automata 6

3.1 Inductive Definition and Examples 6

3.2 Equivalence with Deterministic Finite Automata 7

3.3 Closure Properties . 10

4 Constructions on Regular Languages 12

4.1 NFA and Subset Construction . 12

4.2 Product Construction . 15

5 Transducers 18

6 Theoretical Aspects of LaSer 22

6.1 Properties and Property Satisfiability 22

6.2 Universality and Maximality . 31

7 Computational Complexity 33

7.1 Big O Notation . 33

7.2 Complexity Classes and the Problem with Maximality 33

8 Pseudo-Universality and Pseudo-Maximality 36

8.1 Pseudo-Universality: Why Even Bother? 36

8.2 Proofs . 37

8.3 Pseudo-Maximality: There’s More? 39

9 Conclusion 43

3

1 Introduction

In many math classes, someone has raised their hand at the end of a long lesson,

and asked the dreaded question, “When will I ever actually use this?” Theo-

retical computer science, a related field, is similar in that it seeks to answer

questions which may or may not have uses down the line. Part of that is the

study of automata and formal languages, which in part can be used to model

certain types of computation. This paper will serve as an overview of regular

languages and automata, as well a deeper dive into property satisfiability and

property maximality. For those who require practical uses, the Language Server

(LaSer) is a website designed to answer questions about property satisfiability

and property maximality, and we will be discussing why trying to compute the

latter is resource intensive, and how we can create an algorithm which “guesses”,

which we can use instead and is much more efficient.

This thesis will be broken down into eight sections, working up towards the

concept of pseudo-maximality. We will first go over some basic definitions that

will aid in simplifying many concepts, then have a discussion about regular

languages and automata, explain what they are and how they can be used, as

well as various operations under which they are closed. Following that we will

look into various constructions one can make with automata, as well as introduce

NFAs. A final look into automata theory will have us defining transducers, and

looking at how we can use those, giving us the final piece of information we need

before discussing what properties, and property satisfiability are. Finally, we

will need some basic information about computational complexity to understand

the motivation behind pseudo-maximality, before finally explaining what that

concept is, and discuss the possible uses for it.

4

2 Preliminary Definitions

1. Set: A set is any well defined collection of objects where order doesn’t

matter, and the elements are unique.

Eg. {a, b, c} is a finite set. Note that sets can be (and often are) infinite,

for example the integers, Z = {0, 1,−1, 2,−2, ...}.

2. Union: Let A and B be sets. Then A ∪ B (read “A union B”) is a new

set, C, which consists of all the elements of A as well as all the elements

of B.

3. Alphabet: an alphabet is a non-empty set of characters or symbols which

can be used to create words. Two common examples are the English al-

phabet {a, b, c, ..., y, z} and the binary alphabet {0, 1}. We use an alphabet

to make words, that is, finite sequences of symbols from the alphabet.

4. Concatenation: Let x and y be words, then xy, (read “x concatenated

with y”), is the new word z which is x, followed directly by the word y.

Eg. x = “mouse”, y = “trap”, then xy would be “mousetrap”. If we are

concatenating the same word multiple times, it is convenient to express

that as an exponent, that is aaaaa = a5.

More generally, we can concatenate sets of words (that is, languages), that

is. if A and B are sets, then AB = {ab : a ∈ A, b ∈ B}.

5. Empty word: ε will denote the empty word, which has length 0 and the

property that for any w which is a word, wε = εw = w. Sometimes also

denoted as λ.

6. Kleene star: Let A be a set, then A∗=
∞⋃
i=0

Ai. That is, the set of all words

that are comprised of zero or more copies of a word found in the set A.

Eg., if A = {a}, then A∗ = {ε, a, aa, aaa, aaaa, ...} (note that A0 = {ε}).

5

3 Regular Languages and Automata

3.1 Inductive Definition and Examples

Regular Languages: We can inductively define the regular languages over some

alphabet Σ as follows [1]:

1. The empty language, denoted ∅, and the language consisting of the empty

word, denoted {ε}, are regular.

2. ∀a ∈ Σ, {a} is a regular language

3. If A and B are regular languages, then A∪B, AB, and A∗ are all regular

(note that ∅∗ = {ε})

4. Finally, a language is regular if and only if it can be constructed from a

finite number of steps of 1, 2, or 3

A syntactic representation of regular languages is via regular expressions. That

is, a language is regular if and only if it can be represented by a regular ex-

pression. For example, a is a regular expression, which represents the regu-

lar language {a}. Another one is ab∗ which represents the regular language

L(ab∗) = {a, ab, abb, abbb, abbbb, ...}. Every finite language (that is a language

which contains only a finite number of words) is a regular language. For simplic-

ity, it is generally easier to talk about regular expressions, as oppose to regular

languages, as they are more succinct to describe. It is also important to note,

however, that a regular expression is not a regular language. It is merely a rep-

resentation. Thus, if r is a regular expression, then L(r) is the regular language

represented by r.

6

Some more examples may be helpful:

1. L(b) = {b}

2. L(a3b2) = {aaabb}

3. L(b+ a∗) = L(b) ∪ L(a∗) = {b, ε, a, aa, aaa, ...}

4. L(ab∗) = {a, ab, abb, abbb, ...}

5. L((a+b)2) = L((a+b)(a+b)) = (L(a)∪L(b))(L(a)∪L(b)) = {aa, ab, ba, bb}

3.2 Equivalence with Deterministic Finite Automata

Another helpful equivalent description of regular languages is via finite state

automata. Informally, they can be thought of as the simplest model for a

computer, one without memory, which can either accept a word as being in

a given regular language, or reject it, indicating that it is not in the language.

More formally, we think of a Deterministic Finite Automaton (DFA) M as being

a 5-tuple: M = (Q,Σ, δ, q0, F), where Q is the finite set of states which make

up M , Σ is the allowable alphabet which our language is over, δ is a function

δ : Q×Σ→ Q (which one can think of as the transitions between states), q0 ∈ Q

which is the unique start state, and then finally F ⊆ Q, which is the set of final

or accepting states. As we can see, every automaton has exactly one start state,

but may have multiple final states. As well, let w = a0a1...an, where ai ∈ Σ.

Then we say M accepts w if we can find r0, r1, ..., rm ∈ Q such that:

1. r0 = q0

2. ri+1 = δ(ri, ai+1), 0 ≤ i ≤ n− 1

3. rn ∈ F

That is, if we can find a sequence of states which ends at an accepting state,

the word is accepted.

