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Abstract

“Graph Attention Networks for Point Cloud Processing”

By Sumesh Thakur

Three-dimensional point cloud datasets are becoming ubiquitous due to the availab-
ility of consumer-grade 3D sensors such as Light Detection and Ranging (LIDAR),
and RGB-D cameras. Recent advancements in 3D deep learning has dramatically im-
proved the ability to recognize physical objects and interpret the indoor and outdoor
scenes using point clouds acquired through different sensors. This thesis focuses on
deep learning based techniques for point cloud processing. We propose novel archi-
tectures leveraging graph attention networks for point cloud-based object detection,
classification, and segmentation. The proposed architectures work on point cloud
scans directly by constructing a connected graph. For point cloud detection, we
use the concatenation of relative geometric difference and feature difference between
each pair of neighbouring points in the graph. To improve the performance of object
detection, we introduce a distance-aware down-sampling scheme for object detection
space. For point cloud segmentation and classification, we employ a global aware
attention module using global, local, and self feature information. The experiments
on different datasets (KITTI, ShapeNet, ModelNet, and Semantic3D) show that our
methods yield comparable results for object detection, part segmentation, semantic
segmentation, and classification.
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Chapter 1
Introduction

1.1 Introduction
Deep learning methods have shown to be successful in tackling computer vision
problems such as image classification [1], object detection [2, 3], and face recognition
[4]. With the advancements 3D sensors hardware, there is a growing interest in
understanding 3D data employing deep learning techniques. Many attempts have
been made to expand the convolutional architecture, which has shown to be quite
successful in interpreting 2D images, to 3D data. The output of 3D sensors, on the
other hand, is frequently a collection of 3D points representing x, y and z coordinates
and properties (reflectance value, RGB values etc.), combined referred to as point
clouds. Point clouds have tons of applications in robotics, autonomous driving,
and virtual reality based systems. Point clouds, unlike 2D images, do not have a
regular grid and so lack the translational-invariant structure that enables convolution.
Raw point clouds are frequently translated to another representation such as 3D
voxel grids [5, 6] or rendered 2D images [7]. However, these conversions are often
irreversible, and tear down the local geometric relationship between points in the
original point cloud, which makes it difficult to use 2D processing methods on point
cloud data. There exists many classic computer vision tasks, many of which have
been successfully tackled using deep learning frameworks. In this thesis, we focus on
a subset of these tasks for 3D point clouds as listed below.

Detection Object detection is a computer vision technique that deals with distin-
guishing between objects in an image, video or point cloud scan. Object detection
consists of two parts i.e., object classification and localization of object using bound-
ing box. Object classification deals with the process of predicting the correct label
of object whereas localization deals with regressing the coordinates of bounding box.
Figure 1.1 visualizes an example of object detection.
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Figure 1.1: An example of object detection [5] on KITTI dataset.

Classification Object Classification refers to a type of labelling where an image,
video or a point cloud scan is assigned certain concepts, with the goal of answering
the question, “What is in this image or video or point cloud?”. A point cloud scan
can be classified into a number of categories based on the geometric representation
of the scan. Figure 1.2 shows the label predictions by Pointnet [8] architecture.

Figure 1.2: An example of object classification [8] on Modelnet-40 dataset.

Segmentation Segmentation is a type of labelling where each point in a point
cloud scan is labelled with given concepts. Here, the whole scan is divided into
groups which can then be labelled and classified, with the goal of simplifying a point
cloud scan or changing how a point cloud is presented to the model, to make it easier
to analyse. Segmentation models provides the exact outline of the object within a
point cloud scan. That is, point by point details are provided for a given object, as
opposed to classification models, where the model identifies what is in a point cloud
scan, and detection models, which places a bounding box around specific objects.
Figure 1.3 shows an example result from PointCNN [9]. 3D segmentation can be
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further divided into two types, semantic segmentation and part segmentation. Se-
mantic segmentation focuses on predicting labels of different objects in a surrounding,
whereas part segmentation subdivides an object into different parts (i.e. wings of a
plane, legs of a chair etc) and predicts their labels.

Figure 1.3: An example of object segmentation [9].

1.2 Challenges
Extraction of meaningful information from 3D scans is a fundamental challenge in the
field of computer vision. Much like the two-dimensional (2D) image understanding,
3D understanding has greatly benefited from the current technological surge in the
field of machine learning. However, 3D processing algorithms are not as precise as
2D processing algorithms. The main properties in point clouds that make it difficult
to learn meaningful features are as follows:

1. Unordered and lacks regular structure: 3D data, unlike 2D image data,
usually lacks a regular structure. A typical point cloud scan is an unorganized
collection of points that is not localised in the same way that 2D data is, as
visualized in Figure 1.4.

2. Concept of relative neighbourhood: Point clouds are R3 subspaces with
a distance metric attached. A meaningful subset is formed by a collection of
points, and feature representations should reflect this property.
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Figure 1.4: An example of unordered point cloud scan [8].

Figure 1.5: As evident in this visualization, the idea of relative neighbourhood can
be very uncertain [10].

3. Affine invariance: Feature representations should be invariant to non-deforming
rigid transformations (rotation and translation) of the whole point cloud as
visualized in Figure 1.6.

4. Sparsity: When compared to 2D data, this is by far the most differentiating
feature of point clouds. The point cloud is contained in a 3D volume that is
not densely packed. The local density of point clouds is considerable, yet the
overall volume occupied by the points is quite low. As a result, imposing a grid
on a point cloud and utilising 3D convolutions is computationally expensive
because this approach will be processing on empty voxels the majority of the
time.

In recent years, researchers have demonstrated their work on various standard bench-
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Figure 1.6: The inference model should be invariant to affine transformations. Image
courtesy [11].

marks such as KITTI object detection benchmark [12] for 3D object detection,
Shapenet benchmark [13] for 3D segmentation, Modelnet benchmark [14]for 3D clas-
sification. In this work, we explore the technique of converting point clouds to a rep-
resentation suitable for deep learning, without destroying any geometric information.
Specifically, we connect neighbouring points in a point cloud to form an undirected
graph. We use underlying relationship between vertices and their neighbourhood
to learn meaningful features for detection, segmentation and classification purposes.
Graph represented leaning based approach has shown appreciable results [8, 15, 16,
17] on point cloud learning algorithms. The constructed graphs are processed by
graph neural networks, which is discussed in section 1.3.

1.3 Graph Neural Networks
A graph neural network (GNN) is a form of neural network that directly works
on graph structures. Node classification and prediction are some of the common
applications of GNN. In GNN, each node is assigned with a label, which is used to
predict the labels of the nodes without using ground-truth data. A graph is a tuple
G = (V,A,E) where V is the set of vertices, E is the set of edges and A is the
adjacency matrix that associates each edge e ∈ E with a weight. Each node is the
graph vi ∈ V can be associated with a feature fi ∈ RD. A graph convolutional neural
network or GNN takes as input a graph G and learns corresponding features fi for
each vertex. One of the popular approaches in graph neural networks is spatial graph
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Figure 1.7: In this particular visualization, it is evident that majority of space in
scan is just empty space [5].

convolution. Let S = s1, s2, s3, ...sN ∈ RF be a set of input features, associated with
vertex u ∈ V , at (k − 1)th iteration. A single iteration of a graph neural network
(GNN) aggregates features from k nodes in a neighbourhood N(u) of a given node
u such that the updated feature stu of vertex u at t iteration is given by:

stu = σ(Wtφ
t−1
uv (st−1

v )⊗Bts
t−1
u ), v ∈ N(u) (1.1)

Here, Wt and Bt are trainable weight and bias matrices and σ is the activation func-
tion (e.g. ReLU) to introduce non-linearity. The ⊗ here refers to the concatenation
function. The function φt−1

uv aggregates features along the edges. This function up-
dates feature and repeats the process in every iteration. The function visualization
has been described in Figure 1.8.

One of the feature of GNNs is that it gives equal weithage to every node that is
present in neighbourhood of query node. This might not be desirable in some cases
(like social media interactions, citation models), since a neighbouring node may or
may not posses relevant features to the query node. Velivckovic et al. [17] cited this
limitation of GNNs and proposed Graph Attention Networks. GATs addresses the
shortcomings and approximations of prior methods based on graph convolutions by
leveraging masked self-attentional layers. GATs is explained in section 1.4.

Introduction 6



2021-05-08, 7:16 PM

Page 1 of 1file:///Users/sumesh/Documents/GitHub/Thesis/Photos/graph.svg

AA

B

C

D

E

F

A C

F

B

A

A

A

B

D

E

C

(i)                                                                                      (ii)

Figure 1.8: Let node ‘A’ be the target node. In one iteration of GNN, model takes
the features from all the immediate neighbours of target node and aggregate them
with an invariant aggregation function.

1.4 Graph Attention Networks
Graph Attention Network (GAT), is an extension on graph neural networks. GATs
uses masked attentional layers to solve the flaws and approximations of preceding ap-
proaches based on graph convolutions. The concept of attention in GATs is derived
from a past work by Vaswani et al. [18]. The method allows specifying different
weights to different nodes in a neighbourhood by stacking layers in which nodes
are able to attend to their neighbourhoods’ features, without requiring any kind of
costly matrix operation (such as inversion) or relying on knowing the graph structure
upfront. GAT tackles many limitations of spectral-based graph neural networks at
the same time, allowing the model to be applied to both inductive and transductive
applications. Analysing and visualising learnt attentional weights also results in a
better interpretable model in terms of neighbour importance. Figure 1.9 explains
how graph attention networks assign different weights to nodes in contrast to graph
convolution networks. Figure 1.9 explains how graph attention networks assign dif-
ferent weights to nodes in contrast to graph convolution networks. GNN explicitly
assigns non-parametric weight α = 1√

deg(vi)deg(vj)
, via normalization function dur-

ing neighbourhood aggregation. GAT implicitly captures the weight αij, via the
attention mechanism, so that more important nodes receive higher weight during
neighbourhood.
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Figure 1.9: Comparison between GNNs and GAT [19]. Figure (i) represents the
structure of GNN layer, whereas (ii) represents the structure of GAT.

