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Identification of Key Reaction Products from MoO3 and Ethylene Glycol Mixtures Used 

for Attempted MoS2 Electrodeposition and Synthesis of Bidentate Ligands and Related 

Group 1 and 13 Metal Complexes 

By Tanner A. George 

Date: August 26th, 2021 

Abstract 

Replication of a procedure to electrodeposit MoS2 required use of an 

uncharacterized crude MoO3 and ethylene glycol reaction mixture as a molybdenum 

precursor. Multiple attempts to replicate the desired “brown oil” resulted in isolating four 

crystals, with three being previously unknown products for this reaction. This evidence 

highlights possible identities for the molybdenum precursor responsible during this MoS2 

electrodeposition. 

A sterically bulky phosphine-imine treated with either H2O2, S8, Se0, or reacted with 

9-bromofluorene followed by one equivalent of a base made four ligand precursors that can 

be deprotonated to act as mono-anionic ligands for a variety of metal complexes including 

Li-K, Al, and In. The four ligands undergo tautomerization revealing 2-4 isomers observed 

by 1H, 13C, and 31P NMR spectroscopy, with two of these supported by SC-XRD analysis.  

Alkali metal complexes showed diverse η2 to η4+6
 interactions with the delocalized 

phosphonium fluorenylide and η1/η2 with 2,6-diisopropylphenyl aromatic ring systems. 
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1. Chapter 1: Introduction 

Many important applications rely on a foundation of synthetic chemistry, and 

exploratory work is necessary to understand how materials will behave and more 

importantly how they can begin to be used. In this work, three projects were undertaken 

that relied heavily on producing materials via synthetic methods. These methods included 

published procedures as in the case of Chapter 3, while Chapters 4 and 5 contain newly 

discovered procedures. These three projects aimed to produce materials for different 

applications (3/4/5 = molecular detection/precursors/catalysis); however, the central 

unifying factor is exploratory synthetic chemistry.  

The scope of this project is primarily focused with the production and characterization 

of new materials which can be explored more in future work as precursors for MoS2 

electrodeposition (chapter 3), ligand transfer precursors (chapter 4), and complexes that are 

ready to be tested for use as co-polymerization and ring-opening polymerization catalysts 

(chapter 5). The direction of the project in chapter 3 came from the unexpected difficulty 

in reproduction of a key molybdenum precursor during the process of attempting to 

reproduce MoS2 via an electrodeposition described by Murugesan et al. This precursor is 

not detailed to any great extent and irreversibly will decompose upon hydrolysis. The 

identity remains unknown; however, some evidence regarding the identity has been 

uncovered. The other projects have less direct problems, with end goals addressing the 

ever-present problem of producing value-added products from renewable sources. These 

final projects also seek to explore unique bonding motifs not previously explored to any 
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great extent for different organometallic systems, which indirectly could result in unseen 

value if the ligands prove to be effective. 

This thesis is composed of 6 chapters. The first two chapters overview and each project, 

the problems each seeks to address, and tools used to explore the chemical systems studied. 

Chapter 2 introduces literature, history, and specific reasons for choosing to each research 

project. Following the bulk of experimental work in chapters 3-5, chapter 6 ends the thesis 

with a mix of speculation and possible future direction for continued study for each of these 

chemical systems.  

 Chapter 3, entitled “X-Ray Structural Evidence for Monomeric, Dimeric, Polymeric 

and Octameric Clusters Derived from the Reaction of Molybdenum Trioxide with Ethylene 

Glycol”, is about research, which took an unexpected turn upon realization that a literature 

procedure did not work as effectively as was reported. Various gaps in necessary 

information needed to properly repeat the procedure led to a variety of discoveries, which 

themselves are worthy of report. The literature procedure, in short, claimed to provide a 

method of electrochemically depositing non-amorphous molybdenum disulfide thin films 

on glassy carbon using a solution containing an ionic liquid, a dithiol, and a poorly 

characterized molybdenum precursor. The attempt to replicate this work resulted in various 

discoveries which offer insight into where future research should focus to achieve a 

reliable, consistent, well understood electrodeposition of crystalline, thickness-controlled 

molybdenum disulfide for many important applications. 

 Chapter 4, entitled “Alkali Metal Amide Salts of a Bulky Nitrogen Tethered 

Phosphonium Fluorenylide Ligand”, focuses on the synthetic preparation of a new 
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structure of bidentate ligand based around the very useful donor properties of a neutral 

phosphonium-fluorenide. Deprotonation of the ligand affords a monoanionic amide ligand 

which bonds to a metal, allowing the electron delocalized fluorenide donor to shield the 

metal center with anywhere between 0- to 6-electron donation. Low energy transformations 

between each degree of donation via haptotropic π-bonding of the metal cation with the 

conjugated electron rich ring system of the fluorenide donor may improve stability. The 

resultant ligand produced alkali metal complexes that are prime precursors for producing 

organometallic complexes via metathesis reactions. 

Chapter 5, entitled “Dimethyl Aluminum and Indium Complexes of Oxygen, Sulfur, 

and Selenium Substituted Phosphine-Imine Ligands”, is similar to chapter 4, though rather 

than studying the phosphonium-fluorenide ligand and alkali metals mentioned previously, 

this project focuses instead on chalcogen (O, S, Se) substitution on phosphorus rather than 

fluorenide substitution and the metals studied are from group 13; aluminum and indium. 

The ligands containing the phosphine oxide, sulfide, and selenide donor similarly undergo 

deprotonation forming monoanionic amides. In this case, use of trimethyl aluminum or 

indium as a metal precursor results in loss of methane. This forms cyclic structures with 

both nitrogen and oxygen/sulfur/selenium coordinated to each metal ion, forming a 

tetrahedral structure with the remaining two methyl ligands bound to the metal.  

Each of these projects utilize problem solving necessary from a synthetic chemistry 

perspective to produce and understand materials that may have potential applications such 

as a material to split hydrogen from water (chapter 3), precursors for forming potential 

organometallic catalysts (chapter 4), and preparation of biodegradable plastic production 
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(chapter 5). The projects within this thesis are primarily concerned with fundamental 

synthetic exploration of materials rather than the study of their applications. Every element 

can be used in a way that benefits society, and this exploration into various metal 

compounds has provided insight into identity, properties and problems associated with each 

preparation. 

The structure of the chapters 3-5 follow a similar format including first a descriptive 

title, an abstract detailing the purpose of the study and major findings, an introduction to 

the related topics covered within the work to place each project within the appropriate 

context of related literature, and the results and discussion follow with a final conclusion 

and references. In each chapter results and discussion, presentation of a general overview 

of synthesis precedes discussion of characterization or use of the materials produced. The 

experimental section detailing preparation and sourcing of various solvents and reagents is 

followed with a breakdown of different equipment and instruments used to prepare and 

analyze the material produced in the chapter. In each case, the final subsection of the 

experimental is a detailed synthesis of each material along with characteristic Nuclear 

Magnetic Resonance (NMR) spectroscopy, Single Crystal X-ray Diffraction (SC-XRD) 

spectroscopy, Elemental Analysis (EA), or other relevant properties. Following this is the 

final conclusions and general summary of the projects with references last. For each major 

chapter (3-5) Supplementary Information (SI) is available within an appendix document 

that will be frequently addressed throughout the projects. In general, some images, spectra 

(mainly NMR and IR), crystallography, and information relating to modified syntheses and 

more is available within this additional document. 
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2. Chapter 2: Background and Theory 

Section 2.1 - Molybdenum Disulfide: Properties, Applications and Production 

2.1.1 Properties of MoS2 

Molybdenum sulfides (crystalline MoSx, x = 2, 3, amorphous MoSx, 2 < x < 3) have 

been widely studied due to vast interest across many industries (health, energy, 

technology)1 owing to the ability of these materials to undergo useful light-matter 

interactions. Molybdenum disulfide (MoS2) receives a lot of focus in the energy and 

technology sectors due to its various useful polymorphs (Tetragonal (D3d) = 1T, Hexagonal 

(D3h) = 2H, Rhombohedral (C5
3v) = 3R)2 with conducting (1T) and semiconducting (2H, 

3R) properties. Molybdenum disulfides form 3-atom thick sheets with a S-Mo-S sandwich 

structure resulting in basal planes of sulfur and edge sites of both sulfur and molybdenum.  

Different polymorphs possess different chemical and optical interactions, and 

structural morphology also plays a significant role in the observed properties of MoS2. For 

example, semiconducting materials such as 2H- and 3R-MoS2 possess a small bandgap, and 

the energy required to promote electrons from valence to conduction bands within a solid 

crystalline material allows for effective charge transfer properties. For 1T-MoS2, there 

exists overlap of valence and conduction band energies resulting in conductivity. A single 

monolayer 2D-2H-MoS2 possesses a direct bandgap of ~1.9 V, while few layered MoS2 

has an indirect bandgap of ~1.3 V.1 The direct bandgap means that 2D-2H-MoS2 requires 

only photon excitation for promote electrons from the valence to conduction bands, 

allowing current to flow. In contrast, the indirect bandgap, in addition to photon excitation, 

also requires an excitation propagating through the crystalline lattice to promote the valence 
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electrons to the conduction band. Sheets of 2D-MoS2 have properties that make it uniquely 

desirable, and likewise, each polymorph of MoS2 offers potential benefit for different 

applications. 

2.1.2 Applications of MoS2 

Each polymorph of MoS2 possesses several interactions with both light and matter 

that allow for many different uses when alone, or combined with other materials such as 

ZnO,3,4 Fe3O4,
5  FeS2,

6,7 graphene,8 copper foil,9 or gold nanoparticles10 (Table 2.1). Some 

of these applications include energy generation and storage (hydrogen evolution reaction 

(HER), battery storage, solar photocatalysis),1 environmental remediation,5 

supercapacitors,6 and more recently, as a substrate for the enhancement of inelastically 

scattered light (Figure 2.1) used for the detection of trace molecules via Surface Enhanced 

Raman Spectroscopy (SERS).11  

 
Figure 2.1 Jablonski diagram illustrating the absorption and re-emission of a photon by 

matter. The more common elastic Rayleigh scattering upon irradiation results in emission 

of a photon of the same energy as the incident wavelength.  
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Many studies have examined polymorphs of MoS2 with differing morphologies and 

substrates or co-catalysts for the evolution of hydrogen gas from dilute acid.9,12,13 Use of 

conductive 1T-MoS2 and mixed materials incorporating MoS2 for harnessing solar energy 

to split water into H2 and O2 is also possible due to properties such as high durability and 

the ability of 1T-MoS2 to act as an effective charge transfer catalyst transferring solar 

energy into splitting water, forming hydrogen gas.1 Platinum is often employed for 

hydrogen evolution from splitting water because of how efficient platinum is at transferring 

electrons necessary for protons to adsorb on the metal surface. This is followed by either 

combination of two adsorbed hydrogen atoms, or combination of an adsorbed hydrogen 

atom with an electron and proton from acidic solutions forming the hydrogen gas. 

Completing this splitting process rapidly with low energy inputs is necessary, but 

sustainability issues with platinum create the need to find alternate materials that can 

perform these crucial sustainable energy processes as well or better than platinum. 

Crystalline MoS2 on its own or with additional materials have been found to be 

competitive.14  
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Table 2.1 Preparation and application of various polymorphs and mixed materials 

containing MoS2. 

Material Synthesis Application Ref. 

1T NaK exfoliation followed by H2O or             

[p-RC6H4N2
+][BF4

-] capping agents. 

SERS  15 

2H-

MoS2/ZnO 

Na2MoO4•2H2O + thiourea in H2O + citric acid 

monohydrate 

SERS  3 

MoS2/ZnO autoclave reduction of (NH4)6Mo7O24 and 

sulfur powder with hydrazine hydrate to 

prepare MoS2, second step uses 

Zn(O2CCH3)2(H2O)2 and hydrazine hydrate 

stirring with the suspended MoS2, finally 

annealing for 2 hr at 500 °C 

Photocatalytic 

pollutant 

degradation 

 4 

1T/2H-Au Sonicate EtOH suspension of 2H MoS2, 

centrifuge, then add supernatant to SC-CO2 = 

1T/2H MoS2. Combine and heat with HAuCl4 

+ 1-amino-9-octadecene in EtOH/hexane, 

centrifuge, wash, and dry. 

HER/SERS  10 

1T Top-down (Alkali metal intercalation) and 

bottom up (hydrothermal, CVD, 

electrodeposition) 

HER, batteries, 

supercapacitors,

photocatalysis 

 1 

MoS2/Fe3

O4 

Autoclave FeCl3•6H2O with Na(O2CCH3) with 

polyvinylpyrrolidone, then mixed prepared 

Fe3O4 solid with (NH4)6Mo7O24•4H2O and 

thiourea in water and autoclave again. 

Water treatment: 

heavy metal 

decontamination 

(Pb/Hg) 

 5 

MoS2/FeS2 Anodic oxidation of Mo foil to MoOx in 

NaF/H2C2O4/Na2SO4 in water. Autoclave foil 

with KSCN to afford MoS2. Mixing ferric 

chloride and sodium dodecyl sulfate with 

thiourea in water and autoclaving with the Mo-

MoS2 foil immersed. Mo-FeS2 control without 

oxidation and sulfurization of Mo foil 

Supercapacitor  6 

MoS2/FeS2 Chemical vapor deposition HER  7 

3R Heat MoO3 + S8 + K2CO3 flux to 550 °C HER  2 

3R-Cu Direct sputter deposition at 300 °C using radio 

frequency magnetron sputtering 

HER  9 

 

2.1.3 Production of MoS2 

Considering MoS2 can be usefully utilized in many applications, the ability to 

selectively manufacture specific polymorphs and desired morphologies of MoS2 reliably 
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through facile- and scalable methods is desirable in comparison to expensive or scale-

limited methods of preparation. Some synthetic methods for preparing MoS2 include 

molten S8, MoO3 and K2CO3 flux (3R),16 alkali metal intercalation using pyrophoric 

reagents like NaK alloy (1T),15 chemical vapor deposition (CVD) in a horizontal tube 

furnace,7 hydrothermal growth within an autoclave,3,5,6,10 or mechanical exfoliation and 

electro-ablation coupled with electron-beam lithography.17 These methods rely on either 

dangerous reagents or expensive equipment and instruments with limited control over the 

final state of MoS2. Optimization of these different methods has been explored in depth to 

produce more effective substrates or catalysts for a variety of applications, though 

preparation of 2D-MoS2 still remains difficult to scale up, requiring expensive equipment 

to produce, orient, and isolate the single layer sheets. These methods create effective 

materials; however, accessibility to the required instrumentation to make the materials is 

limited. As a result, electrodeposition was chosen to produce MoS2 for this thesis project 

due to low cost and ease of use. 

2.1.4 Electrodeposition of MoS2 

Use of electrodes as substrates for deposition of MoS2 is useful because some 

applications, such as splitting water, involve electrochemical processes occurring on the 

MoS2 to reduce the overall energy input required. Electrodeposition of amorphous 

molybdenum sulfides (MoSx 2 < x < 3) have been reported; however, post-treatment 

annealing of MoSx films in a sulfur atmosphere at high temperature is often necessary to 

achieve crystalline MoS2.
13,18-22 Electrode materials are useful substrates to deposit MoS2 

because some applications like the splitting of water involve electrochemical processes 
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occurring at the MoS2 edge sites for 2H-MoS2 or basal and edge sites for 1T-MoS2 and 3R-

MoS2 to reduce the overall energy input required via lower energy transition states. The 

electrochemical deposition of MoSx tends to involve mixtures of molybdenum and sulfur 

precursors, electrolytes, and solvents or supporting protic sources.21 Some precursors for 

the Mo and S involve the two elements in a single source such as thiomolybdates (MoS4
2-) 

or larger Mo/S clusters. Other work has shown direct electrochemical synthesis of 

crystalline MoS2 nanoflowers at 100 °C in an ionic liquid23 using two separate sources; 1,4-

butane dithiol, and a crude reaction mixture of molybdenum trioxide and ethylene glycol.13 

One source that was not referenced in this preparation, yet is crucial to understanding the 

molybdenum precursor is the 1973 original synthesis24 of a dioxo molybdenum (VI) 

octahedral complex, formed by the same reaction used to prepare the molybdenum 

precursor for MoS2 deposition with heating to 150 °C rather than 194 °C reported for the 

required molybdenum precursor. The octahedral molybdenum complex isolated from the 

similar reaction occurs with two singly deprotonated ethylene glycol ligands that, in the 

solid state, exist as monomers within an extensive hydrogen bonding network.24,25 

Controlled growth via electrodeposition of MoS2 nanocrystals with the ability to 

selectively form a 2D-MoS2 monolayer would be ideal for many applications that rely on 

the few or monolayer MoS2, and since this is a known growth mode for metals such as 

copper, MoS2 may be deposited in similar thin sheets.26 If this were possible under 

reproducible, ideal conditions, this electrochemical method would excel compared to more 

expensive methods that may not offer the thickness control expected with electrochemistry. 

Direct electrochemical synthesis of MoS2 remains elusive, and the underlying processes of 
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electroreduction of the sulfur and yet-unknown molybdenum precursor into the desired 

crystalline MoS2 remains unclear.  
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Section 2.2 - Substituted Phosphine-Imine Ligands and Organometallic Complexes 

2.2.1 Historical Impact on Modern Organometallic Chemistry 

Organometallic chemistry has had a very positive impact on daily life. By reducing 

activation energies, catalysts can lower overall energy requirements (high pressure and 

temperature) for the large-scale production of high demand products like many polymers, 

materials, medicine, and more. Organometallic chemistry has significant historical roots 

with many early important discoveries, including the first platinum-ethylene complex 

called Zeise’s Salt (1827-31, Figure 2.2),1 and an iron complex with two cyclopentadienide 

ligands (Cp, Figure 2.3 B) called ferrocene (1951-52, Figure 2.2).2,3 Cyclopentadieneide is 

the monodeprotonated form of cyclopentadiene (CpH, Figure 2.3 A), with two of these 

ligands resulting in the Fe(II) oxidation state. These compounds offered insight into 

bonding that was previously unexpected, opening up fields of organometallic study that 

vastly improved and expanded chemical manipulation capabilities within the medical, 

petroleum, and commercial industries.  

 
Figure 2.2 Zeise's salt [K][PtCl3(η

2-C2H4)] and Ferrocene Fe(η5-C5H5)2 with η2 and η5 

interactions between the metal ion and the conjugated π-systems, respectively. 

 

The former of these two complexes illustrates the earliest organic alkene metal π-

bond within the platinum complex William C. Zeise discovered an example of the earliest 
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organometallic compound featuring what would later be known as hapticity “η” where two 

carbon atoms (η2) interact with platinum via π-bonding interactions. This historically 

important complex is the first sign of unexpected bonding between carbon-based molecules 

and metallic elements. Ferrocene (Figure 2.2), discovered over a hundred years after Zeise’s 

Salt,2 gave rise to the understanding that not only could simple alkenes like ethylene 

coordinate to a metal, but bulkier aromatic compounds like cyclopentadiene (CpH, Figure 

2.3 A) could as well. This 5-membered carbon ring with two double bonds and a methylene 

unit (C5H6), can undergo a single deprotonation forming the cyclopentadiene-ide/-yl (Cp) 

ligand which readily forms η5 6π-electron donor interactions with metal atoms. In 1951 this 

concept was unknown, though the following year another group of researchers identified 

the proper structure and bonding between the Fe(II) cation and each of the two Cp ligands.3  

 
Figure 2.3 Molecular structures of cyclopentadiene (CpH, A) and fluorene (FluH, B) with 

their corresponding deprotonated forms cyclopentadien-ide/yl (Cp, B) and fluoren-ide/yl 

(Flu, D), respectively. Numbering for the general structure of CpH (A) and FluH (C) is 

labelled, and in each instance, deprotonation of the acidic methylene (CH2) proton on C5 

(CpH) or C9 (FluH) results in formation of a methyne (CH) at C5 and C9 as the monoanions 

Cp (B) and Flu (D) are formed. 
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This ligand is monoanionic, with sterically crowding η5 interactions that results in 

compounds like FeCp2 and TiCp2Cl2 being relatively stable with respect to air, moisture, 

and heat.2 The cyclopentadiene ligand marked the beginning of an entire field of 

organometallic chemistry termed “metallocene chemistry” focused around the 5-membered 

Cp containing ligands and related monoanionic ligands like fluorenide (C13H9
-, Flu, Figure 

2.3 D). Fluorenide, derived from deprotonation of fluorene (C13H10, FluH, Figure 2.3 C), is 

a more extended and conjugated polyaromatic hydrocarbon ligand than the simple Cp ring 

or small alkenes like ethylene within Zeise’s salt. Derivatives of the Cp ligand can offer 

significant spatial shrouding around a metal atom resulting in greater stability along with 

the active donor potential of 2, 4, or 6 electrons through either η1-5 or η1-6 interactions 

(Figure 2.4) for Cp and Flu, respectively.  