7

DFAs are much more useful as a visual guide though, so I think it is a good

idea to go over an example. Let’s take the regular expression ab∗. A (complete)

DFA which accepts it may look like this:

0start 1

2

a

b

b

a

a,b

Note that the above is a complete DFA, compliant with our rigorous definition.

Therefore each state has two transitions, one for each letter in our alphabet. You

may notice though that if a word enters state 2 it would just get “stuck” and

loop over the rest of the word, never reaching the accepting state. In practice,

these “dump” states are usually left out of the diagrams and are just assumed

to exist. Now, what does this picture represent? First we take our candidate

word, say abb (note that this is the string abb and NOT the regular expression).

Then we start at the start state (usually denoted as state 0), checking if our

word meets the criteria to transition to the next state. In this case, we see that

the first character of our word is a, therefore we’ve “used up” that character,

transitioning us to the appropriate state, in this case state 1. Now we look at

the rest of the word bb, and see if we meet the criteria for this new state. The

next character is b, and we see that the diagram is telling us, when we see a

b, go from state 1 back to state 1. So we do that, and now we’re left with one

last character, also b. Similar as before, that means we go from state 1 back

to state 1. At this point, we’ve “used up” the entire word, and we’re at the

8

final state, denoted by the double circle in the diagram. That means that the

word is accepted by the DFA, which means the word is in the regular expression

represented by the DFA. That is, we’ve verified that abb ∈ L(M), where M is

the DFA which represents ab∗. Formally, this acceptance can be represented by

the following sequence of transitions:

1. r0 = 0

2. r1 = δ(0, a) = 1

3. r2 = δ(1, b) = 1

4. r3 = δ(1, b) = 1 ∈ F

Now, what would it look like for a word to not be accepted? Let’s take bb to

be our word, and use the same DFA. Then at the very start, we would have to

transition to state 2, thus ending on a non-final state. Thus the word is not

accepted. Similarly, if our word was abba, then for the first three characters, we

would play the same game as before, but then after we accepted the final b, we

would have one final a, and have to, again, transition to state 2, so we don’t

accept that word. In both of these cases, we’ve verified that bb, abba 6∈ L(M).

And again, we can represent the rejection of bb as the sequence:

1. r0 = 0

2. r1 = δ(0, b) = 2

3. r2 = δ(2, b) = 2 6∈ F

9

3.3 Closure Properties

Since regular expressions (which represent regular languages) are equivalent to

DFAs, this gives us a visual way to see that regular languages are closed under

taking complement. That is, if L represents a regular language, then Lc = Σ∗\L

is also regular (remember that Σ∗ is all possible words over an alphabet). Why

is that the case? Below will be a rigorous proof, followed by an easier to follow

example.

Lemma 3.1. If L is regular then Lc is regular.

Proof. Let L be a regular language, and M be a DFA that accepts L. We know

that M = (Q,Σ, δ, q0, F). Thus, for all w ∈ L, there is a path from q0 to some

qf ∈ F . As well for all u 6∈ L, there is a path from q0 to some pf 6∈ F . Let

M̄ = (Q,Σ, δ, q0, Q\F). Since δ is a function, the path we get from w is unique.

Thus, M̄(w) will have the same path as M(w), except now qf 6∈ Q \ F (our

new accepting states). Similarly for u, we know that the final state for M(u)

is pf , which in M̄ is an accepting state, since pf ∈ Q \ F . Thus, M̄ accepts

precisely the words NOT accepted by M , and nothing more. Thus M̄ accepts

Lc, therefore Lc is regular.

Example: Suppose L = L(ab∗) as in Section 3.2. We know that all words

which are accepted by L must end at the accepting state. Therefore, if we turn

every accepting state into a non-accepting state, and every non-accepting state

into an accepting state, then we would have a DFA which precisely accepts

words which were not in the original language. Note that here it is important

that our DFA explicitly be complete.

10

Thus we can see that the automaton which accepts Lc is going to be:

0start 21a

b

b

a

a,b

Therefore, because we can express the complement of a regular language as a

DFA, and because DFAs are equivalent to regular language, the complement of

a regular language must also be regular, as we’d expect. An important conse-

quence of this then is that regular languages are also closed under intersection:

Theorem 3.2. If L and K are regular languages, then L ∩K is regular

Proof. Let L and K be regular languages. Then by DeMorgan’s Law, L ∩K =

(Lc ∪Kc)c. However, we know that Lc and Kc are regular (Lemma 3.1). We

also know that the union of two regular languages is also a regular (see Section

3.1). Finally, we must take the complement again, but since we’re taking it

from a regular language, the resulting language must still also be regular. Thus,

(Lc ∪Kc)c is regular, therefore L ∩K is regular.

This fact, that regular languages are closed under intersections, will lead

us to a very useful conclusion. However, please note that the method used to

prove that L ∩ K is regular is not the same method that will be practically

used to compute the intersection (which we will see in Section 4.2). If K and

L are NFAs(which will be explained in Section 4.1), the above method requires

converting them to DFAs (which can be exponential in cost) whereas the product

construction method explained further down does not (only having quadratic

cost).

11

4 Constructions on Regular Languages

4.1 NFA and Subset Construction

A related type of automaton is called a Non-deterministic Finite Automaton

(NFA). These are very similar to DFAs, except when leaving a state, there may

be more than one transition with the same symbol (thus non-deterministic).

Formally, this can be thought of as having δ represent a relation, as opposed to

a function. NFAs can also be specified by listing their transitions, that is, their

labelled edges. Take the following NFA as an example:

0start 1

b

b a

Above, the set of transitions would be {(0, b, 0), (0, b, 1), (1, a, 1)}. We can see

that if I take the word ba, I could do one of two things. One accepting path

might be to transition to state 1, then loop onto state 1, thus accepting the

word. Instead, I could loop onto state 0, but then I’d be stuck at state 0

needing to consume a b, but unable to do so. So it would seem that ba is both

accepted and not accepted by this automaton? That’s okay, since as long as

we can find at least one path, the word is accepted by the NFA. Now, it may

seem like NFAs are unimportant to our discussion of regular languages, but in

fact they are incredibly valuable. At first glance, it may seem that NFAs must

accepts strictly more languages than DFAs, and thus are outside the scope of the

regular languages. However, we will shortly show that in fact, DFAs and NFAs

are equivalent. This will be important when we want to use regular expressions

in any sort of computation. While it is easiest to understand this equivalence

via an example, it is worth understanding abstractly what is happening.