1.5 Contributions
In this thesis, we investigate the possibility of employing graph attention networks for
object detection, segmentation and classification from point clouds. We propose two
architectures: one for object detection and the second, for point cloud classification
and segmentation. Our object detection architecture formulation utilizes the relative
coordinates along with the vertex features to produce relative edge weights. The key
idea of our work is as follows. Based on the spatial positions and feature attributes
of the neighbourhood vertices, we learn to strengthen or weaken the edge weightage
accordingly. This approach allows our model to dynamically adapt to the structure
of the objects. For segmentation and classification, we utilize global aware atten-
tion system, taking into account global, local and self features to enhance feature
learning process. In object detection, to enhance the algorithmic performance, we
introduce a new distance aware voxelization method, which downsamples the point
cloud scans from LiDAR sensor without losing the relevant information required for
graph generation. In summary, we make the following key contributions in this work.

• Down sampling algorithm: We introduce a distance aware downsampling
algorithm for 3D object detection, that employs variable sized voxels depending
on the distance of points from the sensor origin to sub-sample the point cloud.
These downsampled points are used to construct a nearest neighbour graph.
The algorithm maximizes geometric features of objects in the downsampled
point cloud even if they lie far from the sensor origin.
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• Attention based feature aggregation for 3D object detection: We
design a single stage GNN based algorithm for object detection and localiz-
ation. Feature aggregation is performed using a masked attention by assigning
different weights to different neighbouring nodes.

• Global aware graph attention network for point cloud processing: We
design an attention based graph neural networks which also leverages global
features to perform classification and segmentation on point clouds. For learn-
ing features at different levels, we use self and local attention on each graph
constructed in hierarchical manner, along with the global information.

1.6 Thesis Organization
This thesis is organized into following chapters.

• Introduction: This chapter (Chapter 1) consists of an overview of concepts
and a brief introduction to the problem set. This chapter covers the problem
introduction, challenges and a overview of concepts needed to understand this
thesis.

• Related Work: This chapter (Chapter 2) consists of a literature review of
state of art methods divided in three categories based on their use case i.e
(object Detection, classification and segmentation). These categories are sub
divided into different section based on the learning approach used by different
methods.

• GAT3D - Graph Attention Network for 3D Object Detection: This
chapter (Chapter 3) consists of an in-depth explanation of our 3D object de-
tection architecture, along with implementation details. We also cover the
performance of our architecture on KITTI benchmark dataset and a few abla-
tion studies.

• GAGAT - Global Aware Graph Attention Network for 3D Segment-
ation and Classification: This chapter (Chapter 4) comprises explanation
an an in-depth analysis of our classification and segmentation architecture. We
also cover qualitative and quantitative performance of our architecture in this
chapter.

• Conclusion: We conclude our thesis in the last chapter (Chapter 5). We also
list potential future directions of our work in this chapter.
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Chapter 2
Related Work

Point cloud learning has recently captivated a lot of attention by research community
because of its numerous applications in fields like computer vision, autonomous driv-
ing, and robotics. Deep learning has been effectively used to solve numerous 2D
vision problems as one of the major methodologies. However, due to the particular
constraints of processing point clouds, deep learning in the 3D domain is still in its
infancy. In general, 3D data is acquired in the form of a point cloud by LiDAR
sensors, RGB-D cameras, or photogrammetry techniques. A point cloud is a set of
data points in 3D space where every point has x, y, z values representing its geomet-
ric position along with the features associated with it, like reflectance value, intensity
values or RGB values. In 2017, Qi et al. proposed PointNet [8] which demonstrated
how to directly manipulate point cloud with neural networks. Since then, majority
of the research on point cloud processing has switched to employing various 3D data
representations using neural networks. In the past, the processing of point clouds
for visual intelligence has been based on handcrafted features. Although handcraf-
ted features do require a lot of feature engineering but they do not require large
training data. However, with the increasing availability of acquisition devices, large,
open and annotated public data such as KITTI [12], Shapent [13] etc. are making
use of deep learning for their processing. In this chapter, we review various deep
learning algorithms for object detection, point cloud classification and point cloud
segmentation.

2.1 Object Detection
Following the trend of 2D object methods, the traditional methods for 3D proposal
generation utilized hand-crafted features to generate a small set of candidate boxes
that retrieve most of the objects in 3D space. 3DOP [20] is one of the significant
algorithms in this direction. It uses hand-crafted geometric features from stereo point
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clouds to score 3D sliding windows in an energy minimization framework. The top
k-scoring windows are selected as region proposals, which are then fed to a modified
Fast-RCNN to finally generate 3D bounding boxes. MONO3D [21] uses the same
framework, but instead exploits plane prior and handcrafted features from semantic
segmentation outputs to generate 3D proposals from monocular images.

2.1.1 Voxel based Methods
Voxel (also known as volumetric pixel or volume elements) is the smallest unit of
volume when dividing 3D space into discrete, uniform regions. Voxel based object
detection converts a point cloud data into symmetrical 3D grid and inputs it into
convolution based layers. This approach extends the basic principle of 2D object
detectors to 3D object detection. VeloFCN [22] projects a LIDAR point cloud to
the front view, which is fed into a fully convolutional network to generate dense
3D bounding boxes. Zhou et al. [5] presents a voxel-based end-to-end trainable
framework called VoxelNet. A point cloud is partitioned into equally spaced voxels
and per voxel features are encoded into a 4D tensors. Each voxel is further passed
through voxel feature extractor (VFE). A region proposal network [2] is then utilized
to produce the detection results. Although detection results are highly accurate in
this case, this method is very slow due to the sparsity of voxels and 3D convolutions.
3D-FCN [23] extends this concept by applying 3D convolutions on 3D voxel grid from
LiDAR point clouds to generate better 3D bounding boxes. The limitation of both
these methods is that they use very expensive 3D convolution layers, which make it
difficult to be deployed in real-time driving scenarios.

Voxelnet VoxelNet [5] is an end-to-end network that combines feature extraction
and bounding box prediction. This network works directly on 3D point cloud data.
To begin, the 3D space is partitioned into voxels that are evenly spaced. The points
are grouped according to the voxel they belong to. The VoxelNet’s first layer is
an encoding layer that converts a set of points within each voxel into a feature
representation, a 4D tensor. The input tensor is then passed to a 3D convolution
to aggregate voxel-wise characteristics. The RPN layer takes the output of the
convolutional middle layer as its input. A probability score map and a regression
map are generated by the RPN. The loss is the sum of the classification loss and the
regression loss. The architecture has been explained in Figure 2.1.
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Figure 2.1: Voxelnet [5]: The feature learning network takes a raw point cloud as
input, divides the space into voxels, then converts points within each voxel to a
vector representation that represents the shape information.

2.1.2 Point-Wise MLP based Method
Point based methods [8] process point cloud data directly without representing or
projecting it to other views such as front view or bird eye view. Lang et al. [24]
proposed the PointPillars 3D object detector. This method uses PointNet to learn
the features of point clouds grouped in vertical columns (referred to as Pillars) and
then encodes the learnt features into a 2D pseudo image. The 3D bounding boxes
are then predicted using a 2D object detection algorithm.. TA-Net [25] is one of the
few deep learning based 3D detection technique that targets pedestrian detection.
TA-Net contains a Triple Attention (TA) module, and a Coarse-to-Fine Regression
(CFR) module. The TA module increases the target’s relevant information while
suppressing irrelevant information by combining channel-wise, point-wise, and voxel-
wise attention. 3D SSD [26] is the latest approach in point based 3D detection.
It uses fusion sampling strategy joined with anchor free regression head to regress
bounding box co-ordinates. This approach achieves a good balance between accuracy
and inference. Shi et al. [27] proposed PV-RCNN. This method integrates CNNs
with Pointnet [8] based set abstraction to improve feature learning. Recently, Li et
al. [28] improved on 3D proposals generated by pointnet architecture to produce
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better 3D detection results.

2.1.3 Graph based Methods
Graphs are a type of non-Euclidean data structure that can be used to represent
point clouds. In graph representation each node corresponds to an input point, and
the edges represent the relationship between each point neighbors. Graph neural
networks propagate the node states until equilibrium in an iterative manner. The
graph CNNs operate on groups of spatially close neighbours and define convolutions
directly on the graph in the spectral and non-spectral (spatial) domains. The benefit
of graph-based models is that they allow investigating the geometric relationships
between points and their neighbours. The grouped edge associations on each node
are thus used to derive spatially local correlation characteristics. PointGNN [16] can
be regarded as one of the first methods to use graph cnns for 3D detection. It designs
a one-stage graph neural network to predict the category and shape of the object
with an auto-registration mechanism. Chen et al. [29] proposed shape-attentive
GConv (SA-GConv) to capture the local shape features, by modeling the relative
geometric positions of points to describe object shapes. PointRGCN [30] leverages
a graph representation for feature generation. This method uses a 2-stage object
detection, where R-GCN is a residual graph CNN that classifies and regresses 3D
proposals, and C-GCN a contextual GCN that further refines proposals by sharing
contextual information between multiple proposals.

