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Using epiphytic lichens as biomonitors of atmospheric mercury and dust at a 
historical gold mine tailings site in Nova Scotia, Canada 

 
 

By Michael P. Smith 
 
 

Abstract 
 
Historic gold mining in Nova Scotia, Canada, produced mercury (Hg)-contaminated 
tailings from the 1860s to 1940s that were deposited into the environment and 
subsequently abandoned upon mine closures. Today, these degraded landscapes are 
potential sources of contaminated dust, posing risks to human and ecosystem health. The 
primary objective of this thesis was to use epiphytic lichens (Usnea and Platismatia spp.) 
as biomonitors of airborne Hg in the Montague Gold District. Spatial distribution patterns 
of Hg in lichens showed hotspots near tailings deposits, reflecting greater inputs of Hg 
from windblown tailings, volatilization processes, throughfall, and/or stemflow. The Hg 
in the lichens was assessed in two ways, including surface-deposited and absorbed Hg 
fractions. These results suggested that gaseous Hg from the tailings was a more important 
source of the element compared to particulate-bound Hg. These lichens proved to be 
effective biomonitoring tools at Montague for assessing Hg pollution and identifying risk 
areas. 
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Chapter 1: Introduction and Objectives 
 
1.0 Introduction 

1.1 History of Gold Mining in Nova Scotia 

Mining and smelting of metalliferous ores have been taking place all over the 

world, potentially for up to 7000 years, providing wealth to many nations (Batty, 2005). 

In particular, gold (Au), a naturally occurring yet rare metal, has been valued by many 

human societies as it does not corrode and is highly malleable, durable, and attractive. It 

is also non-toxic, conducts electricity, and reflects heat and light. These features have 

made gold very useful for manufacturing electronics, jewellery, as well as for use in 

dentistry, medicine, engineering, and aerospace (Butt & Hough, 2009). These unique 

qualities and various uses of gold, in addition to its extreme rarity, have consistently led 

to its high value over time. The discovery of gold in California in 1849 caused “gold 

fever” to spread across countries and continents, leading to the discovery of additional 

gold deposits and the rise of many additional gold rushes (Mountford & Tuffnell, 2018). 

In Nova Scotia, Canada, historical gold mining was first established in the 

Mooseland Gold District in 1858, with multiple operations along the Tangier River 

(Malcolm, 1929). Early exploration was prompted by the gold rushes in California and 

Australia in 1849 and 1851, respectively (Malcolm, 1929; Mountford & Tuffnell, 2018). 

With the initial discovery of gold in 1858 came the search for gold across the province, 

soon thereafter initiating the province’s first gold rush in 1861. To avoid the lawlessness 

and chaos seen in other gold-rush regions around the world (Mountford & Tuffnell, 

2018), the provincial government established 64 gold mine districts with administration 

offices in each district to lease mining land and to encourage mining operations 
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(Malcolm, 1929). Official documents indicate that gold mining operations started in 1861 

and ended by the mid-1940s. Over 360 mines were in operation and later abandoned 

during this time (Malcolm, 1929). Collectively, these mines produced 1.2 million troy 

ounces of gold based on official documents (Parsons et al., 2012). 

This first gold rush peaked in 1867, yielding 27,358 ounces of gold, primarily 

extracted with the help of mercury (Hg) amalgamation, from Sherbrooke, Wine Harbour, 

Lawrencetown, Oldham, Waverley, Gold River, Isaacs Harbour, and Country Harbour 

(Malcolm, 1929; Bates, 1987). As mining continued into the early 1870s and with most 

of the accessible and high-grade ore worked, poor mining methods and management led 

to declines in gold production (Bates, 1987). 

The second gold rush in the province lasted eight years, between 1896 and 1903, 

with highest gold yields reaching 31,113 ounces in 1898 (Bates, 1987). During this gold 

rush, smaller deposits of gold could be extracted from lower-grade ore due to the 

adoption of advanced mining technologies and practices that included the use of 

dynamite for blasting, cyanide for concentrating gold, and more effective grinding 

machinery. 

In Nova Scotia, most gold is found in shallow quartz veins within slates and 

greywackes associated with the Cambro-Ordovician Meguma Supergroup, which 

comprises the majority of Nova Scotia’s southern mainland (Bates, 1987; Parsons et al., 

2012). The majority of mining activities involved small-scale open-cut mining and 

underground shafts, where mineralized rock was brought to the surface (Malcolm, 1929; 

Trip & Skilton, 1985). The use of crushers and stamp mills eventually became the most 

common method for extracting gold, leading to the development of more efficient large-
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scale mining operations. Auriferous ore was broken up and crushed in stamp mills into 

sand- or silt-sized particles by mechanically lifting and dropping 5-20 vertically-aligned 

weighed-metal rods onto the ore (Bates, 1987; Parsons et al., 2012). 

Once the ore was crushed, gold could be extracted through gravity separation, 

amalgamation, or cyanidation. The most common method for gold extraction in Nova 

Scotia was Hg amalgamation (Mudroch & Clair, 1985). The crushed quartz was mixed 

with water, initiating flow atop copper plates coated with a thin film of Hg (Mudroch & 

Clair, 1985; Bates, 1987; Art Gallery of Nova Scotia, 2013). Free gold dissolved in the 

liquid mercury, forming an amalgam. The gold amalgam would later be heated, causing 

the Hg to evaporate, and leaving the gold behind (Parsons & Percival, 2005). 

In addition to gold, Nova Scotian bedrock deposits (i.e. slates and greywackes) 

naturally contain elevated levels of the sulfide mineral arsenopyrite (FeAsS), of which 

arsenic (As) is a component (Drage, 2015). Throughout the 1920s, an increase in the 

demand for arsenical insecticides in the United States, along with decreasing energy costs 

and an increase in the price of gold, led to the beginning of the third gold rush in 1932 

(Malcolm, 1929; Bates, 1987; Parsons et al., 2012). This gold rush ended in 1942, 

producing a total of 158,000 ounces of gold (Bates, 1987) and approximately 1000 tonnes 

of arsenical concentrates for the market (Hurst, 1924; Parsons et al., 2012). 

The sand- to silt-sized waste particles that remained after the milling and 

extraction operations are known as “tailings”. Early mining operations were particularly 

inefficient and wasteful; it is estimated that as much as 30% of gold was left behind in the 

tailings from loss during the crushing and concentrating processes (Bates, 1987; Mills, 

1997). The gold extraction process also resulted in significant amounts of local Hg 
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pollution due to the careless handling of elemental Hg (Hg0) by mill operators and 

inexperienced miners (Trip & Skilton, 1985; Parsons et al., 2012). It is estimated that 

approximately 10-25% of all Hg used was lost to the mill tailings and to the atmosphere, 

with only a portion being captured and reused (Bates, 1987; Art Gallery of Nova Scotia, 

2013). On average, one ounce of Hg was used to extract one ounce of gold from ore, 

however, up to three times this amount of Hg may have been used at some mines 

throughout the province (Parsons et al., 2012). Thus, an estimated 9,100 kg of Hg may 

have been lost from gold mining operations in Nova Scotia, ending up in the tailings 

and/or atmosphere (Parsons et al., 2012). In addition, the disruption of arsenopyrite when 

extracting the gold from auriferous veins resulted in significant concentrations of As 

released via tailings to the surrounding environments (Bates, 1987; Art Gallery of Nova 

Scotia, 2013). Cyanidation, the process of using cyanide solutions to leach gold from 

sulfide minerals, was more effective at extracting gold than Hg amalgamation, 

subsequently being employed at some mines towards the end of the 19th century (Bates, 

1987; Parsons et al., 2012). 

Over 80 years of historical gold mining operations in Nova Scotia, an estimated 

three million tonnes of tailings were generated across the province (Parsons et al., 2012). 

During those early mining operations, there were no regulations governing the disposal of 

mining waste after milling and processing via amalgamation or cyanidation. As a result, 

low-lying areas, including freshwater ecosystems and adjoining coastal areas downstream 

of mining operations, became convenient or unintended disposal sites for the tailings. By 

the mid-1940s, most gold production in the province had ceased. This resulted in the 

abandonment of mine sites, leaving a legacy of Hg and As contamination in surrounding 
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environments, as well as other contaminants such as lead (Pb) and organic residues. 

Today, many of these former mining sites are located on private and public lands and are 

hazardous because they include surface-exposed tailings deposits, water-submerged 

tailings, waste rock piles, and open mine shafts. 

 
1.2 Mercury 

Mercury is a naturally occurring element found in the Earth’s crust which can be 

released naturally from sources such as volcanoes and forests fires, for instance. 

However, elevated background levels and the ubiquitous distribution of Hg in the 

environment today are largely a result of anthropogenic activities. This includes the 

burning of coal, oil, and wood, but also results from the widespread use in amalgamation 

at historical gold and silver mining operations (Schroeder & Munthe, 1998; Keeler et al., 

2006). Mercury was first used on an industrial scale for silver mining in Spain in 1554, 

then extensively used at gold mines in North America during the gold rushes of the 18th 

and 19th centuries, including in Nova Scotia (Parsons & Percival, 2005). The close 

association of Hg with silver and gold mining throughout history has led to the persistent 

contamination of soils, water, and air surrounding mining districts, as well as the 

bioaccumulation of methylmercury (MeHg) in local food chains world-wide (Nriagu, 

1994; Lodenius & Malm, 1998; Lecce et al., 2008). Mercury is persistent in the 

environment and thus can be released from source areas for tens to thousands of years 

after mining operations have ceased (Parsons & Percival, 2005). 

Mercury exists in various forms which vary in toxicity, including Hg0, organic Hg 

compounds, and inorganic Hg compounds, of which the latter can exist in two oxidative 

states (Hg+ and Hg2+) (Figure 1) (Park & Zheng, 2012). The highly volatile Hg0, which is 
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liquid between -38.9ºC and 356.7ºC (Government of Canada, 2013), was used for Hg 

amalgamation at historical gold mines in Nova Scotia starting in the early 1860s and 

declining somewhat when cyanidation processes became more common starting in the 

1890s (Malcolm, 1929; Parsons et al., 2012). Elemental Hg is released either in its liquid 

form directly from disposed mining wastes or volatilized into the surrounding atmosphere 

(Schroeder & Munthe, 1998). Over 90% of globally atmospheric Hg consists of gaseous 

Hg0, which has an atmospheric lifetime of approximately 1-2 years, and is deposited 

mainly by dry deposition (Lin & Pehkonen, 1999; Kocman et al., 2011). The other main 

forms of Hg in the atmosphere include gaseous oxidized Hg (GOM) and particulate-

bound Hg (Figure 1) (Pacyna & Pacyna, 2005; McLagan et al., 2016; Huang et al., 2020). 

Elemental Hg can be oxidized in the atmosphere to form GOM, which commonly 

comprises divalent Hg (Hg2+) species that typically become dissolved in atmospheric 

water droplets or adsorbed onto dust particles as particulate-bound Hg (Kocman et al., 

2011; Huang et al., 2020). Divalent Hg is deposited to the Earth’s surface only within 

days to weeks through both wet and dry deposition (Lin & Pehkonen, 1999; Huang et al., 

2020). Gaseous oxidized Hg and particulate-bound Hg become deposited and bound in 

terrestrial and aquatic ecosystems and not released unless reduced. Mercury is a Class B 

element and Hg ions bind very strongly to protein and enzyme components of cells, often 

interring with their function (Nieboer & Richardson, 1980; Porett & Bollinger, 2018). In 

contrast, Hg0 is bidirectional, capable of continuous exchange between the air and soil, 

water, or biota via deposition and volatilization (Bargagli, 2016). 

In aquatic systems, Hg0 can be oxidized to form Hg2+ which can then be 

transformed primarily by microorganisms into organic forms, such as MeHg, through the 
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process of methylation (Figure 1) (Kim, 2005; Parsons & Percival, 2005). Methylmercury 

is accumulated by fish and marine mammals, biomagnifying up the food chain to large 

fish, birds, and even humans. For humans, the most common exposure pathways to Hg 

are from MeHg through the consumption of fish and shellfish (Park & Zheng, 2012) and 

through inhalation of Hg vapour (US EPA, 2020). Inorganic Hg compounds are water 

soluble with a bioavailability of 7 to 15% once ingested, typically leading to kidney 

damage (Park & Zheng, 2012). In contrast, organic Hg compounds (e.g. MeHg) are 

rapidly absorbed by the brain and kidneys upon entering the body (Park & Zheng, 2012). 

Elemental Hg and MeHg are of particular concern as they can cross the blood-brain and 

placental barriers, acting as a neurotoxin and can persist in the brain for as long as 20 

years (Gupta et al., 2005; Park & Zheng, 2012). 

 
1.3 Mercury Contamination at Historical Gold Mine Tailings Sites in Nova Scotia 

In Nova Scotia today, tailings continue to contaminate the environment with Hg 

(and As) more than 80 years after the last historical gold rush. In a large survey of 14 

historical gold mine sites in the province, more than 480 tailings samples were collected, 

many of which were found to be elevated in Hg and exceeding the Canadian Council of 

Ministers of the Environment (CCME) soil (residential/parkland) and sediment 

(freshwater) quality guidelines of 6600 μg/kg and 486 μg/kg (dry weight), respectively 

(CCME, 1999a, b; Parsons et al., 2012). The tailings have also been shown to 

contaminate soils (Eaton, 1978; Parsons & Little, 2015), lake sediments (Mudroch & 

Sandilands, 1978; Mudroch & Clair, 1985; Clark et al., 2021), and waters (Eaton, 1978; 

LeBlanc, 2019, unpublished) with Hg at and further downstream of mine sites (Figure 1). 

In addition, as reviewed by LeBlanc et al. (2019), Hg from the tailings at various gold 
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districts across the province has bioaccumulated in plants, fish, terrestrial and aquatic 

invertebrates, marine molluscs, amphibians, and small mammals. In spite of these results, 

the bioaccumulation of Hg from gold mine tailings in small and large mammals, 

amphibians, reptiles, and lichens remains understudied or unstudied (LeBlanc et al., 

2019).  

 
1.4 Air Quality 

Tailings deposits in former gold mining areas can act as a continuous source of 

Hg pollution to the air from both dust emissions and gaseous Hg evasion. This occurs 

because these contaminated sites typically lack nutrients, soil structure, and organic 

matter (Mendez and Maier, 2008; de-Bashan et al., 2010). Such conditions, in 

conjunction with disturbances, create landscapes devoid of vegetation, as observed at 

many historical gold mine sites in Nova Scotia (Figure 2). As a result, the exposed fine-

grained tailings material can be subject to wind erosion (de-Bashan et al., 2010). 

Furthermore, climate change in Canada is projected to increase annual and 

seasonal temperatures from 2 to 6°C by the end of the 21st century, as well as lead to 

changes in precipitation (Bush & Lemmen, 2019; Government of Canada, 2020). These 

changes may increase the number of extreme events, such as wildfires and droughts 

(Bush & Lemmen, 2019). When combined with sparse vegetation cover, such warmer, 

drier conditions may lower moisture levels, decrease soil particle cohesion, and increase 

the likelihood of dust emissions (Csavina et al., 2012). These will aid in the 

remobilization and dispersion of mine contaminants surrounding historic mine sites 

(Mendez & Maier, 2008). Exposure to these dusts can adversely impact human and 

environmental health (Noble et al., 2017). 
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1.4.1 Transport Pathways for Contaminants by Air 

Many abandoned mine sites across Canada and around the world contain 

unconfined tailing deposits or ponds, open pits, or waste rock piles, which are a major 

source of mineral dust into the surrounding environment (Noble et al., 2017). Wind 

erosion is the primary process generating dust, along with anthropogenic activities and 

related disturbances (Csavina et al., 2012). Wind erosion is dependent on climatic 

conditions, rock mineralogy, land-use, vegetation cover, and soil characteristics (Bielders 

et al., 2001; Csavina et al., 2012; Noble et al., 2017). Mine tailings deposits can give rise 

to a wide size range of particles, including coarse airborne particles (~3-100 µm) and 

ultra-fine particles (0.001-0.1 µm) (Csavina et al., 2012; Noble et al., 2017). 

Atmospheric suspended particles can adsorb, transport, and deposit contaminants 

in the environment, especially those with a low volatility, a low aqueous solubility, and 

those that remain attached to soil particles (Csavina et al., 2012; Noble et al., 2017). The 

long-distance transport of contaminants by atmospheric particles is of global concern 

because air masses can carry small particles over long periods of time and across 

continental and international boundaries. It is estimated that approximately 60% of 

globally atmospheric As originates from mining operations, and is transported and 

dispersed by atmospheric particulates (Csavina et al., 2011, 2012; Garrison et al., 2014). 

However, in general, atmospheric particulates originating from mine tailing sites are 

typically larger in diameter and deposit locally on spatial scales from meters to 

kilometers. 

Many studies have shown historic mine tailing sites to be major sources of 

contaminated dust. For instance, at the historical Rio Tinto mining district in Spain, the 
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resuspended mine waste dust was estimated to contribute 32% to the total concentration 

of trace metals in the atmosphere. The elements included As, copper (Cu), and zinc (Zn) 

(Sánchez de la Campa et al., 2011). Also in Spain, mechanically resuspended particulate 

matter from the tailings at an abandoned gold mine site was enriched in antimony (Sb) 

and As (Moreno et al., 2007). Both studies concluded that there was potential for adverse 

environmental and human health effects from exposure to these metal-bearing particles. 

In addition to the generation of metal-bearing dust particles, elements from 

contaminated sites can be released in the gas phase by direct transfer of volatilized 

species (Beamer et al., 2014). Mercury can be released as gaseous Hg0 following the 

transformation of Hg2+ at redox boundaries via photoreduction or microbial communities 

(Krabbenhoft et al., 2005; Moreno et al., 2005). Many studies have shown that Hg-

contaminated sites are significant sources of gaseous Hg. In urban and suburban areas in 

Guiyang, China, a city located in the Circum-Pacific Global Mercuriferous Belt and 

containing elevated soil Hg concentrations, the natural Hg emissions from soils to the 

ambient air (408 kg/yr) was comparable to emissions from coal combustion sources (639 

kg/yr), the latter estimated to be the largest anthropogenic Hg source in the region (Feng 

et al., 2005). Similarly, at a landfill site in this same city in China, the gaseous Hg 

emission fluxes from both the exposed wastes to air and from the landfill soil surface to 

air were 2 to 3 orders of magnitudes higher than those from soils at a background site 

(Feng et al., 2004). 

Metalliferous dust and gases pose significant risks to the local environment 

because the elements they contain can increase the concentrations in soils and surface 

waters (Meza-Figueroa et al., 2009; Kargar et al., 2012; Cleaver et al., 2021) as well as 
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biomagnify, having adverse physiological effects in biota (e.g. reduction in plant 

photosynthesis) near mine sites (Søndergaard, 2013; Pichhode & Nikhil, 2015). Fine 

particles from mining sites are of concern because of their high surface area, which 

results in higher dissolution rates and greater bioavailability (Csavina et al., 2012). The 

impact of metalliferous dust on human health depends on particle size and shape, 

composition, and solubility (Noble et al., 2017). Children are at increased risk of 

contaminated dust and vapours as they not only breathe more air and ingest more dust on 

a body weight basis than adults, but also because their developing bodies are more 

susceptible to the effects of metal exposure (Beamer et al., 2014). Coarse airborne 

particles (~3-100 µm) from the wind erosion of mine tailings can be inhaled and 

deposited in the upper repository system, or swallowed and absorbed in the digestive tract 

(Csavina et al., 2012). Fine airborne particles (0.001-0.1 µm) are respired deep into the 

lungs and contaminants such as Hg are generally absorbed directly into the bloodstream 

(Csavina et al., 2012; Stovern et al., 2014; Deng et al., 2019). Once inhaled or ingested, 

the dust can adversely impact human health. 

 
1.4.2 Air Quality at Historical Gold Mine Tailings Sites in Nova Scotia 

In Nova Scotia, studies investigating dust and air quality at the many legacy gold 

mine tailings sites have been limited. At the Goldenville, Caribou, and Lower Seal 

Harbour gold districts, the gaseous Hg flux rates from the tailings to the ambient air have 

been measured (Beauchamp et al., 2002; Wong et al., 2002; Dalziel & Tordon, 2014). 

These tailings sites released Hg at a faster rate and in greater magnitudes in comparison 

to soils and waters from control sites that were not close to gold mining areas. For 

instance, the daily average Hg flux rates from the tailings to the atmosphere at the Lower 



 12 

Seal Harbour district were measured at 17.4 ng/m2/hr and 652 ng/m2/hr on tailings from a 

former cyanide plant and stamp mill, respectively, compared with 1-2 ng/m2/hr measured 

over undisturbed control soils (Dalziel & Tordon, 2014). It was concluded that these 

tailings sites are still important sources of Hg transfer to the atmosphere even decades 

after mining operations have ceased. 

Recreational activities (e.g. off-road vehicle racing) were identified as major 

sources of airborne dust at the Montague and Goldenville districts, with most tailing grain 

diameters measuring between 125 and 500 μm at Montague (Corriveau at al., 2011a, b). 

This dust at Montague was found to contain many mobile, As-bearing mineral species 

and high total As concentrations in the respirable fraction of <8 µm (1040 ng/m3), 

suggesting that As may become bioavailable, potentially affecting human health of those 

living near the tailings or using the site for recreational activities (Corriveau at al., 2011a, 

b). In a soil sampling survey at the Montague Gold District in 2007, the spatial 

distribution of Hg and As in soils was investigated (Parsons & Little, 2015). For Hg, 

highest concentrations were found in the humus layer, thought to result from gaseous Hg 

flux from the soils in combination with atmospheric Hg deposition from both distant and 

local sources (i.e. windblown tailings, past airborne emissions from former stamp mills) 

(Parsons & Little, 2015).  

Overall, these studies have demonstrated that abandoned gold mine tailing sites in 

Nova Scotia can still be important sources of hazardous dust and vapours. This is of 

concern as there may be increased human exposure to these mine wastes in the future as a 

result of increasing land development (e.g. residential subdivisions) and continued 

frequent recreational use (e.g. off-road vehicle racing) at and surrounding some mine 
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sites. It is important to document the atmospheric dispersion of the mine tailing 

contaminants to assess the pollution source, manage any potential risks, and to inform 

land use decisions as well as future mine planning. 

 
1.5 Biomonitoring 

For spatial air pollution monitoring, manufactured active and passive air 

monitoring systems (e.g. high-volume samplers, continuous particle monitors, dust 

deposition gauges) usually require power sources or may be expensive or difficult to 

deploy in remote areas and across large spatial scales. Biomonitoring, or biological 

monitoring, is an alternative that can provide an effective method to determine the spatial 

and temporal distribution of atmospheric contaminants at any desired scale, the 

occurrence of contaminant hotspots in the environment, and pollutant emission sources 

(Bargagli et al., 2002; Pignata et al., 2007; Boamponsem et al., 2010; Søndergaard et al., 

2010). Biomonitoring involves the use of a living organism to provide information on the 

sphere of influence and level of contamination in the environment. Monitoring organisms 

accumulate pollutants in their tissues and may reveal changes in appearance or 

community composition (e.g. species diversity, abundance, distribution) when exposed to 

various environmental stressors (Lodenius, 2013). For example, the mollusk species 

Viviparus bengalensis was an effective biomonitor of metal contamination in river 

Gomti, India, accumulating high concentrations of Cu, Zn, and manganese (Mn) while 

persisting in the polluted environment without suffering mortality (Gupta et al., 2014). 

Other studies have successfully used spiders, seaweed, mussels, and fish to assess metal 

contamination from abandoned mines (Søndergaard, 2013; Hansson et al., 2019), 
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freshwater macrophytes to assess lake elemental pollution (Nirmal Kumar et al., 2006), 

and snails for biomonitoring soil contamination (Gomot de Vaufleury & Pihan, 2000). 

 
1.5.1 Background Information about Lichens 

Lichens are widely used as biomonitors of air quality, providing information on 

the spatial distribution and concentration levels of airborne contaminants at both local 

and regional scales. A lichen is a symbiotic relationship between a fungal partner 

(mycobiont) and an algae or cyanobacteria (photobiont) (Lodenius, 2013; Bargagli, 

2016). The fungus provides the algae with minerals and protection from external stress 

factors such as high light levels. The algae conduct photosynthesis, providing organic 

carbon to the fungus. In cyanolichens species, cyanobacteria are also present and can fix 

nitrogen from the air and synthesize ammonia (NH3) that can move to the fungus and be 

converted into amino acids and proteins (Bargagli, 2016). 