12

Suppose A is the NFA we want to convert to a DFA A′ over the alphabet

Σ. Let σ ∈ Σ, {p}, and {q1, q2, ..., qn} be states of A, with {p} being the start

state. We start by saying that (p) is the start state of A′. Suppose now that we

have the transitions (p, σ, q1), (p, σ, q2),..., (p, σ, qn) in A. Then our DFA A′ will

have the transition ({p}, σ, {q1, q2, ..., qn}). We now repeat this process, looking

at all transitions from the states q1, q2, ..., qn that share a common transition

label. Finally, if qf is a final state of A, then all states which contain qf in A′ are

also final states. This construction is called the subset construction. As stated

previously, the subset construction is easier to understand with an example. We

shall turn the previous NFA into an equivalent DFA.

Example: First we’ll start with the start state, writing as so:

{0}start

Next step, we see where all transitions of the NFA from state 0 go to. We can see

that there’s a transition b that loops back, and as well a transition b that goes

to state 1. We express these options by creating a state that is a combination

of both of those:

{0}start {0,1}

b

We now essentially repeat the above step, asking what transitions go out from

the states 0 OR state 1. We’ve already said that from state 0, b goes to either

state 0 or state 1. As well, we can see that state 1 has no other b transitions.

13

We can denote that via a loop:

{0}start {0,1}

b

b

Also notice that from state 1, if we see an a we transition ONLY to state 1.

Thus we need add another state:

{0}start {0,1} {1}

b

b

a

Almost done! We then check to see what transitions go out of state 1, and we

see that it’s only a that loops back onto itself. That is, it goes from state 1 back

to state 1. Thus, we need not add another state, but instead just a transition

like so:

{0}start {0,1} {1}

b

b

a

a

The very last thing we need to do is to add the final states, which is easy. Any

state that contains a final state (in this case, state 1) becomes a final state in

our new DFA. So the final DFA (which is equivalent to the original NFA) is:

{0}start {0,1} {1}

b

b

a

a

14

Which means that, after all that work, we can say that our original NFA

represents the following regular expression bb∗ + bb∗aa∗ = bb∗(ε + aa∗). As we

have shown, this process can be used to convert any NFA into an equivalent

DFA. Therefore, we can see that any language which is accepted by an NFA

is also accepted by a DFA. As well, any language accepted by a DFA is also

accepted by an NFA, since DFAs are just a special case of NFA. Thus, DFAs

are equivalent to NFAs, since they accept the types of languages.

You may now be wondering what the importance of this is, and in fact there

are a few. First it means we need not worry about the transitions going out

from the stats, since if we create an NFA, we can just convert it. As well, when

creating an automaton to accepts L(r), for some regular expression r, the au-

tomaton we end with will almost certainly be an NFA. Finally, and arguably

most importantly, note that the subset construction is just that, a construction

made of subsets of the NFA’s states. That means that if we have an NFA of

size n (here, we denote the size as being the number of states and transitions),

then to convert it to a DFA we may end up with an automaton of size up to

2n, that is, exponential. Therefore, it is clear that one would want to avoid

this technique as much as possible. However, this may be difficult, as when we

convert a regular expression to an automaton, it must be first converted to an

NFA, then to a DFA.

4.2 Product Construction

Another important construction is the product construction of two NFAs. Re-

member that regular languages are closed under intersection (see Section 3.3),

so we should be able to find an automaton that accepts the intersection. And

15

we can! Suppose we have two automata, A and A′, and we want to find A∩A′.

Let p, q be states in A and p′, q′ be states in A′. Now suppose x ∈ Σ (here the

alphabet we are concerned about is the intersection of the alphabet for A and

for A′). Then if (p, x, q) is a transition in A, and (p′, x, q′) is a transition in

A′, then ((p, p′), x, (q, q′)) is a transition in A ∩ A′. And if qf and q′f are final

states of A and A′, respectively, then state (qf , q
′
f) is a final state (note that

both states must be final states for it to be a final state in the new automaton).

Once again, the above description is much easier to understand with an ex-

ample: Suppose we have the following two regular expressions: a∗bb∗ and bba∗,

which are represented by the following two NFAs, respectively:

0start 1

b

a b

0’start 1’ 2’

b b

a

By inspection, we might be able to tell that the only word that they both share

is bb, but we will confirm that this is true via the product construction. We start

with a state that is the combination of the starting states of both automata,

like so:

{0,0’}start

We then look at all transitions out of both starting states in both automata,

and make note of all similar transitions between the two of them. That is, all

transitions from state 0 to state 1 which take in the same symbol. In this case,

we have the b transition from state 0 to state 1 in both automata, so we add

16

that going out from our new state {0,0’}:

{0,0’}start {1,1’}

b

Repeating the process, we see the only similar transition between states 1 and

1 is a b transition, though in this case they go to different states (one changes

states the other just loops). But that’s okay! We just add a new state to get

the following automaton:

{0,0’}start {1,1’} {1,2’}

b b

The final step is to find all of the new states that contain one final state from

BOTH automata, and that becomes the new final state. Therefore, a∗bb∗∩ bba∗

is accepted by:

{0,0’}start {1,1’} {1,2’}

b b

Which confirms our intuition that it is just bb. However, this gives us a concrete

way, that is to say, an algorithm, for taking the intersection of two automata.

And importantly, we can do this much quicker than the subset construction.

Let n be the number of states and transition of our DFA (that is, the size).

Then, this new DFA will have around n2 new states, as oppose to the subset

construction which was on the order of 2n. This is because instead of taking

all possible subsets of the states, our worse case scenario only uses all possible

pairs of states.