2.2 Classification
Classification refers to the idea of classifying a point cloud representation of an
object. Classifictaion can also be considered as a sub problem in both segmentation
and detection algorithms. Point cloud classification is gaining interest and becoming
a very active field of research. Various classification techniques can be divided into
different categories based on the learning representation used by them.

2.2.1 Voxel based Methods
Early methods usually applied 3D Convolution Neural Network (CNN) built upon the
volumetric representation of 3D point clouds for point cloud classification. Daniel et
al. [31] introduced VoxNet to achieve robust 3D object classification. This method
used the idea of occupancy grids in point cloud scans for feature learning. Wu
et al. [14] proposed a convolutional deep belief-based 3D ShapeNets to learn the
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distribution of points from various 3D shapes. Le et al. [32] proposed a network
called PointGrid. For point cloud learning, this technique combines the point and
grid representations. Within each volumetric grid cell, a random number of points
are subsampled, allowing the network to extract geometric characteristics using 3D
convolutions.

2.2.2 Point-wise MLP based Methods
Point-wise MLP methods model each point independently using several Multi-Layer
Perceptrons (MLPs) and then aggregate a global feature using a symmetric func-
tion. Point-wise methods are able to achieve permutation invariance, which makes
it possible to process unordered points. One limitation with these methods is that
they can’t utilize the geometric relationships among 3D points. Pointnet [8] can be
considered as pioneer method in this category. Zaheer et al. [33] explained that the
key to achieve permutation invariance is by joining each representations and applying
nonlinear transformations. They also designed an architecture called DeepSets, for
shape classification. Joseph et al. [34] proposed an architecture called Mo-Net. The
main idea behind this architecture remains similar to Pointnet, but it takes a finite
set of moments as the input of its network. SRINet [35] builds on top of Pointnet
architecture. It first projects a point cloud to obtain rotation invariant represent-
ations, and then utilizes PointNet-based backbone to extract a global feature and
graph-based aggregation to extract local features. PA-Conv [36] is another model
for point-cloud classification, which uses adaptive dynamic kernels for predictions.

Pointnet PointNet represents a milestone in deep earning for 3D data. Pointnet
unifies the architecture for a variety of applications, from object categorization to
semantic segmentation. PointNet works by using a shared MLP as a feature learner
for local representations, then a global pooling layer to learn a context vector, which
is then concatenated with local features to create a global representation for each
point. The concatenated features are then used to predict the labels for 3D semantic
segmentation and classification. Two main modules of Pointnet are as follows: the
max pooling layer which uses a symmetric function to collect information from all the
points, a local and global information combination structure, and two joint alignment
networks to align both input points and point characteristics. Figure 2.2 shows the
architecture of Pointnet.
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Figure 2.2: PointNet Architecture. [8] The classification network takes n points
as input, applies input and feature transformations, and then aggregates point fea-
tures by max pooling.

2.2.3 Graph Based Methods
Graph-based approaches specify operations in the spatial domain (for example, con-
volution and pooling). Pooling creates a new coarsened graph by aggregating inform-
ation from each point’s neighbours, while convolution is commonly accomplished by
MLP over spatial neighbours. Co-ordinates, laser intensities, or colours are normally
assigned to features at each vertex, while geometric properties between two connec-
ted points are usually assigned to features at each edge. Each point was treated as
a vertex of the graph by Simonovsky et al. [37], and each vertex was connected to
all of its neighbours by a directed edge. Then, utilising a filter generating network,
Edge Conditioned Convolution (ECC) is proposed (e.g., MLP). To aggregate neigh-
bourhood information, max pooling is used, and graph coarsening is done using the
VoxelGrid [38] technique. Zhang et al. [39] extends the idea of CNNs to handle
graph data. The architecture combines localized graph convolutions with two types
of graph downsampling operations (also known as pooling). Zhai et al. [40] propose
a Multi-scale Dynamic GCN model for point clouds classification. They first apply
farthest point sampling method to sample points, to cover the entire point set, They
use different scale k-NN group method to locate on k nearest neighborhood for each
central node. They extract and aggregate local features between neighbour linked
nodes and the central node using the edge convolution (EdgeConv) operation.
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2.3 Segmentation
The technique of classifying point clouds into distinct categories in three dimensions
is known as 3D point cloud segmentation. Because of the significant redundancy,
uneven sample density, and lack of explicit organisation in point cloud data, 3D
segmentation is a difficult task. A crucial stage in the processing of 3D point clouds
is segmenting them into foreground and background. We look at a few prominent
ways for segmenting point clouds.

2.3.1 Point-wise MLP based methods
Because of its high efficiency, these methods typically use shared MLP as the basic
unit in their network, as mentioned in earlier sections. Point-wise features retrieved
using shared MLP, on the other hand, are unable to capture the local geometry in
point clouds as well as point-to-point interactions [8]. Several dedicated networks
have been proposed to collect a broader environment for each point and learn deeper
local structures. Pointnet++ [10] is a follow-up to Pointnet [8]. As seen in Figure
2.3, it clusters points hierarchically and gradually learns from bigger local regions..
It groups points hierarchically and progressively learns from larger local regions,
as illustrated in Figure 2.3. Figure 2.3 visualizes the architecture of Pointnet++
architecture. Multi-scale grouping and multi-resolution grouping are also proposed to
overcome the problems caused by non-uniformity and varying density of point clouds.
In contrast to grouping techniques in Pointnet++, Engelmann et al. [41] utilizes K-
means clustering and KNN to separately define two neighborhoods in the world space
and feature space. A pairwise distance loss and a centroid loss are included to further
regularise feature learning, based on the concept that points from the same class are
predicted to be closer in feature space. For large-scale point cloud segmentation,
Hu et al. [42] presented RandLA-Net, an efficient and lightweight network. To
achieve a remarkable level of memory and processing efficiency, this network employs
random point sampling. To capture and maintain geometric features, a local feature
aggregation module is also provided.

2.3.2 Graph based Methods
Several methods use graph networks to capture the underlying forms and geometric
features of 3D point clouds. Graph-based networks consider each point in a graph
to be a vertex, and construct directed edges for the graph based on each point’s
neighbours. Then, a spectral or spatial domain based feature learning takes place.
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Figure 2.3: Pointnet++ partitions the set of points into overlapping local regions by
the distance metric of the underlying space.

The process is illustrated in Figure 2.4.
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Figure 2.4: An illustration of a graph-based network.

Wang et al. [15] proposes EdgeConv operation to extract local features in a graph.
Bi et al. [43] uses GNNs for 3D object classification. Guo et al. [44] proposes PCT
(Point Cloud Transformer) framework. They try to use the permutation invariant
properties from [18] for point cloud processing. Zhang et al. [45] propose a two stage
network for 3D object detection. Their point cloud completion module recovers high-
quality proposals of dense points to preserve entire views of original structures. Then
a graph neural network module is used to capture relations among points. Lie et al.
[46] have introduced spherical convolutions for efficient graph based learning. Zhang
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et al. [47] propose a 3D point-based scene graph generation (SGGpoint) frame-
work to effectively achieve scene understanding via three sequential stages, namely
scene graph construction, reasoning, and inference. They introduce an edge-oriented
Graph Convolutional Network (EdgeGCN) to exploit multi-dimensional edge fea-
tures between neighbors. Fu et al. [48] develop a module based on deep graph
matching to calculate the local geometry of each point, its structure and topology.
Wang et al. [49] proposes a novel graph attention convolution (GAC), whose kernels
can be dynamically carved into specific shapes to adapt to the structure of an object.
It assigns attentional weights to different neighboring points. Grid-GCN [50] uses
a novel data structuring strategy, Coverage-Aware Grid Query (CAGQ). By lever-
aging the efficiency of grid space, CAGQ improves spatial coverage while reducing the
theoretical time complexity. ASAP-Net [51] further improves spatio-temporal point
cloud feature learning with a flexible module called ASAP considering both atten-
tion and structure information across frames. RandLA-Net [42] introduced a novel
local feature aggregation module to progressively increase the receptive field for each
3D point, thereby effectively preserving geometric details for semantic segmentation.
Liu et al. [52] proposed a Dynamic Points Agglomeration Module (DPAM) based on
graph convolution to simplify the process of points agglomeration (sampling, group-
ing and pooling) into a simple step, which is implemented through multiplication
of the agglomeration matrix and points feature matrix. Based on the PointNet ar-
chitecture, a hierarchical learning architecture is constructed by stacking multiple
DPAMs. Compared to the hierarchy strategy of PointNet++, DPAM dynamically
exploits the relation of points and agglomerates points in a semantic space.

EdgeConv EdgeConv extracts semantic features from point cloud by iteratively
performing convolution on a dynamically updated neighborhood. This work ex-
tends on the PointNet architecture. EdgeConv addresses the same probelm that
pointnet++ tried to solve, but instead of working on individual points it exploits
the geometric structure by constructing a local neighborhood graph and applying
convolution-like operation on the edge connecting the neighborhood pair of points.
Instead of using farthest point sampling, EdgeConv uses k Nearest neighbor al-
gorithm to construct a fully connected graph. EdgeConv appealing property is that
it incorporates local neighborhood information as it can be stacked or recurrently ap-
plied to learn global shape properties. EdgeConv captures local geometric structure
while maintaining permutation invariance. It generates edge features that describe
the relationship between a point and its neighbors instead of generating points’ fea-
ture directly from embedding. As visualized in Figure 2.5, Edgeconv applies channel
wise symmetric aggregation function operation
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Figure 2.5: EdgeConv Operation: The output of EdgeConv is calculated by ag-
gregating the edge features associated with edges from each connecting vertex.

x′i =
∑

j∈N (i)
hΘ(xi ‖xj − xi) (2.1)

Here hΘ denotes a neural network, i.e. a MLP.