 
Figure 2.4 Different potential η-interactions between a metal ion M and the 5- and 6-

membered aromatic rings of Cp (left, top down view) and Flu (right, perspective view). 
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2.2.2 The Beginning of Polyolefin-Based Plastic 

More recent exploration into alkene-metal interactions resulted in the production of 

cheap, convenient, sterile, and moldable hydrocarbon-derived plastics (Figure 2.5, #1-6). 

Various polymerization processes using small molecular monomers like propylene are used 

to make plastics, with notable work by Ziegler and Nata which earned the 1961 Nobel prize 

in chemistry. They used a Ti/Al catalyst system to produce controlled plastic polymers like 

polypropylene from propylene using primarily chloride and ethyl ligands on Ti and Al, 

respectively.4 Numbering for each plastic is relative to common recycling practices (Figure 

2.5). This results in plastic products with very important global applications in food 

handling and sale, disposable hospital equipment that is contaminated upon use, and 

innumerable components within consumer products like phones, computers, appliances, 

and more. 

 
Figure 2.5 Plastic polymer subunits in common commercial products.  
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Later developments towards more sustainable polymerization include the use of the 

Cp ligands and zirconium as a monometallic catalyst system to produce more readily 

biodegradable plastics with an O:C ratio of 1:1 using ϵ-caprolactone or racemic lactic acid 

cyclic dimers (Figure 2.5, #7) as bioderived monomer sources rather than using petroleum 

derived alkenes.5,6 Carbon-oxygen bonds are easier for chemical processes and 

microorganisms to break via processes such as hydrolysis, while the C-C bonds of plastics 

like low- and high-density polyethylene (Figure 2.5, #2/4) result in significant persistence 

due to the lack of environmental degradation. This slow (often mechanical) breakdown 

forms micro- and nano-plastics which can ad/absorb toxins and deliver them within tissues 

of organisms which inevitably consume them, with some managing to enter into the brain 

causing neurological damage within organisms like fish.7,8 Plastic can have a harmful 

impact on the environment through negligent pollution; however, this sort of environmental 

harm resulting from poor handling of plastic wastes does not undermine the necessary value 

of plastic as a sanitary, durable, and cheap material for consumer items such as storage, 

furniture, and medical equipment. Though the history of plastic production primarily 

focuses on hydrocarbon chains derived from petroleum, newer work with earth-abundant 

metals like aluminum show the ability to perform polymerization of plant derived cyclic 

esters and other oxygen containing monomers, forming biodegradable polylactic acid 

(Figure 2.5, #7) and other polymers via ring opening polymerization (Figure 2.6). This 

research could lead to supplementing current disposable plastics with compostable 

alternatives, reducing the issues associated with micro- and nano-plastics. 
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Figure 2.6 Ring-opening polymerization of various cyclic lactides into the polylactic acid 

plastics PLA. 

 

One aspect of the work conducted within this thesis is the preparation of a series of 

aluminum- and indium-based catalyst molecules that are thought to be capable of 

performing the catalytic initiation step within the ring opening polymerization process 

necessary for production of plastics from materials such as polylactic acid. These types of 

group 13 catalysts are also used to catalyze copolymerization of carbon dioxide with other 

materials like epoxides, highlighting two environmentally important applications for these 

compounds that have yet to be explored in future work for the prepared and characterized 

catalysts detailed in Chapter 5. Seeking previously unobserved coordination around metal 

centers via ligand design is the primary focus of the synthetic research being conducted into 

new substituted phosphine-imine ligands.9  
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2.2.3 Fluorenyl and Derivatives as Organometallic Ligands 

Fluorenide (Flu) on its own is a very large monoanionic ligand, making it unstable 

to degradation via processes such as hydrolysis, readily displacing the ligand from a metal 

cation (Figure 2.7). This led to the desire to effectively anchor Flu to a metal atom by 

transforming it into a sterically bulky bidentate ligand similar to a previously reported 

polymerization catalyst based on yttrium bound by a bidentate bridged Flu and tetramethyl 

Cp.10 The bare Flu anion has a proton on the 5-membered ring that can readily be replaced 

with alternate atoms that lead to the bridging potential of the ligand. By replacing this 

proton with atoms that have additional chelation potential, corresponding organometallic 

complexes should likewise be more stable via the chelate effect due to having a greater 

number of atoms interacting with the orbitals of the metal ion. 

 
Figure 2.7 Hydrolysis of the lithium fluorenide, forming lithium hydroxide and neutral 

fluorene. 

 

For increased shielding from steric bulk, binding fluorene to a tetrahedral 

phosphorus center allows for increased steric bulk via bulky substituents bound to 

phosphorus and the tendency for electron delocalization to occur, resulting in better neutral 

donor activity from the newly formed phosphonium fluorenide. One example of a low 

coordinate bond between a triphenyl phosphonium fluorenide involves a single tridentate 
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complex of tricarbonyl ruthenium with two instances of phenyl group ortho metalation and 

σ-interactions with the phosphonium fluorenylide functional group.11 This low coordinate, 

η1-interaction is attributed to the spatial bulk of the rest of the tridentate ligand and three 

carbonyl groups. A similar complex of tungsten tetracarbonyl with a bidentate fluorenylide 

also shows 2-electron σ-donor character, attributed to the tungsten ion having many ligands 

surrounding it preventing greater donation from the phosphonium fluorenylide donor.12 

Tungsten with four carbonyl groups is very satiated sterically and electronically, so 

accepting only 2-electron σ-donation from an η1-fluorene is to be expected. This is one of 

the only examples of tethered diphenyl phosphonium fluorenide bidentate ligands, 

highlighting a literature gap this thesis work seeks to via synthesis of a bulky monoanionic 

bidentate phosphonium fluorenylide-amide ligand precursor and some alkali metal 

complexes (Figure 2.8).  

 
Figure 2.8 General bonding motif of organometallic complexes expected to occur with the 

produced phosphonium-fluorenide amide ligand supporting the alkali metal through 

bidentate chelation. 

 

Of the organometallic complexes of fluorenyl-based ligands, early group 1-3 metals are 

very common,13-22 though main group,23,24 transition,11,25-32 and rare earth23,33-37 metal 
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complexes have been studied as well, this highlights the ubiquitous value of the fluorenide 

donor ligand, especially when coupled with a tether, bulky aromatic groups, and when used 

as a phosphonium fluorenide neutral donor. 

 

2.2.4 Application and Use of Aluminum-Based Catalysts 

The ability to make a complicated molecule with appreciable yields, minimal steps, 

and high purity is a goal in many industries (petrochemical, medical). Industry often require 

difficult synthetic targets, commonly made with the help of complexes of expensive and 

rare metals like palladium, platinum, and rhodium. These metals are effective but suffer 

from huge economic burdens and limited availability and accessibility. Aluminum-based 

molecules have been proven effective for a variety of chemical transformations and 

catalytic processes, enabling desirable selectivity through a wide range of geometries and 

structures. This regioselectivity is promising for reactions which produce racemic mixtures. 

A great deal of work has explored a variety of metal geometries with very promising 

chemical behaviour throughout, especially regarding interactions between aluminum and 

heteroatoms like oxygen, nitrogen, and sulfur. These compounds show precedent for 

forming heterocycles with exceptional functional group tolerance and regioselectivity 

including heterocycles like cyclic carbonates and oxazolidinones (Figure 2.9).38-40  
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Figure 2.9 Reaction of an epoxide and isocyanate forming oxazolidinones when dissolved 

and heated in the presence of a catalyst system involving an alkyl ammonium halide with 

aluminum complexes. 

 

This is important because rather than forming these oxazolidinone ring systems with the 

requirement of additional steps to protect active groups like amines, chlorides, etc., direct 

synthesis is possible. Formation of bonds between carbon and oxygen, nitrogen or sulfur is 

possible using the aluminum catalysts, and for the pharmaceutical industry, which almost 

solely produces heteroatom containing drug molecules, this is very important. It is 

favorable to understand the limits of aluminum and other abundant metal catalysts and 

reagents with respect to a wide scope of ligands. The less explored nature of Earth-abundant 

metal catalysts and the significant lack of political and socioeconomic problems associated 

with studying these metals makes them highly attractive elements for novel ligand 

exploration and will serve as the primary focus for organometallic molecules within this 

research.  
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Figure 2.10 Synthesis of dimethyl group 13 metal complexes with a bidentate chalcogen 

substituted phosphine-imine ligand. 

 

  In addition to studying ligands and organometallic complexes of alkali metals of 

the type shown in Figure 2.8, oxidation of a phosphine-imine with the first three chalcogens 

oxygen, sulfur, and selenium (Figure 2.10) will be used to prepare a series of dimethyl 

aluminum and indium complexes to perform a comparison of the physical, spectroscopic, 

and structural properties of each compound. Future work can be done using these 

characterized materials to study catalytic potential for processes such as ring-opening 

polymerization of cyclic esters, lactones, and lactides41-48 or cyclization of molecules like 

carbon dioxide with epoxides (Figure 2.11).38-40,49-52  

 

Figure 2.11 Synthesis of cyclic carbonates via ring-open insertion of CO2 into the strained 

epoxide ring.  
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3. Chapter 3: X-Ray Structural Evidence for Monomeric, Dimeric, Polymeric and 

Octameric Clusters Derived from the Reaction of Molybdenum Trioxide with 

Ethylene Glycol 

3.1 Abstract 

A previously reported electrochemical synthesis of MoS2 nanoflowers at 100 °C in 

the ionic liquid N-methyl-N-propylpiperidinium bis(trifluoromethane)sulfonimide (PP13-

TFSI) from 1,4-butanedithiol and a crude reaction mixture of molybdenum trioxide and 

ethylene glycol was explored to prepare 2D-MoS2.
1 The molybdenum precursor (with 

incomplete workup and characterization) could not be reliably reproduced, resulting in 

various crude molybdenum precursors of different identity. The only characterization of 

the prepared molybdenum precursor from reacting molybdenum trioxide with ethylene 

glycol provided in the reported literature is a description of a “brown, viscous liquid”. From 

eight attempts to synthesize the required “brown oil”, most crude solutions were golden in 

colour, with one successful production of a brown reaction mixture, highlighting 

reproducibility issues within this original preparation. Four solids crystallized from the 

crude reaction mixtures, giving insight into the complex nature of the reaction under 

slightly different conditions. Analysis by Single Crystal X-Ray Diffraction (SC-XRD) 

offered insight into the wide range of molybdenum to oxygen ratios between four 

crystalline samples isolated from preparing the molybdenum precursor (1:6 to 1:4 Mo:O 

ratios).2,3 Electrochemical studies of the 1,4-butanedithiol, ethylene glycol, and various 

molybdenum precursors were completed and compared in 0.1 M PP13-TFSI in 

tetrahydrofuran (THF). In addition to unsuccessful replication of the reported 
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electrodeposition of MoS2 from the Mo/S precursors in pure 100 °C PP13-TFSI, the 0.1 M 

PP13-TFSI supporting electrolyte was also explored to electrochemically deposit MoS2. 

All attempts made using these Mo/S precursors resulted in either no deposit, or 

molybdenum and sulfur containing deposits as indicated by SEM-EDS analysis, however 

inability to reproduce these deposits via replication on another electrode resulted in no 

attempts to further characterize these non-reliable deposits. 

3.1.1 Graphical Abstract 

 
3.2 Introduction 

 Crystalline molybdenum disulfide (MoS2), either alone or as a composite involving 

materials such as ZnO,4,5 FeS2,
6-10 Fe3O4,

11 and Au,12,13 have been proven highly effective 

for an array of diverse applications including use as hardware like supercapacitors and 

transistors,6,14,15 solar and hydrogen energy production and storage,1,9,10,16-20 and 

environmental remediation.5,11 Use of 2D-MoS2 as a substrate for Surface Enhanced Raman 

Spectroscopy (SERS)4,12,21-23 has recently emerged, offering the potential of widespread 

detection of important analytes, including pesticides, biomarkers, or drugs, for the 

agricultural, biomedical, and forensic industries.14 Molybdenum disulfide is promising for 

various applications that usually rely on metals like platinum for performing processes such 

as the hydrogen evolution reaction (HER), or on metals like gold and silver that dominate 

SERS.24,25 Gold and silver are both expensive and come with significant sustainability 
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issues for the future, resulting in the need to explore and understand materials like MoS2. 

Though pure MoS2 may not be sufficient to compare to noble metals, composites with other 

materials such as ZnO have been shown to synergize with MoS2, acting as an alternative 

substrate to gold and silver for SERS analysis of bisphenol-A (BPA), for example.4 

 Molybdenum disulfide has multiple polymorphs (Tetragonal (D3d) = 1T, Hexagonal 

(D3h) = 2H, Rhombohedral (C5
3v) = 3R) with conducting (1T) and semiconducting (2H, 

3R) properties.16 The semiconducting forms of MoS2 highlight a very important property 

regarding the morphology of MoS2; monolayers possess a direct band gap despite the bulk 

material possessing an indirect band gap. This different optical response results in 

monolayer molybdenum disulfide (2D-MoS2) promoting the Raman scattering of incident 

radiation through charge transfer to the molecule upon irradiation with a reported Raman 

enhancement factor of 3 x 105 which is comparable to the most widely used metals, silver 

and gold with enhancement factors of ~105-106.14,26,27 Techniques of preparing 2D-MoS2 

include chemical vapor deposition,27,28 sonication,29 alkali metal exfoliation,19 electro-

ablation of mechanically deposited bulk MoS2,
15 and thin films of electrochemically 

deposited amorphous MoSx (2 < x < 3) have commonly required annealing under a sulfur 

or argon atmosphere at 500 or 550 °C, respectively to attain the desired crystallinity.30,31 

This work seeks to utilize the electrochemical bottom-up approach described by Murugesan 

et al.1 to prepare both platinum and glassy carbon working electrodes coated in monolayer 

molybdenum disulfide for use as a SERS substrate. 

Electrochemically depositing thin films of MoS2 with thickness control is a major 

goal that has yet to be achieved. Murugesan et al.1 report thickness control by altering the 
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duration of chronoamperometric deposition at -2.7 V with no need for high temperature 

annealing post-treatment.1 Underpotential deposition of thin films like that of copper casts 

some doubt on the choice of such a low voltage as well, and the necessity to apply less than 

-2.0 V has been disputed by later work.30,32 Other Mo/S sources like ammonium tetra 

thiomolybdate ((NH4)2MoS4)
30,31 and ammonium thiodimolybdate ((NH4)2Mo2S12)

33 have 

led to amorphous thin films upon electroreduction, resulting in the choice to pursue this 

preparation provided by Murugesan et al.1 with ionic liquid mediated electrodeposition at 

100 °C in order to prepare monolayer 2D-MoS2 for use as a noble-metal free SERS 

substrate.  

The references34,35 provided by Murugesan et al.1 for the reaction of MoO3 and 

ethylene glycol had no mention of a reaction between these two materials, and instead 

focuses on the preparation of similar ammonium and alkali metal salts of a dioxo-

molybdenum compound with various acids like glycolic acid in the case of Cuin. et al.34 

The name of glycolic acid ligands is given to the molybdenum precursor in the work by 

Murugesan et al.1 (“molybdenum glycolate”) despite no glycolic acid present in their 

reaction. Work by Preiss et al.35 is slightly more related to the procedure that Murugesan et 

al. report;1 however, the focus of the work in this reference is preparation of molybdenum 

carbide (Mo2C). The process they use to achieve this involves heating molybdenum oxide 

(or molybdic acid, the hydrated form in this case) within ethylene glycol; although, a 

temperature of only 60 °C is used and for an unknown duration until “the odour of ammonia 

could no longer be detected (the commercial molybdic acid contains ammonium 

molybdate).”. At this point in their Mo2C preparation, they begin adding saccharose, 
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deviating from Murugesan et al. One valuable point they noted is that concentration of 

samples prior to saccharose addition was possible via heating at ~130 °C, which could be 

the source of the extraction process eluded to within the work by Murugesan et al. The 

synthesis provided to prepare the MoS2 molybdenum precursor involves refluxing the 

mixture of MoO3 with ethylene glycol under N2 at 194 °C, and the provided workup stated 

only to extract the final brown-coloured viscous product, instructions that are not clear 

enough for a reliable replication. Understanding the identity of the precursors is necessary 

for understanding the processes underlying a reproducible electrodeposition of crystalline 

MoS2 at 100 °C, and this current work sheds light on the complex identity of the 

molybdenum compounds that form when molybdenum trioxide is heated in ethylene 

glycol. Multiple reactions resulted in a golden-coloured thick liquid and concentrating the 

ethylene glycol solution caused the crystallization of MoO2(OC2H4OH)2, giving insight 

into a literature synthesis2 and crystal structure3 related to this preparation. A golden oil or 

colourless crystal was not used in the electrodeposition of MoS2,
1
 and attempts to replicate 

the electrochemical synthesis of MoS2 were not successful, so additional syntheses were 

undertaken to better understand this complex reagent.  

 The electrodeposition of morphologically controlled MoS2 with reproducible, 

reliable results is of interest to many fields of technology, energy generation (solar, 

hydrogen), and trace detection of substances when used as a substrate for SERS. It has been 

a challenging feat for common synthetic methods to produce high quality, uniform 

coverage, morphologically controlled thin films of MoS2, and electrodeposition would be 

an ideal method that could exploit readily available precursors. The purpose of these initial 
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studies can be broken into three aspects highlighting the need for optimization and further 

understanding of this specific electrochemical deposition of MoS2; first to explore the 

identity of the poorly characterized yet necessary molybdenum precursor via SC-XRD, 

second to characterize some electrochemical properties of the molybdenum precursors, 1,4-

butanedithiol, ethylene glycol, and mixtures of these reagents on platinum or glassy carbon 

working electrodes in 0.1 M PP13-TFSI in THF along with the electrochemical window of 

this supporting electrolyte, and finally to attempt to electrochemically produce MoS2 from 

either pure PP13-TFSI following the work by Murugesan et al.,1 or in a solution containing 

0.1 M PP13-TFSI in THF using 1,4-butanedithiol as the sulfur source reaction mixtures of 

MoO3 and ethylene glycol as the source of molybdenum.  

3.3 Results and Discussion 

3.3.1 Ionic Liquid Preparation 

To prepare the ionic liquid solvent PP13-TFSI, Li-TFSI was used as the anion 

(TFSI-) precursor while the cation (PP13+) precursor PP13-Br was prepared synthetically 

from N-methyl piperidine and 1-bromopropane via a modified literature procedure.36 

Briefly, the cation precursors were heated in acetonitrile for a prolonged period, with PP13-

Br precipitating as a white solid in the golden liquid upon cooling. Combining PP13-Br and 

Li-TFSI as aqueous solutions causes precipitation of a dense (> 1 g/mL), mildly viscous 

colourless liquid within an hour of mixing, and extraction with dichloromethane (DCM), 

washing with ultrapure water, and drying in vacuo results in the PP13-TFSI ionic liquid 

used for electrochemical experiments (Scheme 3.1).1 
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Scheme 3.1 Synthesis of cation precursor PP13-Br and the ionic liquid PP13-TFSI from 

metathesis with Li-TFSI. 