17

5 Transducers

A special type of automata (different from both NFAs and DFAs) are transduc-

ers. These have the same “form” as regular automata, but instead of checking

if a given word is in a certain regular language, a transducer takes a given word,

and outputs a set of words (though it is possible that this set is empty). For

example, take a transducer t over Σ = {a, b, c} that takes a word, and changes

every instance of a to b. For example, t(abca) = {bbcb}. How would one describe

such a thing? Probably how you would imagine:

0start a/b

b/b

c/c

So if we take the word abca, the first a is used to loop over state 0. However, in

doing so, we must substitute the a for a b (that’s what a/b means). That is, a

is the input label and b is the output label. Next up are b and c which we just

loop over, since every instance of b or c gets replaced with an instance of b or

c, respectively. Finally we hit the last a, where we loop again, consuming the

a and outputting a b. Thus, our new word is bbcb. Technically our transducer

outputs the set {bbcb}, however when it is just a singular word it is convenient

to talk about the word directly. An important distinction between transducers

and NFAs is that the transitions for a transducer have an input label and an

output label, as oppose to an NFA which has only an input label.

18

A formal definition for a transducer T is similar to that of a DFA, but

is a 6-tuple instead of a 5-tuple (see Section 3.2) and looks like so: T =

(Q,Σ,Γ, I, F, δ). Like before, Q is a finite set of states, and Σ is the input

alphabet. This is opposed to Γ, which is the output alphabet, and can be dif-

ferent to Σ (smaller, larger, or completely separate). We then also have the set

of start states I ⊂ Q (that is, we can have multiple start states, however for our

purposes one start state will be sufficient), as well as F ⊆ Q, which is the set

of final or accepting states. Finally, we have δ which is the transition relation,

defined as δ ⊆ Q× (Σ ∪ {ε})× (Γ ∪ {ε})×Q, where once again ε is the empty

string (this allows us to add or delete symbols from our word). Note that δ is a

relation and not a function, since it may be non-deterministic.

As noted, a transducer need not, and often will not, be deterministic. In that

case, we really do get as output a set of words, that being all the possible paths

the word could have taken through the transducer. This new set is regular,

assuming that the input language is regular. It would stand to reason then that

you should be able to take an entire regular language, and run that through a

transducer, to get a new (modified) regular language. In fact, we can, by using

an altered version of the product construction.

Example: Let’s use the above transducer (which changes all a’s into b’s) and

run it on the following language L(ba∗b), defined by this automaton:

0’start 1’ 2’

b

a

b

For convenience, we’re going to simplify, our alphabet to just {a, b}, removing

all the c transitions. As before, our first step is to create a start state from the

19

start state of both automata, and see which transitions they have in common.

In this case, they both have transitions for the character b going into both state

0 from the transducer and state 1′ from the DFA. Graphically, we can represent

it like so:

{0,0’}start {0,1’}

b

Here is now a very important point. While in the standard product construction

we need only worry about transitions on similar symbols, because the transducer

also produces an output, that must also be reflected in the final automaton.

That is, we use the input label of the transition for matching, but when cre-

ating the automaton, we must create a new transition which has as label the

output label of the transducer, since we’re creating a new regular language, not

a transducer. This will be much easier to see via the next step.

In this step, we consider both transitions from state 0 and state 1′. We have

both a loop over state 0 with input label a, altered to a b, as well as a loop over

state 1′ via a. Both of these combined give us this:

{0,0’}start {0,1’}

b

b

Note how we changed the a transition to a b, as that is what the transducer

does, so that must be reflected in our new automaton. Finally, we look at our

new states, and see if we need to add any more. From state {0, 1′} we use the

same a/b transition to work with over state 0, so that will be added. Also, we

notice that there are no transitions out of state 2, so that is done. Last step

20

is checking which of our new states contain the final states of both automata,

and designating that as a new final state, similarly to the product and subset

constructions from before. Thus, our final automaton looks like this:

{0,0’}start {0,1’} {0,2’}

b

b

b

Now, this may seem like a pretty trivial example. And it is. All we’ve done is

take the language L(ba∗b) and converted it to L(bb∗b), that is t(ba∗b) = L(bb∗b).

However, the idea is incredibly powerful. This means that if we have a certain

“property” defined by a transducer t, we can take an automaton A and ask what

happens if we run A through t, which will be explained in Section 6.1. That is

we can ask questions about the regular language t(A).

21

6 Theoretical Aspects of LaSer

6.1 Properties and Property Satisfiability

The primary purpose of LaSer is deciding property satisfiability for a given

regular language, thus before we can discuss that it is important to build up to

what that term means. Please note that definitions 1 and 2 are from [4].

Definition 1. Let t be a transducer and L be a regular language. Then we say

that L is t-independent if for all u, v ∈ L and v ∈ t(u) that implies that u = v.

This is sometimes also stated as L satisfying the property t. Thus, we can

think of a transducer t as representing a language property. The only problem

with this is that it isn’t practical to check every word, especially if the language

is infinite. However, we can simplify our search in certain special situations.

For example, if a transducer is input-altering.

Definition 2. Let t be a transducer over an alphabet Σ. t is input-altering if

∀w ∈ Σ∗, then w 6∈ t(w).

Lemma 6.1. Let t be an input-altering transducer and L a regular language.

Then L is t-independent, if and only if t(L) ∩ L = ∅

Proof. 1. Let w ∈ L and K = t(w). Since L is t-independent, in general we

would have that K ∩L = {w}, since if we had another u ∈ L also being in

K, u = w. However, since t is input-altering, we also know that w 6∈ K,

thus in actuality, K ∩ L = ∅. We now note that t(L) = ∪w∈Lt(w), thus

our expression t(L)∩L is made up of a bunch of unions of the empty set.

Thus t(L) ∩ L = ∅.

22

2. Suppose t(L) ∩ L = ∅. It is sufficient to show that it is not possible to

have u,w ∈ L and v ∈ t(w). Let w ∈ L. As well, since t(L)∩L = ∅, there

is no v ∈ L such that v ∈ t(L), since then the intersection would contain

v and be non-empty.

Lucky for us, we know that t(L) ∩ L = ∅ can be tested quickly, as we need

only use the product construction. An example may now be helpful.

Example: Let L = L(a∗b) = {b, ab, aab, aaab, ...} and K = L(ab∗) =

{a, ab, abb, abbb, ...}. Within LaSer there are pre-set transducers, which rep-

resents certain common properties. One of these properties is called the prefix

code, which checks if there are any words in the language which are prefixes of

other words, also in the language. For this property, the transducer, let’s call it

px, is as follows (note that px is non-deterministic):

0start 1

σ/σ

σ/ε

σ/ε

At a high level, we can see that this transducer takes in a word x and then

outputs a set of words, which are the non-trivial prefixes of the original word.