2.3.3 Graph Attention based Methods
One of the common problems in most of point based and projection based methods
for point cloud processing is the fast growth of point sets size [42] and geometric in-
formation loss [53]. To alleviate these problems, attention mechanism is introduced
to make neural networks to focus on the important parts of input data, helping to
simplified point clouds and capture sufficient feature representations. Qingyong et
al. [42] combine Local Spatial Encoding and Attentive Pooling modules to auto-
matically learn important local feature. Tu et al. [54] present an online attention
base spatial and temporal feature fusion method for high precision and real-time
semantic segmentation. Liang et al. [55] introduce a graph neural network based
on attention mechanism which can aggregate geometric and embedding information
from neighbours.

GACNet Wang et al. [49] introduces GACNet (Graph Attention Convolution
for Point Cloud Semantic Segmentation) for point cloud semantic segmentation.
GACNet presents a new graph attention convolution (GAC) method in which the
kernels can be dynamically carved into specific shapes to adapt to an object’s struc-
ture. GAC carefully focuses on the most relevant component of each surrounding
point by assigning correct attentional weights to them based on their dynamically
learnt properties. The learnt distribution of attentional weights determines the form
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of the convolution kernel. GAC can capture point cloud structured features for
fine-grained segmentation while avoiding feature contamination across objects. The
overview of structure is explained in Figure 2.6.

Figure 2.6: GACNet architecture. GACNet is constructed on the graph pyramid
of a point cloud. On each scale of the graph pyramid, the GAC is applied for local
feature learning, followed by the graph pooling for resolution reducing in each feature
channel. After that, the learned features are interpolated back to the finest scale layer
by layer for point-wise label assignment

A limitation of current graph based methods is that feature learning is biased to-
wards local receptive fields. Receptive fields are defined portion of space or spatial
construct containing units that provide input to a set of units within a corresponding
layer. Given the nature of aggregation based methods, global information does not
pass through each neuron of the model. Our architecture for classification and seg-
mentation uses global features to overcome this limitation of graph based methods,
so that along with local features model can also focus on global features.

Related Work 20



Chapter 3
GAT3D - Graph Attention Network
for 3D Object Detection

In this chapter, we discuss the proposed architecture for 3D object detection called
GAT3D. We will also explain our new downsampling technique for point cloud scans,
which improves the computational performance of our architecture. The outline of
this chapter is as follows:

1. Distance Aware Downsampling: Section 3.1 explains our distance aware
downsampling technique. We cover the algorithmic performance of our tech-
nique in Section 3.4.4.4.

2. Attention based Aggregation: In Section 3.2 we explain the structure and
aggregation process of our proposed architecture. In section 3.2.2, we provide
the definition of loss functions used in our architecture.

3. Implementation Details: In Section 3.3, we discuss the technical details of
our implementation. We also discuss the data augmentation techniques in and
model training details in this subsection.

4. Experiments: In Section 3.4, we discuss the qualitative and quantitative per-
formance and comparison of our approach with other state-of-the-art methods.

3D object detection is a fundamental challenge for automated driving and robotic
navigation systems. A good detection system must work in real time to match
demands of real life driving scenario. To meet the demands of real time processing
we propose a distance aware downsampling, that enhances the algorithmic speed of
our algorithm.
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3.1 Distance Aware Down Sampling
A point cloud P consists of N points in D dimensions such that P = {pi|i =
1, 2, 3....n} ∈ RD, where a point pi is a vector consisting of its coordinates (x, y, z)
values, and state values, i.e., reflectance values or encoded features of neighbourhood
vertices. A single point cloud scan in autonomous scenarios commonly comprises tens
of thousands of points. It is computationally exorbitant to construct a graph with
such a large number of points. Along with proposed architectures, we also introduce
a distance-aware downsampling scheme to downsample points P without losing the
relevant information in the original point cloud scan. A simple voxel downsampling
uses a regular voxel grid to create a uniformly downsampled point cloud from an
input point cloud. The objects located near the centre of scan have dense construc-
tion whereas the objects located far from centre are poorly defined. As apparent in
Figure 3.1, the points located far from the ego vehicle are not well defined in a scan.
We employ variable voxel sizes depending on the location of the objects from the
origin. The points that are located far from the origin uses a smaller voxel size so
that the downsampled point cloud do not lose geometrical information from original
point cloud scans, since smaller voxel size tends to downsample less number of points
than bigger voxel. We have discussed in-depth analysis and qualitative comparison
of our approach in experiments section. We have visualized the output scan pro-
duced by our technique in Figure 3.1 along with the visualization of original scan
and uniformly downsampled scan.

The downsampled point cloud PD is used to construct a k-nearest neighbour graph
G = {(V,E)}, where V = {p1, p2, p3...pN} are the points and E consists of edges
between point pi to its neighbour vertices within a fixed radius.

3.2 Attention based Aggregation

Let S = s1, s2, s3, ...sN ∈ RN be a set of input features, associated with vertex u ∈ V ,
at t − 1 layer. A single iteration of a Graph Neural Network (GNN) aggregates
features from k nodes in a neighbourhood N(u) of a given node u such that the
updated feature s of vertex u at layer t is given by:

stu = σ(Wtφ
t−1
uv (st−1

v )⊗Bts
t−1
u ), v ∈ N(u) (3.1)

Here, Wt and Bt are trainable hyper parameters and σ is the activation function (we
use LeakyReLU) to introduce non-linearity. The ⊗ here refers to the concatenation
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(a)                                                                   (b)                                  (c)

Figure 3.1: This figure visualize the comparison between (a) original point cloud scan,
(b) uniform down sampled scan and (c) a downsampled scan, using our downsampled
technique.

function. The function φt−1
uv aggregates features along the edges. φ could be weighted

average of neighbours, element wise mean or max. It can also be an LSTM layer.
This function updates feature and repeats the process in every iteration. Unlike
[56], [57], GATs [17] leverages self node features and neighbour features to train
a model. Inspired by the same idea, we propose an attention based aggregation
method to refine neighbourhood vertex states using weights. The proposed method
can handle unordered point cloud sets and size-fluctuating neighbour relationships.
The proposed architecture has been visualized in Figure 3.2. Let α be the weighting
factor (importance) of node v’s message to node u. In a standard GNN, α = 1

|N(u)| . In
GAT, α is computed as the by-product of an attention mechanism a, which computes
the attention coefficients euv across all the pairs of u in V and v ∈ N(u). Therefore,
euv in GAT is defined as in Equation 3.2.

etuv = a(Wts
t−1
u ⊗Wts

t−1
v ), v ∈ N(u) (3.2)

We present coordinate difference in a single representation xuv. To capture the
local structure of objects and dynamically adapt the weights of edges to the similar
neighbours, we define euv as:

euv = a(δxuv, δsuv), v ∈ N(u) (3.3)

where δxuv = xv - xu, the difference between relative coordinates and δsuv = sv - su
is the difference between the features of every node. For initial layer, s is the input
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features and for consecutive layers, it is the learned features. The relative coordinate
difference between vertices learns the spatial relationship between u and neighbour
v. The feature difference between vertices pairs, assigns more weight to the similar
neighbours. a is the feature mapping function i.e MLP (Multi Layer Perceptron)
here. Both these terms are concatenated and implemented using a multi-layer neural
network. Therefore we rewrite euv as:

euv = MLP (δxuv ⊗ δsuv) (3.4)

After handling the different sized vertices from the neighbourhood of u, we normalize
the euv coefficients using a softmax function to compare the importance of vertices
across different neighbours and calculate αuv such that

αtuv = exp(etuv)∑
v∈N(u) exp(etuv)

(3.5)

where αtuv is the attentional weight of vertex v to vertex u at the tth iteration.
Therefore, we formulate one iteration of our GNN as:

stu = σ(
∑

v∈N(u)
αtuvWts

t−1
v ) + st−1

u (3.6)

We use this final vertex feature to predict both the class and the oriented bounding
box of the object. Contrary to various methods [16, 15] that consider only the
relationship between the coordinates of two vertices, we also consider the feature
difference along with relative coordinates to give higher weightages to similar vertices
during feature aggregation.

3.2.1 Relationship with Prior Methods
After the introduction of EdgeConv operator by Wang et. al. [15], research com-
munity started exploring graph neural networks as a new technique to improve on
feature learning for point cloud processing. Our method has been inspired from
DGCNN [15], Graph Attention Networks [58] and GACNet [49]. However, our
method has its unique characteristics that makes it different from prior proposed
methods. Both [49] and [15] work on point cloud processing and generates labels for
classification and segmentation, whereas GAT3D generates point labels along with
bounding boxes for object detection. Our attention aggregation method shares some
similarities with GACNet. GACNet utilizes farthest point sampling to sample n
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Figure 3.2: The architecture of GAT3D approach. The blocks in square brackets
constitute various steps in one iteration of proposed GNN.

points from the point cloud scans, whereas we utilize our novel distance aware down-
sampling to downsample the point cloud scans. We generate static graphs before fea-
ture propagation, whereas GACNet generates graphs and uses graph pooling at every
level of their feature propagation process. The other big difference is the architecture
design of GACNet and GAT3D. Since GACNet targets point cloud segmentation, it
uses a U-Net [59] based pyramid like structure. GAT3D uses hierarchical top-down
architecture for 3D detection. The other significant difference between both the ar-
chitectures is use of graph pooling and skip layers. Since GACNet is designed in a
pyramid kind of architecture, it utilizes pooling layers to match the size of different
layer levels. GAT3D doesn’t use any such skip connection or pooling layers.