 

3.3.2 Molybdenum Precursor Synthesis and Studies 

The molybdenum precursor was made from MoO3 and ethylene glycol following a 

modified literature preparation1 involving heating the mixture to 194 °C for 1 hr. Extraction 

was listed as the next step; although, best guess attempts were used to decide on the required 

extraction process since no procedure or reference was provided for this by Murugesan et 

al.1 Eight different syntheses of this molybdenum precursor (Table 3.1 and 3.2) were 

attempted (A(1-8), A = molybdenum precursor reaction, # 1-8 = chronological order of 

reaction), each with slightly different work up and synthetic conditions, affording four 

types of product; 1. liquid samples of crude reaction mixtures that have been concentrated 

and filtered through diatomaceous earth, “the oil”. 2. liquid samples resulting from 

extraction or reaction which have had additional solvents such as THF, hexane, DCM, 

toluene, or water added to them (B = liquid sample). 3. crystalline samples derived directly 

from either liquid sample (C = single crystal sample). 4. Non-crystalline solids (D = 

amorphous solid). Many of these products, although not what was expected or sought after, 

gave insight into the complex nature of this reaction.  
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Table 3.1 Reagents and heating conditions associated with the 8 molybdenum precursor 

syntheses. 

Rxn. MoO3 mass 

(g) 

Ethylene glycol (EG) 

volume (mL)  

Reaction time 

(min) 

Temperature    

(± 2 °C) 

A1 0.578 75 60 194 

A2 0.800 125 60 194 

A3 0.345 40 60 194 

A4 0.466 50 120 215 

A5 0.544 70 60 194 

A6 0.286 35 60 194 

A7 0.128 20 90 194 

A8 0.282 35 150 150 

 

Table 3.2 Synthetic conditions, work up, purification processes, and products isolated from 

the 8 molybdenum precursor syntheses. Volume in brackets = EG distilled prior to heat. 
Rxn. Pre-distill 

EG before 

194 °C? 

N2
 flow? 

Air 

exposure? 

Solvents for purification or 

Workup Procedure? 

Products isolated 

A1 No Yes, minor Vacuum distill to green paste, 

DCM extraction, THF wash 

Colourless crystals of 

MoO2(OC2H4(OH))2 and golden oil 

A2 No Yes, trace Vacuum distill to green paste, 

DCM extraction, THF 

transfer, hexane and toluene 

insoluble, THF extraction 

Green solid, yellow crystals from 

green oil, Colourless crystals of 

MoO2(OC2H4(OH))2 upon partial 

hydrolysis of residue 

A3 Yes  

(~5 mL) 

Yes, no Vacuum distill, filter Golden oil, Colourless crystals of 

MoO2(OC2H4(OH))2 after 10 

months under N2 

A4 Yes  

(~6 mL) 

Yes, no Vacuum distill, scrape Black solid, blue crystal of 

Mo12O40X upon hydration of 

residue 

A5 No Yes, no Vacuum distill, filter, rinse 

residue into separate 

container with THF 

Golden-brown oil and gold/yellow 

crystals 

A6 No  

(~10 mL) 

Yes, no Vacuum distill, filter, rinse 

residue into separate 

container with THF 

Brown oil with black solids, red 

crystals 

A7 No Yes, no Vacuum distill to green paste, 

DCM extraction, THF wash 

Yellow crystals, gold oil 

A8 No No, no Vacuum distill, 95% ethanol, 

filter, dry 

Gold oil turned into blue liquid then 

dried to blue solid 

 

For discussion, samples will be described by their state, the number reaction they 

came from, and the sample number (A#) referenced to in Table 3.3. Liquid samples will be 

referred to as (B), crystals (C), and non-crystalline solids (D) from the 1-8 molybdenum 
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precursor reactions. Naming of samples follows the form: Sample Type-Reaction Number-

Product, so the sample B-3-a refers to the oil sample (B) from reaction (3) and it is the 

major liquid product (a), while C2a and C2b refer to the major and minor crystalline 

products of A2 isolated from crystallization of the bulk solution (C2a) or washing the 

glassware with water after reaction (C2b), respectively. 

Table 3.3 Final products derived from 8 reactions of MoO3 and ethylene glycol with 

varying chemical workup. These products include liquid samples, crystalline, and 

amorphous solid samples from the attempts to prepare the Mo precursor. Some solids, 

residues, and other products created have been discarded and not included such as the green 

aqueous oil C2b was derived from. For more detailed synthesis of A1-8 see experimental 

(3.4.3). 

Rxn. Liquid (B#x) Crystal (B#x) Solid (D#x) 

A1 B1a Gold Oil C1a – Compound 1 N/A 

A2 B2a Green Oil (THF) C2a – Compound 2 

C2b – Compound 1   

D2a – Dried 

Compound 2 

A3 B3a Gold Oil* C3a – Compound 1 

C3b – Compound 5 

N/A 

A4 B4a Blue Liquid C4a – Compound 6 D4a Black Solid, 

D4b blue solid 

(B4a dried) 

A5 B5a Golden-brown Oil* 

B5b Golden-brown Oil 

C5a – Compound 3 D5a, D5b  

A6 B6a Brown Oil* C6a – Compound 4  

D6a 

A7 B7a gold oil  N/A N/A 

A8 B8a gold oil 

B8b blue liquid 

N/A D8a Blue Solid 

(B8b dried) 

* used within electrochemical experiments as a molybdenum precursor. 

 

The visual progression during these eight syntheses evolves from mint-green 

powder (MoO3) in colourless liquid (ethylene glycol), and upon heating, dissolution begins 

through a brief vivid turquoise colour change into a golden green hued solution, 

maintaining a completely transparent, solid-free lighter golden colour if kept below 150 °C 

(A8) and darkening if heat is increased to 194 °C. The darker golden-green solution occurs 



Page | 45  

 

with trace black precipitate for A (1-3,7), and significant amounts for A (4-6) and heating 

the mixture to 215 °C formed primarily black precipitate for A4. Thick golden 

(B1a,3a,7a,8a), green (B2a), golden-brown (B5a, B5b) and brown oils (B6a) upon in 

vacuo concentration and filtration through diatomaceous earth either neat or dissolved in 

DCM or THF. The fourth reaction was heated beyond 194 °C, affording a hard black solid 

rather than an oil upon concentrating in vacuo.  

 
Figure 3.1 Molecular structure of a single molecule of compound 1 (top) and the two 

molecules in the asymmetric unit cell of compound 1 (bottom) participating in hydrogen 

bonding with anisotropic displacement ellipsoids projected at the 50% probability level. 

Methylene CH2 hydrogen atoms have been omitted for clarity.  
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The first, second, and third reaction mixtures A1-3 crystallized a known molecular 

species, compound 1 MoO2(OC2H4OH)2 (Figure 3.1), from an ethylene glycol DCM 

solution (C1a), water (C2b), PP13-TFSI (C1c), and pure ethylene glycol or acetonitrile 

mixed with ethylene glycol (C3a, C3b). Isolating this compound from various mixtures 

offered insight into the original 1973 preparation2 and the 1975 X-ray crystallography3 of 

this monomeric structure and the relevance of this chemical species within MoO3 + 

ethylene glycol reaction (Figure 3.1). All products isolated via attempting this precursor 

synthesis are detailed in Scheme 3.2. Isolation of compound 1 provided insight into workup 

of this reaction mixture to isolate this pure crystalline material through giving insight into 

the work done in the 1970’s. The seventh reaction which replicated this alternate literature 

preparation by heating to 150 °C open to air followed by concentration in vacuo and 

addition of ethanol produced a dark blue solution rather than the expected colourless 

compound 1. This blue colour is thought to be due to residual water in the absolute ethanol 

used since hydrolysis of crude reaction mixtures, the pure MoO2(OC2H4OH) crystals, and 

the black solid D4a all afforded equally rich blue solutions in water. A series of freezing (-

18 °C) and thawing (20-25 °C) cycles over the course of a few weeks enabled isolation of 

a single tiny blue crystal (C4a – Compound 6) that indicates anionic Mo12O40X (X = 

heteroatom like S, P, Cl) structure by SC-XRD. Poor data and uncertainty regarding co-

crystallized species such as the central heteroatom, cations, or water molecules could not 

be conclusively solved; however, the general Mo12O40 structure is visible by SC-XRD (See 

SI). Any reaction mixture or sample which encountered water and air for prolonged periods 

of time turned blue seemingly irreversibly. This decomposition via exposure to air and 
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moisture highlights instability of the proposed molybdenum precursor that was noted by 

Murugesan et. al.1 

 
Scheme 3.2 Chemdraw structural representation of compounds 1-4 derived from very 

similar reactions of MoO3 and ethylene glycol. Two ethylene glycol units within the single 

crystal-structure are omitted from the diagram of compound 4. 

 

Following the identification of compound 1 from this precursor reaction, work up 

of concentrated reaction mixtures with THF (A2, A5) revealed unexpected insights into the 

complexity regarding the reaction of MoO3 with ethylene glycol via SC-XRD analysis. As 

replicate attempts were made to create the desired “brown oil” rather than the golden oil of 

the first reaction. The second reaction resulted in golden oil again upon in vacuo 

concentration of the crude reaction mixture, though extraction with DCM, drying in vacuo 

again and extracting once more with THF afforded a thick green solution upon 

concentration. Yellow crystals of compound 2 ((MoVO(OC2H4O)(µ-OC2H4OH))2(µ-

OC2H4)), identified by SC-XRD (figure 3.2), -formed in the green oil, and, upon isolation 
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and drying, the crystals became opaque. Elemental analysis of this material was incorrect 

regarding the expected C/H % (~1% above C, ~2% below H) for the formula derived from 

SC-XRD. This synthesis was the first insight into dimerization, a process seemingly crucial 

for further clustering observed in reaction mixtures closer in colour to brown.   

 

 
Figure 3.2 Molecular structure of compound 2 with anisotropic displacement ellipsoids 

projected at the 50% probability level. Methylene CH2 hydrogen atoms have been omitted 

for clarity. 
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This is the first report of crystalline molybdenum dimers with each molybdenum 

bound to a single oxo group (-2), an ethylene glycoxide ligand (-2), and a bridging ethylene 

hydroxy glycoxide (-1) based on a Cambridge Structural Database (CSD, version 5.41 (Nov 

2019)) search, though similar dimers with different ligands exist with similar bridging of 

the two Mo atoms by oxygen-based ligands. Few related molybdenum dimers have had 

their structure reported in the CSD, specifically with each Mo atom in the dimer containing 

a non-bridging single oxo ligand and a bidentate OC2O structured ligand. One similar non-

anionic dimer features a structurally similar bidentate mono-deprotonated tetramethyl 

ethylene glycol and two bridging methoxide ligands; however, this dimer is a cis-dioxo 

molybdenum compound rather than mono-oxo like compound 2, which is also unique in 

having an additional bridging tetrahydrofuran ligand.37 Other similar dimeric examples 

sometimes contain ammonium,38 phopshonium,39 alkali,39 or alkaline earth40,41 cations, co-

crystallized solvents like water,41,42 ethanol,43 methanol,44 toluene45 or benzene.46 

Coordinating solvents like water,41 ethanol,43 or pyridine38 along with bridging oxo,38  

alkoxide,44,46 phosphate,47 hydroxide,48 oxalato,38 citrato,49 or dioxomolybdenum50 groups 

either between the Mo dimer atoms or bridging pairs of dimers is also commonly observed. 

This is similar to the crystal structure observed for the polymeric compound 3, C5b (Figure 

3.3). Structure of small molybdenum clusters have direct relevance to the study of 

biologically important enzymes like nitrogenase, and this literature and work highlights 

many unique coordination states surrounding molybdenum with respect to small 

multidentate oxygen containing ligands (Figure 3.2). 
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Figure 3.3 Molecular structure of compound 3 with anisotropic displacement ellipsoids 

projected at the 50% probability level. Methylene CH2 hydrogen atoms have been omitted 

for clarity. 
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The polymeric structure of compound 3 (C5a) exhibits two unique bridging 

interactions with ethylene glycoxide ligands, bridging the molybdenum dimer atoms either 

parallel O11-(Mo1-Mo2) or perpendicular O12-(Mo3-Mo4) to the molybdenum/oxo 

double bond (Figure 3.4). An oxalic acid dimer was observed to undergo further 

dimerization through an oxalic acid bridging ligand; however, the presence of bridging oxo 

(O-2) ligands may prevent further polymerization as the oxo bridging ligand tends to 

directly bridge the molybdenum atoms with no spacer like the C2 backbone of ethylene 

glycoxides or oxalates resulting in increasingly larger clusters, rather than polymer 

comprised of the dimer units.38,51,52 An additional example of an oxalate containing 

analogous molybdenum dimer polymer exists with R-MoO2-R bridging units (R = Mo 

dimer, (MoO(oxalato)(µ-oxo))2) and cations; however, for this polymeric structure, the 

bridging MoO2 unit is not directly involved in bridging the two Mo atoms in each dimer 

that was also observed for a phosphate bridged dimer.47,50 This is not like what’s observed 

for compound 3 with ligands involved in the polymerization coordinating through both 

molybdenum atoms of the dimer (Figure 3.4) rather than from one molybdenum atom to 

the second in another dimer molecule. 
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Figure 3.4 Molecular structure of compound 4 with anisotropic displacement ellipsoids 

projected at the 50% probability level. Methylene CH2 hydrogen atoms have been omitted 

for clarity. 

 

Compound 4, C6a (Figure 3.4) exists as a cluster showing the octameric 8 

molybdenum atoms consisting of a distinctly different core of four total with two Mo(V) 

dimers similar to 2 and 3 on each side of the core. Each dimer is equivalent across a 

symmetry element, and the dimers are held together by a µ-oxo ligand and one of the two 

oxygen atoms of the bidentate ethylene glycoxide that attaches the dimer to the tetrameric 

central core. Each dimer also has a bridging ethylene glycoxide ligand bound directly to 
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both molybdenum atoms. The central tetrameric core has two distinct molybdenum atoms 

as well, forming a diamond shape. Mo atom #3 and symmetry equivalent Mo#3i (Figure 

3.4) exists with three µ3-oxo ligands, a neutral monodentate ethylene glycol hydroxy 

ligand, and two µ-ethylene glycoxide ligands. 

 
Scheme 3.3 Potential route to each of the compounds produced during the attempted 

synthesis of the molybdenum precursor. 

 

From Table 3.4, the mass of 1-4 is ~250, 538, 932, and 1766 g/mol, respectively. 

Assuming 1 turns into 2 then into 3 and finally 4, one pathway (Scheme 3.3) regarding 

conservation of mass would be for two molecules of 1 (2×250 g/mol) to be protonated (+ 

2×1 g/mol) followed by loss of 2H2O (- 2×18 g/mol) while gaining the THF unit (+ 72 

g/mol) to equal 538 g/mol as 2. Subsequent loss of THF (466 g/mol) and polymerization 
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through ethylene glycol fragments affords 3 with discreet dimers with a mass equal to twice 

that of 2-THF, ~932 g/mol. The final conversion from two molecules of 3 into 4 requires a 

shift from 932+932 = 1864 g/mol (2×3) into 1628 g/mol (excluding 2× ethylene glycol 

solvent molecules of 4). This is a net loss of 236 g/mol comprised of 8 oxygen, 8 carbon, 

and 18 hydrogen atoms, which could equate to the loss of three ethylene glycol and two 

carbon monoxide molecules. The central cluster contains 2 oxo groups to 4 molybdenum, 

implying loss of 4 oxygen atoms through loss of oxo groups between a pair of dimers is 

necessary for creation of the central tetrameric core of 4. This could be mediated by 

protonation from hydroxy groups from solvent ethylene glycol, entirely hydrogen-bound 

ethylene glycol molecules such as that observed in the crystal structure of 4, or through the 

singly deprotonated ethylene glycol mono- or bidentate ligand (2-hydroxyethyl-1-oxo) 

commonly observed hydrogen bonding intramolecularly such as in the crystal structures of 

1 and 2 monodentate ligand (Table 3.5). The complexity of this final conversion if this is 

the route towards formation of 4, is too great for any degree of certainty for its formation, 

and more work is needed to determine if this is produced from partial dissolution of MoO3. 

Based on the formula of the Mo1-Mo2 dimer, a doubly bridging bidentate ethylene 

glycoxide ligand is possible, meaning singly bridging mono-deprotonated ethylene glycol 

ligands observed in crystal structures of 2-4 could participate in proton transfer. This could 

result in a variety of observed intramolecular motifs such as the bidentate non-bridging 

ethylene glycoxide oxygen atoms and oxo groups. 
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Table 3.4 Crystal data and structure refinement for compounds 1-4. 
Compound 1 2 3 4 

Crystal C1a C2a C5a C6a 

Empirical formula C4H10MoO6 C12H26Mo2O11 C16H36Mo4O20 C28H66Mo8O36 

Colour Colourless Yellow Yellow Red 

Formula weight 250.06 538.21 932.21 1746.32 

Temperature/K 100.0 125.0 125.0 125.0 

Crystal system tetragonal orthorhombic orthorhombic triclinic 

Space group P41 Fdd2 Pna21 P-1 

a/Å 9.46450(10) 16.7363(3) 34.2851(19) 8.5318(4) 

b/Å 9.46450(10) 24.6210(5) 9.7131(5) 11.0284(5) 

c/Å 17.3160(4) 8.8062(2) 8.4881(4) 14.5245(7) 

α/° 90 90 90 81.706(2) 

β/° 90 90 90 77.862(2) 

γ/° 90 90 90 69.992(2) 

Volume/Å3 1551.11(5) 3628.72(13) 2826.7(3) 1251.55(10) 

Z 8 8 4 1 

ρcalcg/cm3 2.142 1.970 2.191 2.317 

μ/mm-1 1.675 1.436 1.819 2.040 

F(000) 992.0 2160.0 1840.0 858.0 

Crystal size/mm3 
0.34 × 0.265 × 

0.225 

0.16 × 0.16 × 

0.115 

0.24 × 0.12 × 

0.12 

0.12 × 0.07 × 

0.04 

Radiation 
MoKα (λ = 

0.71073) 

MoKα (λ = 

0.71073) 

MoKα (λ = 

0.71073) 

MoKα (λ = 

0.71073) 

2Θ range for data collection/° 
4.304 to 

89.996 
5.482 to 90.582 4.358 to 72.67 

4.694 to 

67.802 

Index ranges 

-18 ≤ h ≤ 17, -

15 ≤ k ≤ 18, -

34 ≤ l ≤ 34 

-32 ≤ h ≤ 33, -

49 ≤ k ≤ 49, -15 

≤ l ≤ 17 

-57 ≤ h ≤ 57, -16 

≤ k ≤ 16, -14 ≤ l 

≤ 14 

-13 ≤ h ≤ 13, -

17 ≤ k ≤ 17, -22 

≤ l ≤ 22 

Reflections collected 110585 39690 281817 126602 

Independent reflections 

12760 [Rint = 

0.0334, 

Rsigma = 

0.0174] 

7050 [Rint = 

0.0568, Rsigma = 

0.0487] 

13709 [Rint = 

0.0390, Rsigma = 

0.0163] 

10104 [Rint = 

0.0407, 

Rsigma = 

0.0176] 

Data/restraints/parameters 12760/4/213 7050/1/116 13709/17/428 10104/3/355 

Goodness-of-fit on F2 1.109 1.008 1.092 1.075 

Final R indexes [I>=2σ (I)] 
R1 = 0.0206, 

wR2 = 0.0511 

R1 = 0.0309, 

wR2 = 0.0467 

R1 = 0.0655, 

wR2 = 0.1341 

R1 = 0.0219, 

wR2 = 0.0528 

Final R indexes [all data] 
R1 = 0.0222, 

wR2 = 0.0521 

R1 = 0.0485, 

wR2 = 0.0508 

R1 = 0.0683, 

wR2 = 0.1353 

R1 = 0.0267, 

wR2 = 0.0554 

Largest diff. peak/hole / e Å-3 0.90/-1.55 0.83/-0.67 1.42/-2.23 1.30/-1.21 

Flack parameter 0.03(2) -0.015(16) 0.05(8) N/A 

 

The protic nature of the solvent and ligands allows for the ability couple 

molybdenum clusters via protonation of the bridging ethoxide, dissociation or 

rearrangement of the newly formed hydroxy group, insertion of the newly formed ethoxide 
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ligand, with the intermediate cationic dimer. The presence of a bridging oxo group between 

molybdenum atoms of the dimer and the central tetramer of compound 4 could be the result 

of hydrolysis of the C-O bond of a bridging ethylene glycoxide unit, forming a bridging 

hydroxy group OH. If this bridging hydroxy group were to encounter a Mo-OH, loss of 

water and formation of the observed triply bridging oxo groups partially bonding the central 

tetramer with the outer dimers. Much of this is speculative; however, possible steps are 

presented by which interconversion from the monomeric MoO2(OC2H4OH) to larger 

clusters observed in this work may occur. The opposite may be true as well with incomplete 

dissolution resulting in the clusters, undergoing reduction and extensive hydrolysis, loss of 

water, and formation of ethylene glycol units. 
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Table 3.5 Hydrogen bonding interactions observed for compounds 1-4.  