Lichens are ubiquitous around the world, covering approximately 6% of the 

Earth’s surface (Brodo, 2015). Lichens can grow on natural substrates such as soils 

(epigeic), rocks (epilithic), and trees (epiphytic), as well as on man-made structures 

(Nimis et al., 2002; Leavitt & St. Clair, 2015). These organisms can live in a wide range 

of habitats, climates, and environments, including the tropics, temperate and boreal 

forests, urban areas, and deserts (Nimis et al., 2002). They are also the dominant 

vegetation in polar regions such as the subarctic woodlands and the arctic tundra, being a 

major food source for caribou (Brodo, 2015; Bargagli, 2016). Lichens are perennial 

organisms and typically grow at very slow rates. Some arctic species only grow at a rate 

of about 0.1 mm per year while the margins or length of most of the larger temperate 

species extend by 5-8 mm per year (Brodo, 2015). Lichens photosynthesize and grow 
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when there is light, moisture, and humidity, and become dormant when dry (Shukla et al., 

2014). Consequently, many lichen species grow along fog belts, coastlines, and near 

lakes, typically becoming more sparsely populated when approaching the drier conditions 

farther inland (Lutzoni & Miadlikowska, 2009). 

The vegetative body of a lichen is called the thallus (plural: thalli). Lichen thalli 

may be fruticose forms (shrub-like thallus), foliose forms (leaf-like thallus), or crustose 

forms (crust-forming) (Shukla et al., 2014; Bargagli, 2016). Generally, lichens have an 

upper cortex (protective outer layer of the thallus), beneath which is an algal layer and 

then the medulla made up of fungal tissue (Figure 3) (Shukla et al., 2014). Below the 

medulla is a lower cortex and sometimes a basal attachment (rhizines or holdfast) that 

attaches the lichen to its substratum (Shukla et al., 2014). 

Many lichens reproduce asexually, through fragmentation or the production of 

specialized growth structures, such as soredia and isidia, that are comprised of fungus and 

photosynthetic components and dispersed by wind, water, or animals (Lutzoni & 

Miadlikowska, 2009). However, sexual reproduction also occurs in many species. Lichen 

fungi develop fruiting bodies (apothecia) which produce spores that are shot into the air 

and will germinate and grow into a new lichen if they land on a suitable substratum on 

which is a compatible photosynthetic component (Lutzoni & Miadlikowska, 2009). 

Unlike plants, lichens lack roots, stems, leaves, vascular systems, waxy cuticles, 

stomata, and other specialized structures for water retention, photosynthesis, and gas 

exchange (Lodenius, 2013; Bargagli, 2016). As a result, lichens obtain almost all 

nutrients required for growth by absorbing water and minerals by both wet and dry 

atmospheric deposition (Bargagli, 2016). Some species of lichens are also thought to 
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absorb and accumulate nutrients and metals from the substratum (Fahselt et al., 1995; 

Sueoka et al., 2015), however, this is not the primary source for most lichens. 

Precipitation events drive wet deposition, depositing dissolved airborne aerosols as well 

as particles on lichen thalli (Tyler, 1989; Leavitt & St. Clair, 2015). Furthermore, dry 

deposition of airborne gases or particles can also be significant (Leavitt & St. Clair, 

2015). However, with no waxy cuticle, lichens lack a physical barrier and can thus take 

up atmospheric contaminants in greater amounts than needed for growth (Shukla et al., 

2014). 

The accumulation of minerals in lichens, including contaminants, can occur via 

entrapment of particulates originating from soil, rock, dust, or anthropogenic activities 

(Figure 3). These can become trapped amongst the mycobiont hyphae (branching fungal 

body) and in intercellular spaces (Tyler, 1989). Particulates are the primary source of 

airborne trace elements to the lichen surface (Vannini et al., 2017). The ability of a lichen 

to intercept airborne particles depends on the particle size as well as the species-specific 

features of the thallus (e.g. presence/absence of a cortex, size of pores, etc.) (Bargagli, 

2016). Air particles from soils, volcanic eruptions, forest fires, pollen, mining, and the 

combustion of fossil fuels are just some of the particles that can be intercepted by lichens 

(Figure 3). 

Once particulates are trapped, they can be solubilized with the help of some of the 

secondary products produced by lichen fungi, such as oxalic acid (Tyler, 1989; 

Chiarenzelli et al., 1997; Bargagli, 2016). Metal ions released from dissolved particulates 

and those in rainfall are adsorbed to sites on the cell wall or the outer layer of the plasma 

membrane, predominantly of the fungal component, via reversible passive ion exchange 
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(Nash, 1989). In this process, low binding affinity hydrogen or metal ions bound to 

negatively charged anionic exchange sites can be displaced by ions with a higher binding 

affinity or with higher concentrations of ions (Figure 3) (Tyler, 1989; Bargagli, 2016; 

Vannini et al., 2017). Thus, these metal ions become bound to the cell walls. 

Extracellular metal ion exchange is a rapid process and unaffected by metabolic 

inhibitors (Garty, 2001). 

Cations bound to these extracellular exchange sites can then be incorporated into 

the living cells of the lichen thallus with time (Hauck et al., 2002). Intracellular uptake 

occurs when soluble ions are transferred inside mycobiont and photobiont cells through 

energy-dependant and plasma membrane-controlled systems (Figure 3) (Garty, 2001; 

Vannini et al., 2017). It is the intracellular component of trace element accumulation in 

lichen thalli that affects the lichens at the physiological level, with the potential to result 

in visible symptoms of damage or death of the lichen (Vannini et al., 2017). Unlike 

extracellular uptake, intracellular metal uptake is a slow process that accelerates over 

time and depends on the species, cell metabolism, and availability of intracellular 

functional groups (Garty, 2001). Also, the nature of the metal ion (e.g. bioavailability), 

the permeability properties of the cell membrane, as well as the number of extracellular 

ligands all influence intracellular uptake (Tyler, 1989). In contrast to the extracellular 

fraction, the metals in the intracellular fraction tend to be indicative of long-term metal 

deposition (Johnson and Gunnar, 2018, unpublished). From the accumulation of 

contaminants in thalli, lichens may therefore act as vectors of contaminants to terrestrial 

wildlife as they are consumed by numerous invertebrates (e.g. springtails, beetles) and 



 18 

vertebrates (e.g. caribou), or used by species for habitat and camouflage (Asplund & 

Wardle, 2017) (Figure 3). 

 
1.5.2 Lichens as Biomonitors 
 

Lichens have a ubiquitous distribution, long life spans, and the ability to grow 

continuously for decades, being a valuable organism for monitoring atmospheric 

deposition as well as changes in air quality, land management practices, and climate 

(Leavitt & St. Clair, 2015). For example, the disappearance or shifting of lichen 

populations and changing community compositions in an area can assist in monitoring 

climate change. With regards to air pollution, elevated atmospheric pollutant levels do 

not impose adverse effects on the survival and growth of some lichens that are pollution 

tolerant like Lecanora conizaeoides and Parmelia sulcata. Such species may be effective 

bioaccumulators and biomonitors of air quality around highly contaminated sites 

(Boamponsem et al., 2010). In comparison with high-volume samplers, continuous 

particle monitors, or dust deposition gauges, lichens are a relatively inexpensive method 

for determining the spatial and temporal distribution of atmospheric contaminants in 

relation to pollutant emission sources. 

Lichens were first identified as indicators of air quality in 1866 by William 

Nylander who studied their distribution in Paris, France. Subsequent studies have shown 

sensitive lichen species to decrease in population size or disappear in the presence of 

consistently elevated atmospheric pollutants (Leavitt & St. Clair, 2015). Studies of lichen 

biodiversity in relation to air quality to assess ecosystem health has been used 

extensively, with permanent lichen monitoring programs having been established in 



 19 

many countries, including Canada, the United States, United Kingdom, Switzerland, and 

the Netherlands (Brodo et al., 2001; Conestoga-Rovers & Associates, 2007). 

Lichens can also be used as passive biomonitors of environmental contaminant 

concentrations (e.g. metals, sulfer dioxide, ozone, etc.) by measuring concentrations in 

lichen thalli. Pollutant concentrations in thalli achieve an equilibrium with the average 

pollution levels in the ambient air within three months of exposure (Kularatne & de 

Freitas, 2013; Loppi et al., 2015; Loppi & Paoli, 2015). Lichens can also be used in 

active biomonitoring, where specimens are transplanted from an unpolluted site to a 

polluted site (lichen bag or moss bag approach), and the changes in appearance, 

biochemistry, physiology, growth rates, or elemental content used to assess the air quality 

(Leavitt & St. Clair, 2015). Thus, transplanted lichens are useful for monitoring temporal 

trends in air pollution concentrations whereas in situ lichens can be effective for spatial 

air pollution monitoring (Kularatne & de Freitas, 2013). 

Lichens have been used for monitoring dust and air quality from both natural and 

anthropogenic sources of pollution, including volcanoes, agricultural operations, chlor-

alkali plants, and coal-fired power electricity generating stations (Garty & Hagemeyer, 

1988; Bargagli & Barghigiani, 1991; Davies & Notcutt, 1994; Sensen & Richardson, 

2002; Saat et al., 2016; Bernardo et al., 2019). The utility of lichens to effectively 

biomonitor airborne contamination from both historical and active mining operations has 

been demonstrated in numerous studies globally (Bargagli et al., 1987; Fahselt et al., 

1995; Dolgopolova et al., 2006; Wilson & Pyatt, 2007; Saunier et al., 2013; Odumo et al., 

2014; Landis et al., 2019). With respect to Hg, lichens were collected along a gradient at 

a historical Hg mine, Pinchi Lake, in British Columbia, Canada. It was generally found 
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that there were higher Hg concentrations in the lichens collected at the mine site, with 

decreasing concentrations measured in some samples collected at more distal sites 

(Plouffe et al., 2004). Similar results were noticed for lead (Pb) at the abandoned Pb-Zn 

“Black Angel Mine” in West Greenland, with background Pb levels in lichens not found 

until 12 km from the mine (Søndergaard et al., 2010). In both studies, the enrichment of 

elements in lichens were attributed to wind-borne dust from the tailings deposits and 

other waste materials at the sites. Overall, these studies not only support lichens as 

effective air quality biomonitors, but also further demonstrate the utility of lichen to 

assess continual contamination to the atmosphere which may occur at some abandoned 

mine sites. 

In Nova Scotia, lichen-based air quality studies have included surveys from as 

early as 1968. Most of those investigations examined species distributions, abundance, 

and diversity in various urban areas, national parks, and near other potential point sources 

of pollution or areas with poor air quality (Ward, 1968; Brawn & Ogden, 1976; Selva, 

1999; Cameron, 2003; Cameron et al., 2007; Conestoga-Rovers & Associates, 2007; 

Gibson et al., 2013; McMullin et al., 2017). Several studies conducted in the province 

have measured contaminants in lichen thalli to identify the spatial extent of airborne 

contamination and emission sources. Those studies include Pb from the long-range 

transport from the United States (Carignan et al., 2002), vanadium (V) from local oil-

fired power plants (Juichang et al., 1995), deposition of atmospheric radionuclides (131I, 

103Ru, 137Cs) from the 1986 Chernobyl nuclear plant accident (Smith & Ellis, 1990), and 

Hg as part of an ecosystem assessment of Hg cycling in Kejimkujik National Park (Rencz 

et al., 2003). A small number of studies using lichens have been conducted at abandoned 
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mine sites in the province. Sedgewick (1998, unpublished) found elevated Cu, Zn, Pb, 

and cadmium (Cd) in lichens associated with a small historical Pb-Cu-Zn mine dump in 

Musquodoboit Harbour which ceased operations in 1920. More recently, Klapstein et al. 

(2020) used roadside sampling of the lichen Usnea to determine the spatial distribution 

and sources of airborne Hg and other elements across the entire province. Lichens 

collected near historical gold mine sites in Halifax and Guysborough counties were 

shown to contain elevated As and selenium (Se), but not Hg (Klapstein et al., 2020). 

However, lichen sampling from these gold mine sites was not the focus of this study as 

sampling was not conducted on a fine, local scale around the selected tailing sites. 

 

2.0 Thesis Objectives 

With a changing climate and increasing land use and development around 

contaminated sites, it is becoming more important to monitor dust and air quality. Further 

research is needed to assess the airborne contamination around the many abandoned gold 

mine tailings sites in Nova Scotia. The primary objective of this thesis is to examine the 

spatial distribution patterns of airborne Hg on a detailed, local scale using epiphytic 

lichens (Usnea and Platismatia spp.) around a historical gold mine tailings deposit in the 

Montague Gold District that is relatively close to the city of Dartmouth, Nova Scotia. In 

addition, total Hg (THg) flux rates were determined using passive air samplers and rain 

collectors to enable comparisons to the lichen biomonitors. Finally, the aim was to 

distinguish between the extracellular versus intracellular concentrations of Hg in the 

collected lichens to assess the influence of the tailings on atmospheric dust emissions.
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Figure 1. Conceptual diagram of mercury cycling and species transformations at historic gold mine tailings sites in Nova 
Scotia. Created in BioRender.com. 
 

3.0 Chapter 1 Figures 
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Figure 2. Tailings field at the Montague Gold District in Nova Scotia.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 24 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Conceptual diagram showing the general structure of lichens, sources of contaminants to lichens, element 
accumulation pathways, and the potential transfer of contaminants to biota in terrestrial ecosystems. Created in 
BioRender.com. 
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Chapter 2: Spatial distribution and patterns of airborne mercury using 
lichen biomonitors and passive dry deposition collectors at the 

Montague Gold District in Nova Scotia 
 

Abstract 

Mercury (Hg)-contaminated gold mine tailings deposits in Nova Scotia, Canada, 

are potential sources of contaminated dust, posing risks to surrounding environments. 

This study sought to determine the spatial distribution of airborne Hg surrounding the 

Montague Gold District near Dartmouth, Nova Scotia, using epiphytic lichens as 

biomonitors. Usnea and Platismatia spp. were sampled over a series of gridded transects 

and analyzed for Hg concentrations. Seasonal Hg flux rates were also determined using 

passive dust samplers situated along a stream-based transect. Mercury concentrations in 

lichens ranged from 69 to 320 µg/kg for Usnea and 49 to 195 µg/kg for Platismatia. 

Interpolation modelling of the Hg data showed the same two major hotspots between the 

two lichen genera. The level of Hg contamination in lichens was dependent on proximity 

to the tailings, likely receiving Hg from volatilization processes, windblown tailings, 

throughfall, and/or stemflow. Lichens collected from trees near wetlands and bogs 

showed elevated concentrations of Hg, demonstrating the role these environments have in 

methylating and demethylating Hg. From the passive dust samplers, the warmer seasons 

had the highest Hg flux rates, reflecting the increased temperatures and solar radiation 

that enhance the evasion of gaseous Hg into the air. It was concluded that Usnea and 

Platismatia were effective spatial biomonitors of Hg that can provide complementary 

information to these physical dust samplers. The results from this study can be used to 

inform future development decisions, provide guidance to mine and risk evaluators, and 

help to predict the impacts of this Hg contamination on nearby food webs. 
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1.0 Introduction 
 

Nova Scotia, Canada, has a history of gold mining between 1861 to the mid-

1940s. Gold was first discovered in 1858, soon thereafter in 1861 initiating the province’s 

first of three major historical gold rushes (Malcolm, 1929). By the 1940s, over 360 mines 

had been in operation over these 80 years, located within 64 formal gold mining districts 

(Malcolm, 1929). Over this time, gold was predominantly extracted by crushing the ore 

to sand- or silt-sized particles using stamp mills, followed by mercury (Hg) 

amalgamation processing using Hg-coated copper plates (Mudroch & Clair, 1985; Bates, 

1987; Parsons et al., 2012). Beginning in the 1890s, mine operators began to use 

cyanidation to extract gold from ore, yet Hg amalgamation was still used at many sites up 

until the 1940s (Bates, 1987; Parsons et al., 2012). These historical mining operations 

produced approximately 1.2 million troy ounces of gold across the province, resulting in 

the production of an estimated three million tonnes of fine-grained mine waste, called 

tailings (Bates, 1987; Parsons et al., 2012; Drage, 2015). 

Early ore amalgamation operations were particularly inefficient and wasteful, 

with 10-25% of all Hg used (9100 kg) estimated to have been lost to the tailings and to 

the atmosphere, with only a portion of the elemental Hg (Hg0) being captured and reused 

(Bates, 1987; Parsons et al., 2012). In addition, the tailings are elevated with arsenic (As) 

which was released from the disruption of the sulfide mineral arsenopyrite (FeAsS) when 

extracting gold from these ore deposits (Drage, 2015). Most tailings were disposed of, 

untreated, into surrounding environments such as lakes, wetlands, and streams. Mining 

operations eventually became uneconomical once most high-grade ore was processed, 

resulting in the abandonment of mine sites and leaving a legacy of environmental 
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contamination. With regards to Hg, tailing samples collected in recent years from 

numerous sites across Nova Scotia have been shown to be elevated in Hg, up to 350,000 

μg/kg, significantly exceeding the Canadian Council of Ministers of the Environment 

(CCME) soil and sediment quality guidelines of 6600 μg/kg and 486 μg/kg (dry weight), 

respectively (CCME, 1999a, b; Parsons et al., 2012). The tailings have been repeatedly 

shown to contaminate soils (Eaton, 1978; Parsons & Little, 2015), lake sediments 

(Mudroch & Sandilands, 1978; Mudroch & Clair, 1985; Clark et al., 2021), and waters 

(Eaton, 1978; LeBlanc, 2019, unpublished) at and near mine sites. Mercury in all 

ecosystems also bioaccumulated in biota including plants, fish, terrestrial and aquatic 

invertebrates, marine molluscs, amphibians, and small mammals (LeBlanc et al., 2019 

and references therein). 

Mercury is a naturally occurring element found in the Earth’s crust, existing in 

various forms; the main forms being Hg0, inorganic Hg compounds, and organic Hg 

compounds (Park & Zheng, 2012). The highly volatile and liquid form of Hg, Hg0, was 

the form used for Hg amalgamation at these historic gold mining operations in Nova 

Scotia. In aquatic systems, Hg0 can be oxidized to divalent Hg (Hg2+) which can then be 

transformed into organic forms, such as methylmercury (MeHg), primarily by 

methylating bacteria (Kim, 2005; Parsons & Percival, 2005). Methylmercury is 

accumulated by fish and marine mammals, biomagnifying up the food chain, even to 

wildlife in terrestrial environments and to humans.  

Today, the tailings deposits are potential sources of airborne Hg via direct transfer 

of the volatile Hg0 (gaseous) or Hg-containing dust emissions, potentially redistributing 

this contaminant into surrounding areas (Csavina et al., 2012). Any of the Hg0 lost to the 
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tailings or nearby aquatic environments can undergo reversible transformations, being 

oxidized to Hg2+ and then reduced back to gaseous Hg0 via photoreduction or microbial 

communities. The gaseous form of Hg can be volatilized from the tailings to the 

atmosphere (Krabbenhoft et al., 2005; Moreno et al., 2005). In addition to being reduced, 

Hg2+ may adsorb to dust particles, forming particulate-bound Hg (Kocman et al., 2011; 

Huang et al., 2020). With the contaminated tailings deposits in the province typically 

lacking soil structure, nutrients, and organic matter, this has created landscapes devoid of 

vegetation, exposing the fine-grained tailings material to wind erosion and increasing the 

potential to generate hazardous dust containing Hg. Once in the atmosphere, Hg0 has an 

atmospheric lifetime of approximately 1-2 years and is deposited mainly by dry 

deposition, whereas Hg2+ is deposited through both wet and dry deposition within days to 

weeks of formation (Lin & Pehkonen, 1999; Kocman et al., 2011; Huang et al., 2020). 

Previous studies at abandoned gold mine tailings sites in the province have shown 

these sites to be potential sources of contaminated dust and vapours. Several research 

teams have measured gaseous Hg flux rates from tailings fields in the Caribou Gold Mine 

District (Wong et al., 2002; Beauchamp et al., 2002), Lower Seal Harbour Gold District 

(Dalziel & Tordon, 2014), and Goldenville Gold District (Beauchamp et al., 2002). 

Results from the Caribou Gold District indicated that the gaseous Hg flux rate from the 

tailings to the atmosphere was 20 to over 100 times greater than that measured over 

natural, undisturbed soils (Wong et al., 2002). At the Montague, Goldenville, and Lower 

Seal Harbour districts, dust particles, including those generated from recreational 

activities, were found to contain many mobile and highly-soluble As bearing mineral 

species, posing risks to humans exposed to this tailings dust due to these more 
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bioavailable As components (Corriveau at al., 2011a, b). A soil survey at the Montague 

Gold District found elevated Hg concentrations in the near-surface soil layers, suggested 

to be, in part, from deposition of windblown tailings and the Hg flux from the soils 

(Parsons & Little, 2015). More recently, Cleaver et al. (2021) showed that tailings dust 

from the abandoned Stirling mine in Cape Breton, Nova Scotia, may be a potential source 

of metals (e.g. zinc (Zn), lead (Pb), copper (Cu)) to nearby surface waters. Even so, no 

studies, to the best of our knowledge, have documented the spatial distribution and extent 

of this tailings-generated dust and air contamination on a fine, local scale at any historical 

gold mine site in Nova Scotia. Such work is necessary for managing any potential risks to 

human and ecosystem health, as well as to inform future land use decisions.  

Manufactured passive air samplers are one option to assessing atmospheric 

pollution. Passive air samplers do not require power and allow for dust deposition rates to 

be calculated as well as to understand and characterize the dust particles (i.e. size, 

mobility, mineralogy, etc.) if enough sample is collected. However, this equipment can 

be expensive or difficult to deploy on a fine resolution scale in remote areas and/or across 

very large regions. 

As an alternative to passive air samplers, or to obtain complementary data to this 

equipment, lichens can be used as biomonitors. Lichens are ubiquitous in the 

environment, have long life spans, and have widely been used for biomonitoring 

atmospheric pollution from both natural and anthropogenic sources, providing 

information on the sphere of influence, level of contamination, and location of hotspots in 

the environment (Bargagli & Barghigiani, 1991; Davies & Notcutt, 1994; Pignata et al., 

2007; Saat et al., 2016; Bernardo et al., 2019; Loppi et al., 2021). The lack of roots, waxy 
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cuticles, and stomata in lichens results in the accumulation of both essential nutrients and 

contaminants, such as metals, from wet and dry atmospheric deposition rather than 

uptake from the underlying substratum (Lodenius, 2013; Bargagli, 2016). In general, 

lichens may accumulate elements via particulate entrapment, extracellular cation 

exchange, and intracellular accumulation, reflecting atmospheric pollutant concentrations 

in thalli within approximately three months of exposure (Nash, 1989; Tyler, 1989; 

Kularatne & de Freitas, 2013; Loppi et al., 2015; Loppi & Paoli, 2015). With respect to 

Hg, gaseous Hg0, Hg ions (e.g. Hg2+), or particulate-bound Hg may be intercepted by 

lichens from dry and wet deposition (Bargagli, 2016). Lichens have been shown to be 

effective biomonitors of Hg (Weiss-Penzias et al., 2019; Klapstein et al., 2020). For 

example, Sensen and Richardson (2002) showed that lichens in the vicinity of a chlor-

alkali plant in New Brunswick, Canada, indicated the Hg emissions to extend 2.4-3.4 km 

from the plant. Many other studies have also shown lichens to be valuable monitoring 

tools at abandoned mine sites in other regions, further demonstrating the continual 

contamination to the atmosphere that can occur from these contaminated sites years after 

operations have ended (Bargagli et al., 1987; Fahselt et al., 1995; Plouffe et al., 2004; 

Dolgopolova et al., 2006; Søndergaard et al., 2010; Demková et al., 2019). 