3.2.2 Loss
Our final loss function is composed of three main components, a classification loss,
a regression loss and a localization loss.

For regression loss λreg, we parametrize a 3D ground truth value of a bounding box in
seven degrees-of-freedom, such that bgt = (xgt, ygt, zgt, lgt, wgt, hgt, θgt). Similarly the
prior anchor box coordinates are encoded as ba = (xa, ya, za, la, wa, ha, θa). Therefore,
the residual difference between the predicted bounding boxes and ground truth boxes
is given by:
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δx = xgt − xa
δd

, δy = ygt − ya
δd

, δz = zgt − za
δd

δl = log( lgt
la

), δw = log(wgt
wa

), δh = log(hgt
ha

)

δθ = sin(θgt − θa) (3.7)

where da is
√

(wa)2 + (la)2. For classification loss λcls, we use average cross entropy
loss which is given by:

λcls = − 1
N

N∑
i=1

M∑
j=1

yil log(pil) (3.8)

where yil is the class label and pil is the predicted probability.

Similar to [16], we use Huber loss to localize objects belonging to a class we are
predicting. All the irrelevant classes are localized as background classes. After that,
we average the localization loss of all relevant class objects. The localization loss λloc
is given by:

λloc = − 1
N

N∑
i=1

(v ∈ ba)
∑
λ∈λgt

λhuber(λba − λbgt) (3.9)

Therefore the total loss λtotal is given by:

λtotal = αλreg + βλcls + γλloc (3.10)

The weighting parameters α, β and γ are used to adjust the relative weights of each
loss.

ρt =
ρt if p = 1
ρt − 1 if p = −1

(3.11)

where p can be calculated with p = sigmoid(x). The binary cross entropy (BCE)
loss can be formulated as:

εBCE(ρt) = − log(ρt) (3.12)
As stated in these equations, when the network is trained with BCE loss, its gradient
will be dominated by vast easily classified negative samples. if a huge foreground-
background imbalance exists. Focal loss can be considered as a dynamically scaled
cross entropy loss, which is defined as:

εFL(ρt) = −(1− ρt)γ log(ρt) (3.13)
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Therefore the contribution from the well classified samples to the loss is down-
weighed. The hyper parameter of the focal loss can be used to tune the weight
of different samples. As γ increases, fewer easily classified samples contribute to the
training loss. When reaches 0, the focal loss degrades to become the BCE loss. We
have discussed and demonstrated the performance of our architecture in experiments
section.

3.3 Implementation Details
We have developed our architecture in Python 3.6. We use Tensorflow 1.5 [60] for
designing the model architecture and training scripts. For point cloud processing and
downsampling we use Open3D library [61]. For other mathematical computations
and calculations we use Sklearn [62], Numpy [63] libraries. In following sections we
have discussed specimens of our implementation.

Data Preprocessing Due to the presence of variable environment scenes in KITTI
dataset [12], data augmentation is crucial to get better results. We applied data
augmentation techniques to prevent over-fitting and make predictions robust. We
individually process all the ground truth boxes. Each box is uniformly rotated in [
−π/20, π/20 ] and translated along x, y, and z axes independently from (0, 0.25)
to further enrich the training set. Our distance-aware voxel downsampling induces
vertex jitter during the graph construction.

Training Details We train the proposed network end-to-end with a batch size
of 2. The loss weighting parameters α, β, and γ are used to balance the relative
importance of different parts and their value is set to α= 0.1, β= 10, γ= 0.0005.
The β is given the highest value so that model can perform better on classification
task. For car, we use an initial learning rate of 0.125 and a decay rate of 0.1 every
400K steps. We trained the network for 1400K steps. For pedestrian, we used a
learning rate of 0.25 and a decay rate of 0.25 every 400K steps and trained for 1000K
steps. Similarly for cyclist, we trained for 1000K steps with a learning rate of 0.32
and a decay rate of 0.25 after every 400K steps. For cars, we use the anchor box
size of (1.6, 3.9, 1.5) meters covering width, length and height respectively with two
rotations 0 and 90 degrees. We set r to 1.8 m. The anchor box sizes for pedestrian
and cyclist objects were set to (0.6, 0.8, 1.73) meters and (0.6, 1.76, 1.73) meters
respectively. We used variable voxel sizes during the sampling, i.e., we used voxel
sizes of 0.5 and 0.8 for points greater than 40 m and less than 20 m respectively
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from the sensor along the z axis. To reduce redundancy, we apply IoU threshold of
0.7 for NMS for car category and 0.6 threshold for pedestrian and cyclist category.
The network was trained in an end-to-end manner on a single TITAN V GPU. We
employed the ADAM optimizer to train our network.

3.4 Experiments
This section covers the various qualitative and quantitative experiments that we
performed on our architecture. We have compared our architecture with various
state of art methods also. The results are covered and documented below.

We evaluate our architecture on the widely used KITTI object detection bench-
mark[64] which contains 7481 training samples and 7518 testing samples. Each
sample has a point cloud scan, a respective image and calibration data. Since the
dataset only annotates objects that are visible within the image, we process the point
cloud only within the field of view of the image. Due to the scale differences (different
point density and size), we trained the network separately on car, pedestrian and
cyclist data.

3.4.1 Evaluation Metrics for Object Detection
The section discusses the evaluation metrics that will be used to evaluate this archi-
tecture on KITTI dataset.

Bounding Box Classification For a bounding box to be considered a correct
detection, the area of overlap ao between the predicted bounding box Bp and ground
truth bounding box Bgt must exceed a certain threshold. A common threshold for
2D is 0.7 (70%), obtained by the formula :

IOU = area(Bp ∩Bgt)
area(Bp ∪Bgt)

(3.14)

This formula was first introduced in VOC object detection challenge [65] . This for-
mula can be extended to 3D to measure how well the 3D boxes overlap by considering
the depth axis also.

Precision Recall For a given task and class, the precision-recall curve is computed
from a method’s ranked output. Recall is defined as the proportion of all positive
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examples ranked above a given rank. Precision is the proportion of all examples
above the rank which are from the positive class

Precision = TP

TP + FP
(3.15)

Recall = TP

TP + FN
(3.16)

where TP is acronym for true positive, which indicates a correct detection with
existing corresponding ground-truth. FP is false positive and indicates that an object
was detected but it does not have a corresponding ground-truth, i.e. false detection.
FN is false negative, and indicates that an object was in the ground-truth but not
detected by the

Average Precision The Average Precision (AP) summarizes the shape of the
precision-recall curve. In KITTI dataset benchmark is defined as the mean precision
at a set of 11 equally spaced recall thresholds such as:

AP = 1
11

∑
r∈{0,0.1,......1}

pinterp(r) (3.17)

The precision at every level r is calculated by considering the maximum precision
measured for which the corresponding recall exceeds r, such that

pinterp(r) = max(p(r̂)) (3.18)

where p(r̂) is the measured precision at recall r̂

3.4.2 Qualitative Results
We illustrate our prediction results on KITTI test data in Figures 3.3-3.4. We visu-
alize 3D bounding boxes in LiDAR scan and 2D bounding boxes on RGB images.
From the figures, we can observe that the proposed architecture can estimate ac-
curate 3D bounding boxes in a variety of scenes. The architecture can predict the
correct positions in poor lighting conditions and occlusions. As shown in Figure 3.4,
one can see that the model is capable of predicting the pedestrian positions even
when they are not clearly visible in RGB images.
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Figure 3.3: Qualitative 3D detection results of our architecture on the KITTI val-
idation set. The detected objects are shown with red 3D bounding boxes and green
3D bounding boxes reflect the ground truth bounding boxes.

3.4.3 Quantitative Comparison
We validate the proposed approach using a set of experiments carried out on the
KITTI object detection benchmark. The KITTI dataset evaluates the average pre-
cision (AP) on three difficulty levels: easy, moderate, and hard. We have presented
the performance of our method in Table 3.1.The 3D and BEV detection results ob-
tained by our proposed approach are comparable to the ones provided by the other
state-of-the-art methods. Our approach detects all three classes in KITTI dataset
reasonably well. We have compared the accuracy and inference speed of our method
with [7, 66, 5], [16, 67, 55, 68, 69]. We have presented the results in a scatter plot
in Figure 3.5. The proposed model outperforms fusion based MV3D in car category,
and AVOD in pedestrian category.

Figure 3.5: Comparison of our method across different 3D detection methods in
Vehicle category
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Figure 3.4: Qualitative 3D detection results of our architecture on the Pedestrian
category of KITTI test set. The detected objects are shown with red 3D bounding
boxes and green 2D bounding boxes. The upper row shows the 2D bounding box in
the RGB images and the bottom row shows the results in the corresponding point
clouds.

Vehicle Pedestrian Cyclist
Easy Medium Hard Easy Medium Hard Easy Medium Hard

3D AP % 75.67 63.90 55.09 43.62 34.56 31.34 58.44 41.81 36.69
BEV AP% 87.95 80.65 70.97 48.26 39.41 35.90 66.56 47.80 41.82

Table 3.1: The average precision(AP) result on both 3D and Bird’s eye view on
KITTI test dataset.

3.4.4 Ablation Studies

3.4.4.1 Results on KITTI Validation Dataset

We test our method on the car category of KITTI validation dataset and compare
our results with state-of-art methods. The performance of our detection system on
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KITTI validation datset is presented in Table 3.2. For car category, the proposed
method achieves results comparable to state-of-the-art methods on all the difficulty
levels of the KITTI dataset. We visualize our results on KITTI validation split (refer
to Figure 3.3).