D H A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/° 
Compound 1 – MoO6C4H10 

O4 H4 O31 0.852(13) 1.851(14) 2.7000(18) 174(4) 

O6 H6 O9 0.854(13) 1.836(19) 2.6407(17) 156(4) 

O10 H10 O52 0.855(13) 1.808(15) 2.6515(16) 169(4) 

O12 H12 O113 0.75(4) 1.76(4) 2.5047(17) 171(4) 

Compound 2 – Mo2O10C8H18•(OC4H8, THF) 

O6 H6 O34 0.89 1.93 2.814(2) 174.3 

Compound 3 – Mo4O20C16H36 

O1B H1B O7 0.84 1.96 2.69(3) 144.8 

O5 H5 O4 0.873(13) 1.82(2) 2.582(9) 144(3) 

O14A H14C O15 0.84 1.86 2.680(13) 166.4 

O14B H14D O205 0.84 2.18 2.80(3) 130.4 

O17 H17 O11 0.874(13) 1.77(2) 2.562(10) 149(3) 

Compound 4 – Mo8O32C24H54•2(C2H4(OH)2, ethylene glycol) 

O12 H12 O8 0.74(3) 1.95(3) 2.686(2) 174(4) 

O13 H13 O17 0.94(3) 1.62(3) 2.552(2) 170(3) 

O16 H16 O36 0.77(3) 1.73(3) 2.4891(19) 174(4) 

O17 H17 O12 0.77(3) 1.89(3) 2.657(2) 171(4) 

O18 H18 O47 0.773(17) 1.963(18) 2.720(2) 166(3) 

Symmetry operators for relevant hydrogen bonding interactions indicated with superscripts on acceptor 

atoms. 1: 1+Y,2-X,-1/4+Z; 2: 2-X,1-Y,1/2+Z; 3: +Y,2-X,-1/4+Z; 4: 3/4-X,1/4+Y,-1/4+Z; 5:1-X,1-Y,-

1/2+Z; 6: 1-X,1-Y,1-Z; 7: -1+X,1+Y,+Z. 

  

One additional unexpected crystalline material was obtained (compound 5) through 

quenching an electrodeposition solution containing 1.5 mL 0.1 M PP13-TFSI in THF with 

0.05 mL 1,4-butanedithiol and 0.05 mL B3a. Addition of 5% bleach afforded a biphasic 

solution with a blue and colourless layer, along with and precipitation of ~5-30 mg golden 

yellow prisms at the interphase. Analysis by SC-XRD indicates the decomposition of the 

ionic liquid via anion exchange by forming [PP13]2[Mo6O19] (Figure 3.5).  
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Figure 3.5 Molecular structure of compound 5 with anisotropic displacement ellipsoids 

projected at the 50% probability level. Hydrogen atoms have been omitted for clarity. From 

top left to right represent views of the dianion [Mo6O19]
2- down the 100, 010, and 001 axis, 

respectively. The bottom image represents the complete structure of compound 5; 

[PP13]2[Mo6O19]. Oxygen = red, molybdenum = yellow. 

 

3.3.3 Ratio of Molybdenum and Oxygen 

Table 3.6 shows relevant Mo:O ratios observed within six SC-XRD samples 

showing the ratio of Mo:O drops as the colour of the oil the crystal was isolated from (and 

the crystal itself) darkens. Compound 1 isolated from C1a, C2b, and C3a has the highest 
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Mo:O ratio of 1:6, while a drop is observed for the dimeric 2 from B2a green oil (1:5.5), 

the dimer-polymer 3 from B5a golden-brown oil (1:5), and the larger cluster 4 observed 

from B6a brown oil with either 1:4 as just the cluster, or 1:4.25 accounting for ethylene 

glycol solvation. Compounds 5 and 6 feature the lowest Mo:O ratios of 1:3.17 and 1:3.33 

for the molybdenum oxide clusters [Mo6O19]
-2 and Mo12O40, respectively. 

Table 3.6 Mo:O ratios for each of the isolated crystalline samples from molybdenum 

precursor synthesis (1-4), electrochemical experiments (5), and hydrolysis (6).  

Crystal/solid Mo:O ratio in crystal, reduced Mo:O ratio 

1 1:6 

2 2:11, (1:5.5) 

3 4:20, (1:5) 

4 8:(32 cluster + 4 co-crystallized solvent), 

(1:4 cluster, 1:4.25 co-crystallized solvent) 

5 6:19, (1:3.17) 

6 12:40, (1:3.33) 

 

3.3.4 Electrochemistry 

Electrochemical studies began with analysis of relevant precursors (1,4-

butanedithiol, ethylene glycol, B3a, and B6a) within an electrolyte solution of 0.1M PP13-

TFSI in THF. Various electrodeposition techniques were employed including 

potentiodynamic (CV), potentiostatic (chronoamperometry (CA), or bulk electrolysis (BE)) 

in either 0.1 M PP13-TFSI in THF or in the pure PP13-TFSI ionic liquid (with heat). 

The glassy carbon electrode was cleaned by polishing with 5 µm alumina on a wet 

polishing pad, and rinsing with water and then acetone, and drying in a vacuum desiccator 

overnight. Screen printed platinum electrodes were cleaned by immersion in concentrated 

sulfuric acid for ~20 minutes, rinsing with deionized water, immersion in 10-20% HNO3 

for ~20 min, and rinsing again with deionized water. This was followed by immersion in a 
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20 mL scintillation vial in 0.5 M H2SO4 made up with Milli-Q water (countered by the 

internal Pt and referenced to an external Ag/AgCl electrode in sat. KCl Gel). The electrodes 

were cycled from -0.2 V to +1.0 V at a rate of 250-300 mV/s until a cyclic voltammogram 

consistent with clean platinum was obtained with significant overlap of multiple cycles 

(Figure 3.6). Each of the five Pt SPE’s used have their clean Pt voltammogram presented 

to show a rough relative surface area.53 Pt Screen Printed Electrode (SPE) #5 has the lowest 

area, followed by Pt SPE #1, and Pt SPE #2-4 have relatively similar real electrochemical 

surface areas. 

 
Figure 3.6 Final cyclic voltammogram of Pt SPE #1-5 (left) and 25 cycles of Pt SPE #3 

(right) immersed in 0.5 M H2SO4 within a window of -200 to 1000 mV vs. Ag/AgCl in sat. 

KCl gel. Difference in current indicates a difference in available surface area to transfer or 

receive more electrons, registering as a greater magnitude of total current. Current also 

increases within increasing scans from cleaning the surface of the electrode, opening up 

more of the platinum surface to adsorb hydrogen (- V) or oxygen (+ V) atoms. 

 

3.3.5 Electrochemistry of 0.1 M PP13-TFSI in THF 

 The supporting electrolyte used for electrochemical studies was 0.1 M PP13-TFSI 

in THF that possesses an electrochemical double layer window of -1.25 to 0.5 V conducted 
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within a 50-100 ppm O2 glovebox using a platinum screen-printed electrode (Pt SPE) as a 

working electrode (WE) along with use of the internal platinum counter electrode (CE), 

with external reference to an Ag/Ag+ (0.1 M PP13-TFSI in THF) reference electrode (RE) 

separated via a small ceramic frit (Figure 3.7). The potentiostat, a laptop, and the 

electrochemical cell were all present within the glovebox and manipulations were carried 

out entirely within the open atmosphere of the glovebox that had an oxygen content less 

than 100 ppm. For these preliminary studies, PP13-TFSI showed significant 

electrochemical stability far exceeding that of aqueous solutions that readily evolve 

hydrogen below -0.2 V (in 0.5 M H2SO4). This is a key advantage of non-aqueous 

electrochemistry that allows for very low voltage cathodic reduction, which appears 

important for reduction of molybdenum precursors directly into crystalline MoS2 rather 

than amorphous films of MoSx. Rather than using an alternate electrolyte solution, PP13-

TFSI was used as the electrolyte in case something about it is necessary for the conversion 

of these precursors to molybdenum disulfide; however, cheaper, more environmentally 

friendly alternative ionic liquids may be more effective and could also be explored in future 

work in this area. 
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Figure 3.7 Double layer cyclic voltammogram showing the electrochemical window for 

the Pt SPE (-1.25 to 0.5 V) within the 0.1 M PP13-TFSI in THF supporting electrolyte 

solution (CE = Pt, RE = Ag/Ag+ in 0.1 M PP13-TFSI). Sweep rate = 50 mV/s. 

 

Initial exploration of the full electrochemical window of PP13-TFSI in THF (Figure 

3.7) exhibited significant oxidation above +0.5 V with subsequent reduction occurring 

between -0.25 V and 0 V on the cathodic sweep. The first window scanned was -2.7 V to 

+1.8 V, resulting in significant oxidation occurring above +1.0 V and a reduction event at 

-0.1 V with very little further activity. When the window was reduced to -1.0 V to +2.0 V, 

a significant oxidation above +1.0 V was observed with a broad reduction beginning at ~ 

+0.2 V, peaking at -0.24 V, reaching near baseline around -1.0 V. Changing the window to 

-1.6 V to +1.0 V results in a similar oxidation behaviour occurring at ~ +0.5 V. The cathodic 

region for this electrolyte is large, with little current registered to nearly -2.7 V. When the 

window of -3.0 V to +0.7 V was explored, reduction occurring from -2.0 V to -3.0 V 
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resulted in an oxidation event on the following anodic sweep at -0.48 V. This work indicates 

that this ionic liquid is effective for depositions at negative voltages proposed by 

Murugesan et al.; however, positive voltages above +1.0 V result in oxidation of the ionic 

liquid or THF on platinum and should thus be avoided. 

 
Figure 3.8 Electrochemical window elucidation for the 0.10 M PP13-TFSI in THF solution 

used for later electrochemical studies. Order of collection on the same electrode in solution 

follows top left (100 mV/s), top right (50 mV/s), bottom left (50 mV/s), then bottom right 

(50 mV/s). 

 

On a glassy carbon WE with a platinum wire CE referenced to Ag/Ag+ (0.1 M PP13-

TFSI in THF), the electrochemical window (Figure 3.9) was stable between -0.75 V to 
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+0.50 V and -1.25 V to +0.50 V. Reduction was observed beginning below roughly -1.6 V; 

however, a relatively smooth electrochemical window between -2.0 V to +0.5 V was also 

observed. Altering the electrochemical window to -2.7 V to +0.5 V resulted in a broad 

reduction with two main features at roughly -2.2 and -2.7 V, respectively, causing a broad 

asymmetric oxidation signal spanning -1.75 to -0.5 V with a peak at -0.9 V. In general, this 

shows that both electrode materials within this ionic liquid are suitable for deposition. 

 
Figure 3.9 Electrochemical window elucidation for the 0.10 M PP13-TFSI in THF solution 

used for later electrochemical studies. For all but the first chromatogram, 6 cycles are 

shown for each sweep rate of either 50 (green) or 500 (red) mV/s. 
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Following the characterization of the electrochemical window of the 0.10 M PP13-

TFSI in THF, 1.5 mL of this solution had 0.05 mL of various reagents present during MoS2 

electrodeposition attempts as detailed later. The reagents studied include ethylene glycol, 

1,4-butanedithiol, a mixture of ethylene glycol and 1,4-butanedithiol, and molybdenum 

precursors (B3a, B6a), the “gold” and “brown” oils, respectively. 

3.3.6 Electrochemistry of 1,4-butanedithiol in 0.1 M PP13-TFSI in THF 

 To better understand the electrochemical behaviour of 1,4-butanedithiol and other 

reagents under these electrochemical conditions, some control experiments were 

performed. Cycling between -2.7 V and +1.0 V using Pt SPE #1 at 50 mV/s within a 

solution containing 1.5 mL of 0.1 M PP13-TFSI in THF and 0.05 mL 1,4-butanedithiol 

resulted in clearly defined oxidation and reduction peaks with significant separation of peak 

voltages of roughly 2 V (Figure 3.10).  

 
Figure 3.10 CV of 0.05 mL 1,4-butanedithiol added to 1.5 mL of 0.1 M PP13-TFSI in THF 

cycled between -2.7 V to +1.0 V at 50 mV/s. Left shows the difference between first and 

last cycles, while right displays the second cycle alongside a cycle in pure 0.1 M PP13-

TFSI in THF. 
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Adsorption onto the platinum surface upon cathodic reduction may occur below 

roughly -1.2 V, registering current that rapidly dissipates with a maximum current at 

roughly -2.5 V, decreasing towards -2.7 V. Beginning the anodic sweep from -2.7 V to +1.0 

V also occurs with a sharp drop in current. This indicates adsorption of the material to the 

electrode surface, and desorption is observed above roughly -0.8 V. Support is provided by 

SEM-EDS analysis of the electrode surface following the proposed desorption process 

which is free of sulfur (Figure 3.11). This characterization indicates that the 1,4-

butanedithiol is electrochemically active within PP13-TFSI in THF and is undergoing an 

electron transfer process below -1.2 V, and above -0.8 V upon the following anodic sweep.  

 
Figure 3.11 SEM-EDS analysis of Pt SPE #1 following electrochemistry within 1.5 mL 

0.1 M PP13-TFSI in THF with 0.05 mL 1,4-butanedithiol with the corresponding SE 

reference image (left). 

 

3.3.7 Electrochemistry of ethylene glycol in 0.1 M PP13-TFSI in THF 

 Ethylene glycol was chosen as an analyte due to the residual presence of ethylene 

glycol within the molybdenum precursors so that a comparison between the two could be 

made. As an additional comparison to the blank 0.1 M PP13-TFSI in THF solution, 
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ethylene glycol provided a beneficial reference for these products through their distinct 

difference in electrochemical behaviour upon cathodic reduction. To 1.5 mL PP13-TFSI in 

THF, 0.05 mL ethylene glycol was added. Cycling potentiodynamically between -2.7 V 

and +1.0 V at 50 mV/s resulted in the appearance of a significant resistive (diagonal) 

component in the CV beginning at roughly -1.0 V (Figure 3.12). Appearance of this 

resistive component in the CV indicates that there is resistance for current flow which may 

be due to the increased viscosity of the electrolyte after addition of ethylene glycol, which 

may impede electron flow. Two oxidation events occur during the anodic sweep at roughly 

-0.9 V and -0.3 V that may correspond with desorption and/or phase reorientation of the 

ethylene glycol from the WE surface. 

 
Figure 3.12 CV of 0.05 mL ethylene glycol added to 1.5 mL 0.1 M PP13-TFSI in THF 

cycled between -2.7 V to +1.0 V. 
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3.3.8 Ethylene glycol and 1,4-butanedithiol in 0.1 M PP13-TFSI in THF 

 Following the previous experiments with 1,4-butanedithiol and ethylene glycol, 

0.05 mL of both analytes were added to 1.5 mL PP13-TFSI in THF and the cyclic 

voltammetry was run as before (Figure 3.13). This combination was explored to see if 

electrochemical behaviour would differ for the two pure compounds for comparison with 

mixtures of molybdenum and sulfur precursor solutions. A drop in current upon cathodic 

reduction is observed around -1.0 V, overlapping with the anodic sweep until ~ -1.0 V. 

Between -1.0 V and -0.5 V nothing occurs on the anodic sweep, and this is where the first 

of the two ethylene glycol peaks were observed (-0.86 V). Addition of ethylene glycol 

appears to prohibit the redox chemistry of the pure 1,4-butanedithiol as observed in Figure 

3.10.  

 
Figure 3.13 CV of a mixture of 0.05 mL ethylene glycol and 0.05 mL 1,4-butanedithiol 

added to 1.5 mL 0.1 M PP13-TFSI in THF with 7 cycles between -2.7 V to +1.0 V. 
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3.3.9 Molybdenum Precursors in 0.1 M PP13-TFSI in THF 

 The molybdenum precursors inevitably contained residual ethylene glycol, 

resulting in the desire to compare electrochemical behaviour between pure ethylene glycol, 

the gold-coloured B3a, and the brown oil B6a. Comparison of 0.05 mL ethylene glycol and 

0.05 mL B3a within the 1.5 mL PP13-TFSI in THF solution resulted in significant 

differences between pure ethylene glycol and the molybdenum saturated golden oil B3a 

(Figure 3.14).  

 
Figure 3.14 Cyclic voltammogram sweep from Open Circuit Potential (OCP) to +0.5 V, 

then to -1.25 V and back to the starting voltage for solutions of 1.5 mL 0.1 M PP13-TFSI 

in THF with the addition of 0.05 mL ethylene glycol (left) or B3a (right) at 10 mV/s. 

 

Two Pt SPE (#3 and #4) with similar electrochemical surface area (Figure 3.6, total 

current very similar in 0.5 M H2SO4)
54 were used for this study. Initial cycling from -1.25 
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V to +0.5 V in the solution pre-analyte resulted in a clean voltammogram (Figure 3.14). 

Subsequent addition of each analyte and repeat scanning at 10 mV/s from OCP to +0.5 V, 

down to -1.25 V and back to the original OCP voltage gave rise to a stark difference. The 

choice to scan from open circuit potential was to avoid initial oxidation or reduction which 

could occur otherwise. Ethylene glycol alone maintained the same double layer as the blank 

solution until roughly -0.7 V during the cathodic sweep, with significant reduction 

beginning around -1.0 V. The B3a in contrast had a drop in current beginning at about 0 V, 

with a peak at -0.4 V. Additional drop in current is observed beginning at -0.7 V with 

another drop below -1.1 V. The current registered with B3a is greater than that of ethylene 

glycol; however, the initial blank solution scanned with each electrode was very similar. 

Upon anodic sweeping from -1.25 to +1.0 V, B3a gave had a rise in current between -1.25 

and -1.1 V, with a very broad rise between -0.8 and -0.4 V. Though a different scan rate 

was used analyzing the brown oil B6a, it is very clear that B3a and B6a have very different 

electrochemical features upon cycling once from -1.25 V to +0.5 V (Figure 3.15). The 

golden-coloured B3a displays reduction events at ~ -0.4 V and ~ -0.6 V, beginning a 

resistive drop in current at ~ -1.0 V (Figure 3.14). In contrast, the brown-coloured oil B6a 

has no reductive event at ~ -0.4 V which is the major distinct feature of the CV containing 

B3a. Unlike ethylene glycol or B3a, B6a is observed to begin a cathodic reduction 

beginning at ~ -0.6 V which does match a reduction event of B3a; however, there exists no 

analogous plateau in current like that observed for B3a prior to the resistive drop in current 

below -1.0 V observed for both pure ethylene glycol and B3a. A unique observation within 

the B6a sample is a broad oxidation event occurring at ~ -0.6  
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Figure 3.15 Cyclic voltammogram sweep from OCP to +0.5 V, then to -1.25 V and back 

to the starting voltage for solutions of 1.5 mL 0.1 M PP13-TFSI in THF, followed by 

addition of 0.05 mL B6a at 50 mV/s on Pt SPE #1. 

 

V during the anodic sweep. Analysis by SEM-EDS indicated presence of molybdenum, 

confirming that the brown-coloured oil B6a does deposit onto the platinum working 

electrode following a single potentiodynamic cycle from 0 V to +0.5 V to -1.25 V and back 

to 0 V (See SI). 