We investigated dust contamination surrounding the historical Montague gold 

mine tailings site in Nova Scotia, Canada, using in situ epiphytic lichens (Usnea and 

Platismatia spp.) as biomonitors. Spatial distribution patterns of airborne Hg around this 

contaminated site were determined from fine-scale field sampling of these lichens 

followed by spatial analysis and modelling of the analytical data. Seasonal dust levels and 

Hg flux rates were also measured across this site using manufactured passive air 
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sampling equipment, providing complementary data and enabling comparisons to the 

lichen trends. Furthermore, the Hg accumulation capacity and distribution patterns 

observed in the two lichen genera were compared to assess the utility of these lichens for 

future biomonitoring work in Atlantic Canada and Nova Scotia. 

 

2.0 Methods 

2.1 Study Site History and Description 

This study was conducted at the Montague Gold District near Dartmouth, Nova 

Scotia (44.71541, -63.52332) (Figure 1). The Montague Gold District was one of Nova 

Scotia’s most productive former gold mines (Malcolm, 1929; Bates, 1987). Gold deposits 

were first reported in 1862, with a total of 134,278 tonnes of ore being crushed and 

producing 65,196.9 troy ounces of gold by the time of closure in the 1940s (Trip & 

Skilton, 1985; Mills, 1997; Parsons et al., 2012). Most ore was processed using Hg 

amalgamation, and the Hg- and As-contaminated tailings were deposited in the low-lying 

areas surrounding, and directly into, Mitchell Brook. Mitchell Brook consists of a series 

of interconnected streams and wetlands originating from Loon Lake, extending through 

the Montague tailings site, and emptying downstream into Lake Charles (Figure 1A).  

The tailings deposits in the Montague Gold District cover over approximately 

270,000 m2 of land, with the main tailings deposit containing over 120,000 tonnes of 

tailings covering approximately 150,000 m2 of land alone (Mills, 1997; Drage, 2015; 

Intrinsik Corp et al., 2019). A significant portion of this main tailings deposit is exposed 

with little or no vegetation cover (only grasses and shrubs). The tailings in this area are 

poorly consolidated and the erosion and transport of dry, surface tailings has been 
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observed on windy days (Parsons et al., 2012). The areas surrounding the main tailings 

deposit are largely forested with some smaller and dead trees located on the boundaries of 

the tailings. A highway (Forest Hills Extension (Highway 107)) is located to the south of 

the main tailings deposit, with residential roads and properties located to the north. The 

surrounding areas also contain numerous filled and open mine shafts, old mine building 

foundations, and a waste rock site. Recreational activities (e.g. off-road vehicle racing) 

occur on parts of the tailings and residential developments have taken place nearby. 

In addition to the main tailings, there are smaller tailings deposits located in the 

study area (Figure 1A). A deposit to the southeast is referred to as “Old Stamp Mill” 

(OSM), and those tailings resulted from the activities of a small historical stamp mill 

processing site located just north of the deposit and where Hg amalgamation activities 

occurred. This is one of the oldest tailings deposits within this gold district and this site is 

elevated in Hg (Parsons et al., 2012). This OSM tailings deposit also overlaps a wetland 

that is under water for most of the year. Another small tailings deposit is located further 

northeast and is covered with low vegetation and only a few deciduous and coniferous 

trees. 

 
2.2 Weather Information 

Wind and weather data (March 2007 to May 2019) were obtained from the 

Halifax-Shearwater Environment and Climate Change Canada (ECCC) weather station 

(44.63922, -63.50147), located approximately 8 km away from the study sites 

(Government of Canada, 2021a). The annual average wind direction was predominantly 

from the south and southwest, with strong winds also from the northwest (Figure 2). The 

annual average wind speed was 18.5 km/h. The colder months (October to April) were 
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characterized by higher average wind speeds of 20.6 km/h, predominantly from the 

northwest. The warmer months (May to September) had average winds of 15.9 km/h with 

the prevailing wind direction being from the south and southwest. Average wind speeds 

and directions were similar for the period between 1971 to 2000 (Pieridae Energy 

(Canada) Ltd., 2013). 

 
2.3 Lichen Species 

Two epiphytic lichen genera were selected for this study, Platismatia and Usnea. 

These lichens were selected due to their abundance in the study area and their ability to 

be easily identified to the genus level in the field. Platismatia is an epiphytic lichen with 

a flat, leaf-like thallus that has a well-defined upper and lower surface (St. Clair et al., 

2002b). Platismatia thalli have extensive contact with the substrate, typically growing on 

both branches and trunks of trees. They are attached to the substrate by rhizines which act 

only as an anchoring mechanism and are thought not to absorb nutrients from the bark 

surface (Bosserman and Hagner, 1981). The relatively flat surface of foliose lichens 

results in less surface area being exposed and possibly resulting in a lower capability to 

intercept precipitation (Bosserman and Hagner, 1981). In contrast, Usnea is an epiphytic 

lichen which consists of a densely branched and open three-dimensional shrubby thallus 

and may have a slower growth rate than Platismatia (Esseen et al., 1996). Usnea species 

have little contact with their substratum as they are attached at only a single point (i.e. 

holdfast). In combination with their shrub-like thallus, growth takes place out and away 

from bark of the host trees. This allows for a greater capability to intercept precipitation, 

throughfall, and dust. 
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2.4 Sample Collection 

2.4.1 Lichen 

An 800,000 m2 (1000 x 800 m) study area was delineated to encompass the main 

gold mine tailings field at Montague using geographic information systems (GIS), ESRIs 

ArcGIS (ArcMap 10.7). The study area was divided into 100 by 100 m grid cells with a 

total of 138 proposed lichen sampling sites located at each of the intersection points (Grid 

1; Figure 1A). A 100 m distance between each sampling location was chosen because it 

was feasible and provided samples to achieve data with a relatively high spatial 

resolution over the study area. Three additional areas measuring 60,000 m2 (300 x 200 

m), divided into 100 by 100 m grid cells, and located at significant distances from the 

main Montague tailings field were also chosen as study sites (Grids 2, 3, & 4; Figure 1A). 

The locations of these grids were selected to correspond with the direction of the 

prevailing winds (southerly; Grid 2), near a smaller gold mine tailings deposit (Grid 3), as 

well as near a previously used reference site located upstream of the tailings (Grid 4). All 

grids were finalized based on accessibility via roads and trails as well as land access (via 

Crown Land access permits or written approvals by landowners, Halifax Water, or Nova 

Scotia Transport & Infrastructure Renewal). 

The latitude and longitude of each grid intersection point was extracted remotely 

in ArcMap 10.7, and a handheld global positioning system (GPS) was used to locate each 

collection site in the field during July and August of 2019. At each site, living samples of 

both Platismatia and Usnea were collected from both living or dead, standing or fallen 

spruce (Picea sp.) tree trunks and branches, at heights of approximately 1-2 m above the 

ground. Sample collection started at one tree near the geographically referenced point. To 
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allow for greater sample numbers and a high spatial resolution, lichen collections were 

not always made on the same sides of trees between sites. Also, if lichens or trees were 

sparse, or an exact site was inaccessible (e.g. deep waters, private property), lichen 

collection was extended to additional trees within a 25-m radius surrounding each 

collection site. In such cases, sample collection was only extended until sufficient 

biomass (~3 g) of lichen were collected. If the entire 25-m sampling radius surrounding 

the grid point was inaccessible or located entirely within private property (and access was 

not granted), or such area hosted no trees or lichens, that point was omitted from 

sampling. 

Using powder-free nitrile gloves, lichens were collected from trees and 

transferred to a labelled, re-sealable food-grade plastic bag. At each site, all collected 

lichen thalli of the same genera were grouped into one composite sample. The GPS 

coordinates were recorded. The samples were then temporarily stored in a cooler for 

transport from Montague to the laboratory at Saint Mary’s University in Halifax, Nova 

Scotia. 

Additional sites were also included to provide reference control samples. Non-

tailing sites included Albro Lake in Dartmouth (October 2020; 44.69082, -63.57547; 

Reference Site 1), and Saint Mary’s University in Halifax, Nova Scotia (October 2020; 

44.62854, -63.58156; Reference Site 2), both of which are urban sites. Additional tailing-

impacted sites included downstream of Montague at Barry’s Run (June 2019; 44.71633, -

63.54395), Lake Catcha Gold District (July 2020; 44.73564, -63.19807) and Oldham 

Gold District (July 2020; 44.92070, -63.49310). Note that Reference Sites 1 & 2 and the 
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Barry’s Run site were also locations for passive air samplers and rain catchers (see 

below). 

 
2.4.2 Passive Air Samplers and Rain Catchers 

 
To assess seasonal dust levels and Hg flux rates, passive air samplers were 

installed within and surrounding Montague in June and July of 2019. The passive air 

samplers included a glass fibre filter (GFF) atop a polyurethane foam filter (PUF), both 

of which were positioned between two plates with openings to allow for air flow. Only 

particles and dry gases are deposited on the GFFs and PUFs from air passing through. A 

large plate covers the top of the PUF and GFF, protecting these from direct sunlight and 

wet deposition. For this study, only the GFF was used for subsequent analyses, and used 

to assess dust deposition and Hg flux rates.  

A total of six passive air samplers were installed along the Mitchell Brook stream 

system (Figure 1A). Two passive air samplers were installed at the main Montague 

tailings deposit (MO-1, MO-2), two at the OSM tailings deposit (OSM-1, OSM-2), one 

located upstream of Montague near Loon Lake (LL) and one further downstream at 

Barry’s Run near Lake Charles (BR). The air samplers were installed at a height of 

approximately 2 m from the ground on standing living or dead, coniferous or deciduous 

tree trunks located on forest edges, either facing the adjacent water bodies (i.e. wetlands) 

and/or the tailings deposits. In addition, two passive air samplers were installed at the 

reference sites; one on a spruce tree at Albro Lake (ABL) (Figure 1B), and one on a 

wooden post that was 2 m in height placed on the roof of the O’Donnell Hennessey 

Student Centre at Saint Mary’s University (SMU) (Figure 1C). All site names, sampler 

codes, and locations for each passive air sampler are shown in Table 1. Once installed, 
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new air filters (GFF + PUF) were placed in the air samplers wearing powder-free nitrile 

gloves. The air filters were weighed with a microbalance in the lab and recorded before 

being placed in the samplers. 

In addition, rain catchers were used to determine total and dissolved 

concentrations of Hg in precipitation, collecting elements from wet and dry deposition, 

such as rainwater and dust particles settling from the air. The rain catchers consisted of a 

4L plastic bottle with a funnel attached to the opening, secured in a wooden box. A total 

of three rain catchers were installed along Mitchell Brook at Montague in June of 2019, 

including one upstream near Loon Lake (LL), one at the main Montague tailings deposit 

(MO-1), and one downstream near Barry’s Run (BR) (Figure 1A). The rain catchers were 

placed at heights of approximately 2 m from the ground on spruce tree trunks that were 

located on forest edges, and on trees that were relatively open to the atmosphere, being 

unobstructed by a dense canopy. An additional rain catcher was placed at the reference 

site at Saint Mary’s University in July of 2019 (SMU) (Figure 1C). At the sites with both 

passive air samplers and rain catchers, separate trees were chosen for each sampling 

device. All site names, sampler codes, and locations of each rain catcher are shown in 

Table 1. 

Air filters and rain bottles were collected and replaced approximately every three 

months from June/July 2019 to October 2020 (Table 2) and included the following 

sampling periods: June to September 2019 (Summer), September to December 2019 

(Fall), December 2019 to March 2020 (Winter), March to July 2020 (Spring/Summer), 

and July to October 2020 (Summer/Fall). At the scheduled times, rain bottles were 

collected, capped, labelled, and refrigerated until sample processing. For the air filters, 
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100% Teflon forceps were used to remove the filters from the samplers, which were then 

placed and sealed in a labelled petri dish until further processing. The air samplers were 

cleaned with wet wipes between air filter changes, and the forceps rinsed with reverse 

osmosis (RO) water in the field between use at each passive air sampler. Air filter travel 

and field blanks routinely accompanied sampling trips to evaluate potential 

contamination of filters during field work at the sites and from travel to the appropriate 

laboratories. Overall, the seasonal sampling trips resulted in the collection of five filters 

and five rain bottles from each site. Slight variations in sampling resulted from the 

COVID-19 field restrictions in 2020, loss of the September to December 2019 BR 

rainwater sample due to freezing, and an additional rainwater bottle added to the MO-1 

site for June to September 2019 following heavy rains. 

 
2.5 Sample Preparation 

Lichens were stored in a freezer in the laboratory until identification and further 

sample preparation. Lichens were first identified to the species level with a dissecting 

microscope and using dichotomous keys (Hinds & Hinds, 2007; Brodo, 2016), chemical 

spot tests, and ultra-violet light. Spot tests consisted of placing a drop of a chemical (e.g. 

10% potassium hydroxide, household bleach, or para-phenylenediamine) on various parts 

of the lichen thallus and using the change in colour, along with presence or absence of 

morphological features, to identify the species. 

After identification, further lichen sample preparation was conducted in a clean 

room laboratory at Saint Mary’s University. For each site, the lichen sample was 

separated by hand to remove as much extraneous material (e.g. bark, twigs, leaves, 

invertebrates, etc.) as possible. Once cleaned of debris, each lichen sample was divided 
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into two portions of approximate equal mass, with one half reserved for washing (Chapter 

3). The unwashed portion of the lichen was air-dried at room temperature for 48 hours 

and then homogenized to a powder in jars using a Retsch mixer mill MM 400. The jars 

were thoroughly cleaned in a Citranox and RO water solution between milling of each 

individual sample. Each ground sample was then transferred to a labelled 50 mL Falcon 

tube and stored in a dark and dry environment (i.e. storage bins) until analysis. Powder-

free nitrile gloves were worn while working with each lichen sample and changed 

between samples. 

For the collected passive air sampler filters, each GFF was air dried at room 

temperature for a minimum of 72 hours at CanmetMINING Natural Resources Canada 

(NRCan) in Ottawa, Ontario. The GFFs were first weighed whole and then cut into equal 

portions (4) using Teflon scissors, which were wiped with 70% ethanol between filters. 

Each portion of the GFFs were also weighed individually and one portion sent back to 

Saint Mary’s University for Hg analysis. These portions were homogenized to a powder 

in jars using the ball mill and stored in glass vials until analysis. 

For each rainwater sample, unfiltered and filtered samples were collected at 

CanmetMINING NRCan to determine total Hg (THg) and dissolved Hg (DHg) 

concentrations, to provide information on the soluble and insoluble Hg fractions in dust 

from the tailings area. For THg, 50 mL of each rainwater bottle was sampled by syringe 

and added to a labelled 50 mL Falcon tube, along with 1% (500 μL) nitric acid (trace 

level grade) for preservation. For DHg, 50 mL of each rainwater bottle was sampled by 

syringe, where a 0.45 μm syringe filter was then attached and the water dispersed through 

the filter and into a labelled 50 mL Falcon tube, along with 1% (500 μL) nitric acid (trace 
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level grade) for preservation. The rainwater samples were stored upright and refrigerated 

until analyses. 

 
2.6 Mercury Analyses 

The lichen and GFF samples were all analyzed for THg concentrations, and the 

unfiltered and filtered rainwater samples were analyzed for THg and DHg concentrations, 

respectively, using a Milestone Direct Mercury Analyzer (DMA) 80.3 at Saint Mary’s 

University. The weight or volume of each sample was measured using a microbalance, 

placed in an acid-washed quartz boat, and then entered into the DMA software. During 

each analytical run, Hg standards of varying concentrations along with certified reference 

materials (CRMs) were processed to validate proper calibration of the instrument. The 

CRMs used with the lichen and GFF samples were TORT-3, DORM-4, and BCR-482 

Lichen (Willie et al., 2012, 2013; European Commission, 2021). An in-house standard 

reference material (SRM), a homogenized Usnea sample from a previous field season, 

was also prepared for comparison with the lichen samples and to ensure consistency 

within and between runs. For the rainwater samples, along with the Hg standards, quality 

control included a spiked and unspiked matrix and a spiked and unspiked RO water 

sample. The spiked matrix included lichen wash-water that was collected for another 

experiment (Chapter 3). Furthermore, blank boats were run at the start and end of each 

analytical run, as well as before and after each set of quality control samples. Within 

runs, blank boats and duplicate samples were run every 10 and 20 samples, respectively. 
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2.7 Spatial Analyses 

To identify spatial patterns of Hg across the study area, an interpolation model 

was applied in ArcMap 10.7 using lichen THg concentrations. Interpolation is a 

technique used to estimate unknown values within sampled regions using nearby, known 

datapoints (Li & Heap, 2014). Due to the dense and relatively even spacing of the 

sampling points (Li & Heap, 2014), as well as the small spatial extent of the study area, 

the inverse distance weighted (IDW) model was selected to interpolate the data. The IDW 

model assumes that points closer together are more similar than those further apart 

(Llyod, 2010). Thus, the THg concentrations at unsampled locations were estimated from 

a weighted average of the surrounding concentrations from sampled locations. Sample 

points at a greater distance to the point being predicted have less influence (weight) on 

the predicted value (Llyod, 2010). There is no minimum number of data points required 

for IDW interpolation. Rather, it is the size of the study area that is important; generally, 

the larger the size of the study area, the greater number of points required to obtain 

optimal results. Using this interpolation model has created smooth, predicted surface 

outputs within each of the sampling grids at Montague displaying estimated THg 

concentrations in lichens ranging only between the observed minimum and maximum 

values (Li & Heap, 2014). 

Additional spatial analyses included creating buffer polygons of various distances 

(e.g. 100 m, 200 m, 300 m) around the Montague tailings layer using the Buffer tool in 

ArcMap 10.7 (Figure 3). Sampling sites located within each buffer were then classified 

into that distance category, denoting their approximate distance to the nearest tailings 

edge (e.g. on tailings, 0-100 m, 100-200 m, 200-300 m, and >300 m). The tailings edge 
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refers to the bounds of the tailings polygons, as shown in Figure 3. More specifically, the 

exact distance of each sampling site to the nearest tailings edge was also calculated using 

the Near tool in ArcMap 10.7 and compared to the THg concentrations measured in 

lichens. 

Furthermore, the lichen THg concentrations were compared to elevation data for 

each sampling site, extracted from a 1 m digital elevation model (DEM) from 2019 that 

was overlain on the study area in ArcMap. These data were from the Nova Scotia 

Elevation Dataset and extracted from GeoNOVA using the Elevation Explorer 

DataLocator tool (Government of Nova Scotia, 2021). Forest polygon layers from the 

Nova Scotia Forest Inventory were also used to classify the lichen sampling sites into six 

land types, which was a dataset interpreted from aerial photographs (Province of Nova 

Scotia, 2017). These six land types included lichens growing on trees near (1) roads, (2) 

urban areas, (3) wind throws, (4) natural forest stands, (5) treed bogs, and (6) wetlands. 

The wind throw zones included areas where more than 25% of the trees had been pushed 

over by wind action (Province of Nova Scotia, 2017). 

 
2.8 Data Analyses 

Descriptive statistics for the Hg datasets for each lichen genus, Usnea and 

Platismatia, were calculated, based on the various data classifications specified above 

(i.e. sampling grid, distance to nearest tailings edge, and land type). For each lichen 

genus and within each classification scheme, Hg concentrations were first tested 

statistically using parametric tests, including two-sample t-tests, one-way analysis of 

variance (ANOVA), and Pearson correlation analysis. The model residuals were tested 

for normality with the Shapiro-Wilk test as well as for homogeneity of variance with the 
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Levene’s test. Based on varying results between the two lichen genera both before and 

after log10 transformations (e.g. normally distributed model residuals for Usnea but not 

Platismatia), non-parametric statistical tests were applied to all untransformed datasets so 

to ensure consistency and to allow for comparisons between lichens. These included the 

Mann-Whitney U test and the Kruskal-Wallis test to detect significant differences 

between Hg concentration means of the classified data. Spearman-rank correlation 

analysis was performed to examine the strength of relationships between Hg 

concentrations in paired samples, between different sampling methods, and against 

geographical variables. All graphs were generated, and statistical analyses performed, in 

RStudio. 

 
2.9 Deposition and Flux Calculations for GFFs 

Using a similar calculation to Cleaver (2020, unpublished), the total seasonal dust 

deposition rates (mg/m2/day) were calculated from the GFFs from each passive dust 

sampler using equation (1): 

 

!"#$%	'()# = 	

+")#	,-%#./	0.-1ℎ#	(41) − 7.,"/.	,-%#./	0.-1ℎ#	(41)
8/.$	",	,-%#./	(4!)	
9:;")(/.	#-4.	(<$=)) 					 

 
Field and travel GFF blanks were also weighed before and after sampling, and 

these differences in weight were subtracted from the corresponding GFFs for that 

sampling trip. A negative dust deposition rate was calculated for seven of the GFFs due 

to a greater before versus after filter weight. This was likely a result of the small 

differences in weights of filters before and after exposure and the sensitivity of the 

analytical mass balance in detecting such small changes. In such cases, these deposition 

(1) 
'.;")-#-">	?$#. 
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rates were corrected back to zero, indicating negligible total dust deposition rates for 

those seasons. 

The THg flux rate (µg/m2/year) for each season was calculated from the GFFs 

from each passive dust sampler site using equation (2): 

 

!@1	A%(:	?$#. =

!@1	->	)$4;%.	(µg/kg) ∗ +")# 14 ,-%#./	0.-1ℎ#	(I1) ∗ 4
8/.$	",	,-%#./	(4!)	
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Prior to this calculation, GFF lab blanks were also analyzed for THg 

concentrations, which were then subtracted from the THg measured on each GFF. After 

this blank correction, this resulted in negative THg concentrations for five filters, mainly 

from those where THg concentrations were already relatively low, or even below Method 

Detection Limits (MDLs; 0.001 ng). In such cases, these concentrations were corrected 

back to zero, indicating a negligible THg flux rate for that season. 

The majority of the THg and DHg concentrations measured in the rainwater 

samples measured below MDLs (n=29/38). Thus, these sampling periods were not 

included in the results and the Hg flux rates not calculated for this dataset. 

 

3.0 Results 

3.1 Lichen 

3.1.1 Lichen Species 

A total of 112 Usnea and 113 Platismatia samples were collected from 138 lichen 

sampling points in the sampling grids across the Montague Gold District. The actual 

location of each Usnea and Platismatia sample collected, along with the identified 

(2) 
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species, are shown in Figures 4 and 5, respectively. A total of ten Usnea species and two 

Platismatia species were identified, with Usnea filipendula and Platismatia glauca being 

the most common sampled (Table 3). At the reference sites, the lichen species included 

Platismatia glauca at both sites, with Usnea subfloridana and Usnea filipendula at Saint 

Mary’s University and Albro Lake, respectively. From Barry’s Run (downstream of 

Montague) and at the Oldham Gold District, the lichen samples were Usnea filipendula 

and Platismatia tuckermanii, while the lichen collected from the Lake Catcha Gold 

District were Usnea subscabrosa and Platismatia glauca. 

 
3.1.2 Mercury Concentrations in Lichens 

Total Hg concentrations in lichens varied greatly across the study area and within 

grids (Table 4). Usnea THg concentrations ranged from 69.7 µg/kg measured at a site in 

the northwest section of Grid 1 adjacent to Mitchell Brook to 320 µg/kg measured near 

the OSM tailings deposit. Total Hg concentrations measured in Platismatia spp. had a 

smaller range of values, from 49.9 µg/kg measured in Grid 3 to 195 µg/kg also near the 

OSM tailings deposit in Grid 1. Lichen THg concentrations also varied widely within the 

smaller three grids (Table 4). For both lichen genera, the THg concentrations were, on 

average, higher in Grid 3 nearer the smaller tailings deposit than those in Grids 2 and 4, 

though for both lichen species, this was not statistically significant (Usnea: H = 1.36, df = 

2, p-value = 0.72; Platismatia: H = 1.39, df = 2, p-value = 0.71). 

At the reference sites, Saint Mary’s University and Albro Lake, THg 

concentrations for most of Usnea and Platismatia samples were lower than the median 

lichen THg values for each of the sampling grids at Montague, except for the Albro Lake 

Usnea sample, which was higher than the median THg from Grid 2 (Table 4). In contrast, 
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most of the THg concentrations in the single lichen samples from Barry’s Run, Lake 

Catcha, and Oldham were higher than the median lichen THg values for each of the 

sampling grids at Montague (Table 4). 