Method Vehicle 3D AP% Vehicle BEV AP%
Easy Medium Hard Easy Medium Hard

MV3D 71.29 62.68 56.65 86.55 78.10 76.67
AVOD 84.41 74.44 68.65 <na> <na> <na>

F-PointNet 83.76 70.92 63.95 88.16 84.02 76.44
DSGN 72.31 54.27 47.71 83.24 63.91 57.83

VoxelNet 81.97 65.46 62.85 89.60 84.81 78.57
PointGNN 87.89 78.34 77.38 89.82 88.31 87.16

Ours 83.54 74.47 63.84 90.12 87.05 75.48

Table 3.2: Average precision (AP) comparison of both 3D and Bird Eye View on
KITTI Validation dataset.

3.4.4.2 Effects of Different Number of Layers

In our architecture, we stack n number of GNN layers to extract aggregated features.
To demonstrate the influence of changing the value of n, we train our network with
n varying from 1 to 4. We demonstrate our results in Table 3.3. Table 3.3 indicates
there’s a slight increase in the accuracy when n is changed from 1 to 3, which can
be attributed to the fact that the neighborhood features are being aggregated to the
vertex itself. Our model performance continues to increase as we increase the value
of n. There is a slight decrease in accuracy at n = 4, which indicates that our neural
network might be over-trained.

Number of layers (n) Vehicle (3D AP%)
Easy Moderate Hard

1 80.24 72.27 62.78
2 82.73 73.65 63.14
3 83.54 74.47 63.84
4 83.14 74.21 63.46

Table 3.3: The 3D Average Precision (AP) comparison when changing the number
of layers of our proposed Network.
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3.4.4.3 Inference Time Analysis

For any algorithm to be deployed in autonomous vehicle scenario, the inference speed
plays a crucial role. The algorithm must be able to predict the oncoming object’s
position in real-time. The performance of an algorithm is subject to the hardware
and code-optimization. Our architecture is written in Python, and implemented in
Tensorflow for GPU computation. We measure our inference time on a machine with
Intel i7-8700k CPU, 32GB RAM and Nvidia Titan V GPU. The dataset reading and
preprocessing takes 45 ms. The nearest neighbor graph construction consumes 112
ms. A single iteration of our GNN takes 270 ms and it takes 15 ms for final bounding
box predictions.

3.4.4.4 Downsampling

Our downsampling technique significantly reduces the complexity of graph construc-
tion significantly. Our technique is able to reduce the total number of points to
25% without loosing relevant information in our scans. Compared to uniform down-
sampling , our technique is able to keep more points without taking significant time
for graph construction. We compare the graph construction time on a sample from
KITTI dataset in the Table 3.4. In our experiments, we found that our distance
aware downsampling provides a significant accuracy enhancement when compared
to the uniform downsampling. Our experimental results are presented in Table 3.5.

Technique Points Time (ms)
None 115094 362 ms
Uniform Downsampling 20753 110ms
Distance Aware Downsampling 22826 112ms

Table 3.4: The graph construction time comparison on one sample in KITTI dataset

Techniques Accuracy (3D AP%)
Easy Medium Hard

Uniform 75.34 62.32 53.54
Distance-Aware 75.67 63.90 55.09

Table 3.5: We compare results of our downsampling technique with uniform down-
sampling on Vehicle category of KITTI dataset

GAT3D - Graph Attention Network for 3D Object Detection 33



Chapter 4
GAGAT - Global Aware Graph At-
tention Network for 3D Segmenta-
tion and Classification

In this chapter, we discuss our architecture to learn better local representations for
unstructured point cloud in the context of shape classification and segmentation
tasks. As an addition to GAT3D architecture, we propose GAGAT(Global Aware
Graph Attention Network) for 3D pointcloud processing. GAGAT mainly consists
of three parts, a self attention module, local attention module and global feature
module. In detail, the self-attention module is used to learn self-geometric features
for every single point, while local-attention module focuses on local geometric re-
lationships in neighbourhood of the point. Along with focusing on local features,
global features are also taken into account for learning. We learn relevant global
feature embeddings using shared MLP layers, that symmetrically learn features over
whole point cloud. We concatenate these features with the output of dynamically
learned local features from our local and self attention layer. This approach creates
a layerwise representation for point cloud points consisting of both global and local
features.

4.1 Global Aware GAT Layer
A sample point cloud scan captured from real life scenarios (e.g., autonomous vehicle
and geospatial scans) consists of a large number of points/samples. Processing every
individual point leads to a high computation cost and causes vanishing gradient
problem because only small weights are allocated to every point. As a result, we first
sample points from point cloud scan using farthest point sampling technique [10].
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Figure 4.1: This figure describes how information propagates in our network between
two global aware GAT layers. Every single feature embedding is passed through two
separate networks focusing on local features and contextual features.

Contrary to autonomous vehicles, the point cloud scans are captured in a stationary
setting with a fixed field of view, hence farthest point sampling represents a better
approach in this context. We construct a k-nearest neighbour graph G = (V,E)
from these sample points to represent the geometric structure of the point cloud,
here V = {p1, p2, p3......pn} are nodes for points, E ⊆ V × Ni are edges connecting
neighbourhood pairs of points, and Ni is a neighbourhood set of point pi. Like
GAT3D, we define the edge feature as geometric difference between nodes, i.e., xij =
(pi − pj) where pi ∈ V, pj ∈ Ni, and xij indicates the coordinates difference between
of neighbouring point pj to point pi. We pass the sampled points parallelly to shared
global module and local attention module.

K-NN Graph
Construction 

 Softmax Attention -
Coefficients

Self-features

MLP

MLP

Neighbour-features

Figure 4.2: Local attention module of a global aware GAT layer.

Local Attention Module We construct a k-nearest neighbour graph G = (V,E)
from these sample points to represent the geometric structure of the point cloud,
here V = {p1, p2, p3......pn} are nodes for points, E ⊆ V × Ni are edges connecting
neighbourhood pairs of points, and Ni is the neighbourhood set of point pi. We define
the edge feature as geometric difference between nodes, i.e., xij = (pi − pj) where
pi ∈ V, pj ∈ Ni, and xij indicates the coordinates difference between neighbouring
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point pj to point pi. In order to pay different attentions to different neighbouring
points, we propose a dual attention mechanism using self and local attentions (see
Figure 4.2). This combined attention mechanism assigns attention coefficients to
each point in neighbourhood of the query point. We first map input features to a
higher-level feature representation by using a non-linear mapping function M .

x
′

i = M(pi, θ) (4.1)

x
′

ij = M(xij, θ) (4.2)
Here, the mapping function M, is selected as a multi layer perceptron (MLP) with θ
as learnable hyper-parameters.

We combine self attention and local features, to obtain a combined feature embedding
cij as shown in Equation 4.3.

cij = (x′

i ⊗ x
′

ij) (4.3)
To align comparison of the attention coefficients across neighbours for different
points, we use softmax function to normalize coefficients for all the neighbours to
every point as follows (Equation 4.4).

αij = exp(cij)∑
k∈(1,.....|Ni|) exp(cik)

(4.4)

Therefore, we formulate one iteration of our local attention module as below (Equa-
tion 4.5).

x̂ijloc = σ(αijx
′

ij) (4.5)
where σ is non-linear activation function. We used sigmoid as activation function
here.

Global Module: As mentioned above, we pass the sampled point cloud paral-
lelly through local attention module and global module. For sampled points PD =
{p1, p2.....pn}, where pi ∈ RD, D dimensional feature vector consists of input features
(RGB value, reflectance value etc.) or transformed feature embeddings. Inspired
from [8], we use a k-shared MLP to apply feature transformation on each point, such
that

M(PD) = h(p1), h(p2).....h(pn) (4.6)
In this equation, h : RD → RM which is realized using a shared MLP layer. Thus we
can compile output of our global module as follows (Equation 4.7).

x̂ijglob = σ(M(PD)) (4.7)
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Figure 4.3: The architecture for classification and segmentation. The top branch
illustrates the structure of our classification and the segmentation network. To make
point clouds invariant to transformation, we use spatial transform net [70].

After obtaining the local features and global features, we concatenate both modules
and pass them to the next layers as input to get the feature embedding to predict
point wise segmentation score and classification score. So one iteration of a GAG
layer can be defined as in Equation 4.8.

x̂ij = σ(x̂ijglob⊗ x̂ijloc) (4.8)

where ⊗ represents a concatenation function.

4.2 Segmentation and Classification
Our architecture shown in Figure 4.3 captures both shape classification and segment-
ation for point cloud. Our model architecture is inspired from Pointnet [8]. The
main difference between our architecture and Pointnet is that, contrary to processing
every point features we exploit local features using graph based feature aggregation
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along with masked attention. To leverage global features, we we use shared MLP
layers point embeddings. We have illustrated the structure of both our segmentation
and classification architecture in Figure 4.3. The classification and segmentation
share a common architecture except the use of different MLP output units in the
last layer. The green arrows refer that information from every level are added to the
last GAG layer. The curved brown arrows refer to skip connections between differ-
ent layers. The classification model generates a probability score across n classes,
whereas the segmentation architecture generates segmentation score for single point.

4.3 Relationship with Prior Works
Our proposed architecture GAGAT shares similarities with several works proposed
prior. Mainly our architecture share common characteristics with Pointnet [8],
GACnet [49] and DGCNN [15]. The biggest similarity between all these methods
is the idea of aggregating neighbourhood features. Although we inspire some ideas
from above mentioned methods, our method is different with respect to the following
points.