3.3.10 Attempts to Electrodeposit MoS2 by Literature Optimized Conditions 

Following successful synthesis of a MoO3/ethylene glycol reaction mixture which 

was “brown” B6a, a replication deposition was conducted following the procedure by 

Murugesan et al. The electrochemical conditions that were successful for their deposition 

involved a mixture of 1.5 mL pure PP13-TFSI ionic liquid as a single-source non-aqueous 



Page | 72  

 

solvent and electrolyte with addition of 100 µL of both 1,4-butanedithiol and the “brown 

oil” molybdenum precursor. To this mixture at 100 °C, a chronoamperometric deposition 

at -2.7 V for 600 seconds was conducted and the electrodes rinsed with acetone and dried. 

In the original work, a 1 x 1 cm piece of glassy carbon was used as the working electrode, 

mounted on a rotating disc electrode with carbon tape. Platinum was used for both counter 

and quasi-reference electrodes. Different to this group, Ag/Ag+ was used as a reference 

electrode in non-aqueous conditions, and the glassy carbon working electrode of different 

fabrication was not sonicated following 5 µm alumina polishing. 

 The ionic liquid was mixed with the molybdenum precursor prior to the heating in 

a low volume 3 electrode cell within a sand bath on a hotplate. Homogeneity of the mixture 

wasn’t observed until ~50 °C. Addition of 1,4-butanedithiol was done at ~75 °C, which 

resulted in an immediate dark black precipitate forming which was not mentioned in the 

work by Murugesan et al.1 Prior to immersion of the electrodes, majority of the solid was 

scraped from the solution surface and removed; however, this may be what resulted in 

crystalline MoS2 shown by Murugesan et. al. The electrode was immersed at ~80 °C, and 

upon reaching a steady (5 min) 100 °C, chronoamperometric deposition at -2.7 V for 600 

seconds was conducted. 
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Figure 3.16 Chronoamperometric (CA) deposition attempt at -2.7 V for 600 seconds in a 

solution of 0.7g PP13-TFSI, 0.05 mL B6a and 0.05 mL 1,4-butanedithiol. 

 

 Following this electrodeposition, the electrode was rinsed with THF and stored in a 

desiccator. SEM analysis of the electrode revealed abundant debris, including fragmented 

material with sharp edges and sparse globular material. Analysis by SEM-EDS revealed 

the sharp material contains aluminum, indicating residual alumina from polishing. Analysis 

of the globular material revealed a signal for sulfur; however, in both of these instances 

signal intensity was mostly carbon (Figure 3.17). The crystalline MoS2 nanoflowers 

reported by Murugesan et al.1 could not be reproduced. 
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Figure 3.17 SEM-EDS analysis of a glassy carbon electrode following attempted 

chronoamperometric deposition of MoS2. Sulfur is present within the brightest globular 

structures observed. 

 

3.3.11 Attempts to Electrodeposit MoS2 by Exploratory Methods 

Use of the 0.1 M PP13-TFSI in THF supporting electrolyte at room temperature 

was explored to attempt MoS2 electrodeposition using a ratio of 1.5 mL 0.1 M PP13-TFSI 

in THF to 0.05 mL 1,4-butanedithiol and 0.05 mL of B3a and B6a. In general, these 

attempts would result in no significant deposit when observed by SEM, while SEM-EDS 

mostly showed pure platinum, or sulfur, carbon, and oxygen. Aluminum and silicon were 

also observed as a component of the working electrode fabrication. Amorphous deposits 
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were achieved in a few instances with either sulfur or molybdenum present; however, the 

overlap of their signals during SEM-EDS analysis resulted in an inability to discern the 

composition. The issues associated with the unexpected precipitate material that forms 

when mixing the molybdenum and sulfur precursors in pure PP13-TFSI was found to be 

avoided by mixing the precursors in the presence of THF. When solutions were prepared 

and used right away, no precipitate formed to interfere with electrode-solution contact, and 

the colour change to a final stable red was similar to that of the pure ionic liquid. Since the 

“brown oil” B6a was not available for early studies, the gold-coloured oil B3a was used 

for majority of the alternative deposition attempts. Use of this solution with screen-printed 

platinum electrodes in a compact voltammetry low volume cell was explored, though this 

electrochemical cell could not be heated by manufacturer recommendation. Use of PP13-

TFSI as an electrolyte within THF also allowed for increased conservation of this expensive 

material. 

When mixing the gold-coloured B3a (0.05 mL) with 0.1 M PP13-TFSI (1.5 mL) a 

lighter pale yellow is observed. Addition of 0.05 mL 1,4-butanedithiol to this solution 

causes a colour change to orange, then red over the course of a half hour, with a red 

precipitate settling over the course of a week. Decanting the red solution and using it for 

deposition on Pt SPE #3 then Pt SPE #4 back-to-back via first applying -2.7 V for 600 

seconds, followed by a single sweep from -0.75 V to -2.7 V (Figure 3.18).  
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Figure 3.18 Two step electrodeposition attempt involving a single solution of 1.5 mL of 

0.1 M PP13-TFSI in THF which had 0.05 mL B3a, then 0.05 mL 1,4-butanedithiol added 

and left to sit for a week. The red solution was put into the electrochemical cell, and Pt SPE 

#3 followed by Pt SPE #4 had BE conducted at -2.7 V for 600 seconds (left) followed by a 

single 50 mV/s sweep from -0.75 V to -2.7 V (right). 

 

Both electrodes had a deposit by SEM-analysis (Figure 3.19); however, the 

morphology presented as a non-homogenous ring around the electrode, with a globular 

amorphous deposit upon closer examination. Two solutions were prepared containing 50 

µL 1,4-butanedithiol, B3a, and either 1.5 mL THF, or 1.5 mL 0.1 M PP13-TFSI in THF. 

The THF solution appeared to have an orange suspended solid, and the 0.1 M PP13-TFSI 

in THF initially turned clear orange, going a clear red with a red precipitate after sitting for 

a week. The pure THF solution remained as a solution with an orange solid that did not 

settle. The clarified reddish orange solution from the 0.1 M PP13-TFSI in THF was 

decanted and used as the electrochemical solution. SEM-EDS analysis revealed the 

presence of sulfur and platinum, with other metal signals (Fe, Mg, Co) potentially present 

as artifacts or as contaminants. 
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Figure 3.19 SEM SE images of electrodes (left = Pt SPE #3, right = Pt SPE #4) showing 

amorphous, non-homogenous deposit following a series of bulk electrolysis (-2.7 V for 600 

seconds) following by a single sweep from -0.75 V to -2.7 V at 50 mV/s. 

 

An additional deposition attempt was conducted in a solution of 1.5 mL 0.1 M 

PP13-TFSI in THF had 0.05 mL B3a added followed by 0.05 mL 1,4-butanedithiol in a 

low volume cell had a screen-printed platinum electrode (Pt SPE #5) immersed. The cell 

was externally referenced to Ag/Ag+ wire pseudo reference electrode immersed in 0.1 M 

PP13-TFSI in THF sealed with a small ceramic frit. CV from +1.0 V to -2.7 V for 30 cycles 

was run to attempt a potentiodynamic deposition. The sweep had reduction at +0.5 V,  
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Figure 3.20 Cyclic voltammogram (left) of the attempted electrodeposition of MoS2 from 

a mix of 1.5 mL 0.1 M PP13-TFSI in THF, 0.05 mL 1,4-butanedithiol, and 0.05 mL B3a. 

The first and 30th cycle are shown from -1.0 V to -2.7 V with a sweep rate of 50 mV/s. 

SEM SE image of the surface of the electrode following deposition of a nanoscale material. 

Long bladed crystals are a mix of Al/Zn/O from electrode fabrication. 

 

dropping from -1.0 V to -2.7 V. The anodic sweep overlaps, indicating a resistive 

component to the circuit which may be due to the viscosity of residual ethylene glycol at 

the electrode surface or insufficient electrolyte. There is oxidation at ~ -0.7 V and another 

at ~ +0.4 V with an incomplete oxidation beginning at ~ +0.8 V increasing towards +1.0 

V. After 30 cycles the current observed for the reduction and oxidation events dropped 

substantially, and the peak voltages shifted +/- 0.1 V with the region between -2.7 V and  

-1.4 V remaining similar. 

 This work was not conclusive regarding the state of each deposit; however, various 

unique morphologies were observed by SEM analysis following electrodeposition by 

chronoamperometric and potentiodynamic methods within pure PP13-TFSI or 0.1 M PP13-

TFSI in THF as a supporting electrolyte solution and 1,4-butanedithiol as a sulfur precursor 

and concentrated MoO3 and ethylene glycol reaction solutions. SEM-EDS analysis 
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indicated the presence of sulfur; however, the overlap with molybdenum signals result in 

insufficient characterization to conclusively determine the identity of the deposits. 

 These experiments indicate PP13-TFSI within THF as a supporting electrolyte has 

a wide electrochemical window in the cathodic region. A solution of 0.1 M PP13-TFSI in 

THF does display a minor resistive component within -1.25 V to +0.5 V, though a greater 

concentration of PP13-TFSI may reduce this solution resistance. Electrochemical activity 

within this solution is very low until voltages below ~ -1.8 V, with oxidation occurring 

above +0.5 V affording an electrochemical window of greater than +2.0 V. This much 

wider than what is afforded by aqueous electrolytes, highlighting the value non-aqueous 

electrochemistry offers for future MoS2 electrodeposition research. Analysis of ethylene 

glycol indicated that its presence in solution at the concentrations studied may be 

problematic, introducing an apparent resistive component to the electrochemical system 

which impedes current flow. The difficulty associated with complete removal of ethylene 

glycol (b.p. 194 °C) from the molybdenum precursor proposed by Murugesan et al. without 

structurally changing the molybdenum precursor is a myriad of irreversible decomposition 

processes including thermally induced changes (too much heat = black solid), solvent 

mediated chemical alterations (water irreversibly changes the studied molybdenum 

precursor, THF coordinates to Mo dimers via µ bridging of the metal center), or a variety 

of clustering processes (dimerization, polymerization, tetra-/octamerization). SEM-EDS 

indicates material containing either sulfur or molybdenum has been deposited; however, 

the complete lack of reproducibility prevented further characterization of these undesirable 

non-homogenous amorphous films. 
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3.4 Experimental 

3.4.1 Solvents, Reagents, and Materials 

Nitrogen (gas and liquid) was supplied by Praxair and Air Liquide. Ethanol (95% 

and absolute) was purchased from Commercial Alcohols. Toluene, acetone, 

tetrahydrofuran, hexanes, DCM, and chloroform (CHCl3) were purchased from Fisher 

Chemical or Fisher Scientific. Anhydrous magnesium sulfate and acetonitrile were 

purchased from Caledon. Nitric acid was purchased from J.T. Baker and concentrated 

sulfuric acid was from BDH. CDCl3 (0.05% v/v tetramethyl silane) was purchased from 

Cambridge Isotope Laboratories Inc. Ethylene glycol (≥ 99%), molybdenum trioxide 

(99.99%), 1,4-butanedithiol (97%), N-methylpiperidine (99%), 1-bromopropane (99%), 4 

Å molecular sieves, pentane, and calcined diatomaceous earth were all purchased from 

Sigma-Aldrich. Activated alumina used for drying and filtering solvents was purchased 

from Anachemia and is 80-200 mesh. Heating was performed using a DrySyn aluminum 

heating block with 50-1000 mL flasks including sealed reaction vessels, round bottom 

flasks, and Schlenk flasks. Potassium hydride was purchased as a 30% mineral oil 

dispersion from Sigma-Aldrich and washed four times with an appropriate amount of 

pentane then dried in vacuo to give a free-flowing powder. Alumina, calcined diatomaceous 

earth, and molecular sieves were pre-dried in a 140 °C oven for a minimum of one week 

before being dried at 300 °C in vacuo in a half-filled round-bottom wrapped in aluminum foil 

within an aluminum block. Solvents (toluene, pentane, tetrahydrofuran) were purified using 

an Innovative Technology solvent purification system. Solvents (pentane, toluene, 

tetrahydrofuran, hexanes, benzene) were then dried using KH for 24-78 hours and 
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subsequently filtered through dry alumina and stored over 4 Å molecular sieves (~1/10th 

the volume of solvents). 

3.4.2 Equipment, Instruments and Analytical Methods 

Electrochemical experiments were performed using a Wavenow USB potentiostat (Pine 

Research Instrumentation) with Aftermath 1.5.9888 software to control the electrochemical 

parameters attached to a laptop. Origin 2018 was used for all electrochemical data analysis. All 

electrodes and electrochemical cells except 20 mL scintillation vials were purchased from Pine 

Research Instrumentation (Durham, NC, USA). Electrochemical cleaning of screen-printed 

platinum electrodes (Pt SPE) with built in Pt counter electrode (CE) and Ag/AgCl reference 

electrode (RE) via cycling rapidly within -0.2 V to +1.0 V in an electrolyte solution containing 

N2 purged 0.5 M H2SO4 in Milli-Q water in a 20 mL scintillation vial under a N2 gas blanket 

using all Pt SPE’s prior to use in non-aqueous experiments, with the final cycle fully desorbing 

all hydrogen atoms by completing the cycles at +0.3 V. All aqueous electrochemistry employed 

an external LowProfile Ag/AgCl RE sealed within a KCl, glycerol, cellulose gum gel 

electrolyte, and all non-aqueous electrochemistry utilized the same silver wire inserted in a 

sealed glass tube with a ceramic frit attached within either pure PP13-TFSI or 0.1 M PP13-TFSI 

in THF solution as the supporting electrolyte. Electrochemical experiments were performed in 

dry, low-O2 (< 100 ppm) conditions under an atmosphere of N2 within a mBraun Labmaster SP 

inert atmosphere glovebox in a low volume three electrode cell or compact voltammetry low 

volume cell kits (Pine Research Instrumentation). All electrochemical equipment and a laptop 

were used within the glovebox. Two distinct three-electrode set-ups were used for non-aqueous 

electrochemical experiments for either glassy carbon or platinum working electrodes. The Pt 
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SPE WE are countered by an internal platinum CE and referenced to Ag/Ag+ within a compact 

voltammetry cell low volume kit. When using a 3.0 mm diameter glassy carbon WE a 

LowProfile 0.5 mm diameter, 65 mm length platinum wire CE shrouded in PTFE within an 

epoxy tube was used with the same Ag/Ag+ RE within a low volume three electrode 

electrochemical cell. Glassware was dried at 140 °C overnight prior to synthetic 

experimentation.  Synthetic reactions were conducted in common glassware and Schlenk flasks 

using Schlenk techniques if outside the glovebox when listed. Non-air sensitive chemistry was 

performed in typical glassware such as round bottom flasks or 20 mL scintillation vials open to 

air. Milli-Q ultra-pure water (≥18.2 MΩ•cm) was used during aqueous electrochemistry and 

also when polishing the glassy carbon disc electrode.  

NMR spectra were recorded on a Bruker Avance 300 MHz NMR spectrometer. Trace 

amounts of non- or partially deuterated solvent were used as internal references for 1H and 13C 

NMR spectra and were referenced relative to tetramethyl silane when present.55  

Elemental analysis was performed in the Centre for Environmental Analysis and 

Remediation (CEAR) facility at Saint Mary's University using a Perkin Elmer 2400 II series 

Elemental Analyzer. Air sensitive samples were prepared within a glovebox, sealed in 20 mL 

scintillation vials, and rapidly weighed/inserted into the analyzer offering at most ~2 minutes of 

possible air exposure after opening the vial.  

SEM imaging and analysis was performed using a TESCAN MIRA 3 LMU 

Variable Pressure Schottky Field Emission Scanning Electron Microscope. Brightness 

difference between SEM-EDS images of some solid products is thought to be caused by 



Page | 83  

 

charging during analysis due to poor adhesion between the conductive carbon tape and the 

amorphous solid sample.  

Single crystal X-ray diffraction measurements first involved selection of a suitable 

single crystal, and mounting it on the tip of a MiTeGen MicroLoop with Paratone-N oil. 

Measurements were made on a Bruker D8 VENTURE diffractometer equipped with a 

PHOTON III CMOS detector using monochromated Mo Kα radiation (λ = 0.71073 Å) from 

an Incoatec micro-focus sealed tube at 100-125 K.56 The initial orientation and unit cell 

were indexed using a least-squares analysis of the reflections collected from a complete 

180 Φ-scan with 1 per frame. For data collection, a strategy was calculated to maximize 

data completeness and multiplicity in a reasonable amount of time, and then implemented 

using the Bruker Apex 3 software suite.56 The crystal to detector working distance was set 

to 4 cm. Data collection, unit cell refinement, data processing and multi-scan absorption 

correction were applied using the APEX3 software package.56-58 The structures were solved 

using SHELXT59 and all non-hydrogen atoms were refined anisotropically with SHELXL60 

using a combination of shelXle61 and OLEX262 graphical user interfaces. Unless otherwise 

noted, all hydrogen atom positions were idealized and ride on the atom to which they were 

attached. Molecular structure diagrams we’re prepared using Ortep-3 for Windows to colour 

and label atoms, style bonds, and position the molecule, with the final structure exported as a 

colour PostScript file. Final refinement of image size, bond style/width, and label 

size/positioning was done in CorelDRAW 10 using the PostScript file exported from Ortep-3 

for Windows. 
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3.4.3 Synthesis of Ionic Liquid and Molybdenum Precursors 

3.4.3.1 Ionic Liquid Synthesis 

The ionic liquid PP13-TFSI was prepared following a literature procedure.36 PP13-

TFSI was prepared first by reacting 1-bromopropane and N-methyl piperidine in 

acetonitrile at 70 °C overnight followed by filtering the white solid PP13-Br and washing 

3× with acetonitrile (crop 1 = 16.2 g). Concentration of the filtrate and washings with 

additional heating caused more precipitate to form which was collected twice more (crop 

2, 3 = 8.2, 4.9 g) with matching purity as the first batch by 1H NMR spectroscopy in CDCl3 

(See SI). Unexpected peaks at 1.77 and 1.82 ppm within 1H NMR spectra of crops 2 and 3 

of PP13-Br were confirmed to be water and acetonitrile as addition of 10 µL of each 

suspected solvent caused a shift to 1.68 and 1.84 ppm, respectively, showing concentration 

dependent interactions in CDCl3 solutions with PP13-Br. The first crop contained a peak at 

1.94 ppm that was assumed to be acetonitrile based on following the observed trend for 

increasing concentration of acetonitrile shifting closer to the expected 2.10 ppm within 

CDCl3 solutions.55 The PP13-Br was mixed as an aqueous solution into an equimolar 

solution of Li-TFSI and allowed to stir overnight, followed by multiple washes with water 

and then extraction with DCM, drying with MgSO4, filtering through a diatomaceous earth 

pipette filter and drying in vacuo to a thick oil, followed by drying overnight at 105 °C. 