 
3.1.3 Lichen Genera Comparisons 

The average Usnea spp. THg concentrations were higher than those for 

Platismatia spp. in each of the four sampling grids (Table 4), though statistically 

significant results were only observed in THg between Usnea and Platismatia within 

Grid 1 (Z = 1488, p-value < 0.0001) and Grid 2 (Z = 22, p-value < 0.005). When plotting 

Usnea THg concentrations against those of Platismatia samples from the same sites 

(Figure 6), most data points fell below the reference line with a 1:1 slope (black line), 

indicating that Usnea consistently had higher THg concentrations. Focusing on all the 

Montague sampling grids combined, Usnea had significantly higher average THg 

concentrations (149 ± 43.0 µg/kg) than Platismatia (112 ± 26.7 µg/kg) (Z = 2910, p-

value < 0.0001). While both genera were not sampled from all sampling points in each 

grid, THg in co-sampled Usnea and Platismatia samples were positively correlated (r = 

0.55, p-value < 0.0001). 

 
3.1.4 Mercury Spatial Distribution Patterns in Lichens 

Using IDW interpolation, it was observed that areas with highest lichen THg 

concentrations in Grid 1 (Usnea: 184-320 µg/kg; Platismatia: 124-195 µg/kg) were 

directly on or in the vicinity of the known tailings deposits (red zones in Figures 7 & 8). 

The same two main elevated THg regions were identified using both Usnea and 

Platismatia: one along the OSM tailings deposit in the southeast area of the sampling grid 
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that is associated with the location of a former stamp mill and amalgamation operations, 

and the second in the northern section of the main tailings deposit (Figures 7 & 8). Total 

Hg concentrations generally decreased beginning at the edge of these tailings, which, 

from field observations and satellite base maps, were confirmed to be forested areas. 

Other areas of elevated THg in both lichen genera were at exposed areas with lower 

vegetation cover (Grid 3) or where there had been significant tree cutting (Grid 4). Areas 

with the lowest lichen THg concentrations in Grid 1 (Usnea: 69-120 µg/kg; Platismatia: 

49-91 µg/kg) were located on the northeastern and southern boundaries of the sampling 

grid (green zones in Figures 7 & 8). These were all located near residential roads or 

highways and were shaded and forested. 

The two lichen genera did not always exhibit the same patterns throughout the 

sampling region. In Grid 1 for Platismatia, smaller hotspots of THg (124-195 µg/kg) 

were detected in areas adjacent to the other two former stamp mills (eastern- and western-

most areas of the main tailings deposit), as well as in relatively open areas surrounding 

water features of the Mitchell Brook stream (Figure 8). Also, a slightly elevated region 

for Usnea (142-183 ug/kg) was through the middle section of Grid 1 north of Mitchell 

Brook (orange zone in Figure 7). In Grid 3, elevated concentrations of THg were 

observed in Platismatia at the southeastern corner of the sampling grid (Figure 8) unlike 

that observed from Usnea (Figure 7). This zone contained low vegetation (e.g. shrubs and 

grasses) and few trees and was located next to a tailings deposit.  

 
3.1.5 Mercury Spatial Analysis Patterns in Lichens 

Sampled lichen were classified based on their distance to the nearest tailings edge 

(Figure 3), terrestrial elevation, and land type. On average, a decreasing trend in THg 
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concentrations was observed in both lichen genera with increasing distances from the 

tailings and tailings edge (Figure 9). Average THg concentrations in Usnea ranged from 

134 ± 32.9 µg/kg from samples located within 100-200 m from the nearest tailings edge 

to 187 ± 50.4 µg/kg for samples located directly on tailings (Table 5). Usnea samples 

collected from trees on tailings were found to have significantly higher average THg 

concentrations than samples collected from trees at each of the other four distance 

categories (p-values < 0.05). For Platismatia, the highest average THg concentrations 

were measured from trees growing on the tailings (129 ± 38.4 µg/kg) with the lowest at 

sampling sites located >300 m from the nearest tailings edge (108 ± 22.5 µg/kg) (Table 

5). Average THg concentrations in Platismatia did not differ significantly between any of 

the five distance categories (H = 5.12, df = 4, p-value = 0.28). For both lichen genera, a 

wide range of THg concentrations were measured in the lichens collected from trees 

growing on or near the tailings (Figure 9). A more marked decline from elevated 

concentrations with increasing distance from the tailings was evident for Usnea relative 

to Platismatia. In relation to distance from the tailings edge, Usnea had significantly 

higher THg concentrations than Platismatia within each distance category (p-values < 

0.005) except for the 200-300 m distance group (Z = 53, p = 0.12). 

Terrestrial elevation in relation to the collection sites was not significantly 

correlated with THg concentrations in Usnea (r = -0.10, p-value = 0.31) or Platismatia (r 

= -0.12, p-value = 0.20). However, wind appeared to be important. Usnea samples 

located downwind in Grid 1 (north) had significantly higher average THg (154 ± 41.9 

µg/kg) compared to samples collected from upwind locations in Grid 1 (south; 133 ± 37.1 

µg/kg) (Z = 192, p-value = 0.047). For Platismatia, average concentrations did not vary 



 61 

as widely between downwind (111 ± 29.3 µg/kg) and upwind (109 ± 22.2 µg/kg) sites 

within Grid 1. 

Lichens sampled in each land type as categorized by the Nova Scotia Forest 

Inventory dataset indicated that THg in Usnea sampled from trees near bogs (185 ± 67.0 

µg/kg) and wetlands (177 ± 38.5 µg/kg) was the highest while Usnea THg concentrations 

were lowest near roads (112 ± 21.7 µg/kg; p-values<0.05) (Figure 10). Conversely, there 

were no significant differences in THg concentrations between any of the land type 

categories for Platismatia (H = 6.82, df = 5, p-value = 0.23) in spite of the fact that the 

highest mean was also from treed bogs (130.0 ± 41.1 µg/kg) and lowest near roads (101 ± 

23.6 µg/kg; Figure 10). As shown in Figure 11, most treed bogs were located within 0-

100 m of any tailings edge, with all wetland sampling sites located directly on tailings. 

Also, both Usnea and Platismatia samples collected from natural forest stands and wind 

throw zones showed a wide range of THg concentrations (Figure 10). 

 
3.2 Passive Dust Samplers and Rain Catchers 

Between June 2019 and October 2020, a total of 40 filters (GFF + PUF) and 20 

rainwater bottles were collected from the passive air samplers and rain catchers, 

respectively. Weather data for each sampling season was calculated from the ECCC 

Halifax-Shearwater weather station (44.63922, -63.50147) and is shown in Figure 12 

(Government of Canada, 2021b, c). 
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3.2.1 Passive Dust Samplers 

3.2.1.1 Total Dust Deposition Rates 

The total dust deposition rates were calculated for each site using equation (1), 

with seasonal trends shown in Figure 13. The highest seasonal total dust deposition rate 

was calculated at BR, 21.7 mg/m2/day, during the December 2019 to March 2020 

sampling period, followed by 16.7 mg/m2/day measured at the OSM-2 passive sampler 

during the September to December 2019 season. Mean total dust deposition rates at each 

site over the study period were in the order of BR > ABL > SMU > OSM-2 > OSM-1 > 

MO-2 > MO-1 > LL, ranging from 2.6 ± 3.2 mg/m2/day at LL to 8.5 ± 8.0 mg/m2/day at 

BR. Thus, sites further from the Montague tailings deposits generally showed greater dust 

deposition rates than those located in closer proximity. 

Overall, when averaged, the colder seasons measured higher total dust deposition 

rates, with the warmer seasons reporting lower rates. The ECCC Halifax-Shearwater 

weather data indicates that in general, the warmer seasons reported the lowest wind 

speeds and precipitation levels, with the colder seasons showing an increase in average 

wind speeds and total precipitation (Figure 12). The June to September 2019 season was 

the driest season, with lowest precipitation in addition to the lowest average wind speeds, 

with the highest average temperature. The strongest average wind speeds occurred from 

September to December 2019, with the lowest mean temperature during the winter 

season from December 2019 to March 2020. The September to December 2019 season 

measured the highest dust deposition rates for the SMU Reference, ABL Reference, 

OSM-1, and OSM-2 passive samplers, with the maximum at BR measured during the 

Winter season (December 2019 to March 2020).  
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The samplers at LL, MO-1, and MO-2 showed highest dust deposition rates 

during the first summer season (June to September 2019). Some samplers located 

adjacent to the tailings, including OSM-1, MO-1, and MO-2, showed an additional peak 

in dust deposition during the second warm season (March to July 2020). In contrast, 

lowest dust deposition rates for the OSM samplers were observed during the coldest 

season, December 2019 to March 2020. At sites with two samplers (OSM and 

Montague), similar seasonal trends and deposition rates were observed between these 

samplers within sites. 

 
3.2.1.2 Total Mercury Flux Rates 

The THg concentrations measured from the GFFs were not correlated with the 

mass of the dust deposited on the GFFs (r = -0.006, p-value = 0.97). For THg flux rates, 

the highest seasonal GFF THg flux rate (Figure 14) was at ABL during June to 

September 2019 (2.6 µg/m2/year), followed by the sampler at MO-2 from December 

2019 to March 2020 (1.8 µg/m2/year). Mean GFF THg flux rates at each site over the 

study period were in the order of MO-2 > ABL > OSM-2 > SMU > OSM-1 > MO-1 > 

LL > BR, ranging from 0.22 ± 0.20 µg/m2/year at BR to 0.83 ± 0.71 µg/m2/year at MO-2. 

Despite high mean GFF THg flux rates at the two reference sites, the other sites located 

closer to the study area did tend to show an inverse relationship in GFF THg flux rates 

with distance: those located directly adjacent to tailings deposits (Montague and OSM) 

were higher compared to those at greater distances away (LL and BR). 

Seasonal trends of average GFF THg flux rates for most sites were lower during 

the colder seasons, with higher rates reported at the beginning and end of the study 

period, aligning with the warmer seasons. The GFF THg flux rates were highest for most 
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sites during the first sampling season, June to September 2019, all significantly 

decreasing into the following Fall season. The Montague passive dust samplers showed 

the greatest fluctuations between all seasons, being the only sites showing relatively large 

peaks in GFF THg flux rates in the Winter season (December 2019 to March 2020). The 

OSM-1 and OSM-2 passive dust samplers showed a slight peak in GFF THg flux rates 

into the Spring/Summer 2020 sampling season unlike most of the other samplers. Similar 

seasonal trends and flux rates were observed between the two samplers at OSM, with 

peaks observed in the warmer sampling seasons, on average. However, between the two 

Montague samplers, seasonal trends were similar yet the GFF THg flux rates were not 

(Figure 14). 

 
3.2.2 Rain Catchers 

It is important to note that evaporative losses from these rain catchers were not 

expected to be significant due to their relatively closed designs. The funnel cap on the 

rain bottle reduced the size of the bottle opening and limited the open water surface that 

was directly exposed to the atmosphere. Also, from being hosted in a wooden box, most 

of the outside of the rain bottles were protected from the influence of weather conditions, 

such as exposure to UV radiation. Gröning et al. (2012) designed a relatively similar rain 

catcher and showed that its design resulted in negligible water evaporative losses. Due to 

the similar design of the rain catchers used in the current study, evaporative losses from 

the rainwater samples can also be expected to be low. 

Most rainwater samples had DHg (n=19/20) and THg concentrations (n=12/20) 

below MDLs, so thus, comparisons across all seasons or sites were not possible. The 

rainwater sample from Fall of 2019 at MO-1 was the only sample with DHg above MDLs 
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(0.078 µg/L; Table 6). Rainwater collected at MO-1 had higher THg concentrations in the 

summer of 2019 (0.27 µg/L) than those from BR (0.16 µg/L) and the SMU reference site 

(0.03 µg/L; Table 6). The rain catcher at LL measured slightly higher THg in Fall of 

2019 (0.23 µg/L) in comparison to downstream at the MO-1 rain catcher during this 

season (0.21 µg/L). 

 
3.3 Mercury in Lichens Compared to Passive Dust Samplers 

Comparing concurrently sampled GFF THg data (June to September 2019 for 

Montague; July to October 2020 for Reference Sites) with lichen THg results (Figure 15), 

a significant positive correlation was observed for Platismatia spp. (r = 0.86, p-value < 

0.05), with only a weak positive correlation for Usnea spp. (r = 0.36, p-value = 0.39). In 

both correlations with each lichen genera, both the lichen biomonitors and the passive 

dust samplers had the highest THg concentrations at the OSM-2 sampling site, while the 

lowest were found at BR located further downstream from the main tailings deposit at 

Montague. 

 

4.0 Discussion 

4.1 Concentrations of Total Mercury in Lichens 

The mean THg concentrations and ranges for Usnea samples were generally in 

agreement with those reported in the literature for various fruticose lichen species 

globally (Table 7). The maximum THg measured in Usnea spp. at Montague (320 µg/kg) 

was lower than the maximum values reported from an area with known elevated levels of 

Hg in Nova Scotia, Kejimkujik National Park (660 µg/kg) (Rencz et al., 2003). Yet, the 

range of Hg values reported from this study falls within very similar ranges to Usnea 
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samples collected in 2017 from other historical gold mining areas in the province 

(Klapstein et al., 2020). At a former Hg mine (mainly cinnabar) in British Columbia, 

Canada, Hg concentrations in fruticose lichens measured up to 600 µg/kg at distances 

greater than 2km from the mines (Plouffe et al., 2004); the higher concentrations likely 

reflecting the cinnabar ore that was being mined as opposed to the current study where 

Hg was only introduced for the Hg amalgamation processing of gold-bearing ore.  

Total Hg concentrations in Platismatia from the Montague sampling grids were 

generally lower than those values reported from other foliose lichens worldwide (Table 

7). A background range of Hg of 88-148 µg/kg was determined for the foliose lichen 

Hypogymnia physodes collected in a remote forested area in New Brunswick, Canada 

(Sensen and Richardson, 2002). This background range aligns with the range of THg 

measured in most of the Platismatia samples from Montague (49-195 µg/kg). Higher Hg 

emissions are expected near active sources of pollution, as reflected in the foliose lichens 

collected in the vicinity of chlor-alkali plants in Europe (>870 µg/kg) (Lodenius & 

Laaksovirta, 1979; Grangeon et al., 2012). The THg ranges and means were also lower in 

Platismatia from Montague compared to the foliose Parmelia caperata that was sampled 

near an abandoned mining region in Italy; the latter reflecting Hg contributions from both 

Hg degassing from the mining soils and active emissions from the modern-day 

geothermal power stations in the area (Bargagli et al., 2002). 

When comparing the mean THg concentrations in lichens between Grids 2, 3, and 

4 around the Montague Gold District (Table 4), Grid 3 lichens showed higher 

concentrations than lichens in the other two grids, although were not significantly higher. 

The slightly higher values are likely due to the smaller tailings deposit located adjacent to 
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Grid 3, while Grids 2 and 4 are at greater distances from any of the tailings deposits at 

Montague.  

Usnea sampled from the other historical gold mine tailings sites in Nova Scotia, 

Lake Catcha and Oldham, were within the ranges as those sampled from Montague. 

However, the Platismatia samples from these other gold districts were both higher than 

the maximum THg value measured in Platismatia samples from Montague. Thus, these 

other abandoned gold districts in the province, like Montague, may be contributing to 

elevated Hg concentrations in lichens. However, additional biomonitoring at these sites is 

needed. 

The reference lichen samples for both Usnea and Platismatia from SMU and 

ABL tended to be much lower than the mean and median THg concentrations reported in 

those lichens collected from within most of the grids at Montague (Table 4) and from 

most of the groupings indicating the various distances from the tailings edge (Table 5). 

Although only one sample of each lichen was collected at each reference site, these lower 

THg concentrations indicates that, at least within close proximity to the Montague 

tailings, the tailings are likely enriching the lichens with Hg. 

 
4.2 Lichen Genera Comparisons 

A positive correlation (r = 0.55, p-value < 0.0001) was measured between THg in 

Usnea and Platismatia samples collected from the same sites, which suggests that the Hg 

originated from a common source. Where sampled at the same location, concentrations 

were generally higher in the fruticose lichen (Usnea) as compared with the foliose lichen 

(Platismatia). This indicates that these lichen genera both respond similarly to available 
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atmospheric Hg vapour, particulates, and dissolved ions, yet the capacity to sequester the 

Hg differs (Glenn et al., 1991). 

However, many studies have found foliose lichens to accumulate higher 

concentrations of elements than fruticose lichens, primarily being attributed to 

morphological differences (Chiarenzelli et al., 1997; St. Clair et al., 2002a, b; Pereira et 

al., 2018). Foliose lichens have a larger continuous, as well as flattened, surface, with 

some genera, like Platismatia, containing numerous surface depressions. These features 

can promote the efficient interception of both wet and dry deposition, such as windborne 

dust and canopy-leached elements (Richardson, 1995; Garty, 2001; St. Clair et al., 2002b; 

Monaci et al., 2012). Additionally, foliose lichens are in closer contact with substrates, 

with a higher capability of accumulating available elements from the substratum that 

originate from stemflow, thus increasing total elemental loads (Davis et al., 2002; St. 

Clair et al., 2002a; Loppi et al., 2021). The open, branching structure of fruticose lichens 

allows for more air flow and fall-through potential which may result in a decreased 

capability to intercept airborne elements in comparison to foliose species (St. Clair et al., 

2002a, b). However, Bosserman and Hagner (1981) measured higher concentrations of 

precipitation elements in Usnea compared to a foliose lichen, suggesting that the 

elemental contents in Usnea species are more so influenced by wet, rather than dry, 

deposition. 

In the current study, a possible reason for higher Hg concentrations in Usnea 

versus Platismatia samples at Montague could be the result of the primary physical form 

of this element in the atmosphere in combination with lichen growth form. Globally, the 

majority (>95%) of atmospheric Hg is in the gaseous phase (Hg0), depositing onto 
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lichens primarily in this form (Bargagli, 2016; Huang et al., 2020). This, in combination 

with the fact that Usnea has more surface area per unit biomass than Platismatia due to 

its more finely divided thalli, allows for a greater capability to intercept this Hg0 and 

provides a wider surface for gaseous exchange (Monaci et al., 2012). 

This observation is consistent with literature on elements that are primarily in the 

gaseous form for which concentrations are higher in fruticose lichens compared with 

foliose lichens. For example, in a remote region in Chile, Monaci et al. (2012) found that 

Hg, being the only gaseous element of a total of 19 elements analyzed, was the only 

element that was higher in Usnea sp. as compared with the foliose Nephroma 

antarcticum. In New Brunswick, Canada, THg concentrations were higher in Usnea than 

in the foliose Parmelia sp. where collected along an island to inland transect (Nasr and 

Arp, 2015). Similarly, fruticose lichens near the Athabasca Oil Sands Region in Alberta, 

Canada, had higher concentrations of sulphur (S) and nitrogen (N) than in foliose lichens, 

of which the compounds containing these elements were emitted as gases (NOX and SO2) 

from this source area (Addison and Puckett, 1980; Graney et al., 2017). 

Other potential reasons for higher THg concentrations in Usnea compared to 

Platismatia could be differing functional groups on the cell walls, oxalates, and acid 

compounds produced by these lichens, all of which may contribute to the uptake and 

immobilization of elements extracellularly (Tyler, 1989; Pawlik-Skowrońska and Bačkor, 

2011; Rola et al., 2016). In particular, usnic acid, produced by Usnea, may aid in binding 

metals to the surface of the fungal partner (Rola et al., 2016). Additionally, Usnea has a 

different wetting behaviour than foliose lichens, taking up moisture rapidly and at a faster 

rate owing to its higher surface area to weight ratio (Bosserman and Hagner, 1981; 
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Larson, 1981; Esseen et al., 2015; Asplund and Wardle, 2017). Lichens grow and take up 

minerals and soluble ions when wet, as this is when they are more metabolically active 

(Bačkor and Loppi, 2009). Precipitation can bring water-soluble and insoluble 

particulates as well as dissolved gases to lichens (Addison and Puckett, 1980). Since 

solutes in precipitation are in higher concentrations at the beginning of a rain event 

(Minger and Krähenbühl, 1996), there is a potential for Usnea to absorb any soluble Hg 

that is intercepted. Short precipitation events may fully saturate the thinly branched 

Usnea lichens but not Platismatia, reducing metal uptake in the latter. 

 
4.3 Mercury Spatial Distribution Patterns in Lichens 

4.3.1 Sites of Elevated Lichen Total Mercury Concentrations 

Generally, THg spatial patterns were similar for both Usnea and Platismatia 

within each grid, including two areas of elevated THg in Grid 1 associated with 

amalgamation activities at a documented stamp mill site (OSM) and at the northern 

section of the main tailings deposit. These areas of elevated lichen THg coincide with 

elevated THg soil samples from previous soil surveys at Montague (Parsons & Little, 

2015; Parsons, personal communication, 2021). Parsons et al. (2012) measured Hg in the 

tailings at OSM as high as 70,000 µg/kg, with the northern section of the larger tailings 

deposit at Montague having the highest Hg concentration (8390 µg/kg) in comparison 

with all other tailings samples that were collected south of this area. These samples 

exceed the Hg guideline for residential and parkland soils for the protection of 

environmental and human health (6600 µg/kg) (CCME, 1999a). 
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4.3.1.1 Mercury Volatilization 

Various mechanisms and pathways have probably contributed to these elevated 

THg concentrations in lichens at those two hotspots, including the transfer of volatile Hg0 

from tailing, soil, and water surfaces to the lichens (Figure 16) (Bargagli et al., 2002). 

Elemental Hg is volatile so can be re-emitted into the atmosphere after it has been 

deposited in soils, water, and vegetation (Beauchamp et al., 2002). In fact, Hg is 

primarily removed from, or transferred through, an ecosystem via Hg volatilization 

(O’Driscoll et al., 2005; Selvendiran et al., 2008). Mercury volatilization can be 

facilitated abiotically or by biotically-mediated mechanisms, such as solar radiation or 

bacteria, respectively (O’Driscoll et al., 2005). 

Gaseous Hg flux rates have been measured at abandoned gold mine tailing sites in 

Nova Scotia (Beauchamp et al., 2002; Wong et al., 2002; Dalziel & Tordon, 2014). At 

the Caribou and Goldenville districts, the Hg flux rates ranged from 63-640 ng/m2/h 

between the two tailings sites as compared to the much lower flux rates observed over 

natural forest soils (-0.4-2.2 ng/m2/h) (Beauchamp et al., 2002). These studies concluded 

that abandoned gold mine tailings sites in Nova Scotia are significant sources of Hg to 

the air surrounding these mine sites. It was also shown that between tailings sites that 

differ in Hg concentrations, those with higher Hg concentrations showed higher Hg flux 

rates than those with known lower concentrations of Hg (Dalziel and Tordon, 2014). In 

the current study, due to the higher Hg contents present in the tailings near these observed 

hotspots as mentioned previously (Parsons et al., 2012), the flux of gaseous Hg from the 

tailings to the air in these areas is likely greater, making more Hg locally available for 

interception by lichens. 
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The lichens at the OSM tailings deposit are from trees edging a tailing-

contaminated wetland. This tailings deposit is typically inundated with water. So, gaseous 

Hg evasion in this area would most predominantly be occurring from the water surface to 

the air (Zhang et al., 1995; O’Driscoll et al., 2018), with greater amounts of Hg likely 

being released in this area due to the elevated Hg concentrations in the underlying tailings 

(Parsons et al., 2012). The export of Hg from wetlands is discussed further in subsequent 

sections (4.4.2). Moreover, releases of gaseous Hg from adjacent forest soils are also 

likely occurring as Hg contamination at Montague has been shown to extend past the 

boundaries of tailings material and into nearby soils (Parsons and Little, 2015). This may 

be a factor contributing to the elevated Hg in the lichens at OSM and supported by Bowes 

(2021, unpublished) that suggested that, after comparing Hg concentrations measured in 

tree cores from the OSM versus the Montague tailings, higher rates of Hg revolatilization 

from soils was likely occurring at OSM. 

 
4.3.1.2 Windblown Tailings 

The link between elevated THg in lichens with these tailings in these areas may 

also reflect the impact of windblown tailings. Although the majority of Hg in the 

atmosphere is in the gaseous phase, the presence of mine wastes (containing Hg) have 

been suggested to be significant sources of particulate-bound Hg, particularly when local 

winds are present (Rimondi et al., 2020). Windblown tailings were suggested by Parsons 

and Little (2015) to have played a role in elevating the Hg concentrations in near-surface 

soils around Montague. In addition, particle size has a large influence on the elemental 

contents in lichens at a site. Larger particles (>20 µm) can originate from tailings deposits 
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and are typically deposited locally, with any smaller particles capable of being 

transported over longer distances (Zschau et al., 2003).  