For example px(aaba) = {aab, aa, a, ε}. Note that for this example, we are

working over Σ = {a, b}, and σ ∈ Σ, that is, it is any letter in that alphabet.

This allows us to generalise the prefix code transducer over other alphabets.

This is input-altering, since when we run a word of length n through it, out will

pop a word of length at most n − 1, or else it wouldn’t be a prefix (note that

technically the word w is a prefix of the word w, however we ignore it) and thus,

∀x ∈ M,x 6∈ px(x) (note that M is any non-empty regular language), so px is

23

input-altering, and our search is simplified. Without even looking at the actual

implementation of the process, we can see that L satisfies the property. Why?

Note that besides the word b, no other word starts with a b. Thus, b satisfies

the property. Note also how ab is the only word in L which contains a b in the

second position. This repeats on with aab being the word word to start with

a b in the third position, etc. Thus, it is clear that L satisfies the prefix code

property. For K, we can see that it does not satisfy the property, since a is a

prefix of ab (note that a is in fact a prefix of all the words in the language, but

it is sufficient to just find one such example).

We can also see concretely that L does satisfy the property by checking that

px(L) ∩ L = ∅. Reminder that the transducer looks like this:

0start 1

σ/σ

σ/ε

σ/ε

Now let’s take the following DFA for the language L:

0’start 1’

a

b

To see if our language L satisfies the property, we must first perform the product

construction to get px(L), which becomes the following NFA:

{0,0’}start {1,1’}

a

ε

24

Note that there are algorithms to remove the empty transitions [2] (also

called ε-transitions), so the above NFA becomes the following DFA:

{0,0’}start

a

Now that we have the DFA px(L), we must now take the product construction

of px(L) ∩ L, which will return the following DFA

{0’,{0,0’}}start

a

When we take the product construction, we find that while L has transition out

of the state via b to an accepting state, px(L) has no b transitions. Therefore,

they never “share” an accepting state, which means px(L)∩L does not have an

accepting state, as we can see from the automaton. Thus we’ve confirmed that

px(L) ∩ L = ∅, and therefore as we predicted, L does satisfy the prefix code.

That is, there is no sequence of transitions which leads to an accepting state, in

this case since no accepting state exists.

Conversely, we’ll check that px(K) ∩K 6= ∅. Recall that K = L(ab∗) can be

represented like so:

0start 1

a

b

25

First note that px(K) can be represented by the following automaton:

{0,0’}start {0,1’}

{1,1’}

a

ε

ε

b

ε

Which we can simplify to the following by removing ε-transitions:

0”start 1”

a

b

If we then take px(K) ∩K we get this final automaton:

{0, 0′′}start {1, 1′′}

a

b

This is precisely the automaton K that we started with, and evidently it is

non-empty. Thus K does not satisfy the property. However, we don’t have a

way of knowing what word “breaks” this property satisfaction. Thus, we will

have to develop some new machinery to create a witness, that is, a word in

the language that does not allow the property to be satisfied, which would be

helpful information.

Remember that the above “tests” are only valid if t is input altering. However,

this does not give us any information as to what the problem is, so we need to

introduce some more notation. Let t be a transducer and L a regular language.

Then we have the two following definitions:

26

Definition 3. The transducer t ↓ L : y ∈ (t ↓ L)(x) if and only if y ∈ t(x) and

x ∈ L

Definition 4. The transducer t ↑ L : y ∈ (t ↑ L)(x) if and only if y ∈ t(x) and

y ∈ L

Both t ↓ L and t ↑ L are themselves transducers, the former being the transducer

t with inputs limited to words in L and the latter being the transducer t with

outputs limited to words in L. Thus, in a sense, we can take our transducer t

and limit it (in both input and output) to words found only in L. As well, we

need to define what a relation is.

Definition 5. If t is a transducer, then R(t) = {(x, y) : y ∈ t(x)}.

Our original condition to test satisfiability can be expressed by the following

equation:

R(t ↓ L ↑ L) = ∅.

This is great, as it means that if R(t ↓ L ↑ L) 6= ∅, then we can find a witness

pair that is causing us our troubles, as well as not requiring t to be input-altering.

An important question one may ask is how exactly one computes either t ↓ L

or t ↑ L. The answer, as it always seems to be, is via product construction.

However, while before we took a transducer and an automaton and got as out-

put a new automaton, we will now be outputting a transducer. Below will be

an explanation for t ↓ L. A very similar computation can be made to calculate

t ↑ L. Abstractly, suppose we have a transition from t of the form (p, x/y, q),

which means if you’re at state p with input symbol x, change it to symbol y

and move to state q. Now suppose in our automaton L we have the transition

(p′, x, q′), where x in both cases are the same. Then our new transducer t ↓ L

27

will have transition ((p, p′), x/y, (q, q′)) [9].

Example: Let L be the language represented by a∗b, which as an automaton

can be viewed as follows:

0’start 1’

a

ε

b

ε

Note that the ε-transitions do not change the behaviour of the automaton, but

they will be necessary later on. This time, we want to check if any of the

words in this language are the suffix of any of the other words. We will use the

following transducer, sx:

0start 1

σ/ε

σ/ε

σ/σ

Note that sx(w) = all proper suffixes of w. To get sx ↓ L, we need to start from

both start states of our automataj as before:

{0, 0′}start

Now, from state 0′, we just loop over if we see an a, and in state 0, we loop

over, replacing with an ε. We can also see that from state 0, we can replace a

with ε, and move to state 1. From state 1, we can see that we don’t replace any

letters, and again on state 0′, if we see an a, we loop over it. Thus we get the

following new states:

28

{0, 0′}start {1, 0′}

a/ε

a/ε

a/a

As we will see, we have dealt with all the a transitions. As for b transitions,

from state 0 we know that we will be deleting it, and from state 0′, we can only

transition to state 1′, however this transition will ultimately not be necessary.

We can also see that from state 0, we can instead delete b and transition to state

1. Finally, from state 1 we recall that we don’t change the letter, and loop back

to state 1, and from state 0′ we simply transition to state 1′. All this means

that we can add two new states and three new transitions, as follows:

{0, 0′}start {1, 0′}

{0, 1′} {1, 1′}

a/ε

a/ε

b/εb/ε

a/a

b/b

Finally we notice that the state {0, 1′} is unnecessary since there are no transi-

tions out of it, and it is not an accepting state. We can denote state {1, 1′} as

an accepting state for our final automaton sx ↓ L:

29

{0, 0′}start {1, 0′}

{1, 1′}

a/ε

a/ε

b/ε

a/a

b/b

Now that we have restricted the input of our transducer to words in L(a∗b), we

now want to restrict its output to those same words, denoted as (sx ↓ L) ↑ L.