1. Compared to GACNet [49] architecture, we do not follow a pyramid structure
but simple hierarchical top-down architecture for feature learning. GACNet
takes into account the spatial relationship (i.e, geometrical difference) and fea-
ture difference between two vertices, we consider geometric difference and self
features of each vertex and concatenate that with global information. GACNet
does not use global information in their feature propagation.

2. DGCNN [15] is one of the first methods to use idea of graph convolutions on
point cloud processing. Compared to DGCNN, we do not assign equal import-
ance to every vertices in neighbourhood, but use an attention mechanism to
assign different importance to different vertices. Given, the nature of convo-
lution filters, DGCNN also suffers from the limitation of local receptive fields.
We try to improve on this limitation by using global information during our
feature propagation process.

4.4 Loss
The classification can be considered as a special case of classification. In our archi-
tecture, we use a modified version of cross entropy loss called softmax cross entropy
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loss. Cross entropy loss [60] has been regarded as one of the common loss functions
used for classification tasks. We have explained cross entropy loss in Section 3.2.2.

SCE loss measures the probability error in discrete classification tasks in which the
classes are mutually exclusive (each entry is in exactly one class). For segmentation,
we use the sparse version of the same loss function. The reason behind which is that
we can assign discreetly different labels to points, so that a point only belongs to a
single class.

4.5 Implementation Details
Similar to our previous architecture, we use Tensorflow 1.5 [60] for designing the
model architecture and training scripts. For point cloud processing and down-
sampling, we use Open3D library [61]. For other mathematical computations and
calculations, we use Sklearn [62]and Numpy [63] libraries.

Data Preprocessing We evaluate and train our model on the ModelNet40 [14]
for classification task. The dataset contains 12,311 meshed CAD models from 40
categories. Following the official and mostly used convention we use 9843 models
training and 2468 models for testing. For classification, we follow similar data aug-
mentation setting as of [8]. For each model, we uniformly sample 1,024 points from
the mesh faces; the point cloud is the rescaled to fit into a unit sphere. During the
training procedure, we perform data augmentation by randomly scaling objects and
interchanging the object and point locations.

For segmentation, we train and test our architecture on three datasets Shapenet [13],
S3DIS (Stanford Large-Scale 3D Indoor Spaces Dataset) [71] and Semantic3D [72].
For part segmentation, we follow the same train/test split as [13]. For indoor scene
segmentation, similar to Wang et al. [8], we split each scan into blocks with area
1m × 1m, and each point is represented as a 9D vector (XYZ, RGB, and normalized
spatial coordinates). We sample 4,096 points for each block during training process,
and all points are used for testing.
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4.6 Experiments

4.6.1 Classification
We test our model’s performance on Modelnet 40 dataset. Modelnet consists of 40
man made models in different types and orientations. We divide the dataset in 9483
samples for training and 2468 samples for testing. We use the same data split for our
experiments and report the results on the test set. Our model is able to produce good
results when compared to SOTA methods. We obtained 89.6 % in overall accuracy
and 90.6 % in mean accuracy.

4.6.1.1 Qualitative Comparison

We have provided the label predictions of our network on Modelnet dataset in Fig-
ure 4.4. As visualized, our model is able to predict the correct labels of objects
irrespective of their different types and shapes. The proposed GAGAT model scores
a commending overall accuracy of 90.6 %.

4.6.1.2 Quantitative Comparison

We evaluated and listed our model comparison in Table 4.1 on two famously used
metrics i.e Overall accuracy (OA) and Mean accuracy (mAcc). Overall accuracy
measures total number of correctly predicted items divided by total number of items
to predict. Mean accuracy calculates the average accuracy per class. Our model
performs reasonably well in mAcc metrics. Our model does fairly well on overall
accuracy metrics and managed to surpass the overall accuracy of Pointnet [8], Point-
GCN [39] and SO-Net [73]. Our model falls behind PointConv [74], SpiderCNN [75]
and DGCNN [15] by a small margin. One reason for it could be that both Point-
Conv and SpiderCNN use the normals information along with specific refinement
modules to improve on final predictions. KPConv [76] uses a deformable kernel that
can change it’s shape based on the local structure of points. This technique gives it
an advantage on classification task. Our model is able to score a score of 89.6% in
mean accuracy.

4.6.2 Part Segmentation
For part segmentation purpose, we use the Shapenet dataset [13]. The main objective
of part segmentation is to segment a point cloud scan into sub parts (ex. legs and
arms of chair, wings of air plane etc.). The shapenet dataset consists of 16,881
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Figure 4.4: Visualization of various objects in Modelnet [14] dataset and predicted
labels by our model.

3D models of 16 object categories with 50 part segmentation ground truths. The
evaluation metric that we use for this task is the mean intersection over union (mIoU)
3.4.1 for all the shapes in a particular category. We use the official train/val/test
split for consistency with other results.

4.6.2.1 Qualitative Segmentation

We visualize our results from selected categories of Shapenet in Figure 4.5. For
visualization, we use the tool developed by Xu Yan [78]. We illustrate different
segmented parts with different colours. The quantitative results show that our model
accurately segments various parts of different models. Our model works very well on
easy categories, i.e., laptop, headphone, guitar and table. In our visualizations, our
model shows reasonable results on difficult classes (motorcycle, vehicle and airplane)
too.
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Method Input Overall Accuracy (OA) Mean Accuracy (mAcc)
Pointnet [8] Coordinates 89.2% 86.2%
Pointnet++ [10] Coordinates 90.7% -
PointConv [74] Coordinates+Normal 92.5% -
SpiderCNN [75] Coordinates+Normal 92.4% -
KPConv [76] Coordinates 92.9%
DGCNN [15] Coordinates 92.2% 90.2%
PointGCN [39] Coordinates 89.5% 86.1%
SO-Net [73] Coordinates 90.9% 87.3%
3DmFV-Net [77] Coordinates 91.6% -
Ours Coordinates 90.6% 89.6%

Table 4.1: Comparison of our method on Modelnet-40 Dataset

4.6.2.2 Quantitative Comparison

In this paragraph, we present a qualitative analysis for the predictions obtained
by the 3D part segmentation on Shapenet dataset. Similar to classification, our
model performed very well for the segmentation task. We achieved a score of 84.2%
of average mIOU. The model produced the highest score of 92.8% in Mug class.
The lowest mIOU score is 60.5% in Rocket class. We have compared our method
with popular part segmentation methods. For this analysis, we have compared our
method with Pointnet [8], Pointnet++ [10], KD-Net [79], 3D-GCN [80], KPConv
[76], PointCNN [9], DGCNN [15] and Spider CNN [75]. Our architecture performs
fairly well in comparison with other methods as demonstrated in Table 4.3. We have
also presented class wise mIOU in Table 4.2. We manage to surpass the performance
of [8], [10], [79], [80], and [75] by a huge margin. Our model lies behind [9], [15] and
[76] in terms of accuracy. Similar to classification, one reason behind it could be that
use of dynamic filters by [9] and [76], thus giving a edge to these methods.

Method Mean Aero Bag Cap Car Chair Headphone Guitar Knife Lamp Laptop Motorcycle Mug Pistol Rocket Skateboard Table
PointNet 83.7 83.4 78.7 82.5 74.9 89.6 73.0 91.5 85.9 80.8 95.3 65.2 93.0 81.2 57.9 72.8 80.6
PointCNN 86.1 84.1 86.4 86.0 80.8 90.6 79.7 92.3 88.4 85.3 96.1 77.2 95.3 84.2 64.2 80.0 83.0
DGCNN 85.2 84.0 83.4 86.7 77.8 90.6 74.7 91.2 87.5 82.8 95.7 66.3 94.9 81.1 63.5 74.5 82.6

SpiderCNN 85.3 83.5 81.0 87.2 77.5 90.7 76.8 91.1 87.3 83.3 95.8 70.2 93.5 82.7 59.7 75.8 82.1
Ours 84.2 82.9 81.2 86.8 76.3 89.7 75.3 91.3 88.7 82.1 95.6 69.4 92.8 79.8 60.5 76.2 82.7

Table 4.2: Classwise Accuracy on ShapeNet [13] Dataset.
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Figure 4.5: Visualizations of the part segmentations by GAGAT on various models
from Shapenet [13].

4.6.3 Indoor Scene Segmentation
For indoor scene segmentation, we train our model on S3DIS (Stanford 3-Dimensional
Indoor Scene) [71] dataset. Our this experiment shows how our segmentation archi-
tecture generalizes to real indoor scenes. S3DIS covers six large-scale indoor areas
from three different buildings for a total of 273 million points annotated with 13
classes. Following common research convention [76], we use the point cloud scans
from Area-5 as test scene to better measure the generalization ability of our method.

4.6.3.1 Qualitative Comparison

We present a qualitative analysis for the predictions obtained by the 3D segmentation
architecture on S3DIS dataset. We have selected and demonstrated various scenes in
Figures 4.6. In Figure 4.6(a), our model well captures the chair shapes and tables,
however, fails to capture fine objects such as board on the back wall. The model is
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Method Class Average IoU
PointNet 80.4

PointNet++ 81.9
KD-Net 77.4
3D-GCN 82.1
KPConv 86.4
PointCNN 86.14
DGCNN 85.2

Spider CNN 82.4
Ours 84.2

Table 4.3: Comparison of our method on ShapeNet [13] dataset.

able to segment the floor and wall correctly in Figure 4.6(b). The model struggles
a little with the fine area of door casing, but for the majority part of door casing
it successfully differentiates it from the wall. In Figure 4.6(c) segments most of the
objects in scene accurately. The model predicts the labels and areas for most of the
objects correctly in Figure 4.6(d) except a clutter and a few parts of the floor.