At the OSM site, the water levels in the surrounding tailing-contaminated 

wetlands fluctuate greatly depending on weather patterns. As a result, large sections have 

been observed to dry out during hot, dry summers such as in the summer of 2019, which 

exposes the underlying sediments and tailings along the boundaries. When exposed, these 

tailings are more susceptible to dust generation (Figure 16), potentially transporting Hg to 

the adjacent trees and epiphytes, which highlights the impacts of a changing climate on 

water resources and dust generation.  

The lichens at the hotspot in the northern section of the main tailings deposit may 

also be collecting large windblown particulates containing Hg. This is because the 

tailings in this area are loosely consolidated and completely bare or only sparsely 

vegetated, thus likely being impacted by wind erosion (Figure 16). In support of this, a 

slightly elevated zone of THg for Usnea was observed extending north of Mitchell Brook 

and past this hotspot (Figure 7), with significantly higher mean THg in Usnea sampled 

from the northern section as compared to the southern section of Grid 1. These trends 

agree well with the average annual prevailing winds in the area that primarily move from 

the south to the north (Figure 2). We suggest that these winds may be transporting loose 

tailings material and contributing to the elevated THg concentrations in these lichens. 

These results demonstrate that lichens are effective biomonitors for these contaminated 

sites and may be indicating elevated THg in surrounding ecosystems as well. 
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4.3.1.3 Influence of Trees and Forest Cover 

The elevated THg sites for Usnea and Platismatia were both located on or near 

tailings, with concentrations tending to decrease quite sharply once the boundaries of the 

tailings were met and into the surrounding denser forests. Forest cover increases the 

roughness of the surface and promotes deposition and accumulation (Hugenholtz and 

Wolfe, 2010). For example, at Jasper Lake in Alberta, Canada, the sediment carrying 

capacity of wind greatly decreased as it moved from the edge of the open lake and into 

the forest, resulting in decreased dust accumulation away from the lake (Hugenholtz and 

Wolfe, 2010). A similar process might be occurring near the tailing boundaries at 

Montague, demonstrating the role of forests in reducing the dispersion of airborne 

contaminants in dust surrounding this tailings site. 

The sampling sites are near the Atlantic coast, and as such, are subject to frequent 

fog, with the Halifax-Dartmouth area experiencing 121 days of fog each year, on average 

(Toth et al., 2010). The majority of Hg in the atmosphere is in the vapour form, which, 

when oxidized to the water-soluble Hg2+, can be intercepted by fog (Evans & 

Hutchinson, 1996; Ritchie et al., 2006). When a cloud encounters a forest, the deposition 

of the particles and gases scavenged by droplets within the cloud significantly increases 

(Lovett, 1984; Nasr & Arp, 2015). At Montague, the Hg emitted from these nearby 

tailings may come in contact with fog, especially at these relatively open and unvegetated 

landscapes. This fog may subsequently transport and deposit more Hg onto the 

surrounding vegetation along edges of the forests, which may be further increasing Hg 

deposition on lichens near the contaminated tailings deposits. 
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In addition, forest canopies intercept gaseous and particulate elements, such as 

Hg, on leaves, needles, and branches which then can be deposited on the surface or be 

absorbed by foliage through stomata (Rea et al., 2001; Nasr & Arp, 2015; Gauslaa et al., 

2021). During rain events, any loose particles and water soluble or leached Hg may be 

washed off from leaves or branches and intercepted by lichens from throughfall or 

stemflow, the latter including run-off water flowing down the tree trunks (Loppi & 

Bonini, 2000; Loppi & Pirinrsos, 2003; Nasr & Arp, 2015). So, with the potentially 

greater deposition of Hg to the forest canopy at these tailing-forest boundaries, more Hg 

may be available for wash-off and foliar leaching, subsequently enhancing the THg 

contents of the epiphytic lichens below. 

At the OSM location in particular, Bowes (2021, unpublished) found that spruce 

tree cores from OSM had significantly elevated concentrations of Hg in comparison to 

reference sites and even to cored trees in other tailing areas within the Montague Gold 

District. It was suggested that the Hg was deposited on the trees in gas or particulate-

bound forms and either absorbed passively through the bark or foliage before being 

transported by the phloem and incorporated into the sapwood (Bowes, 2021, 

unpublished). Numerous other studies have also shown that Hg primarily accumulates in 

trees from atmospheric deposition on the foliage and tree barks, with root uptake being a 

negligible contribution (Zhang et al., 1995; Rea et al., 2002; Poissant et al., 2008). 

Furthermore, with regards to lichens, several studies have found strong correlations 

between Hg concentrations in lichens and their host trees and bark, suggesting that trees 

and epiphytic lichens have similar uptake mechanisms (i.e. atmospheric deposition on 

surfaces) (Becnel et al., 2004; Rimondi et al., 2020). Thus, with known elevated Hg 
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concentrations in the tree cores at OSM likely resulting from the uptake of 

atmospherically deposited Hg, the trees at this site are likely transferring washed off or 

leached Hg from foliage to the lichens via throughfall and stemflow. This pathway of Hg 

transfer from trees to the surrounding lichens is likely also occurring at other areas 

throughout Montague yet varying in degree based on site-specific factors such as 

exposure to winds and proximity to tailings. 

 
4.3.2 Other Areas of Elevated Lichen Total Mercury Concentrations 

Smaller zones of elevated THg in Usnea and Platismatia were observed near the 

other former stamp mills in Grid 1 (Figures 7 & 8), reflecting the past amalgamation 

activities that took place in those areas and the resulting losses of Hg to the environment 

(Parsons et al., 2012; Parsons and Little, 2015). This trend was expected and aligns with 

the findings of Winch et al. (2008a) that found decreasing THg concentrations in tailings 

with increasing distance from stamp mills at the Seal Harbour Gold District in Nova 

Scotia. Winch et al. (2008a) attributed this trend to the higher-grade gold ores that were 

first processed using Hg amalgamation and deposited near the stamp mills with the 

lower-grade ores being processed later in time using cyanide and being channeled further 

away. 

Additional areas of high THg were predominantly observed in Platismatia 

concentrated in some open areas along water features of the Mitchell Brook stream on 

Grid 1 (Figure 8). This stream that runs through Montague contains a mix of wetlands 

and fast- and slow-flowing interconnected channels that vary considerably in width and 

depth over its course. Over time, tailings have dispersed into downstream waters, alluvial 

deposits and/or bottom sediments of the Mitchell Brook stream, Barry’s Run, and Lake 
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Charles (Eaton, 1978; Dale and Freedman, 1982; Jacques Whitford and Associates 

Limited, 1984). Wetlands also produce large supplies of dissolved organic carbon (DOC) 

which binds Hg species and transports them in stream waters, possibly also contributing 

to the dispersion of Hg into downstream environments (Driscoll et al., 1998; Selvendiran 

et al., 2008). Thus, Hg in the waters or sediments along the stream’s course may be 

volatilized and emitted to the atmosphere via biotic or abiotically mediated reactions, 

providing a localized source of airborne Hg to the nearby lichens. This is supported by 

Maprani et al. (2005) who estimated that high atmospheric Hg flux rates were originating 

from the stream water surface within the first kilometre of Gossan Creek, a first-order 

stream in northern New Brunswick, Canada, contaminated from a leached gold mine 

tailings pile located upstream. These observed spatial patterns demonstrate that any 

dispersed Hg may be influencing the air quality even at distances away from the main 

deposits. 

 
4.3.3 Zones of Low Lichen Total Mercury Concentrations 

For both Usnea and Platismatia in Grid 1, similar areas showed low THg 

concentrations in lichens, such as towards the northeastern and southern boundaries of 

the grid. From field observations and inspection of satellite images, these areas were 

confirmed to be shaded with dense forest cover. Dense tree stands will provide more 

protection to lichens from the deposition of windblown metal-bound particles in 

comparison to those growing on isolated trees (Bačkor and Loppi, 2009). In addition to 

this, the lower THg concentrations in these lichens may also reflect the greater distances 

of these areas to the exposed tailings and the reduced Hg volatilization that occurs under 

cooler, shaded forest canopies (Nasr and Arp, 2015). 



 78 

It is important to note that Nova Scotia is located downwind of many urban and 

industrial air pollution sources originating from the northeastern United States, southern 

Ontario, and Quebec. The long-range transport of these source emissions has led to 

enhanced Hg deposition in Nova Scotia (Temme et al., 2007; Roberts et al., 2019). From 

a province-wide Usnea lichen sampling survey in Nova Scotia from 2015 to 2017, it was 

suggested that most of the Hg measured in these lichens was from historical and ongoing 

long-range transport of Hg0 rather than from localized pollution sources (Klapstein et al., 

2020). Also, at the Montague Gold District, Parsons and Little (2015) suggested that the 

enriched Hg in the humus layers of soils resulted partially from the atmospheric 

deposition of Hg from distal sources. In the current study, it is expected that some of the 

THg detected in our lichen samples reflects deposition from the long-range transport of 

atmospheric Hg, as suggested in these previous works. However, this long-range 

transport contribution is likely masked by the fact that we conducted this study over a 

small area and collected samples close together, thereby being able to detect hotspots on 

a finer spatial scale. Thus, the THg spatial patterns determined from our lichen samples 

are more likely reflecting the local pollution sources in this study area, such as the mine 

tailings. 

 
4.4 Mercury Spatial Analysis Patterns in Lichens 

4.4.1 Distance from Mine Tailings 

In both Usnea and Platismatia, THg concentrations generally showed a 

decreasing trend with increasing distances from the nearest tailings edge (Figure 9; Table 

5). The higher mean THg concentrations in lichens collected directly on the tailings can 

be attributed their close proximity to the main Hg source and consequently, the lichens 
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receiving greater contributions of Hg from windblown tailings and evasion from the 

surfaces of the bare tailings. This inverse relationship with elemental concentrations in 

lichens and distance to a pollution source is a common trend and has been observed in 

numerous pollution studies using lichens as biomonitors (Addison and Puckett, 1980; 

Takala and Olkkonen, 1981; Walther et al., 1990; Bylinska et al., 1991; Søndergaard et 

al., 2011; Saunier et al., 2013).  

Total Hg concentrations in both lichens generally leveled off by the time sites 

located >300 m (up to 1 km) from the tailings were reached. This trend indicates that the 

tailings are a local source of atmospheric Hg pollution, impacting the environment up to 

at least a few hundred metres, and possibly up to 1 km, from the tailings deposits. Other 

biomonitoring studies using lichens have shown areas more distant from pollution 

sources to be impacted by the related emissions before levelling off (Lodenius and 

Laaksovirta, 1979; Sensen and Richardson, 2002), including up to 2 km from an 

abandoned Hg mine in Italy (Bargagli et al., 2002). Yet, these other studies were 

impacted by different types of sources (i.e. active point sources), different levels of 

pollution, and would have varying site characteristics than in the current study (e.g. 

topography, exposure to winds). Additional lichen samples collected >1 km from the 

mine tailings at Montague, and in various directions, would be required to better 

understand the sphere of influence of the mine tailings on atmospheric Hg contamination. 

Both Usnea and Platismatia collected on or close to the tailings showed a wide 

range of THg concentrations (Figure 9). This can be attributed to varying site-specific 

characteristics such as the Hg concentrations in nearby tailings, surrounding vegetation 

cover, and exposure to winds. For Usnea, sharp declines in THg were observed 
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approximately 25-50 m from the nearest tailings edge (Figure 11). This may result from 

particulate fallout of coarser windblown grains at greater distances from the tailings 

(Hocking et al., 1978; Hugenholtz and Wolfe, 2010), leading to increased deposition of 

particles onto surrounding forests, which typically occurred within this distance of the 

tailings edge. This trend of high contaminant levels in lichens closest to a source with 

steep declines within short distances and a levelling off of concentrations is consistent 

with previous studies of Hg near a chlor-alkali plant (Steinnes and Krog, 1977) and an 

abandoned cinnabar mine (Bargagli et al., 1987), lead (Pb) near a major highway 

(Laaksovirta et al., 1976), As near gold smelters (Hocking et al., 1978), and microplastics 

near a landfill (Loppi et al., 2021). The detection of this steep decrease of Hg in Usnea 

lichens with distance from the tailings demonstrates that the mine tailings have a greater 

influence on the Hg content in these lichens than long-range atmospheric transport (Loppi 

et al., 2021). 

 
4.4.2 Land Type 

Lichens collected near roads had the lowest THg concentrations of all sampling 

environments (Figure 10). This trend may reflect the greater distances of roads relative to 

the tailings. The wide range of THg concentrations in lichens growing on trees from 

natural forest stands and wind throw zones may be explained by the varying distances 

that these habitats are located from the tailings (Figure 11) in combination with other site-

specific factors, such as microclimates that are produced by different tree stands (Sloof 

and Wolterbeek, 1993). Trees can impact soil and air temperatures as well as exposure to 

solar radiation, precipitation, and winds (Eckley et al., 2008). In turn, ambient conditions 

within a forest can change quite significantly even over short distances, which can affect 
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the amount of Hg available for interception by lichens via processes such as the 

deposition of windblown particles or gaseous Hg evasion. 

Lichens sampled from trees near wetlands and bogs showed the highest 

concentrations of THg. This trend is likely due to being in closest proximity to the 

tailings, as all these classified wetland and bog habitats at Montague were located directly 

on tailings or within approximately 100 m of the tailings edge (Figure 11). As previously 

mentioned, the Hg may originate from windblown tailings along the wetland boundaries 

exposed during the dry seasons or be volatilized from the water surface (Figure 16) 

(Zhang et al., 1995). 

In general, Hg volatilization would be enhanced in these environments because 

wetlands and bogs typically have anaerobic conditions due to the high water contents in 

the underlying sediments and soils (Rinklebe et al., 2010). These saturated conditions 

decrease the redox potentials in sediments which promotes the reduction of Hg2+ to Hg0 

by biotic and abiotic processes (Du Laing et al., 2009; Rinklebe et al., 2010; Zhou et al., 

2020). Once produced, Hg0 can diffuse from the underlying tailing sediments into the 

water column and then into the atmosphere for potential interception by nearby lichens 

(Zhu et al., 2011). This demonstrates that inundated tailings may still be an important 

source of atmospheric Hg. 

More importantly, wetlands and bogs are known sites of high in situ MeHg 

production (Driscoll et al., 1998; Yu et al., 2010; Strickman and Mitchell, 2017). 

Methylmercury is formed when Hg2+ reacts with a methyl group, induced by abiotic or 

biotic processes, such as by light or microorganisms, respectively (Figure 16) (Segade et 

al., 2011; Figueiredo et al., 2018). Microbial methylation is widely accepted as the main 
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mechanism for most of the MeHg production in a natural environment (Hall et al., 2008; 

Segade et al., 2011). Methylmercury production is thought to be predominantly mediated 

by sulfate-reducing bacteria (SRB) (Loseto et al., 2004; O’Driscoll et al., 2005), which 

are typically abundant in organic-rich, anaerobic aquatic sediments, like those in 

wetlands (Hall et al., 2008; Selvendiran et al., 2008). 

Methylmercury can be associated with particulates in wetlands, rivers, and lakes 

(Hill et al., 2009). With the water levels decreasing at some wetlands at Montague during 

the dry seasons and exposing the underlying sediments, including at the OSM site for 

example, there is potential for any particle bound MeHg to be eroded by wind and 

transferred to the nearby epiphytes or forest canopies (Figure 16). Also, the rewetting of 

dried wetland sediments can further promote MeHg production at these sites. The drying-

out of wetland sediments increases the oxidation of sulfides so that when rewetted, high 

levels of sulfate are available to SRB, thereby increasing the abundance of these 

methylating communities (Bigham et al., 2017). So, the fluctuating water levels observed 

at wetlands at Montague may also be enhancing the Hg methylation rates in the 

sediments, possibly making more particle bound MeHg available for wind transport 

following a wetting cycle. With a changing climate and the subsequent impacts to the 

hydrologic cycle, MeHg production may increase at these wetland sites in the future. 

However, demethylation processes also occur simultaneously with methylation 

processes in highly Hg-contaminated environments (Winch et al., 2008b). This process 

transforms the MeHg to less toxic, yet more mobile forms for transfer to the atmosphere 

(Figure 16). Similar to methylation, this can occur via abiotic processes, like 

photodegradation (Sellers et al., 1996; O’Driscoll et al., 2005; Hill et al., 2009), or 
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biotically by Hg-resistant microorganisms via reductive demethylation (RD) or oxidative 

demethylation (OD) (Segade et al., 2011). Reductive demethylation is the process 

thought to dominate in aerobic environments or under anaerobic conditions with highly 

contaminated sediments, producing Hg0 and methane (CH4) (Segade et al., 2011; Lu et 

al., 2016; Figueiredo et al., 2018). Thus, RD may result in the immediate volatilization 

and loss of Hg0 from the system. In OD, MeHg is converted to Hg2+ and carbon dioxide 

(CO2), a process primarily occurring in anaerobic environments (Lu et al., 2016; 

Figueiredo et al., 2018). Oxidative demethylation may result in the re-methylation of this 

Hg2+ under favourable conditions, or if subsequently reduced to Hg0, the Hg may be 

removed from the system via volatilization like RD (Segade et al., 2011). At Montague, it 

can be expected that the elevated Hg concentrations in the tailings (Parsons et al., 2012) 

would be sufficient to allow for the presence of Hg-resistant bacteria in these wetland 

environments and thus for demethylation processes to also occur. As a result, these 

processes would produce Hg products for potential volatilization from the water surface 

into the atmosphere (Winch et al., 2008b). 

At the Lake Catcha and Upper/Lower Seal Harbour gold mine tailings sites in 

Nova Scotia, high concentrations of MeHg were measured in the organic-rich layers of 

some tailings from wet, bog-like sites, suggested to have been produced in situ by SRB 

(Winch et al., 2008a). Mercury demethylation was also suggested to be occurring at the 

Lake Catcha tailings site. Winch et al. (2008a) indicated that demethylation via microbial 

activity was likely contributing to significant releases of Hg0 to the atmosphere from 

these Nova Scotian mine tailings. Due to the similar type of sites investigated by Winch 
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et al. (2008a), similar processes can be expected at the Montague tailings deposits that are 

located beneath wetlands and bogs. 

Additional conditions of these water features may be promoting enhanced Hg 

emissions from these areas. Mercury flux has been found to be strongly correlated with 

solar radiation (Poissant and Casimir, 1998; Boudala et al., 2000; Zhou et al., 2020). 

Solar radiation induces the photochemical reactions that reduce Hg to more volatile 

species, resulting in further exchanges to the atmosphere at the air-water interface 

(Poissant et al., 2004; Zhou et al., 2020). These wetland environments at Montague are 

typically open and may be receiving more intense solar radiation than the surrounding 

shaded forested areas. 

Furthermore, the wetland environments may be exposed to higher wind speeds 

due to the unobstructed landscape above the water surface, which, in combination with 

the presence of solar radiation, can increase the flux of Hg (Boudala et al., 2000). This is 

because windier conditions can increase the vertical mixing of the water column, 

transporting more Hg0 closer to the surface and subsequently increasing the potential for 

transfer to the atmosphere and to nearby lichens (Boudala et al., 2000; Beauchamp et al., 

2002). This trend of higher Hg flux rates from the water surface under stronger wind 

conditions was observed by Beauchamp et al. (2002) after collecting repeated Hg flux 

measurements at Big Dam West Lake in Nova Scotia. This is a testable hypothesis which 

can be examined in more detail at key tailing-impacted wetland sites in Nova Scotia. 
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4.5 Passive Dust Samplers 

4.5.1 Total Dust Deposition Rates 

Sites that generated the most dust, on average, were located furthest from the 

tailings deposits at Montague, which included BR and the two reference sites, ABL and 

SMU. This suggests that these sites are impacted by other, larger sources of dust. These 

areas are located closer to roads, urban areas, and city centres, so may be receiving inputs 

of dust from vehicular traffic (i.e. resuspended soil, wear material), construction or 

demolition activities, domestic fuel burning, or industrial activities, for example 

(Karagulian et al., 2015; Jose and Srimuruganandam, 2020). The samplers at OSM and 

Montague, located directly adjacent to the tailings deposits and surrounded by forests, 

may therefore be more influenced by the tailings dust and less by dust originating from 

other sources outside of the study area. The sampler at LL received less dust in 

comparison to these other samplers that are located directly adjacent to the tailings, 

reflecting its slightly greater proximity to a tailings deposit (Figure 1). 

Seasonal dust deposition calculations revealed that, when sites were averaged 

collectively, the colder seasons measured higher total dust deposition rates than the 

warmer seasons, although at some sites, deviations from these general trends did exist 

(Figure 13). Many studies have found contrasting results with higher dust deposition rates 

during summer seasons when temperatures were highest and precipitation levels were 

lowest (Reheis and Urban, 2011; Aghasi et al., 2019; Ahmadi Foroushani et al., 2021). 

The adhesion of dust particles decreases with higher temperatures, lower rainfall, and the 

subsequent lack of moisture, which were the main reasons suggested for increased dust 

generation during the warmer seasons in these studies. 
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In the current study, the colder seasons reported highest wind speeds and 

precipitation levels in comparison to the warmer seasons (Figure 12). These high 

precipitation levels would lead to an increase in soil moisture, thus enhancing the ability 

to withstand erosion (Jiang et al., 2016). However, when the wind shear velocity at the 

soil surface exceeds the shear strength of the soil aggregates, particles may begin to 

separate from the surface and become entrained by wind (Csavina et al., 2012). So, 

during the colder months of our study, although precipitation levels were highest, the 

stronger wind velocities may have exceeded the shear strength of the soil particles at the 

surface and mobilized more dust. In Alberta, Canada, Hugenholtz and Wolfe (2010) 

measured highest dust generation from exposed river sediments during the colder months 

of the year, in part due to the greater speeds and transport capacity of winds. 

Additionally, vegetation cover stabilizes the soil surface and decreases the mobility of 

dust particles (Kutiel & Furman, 2003; Norouzi et al., 2017). This may also explain the 

observed seasonal trends of lower dust deposition rates in the warmer seasons for some 

sites, as in Canada, vegetation biomass increases during these seasons. The reduction of 

plant biomass in the winter may be exposing more soils and tailings material to greater 

wind action and subsequent dust generation. 

In combination with the climatic conditions, site-specific factors may have also 

played a role in the observed seasonal dust deposition trends at some sites. The OSM 

samplers measured highest dust deposition rates in the cooler fall season (Figure 13). The 

water levels at the OSM wetland typically decrease slightly along the boundaries and 

aerially expose some of the underlying tailings for several weeks after the dry, summer 

season. Coupled with an increase in wind speeds into this fall season (Figure 12), these 
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exposed tailings at OSM may have been mobilized and contributed to the higher dust 

levels during this season. However, the OSM-1 and OSM-2 samplers did report lowest 

dust deposition rates during the winter season, unlike the average seasonal trends 

previously discussed. The increased precipitation levels into the winter (Figure 12) would 

have increased water levels at this wetland and completely submerged any tailings 

exposed from the previous warmer seasons, thereby reducing sediment availability for 

uplift. 

The samplers at Montague (MO-1 & MO-2) showed highest dust deposition rates 

during the first summer season and another peak during the second summer season, 

contrasting the average trends determined from all sites (Figure 13). These trends might 

be attributed to the fact that these samplers are in closest proximity to the large tailings 

deposit at Montague. The main tailings deposit is largely unvegetated and has vast areas 

of loose and unconsolidated tailings material. With the higher temperatures and lower 

precipitation levels that would further dry out and decrease the adhesion of the particles 

during the summer seasons, these tailings may easily become lifted from the surface even 

under the lower measured wind speeds. Also, dust generation near these tailings would be 

enhanced by occasional off-road vehicle activity on the tailings during these summer 

seasons. 