Final analysis revealed three unidentifiable 19F NMR signals (See SI) and a trace of water 

was observed by 1H NMR spectroscopy. 
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3.4.3.2 First synthesis of the Molybdenum Precursor – A1 

To a 250 mL round bottom flask, 0.578g MoO3 and ~75 mL ethylene glycol was 

heated under nitrogen to 194 °C for 1 hour with rapid stirring. The colour progressed from 

colourless with mint green powder suspended in a dark turquoise solution at 180 °C, to 

black at 190 °C, then to golden brown after 40 minutes at 194 °C, and finally appearing 

dark reddish brown with a fine black precipitate after 1 hour at 194 °C. The crude reaction 

mixture was briefly exposed to air due to not using a Schlenk flask to provide N2 flow 

during sampling for solvent compatibility and water exposure tests. This was allowed to sit 

under nitrogen for four days and then a vacuum distillation at 110 °C for 3 hours was done 

to remove most of the ethylene glycol leaving a golden green paste that was extracted using 

2×30 mL DCM through a coarse glass frit quickly to minimize air exposure. A black paste 

remained to which ~ 50-100 mL acetone was added to rinse into the waste forming a milky 

brown fluid with incomplete dissolution, though addition of water greatly increased 

dissolution, taking on a dark blue/black colour. The combined DCM extracts were reduced 

in vacuo affording a thick golden viscous oil. A valve-less gas adapter was used while 

concentrating the solution and was swapped with a valved adapter and sealed under vacuum 

to transfer into the glovebox. The valve-less adapter had some oil residue on it taking on a 

red colour upon air exposure, turning a rich blue overnight. The sealed flask produced 

colourless crystals (C1a) in a gold oil. 44.5 mg of off-white crystals with a few red blobs 

were isolated through rinsing the crude mixture with tetrahydrofuran through a glass frit, 

resulting in a yield of 4.4% of MoVIO2(OC2H4OH)2 determined by single crystal X-ray 
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diffraction, supported by E.A. Concentrating the THF/ethylene glycol filtrate in vacuo 

afforded a golden solution (B1a)  

Analytical Calc. for C4H10MoO6: C: 19.21% H: 4.03% N: 0.00% Found: C: 19.23% H: 

4.09% N: 0.00% 

3.4.3.3 Second Synthesis of the Molybdenum Precursor – A2 

In a 250 mL Schlenk flask, 0.800 g MoO3 and 125 mL ethylene glycol was heated 

to 194 °C for 1 hour under N2 resulting in the same colour change as TG 77, greenish blue 

at ~184 °C followed by a golden brown/black. Upon cooling to 80 °C, a vacuum distillation 

was started while heating to 110-115 °C for 3 hours following the reaction, which was 

stopped and left to sit under N2 until the next day and resumed for an additional 5 hours 

until about 3 mL of golden runny oil was present with a green paste. 1x100 mL DCM was 

added and left to stir for 1 hour. The filtration utilized a two ended frit with a 1.5 cm pad 

of diatomaceous earth on the side of the crude extract and was filtered into a second 250 

mL Schlenk flask with positive pressure from the reaction flask. The golden-coloured 

extract was reduced to ~ 3 mL golden oil that was sealed under vacuum and transferred to 

the glovebox. This was then transferred to a 20 mL vial with THF and the solvent removed 

in vacuo. The residue had hexane added which did not dissolve the solid, so it was removed, 

and toluene was added with similar insolubility and removal in vacuo. THF was used to 

rinse the solid, affording a filtrate which, upon cooling, was a thick gold-coloured oil with 

yellow crystals (C2a) identified to be (MoVO(OC2H4OH)(µ-OC2H4OH))2(µ-OC2H4) by 

SC-XRD. Filtering and rinsing the solid with THF 2× and drying in vacuo afforded 374 mg 

of a yellow opaque solid (D2a) and removal of THF in vacuo from the filtrate left a thick 
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green oil (B2a).  The residue on the diatomaceous earth pad from the DCM filtration was 

rinsed with water and dried in vacuo affording crystals of MoVIO2(OC2H4OH)2 (C2b) in a 

dark green oil, identified by SC-XRD.  

Analytical Calc. for C12H28Mo2O11: C: 26.68% H: 5.22% N: 0.00%. Found: C: 27.59% H: 

3.19% N: 0.02%. 

3.4.3.4 Third synthesis of the Molybdenum Precursor – A3 

In a 100 mL round bottom flask 0.345 g MoO3 and 40 mL ethylene glycol were 

heated under vacuum to 185 °C with the distillation apparatus attached. ~5 mL colourless 

runny liquid was removed, presumed to be water. Vacuum was ceased and the reaction 

continued to warm to 194 °C under N2. After 10 minutes at 194 °C, a clear green solution 

was present which persisted for the first 35 minutes of the reaction, and after 1 hour a very 

clear golden-coloured solution was present with a small amount of black solid. The heat 

was reduced to 110 °C and the vacuum distillation afforded little ethylene glycol after 2 

hours, so the temperature was raised to 120 °C and then 130 °C after 30 minutes. An hour 

later, ~5 mL of a golden viscous oil remained with a fine black solid. The whole distillation 

apparatus was cooled and sealed under vacuum and transferred to the glovebox. The 

reaction flask was taken off the distillation apparatus and the rest were quickly removed 

from the glovebox. The golden oil with black solid was filtered through a diatomaceous 

earth pipette filter to remove the black solid that was discarded, and the total mass of the 

golden oil (B3a) was 3.1782 g and was stored at room temperature in a glovebox producing 

crystals (C3a) in 10 months that were identified by SC-XRD to be MoVIO2(OC2H4OH)2. 
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Isolation afforded ~0.1 g white crystals. An additional crystalline material from use of B3a 

for attempting electrodeposition was isolated (C3b) that is detailed in the SI. 

3.4.3.5 Fourth Synthesis of the Molybdenum Precursor – A4 

To a 250 mL round bottom flask 0.466 g MoO3 and 50 mL ethylene glycol were 

heated in a distillation set up under vacuum to 170 °C removing ~6 mL colourless liquid 

prior to cooking. Vacuum was stopped and N2 supplied while heating to 194 °C, with colour 

changing from greenish blue at 170 °C to golden brown at 194 °. Heat was increased from 

194 to 215 °C over 1 hour resulting in a black suspension in brown liquid that was heated 

for an additional 2 hours, followed by cooling with vacuum distillation at 130 °C, then the 

black remaining solid was heated under vacuum at 160 °C until dry. The flask was 

transferred to the glovebox and scraped into a 20 mL scintillation vial yielding 0.491 g of 

a lustrous metallic black solid (D4a). The residue in the flask was dissolved in water and 

transferred to a 20 mL vial in a -18 °C freezer with atmospheric exposure, resulting in a 

blue solution (B4a) forming very tiny blue crystals (C4a) that rapidly melted/dissolved 

upon warming. By SC-XRD, the blue crystal was identified as a highly hydrated Mo12O40X 

cluster with an unknown central atom or alkali/alkaline earth cations between the Mo/O/X 

clusters. Drying the blue solution in vacuo afforded a dark blue amorphous solid (D4b). 

3.4.3.6 Fifth Synthesis of the Molybdenum Precursor – A5 

To a 250 mL Schlenk flask 0.544g MoO3 and 70 mL ethylene glycol were heated 

to 191-193 °C for 1 hour under nitrogen. By 180 °C, a green solution was present turning 

to golden greenish black by 190 °C. The reaction was cooled to 100 °C and a 0.5-2 mL 

sample was taken and placed in a vial with nitrogen flow, then sealed in a 100 ppm O2 
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glovebox at room temperature. A vacuum distillation was started following this and was 

violent until ~5-10 mL was removed. The solution was a dark green at this point, and the 

temperature was increased to 115 °C for 2 hours until about 5 mL dark greenish brown 

liquid with black solids was present. This solution was filtered through a diatomaceous 

earth pipette filter affording 4.347 g of a thick golden-brown oil (B5a). The residue in the 

flask and on the filter were rinsed with 3×1.5 mL THF, then concentrated in vacuo to a 

thick golden-brown oil weighing 0.728g (B5b). The pipette filter was broken so the Kim 

wipe, diatomaceous earth, and black solid within the base of the pipette could be stored in 

a vial and allowed to dry slowly of THF (D5a). were stored at -35 °C with no solids forming 

in TG 212 B-C. Over time, solutions B5a and B5b both crystallized very similar golden 

crystals. A single crystal sample from B5b was analyzed by SC-XRD and shown to be 

C16H36Mo4O20 (C5a). This is not conclusive of being the only compound present, though 

other crystals had similar colour and morphology. 

3.4.3.7 Sixth Synthesis of the Molybdenum Precursor – A6 

This was an attempt to repeat the largest scale golden oil synthesis (#3). In a 250 

mL Schlenk flask, 0.286 g MoO3
 and 35 mL ethylene glycol and heat to 130 °C under 

vacuum, removing ~10 mL liquid. Heat was raised to 194 °C for one hour, leading to a 

brown solution with black solids. The temperature was then reduced to 130 °C to begin 

vacuum distilling the mixture to ~8 mL thick brown oil with black solids. Sealing and 

bringing into a glovebox followed by filtration of the solution through a diatomaceous earth 

pipette filter afforded 6.0383 g of a brown oil (B6a) with black solid (D6a) remaining on 

the filter. The reaction flask and the black solid were rinsed with 4×2 mL THF and the 
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black solid was analyzed by SEM-EDS, yielding a Mo:O ratio of 1:2.8. The combined THF 

washings were discarded. In 3.5 months at room temperature in a sealed 20 mL scintillation 

vial in the glovebox, red crystals (C6a) formed from B6a. The bulk solution was decanted, 

and the crystals were left to sit in ~1 mL of the crystallization solution since rinsing with 

ethereal solvents was thought to potentially dissolve or alter the small amount of material. 

Analysis of a single red crystal by SC-XRD revealed the structure 

Mo8O32C24H54•2(C2H4(OH)2. 

3.4.3.8 Seventh Synthesis of the Molybdenum Precursor – A7 

In an apparatus composed of a Schlenk reaction flask and round bottom collection 

flask with vacuum distillation adaptors, 282 mg of MoO3 and 35 mL ethylene glycol were 

heated to 194 °C under nitrogen flow, forming dark golden solution in 1.5 hours after 

reaching temperature. Vacuum distillation was conducted for ~2 hours at 125 °C on the 

heating mantle with aide from a heat gun (upper walls of flask not touched by heating 

mantle) to a green paste. Triplicate extraction with 3×15 mL DCM, filtering through a 

coarse frit, and removal of solvent in vacuo afforded a golden oil (B7a). Rinsing with THF 

afforded 59 mg of a yellow microcrystalline solid.  

3.4.3.9 Eighth Synthesis of the Molybdenum Precursor – A8 

In an apparatus composed on two Schlenk flasks set up for distillation, 128 mg of 

MoO3 and 20 mL ethylene glycol were heated to 150 °C under nitrogen flow, forming a 

homogenous golden solution in 2.5 hours after reaching temperature. Cooling afforded no 

precipitate when sealed overnight. Vacuum distillation was conducted for ~4 hours 

between 100-120 °C on the heating mantle with aide from a heat gun (upper walls of flask 
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not touched by heating mantle) to a final volume of 1 mL gold-coloured oil (B8a). Addition 

of 10 mL 95 % ethanol afforded a rich blue solution (B8b) and filtration followed by rinsing 

with 10 mL diethyl ether afforded < 5 mg residue on the filter paper. The filtrate was dried 

in vacuo affording a dark blue solid of unknown identity weighing 181 mg (D8a). 

 

3.5 Conclusion 

A literature procedure for producing MoS2 via electrodeposition in the ionic liquid 

N-methyl-N-propylpiperidinium bis(trifluoromethane)sulfonimide at 100 °C from 1,4-

butanedithiol as the source of sulfur atoms and crude reaction mixtures of MoO3 with 

ethylene glycol as the source of molybdenum was explored in depth. Replication of the 

proposed ideal -2.7 V, 300 second chronoamperometric electrodeposition conditions using 

the sixth molybdenum precursor most akin to the required “brown oil” was unsuccessful. 

In the process of replication, four crystals were isolated giving insight into the complexity 

behind the reaction, representing monomeric (1), dimeric (2), polymeric composed of 

dimers (3), and a larger cluster containing 8 molybdenum atoms (4). In addition, 

electrochemistry within 0.1 M PP13-TFSI in THF for use as a non-aqueous, polar aprotic 

electrolyte solution was conducted on both platinum and glassy carbon to then analyze 

ethylene glycol, 1,4-butanedithiol, a mix of the two and various liquid molybdenum 

precursor samples. Various attempts were made to produce MoS2 within this electrolyte 

solution, and SEM-EDS analysis indicates non-homogenous incomplete coverage of 

amorphous deposits containing sulfur and molybdenum from room temperature solutions, 

though overlap of their X-ray signals gave inconclusive results. The variety of diversity 
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within the MoO3 ethylene glycol reaction warrants further investigation into the active 

component that allowed for direct electrodeposition of MoS2 by Murugesan et al.1 Though 

one of these compounds identified may be responsible for the successful direct 

electrodeposition of molybdenum disulfide, further work would be needed to find reliable 

procedures to prepare each compound in a pure form to study their efficacy for this 

electrodeposition process. 
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4. Chapter 4: Alkali Metal Amide Salts of a Bulky Nitrogen Tethered Phosphonium 

Fluorenide Ligand  

4.1 Abstract 

The reaction of a previously reported phosphine-imine ligand with 9-bromofluorene 

afforded a phosphonium bromide (E)-enamine that, upon deprotonation, affords an 

enamine tethered to a phosphonium fluorenide. Isolation of various crystals of this enamine 

and subsequent analysis by single-crystal X-ray diffraction (SC-XRD) showed that both 

(E)- and (Z)-isomers occur, which is supported by three dynamic isomers in C6D6 solution 

that led to this isomerization. Within solution-state NMR spectroscopy the enamine 

phosphonium fluorenide is the dominant isomer and is also observed within all four solid-

state crystal structures. The un-solvated and 0.5(THF, n-hexane) solvate occur as the (Z)-

enamine, while co-crystallization of either diethyl ether or 3 molecules of THF resulted in 

the (E)-enamine. The ability to participate in two types of hydrogen bonds between either 

the methyne or amine protons with THF was observed from the 0.5(THF, n-hexane) and 

3(THF) solvates, respectively. Subsequent deprotonation of the secondary amine with 

lithium-, sodium-, and potassium-containing bases yielded metal amides that were isolated 

as various THF, Et2O, C6H6 and C6H14 containing crystals, forming mostly monomeric 

structures. Each alkali metal is chelated by one ligand with a coordinating solvent molecule 

(Et2O or THF), with the only exception being a potassium complex that lacked a 

coordinating solvent. Instead of a solvent donor, this potassium complex has this vacancy 

filled by a 6-membered fluorenide ring from an adjacent ligand, forming an oligomer with 

non-coordinating n-hexane within the lattice that readily de-solvates upon storage or further 

drying. The single crystal X-ray structure of these complexes as various solvates with 
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diethyl ether (Li, K), THF (Li, Na) and non-coordinating n-hexane and benzene (Li, K) 

revealed the highly dynamic donor properties of the electron-delocalized phosphonium 

fluorenide undergoing η1-6 interactions with the different alkali metals. Increasing atomic 

size was correlated with an unexpected significant decrease (>21°) in the angle between 

the alkali metal and the ipso-position of the 2,6-Diisopropylphenyl (Dipp) substituent 

bound to nitrogen with the M-N-(ipso-Dipp) angle for Li equal to 114.87(6) ° (Et2O), 

111.51(14) ° (THF)), Na equal to 100.66(10) ° (THF), and K equal to 95.13(11) ° (Et2O) 

and  94.37(8) °  (η6-flourenide’)), respectively. 

4.1.1 Graphical Abstract 

 
 

4.2 Introduction 

Aromatic hydrocarbons like cyclopentadiene (Cp, Figure 4.1 A) and sterically 

bulkier derivatives such as pentamethylcyclopentadiene (Cp*) have proven to be effective 

ligands when bound to metals like titanium and zirconium, enabling controllable alkene 
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polymerization.1,2 Ligands like Cp and related derivatives, once deprotonated, are 

monoanionic ligands that can donate more electron density through the conjugated 5-

membered 6-e- π system of the ring via an η5-interaction, offering-steric bulk that can shield 

and satisfy a stable electron count at a variety of electron rich (Ni, Zn) or poor (Y, Zr) d-

block metal centers. The dibenzo-substituted Cp known as fluorene (Figure 4.1 B) is most 

relevant to this work; when bound to a phosphorus atom at the C9 position (Figure 4.1 C), 

delocalization of electrons from the double bond results in a cationic phosphonium and 

anionic fluorenide.  

 
Figure 4.1 Various molecular structures prefacing the focus of this work. (A) 

Cyclopentadiene (B) Fluorene (standard numbering scheme) (C) Phosphonium fluorenide 

(D) Tethered phosphonium fluorenide. 

 

When the phosphonium fluorenide is coupled with an additional donor atom and 

used as a bidentate ligand (Figure 4.1 D) it is suspected that the additional donor bound to 

a metal will encourage stabilization of low-energy dynamic interactions between the 

fluorenide donor and metal via haptotropic shifting (ring slipping) between with the central 

5-membered Cp ring and both of the 6-membered benzene rings (Figure 4.2). The extended 
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conjugation of fluorene allows for low energy ring slipping from different types of η-

interactions between fluorene and a metal (ex:  η5 6-e- π-donor or η1 2-e- σ-donor). Due to 

this, it is suspected that low energy catalytic transformations may be possible for metal 

complexes containing Flu based ligands through substrate induced haptotropic shifting that 

could maintain stable electron count surrounding the metal center through the fluorene 

ligands variable electron donation.3 These low-energy intramolecular haptotropic 

rearrangements between Flu-containing ligands and metal atoms allow for reversible 

electron donation (ex: η3
→η5 shift to more donation, η5

→η3 shift to less donation) enabling 

non-oxidative addition of ligands such as phosphines resulting in no net change in a metals 

electron count as the Flu-containing ligands electron donation changes.4,5 Steric 

interactions with additional ligands may also be accommodated via lower η-interactions. 

Ligands of the donor-tethered phosphonium fluorenide type are expected to allow for a 

dynamic donor process that may be beneficial during catalytic processes. 

 
Figure 4.2 Neutral donor-metal bonding interactions expected from a phosphonium 

fluorenide with trimethyl phosphonium fluorenide as an example. 
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Recent work into tethered fluorenide alkali metal complexes shows a variety of η-

interactions with all three rings of fluorene, along with the ability to form bimetallic alkali 

metal complexes when coupled with additional equivalents of alkali metal amide reagents.6 

Differences in ligand coordination of Li vs. Na and K was also shown and thought to be 

due to increasing atomic radius tending to favor polymeric complexes rather than the 

commonly monomeric or dimeric Li-complexes observed for N-heterocyclic carbene 

tethered fluorenide ligands and amide bridged bimetallic. In either case, fluorenide tends 

to interact with the alkali metal except when solvated.6,7 

Fluorene as either a neutral or anionic donor has been observed to donate electron 

density to many metal atoms through different spatial positions encompassing η1 through 

η6 depending on the specific metal, oxidation state, other ligands present, fluorene 

substitution, and solvents/complexing agents within the crystal being analyzed. Directly 

bonding fluorene through the 9-positions to phosphines forms phosphonium ylides (P=Flu), 

and electron delocalization results in zwitterionic character, forming a charge separated 

phosphonium fluorenide (P+-Flu-). Fluorenide with no additional tether can be readily 

displaced from a metal, and the higher denticity ligands utilizing fluorene are expected to 

chelate more strongly to the metal atom through the chelate effect. Additional fluorene 

functionalization has been explored to create multidentate ligands with fluorenide 

functional groups, showing efficacy for many metal ions that benefit from the large steric 

bulk and extensive electron donation offered by fluorenide. Plenty of work exploring 

fluorene and substituted derivatives with and without tethered donors have uncovered a 

wide variety of organometallic complexes of alkali,6-15 alkaline earth,12,16 transition,4,15,17-
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23 main group,24 and lanthanide metals.17,24-28 These organometallic complexes containing 

neutral or anionic fluorene with different substitutions provide insight into the ability for 

these ligands to form η-interactions from η1 to η6 with a variety of metals including K, Ca, 

Sn, Y, Ti, V, Mo, Fe, Ni, Cu, Co, and La. In the following work, a phosphonium bromide 

salt was made that could then be deprotonated forming either an enamine-fluorenylide, or 

further deprotonated forming a variety of alkali metals complexes for later use as 

organometallic precursors (Figure 4.3). 

 

 
Figure 4.3 Compounds produced include a hydro bromide salt 2, the corresponding free 

ligand 3 that occurs upon reaction of 2 with 1 eq. strong base, and alkali metal complexes 

4-6 produced from 2 or 3 with either 2 or 1 eq. n-BuLi, NaH, or KH, respectively. 