4.6.3.2 Quantitative Comparison

Our method works well on all the scenes available in S3DIS dataset. We compare the
performance of our method with other methods. We report the results in 4.4. In our
comparison, model gives an acceptable accuracy when compared to other methods.
Our model is able to score better accuracy then both [8] and [10]. The accuracy is
slightly below [76], [52], [81] and [49]. The KPConv [76] is able to score highest score
in this category.

4.6.4 Outdoor Scene Segmentation
The Semantic3D [72] dataset is a repository of with over 4 billion points from a
variety of urban and rural scenes. In this dataset, along with geometric information
every point has RGB and intensity values. The dataset has been labelled with one
of 8 categories: man-made terrain, natural terrain, high vegetation, low vegetation,
buildings, hard scape, scanning artefacts, and cars. To adapt to the size of objects,
we follow the same data preparation technique by [49]. Since Semantic3D consists of
a relative scan of large outdoor buildings and environments, we sample 4096 points
from 4 × 4 boxes across whole scan.
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Figure 4.6: Indoor Segmentation results of Room 5 in S3DIS dataset. Left: seg-
mentations by GAGAT and Right: the ground truths.

We state the overall accuracy and mean IOU of our architecture compared to other
state of art methods.

4.6.4.1 Qualitative Comparison

In this section, we present a qualitative analysis for the predictions obtained by the
3D segmentation architecture on Semantic3D dataset.The Semantic3D dataset point
clouds have been segmented into 9 categories, i.e man-made terrain, natural terrain,
high vegetation,low vegetation, buildings, hard scape, scanning artefacts, cars. Our
method produces an acceptable score of 88.6 % on overall accuracy and 63.4% on
mean accuracy.

We have demonstrated our results in Figure 4.7(a)-4.7(c). From these figures, it is
quite evident that in most of the cases our model is able to segment different parts of
scenes correctly.Similar to previous examples, our model performs well on this scan
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Method Mean IOU Overall Accuracy
PointNet [8] 41.1 -

PointNet++ [10] 53.4 -
PointCNN [9] 57.3 85.9
KPConv [76] 67.1 -
GACNet [49] 62.9 87.8

SPH3D-GCN [81] 59.5 87.7
DPAM [52] 60.0 86.1

Ours 58.5 86.2

Table 4.4: Comparative semantic segmentation results on the S3DIS (comparison on
Area5).

too. We have produced the visualization using CloudCompare [82].

4.6.4.2 Quantitative Comparison

We present the quantitative comparison of our method in this section. Our perform-
ance is on par with other competitive methods on Semantic3D dataset. We present
the overall accuracy (OA) and mIOU of our method and compare it’s performance
in Table 4.5. In our comparison, our model doesn’t perform very well on Semantic
3D large scale scenes, when compared to other methods. We need to do an in-depth
analysis to find the reason behind this. In comparison to our method, Randla-Net
[42] performs the best out of all the methods mentioned, along with FGNet [83]. One
reason for such a excellent results by both these methods could be because is that
they have been specifically designed to process large scale outdoor data.

Method Mean IOU Overall Accuracy
SnapNet [84] - 41.09
GACNet [49] 70.8 91.9

RANDLA-Net [42] 77.4 94.8
FG-Net [83] 77.2 94.4
KPConv [76] 74.6 92.6
SPG [85] 62.85 87.79
Ours 63.4 87.65

Table 4.5: Comparative outdoor segmentation results on the Semantic3D (reduced-8
challenge).
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Figure 4.7: Examples of outdoor segmentation by GAGAT on Semantic3D datasets.
(a) Cathedral in St. Gallen (b). Market square and (c). Town square.

4.7 Ablation Study and Differences between GAT3D
and GAGAT

There are some differences between GAT3D and GAGAT architectures, we have
listed all the differences below.

1. Applications: GAT3D model has been designed to output oriented bounding
boxes along the object classes whereas GAGAT works on both classification
and segmentation labels.

2. Absence of global shared MLP: The GAT3D architecture doesn’t uses a
shared MLP layer to capture global information. We tested our model using
global shared branch on 3D detection. In our experiments we found that using
a shared MLPs on GAT3D affects the overall accuracy of model by a small
margin. We have compared accuracies in Table 4.6.
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Technique 3D Average Precision (AP)
Easy Medium Hard

Using global MLP 81.42 73.24 59.14
Without using global MLP 83.54 74.47 63.83

Table 4.6: We compare accuracies of GAT3D architecture with and without shared
global MLP on KITTI validation dataset on car category.

Efficiency of Global Aware Module: To test the efficiency of our global aware
module, we train our model with and without global module on Modelnet40 dataset.
We test the efficiency of our global module and compare results of both models in
Table 4.7. In our experiments we found that using global module in our feature

Technique Mean Accuracy(%)
Without global module 90.2%
With global module 90.6 %

Table 4.7: Ablation tests on the architecture with and without using global module.
Results are the values for the overall accuracy on the ModelNet40 dataset.

aggregation process gives us an improvement of 0.4 % accuracy. Even without us-
ing global module our model is able to score a good accuracy score of 90.2 % on
classification task. Although this increase in overall accuracy comes with increased
computational complexity and inference speeds. The use of global module is chosen
so that final predictions are not aligned alone towards the local features and increase
in the overall performance of model.
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Chapter 5
Conclusions and Future Direction

5.1 Conclusion
In this thesis, we presented an attention based feature aggregation method for 3D
object detection and a global aware attention network for 3D segmentation and
classification. Both the architectures have potential applications in robot perception
systems, AR/VR systems and terrain classification.

5.1.1 GAT3D - Graph Attention Network for 3D Object De-
tection

We propose GAT3D architecture, an attention-based neighbour feature aggregation
technique for detecting objects in point cloud scan. Along with attention based
feature aggregation method, we use distance aware downsampling to enhance the
algorithmic performance of our model. For distance aware downsampling, we employ
variable voxel sizes for downsampling depending on the distance of point from the
origin. We trained and tested our model on KITTI dataset. In our experiments,
we also demonstrate the benefit of our distance aware downsampling technique that
not only enhances the performance of our algorithm but also increases the accuracy
compared to uniform down sampling technique. We were able to achieve good results
on the vehicle class under easy and medium categories. Similar to majority of the
other methods, our model is only able to achieve moderate results on the pedestrian
class. The reason behind which is the less number of training instances belonging
to pedestrians class in KITTI dataset in comparison to vehicle class. Also the point
density of pedestrian scan is very sparse in comparison to other classes. We are able
to achieve acceptable results on cyclist class. As demonstrated in Figure 3.3, we show
that our model is able to present a good trade-off between accuracy and inference
speed. In comparison to other graph representation based methods like PointGNN
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[16], our model lies behind in terms of accuracy. PointGNN uses auto-registration
and improved NMS refinement techniques to achieve these results. The addition of
similar kind of refinement modules and techniques should help our model to achieve
better accuracy results as well.

5.1.2 GAGAT - Global Aware Graph Attention Network for
Classification and Segmentation

We design GAGAT architecture for point cloud classification and segmentation.
GAGAT can be utilized to learn relevant local representations for unstructured point
cloud for shape classification and part segmentation tasks. As an addition to GAT3D
architecture, we use a self-attention mechanism along with a neighbouring-attention
mechanism to capture attention coefficients for a point to its neighbourhood. To
capture contextual information, we employ global feature module. We trained and
tested the presented architecture on Modelnet dataset for classification, Shapenet
for part segmentation, S3DIS (Stanford 3D Indoor Scenes) dataset for indoor seg-
mentation and Semantic3D for outdoor segmentation. As demonstrated in Table
4.1 the architecture performed fairly well on classification task and scores 90.6% in
overall accuracy. The presented architecture demonstrates similar performance on
part segmentation task as presented in Table 4.3. The model performs fairly well on
all the classes and is also able to surpass all other mentioned methods in knife class
as shown in Table 4.2. We also test the architecture on complicated indoor scenes
in S3DIS dataset as well. As visualized in Figure 4.6, GAGAT is able to handle
semantic labels of complicated scenes fairly. Lastly, this architecture is able to score
moderate results on outdoor scene segmentation task as shown in Table 4.5. In our
experiments we also presented the advantage of the global aware module in Table 4.7.
Most importantly, the new global aware module aids in avoiding the bias of graph
based feature learning towards local receptive fields. We show that our architecture
can show acceptable results across distinctive applications and scenarios. Our model
struggles to surpass the accuracies of some state-of-the-arts methods. GAGAT lacks
the use of targetted techniques to achieve high accuracies across different applica-
tions contrary to mentioned methods. For example graph pyramid structure used by
GACNet [49] for better segmentation results and point feature encoding augment-
ation in RandLANet [42] for better large scene segmentation. We believe stacking
refinement modules and using additional techniques to target specific applications
should give an accuracy boost to our architecture as well.

In conclusion, we have presented an alternate approach of graph feature aggregation
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using masked attention and graph representation of point cloud data in this thesis.
Our experiments show good results across different datasets and applications. We
present this work as a common architecture for various applications on point cloud
data. Our architecture can be joined with refinement modules to target a specific
application. Finally, our proposed architectures produce results in low inference
times, which can be a great advantage for autonomous vehicles and robots.

5.2 Future Directions
A potential future direction would be to explore the possibility of using multi-
head attention and weighted coordinate difference to improve the detection results.
There exists further scope for improving the current prediction results and code-
optimization to improve better inference speeds. The optimization of current archi-
tecture for geospatial data or aerial data is also one direction that may be explored.
We would also look into the direction of addition of refinement modules or techniques
targetting specific tasks. We would also explore different graph representation (i.e
Delaunay Graphs) for point cloud data.
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