Doing so will yield the following transducer:

{{0, 0′}, 0′}start {{1, 0′}, 0′} {{1, 1′}, 1′}

a/ε

a/ε b/b

a/a

From here, we get the following pair of values, (ab, b) with the following path:

({{0, 0′}, 0′}, a/ε, {{1, 0′}, 0′})→ ({{1, 0′}, 0′}, b/b, {{1, 1′}, 1′})

This means, in our case, that b is a suffix of ab, which are both in L(a∗b), and

thus it does not satisfy our property. Importantly though, this technique gives us

a way to test for property satisfiability, while also explicitly giving us a witness.

It is easy to find a witness, as all we need to do is find a path from a start state

and an accepting state. Our input word will just be a concatenation of all the

input labels on our path, and our output word will be the concatenation of all

the output labels (or simply passing our input word through the transducer).

30

6.2 Universality and Maximality

Universality is a decision problem that asks whether a given regular expression

or NFA represents all possible words over the alphabet. For example, L((a+b)∗)

represents all words over the alphabet a, b. However, the language L(a∗) is not

universal, as it does not contain any words with a b. Thus, given a regular

language L and an alphabet Σ we can ask: L = Σ∗? Since regular languages

are closed under complements, this is equivalent to the statement: Lc = ∅.

Note also that since regular languages are closed under intersection, we can

restrict our language to any regular subset of Σ∗. That is, if L, M are regular

languages, and L = Σ∗, then L ∩M = Σ∗ ∩M = M . Now suppose that we

want to see if a given language is maximal with respect to a given property.

Definition 6. Let L be a regular language and t a transducer. If ∀w ∈ Σ∗,

w 6∈ L, L ∪ {w} is not t-independent, then L is maximal with respect to t.

First, we need to make sure the language actually satisfies the property t.

After we’ve checked that it does satisfy the property, our high level strategy

will be to check whether all the words that we can get out from the transducer,

t(L), as well words can form words in our language, t−1(L), as well as the L

itself form Σ∗. That is, does t(L) ∪ t−1(L) ∪ L = Σ∗? We can then take the

complement on both sides to simplify to t(L)c ∩ t−1(L)c ∩ Lc = ∅. And since

on both sides we have regular languages, we can again restrict the alphabet

to whatever other regular expression we want. At this point, an example may

be helpful. Let’s take our language L = L(a∗b) from Section 6.1, and a new

language K = L(ab∗a) = {aa, aba, abba, ...}. We know from before that L

satisfies the prefix code, and similarly it can be shown that K also satisfies that

property. Thus, we can also ask, are either L or K maximal with respect to px?

Indeed, L is maximal, however K is not. That is because we can add the word

b to K. Since b is not the prefix of any of the words in K (as they all start with

31

an a), and none of the words are prefixes of it (for a similar reason). Therefore

K is not maximal with respect to px.

32

7 Computational Complexity

7.1 Big O Notation

Big O notation is a corner stone of computational complexity theory. Formally,

we have that a function g(n) is O(f(n)) if there exists a constant c such that

g(n) ≤ cf(n) for all non-negative values of n [1]. At a high level, it attempts to

a describe the worst case performance for a certain algorithm. Some well known

big O complexities are:

1. Bubble Sort: O(n2)

2. Merge Sort: O(nlog(n))

3. Solving the traveling salesman problem: O(n22n) (Held-Karp algorithm)[3]

For our purposes, the specifics aren’t exactly important. What is important is

understanding that this is a measure of how well an algorithm scales in time

or space with different amounts of inputs. In our case, we want to make a

distinction between those algorithms which have a polynomial big O, something

of the form O(nk), versus something which is exponential, O(2n). This all to

say, problems which have a O(2n) are much more time and/or space consuming

then O(nk), since for large enough n, 2n � nk.

7.2 Complexity Classes and the Problem with Maximality

Keeping in mind this polynomial versus exponential division, we can create

classes of problems which have a similar type of complexity. However, it should

be noted that these complexity classes deal with decision problems. That dis-

tinction isn’t very pertinent to our discussion, though I’d be remiss not to men-

tion it. One of the “easiest” types of problem to solve are in a class of problems

33

with a polynomial time algorithm, which is usually called P , or more explic-

itly P -time. In fact, there are many hierarchies of classes, the most famous of

which are EXPTIME, PSPACE, NP , and P . Without going into too many

details, suffice to say, EXPTIME is all languages which can be decided in at

most an exponential amount of time, PSPACE are those languages/problems

which can be solved using at most a polynomial amount of space (but possibly

an exponential amount of time). NP is those which have a non-deterministic

polynomial time algorithm to solve (essentially, it is those problems which are

difficult to solve directly but it is easy to check if a given answer is correct),

and then finally P , which as previously discussed, take a polynomial amount of

time to solve.

For most of these classes we have an associated concept of completeness.

That is, a problem is complete with respect to its class if all other problems in

that class can be reduced to it. For example, we have a set of problems called

NP -complete, which are the hardest problems in NP . A classic example is

3-SAT (for more information see the Cook-Levin Theorem). In practice, that

means that all problems in NP can be reduced to any of the NP -complete

problems. In PSPACE we have a similar concept called PSPACE-complete,

which are the hardest problems in PSPACE. Why is this important? Well,

being as PSPACE are those problems solvable in a polynomial amount of space,

we can imagine them as the most reasonable problems to solve. It doesn’t

mean that they are easy (they aren’t), but they can (in theory) take up less

resources than EXPTIME. Thus, problems which are PSPACE-complete can

be viewed as the most difficult of the “reasonable” problems. The importance

here is that deciding maximality (or in general, universality) is known to be

PSPACE-complete. Asking if the intersection of m regular languages is empty

34

is also PSPACE-complete [7]. An interesting point to make here is that even

if Σ = {a} (a single letter), deciding if L = Σ∗ = a∗ is NP -complete [5]. Which

means that, in general, and for a complex enough language or property, it may

take a very long time to compute the answer. This may become an issue as

LaSer is an active server, which requires resources to run and operate. Thus it

would be nice if we didn’t have to hog all the resources to ask a single question.