 

4.3 Results and Discussion 

4.3.1 Synthesis and Reactivity 

Compound 1 was synthesized according to a modified literature procedure via 

condensation reaction of 2,6-diisopropylphenyl aniline with acetone (~95% conversion) 
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facilitated by a mixture of molecular sieves, anhydrous MgSO4, and CaSO4 within acetone 

and toluene. The resulting imine was reacted first with n-BuLi in the presence of 

tetramethylethylenediamine (TMEDA) in pentane, forming an intermediate lithium 

complex that was then reacted with PPh2Cl forming 1. Recrystallization of the isolated 

product from ethanol affords colourless or slightly yellow crystals commonly contaminated 

with the phosphine oxide.  Compound 2 could be produced from the reaction of 1 with 9-

bromofluorene by stirring at room temperature in either toluene or THF for 2.5 weeks or a 

day, respectively in moderate yield (~67%) in the first crop of precipitate. To isolate the 

product, brief centrifugation (~3×3 min, < 10000 rpm) and washing three times with 

toluene enabled removal of the residual oxide of 1 formed during synthesis, without much 

loss of 2 due to low solubility in nonpolar aromatic or alkane solvents. Concentration of 

the filtrate allowed for additional 2 to be collected via the same method. Crystals of 2 could 

be obtained from chlorinated solvents like DCM, pentane layered chloroform (CHCl3), 

acetone (low solubility), or ethanol (monohydrate). Other than non-solvated crystals from 

evaporation of concentrated acetone solutions, solvent co-crystallization was not favorable 

in all later reactions due to their own reactions with alkali reagents, so these forms of 2 

were avoided in favor of the fine powder that precipitates from the reaction.  From 

compound 2, compounds 3-6 were produced using a variety of methods involving different 

solvents and bases. Of the bases and solvents tested (n-BuLi, LiHMDS, NaH, and KH in 

either toluene, benzene, pentane, hexane, heptane or THF), NaH in THF enabled a rapid 

reaction rate forming 3 with minimal conversion to 5 if only allowed to react for less than 

4 hours at room temperature. Several days after filtration, elution of the red/orange/yellow 
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non-homogenous coloured material from the column with THF containing a mixture of 3 

and 5a that could be fully converted to 3 by brief stirring with excess 2, filtering, and 

removing the solvent. Since compound 2 has a molecular weight exceeding ~20x that of 

the solid bases chosen, reliable stoichiometry was difficult to achieve without large 

amounts of 2 being used. Non-polar solvents offer low solubility for 2 and both metal 

hydrides, resulting in slow, low yielding reactions. Nonpolar aromatic solvents were 

favorable compared to alkane chains because 3 is much more soluble in the former and 

could be more easily recovered without clogging a filter or requiring a lot of solvent to 

elute through the necessary diatomaceous earth filtration step. While attempting to create a 

reliable procedure for compound 3, many unique solid-state structures were discovered by 

SC-XRD (0.5 THF and 0.5 hexane, 3-THF and 0.5 diethyl ether solvates or no solvent). As 

such, stoichiometry with compound 3 was difficult to measure during synthesis because 

overlap of 1H NMR spectroscopic signals from the multiple tautomers occurred where 

alkane chain CH2 and CH3, THF and diethyl ether backbone CH2 or toluene or benzene CH 

signals occurred. Attempts to achieve an isolated sample of completely solvent free 3 was 

not achieved, and as a result the elemental analysis of this sample occurred with a lower 

carbon % than expected for the pure compound due to residual solvents. Of the various 

solvates, the 0.5 diethyl ether solvate was found to form large, easy to handle crystalline 

solids. Similar to 3 showing a variety of solvated structures, 4-6 also occurred in a variety 

of solid states with unique properties attributed to the presence or lack of coordinating and 

co-crystallized solvents. Once coordinating solvents were present in the lattice of the solid, 

it was difficult to remove them entirely with heat and vacuum though it was possible to 
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remove diethyl ether from 6a by stirring in hexane all night, forming a fine powder 

suspension of 6b. Upon melting, crystals of 6a did appear to de-solvate beyond 120 °C 

prior to completely melting by 245 °C in contrast to 6b melting completely by 120 °C. This 

preliminary result may imply that de-solvation results in a more thermally resistant crystal 

structure more analogous to 2 (decomposes above 295 °C) with stronger intermolecular 

fluorene interactions that could result in the observed thermal stability. Future studies will 

explore the SC-XRD of 6a after heating beyond the suspected de-solvation temperature. 

Preliminary small-scale reactions of 6 with metal halides in organic aromatic or 

ethereal solvents afforded precipitation of halide salts analogous to 2 containing the 

chloride or triiodide anions from reactions with ZrCl4 and AlI3, respectively determined by 

SC-XRD (See SI). A reaction of 6 with (RhCl(COE)2)2 afforded an immediate conversion 

of some 6 to 3 in C6D6 by 31P NMR spectroscopy, and heating produced 6 new 31P signals 

with significant 6 and 3 remaining, eventually fully converting to 3 in the NMR tube. 

Reaction conditions have yet to be optimized for production of isolable products containing 

the ligand and these metals of significant yield and purity. A reaction of In(I)I and 6 in THF 

resulted in non-homogenous micro and nano-particles depositing onto the vial at the rim of 

the solvent line; however, no analysis beyond imaging with SEM and a camera was 

conducted (Figure 4.4). The deposited nanomaterial may serve a function for other 

purposes; however, the focus of this work is the preparation of organometallic compounds, 

so this was not studied further. By 1H and 31P NMR spectroscopy, the products in the liquid 

mixture after filtration and drying in vacuo included four previously unobserved 31P signals, 

though majority of the sample was 3. Dissolution of the remaining residue in 2 mL THF 
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and storing at -35 °C for several months resulted in evaporation and co-crystallization of 

all the THF forming a single ~30 mg crystal of 3•(3 THF). Future work will follow once 

attempts to produce organometallic complexes are successful. 

 
Figure 4.4 SEM SE image of micro- and nano-particulate deposited on the walls of a glass 

vial following a reaction between In(I)I and compound 6 (left) and photograph of the 

analyzed shard of the vial showing thin film interference from the deposit (right). EDX 

analysis revealed In, I, and K present. 

 

4.3.2 NMR spectroscopy 

The combined washes from the use of toluene for synthesis of 2 had no unknown 

signals in the 31P NMR spectrum and only 1 was present, but use of THF as a solvent led 

to many unidentified signals with no residual 1. In CDCl3 solution, compound 2 is present 

as a mixture of tautomers, predominantly forming as the phosphonium bromide with a 

methyne backbone carbon and protons on both the nitrogen. The alternate tautomers could 

not be explicitly identified as many trace 1H NMR signals were present appearing to 

resemble the backbone and fluorenyl 2JP-H split doublets, amine (s, 9-11 ppm) and CH3 (s, 

1.8-2.4 ppm) signals. Similar work observed the presence of a 1:1 tautomer within a similar 
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tethered fluorenyl ligand with the acidic proton found on either the 9-Flu position or on a 

carbene carbon.29 The major isomer is clear due to a 1:1:2 integration of the NH, CH-P, 

and CH(CH3)2 protons. The NH signal is resolved within the 1H NMR spectra, slightly 

overlapping o-phenyl aromatic protons and integrating to 1. 

 
Scheme 4.1 Observed tautomers of 3 with ratios derived from 1H NMR spectra taken at 25 

°C in C6D6. Top left is the imine-fluorenide, top right is the imine-fluorenyl, and the bottom 

is the dominant enamine-fluorenylide/fluorenide tautomer.   

 

In C6D6 solution of both 3 and the diethyl ether solvate, the different isomers were able to 

be distinguished based on a slow rate of (hours up to a day) equilibration to the imine-

fluorenylide tautomer (Scheme 4.1 Top left). The ratios of the three tautomers were 

observed to differ under different circumstances, and this was used to help with assignment 

of the two minor isomers in the 1H, 13C, and 31P NMR spectra.  

 Compounds 6 and 6•(Et2O) each give rise to the same NMR spectroscopic signals 

once dissolved in C6D6 thought to be due to rapid dissociation of the Et2O ligand. This is in 

contrast to complex 4a that display interactions between the alkali metal and coordinating 

solvents indicated by a shift in the typical solvent’s 1H NMR spectroscopic signals (4a Et2O 
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= 2.31 and 0.31 ppm for CH2 and CH3, respectively, typically 3.26 and 1.11 ppm in C6D6).
30 

Compound 5 also displays similar (but less) shifting of coordinated solvent signals 

compared to 4a, with THF signals of 3.57 and 1.40 ppm in C6D6 shifting to ~2.81 and ~1.08 

ppm, respectively. As the alkali metals size increases, solutions of 4-6 containing ethereal 

solvents such as Et2O and THF in C6D6 tend to have weaker solvent donor/alkali metal 

interactions. This is based on both the more rapid loss of coordinated solvent by potassium 

salt 6a, while 4a and 5, which both experience significant shifts in their coordinated solvent 

1H NMR spectroscopic signal, appear to be more resistant to loss of coordinated solvent in 

C6D6 solution. Notably, C6D6 solutions containing 4 with a coordinating solvent changed 

over time affording different 1H, 7Li, and 31P NMR spectroscopic signals, most importantly 

a restoration of the expected solvent signal over time, accompanied by colour changes to 

green, yellow, or red solutions. 

4.3.3 X-ray Crystallography 

Compound 2 is best crystallized from acetone (Figure 4.5); however, solvates can 

be formed from water, DCM and chloroform. Crystals of 2 exhibit hydrogen bonding 

between the secondary amine and the bromide anion. Compound 3 was found to form 

solvent free or as three solvates, each of which is either present as (Z)- or (E)-isomers, 

respectively (Figure 4.6).  
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Figure 4.5 Molecular structure of compound 2 with anisotropic displacement ellipsoids 

projected at the 50% probability level. Hydrogen atoms except for 9-Flu-H, N1-H, and C1-

H have been omitted for clarity. 

 
Figure 4.6 (E)- and (Z)-conformations of 3 as an enamine that occur in solution due to 

tautomerization of acidic protons resulting in the two rotational isomers observed in various 

solid-state crystal structures. 

 

Atomic numbering specific to all compounds prepared is provided overlaid on the ligand 3 

as both a structure drawing (Figure 4.7) or single crystal structure (Figure 4.8). 
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Figure 4.7 Numbering scheme for selected bond angles and lengths within discussion for 

crystal structures 2-6. 

 

 
Figure 4.8 Molecular structure of compound 3 with anisotropic displacement ellipsoids 

projected at the 50% probability level. Hydrogen atoms except for N1-H and C1-H have 

been omitted for clarity. The equivalence between the labels provided in the structure and 

IUPAC fluorene labelling equates as: C40 = C9, C28 = C9a, C29 = C1, C30 = C2, C31 = 

C3, C32= 42, C33 = C4a, C34 = C4a, C35 = C5, C36 = C6, C37 = C7, C38 = C8, C39 = 

C8a. 
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Figure 4.9 Molecular structure of compound 3 with anisotropic displacement ellipsoids 

projected at the 50% probability level. Hydrogen atoms except for N1-H and C1-H have 

been omitted for clarity.  

 

The four structures isolated for compound 3 include solvent free (Figure 4.9), three solvates 

with either 0.5 diethyl ether (Figure 4.10), both 0.5 THF/ 0.5 n-hexane (Figure 4.11), and 

3-THF (Figure 4.12). The various structures of 3 had two major rotational conformations 

with the amine pointing towards (Z)- or away (E) from the phosphonium fluorenide. The 

solvent free and 3-THF solvate occurred as the (Z)-isomer (along with 4a-b, 5a, 6a-b), 

while the 0.5 diethyl ether and the 0.5 THF/n-hexane solvates both occur as the (E)-isomer 

(along with all halide salts that occur analogous to 2 including the chloride and triiodide). 

Both solvates containing 3 and THF show hydrogen bonding (CH…OTHF or NH…OTHF) 

depending on the (Z)- or (E)-isomers of 3, respectively. The (Z)-isomer solvate of 3 (0.5 

THF, 0.5 n-hexane) where the fluorenyl ring is closest to the amine through space, occurs 

with the methine proton participating in hydrogen bonding. On the contrary, the (E)-isomer 
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solvate of 3 (3 THF) occurs with a hydrogen bonding interaction between the amine and a 

single THF molecule, while the other two THF molecules reside next to the fluorenyl rings 

with no distinct hydrogen bonding interactions. 

 

 
Figure 4.10 Molecular structure of compound 3•(0.5 Et2O) with anisotropic displacement 

ellipsoids projected at the 50% probability level. Hydrogen atoms except for N1-H and C1-

H have been omitted for clarity. 

 

 
Figure 4.11 Molecular structure of compound 3•(THF, 0.5 n-hexane) with anisotropic 

displacement ellipsoids projected at the 50% probability level. Hydrogen atoms except for 

N1-H and C1-H have been omitted for clarity. 
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Figure 4.12 Molecular structure of compound 3•(3 THF) with anisotropic displacement 

ellipsoids projected at the 50% probability level. Hydrogen atoms except for N1-H and C1-

H have been omitted for clarity. 

 

Crystal structures of 4-6 contain a range of η-interactions, with 4a•(Et2O) (Figure 

4.13) and 4•(THF, 0.5 C6H6) (Figure 4.14) displaying the lowest η2 and η3 interactions, 

respectively while 5a•(THF) (Figure 4.15), 6a•(Et2O) (Figure 4.16) and 6•(0.5 n-C6H14) 

(Figure 4.17) display  η4, η5, and both η4 + η6  interactions with the fluorenide ring system, 

respectively. Compounds of sodium and potassium 5a•(THF), 6a•(Et2O), and 6•(0.5 n-

C6H14) display ipso-Dipp (C4) η-interactions, while 6•(Et2O) has η-interacts with both 

ipso- and ortho- (C5) positions of the Dipp ring. 6•(0.5 n-C6H14) had no coordinating donor 

solvent present that opened a vacancy in the coordination sphere of potassium. In the solid 

state, this vacancy is instead filled by an adjacent molecule through potassium-fluorene η6 

interactions due to oligomerization, with oligomer chains also held together via π-stacking 

interactions between phenyl rings (C22-27) across the symmetry operator (3/2-X, 3/2-Y, 
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1-Z) with a centroid distance and shift of 3.963 Å apart and 1.656 Å off center. When 

present as 4a•(Et2O), lithium interacts with the 9 and 9a of the fluorenyl ring system via a 

highly asymmetric η2 interaction with Li1-C distances of 2.2284(16) Å and 2.4837(16) Å 

to C40 (9-Flu) and C28 (9a-Flu), respectively (Figure 4.14). This asymmetry favors the 

Li1-C40 interaction, bordering on the σ-donor character of a sp3 hybridized C40 noted 

within the IUCr checkcif via PLAT343_ALERT_2_G: “Unusual sp3 angle range in main 

residue for C40”, also observed for 4•(THF, 0.5 C6H6), highlighting the distortion of the 

P-Flu plane. The angle difference between Li1-C40-(C28, C39 (8a-Flu)) is ~23.4°, favoring 

the Li1-C40-C28 interaction, resulting in the Li1-C28 bond length of 2.4837(16) Å, 

significantly shorter than 2.970(14) Å for Li1-C38. A single isolated crystal of 4•(THF, 

0.5 C6H6) exhibits an η3-Flu interaction with Li-(C40/C28/C39) that begins to distort the 

planarity of the P-Flu plane with C40 taking on a very mild tetrahedral shape. The 

difference between the angles Li1-C40-C28 (88.35(13) °) and Li1-C40-C39 (94.96(14) °) 

is ~6.6°, with lithium closer to C28 compared to C39 similar to the Li1-C28/C40 η2 

interactions observed for 4a•(Et2O) with a closer proximity to C28 due to the Li1-C40-C28 

(81.77(6) °) and Li1-C40-C39 (105.17(6) °) difference of ~23.4° favoring Li-C28 

interaction over Li-C39.  Comparing the bond lengths Li1-C28 = 2.625(3) Å and Li1-C39 

= 2.763(4) Å, C39 is farther from Li1 than the symmetry equivalent C28, participating 

within an asymmetric η3 Li-Flu interaction. The angle difference between Li1-C40-C28 

and Li1-C40-C39 is significant for both η2 and η3 structures observed for 4a•(Et2O) and 

4•(THF, 0.5 C6H6), respectively. This shows the way the fluorenide ring is twisted towards 

lithium favors the same side, though the ligand and donor solvent orientation changing 
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between the two structures. A similar η3 Li-Flu interaction is observed for the diethyl ether 

adduct of unsubstituted fluorene.31 There exists a smaller bond length difference for 

4a(Et2O) vs. 4•(THF, 0.5-C6H6) with respect to the Li1-C40, Li1-N1, and Li-O1 bond 

lengths of 2.2284(16) Å vs. 2.2226(36) Å, 1.9813(15) Å vs. 1.9595(34) Å, and 1.9536(15) 

Å vs. 1.8947(33) Å, respectively in order of structures (A vs. B) and specific bond length. 

Single crystals of 4•(THF) and 4b (solvent-free) suitable for SC-XRD were not made; 

however, one isolated polymorph of 4b possessed highly radial morphology from a 

concentrated pentane solution that were unsuitable for SC-XRD. Similar to 4•(THF, 0.5-

C6H6), 5a•(THF) contains a THF adduct coordinated to the alkali metal. The sodium-

fluorenide interaction resembles 4a•(Et2O); however, the larger size of Na also allows for 

interactions with C33 and C39 resulting in the observed η4 interaction with the fluorenide 

ring system. 

 
Figure 4.13 Molecular structure of compound 4a•(Et2O) with anisotropic displacement 

ellipsoids projected at the 50% probability level. Hydrogen atoms except for C1-H have 

been omitted for clarity.  
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Figure 4.14 Molecular structure of compound 4•(THF, 0.5 benzene) with anisotropic 

displacement ellipsoids projected at the 50% probability level. ½ Benzene and hydrogen 

atoms except for C1-H have been omitted for clarity.  

 

 
Figure 4.15  Molecular structure of compound 5a•(THF) with anisotropic displacement 

ellipsoids projected at the 50% probability level. Hydrogen atoms except for C1-H have 

been omitted for clarity.  
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Figure 4.16 Molecular structure of compound 6a•(Et2O) with anisotropic displacement 

ellipsoids projected at the 50% probability level. Hydrogen atoms except for C1-H have 

been omitted for clarity and only one diethyl ether is shown due to 38:62 two component 

disorder. There is also a disordered isopropyl group attached to C5 in a 31:69 ratio. 

 

 
Figure 4.17 Molecular structure of compound 6•(0.5 n-hexane) with anisotropic 

displacement ellipsoids projected at the 50% probability level. Hydrogen atoms except for 

C1-H and the disordered ½ hexane has been omitted for clarity. The structure has been 

grown to illustrate the η6 interaction between potassium and an adjacent backside of a 

fluorenide ring. 
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The crystal structure of each alkali metal complex gave rise to a wide range of M-

N-C4 bond angles, highlighting an unexpected aryl interaction with the larger alkali metals 

Na and K. A nitrogen atom with a trigonal planar configuration would ideally possess 120-

degree bond angles; however, angles significantly lower were observed with increasing 

alkali metal mass from roughly 114.87(6) ° and 111.51(14) ° for lithium complexes 

4a•(Et2O) and 4•(THF, 0.5 C6H6), 100.66(10) ° for sodium complex 5a•(THF), and 

95.13(11) ° or 94.37(8) ° for potassium complexes 6a•(Et2O) and 6•(0.5 n-C6H14) (Table 

4.1).  

Table 4.1 Angle between the ipso-Dipp (C4), nitrogen (N1), and alkali metals (M1) for 

each of the isolated crystal structures of 4-6. 

Compound 4•(Et2O) 

4•(THF,  

0.5 C6H6) 5•(THF) 6•(Et2O) 

6•(0.5  

n-C6H14) 

C4-N1-M1 (°) 114.87(6) 111.51(14) 100.66(10) 95.13(11) 94.37(8) 

 

The small angle between C4-N1-K1 (Figure 4.18) for the potassium complex 6 is 

different when compared with two similar bidentate potassium complexes containing a 

NacNac ligand (two N-Dipp groups instead of one N-Dipp and a P-Flu group present in 

6).16,32 While 6 shows very low C4-N1-K1 angles of 95.13(11) ° (Et2O) and  94.37(8) °  

(η6-flourenide’), the solvent free NacNacK shows a larger analogous angle of 101.05(17) ° 

and 103.96(17) °, while the NacNacK(DME)2 has even larger angles of 107.34(15) ° and 

108.96(15) ° (Figure 4.19). The NacNacK angle is similar to the sodium complex 5 

(100.66(10) °), while the angle for the solvated NacNacK(DME)2 is closer to but smaller 

than 4 (114.87(6) ° Et2O, 111.51(14) ° THF). This comparison indicates the angle between 
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the Dipp group and the nitrogen atom bound to potassium is quite low, which could be due 

to the labile nature of the phosphonium fluorenide allowing for this increased π-interaction 

between the larger sodium or potassium ion and the conjugated Dipp ipso- and ortho- 

positions.  