 
4.5.2 Total Mercury Flux Rates 

At sites within the Montague Gold District, the passive air samplers located closer 

to tailings deposits (MO-1, MO-2, OSM-1, & OSM-2) measured higher mean GFF THg 

flux rates than those at LL and BR, which were located further from the tailings. These 

findings suggest that the tailings are a local source of atmospheric Hg which diminishes 
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with distance. The reference site samplers, ABL and SMU, also showed some higher and 

intermediate average GFF THg flux rates. These samplers, located much further from the 

tailings deposits, may therefore be influenced by other sources of Hg more common near 

urban centres, such as from waste plants, industrial and metal manufacturing facilities, 

and local fossil fuel combustion (McLagan et al., 2018). However, at these reference 

samplers, the GFF THg flux rates were highest mainly during the first season, with the 

following seasons being comparable to the fluxes from the other samplers within 

Montague. 

The GFF THg flux rates were generally higher during the warmer seasons than 

the colder seasons (Figure 14). These trends were opposite to those observed for total 

dust deposition, which can be attributed to the different physical and chemical properties 

of Hg versus dust; Hg being highly volatile and mainly released from soils as a gas rather 

than attached to particles (Gustin et al., 1997; Wang et al., 2006; Cizdziel et al., 2019; Shi 

et al., 2020). Increased solar radiation, which can also increase the temperature of water 

and soils, will facilitate photochemical reactions that transform Hg2+ to gaseous Hg0, 

which increases the release of Hg to the atmosphere (Ma et al., 2013; Shi et al., 2020). 

Additionally, higher temperatures can allow Hg to move up the soil column due to 

desorption from soil particles, thereby further enhancing this photoreduction process and 

the subsequent Hg emissions (Figure 16) (Rinklebe et al., 2010; Cizdziel et al., 2019). At 

Montague, the spring and summer seasons measured the highest average temperatures 

(Figure 12). These conditions would favour the reduction of Hg2+ to Hg0 and lead to 

greater emissions from the tailings and surrounding soils during these months. The lower 

GFF THg fluxes during the winter season reflect the colder air temperatures observed 
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(Figure 12), which would inhibit Hg0 formation. It is important to note that some of the 

THg may also have originated from particle-bound Hg during these warmer seasons of 

which the meteorological conditions may have promoted some uplift of soil and tailing 

particles. 

The GFF THg fluxes observed at the samplers at the OSM wetland may also be 

influenced by methylating and demethylating species that are likely more prevalent in 

these wetland environments, as mentioned previously. For instance, at these samplers, a 

small peak in THg flux rates was observed into the Spring/Summer 2020 season. At a 

wet, bog-like site at the Lake Catcha Gold District in Nova Scotia, demethylation 

processes in the tailings, and the subsequent production of more volatile Hg, dominated 

in the spring due to changing redox conditions induced by an influx of oxygenated waters 

after snowmelt (Winch et al., 2008a). Thus, this smaller peak in this season at the OSM 

samplers may reflect the potentially greater rates of demethylation of MeHg in the nearby 

wetlands, initiated by the changing seasonal conditions. 

 The two samplers adjacent to the main tailings deposit at Montague (MO-1 & 

MO-2) were the only samplers measuring distinct peaks in GFF THg flux rates in the 

winter season (Figure 14). These samplers were in closest proximity to the large tailings 

deposit. This, combined with reduced plant biomass covering these tailings and the 

higher winds during the colder season may have contributed more particulate-bound Hg 

from the tailings, as volatile Hg emissions would be lower during this colder season, as 

previously discussed. At rural sites in Michigan and Vermont, US, the winter seasons 

measured higher concentrations of particulate Hg in the atmosphere in comparison to the 

summer seasons (Keeler et al., 1995), which supports this proposed reasoning. More 
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particulate-bound Hg may also originate from these tailings during this windier winter 

season as Hg2+ is able to diffuse onto particle surfaces at low temperatures (Cole et al., 

2014). 

Despite both samplers at Montague showing the same seasonal trends, the MO-2 

sampler showed higher levels and greater fluctuations between seasons than the MO-1 

sampler. The MO-2 sampler is located closer to the sections of bare tailings while also 

having less vegetation cover across this distance. This would allow for more particle 

uplift from wind erosion and increased Hg volatilization during warmer months promoted 

by the increased light penetration to the surrounding soils (Rinkelbe et al., 2010; Ma et 

al., 2013). Therefore, this sampler may have received greater inputs of Hg year-round in 

comparison to the MO-1 sampler. The two samplers at OSM showed similar seasonal 

trends and GFF THg flux rates, reflecting their similar proximities to tailings and 

surrounding environments (i.e. forest edges along wetland). 

 
4.6 Mercury in Lichens Compared to Passive Dust Samplers 

When comparing the THg concentrations measured from the lichen samples to 

that measured from the nearby passive air samplers from the time of sampling (Figure 

15), the THg measured in Platismatia was more strongly correlated to that measured on 

the corresponding GFFs relative to Usnea. This may reflect differences in accumulation 

mechanisms favoured by these foliose and fruticose lichens in combination with the 

design of the passive air samplers. Although Usnea has a wider surface area for gas 

exchange, these lichens also favour moisture and are greatly influenced by wet 

deposition, receiving significant quantities of elements from rainfall and dewfall 

(Bosserman and Hagner, 1981). Foliose lichens on the other hand, like Platismatia, have 
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a larger continuous surface and have been shown to capture elements more efficiently 

from dry deposition, such as windblown particles (Bosserman and Hagner, 1981; Monaci 

et al., 2012; Graney et al., 2017). These distinctions are important because the passive air 

samplers are only collecting elements from dry deposition (gases and particles) as a large 

plate covers the air filters which protects from wet deposition. So, since elements from 

wet deposition were not captured on the GFFs, unlike in Usnea, this may explain the lack 

of correlation between THg in the filters and these lichens. 

Another possible related reason for the weaker correlation of THg between Usnea 

and the filters may reflect the physical characteristics of the filter matrices. In this study, 

each passive air sampler hosted both a GFF and PUF during each sampling period, yet 

only the GFF was analyzed. Despite both matrices being capable of collecting both dry 

gases and particles, the GFFs are hypothesized to more so reflect the particulate 

components of dry deposition due to its more densely woven matrix, of which only 

particles mainly deposit on the surface (Eng et al., 2014). This may explain why the THg 

in Platismatia samples showed similar trends to that from the corresponding GFFs, as 

this foliose lichen is also more efficient at capturing particles (Bosserman and Hagner, 

1981; Monaci et al., 2012; Graney et al., 2017). In contrast, the PUFs more so reflect the 

gaseous components of dry deposition (Loppi et al., 2015), in part due to the greater pore 

spaces within which allow for scavenging of gaseous species released from entrained 

particles (Eng et al., 2014). Thus, if the PUF was also analyzed, more gaseous Hg may 

have been measured. In such case, the THg concentrations from the filters may then have 

correlated better with that of Usnea which is already known to have a higher ability to 

sequester gaseous Hg due to its greater surface to volume ratio (Monaci et al., 2012). 
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Previous studies have shown strong linear correlations between concentrations of 

polycyclic aromatic hydrocarbons (PAHs) measured in transplanted fruticose lichens and 

PUF passive air samplers in Europe (Domínguez-Morueco et al., 2015; Loppi et al., 

2015). Loppi et al. (2015) suggested this was largely due to the ability of the PUFs to 

accumulate mainly gaseous species over particulates, of which is the common form of 

PAHs. 

Overall, these findings indicate that, in future work, it would be important to also 

measure the Hg concentrations on the PUF in addition to the GFF, as this may capture 

more gas-phase species which can contribute to the THg load. Analyzing both the GFFs 

and PUFs together may provide stronger correlations with lichens that also accumulate 

species in both the particle and gas phases. 

It is important to note that the trends in THg concentrations in the lichens as 

compared to the passive air samplers may also differ because of the different exposure 

times between the two sampler types. The passive air samplers were deployed for a 

known amount of time, approximately three months, so only reflect THg fluxes during 

those time periods. In contrast, the in-situ lichens have been growing at these locations 

prior to the deployment of the passive air samplers and may reflect more long-term trends 

in THg (Rimondi et al., 2020). 

 
4.7 Ecosystem Implications 

Overall, the lichens have been shown to sequester Hg throughout the study area. 

This may have direct biological implications as lichens contribute to the vitality of many 

terrestrial ecosystems. For instance, beetles, grasshoppers, ants, flies, spiders, moths, 

slugs, and springtails, many of which are common in Nova Scotia, eat, live on, or use 
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lichens for camouflage (Asplund and Wardle, 2017). These species form the base of 

terrestrial food chains and are consumed by higher trophic level species, like birds. The 

transfer of contaminants from lichens to lichen herbivores and up to higher trophic level 

species has been shown in many studies, including to caribou and wolves in the Canadian 

Arctic (Kelly and Gobas, 2001) and to deer and pumas in California (Weiss-Penzias et 

al., 2019). Thus, these lichens at Montague may act as vectors of Hg to terrestrial food 

webs, contributing to Hg bioaccumulation and biomagnification. 

In addition, the passive dust samplers showed varying dust deposition and THg 

flux rates across the study area. Along with the Hg contamination in lichens, these results 

further demonstrate that Hg may be spreading to surrounding ecosystems and depositing 

on vegetation, for example. This may also pose a risk to other ecosystem compartments, 

such as soils and waters, with Hg capable of being washed off or leached from vegetation 

and lichen thalli during rain events. In particular, Nova Scotia is impacted by acid rain, 

predominantly in the southwestern region of the province (Government of Nova Scotia, 

2017). By altering the pH of the environment, acid rain can differentially affect the 

absorption and desorption of metals on vegetation and lichen thalli held by ion exchange, 

as well leach elements held in particulates (Garty and Hagemeyer, 1988; Čučulović et al., 

2014). Under these acidic conditions, the surrounding vegetation and lichen may become 

a secondary source of metal pollution with the potential to spread any accumulated Hg to 

surrounding environments. 
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5.0 Summary and Conclusions 

In summary, this study has shown the remobilization of tailings material and Hg 

transfer throughout the environment at the historical Montague gold mine tailings site in 

Nova Scotia. Usnea and Platismatia were effective spatial biomonitors of Hg that aided 

in identifying risk areas. The distribution of Hg hotpots in lichens primarily around 

tailing deposits suggested that the tailings are likely a local source of Hg to the 

atmosphere and into surrounding environments. Similar to previous studies of former 

gold mines in the province, this study shows that the generation of windblown tailings 

dust and Hg volatilization are important processes contributing to the Hg concentrations 

in the air surrounding these sites. 

Mercury concentrations in lichens are influenced by many factors, including 

distance to the tailings, Hg concentrations of underlying or nearby tailings, surrounding 

forest cover, and land type. Surface vegetation and forest cover are important in reducing 

dispersion of Hg, indicating revegetation and phytostabilization to be a potential 

remediation option requiring further research (Chapman et al., 2019). In particular, the 

wetlands at Montague proved to be important reservoirs of Hg, acting as a long-term 

source for both the atmosphere and downstream aquatic environments, especially due the 

large role these environments have in methylating and demethylating Hg. Our findings 

have highlighted the impacts of a changing climate on dust generation and air 

contamination stemming from these contaminated sites, reinforcing the need to monitor 

and/or remediate both the tailing and wetland areas within these mine districts. 

This study found that the fruticose Usnea had a higher capacity to sequester Hg in 

comparison to the foliose Platismatia, owing to the fact that, globally, most of the Hg in 
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the atmosphere is in gaseous form. Thus, when selecting lichen species for future 

biomonitoring work, it is important to consider both the lichen growth form as well as the 

primary physical forms of the target elements. Despite these differences between lichens, 

both Usnea and Platismatia were found to exhibit similar Hg distribution patterns, 

reaffirming the location of hotspots. For future biomonitoring work at contaminated sites, 

we recommend a sampling approach pairing two lichen genera, particularly of two 

different growth forms. This can be especially important when sampling on a high-

density, local scale when the effects from within and between site elemental variation in 

lichens become more easily detected. Additionally, this can help to better understand the 

total pollution load in the area as lichens of different growth forms can have different 

abilities to capture and absorb airborne contaminants, such as those in gaseous or 

particulate forms. 

The passive dust samplers proved to be a simple tool for determining spatial and 

seasonal dust deposition and THg flux rates at this contaminated site. Higher rates of dust 

deposition were measured in the colder seasons, whereas THg flux rates were greater in 

the warmer seasons. These different seasonal trends between the dust and THg flux rates 

can be attributed to the different meteorological conditions that enhance Hg generation 

and emissions. 

The THg concentrations measured by the passive dust samplers correlated well 

with those measured from the nearby foliose lichens (Platismatia), but not the fruticose 

lichens (Usnea). This likely reflected the lower capacity of the GFFs to effectively 

capture gaseous species unlike in Usnea. To improve correlations with Usnea and the 

passive dust samplers, incorporating Hg data from both the GFF and PUF is 
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recommended for future studies. Regardless, both lichen biomonitors provided 

information on atmospheric Hg levels and are recommended as a complementary 

measurement method to passive air samplers, as both methods have provided a better 

understanding of the transport of contaminants in dust. Additional work improving the 

correlation between the Hg in lichens to these manufactured samplers is required before 

being able to quantitively translate values from lichen biomonitors to equivalent air 

concentrations. This is challenging and would be species dependent, varying across space 

and time. 

In conclusion, Usnea and Platismatia proved to be suitable genera for future 

spatial dust monitoring programs in Nova Scotia, and are relatively inexpensive tools 

with a widespread, natural distribution. This study has demonstrated that using in situ 

lichens may be a worthwhile dust monitoring approach at other isolated legacy mine sites 

in the province where employing conventional air sampling equipment would not be 

feasible, and when only relative estimates of atmospheric Hg concentrations are required. 

Additionally, interpolation of the analytical data in ArcMap was a powerful tool that 

helped to identify spatial patterns and the levels of contamination across the entire study 

area. Thus, lichen sampling and subsequent spatial analysis may be a simple approach 

that can be used to prioritize the remediation of contaminated sites or identify priority 

areas requiring management across larger regions. Overall, the results from this study can 

provide guidance to mine and risk evaluators and help to predict the impacts of this Hg 

contamination on nearby food webs. 

More research is needed to assess the spatial extent of contamination from the 

Montague tailings deposits. In future, lichen sampling at further distances from the source 
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as well as collecting additional samples from reference areas would help in order to 

understand the tailings’ atmospheric sphere of influence. Further research could also 

focus on Hg contamination in lichen herbivores, especially invertebrates, to understand 

the transfer of the mine tailing contaminants in terrestrial food webs. 
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Figure 1. (A) Locations of grids, proposed lichen sampling sites (grid intersections), passive air samplers, and rain catchers at the 
historical Montague gold mine tailings site near Dartmouth, Nova Scotia. Site codes for passive air samplers are labelled in blue. (B) 
Location of the passive air sampler at Reference Site 1 at Albro Lake, Dartmouth, Nova Scotia. (C) Location of the passive air 
sampler and rain catcher at Reference Site 2 at Saint Mary’s University in Halifax, Nova Scotia. (D) The relative location of the 
Montague gold mine tailings site in Nova Scotia, indicated by a red star. 
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C 

D 

6.0 Chapter 2 Figures 
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Figure 2. Wind rose from the Halifax-Shearwater weather station, which 
shows the annual average wind direction distributions and the associated 
time in percentages that winds blew from each direction. Data averaged 
from 2007 to 2019. Image source: 
https://www.windfinder.com/windstatistics/shearwater_halifax. 
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Figure 3. Map of the Montague gold mine tailings site with spatial buffers surrounding 
the known tailings deposits, used for classifying the lichen sampling sites based on 
distance to the nearest tailings edge. 
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 Figure 4. Actual sampling locations of Usnea and the associated identified species in Grids 1, 2, 3, and 4 at the historical Montague 
gold mine tailings site near Dartmouth, Nova Scotia. 
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 Figure 5. Actual sampling locations of Platismatia and the associated identified species in Grids 1, 2, 3, and 4 at the historical 
Montague gold mine tailings site near Dartmouth, Nova Scotia. 
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Figure 6. Total mercury concentrations (µg/kg) in Usnea versus Platismatia collected 
from the same sampling sites surrounding the Montague gold mine tailings site. 
Regression line is plotted in blue and a reference line with a 1:1 slope is plotted in black.
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 Figure 7. Interpolated surface displaying the predicted total mercury concentrations (µg/kg) in Usnea at the historical Montague gold 
mine tailings site near Dartmouth, Nova Scotia. Note: colour scale is different from that for the Platismatia interpolated map (Figure 8). 
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 Figure 8. Interpolated surface displaying the predicted total mercury concentrations (µg/kg) in Platismatia at the historical 
Montague gold mine tailings site near Dartmouth, Nova Scotia. Note: colour scale is different from that for the Usnea interpolated 
map (Figure 7). 



 106 

Figure 9. Total mercury concentrations (µg/kg) in Usnea and Platismatia from the 
Montague gold mine tailings site. Data are summarized into categories based on distance 
to the nearest tailings edge: On tailings, 0-100 m, 100-200 m, 200-300 m, and >300 m. 
The colour of each box corresponds to the colours shown in the buffers map (Figure 3). 
Reference lichen samples are plotted as dashed lines for each lichen genera (Saint Mary’s 
University reference site: red, Albro Lake reference site: blue). 
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Figure 10. Total mercury concentrations (µg/kg) in Usnea and Platismatia from the 
Montague gold mine tailings site, summarized into categories based on the land type of 
the sampling site: Roads, urban areas, wind throws, natural forest stands, treed bogs, and 
wetlands. 
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Figure 11. Total mercury concentrations (µg/kg) in Usnea and Platismatia versus 
distance to the nearest tailings edge (m) at the Montague gold mine tailings site. Data 
points are colour-coded into categories based on the land type of the sampling site: 
Roads, urban areas, wind throws, natural forest stands, treed bogs, and wetlands. 
Negative distance values refer to distances from the known tailings edge, but from 
samples located directly on tailings. 
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Figure 12. Average wind speeds (km/h), temperatures (°C), and total precipitation (mm) 
during each sampling period for the passive dust samplers at Montague. Data are from 
the Halifax-Shearwater weather station. 
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Figure 13. Total seasonal dust deposition rates (mg/m2/day) measured on the passive 
dust sampler GFFs collected from sites surrounding the Montague gold mine tailings and 
reference areas from June 2019 to October 2020. 
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Figure 14. Seasonal total mercury flux rates (µg/m2/year) measured on the passive dust 
sampler GFFs collected from sites surrounding the Montague gold mine tailings and 
reference areas from June 2019 to October 2020. 
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Figure 15. Total mercury concentrations (µg/kg) in Usnea and Platismatia against the 
total mercury concentrations (µg/kg) in the passive dust sampler GFFs collected from the 
same locations and sampling periods. Data points include sites both at the Montague gold 
mine tailings site and the reference sites. 
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Figure 16. Conceptual diagram of mercury cycling and species transformations at historic gold mine tailings sites in Nova Scotia. 
Created in BioRender.com. 
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7.0 Chapter 2 Tables 
 
Table 1. Site names, codes, and coordinates of each passive air sampler and rain catcher. 
Sampling 
Device 

Site Name Site Code Latitude, Longitude 

Air Sampler Loon Lake LL 44.71157, -63.51715 
Air Sampler Old Stamp Mill - 1 OSM-1 44.71312, -63.51725  
Air Sampler Old Stamp Mill - 2 OSM-2 44.71315, -63.51766  
Air Sampler Montague - 1 MO-1 44.71462, -63.52308  
Air Sampler Montague - 2 MO-2 44.71483, -63.52258  
Air Sampler Barry's Run BR 44.71623, -63.54425 
Air Sampler Albro Lake Reference 1 ABL 44.68827, -63.57322 

Air Sampler Saint Mary' University 
Reference 2 SMU 44.63224, -63.58006 

Rain Catcher Loon Lake LL 44.71157, -63.51715  
Rain Catcher Montague - 1 MO-1 44.71469, -63.52297  
Rain Catcher Barry's Run BR 44.71623, -63.54425 

Rain Catcher Saint Mary' University 
Reference 2 SMU 44.63224, -63.58006 

 
 
Table 2. Dates of sample collection and replacement to 
passive air samplers and rain catchers. 
 

Sampling Round 
Dates of Sample Collection and 
Replacement 

Installation June 7th, July 9th & 24th, 2019 
Round 1 September 12th, 2019 
Round 2 December 16th & 17th, 2019 
Round 3 March 16th & 17th, 2020 
Round 4 July 29th & 31st, 2020 
Round 5 October 22nd & 26th, 2020 
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Table 3. Species and counts of Usnea and 
Platismatia collected in the sampling 
grids at the Montague gold mine tailings 
site. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Species Total Count 
Usnea filipendula 54 
Usnea subfloridana 28 
Usnea scabrata 10 
Usnea silesciaca 8 
Usnea subscabrosa 4 
Usnea fulvoreagens 2 
Usnea merrillii 2 
Usnea trichodea 2 
Usnea fragilescens 1 
Usnea strigosa 1 
Grand Total 112 
Platismatia glauca 72 
Platismatia tuckermanii 41 
Grand Total 113 
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Table 4. Mean, median, and range of total mercury concentrations (µg/kg) measured 
in Usnea and Platismatia at historical gold mine tailing sites and reference sites in 
Nova Scotia. Data are summarized based on site and/or sampling grid. 

 
 
 
 
 
 
 
 
 
 

Lichen 
Sampling 
Location 

n 
Mean ± SD 

(µg/kg) 
Median 
(µg/kg) 

Range 
(µg/kg) 

Usnea 

Montague – 
Grid 1 81 151 ± 46.3 147 69.7 – 319 
Montague – 
Grid 2 12 138 ± 18.7 136 100 – 164 
Montague – 
Grid 3 10 155 ±  38.0 164 94.7 – 211 
Montague – 
Grid 4 9 140 ± 42.2 152 78.1 – 206 
Barry’s Run 1 158* -- -- 
Lake Catcha 1 257* -- -- 
Oldham 1 231* -- -- 
Albro Lake 
Reference 1 146* -- -- 

SMU 
Reference 1 115* -- -- 

Platismatia 

Montague – 
Grid 1 81 112 ± 26.7 110 51.9 – 194 
Montague – 
Grid 2 12 109 ± 19.2 105 87.4 – 143 
Montague – 
Grid 3 10 119 ± 34.8 125 49.9 – 159 
Montague – 
Grid 4 10 111 ± 28.4 110 63.2 – 160 
Barry’s Run 1 89.5* -- -- 
Lake Catcha 1 235* -- -- 
Oldham 1 271* -- -- 
Albro Lake 
Reference 1 70.1* -- -- 

SMU 
Reference 1 71.0* -- -- 

*Single collection.  
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Table 5. Mean, median, and range of total mercury concentrations (µg/kg) measured 
in Usnea and Platismatia at the Montague gold mine tailings site. Data are 
summarized into categories based on distance to the nearest tailings edge. 

Lichen 

Distance 
from Nearest 
Tailings Edge 

(m) 

n 
Mean ± SD 

(µg/kg) 
Median 
(µg/kg) 

Range 
(µg/kg) 

Usnea 

On Tailings 18 187 ± 50.4 179 117 – 319 
0-100 30 153 ±  45.4 143 94.7 – 255 
100-200 28 134 ± 32.9 137 69.7 – 209 
200-300 12 134 ± 33.2 127 91.1 – 211 
>300 24 140 ± 32.1 141 78.1 – 206 

Platismatia 

On Tailings 16 129 ± 38.4 121 51.9 – 194 
0-100 28 110 ± 26.7 115 49.9 – 159 
100-200 29 108 ± 22.4 105 73.5 – 152 
200-300 14 113 ± 21.9 111 74.2 – 151 
>300 26 108 ± 22.5 105 63.2 – 160 

 
 
Table 6. Total mercury concentrations (µg/L) measured in seasonal rainwater 
samples collected from sites at the Montague Gold District and a reference site in 
Nova Scotia. Note that a rainwater sample from MO-1 (Fall 2019) was the only 
sample with DHg above MDL (0.078 µg/L). 