Thus, pseudo-maximality was developed!

35

8 Pseudo-Universality and Pseudo-Maximality

8.1 Pseudo-Universality: Why Even Bother?

As stated before, checking whether a given regular language is maximal is expen-

sive (see Section 7.2). However, in some practical scenarios, we need only know

if the language is approximately maximal. If we thus relax our notation of max-

imality, we can try and answer a different problem called pseudo-maximality,

which decides if a regular language is p%-maximal. Now, what does it mean

for a given language to be p%-maximal? Suppose I only care if my language

is 95%-maximal. Remember that a given language is maximal (with respect

to a given property) if we cannot add any new words to it that also satisfy

the property. If I’m not bothered by the idea that my language may have a

small percentage of not being maximal, we can be clever and make the question

much more efficient to solve. However, since the two are intimately related,

we shall take a quick detour to discuss pseudo-universality. That is, we want

to check with 90%, 95%, 99%, etc. certainty that our language L is Σn. We

shall first focus on finite languages. Let As be a generic alphabet of the form

{0, 1, 2, ..., s − 1}, for some s, and M an NFA. Then if M accepts only words

from Ans , we say M is a block NFA. First, we shall focus our attention on words

from Ans , that is, words of a fixed length n ∈ N. That is L ⊆ Ans is p%-universal

if |L|
|As|n ≥

p
100 .

36

The following is the pseudo-code for one possible way of testing/deciding

p%-universality for a block NFA:

UnivBlockNFA(a, ε):

/* a is an automaton, ε is our desired precision */

n := the block length of L(a);

l := d 1
ε2 e;

for i = 0; i < n; i+ + do

w = selectUnif(As, l);

if w 6∈ L(a) then

return False;

else

end

return True;

Essentially what we are doing is checking if we’ve found a word not in our

original language, or until we’ve iterated enough times that we are happy with

the result. As well, we have the function selectUnif which selects a word of

length l, over the alphabet {0, 1, 2, ..., s− 1} using uniform distribution. If L is

universal, then our algorithm will always return that it is universal. That is,

we won’t get any false positives. However, it is still entirely possible to have a

non-universal language, and iterate a million times, and decide that it is pseudo-

universal. That being said, as we iterate more, the probability that that is the

case decreases. It can be shown that this probability decreases with the number

of tries quadratically to zero [5].

8.2 Proofs

You may recall that all of our technical solutions are based on finding a word in a

language that ought to be empty. While we showed above that pure universality

and pure emptiness are logically equivalent, we should check that the same holds

37

true in the pseudo case. That is, we want to show that a regular language is

p% − universal if and only if it is (1 − p)% − empty. Recall that for regular

languages mi, m1 ∩ m2 ∩ ... ∩ mn = ∅ ⇐⇒ mc
1 ∪ mc

2 ∪ ... ∪ mc
n = Σ∗. In

general, we want to check that number of words in our language
total number of words ≤ p. Also note

that that we will be proving this for an arbitrary language. Since when we pass

a regular language through a transducer we get out a regular language, we need

only check that our condition holds when taking intersections. First we shall

show that for a finite language, this holds.

Lemma 8.1. If L1, L2, ..., Lm are subsets of A = {a1, a2, ..., am}n, then |L1∩L2∩...∩Lm|
|A|n ≤

p ⇐⇒ |Lc
1∪L

c
2∪...∪L

c
m|

|A|n ≥ 1− p

Proof. Done in two parts, first going to the right.

1. Let |L1∩L2∩...∩Lm|
|A|n ≤ p, 0 < p < 1. Then we know that

|(Lc
1∪L

c
2∪...∪L

c
m)c|

|sn| =

|sn\Lc
1∪L

c
2∪...∪L

c
m|

|A|n =
|s+A|n−|Lc

1∪L
c
2∪...∪L

c
m|

|A|n = 1− |L
c
1∪L

c
2∪...∪L

c
m|

|A|n ≤ p there-

fore 1− p ≤ |L
c
1∪L

c
2∪...∪L

c
m|

|A|n

2. This direction is incredibly similar. Suppose
|Lc

1∪L
c
2∪...∪L

c
m|

|A|n ≥ 1 − p then

|Lc
1∪L

c
2∪...∪L

c
m|

|A|n = |(L1∩L2∩...∩Lm)c|
|A|n = |sn\(L1∩L2∩...∩Lm)|

|sn = |A|n|−|L1∩L2∩...∩Lm|
|A|n =

1− |L1∩L2∩...∩Lm|
|A|n . So, 1− |L1∩L2∩...∩Lm|

|A|n ≥ 1− p thus, |L1∩L2∩...∩Lm|
|A|n| ≤ p

Therefore, if a given regular language is p% − empty, it’s complement is

(1 − p)% − universal, which is what we would expect, given that language is

finite. That is, this seems to be a concept that we can in fact extend to the

pseudo case. Now that we have an understanding of the finite case, we can now

generalize this for infinite languages. Let W : Σ∗ → [0, 1], Σx∈Σ∗W (x) = 1

(that is, W is a probability distribution). We want the following lemma:

Theorem 8.2. W (L1 ∩ ... ∩ Lm) ≤ p ⇐⇒ W (Lc1 ∪ ... ∪ Lcm) ≥ 1− p

38

Proof. For this, we must note that W (Lc) = 1−W (L), as W (L) +W (Lc) = 1

(by definition)

1. Suppose W (L1 ∩ ... ∩ Lm) ≤ p. Then W (L1 ∩ ... ∩ Lm) =

W ((Lc1∪...∪Lcm)c) = 1−W (Lc1∪...∪Lcm) ≤ p. Thus W (Lc1∪...∪Lcm) ≥ 1−p

2. Suppose W (Lc1 ∪ ...∪Lcm) ≥ 1− p. Then W (Lc1 ∪ ...∪Lcm) = W ((L1 ∩ ...∩

Lm)c) = 1−W (L1 ∩ ... ∩ Lm) ≥ 1− p. Therefore W (L1 ∩ ... ∩ Lm) ≤ p

And thus, we can see that p%−empty is equivalent to (1−p)%−universal,

which is what we should expect, in both the finite and the infinite case. Which

is great for us, as it allows to focus just on p% − empty, as that allows us to

create a witness, or counter-example.

8.3 Pseudo-Maximality: There’s More?

Now the question is, is there a similar process for discussing maximality? Per-

haps a pseudo-maximality? We shall, as before, restrict ourselves to the finite

case, that is to a block code. Suppose we have some transducer t which de-

scribes a property, and an automaton M which satisfies this property, and a

generic alphabet As, with L(M) ⊆ Als, for some l. Thus, to show that M is not

maximal, we need to find w ∈ Als \ L(M) such that L(M) ∪ {w} satisfies the

property t. It would be convenient as well to know what that this word w is,

so that we can adjust accordingly. In this case, our language is p%-t-maximal

if
|Al

s∩(t(M)∪t−1(M)∪M)|
|As|l ≥ p [6].

39

One possible randomized algorithm that achieves this, is the following:

pseudoMax(M , t, n):

/* M is an automaton, t is our property (transducer), and n

is the number of iterations */

l := length of the words in L(M);

for i = 0; i < n; i+ + do

w := selectUnif(As, l);

if (w 6∈ L(M) and SAT(L(M) ∪ {w}, t) then

return w ;

else

end

return None;

Here, As is, as before, our generic alphabet {0, 1, 2, ..., s− 1}. Similarly, the

function selectUnif simply takes a randomly generated word of length l to be

tested, as in the UnivBlockNFA. As well, the SAT simply checks if the given

language satisfies the given property, as discussed in section 6.1. The final part

of the algorithm takes this new randomly generated word, and checks if after we

add it to our original language, the language still satisfies the property. If we

can find a w 6∈ L(M), then we know that M is not maximal. Testing whether

a given w is in L(M), and adding a given w to L(M) are standard methods in

automata software, for example FAdo [8]. Recall that |M | is the total number

of states and transitions in the automaton. If M is a DFA, then these methods

take time O(|M | + |w|). Moreover, since M is a block automaton of length l

and |w| = l, we have that |M | + |w| = O(|M |). Essentially what we are doing

is checking if our language satisfies the property over and over again, picking

new words each time. Similarly to pseudo-universality, if L(M) is maximal,

our algorithm will return that result. Recall that checking for maximality is

PSPACE-complete, as well. The time complexity of the above algorithm is

40

O(n|M |2|t|) [6], where, |t| is the total number of states and transitions. Im-

portantly, this is polynomial, much better than our, possibly exponential result

from before.

Now we discuss that we can actually do better. Notice how in pseudoMax,

we have to test for property satisfiability every time, which in practice can be

a bit expensive [6]. This is in part because we need to run the product con-

struction on L(M) ∪ {w} and t on every iteration. We could, instead, do some

of the hard work at the beginning, by only creating one new automaton once.

That is to say, instead of checking for satisfiability every time, we can create

the new automaton N = (t∪ t−1)(M)∪M , which we know should be universal

(see Section 6.2). Note that taking the union of two automata can be done by

creating a new start state, then creating an ε-transition to the start states of

the two other automata. Since we know how to remove ε-transitions, this is fine

[2]. Thus, our new algorithm need only check if some w 6∈ L(N). Thus, the

above algorithm can be modified as follows:

betterPseudoMax(M , t, n):

/* M is an automaton, t is our property (transducer), and n

is the number of iterations */

N := (t ∪ t−1)(M) ∪M ;

l := length of the words in L(M);

for i = 0; i < n; i+ + do

w := selectUnif(As, l);

if (w 6∈ L(N)) then

return w ;

else

end

return None;

41

As we can see, in the iterative step here, we only check if our word w belongs

to the language, which can be done in O(|w||N |) = O(l|N |). As well, computing

N , which need only be done once, can be done in O(|M ||t|). Thus, the time

complexity for the whole algorithm is O(nl|M ||t|). Note that in general, this

will be more efficient than our previous attempt, because in general |M | � l.

42

9 Conclusion

As one can see, pseudo-maximality is a practical answer to a theoretical ques-

tion. While it would be preferred to feasibly check for maximality efficiently,

being a PSPACE-complete problem, this is not likely to be the case. How-

ever, using techniques related to pseudo-maximality, and other randomized al-

gorithms, we know that we can get as high a confidence as we want for a given

property maximality. Like most things in life, this is a gentle game of balance

between absolute certainty and use of resources. I hope that by the end of this

paper you would agree that pseudo-maximality is an acceptable way to test for

such an attribute, while also understanding how it works, and having confidence

that it will in fact do its job.

In terms of future research, we should address the problem of pseudo-maximality

for automata accepting infinite languages. In this case, it seems that random

words would be picked according to a chosen probability distribution. What

methods could be used, or which probability distributions give the best results

are still open for discussion.

43

References

[1] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and

Analysis of Computer Algorithms. Addison-Wesley Publishing Company,

1974.

[2] David Mix Barrington. Lecture #22: From λ-nfa’s to nfa’s to

dfa’s. https://people.cs.umass.edu/∼barring/cs250s13/lecture/22.pdf, 04

2013. University of Massachusetts Amherst.

[3] Gregory Gutin, Abraham Punnen, Alexander Barvinok, E. Gimadi, and

Anatoliy Serdyukov. The traveling salesman problem and its variations.

Kluwer Academic Publishers, page 33, 06 2001.

[4] Stavros Konstantinidis. Applications of transducers in independent lan-

guages, word distances, codes. In Descriptional Complexity of Formal Sys-

tems, volume 10316, pages 4,5, 2017. Lecture Notes in Computer Science.

[5] Stavros Konstantinidis, Mitja Mastnak, Nelma Moreira, and Rogério Reis.

Deciding approximate nfa universality and related problems. Unpublished

manuscript.

[6] Stavros Konstantinidis, Nelma Moreira, and Rogério Reis. Randomized gen-

eration of error control codes with automata and transducers. RAIRO -

Theoretical Informatics and Applications, 11 2018.

[7] Klaus-Jörn Lange and Peter Rossmanith. The emptiness problem for inter-

sections of regular languages. volume 629, pages 1–9, 2005. Lecture Notes

in Computer Science.

[8] Rogério Reis and Nelma Moreira. Fado - v.1.3.5.1.

http://fado.dcc.fc.up.pt/software/, 2011–2018.

44

[9] Meng Yang. Application and implementation of transducer tools in answer-

ing certain questions about regular languages. Master’s thesis, Saint Mary’s

University, 12 2012.

45