Site n # of non-
detects 

Sampling Season 
THg 
concentration 
(µg/L) 

Loon Lake 
(LL) 5 3 Sept-Dec 2019 (Fall) 0.232 

Mar-July 2020 (Spring/Summer) 0.143 

Montague 
(MO-1) 6 2 

June-July 2019 (Summer) 0.273 
July-Sept 2019 (Summer) 0.145 
Sept-Dec 2019 (Fall) 0.209 
July-Oct 2020 (Summer/Fall) 0.223 

Barry's Run 
(BR) 4 3 June-Sept 2019 (Summer) 0.162 

SMU 
Reference 
(SMU) 

5 4 June-Sept 2019 (Summer) 0.030 
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Location Lichen Sampling 
Locality 

[Hg] 
Range 

[Hg] Mean 
± SD/SE Reference 

Greenland Flavocetraria nivalis1 Former Pb-Zn 
mine 30-70 -- Hansson et al., 2019 

Antarctica Usnea sphacelata1  Active volcanic 
region 140-240 -- Mão de Ferro et al., 

2014 

Louisiana, 
USA 

Ramalina stenospora, 
Parmotrema 
praesorediosum1  

Industrial region <50 - 830 340 ± 190 Mitchell et al., 2000 

British 
Columbia, 
CA 

Bryoria fuscescens, 
Alectoria sarmentosa1 

Former cinnabar 
mine 240-600 -- Plouffe et al., 2004 

Boreal 
Quebec, CA 

Bryoria trichodes, 
Evernia mesomorpha, 
Usnea subfloridana1 

Flooded reservoirs 400-800 -- Zhang et al., 1995 

Chile Usnea sp.1  Remote region 
(Unpolluted) -- 120 ± 80 Monaci et al., 2012 

Nunavut, CA 

Thamnolia 
vermicularis, 
Flavocetraria 
cucullata,  
Vulpiceda tilesii1 

Coastal and inland 
sites 36-361 66.8 

(median) St. Pierre et al., 2015 

New 
Brunswick, 
CA 

Usnea spp.1 Island, coastal and 
inland sites 24-635 244 ± 116  Nasr and Arp, 2015 

Nova Scotia, 
CA Usnea sp.1  Kejimkujik 

National Park  66-660 -- Rencz et al., 2003 

Nova Scotia, 
CA 

Usnea trichodea, 
Usnea longissima, 
Usnea strigosa1 

Province-wide 62-518 160 ± 75 Klapstein et al., 
2020 

Nova Scotia, 
CA Usnea spp.1 Abandoned gold 

mine tailings site 69-320 149 ± 43 Current study 

Finland Hypogymnia 
physodes2 Chlor-alkali plant 130-870 -- Lodenius & 

Laaksovirta, 1979 

Italy Parmelia caperata2 Abandoned 
mining region 70-580 170 ± 80 Bargagli et al., 2002 

France Xanthoria parietina2 Chlor-alkali plant 70-2510 -- Grangeon et al., 
2012 

Finland Hypogymnia 
physodes2 

Unpolluted region 
(Background) 70-480 223 ± 76 Lodenius, 1981 

Arizona, 
USA Xanthoparmelia spp.2 

Grand Canyon 
region 
(Unpolluted) 

98.9-408 209 ± 69.7 Sweat et al., 2010 

New 
Brunswick, 
CA 

Hypogymnia 
physodes2 

Electricity 
generating plant 180-280 -- Sensen & 

Richardson, 2002 

New 
Brunswick, 
CA 

Parmelia spp.2 Island, coastal and 
inland sites 10-337 124 ± 74 Nasr and Arp, 2015 

Nova Scotia, 
CA Platismatia spp.2 Abandoned gold 

mine tailings site 49-195 113 ± 27 Current study 

Table 7. Ranges and mean concentrations of mercury (µg/kg) measured in various foliose and fruticose 
lichens from polluted, unpolluted, and remote areas globally.  
 

1Fruticose lichen, 2Foliose lichen. 
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Chapter 3: Distinguishing between particulate and absorbed fractions 
of mercury in lichen biomonitors at a legacy gold mine tailings site in 

Nova Scotia 
 
Abstract 

Lichens are widely used as biomonitors of dust and air quality, with elemental 

concentrations in thalli reflecting both surface-deposited and absorbed elements. The 

objective of this study was to distinguish between these two fractions in lichens to assess 

the levels of dust originating from a contaminated site. Usnea and Platismatia spp. were 

collected from the historical Montague Gold District near Dartmouth, Nova Scotia. As a 

result of historic gold mining operations in this area, mercury (Hg)-contaminated tailings 

were deposited directly into the environment and later abandoned, being a potential 

source of contaminated dust today. Lichen thalli from each site were divided into two 

subsets, with one half being washed with water and the other remaining unwashed, and 

then analyzed for total Hg concentrations. Comparable Hg concentrations between the 

unwashed and washed lichens indicated that most of the Hg was absorbed into lichen 

thalli. On average, only 13% and 16% of the total Hg loads were washed off the surface 

of Usnea and Platismatia, respectively. It was suggested that Hg volatilization is a major 

process in making Hg available in the atmosphere at these tailings sites today. However, 

the tailings are likely still a minor source of particulate-bound Hg as more Hg was 

washed off of lichens that were collected closer to the tailings. Some washed lichen 

samples proved to have higher Hg concentrations than the paired unwashed samples, 

reflecting effects from within site elemental variation and lab processing procedures. It 

was concluded that this washing method can be used to help identify sources and 

understand the movement of contaminants in the lichens and throughout the environment. 
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1.0 Introduction 
 

A lichen is a symbiotic association consisting of a fungus and algae or 

cyanobacteria (Lodenius, 2013; Bargagli, 2016). With the absence of root systems as well 

as a waxy cuticle that would otherwise control the uptake of elements, essential elements, 

along with contaminants, are accumulated by lichens via wet and dry atmospheric 

deposition (Shukla et al., 2014; Bargagli, 2016). Lichens are therefore sensitive to 

atmospheric pollution and have been successfully used as passive biomonitors in 

numerous studies, helping to determine the spatial distribution of atmospheric 

contaminants, the occurrence of contaminant hotspots, and pollutant emission sources 

(Bargagli et al., 2002; Sensen & Richardson, 2002; Søndergaard et al., 2010). 

Lichens accumulate contaminants in various ways. Metals may be deposited or 

trapped on the surface of lichen thalli in soluble or particulate form (Figure 1) (Tyler, 

1989). Metal-containing particulates may then be solubilized by precipitation, acid rain, 

or the organic acids produced by lichens in walls of the fungal cells (Nash, 1989; Tyler, 

1989; Chiarenzelli et al., 1997). These soluble metal ions can bind to extracellular 

hydroxylic acid exchange sites, displacing ions with a low binding affinity (e.g. 

hydrogen) (Tyler, 1989; Bargagli, 2016; Vannini et al., 2017). Slowly over time, these 

extracellularly bound ions can then be incorporated into the cells of the lichen thallus, 

with the potential to cause toxic effects at the physiological level (Hauck et al., 2002). 

Distinguishing and quantifying these surface-deposited versus absorbed elemental 

fractions in lichens can help to characterize metal pollution. In addition, this approach 

can provide insights into sources, how elements move through an environment (e.g. 

during a rain event) along with their potential bioavailability, and the amount and timing 
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of metal pollution events (i.e. recent versus long-term) (Johnson & Gunnar, 2018, 

unpublished). Distinguishing between soluble or particulate-bound and absorbed metal 

contaminants can be accomplished by washing lichen thalli with distilled or deionized 

water. This has been shown to effectively remove surface-deposited and soluble forms of 

elements (Gombert et al., 2003; Adamo et al., 2008; Loppi et al., 2014). Washing is also 

used after lichens are collected from a relatively clean site and before being transplanted 

to a polluted site (Giordano et al., 2013; Kularatne & de Freitas, 2013; Demková et al., 

2017).  

Many biomonitoring studies have just analyzed unwashed lichen samples to 

assess the overall contaminants on the lichens including dust, surface-bound, and 

absorbed fractions (Bargagli et al., 2002; Frati et al., 2007; Hansson et al., 2019). Other 

studies have analyzed just washed lichen samples that remove soil and dust particles in 

order to focus on only bound and absorbed elements (Koch et al., 2000; Plouffe et al., 

2004; Doğrul Demiray et al., 2012). A few studies have separated the collected lichen 

samples into washed and unwashed subsets so to better understand both the particulate 

and absorbed components of accumulated elements.  

Several early studies found no significant differences between washed and 

unwashed lichen samples for elements such as nitrogen (N), iron (Fe), and zinc (Zn) 

(Prussia & Killingbeck, 1991), as well as arsenic (As) and vanadium (V) (Saiki et al., 

1997). These authors concluded that these elements were not easily leached from the 

lichens and were collected from sites where dust was not a major component. Other 

studies have shown that after washing lichens, element concentrations in the lichens 

decrease substantially, particularly for potassium (K) and aluminum (Al), as found in the 
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lichen Parmotrema tinctorum collected from a national park in Thailand. A decrease of 

81% in Al levels was found after washing (Boonpeng et al., 2021). After comparing the 

washed and unwashed samples of lichens that were exposed to atmospheric lead (Pb) 

fallout in the northeastern United States, Lawrey and Hale (1981) concluded that the 

lichens not only trapped Pb in particulate forms, but also actively broke down these 

particles, enhancing intracellular absorption. Furthermore, Branquinho et al. (1999) found 

that a copper (Cu) mine in Portugal was a major source of dust after measuring higher 

concentrations of Cu in the particulate fraction in lichens sampled nearest to the mine in 

comparison with the extracellular and intracellular fractions. Overall, it is evident that 

there is a value in trying to distinguish between the particulate versus absorbed fractions 

of elements in lichens by comparing washed and unwashed samples. 

In Nova Scotia, Canada, historic gold mining operations from the 1860s to the 

mid-1940s resulted in the operation and abandonment of over 360 mines located with 64 

formal gold mining districts across the province (Malcolm, 1929). With 1.2 million troy 

ounces of gold produced over this time also came three million tonnes of mining waste 

(tailings) deposited at and surrounding these mine sites in both terrestrial and aquatic 

ecosystems (Parsons et al., 2012). The tailings are contaminated with mercury (Hg) and 

As due to losses from the Hg amalgamation processing that was used to extract gold, and 

the presence of arsenopyrite (AsFeS) in milled gold-bearing ore, respectively (Trip & 

Skilton, 1985; Bates, 1987; Parsons et al., 2012). Elemental Hg (Hg0) was used for Hg 

amalgamation at these Nova Scotian gold mines, which, once lost to the mill tailings or 

atmosphere, can be oxidized to form divalent Hg (Hg2+), allowing for transformations 
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into organic forms in aquatic systems, such as methylmercury (MeHg) (Kim, 2005; 

Parsons & Percival, 2005). 

Today, the historical gold mine tailings deposits in Nova Scotia remain untreated, 

many of which are exposed at the land surface. As a result, these deposits are potential 

sources of Hg to the atmosphere either in particulate-bound forms or from the 

volatilization of gaseous Hg0. Assessing dust and the movement of Hg throughout these 

mine tailing sites has become increasingly more important with changing climatic 

conditions that are enhancing dust emissions (Csavina et al., 2012; Bush & Lemmen, 

2019). In addition, increasing land use activity at and surrounding many of these sites 

(e.g. residential developments, recreational activities) may result in more people coming 

into closer and prolonged contact with these mine wastes. Thus, this study sought to 

assess the atmospheric contamination originating from these legacy mine sites by using in 

situ epiphytic lichens as dust and air quality biomonitors. The fruticose Usnea and the 

foliose Platismatia were sampled at the large Montague gold mine tailings site in Nova 

Scotia, Canada. The objectives of this study were (1) to determine an estimate of 

intracellular versus extracellular concentrations of total Hg (THg) in the lichen 

biomonitors using washed and unwashed samples as well as the wash-water collected 

from the washing procedure, (2) to assess the different levels of dust (containing Hg) on 

lichens collected from various distances to the tailings, and (3) to identify adequate lichen 

sampling, processing, and washing procedures for improved methodologies in future 

lichen biomonitoring work. 
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2.0 Methods 
 
2.1 Study Site Description 

This study was conducted at the Montague Gold District (44.71541, -63.52332) 

near Dartmouth, Nova Scotia (Figure 2) (Malcolm, 1929; Bates, 1987). Montague was 

one of Nova Scotia’s most productive former gold mines, producing 65,196.9 troy ounces 

of gold between 1862 and 1940 (Malcolm, 1929; Trip & Skilton, 1985; Bates, 1987). To 

extract this amount of gold, approximately 134,278 tonnes of ore were crushed over this 

time at Montague. The resulting Hg- and As-contaminated tailings were deposited into 

surrounding terrestrial and aquatic environments, primarily into the Mitchell Brook 

stream. This stream starts upstream at Loon Lake, extends through the Montague tailings 

site, and empties downstream into Lake Charles, adjoining multiple wetlands along its 

course (Figure 2A). Parts of the tailings are entirely bare, exposing the dry and poorly 

consolidated material to wind action. Other areas across the tailings deposits are only 

sparsely vegetated with small shrubs and grasses, with some tailings overlapping wetland 

communities and submerged in water. 

 
2.2 Sample Collection 

A total of four sampling grids were delineated over the study area using 

geographic information systems (GIS), ESRIs ArcGIS (ArcMap 10.7) (Figure 2A). The 

largest grid, Grid 1, spanned 800,000 m2 (1000 x 800 m) and covered the main tailings 

field at Montague. The remaining three grids were 60,000 m2 (300 x 200 m) in area and 

placed in the direction of the prevailing winds (southerly; Grid 2), near a smaller gold 

mine tailings deposit (Grid 3), and near a previously used reference site located upstream 

of the main tailings deposit (Grid 4). There were a total of 138 lichen sampling locations 
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covering the study area, each of which being at the grid intersection points that are 

located 100 m apart. 

The latitude and longitude of each grid intersection point was extracted remotely 

in ArcMap 10.7 and a handheld global positioning system (GPS) was used to locate each 

collection site in the field. During July and August of 2019, both Usnea and Platismatia 

spp. were collected at each site from any sides of living or dead, standing or fallen spruce 

(Picea) tree trunks or branches and at heights of approximately 1-2 m above the ground. 

When possible, lichens were sampled from only one tree at the predetermined sampling 

site, however, a 25-m sampling radius was extended around each geographically 

referenced point to allow for sample collection when lichens were sparse, trees were 

absent, or sites were inaccessible. In such cases, sample collection was only extended 

until sufficient biomass (~3 g) of lichen were collected. The sampling site was omitted if 

the entire 25-m sampling radius surrounding the grid point was inaccessible or such area 

hosted no trees or lichens. 

Lichens were collected from trees wearing powder-free nitrile gloves, with all 

collected thalli from the same genera at a site grouped into one composite sample and 

placed in a labelled, re-sealable food-grade plastic bag. The GPS coordinates were 

recorded where the lichen samples were collected. The lichen samples were then 

temporarily stored in a cooler for transport from Montague to the laboratory at Saint 

Mary’s University in Halifax, Nova Scotia. In addition, two reference sites were selected 

for this study, which included Saint Mary’s University located in Halifax (44.62854, -

63.58156) and Albro Lake in Dartmouth, Nova Scotia (44.69082, -63.57547). One lichen 
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sample of each lichen genera was collected from these sites following this sampling 

procedure in October of 2020. 

 
2.3 Sample Preparation 

Lichens were stored in a freezer in the laboratory until sample preparation. From 

each site, a small subsample of lichen was separated from each composite sample and 

used for identification to the species level. This was conducted with a dissecting 

microscope along with the use of dichotomous keys (Hinds & Hinds, 2007; Brodo, 2016) 

and chemical tests, such as spot tests and ultra-violet light. For the chemical spot tests, 

10% potassium hydroxide, household bleach, and para-phenylenediamine were used. 

Following identification, remaining sample preparation was conducted in a clean 

room laboratory at Saint Mary’s University. For each site, the lichen sample was 

separated by hand from as much extraneous material (e.g. bark, twigs, leaves, 

invertebrates, etc.) as possible. External (on-thallus) and internal (in-thallus) Hg loads of 

lichen thalli were then distinguished by splitting each sample into two subsamples of 

approximate equal mass and leaving one half unwashed and washing the other half with 

reverse osmosis (RO) water. 

The lichen subsample reserved for the washing procedure was transferred to an 

acid-washed 1 L beaker. The beaker was filled with approximately 200 mL of RO water, 

where the lichen was then submerged and stirred by hand. Subsamples of the first wash-

water rinse from the two most common species of each lichen genus (Usnea filipendula, 

n=54; Platismatia glauca, n=72) were collected in order to quantify the amounts of 

water-soluble, non-bound Hg on the surface of lichen thalli. To determine THg 

concentrations removed from thalli surfaces, 15 mL of the first wash-water was sampled 
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by syringe and added to a labelled 15 mL Falcon tube, along with 1% (150 μL) nitric acid 

(trace level grade) for preservation. To determine dissolved Hg (DHg) concentrations 

washed off from thalli surfaces, 15 mL of the first wash-water was sampled by syringe, 

where a 0.45 μm syringe filter was then attached and the water dispersed through the 

filter and into a labelled 15 mL Falcon tube, along with 1% (150 μL) nitric acid (trace 

level grade) for preservation. Water samples were stored upright and in the dark at room 

temperature until analyses. 

After the first wash-water samples were collected, the remaining wash-water in 

the beaker was decanted, and the same washing procedure was repeated for two more 

washes. The water from the second and third wash were discarded and not kept for 

analyses. Once washed, each washed lichen sample was placed in a labelled plastic 

weighing tray and covered loosely with Parafilm to air dry at room temperature for 48 

hours. A diagram outlining the workflow and sample numbers for the lichen washing 

procedures and wash-water collections is shown in Figure 3. 

Once air-dried, each washed and unwashed lichen sample was homogenized to a 

powder in jars using a Retsch mixer mill MM 400 at Saint Mary’s University. The jars 

were thoroughly cleaned in a Citranox and RO water solution between milling of each 

individual sample. Once individually homogenized, each lichen sample was transferred to 

a labelled 50 mL Falcon tube and stored in a dark and dry environment (i.e. storage bins) 

until analysis. Powder-free nitrile gloves were worn while separating, washing, and 

milling of each lichen sample, being changed between samples. 
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2.4 Mercury Analyses 

The washed and unwashed lichen samples were analyzed for THg concentrations, 

and the unfiltered and filtered wash-water samples for THg and DHg concentrations, 

respectively, in acid-washed quartz boats using a Milestone Direct Mercury Analyzer 

(DMA) 80.3 at Saint Mary’s University. The weight or volume of each sample was 

measured in the boats using a microbalance and then recorded into the DMA software. 

During each analytical run, Hg standards of varying concentrations and certified 

reference materials (CRMs) were processed to validate proper calibration of the 

instrument. The CRMs used with the lichen samples were TORT-3, DORM-4, and BCR-

482 Lichen (Willie et al., 2012, 2013; European Commission, 2021). An in-house 

standard reference material (SRM), a homogenized Usnea sample from a previous field 

season, was also prepared for comparison to the lichen samples and to ensure consistency 

within and between runs. For the wash-water samples, along with the Hg standards, 

quality control included a spiked and unspiked matrix and a spiked and unspiked RO 

water sample. The spiked matrix included lichen wash-water from two unused lichen 

samples collected from Montague, which were combined to increase the volume for use 

in all runs as well as to ensure detection of Hg above Method Detection Limits (MDLs). 

Blank boats were run at the start and end of each analytical run, as well as before and 

after each set of quality control samples. Within runs, blank boats and duplicate samples 

were run every 10 and 20 samples, respectively. 

 
2.5 Data Analyses 

The Hg datasets for the lichens were first classified to aid in identifying any 

spatial patterns in subsequent analyses. In ArcMap 10.7, buffer polygons of various 
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distances (e.g. 100 m, 200 m, 300 m) were created around the tailings layer at Montague 

using the buffer tool (Figure 4). Lichen sampling locations within each buffer were then 

classified into that distance category, denoting their approximate distance to the nearest 

tailings edge (e.g. on tailings, 0-100 m, 100-200 m, 200-300 m, and >300 m). In addition, 

forest polygon layers from the Nova Scotia Forest Inventory were used to classify the 

lichen sampling sites into their land type, which included lichens growing on trees near 

roads, urban areas, wind throws, natural forest stands, treed bogs, and wetlands (Province 

of Nova Scotia, 2017). 

Descriptive statistics for the Hg concentrations within the washed and unwashed 

groups for each lichen genera were calculated. The difference between the THg 

concentrations in each paired washed and unwashed lichen sample was also calculated, 

which represented the extracellular (surface-deposited) fraction of Hg on thalli. In 

contrast, the THg concentrations measured in the washed samples represented the 

intracellular (absorbed) Hg fraction. 

After determining non-normal distributions of model residuals and/or 

heterogeneity of variance resulting from applying parametric statistical models, non-

parametric analyses were performed on the untransformed washed and unwashed lichen 

datasets. The paired washed and unwashed lichen samples were plotted on a scatterplot 

with Spearman-rank correlation analysis and linear regression modelling performed to 

examine the relationships between Hg concentrations. The Mann-Whitney U test was 

used to detect significant differences between the mean Hg concentrations in the washed 

and unwashed lichen groupings. All graphs were generated, and statistical analyses 

performed, in RStudio. 
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Concentrations of THg and DHg were measured in only a subsample of the 

collected wash-water samples from the most common Usnea (n=16/108) and Platismatia 

species (n=16/144) due to time constraints and the longer analytical processing times for 

water samples. Of these 16 wash-water samples for each lichen, eight were unfiltered and 

analyzed for THg, with the remaining eight being filtered samples and analyzed for DHg 

concentrations (Figure 3). Thus, for the Hg wash-water datasets, statistical analyses were 

not performed due to small sample sizes as well as the large number of samples 

measuring below MDLs (0.001ng) (Usnea: n=12/16; Platismatia: n=8/16). 

 

3.0 Results 
 
3.1 Mercury Concentrations in Washed vs. Unwashed Lichen Samples 

A total of 112 Usnea and 113 Platismatia samples were collected across the study 

area, constituting ten and two different species, respectively. The actual lichen sampling 

locations along the sampling grids are shown in Figure 5. During sample collection in the 

field, some sites required collection of multiple lichen thalli from various parts of a single 

tree or from multiple nearby trees, to ensure sufficient biomass for analyses. In the field, 

all lichen thalli from one site were pooled into one composite sample. During sample 

processing in the lab, the various thalli samples per site were separated into two 

subsamples for unwashed and washed procedures. However, the various lichen thalli 

were not fully homogenized before separating into these two groups. There is potential 

for variation in elemental concentrations between thalli collected from a single tree or 

nearby trees due to geographic separation (Sensen and Richardson, 2002; Adams and 

Gottardo, 2012). Therefore, for data analysis and interpretation purposes, the washed 
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versus unwashed lichen data presented below are only including samples collected from a 

single tree (Usnea: n=62, Platismatia: n=69) in order to reduce concentration variability 

due to spatial variation (i.e. samples collected from multiple trees). 

The unwashed lichen samples represent total Hg loads (absorbed and surface 

deposits), whereas the washed samples generally represent only the Hg absorbed into, or 

bound onto, the lichen thalli. When all lichens collected from the sampling grids at 

Montague were collectively grouped together by lichen genera, there were no significant 

differences between the washed and unwashed Hg concentrations for either lichen 

(Usnea: Z = 1993, p-value = 0.72; Platismatia: Z = 2578, p-value = 0.60). Usnea 

collected from only one tree across the study area had mean THg concentrations of 152 ± 

46.8 µg/kg and 152 ± 54.9 µg/kg in unwashed and washed samples, respectively. 

Platismatia collected from one tree at Montague had lower THg concentrations on 

average, with a mean concentration of 110 ± 29.1 µg/kg for unwashed and 111 ± 45.1 

µg/kg for washed samples. When the data were grouped based on the distance to the 

nearest tailings edge, there were no significant differences between average washed and 

unwashed THg concentrations within any of the five distance categories for Usnea or 

Platismatia (p-values > 0.05). 

Where sampled at the same site, the THg concentrations in the paired unwashed 

and washed lichen samples showed very similar concentrations, as indicated by the 

slopes of the linear relationships (Usnea: 1.03; Platismatia: 0.77; Figure 6). In Figure 6, 

samples that fall below the reference line with a 1:1 slope (black line) indicate that the 

unwashed subsample had higher THg concentrations than the corresponding washed 

subsample (denoted below by positive differences). Thus, samples that showed up at 
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greater distances from this line were those in which washing displaced greater 

concentrations of Hg from thalli. Data points above this reference line indicate samples 

where the washed subsample measured higher in THg than the paired unwashed 

subsample (denoted below by negative differences). Five unused wash-water samples 

were analyzed to assess Hg levels in them prior to being used in the washing procedure, 

all measuring below MDLs for Hg and indicating that Hg was not introduced to the 

lichens during this washing step. 

Most of the Usnea samples with the highest THg concentrations that fall below 

the reference line with a 1:1 slope (black line) in Figure 6A were from sites located on 

the tailings. Points furthest from this line, and thus with the greatest positive difference in 

Hg concentration between the paired unwashed and washed samples, were from sites 

located in wetland or treed bog habitats on the boundaries of the main tailings deposit 

(+70.4 µg/kg, +48.9 µg/kg) and at the Old Stamp Mill (OSM) tailings deposit in the 

southeast corner of Grid 1 (+48.6 µg/kg) (Figure 2). These samples had the highest levels 

of Hg on the lichen surface, ranging from 24-29% of the total Hg load. The majority of 

other samples with positive differences had less than 13% of the total Hg being washed 

off the surface, indicating that most was absorbed into lichen thalli. Sites with the 

smallest positive differences in Hg concentrations between the unwashed and washed 

samples were located 100-200 m (+0.90 µg/kg, +2.50 µg/kg) and 200-300 m (+2.70 

µg/kg) from the tailings edge and the amount washed off was less than 3% of the total Hg 

load. However, for many sites (n=35/62), higher concentrations of THg were observed in 

the washed subsample. These greatest negative differences were observed from samples 

collected on tailings near OSM (-76.2 µg/kg), and at sites located within 100 m of the 
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nearest tailings edge from natural forest stands and wind throws (-46.8 µg/kg, -42.8 

µg/kg).  

For Platismatia, the slope of the regression line was less and indicates that there 

was slightly more Hg being displaced by the washing procedure relative to Usnea (Figure 

6B). As in Usnea, the unwashed Platismatia samples with highest Hg content were below 

the reference line with a 1:1 slope (black line) in Figure 6B and were from sites located 

on the tailings. The sites furthest from this line showing the greatest positive differences 

in Hg concentrations between the paired unwashed and washed samples were located at a 

treed bog near the tailings at OSM (+71.3 µg/kg), at the main deposit in a natural forest 

stand (+66.8 µg/kg), followed by at a wind throw site >300 m from the nearest tailings 

edge (+33.3 µg/kg). These large differences between corresponding samples represented 

26-39% of the total Hg load on the surface. In the majority of other samples, less than 

16% of the total Hg was washed off the surface, indicating that most Hg was absorbed 

into lichen thalli. The smallest positive differences between the THg in unwashed and 

washed Platismatia samples were from sites in natural forest stands or wind throws and 

located within 0-100 m (+0.60 µg/kg) and >300m from the tailings edge (+0.51 µg/kg, 

+0.39 µg/kg), which indicated that less than 1% of the total Hg load was removable by 

washing. As in Usnea, some washed Platismatia subsamples had higher THg levels than 

the unwashed subsample (n=28/69). This is indicated by the data points being above the 

reference line with a 1:1 slope (black line) in Figure 6B. Of these Platismatia samples, 

the greatest negative differences were reported from a wetland site located on the tailings 

(-105 µg/kg), as well as in natural forest stands located within 0-100 m (-24.7 µg/kg) and 

100-200 m of the tailings edge (-21.8 µg/kg). 
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3.2 Mercury Concentrations in Lichen Wash-water Samples 

Concentrations of THg and DHg were measured in a subsample of the collected 

wash-water samples from the most common Usnea (n=16/108) and Platismatia species 

(n=16/144). For DHg, all Usnea wash-water samples from both Grids 1 and 2 measured 

below MDLs (n=8/8). Similarly, for Platismatia, only wash-water samples collected from 

lichens in Grid 1 had DHg concentrations (n=2/5), measuring 0.005 and 0.022 µg/L. For 

THg, at sampling sites located on tailings or within 100m of the nearest tailings edge 

(Grid 1), higher THg concentration ranges were measured in wash-water in Platismatia 

(0.011-0.330 µg/L) compared to Usnea (0.004-0.009 µg/L) (Table 1). For sites located 

>300 m from the nearest tailings edge (Grid 2), most THg concentrations in wash-water 

samples measured below MDLs, but the highest THg concentration in both Usnea and 

Platismatia wash-water was found to be 0.005 µg/L (Table 1). 

 

4.0 Discussion 

The similar THg concentrations between unwashed and washed lichen samples 

indicated that most of the THg measured was not easily leached and was absorbed or 

extracellularly bound to lichen thalli. This was further supported by the fact that many of 

the wash-water samples had levels of Hg below MDLs. Similar results were found in a 

large-scale lichen biomonitoring study investigating atmospheric Hg pollution in various 

provinces of South Africa (Panichev et al., 2019). In the present study, removable dust 

appeared to be contributing some Hg to the lichens, particularly closer to the tailings, 

however the contribution to the THg load was generally low overall (<16%), and thus not 

being a major influence. This also suggests that the lichens are actively taking in Hg 
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through the absorption of gases or ions, and to a lesser extent, from the breakdown of 

particles. 

This finding is in agreement with the fact that, globally, the predominant form of 

Hg in the atmosphere is Hg0 (>95%), and is the main form deposited on lichens as 

opposed to Hg compounds or particulate-bound Hg, both of which account for <5% of 

the total airborne Hg (Ferrara et al., 1988; Vannini et al., 2014; Bargagli, 2016; Huang et 

al., 2020). Mercury in this vapour form can absorb more and rapidly into lichen thalli in 

comparison to Hg that is bound to particles (Ferrara et al., 1988). Based on experiments 

with vascular plants (Gaggi et al., 1991) and field studies with lichens (Krishna et al., 

2003), it has been hypothesized that lichens can convert (oxidize) this deposited Hg0 into 

the water-soluble Hg2+, with the help of the organic acids that lichens produce (Bargagli, 

2016; Carvalho, 2017, unpublished). Additionally, acid precipitation can contribute to the 

oxidation of Hg0 within lichens (Carvalho, 2017, unpublished). Zvěřina et al. (2014) 

measured low levels of Hg0 in lichens relative to the THg load, supporting evidence for 

an oxidation process transforming Hg0 to Hg2+. Elemental Hg can also be converted to 

Hg2+ in the atmosphere and deposited onto lichens from precipitation (Krishna et al., 

2003).  

In the current study, the results suggest that the lichens may be oxidizing 

intercepted Hg0 to the ionic form of Hg2+ of which is not volatile and has a low mobility. 

This is because Hg is a Class B metal, exhibiting strong binding preferences to sulphur 

and nitrogen binding sites that are present in proteins and enzymes in biological 

molecules and typically becoming irreversibly bound (Nieboer and Richardson, 1980; 

Pisani et al., 2011). Overall, this property of Hg in combination with the fact that Hg0 is 
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the most abundant form of Hg in the atmosphere explains why most of the Hg in our 

lichens was found to be absorbed and could not be eluted by the washing process. This 

suggests that Hg volatilization, a process releasing Hg0, is likely contributing largely to 

the atmospheric Hg load at these tailings sites. 

Numerous studies have demonstrated the strong binding affinities of Hg. For 

example, in a laboratory experiment, Vannini et al. (2014) found that lichens exposed to 

Hg0 concentrations showed increasing Hg concentrations over time, however, once the 

Hg0 was removed from the air, Hg in thalli remained. Similar results were found in the 

moss, Sphagnum girgensonhnii, in which negligible losses of Hg from evaporation or 

leaching were observed four weeks after being exposed to Hg0 (Lodenius et al., 2003). 

These works concluded that in lichens and mosses alike, Hg binds strongly and are not 

easily released back to the atmosphere or removed by precipitation. The results of the 

present study are consistent with these observations. 

As expected, for both Usnea and Platismatia spp., samples collected closer to the 

tailings generally had the highest percentages of Hg as dust on their surfaces, and 

subsequently, higher concentrations of Hg in the wash-water samples. This result was 

expected because larger contributions of contaminants in particulate forms would 

originate from closer to this pollution source, which may then deposit on thalli surfaces 

(Otnyukova, 2007). These deposits on lichen thalli can be more easily washed out than 

those located intracellularly (Boonpeng et al., 2021). Thus, in the current study, we 

suggest that the tailings at Montague are the source of this surface-deposited Hg to lichen 

thalli, most likely originating from windblown tailings and with contributions 

diminishing with greater distances from the tailings. 
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For lichen samples where the unwashed measured higher Hg concentrations than 

the washed, slightly more THg was displaced from the surface of Platismatia relative to 

Usnea, which may be explained by the different properties of foliose and fruticose 

lichens. Usnea is a fruticose lichen, which has a three-dimensional, open branching 

structure, providing a high surface area per unit biomass. Although this open structure 

allows more air to flow through and to capture airborne particles (St. Clair et al., 2002a, 

b), this wider surface area allows for more gaseous exchange of Hg0 (Monaci et al., 

2012). In turn, more Hg can be absorbed or tightly bound to these fruticose thalli. 

Also, Bosserman and Hagner (1981) found that the fruticose Usnea, being 

capable of rapid water uptake, was more influenced by wet fall when found to contain 

higher concentrations of elements from precipitation as compared to the foliose Parmelia. 

The water-soluble Hg2+ is the predominant form of Hg in precipitation (O’Driscoll et al., 

2003), so more of this Hg likely binds to Usnea once deposited from precipitation, owing 

to its high affinity for binding sites (Nieboer and Richardson, 1980). Foliose lichens on 

the other hand, like Platismatia, have a more continuous and flatter surface area, with its 

elemental contents suggested to be more influenced by dust fall, such as from the 

accumulation of particles (Bosserman and Hagner, 1981; St. Clair et al., 2002a). 

Therefore, Platismatia is likely capturing more particles containing Hg that would not 

bind as rapidly and strongly to thalli as compared to the higher proportions of Hg being 

incorporated in Usnea thalli by ion exchange. 

It is important to note that although THg concentrations were generally similar 

between washed and unwashed lichen samples, some washed samples did measure higher 

THg than the paired unwashed sample (Figure 6). Similar results were also found for 
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some lichen samples in other biomonitoring studies with similar washing procedures, 

such as for Hg (Panichev et al., 2019) and other elements (Saiki et al., 1997; Gombert et 

al., 2003). In our study, this was likely due to, in part, the sample processing procedures 

where the individual lichen specimens collected from one site were only mixed broadly 

and not fully homogenized into one composite sample before separating into the washed 

and unwashed subsets. 

Lichen samples collected from within a site or even from a single tree can differ 

in elemental contents (Sensen and Richardson, 2002). This is primarily due to varying 

exposure conditions from different aspects on the trunk, which can affect element 

accumulation processes in lichens. For example, some thalli may be more exposed to 

direct rainfall or stemflow running down the trunk which can affect within stand 

elemental levels in lichens (Ayrault et al., 2007; Asplund et al., 2015; Gauslaa et al., 

2020; Loppi et al., 2021). Similarly, different light and moisture gradients exist from the 

forest floor and up to the canopy (Fanning et al., 2007). Some lichen thalli may be 

exposed to more direct light and solar radiation which may result in greater amounts of 

Hg being released to the atmosphere due to photochemical reactions (Saunders, 2017, 

unpublished). In contrast, more shaded lichens on a tree may be saturated for longer 

periods of time, and since uptake of ions occurs when wet, this may result in higher 

element concentrations in these lichens (Hauck, 2011; Adams and Gottardo, 2012). The 

orientation around the tree trunk may also expose certain lichens to greater wind 

velocities which may provide greater particulate loadings (Puckett and Finegan, 1980; 

Loppi et al., 1999). We observed the effect of these varying exposure conditions on the 

Hg concentrations in our lichen samples collected from a single site (Figure 6). This, in 
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combination with not fully homogenizing our composite samples, explains the higher 

THg concentrations in some of the washed lichen samples over the unwashed samples. In 

addition, lichens may accumulate elements by storing higher concentrations in older parts 

(inner zones) of the thallus (Ayrault et al., 2007). When splitting the lichen samples into 

two subsets, some lichen subsamples may have contained more of the inner zones of 

thalli that potentially have higher concentrations of elements (Adams and Gottardo, 

2012). 

These findings highlight the importance of sampling and combining specimens 

into composite samples when conducting lichen biomonitoring studies. It is important to 

minimize or eliminate within site elemental variation to allow for stronger comparisons 

of samples between and within sites. This can be accomplished through ensuring nearly 

identical sampling procedures at each site, which may include sampling from only a 

single tree, collecting from one or all aspects of the tree and within a defined height 

range, sampling of only vertically or horizontally exposed thalli, as well as using lichen 

specimens of similar masses or only analyzing peripheral parts of lichen thalli (Ayrault et 

al., 2007; Adams and Gottardo, 2012; Boonpeng et al., 2021). Sample processing should 

also be carried out at one point in time to prevent differences in analytical procedures 

(Halonen et al., 1993). However, in many areas, lichen abundance may be limited and 

following consistent sampling procedures may be impractical. In such cases, it is 

important to record sample site information (e.g. habitat, aspect sampled from, number of 

trees sampled) and microenvironmental variables (e.g. light exposure, temperature), so 

that these data can be taken into account when analyzing and comparing the elemental 

data within and across sites (Fanning et al., 2007). 
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5.0 Summary and Conclusions 

In summary, after splitting our lichen samples and comparing the THg 

concentrations in the washed and unwashed subsets, most of the Hg measured was found 

to be absorbed in lichen thalli. These findings were supported by the results from the 

wash-water samples. It can be concluded that the Hg was bound strongly to thalli, 

probably in ionic form (Hg2+), with particles only playing a minor role in enriching the 

lichens with Hg. Thus, with only small amounts of Hg being mobile, precipitation events, 

for example, may not remove significant quantities of Hg from the lichens and disperse to 

surrounding environments. However, it should be noted that although precipitation may 

wash particles and soluble species off and out of lichens, it may also be increasing 

concentrations of Hg in lichens either by providing more ions (i.e. Hg2+) from the rain 

itself or by releasing ions from entrapped particles. Yet overall, our results support Hg 

volatilization as an important and major process in making Hg available in the 

atmosphere for uptake into lichens at these tailings sites today, as opposed to inputs from 

dust. 

Despite low levels of Hg on the surfaces of the lichens in general, higher levels of 

Hg were displaced from the washed lichens collected from closer to the tailings deposits 

compared to those further away. This does suggest that the tailings at Montague are still 

providing a minor source of Hg to the lichens in the form of dust particles. 

Platismatia was found to have slightly greater amounts of Hg displaced from 

thalli surfaces, whereas Usnea had more of the THg load absorbed. Future work 

assessing atmospheric Hg pollution using lichen biomonitors may therefore benefit from 

collecting both a foliose and fruticose lichen, which have different morphological forms 
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and capabilities in accumulating both airborne gaseous and particulate species. This may 

help to better quantify the contributions of Hg to lichens from different processes 

occurring across the study area (e.g. Hg from volatilization versus windblown particles). 

Some of the washed lichen samples measured higher THg concentrations than the 

unwashed samples. These were likely effects noticed from within site elemental variation 

in lichens as well as from the sample processing procedures. Thus, the results of this 

study can be used to develop appropriate methods for lichen sampling and processing in 

future biomonitoring work, so to enhance the reliability of the results. 

Overall, this study provided insights into the response of lichen biomonitors to Hg 

pollution. It was demonstrated that this washing method can be used to effectively 

characterize Hg pollution at contaminated sites. For instance, distinguishing between the 

particulate and absorbed fractions of Hg in lichens via washing, in combination with the 

sampling design, helped to confirm atmospheric pollution sources across the study area. 

These methods also aided in understanding the movement of Hg throughout the study 

area, including the release from the Montague tailings and uptake into lichens, while also 

helping to determine the potential of Hg release from lichens and into surrounding 

environments. 

Future lichen biomonitoring work surrounding contaminated sites or pollution 

sources should continue to separate the target elements into the intracellular and 

extracellular fractions using a similar washing procedure. This will ensure that the 

various forms of the target elements are being measured and so additional insights about 

sources or contaminant mobility/pathways can be obtained. Also, in the current study, 

only THg concentrations were determined in the washed and unwashed lichen samples. 
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In future, we recommend investigating the speciation of Hg in lichens which can help to 

identify pollution sources and assess potential risks to surrounding ecosystems, such as 

for MeHg and the bioaccumulation in food webs. Furthermore, future biomonitoring 

research with lichens at similar contaminated sites could include seasonal sampling or 

lichen transplants. These methods can help to identify when the lichens are receiving 

more inputs of contaminants from dust particles or gases, for example, as varying 

meteorological conditions affect the availability and release of elements. 
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6.0 Chapter 3 Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Backscattered electron scans of unwashed Usnea branches taken 
with a scanning electron microscope (SEM). The lichen samples were 
collected near the main tailings deposit at the Montague Gold District in 
Nova Scotia. The darker areas indicate organic material while the brighter 
spots show deposited and trapped particulates. The arrows show trapped 
particulates containing (A) arsenic and (B) barium and tin. 

A 

B 
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Figure 2. (A) Locations of grids and proposed lichen sampling locations (grid intersections) at the historical Montague gold mine 
tailings site near Dartmouth, Nova Scotia. (B) The relative location of the Montague gold mine tailings site in Nova Scotia, indicated 
by a red star.  

A 

B 
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Figure 3. Diagram outlining the workflow and sample numbers for the washing 
procedures and wash-water collections for both Usnea and Platismatia. 
 

 Figure 4. Map of the Montague gold mine tailings site with spatial buffers 
surrounding the known tailings deposits, used for classifying the lichen sampling sites 
based on distance to the nearest tailings edge. 
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 Figure 5. Actual sampling locations of Usnea and Platismatia in Grids 1, 2, 3, and 4 at the historical Montague gold mine tailings 
site near Dartmouth, Nova Scotia. 
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Figure 6. Unwashed versus washed total mercury concentrations (µg/kg) in (A) 

Usnea and (B) Platismatia collected from the same sampling site and at sites where 

lichen thalli were collected from only one tree at the Montague gold mine tailings 

site. Data points are colour-coded based on their distance to the nearest tailings edge: 

On tailings, 0-100 m, 100-200 m, 200-300 m, and >300 m. Regression line is plotted 

in blue and a reference line with a 1:1 slope is plotted in black. 
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7.0 Chapter 3 Tables 
 
Table 1. Total mercury concentration ranges (µg/L) measured in the first wash-

water rinse sampled from Usnea and Platismatia at the Montague gold mine 

tailings site. Data are summarized based on sampling grid. Range includes those 

samples that measured above detection only. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Lichen Sampling 
Location n Number of 

Non-detects Range (µg/L) 

Usnea 
Grid 1 5 2 0.0038 - 0.0094 

Grid 2 3 2 0.0054 

Platismatia 
Grid 1 5 1 0.0110 - 0.3299 

Grid 2 3 1 0.0014 - 0.0054 
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Chapter 4: Summary and Conclusions 
 
1.0 Summary and Conclusions 

The Montague Gold District in Nova Scotia contains several mercury (Hg)-

contaminated tailings deposits, many of which are exposed at the Earth’s surface with 

sparse vegetation cover. With potential for the remobilization and transport of the tailings 

into surrounding environments through the air while also posing risks to human and 

ecosystem health, the spatial distribution of airborne Hg at this site warranted further 

investigation. 

This study used lichens as spatial biomonitors of dust and air quality. In summary, 

both Usnea and Platismatia were reliable biomonitors of Hg, showing similar distribution 

patterns across Montague, and are recommended lichens for future biomonitoring work in 

Nova Scotia and Atlantic Canada. Interpolation modelling of the Hg data from lichens 

proved to be a valuable spatial monitoring tool that can be paired with lichen biomonitors 

in future work, helping to limit sampling, if needed. Main spatial hotspots around this site 

were on or near certain sections of the tailings deposits, reflecting the higher Hg 

concentrations in the underlying tailings in such areas, demonstrating the heterogenous 

nature of these mine wastes. The lichens at the identified hotspots seem to be receiving 

greater inputs of Hg either directly from windblown tailings and/or volatilization 

processes, or indirectly from forest canopy interception of Hg and the subsequent release 

into throughfall or stemflow. Wetland areas were identified as important sources of 

airborne Hg, despite the tailings being submerged in water. Overall, the results indicate 

that both the exposed tailings and those overlapping wetland communities are important 

local sources of atmospheric Hg, with impacts being noticed in lichens up to at least a 
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few hundred metres from the deposits. This contamination in lichens poses direct risks to 

wildlife that are in frequent contact with lichens, with the air contamination posing 

potential risks to human health as well, especially as land development in the vicinity of 

these sites increases. Therefore, reducing the dispersion of dust should be a priority in 

future remediation plans for these historic mine sites. 

Passive dust samplers and rain catchers were employed across a stream-based 

transect within Montague. With low concentrations of Hg in the rainwater samples, 

limited seasonal comparisons were possible and insights into both the soluble and 

insoluble fractions of dust in wet deposition were not determined. In contrast, the passive 

dust samplers were effective in determining total and seasonal dust deposition and Hg 

flux rates at Montague, demonstrating that climatic conditions strongly control the 

amount and timing of dust dispersal. With a changing climate, dust generation may 

increase year-round at this tailings site in the future. An important result from this 

seasonal dust sampling was that, on average, the reference sites accumulated more dust 

than sites located adjacent to the Montague tailings. Therefore, in future studies, 

reference sites in more remote areas and less impacted by urban air pollution should be 

used. Also, from comparison to the lichen biomonitors, it became evident that minor 

improvements to these sampling methods could be made in future work, including 

analyzing both the glass fibre filters (GFFs) and the polyurethane foam filters (PUFs), of 

which have different abilities in capturing elements from dry deposition. In cases where it 

may be difficult to employ these physical dust samplers for repeated sampling (i.e. in 

remote areas), in situ lichens should be considered for air monitoring, especially when 

only relative estimates of Hg concentrations are needed. In other cases, the passive dust 
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samplers can be used as a complementary measurement method to lichen, which would 

provide a stronger understanding of dust and contaminant mobility. 

The washing of the lichen samples allowed for an estimate of absorbed versus 

surface-deposited Hg loads. Most Hg was found to be absorbed into lichen thalli, owing 

to this metal’s strong binding affinities within biological molecules. This washing 

procedure helped to confirm pollution sources across Montague, while also providing a 

stronger understanding of the movement of Hg throughout these tailings sites. It was 

concluded that low concentrations of Hg may be mobile and released from these lichens 

in a rain event, for example, likely not being a significant secondary source of metal 

pollution to the surrounding environments. However, there is still potential for the lichens 

to transfer Hg throughout the ecosystem, such as from revolatilization from thalli as well 

as from Hg transfer to lichen herbivores and up to higher trophic level species. 

Improvements to these lichen sampling and processing procedures should be made in 

future work, such as reducing within-site elemental variation as much as possible and 

fully homogenizing composite samples. Yet, this washing procedure, in combination with 

the sampling design and the collection of wash-water samples, are recommended 

methods for future work with aims of using lichens to characterize Hg pollution at 

contaminated sites. 

In conclusion, this study has demonstrated the air contamination that can originate 

from abandoned mine sites. With over 10,000 documented abandoned mine sites in 

Canada (MacKasey, 2001), additional air quality research is needed at other legacy mine 

sites. In particular, this study has provided baseline data of the concentrations and spatial 

extent of Hg in lichens at the Montague gold mine tailings site in Nova Scotia. This work 
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has provided insight into how dust travels and under what environmental conditions (e.g. 

dry/exposed areas, the importance of ground cover and forested areas, etc.). These results 

are important for risk management and for informing remediation practices and future 

development decisions, especially as urbanization increases surrounding these mine sites. 

This work can also help to inform future mine management practices as implementing 

climate change adaptation measures will become important for the mining industry 

moving forward. Finally, it is important to note that in addition to the numerous legacy 

gold mine tailing sites in the province, Nova Scotia currently has one operating open-pit 

gold mine with an additional four proposed (St. Barbara Limited, 2019; Anaconda 

Mining Inc., 2021). Therefore, there is a growing need for monitoring fugitive dust 

emissions from metal mines and the methods used in this study can provide guidance to 

the modern-day gold mining industry in the province. 
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