 
Figure 4.18 Comparison between NacNacK (top left),16 NacNacK(DME)2 (bottom left),32 

and compound 6 (right, 94.37(8) ° = 6a and 95.13(11) ° = 6•(0.5 n-C6H14). The highlighted 

angle θ for NacNacK is 101.05(17) ° and 103.96(17) ° while for NacNacK(DME)2 this 

angle is 107.34(15) ° and 108.96(15) °.  

 

4.4 Experimental 

4.4.1 Solvents, Reagents, and Materials 

Nitrogen gas and liquid was supplied by Praxair and Air Liquide. 95% ethanol was 

purchased from Commercial Alcohols. Toluene, acetone, tetrahydrofuran (BHT stabilized), 

diethyl ether, hexanes and 85% phosphoric acid used as an external reference for 31P NMR 

were purchased from Fisher Chemical or Fisher Scientific. Pentane, benzene and heptane 



Page | 127  

 

were purchased from Sigma-Aldrich. All deuterated solvents including CDCl3 (0.05% v/v 

tetramethyl silane), C6D6, and CD3CN were purchased from Cambridge Isotope 

Laboratories Inc. 2,6-diisopropyl aniline (90%), chlorodiphenylphosphine (96%), 2.5 M n-

BuLi in hexanes, N,N,N’,N’-tetramethylethylenediamine (99%), 9-bromofluorene, 4 Å 

molecular sieves, calcined diatomaceous earth, and 2.0 M trimethylaluminum in heptane 

were all purchased from Sigma-Aldrich. Trimethyl indium (99.9+%) was purchased from 

Strem Chemicals Incorporated. Anhydrous magnesium sulfate was purchased from 

Caledon Laboratories. Activated alumina used for drying and filtering solvents was 

purchased from Anachemia and is 80-200 mesh. Heating was performed using a DrySyn 

aluminum heating block with 50-1000 mL flasks. Potassium and sodium hydride were 

purchased as 30% and 60% mineral oil dispersions from Sigma-Aldrich and washed four 

times with ~8x v/v pentane, then dried in vacuo to give a free-flowing powder. Alumina, 

calcined diatomaceous earth, and molecular sieves were pre-dried in a 140 °C oven for a 

minimum of one week before being dried at 300 °C in vacuo in a half-filled round-bottom 

wrapped in aluminum foil within an aluminum block. Solvents (toluene, pentane, 

tetrahydrofuran) were purified using an Innovative Technology solvent purification system. 

Solvents (pentane, toluene, tetrahydrofuran, hexanes, benzene) were then dried using KH 

for 24-78 hours and subsequently filtered through dry alumina and stored over 4 Å 

molecular sieves (~1/10th the volume of solvents).  

4.4.2 Equipment, Instruments and Analytical Methods 

All reactions were performed in dry, O2-free (< 10 ppm) conditions under an atmosphere 

of N2 within a mBraun Labmaster SP inert atmosphere glovebox in 20 mL scintillation vials or 
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using Schlenk flasks sealed with rubber or glass stoppers with standard Schlenk techniques. 

Glassware was dried at 140 °C overnight prior to experimentation. NMR spectra were recorded 

on a Bruker Avance 300 MHz NMR spectrometer. Trace amounts of non- or partially deuterated 

solvent or tetramethyl silane were used as internal references for 1H and 13C NMR spectra. 31P 

and 7Li nuclei were referenced to 85% phosphoric acid or 1.0 M LiCl in D2O, respectively. 

Melting points were recorded on an Electrothermal MEL-Temp 3.0 using glass capillaries 

sealed under inert conditions for air sensitive compounds (3-6) or open to air for air and moisture 

stable compound 2. Elemental analysis was performed within the Centre for Environmental 

Analysis and Remediation (CEAR) facility at Saint Mary's University using a Perkin Elmer 

2400 II series Elemental Analyzer.  

Single crystal X-ray diffraction measurements first involved selection of a suitable 

single crystal, and mounting it on the tip of a MiTeGen MicroLoop with Paratone-N oil. 

Measurements were made on a Bruker D8 VENTURE diffractometer equipped with a 

PHOTON III CMOS detector using monochromated Mo Kα radiation (λ = 0.71073 Å) from 

an Incoatec micro-focus sealed tube at 100-125 K.33 The initial orientation and unit cell 

were indexed using a least-squares analysis of the reflections collected from a complete 

180 phi-scan with 1 per frame. For data collection, a strategy was calculated to maximize 

data completeness and multiplicity in a reasonable amount of time, and then implemented 

using the Bruker Apex 3 software suite.33 The crystal to detector working distance was set 

to 4 cm. Data collection, unit cell refinement, data processing and multi-scan absorption 

correction were applied using the APEX3 software package.33-35 The structures were solved 

using SHELXT36 and all non-hydrogen atoms were refined anisotropically with SHELXL37 
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using a combination of shelXle38 and Olex239 graphical user interfaces. Unless otherwise 

noted, all hydrogen atom positions were idealized and ride on the atom to that they were 

attached. Alkali metal/aromatic η-Interactions were based on the default bond (bond radius 1 + 

bond radius 2 + 0.5 Å) provided within Olex 2 version 1.3, with bonds to hydrogen or sp3 carbon 

atoms omitted to only allow for η-interactions with π-conjugated carbon atoms. Molecular 

structure diagrams were prepared using the cif file generated by Olex2 within Ortep-3 to colour 

and label atoms, style bonds, and position the molecule, with the final structure exported as a 

colour PostScript file. Final refinement of image size, bond style/width, and label 

size/positioning was done in CorelDRAW 10 using the Ortep-3 file. 

4.4.3 Synthesis of Precursors, Ligands, and Dimethyl Aluminum and Indium 

Complexes 

4.4.3.1 Synthesis of Compound 1 - Dipp-N=C(CH3)-(CH2)-P(C6H5)2 

 
Part 1: Following a modified previously established synthesis,40 a solution of 100 mL (0.5 

mol) 2,6-diisopropylaniline in 200 mL (2.7 mol) acetone was refluxed for one week with 

~40 mL anhydrous MgSO4 to encourage condensation, producing N-isopropyl-N-2,6-

diisopropylphenylimine with incomplete conversion possibly due to acid catalyzed 

hydrolysis of the imine. The resulting solution was filtered through diatomaceous earth, 

acetone removed, and the mixture was distilled in vacuo affording a 1:2 ratio of the amine 
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to imine. Toluene, molecular sieves, and anhydrous calcium sulfate with refluxing over the 

course of a few weeks caused a 1:10 ratio of reagent to product. Distillation afforded 3 

fractions with the purest being the first, 9 grams of a 1:11 ratio of amine to imine. 

Part 2: In a 500 mL round bottom flask 8.6 g of the previously made imine was used directly 

in a -78 °C reaction in 230 mL pentane with first 0.5 g TMEDA (43 mmol) followed by 

addition of 17.7 mL of a 2.4 M n-BuLi solution (42 mmol, conc. determined by titration) 

with slow warming to room temperature over 2 hours. Cooling back to -78 °C is followed 

by addition of 8.7 g chlorodiphenylphosphine (39 mmol) with warming to room 

temperature and stirring under nitrogen for two days. Filtration through diatomaceous earth 

and removal of pentane in vacuo affords a yellowish white solid. Dissolution in minimal 

hot ethanol creates s a golden solution, which, upon cooling, crystallizes 1 as white crystals 

that can be isolated by filtration with 3×5 mL ethanol rinses. Concentration of the filtrate 

in vacuo can give additional crops of crystals, and three were harvested with masses of 

12.97 g, 0.77 g, and 0.05 g in order of collection. Purity decreased in later crops, with the 

first to third crop occurring at 91, 86, and 84% purity with an impurity of the oxide of 2. 

The third crop presented as more suitable distinct single crystals for X-ray analysis 

compared to the first two crops that both occurred as highly radial spherical crystalline 

clumps. 

Yield (if pure): Crop 1 = 82% Crop 2 = 5% Crop 3 = 0.32% 

Yield (adjusted for purity): Crop 1 = 75% Crop 2 = 4% Crop 3 = 0.27% 

I.e.: Crop 1 = 12.97 g, 91% purity, so 82%*0.91 = ~75%. This is a rough estimation of 

yield owing to difference in molecular weight of product 1 and impurity 2 of ~4%. 
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4.4.3.2 Synthesis of Compound 2 – [Dipp-NH-C(CH3)=(CH)-P+(C6H5)2(C13H9)][Br-] 

 
To a 50 mL sealed reaction vessel, 1 (0.9245 g, 2.30 mmol) and 9-bromofluorene (0.5664 

g, 2.30 mmol) were combined with 12 mL toluene resulting in a very faintly yellow 

solution. After stirring for 1 week, compound 2 precipitates a fine white powder. This solid 

was separated from the yellow supernatant via centrifugation, and was washed with fresh 

toluene until the supernatant was clear and colourless (2×5 mL times). The solid was then 

rinsed into a vial with minimal toluene and dried in vacuo yielding a white solid (0.688 g, 

1.06 mmol). A second crop was obtained (0.248 g, 0.38 mmol) after stirring the 

concentrated supernatant and washings an additional week with the same workup. 

Note: Longer stirring (2.5 weeks) afforded 67% in the first crop using toluene. Use of THF 

as a solvent results in a similar yield in less than 24 hr; however, it was noted by 31P NMR 

spectroscopy that the supernatant had more unidentified side products when using THF. 

Crystals suitable for X-ray crystallography were grown from evaporation of concentrated 

solutions of 2 in acetone (solvent free), ethanol (monohydrate), chloroform (trisolvate) or 

DCM (monosolvate). 

Yield: 46% (Crop 1), 16% (Crop 2). 

m.p. (°C): > 295 decomposes. 
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Analytical Calc. for C40H40NP•HBr: C: 74.30% H: 6.39% N: 2.17% Found: C: 74.10% H: 

6.28% N: 2.23%. 

1H (CDCl3, 300 MHz, 25 °C): δ 9.98 (d, 1H, J = 4.9 Hz,  NH), 7.72-7.76(m, 2H, p-Ph), 

7.55-7.66 (m, 8H, m-Ph, o-Ph), 7.43 (d, 2H, 3JH-H = 7.8 Hz,  (4,5)-Flu),  7.27 (t, 4H,  3JH-H 

= 7.8 Hz, (3,6)-Flu), 7.16 (m, 1H, p-Dipp), 7.07 (d, 2H, 3JH-H = 7.8 Hz, m-Dipp), 6.97 (t, 

2H, 3JH-H = 7.8 Hz,  (2,7)-Flu), 6.29 (dd, 2H, 3JH-H = 7.8 Hz, 4JP-H = 1.2 Hz, (1,8)-Flu), 5.01 

(d, 2H, 2JP-H = 16.6 Hz, P-(9)-Flu), 2.94 (sept, 2H,3JH-H = 6.8 Hz, CH(CH3)2), 2.68 (d, 2H, 

2JP-H = 15.9 Hz, PCH), 1.94 (s, 3H, N-C(CH3)), 1.15 (d, 6H, 3JH-H = 6.8 Hz, CH(CH3)2), 

0.85 (d, 6H, 3JH-H = 6.8 Hz, CH(CH3)2) ppm. 

13C{1H} (CDCl3, 75 MHz, 25 °C): δ 168.42 (d, 2JP-C = 14.9 Hz, N-C(CH3)=(CH)), 146.47 

(o-Dipp), 142.10 (d, 3JP-C = 4.3 Hz, (4a,4b)-Flu), 136.17 (d, 2JP-C = 5.4 Hz, (8a,9a)-Flu), 

134.39 (d, 4JP-C = 2.8 Hz, p-PPh2), 133.49 (d, 3JP-C = 9.8 Hz, m-PPh2), 132.72 (ipso-Dipp), 

129.87 (d, 2JP-C = 12.5 Hz, o-PPh2), 129.37 (d, 4JP-C = 2.4 Hz, (2,7)-Flu), 127.25 (d, 5JP-C = 

2.4Hz, (3,6)-Flu),  125.65 (d, 3JP-C = 3.3 Hz, (1,8)-Flu), 128.62 (p-Dipp), 123.87 (m-Dipp),  

121.46 (d, 1JP-C = 84.6 Hz, ipso-PPh2), 120.70 ((4,5)-Flu), 52.77 (d, 1JP-C =  123.7 Hz, PCH), 

46.04 (d, 1JP-C =  53.4 Hz, (9)-Flu), 28.52 (CH(CH3)2), 25.27 (CH(CH3)2), 23.43 

(CH(CH3)2), 21.67 (d, 3JP-C = 16.9 Hz, CH(CH3)2) ppm. 

31P{1H} (CDCl3, 121 MHz, 25 °C): δ 20.70 ppm. 
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4.4.3.3 Synthesis of Compound 3 - Dipp-NH-C(CH3)=(CH)-P(C6H5)2=( C13H9) 

 
To a 20 mL scintillation vial, 2 (0.5166 g, 0.80 mmol) and NaH (0.0194 g, 0.81 mmol) 

were combined with 15 mL THF affording a white suspension that was stirred for 20 hours. 

The gold-coloured suspension was filtered through a pipette containing diatomaceous 

earth, and the solvent volume was concentrated to 1 mL. Slow addition of heptane (5 mL) 

with rapid stirring precipitates 3 as a canary yellow solid. This mixture was stirred 10 min, 

and the solvent was removed in vacuo resulting in a yellow paste. To this, 1 mL pentane 

was added and stirred for 10 min, and the solvent was decanted after the solid had settled. 

Drying in vacuo afforded 0.269 g (0.50 mmol) of an analytically pure yellow free flowing 

powder. Four crystal structures were obtained from cooling saturated solutions of 3 in 

hexane ((Z)-3)), diethyl ether ((E)-3•(0.5 Et2O)), THF ((E)-3•(3 THF)), and a mixture of 

THF and hexane ((Z)-3•(0.5 THF/0.5 hexane)). 

Yield: 60%. 

m.p. (°C): 160.1-161.5 (solvent free), 192.0 - 194.0 ((E)-3•(0.5 Et2O)) 

Analytical Calc. for C40H40NP: C: 84.92% H: 7.13% N: 2.48% Found: C: 84.48% H: 7.20% 

N: 2.50%. 
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Major isomer: Enamine-fluorenylide 60%: 

1H (C6D6, 300 MHz, 25 °C): δ 8.33-8.36 (m, 2H, (1,8)-Flu), 7.64-7.71 (m, 4H, o-Ph), 7.61 

(1H, s, NH), 7.19-7.27 (m, 4H, (2,3,6,7)-Flu), 6.96-7.11 (m, 9H, (m-,p-(Dipp, Ph)), 6.98 (d, 

2H, 3JH-H = 7.5 Hz, (4,5)-Flu), 4.33 (d, 1H, 2JP-H = 16.2 Hz, PCH), 2.61 (2H, sept, 3JH-H = 

6.9 Hz, CH(CH3)2), 1.48 (3H, s, N-C(CH3)), 1.01 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2), 0.61 

(d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2) ppm. 

13C{1H} (C6D6, 75 MHz, 25 °C): δ 164.05 (N-C(CH3)=(CH)), 146.86 (o-Dipp), 144.62 

(4a,4b)-Flu), 141.40 (d, 2JP-C = 14.5 Hz, (8a,9a)-Flu), 136.49 (ipso-Dipp), 135.82 (d, 2JP-C 

= 120.2 Hz, ipso-PPh2), 132.87 (d, 2JP-C = 10.6 Hz, o-PPh2), 131.92 (d, 4JP-C = 2.5 Hz, p-

PPh2), 129.20 (d, 3JP-C =  12.2 Hz, m-PPh2), 123.70 (m-Dipp), 123.62 (4,5-Flu), 123.52 

(2,7-Flu), 120.37 (1,8-Flu), 117.07-117.24 (m, p-Dipp, 3,6-Flu), 68.39 (d, 1JP-C =  104.4 

Hz, PCH), 55.58 (d, 1JP-C = 120.6 Hz,  9-Flu), 28.41 (CH(CH3)2), 22.68 (N-C-CH3), 24.45 

(CH(CH3)2), 22.87 (CH(CH3)2) ppm. 

31P{1H} (C6D6, 121 MHz, 25 °C): δ -7.24 ppm. 

Minor isomer: Imine-fluorenyl 20%: 

1H (C6D6, 300 MHz, 25 °C): δ 8.54-8.56 (m, 2H, (1,8)-Flu), 7.50-7.57  (m, 4H, o-PPh2), 

7.30-7.37 (m, 4H, (2,3,6,7)-Flu), 6.96-7.11 (m, 9H, m-,p-Ph, m-,p-Dipp), 6.91-6.96 (m, 2H, 

(4,5)-Flu), 4.49 (d, 1H, 2JP-H
 = 3.9 Hz, 9-Flu), 4.23 (d, 1H, 2JP-H = 14.3 Hz, PCH), 3.04 (2H, 

sept, 3JH-H = 6.9 Hz, CH(CH3)2), 1.36 (3H, d, 4JP-H = 2.1 Hz, N-C(CH3)), 1.20 (d, 6H, 3JH-

H = 6.9 Hz, CH(CH3)2), 1.06 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2) ppm. 

13C{1H} (C6D6, 75 MHz, 25 °C): δ 165.03 (2JP-C = 7.5 Hz, N=C(CH3)-(CH2)), 145.50 (o-

Dipp), 142.19 ((4a,4b)-Flu), 142.04 (d, 2JP-C = 15.3 Hz, (8a,9a)-Flu), 136.99 (ipso-Dipp),  
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between 130-135 (ipso-PPh2), 132.90 (d, 2JP-C =  10.6 Hz, o-PPh2), 132.57 (d, 4JP-C = 2.5 

Hz, p-PPh2), 128.97 (d, 3JP-C =  12.1 Hz, m-PPh2), 124.56 (2,7-Flu), 123.23 (m-Dipp), 

120.22 (1,8-Flu), 116.35 (3,6-Flu), 117.07-117.24 (m, p-Dipp, 4,5-Flu), 70.87 (d, 1JP-C =  

119.8 Hz, PCH), 55.16 (d, 1JP-C = 129.9 Hz,  9-Flu), 28.26 (CH(CH3)2), 24.15 (CH(CH3)2), 

22.99 (CH(CH3)2), 18.28 (d, 3JP-C
 = 4.4 Hz, N-C-CH3) ppm. 

31P{1H} (C6D6, 121 MHz, 25 °C): δ -0.40 ppm. 

Minor isomer: Imine-fluorenylide 20%: 

1H (C6D6, 300 MHz, 25 °C): δ 8.37-8.40 (m, 2H, (1,8)-Flu), 7.77-7.84 (m, 4H, o-PPh2), 

7.19-7.27 (m, 4H, (2,3,6,7)-Flu), 6.86-6.94 (m, 9H, m-,p-(Dipp, Ph), 6.69-6.72 (m, 2H, 

(4,5)-Flu), 3.83 (d, 2H, 2JP-H = 15.3 Hz, PCH2), 2.61 (2H, sept, 3JH-H = 6.9 Hz, CH(CH3)2), 

1.04 (3H, d, 4JP-H = 1.3 Hz, N-C(CH3)), 1.12 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2), 0.78 (d, 

6H, 3JH-H = 6.9 Hz, CH(CH3)2) ppm. 

13C{1H} (C6D6, 75 MHz, 25 °C): δ 193.09 (N=C(CH3)-(CH2)), 147.56 (o-Dipp), 143.56 

((4a,4b)-Flu), 142.45 (d, 3JP-C = 15.0 Hz, (8a,9a)-Flu), 136.62 (ipso-Dipp), between 130-

135 (ipso-PPh2), 133.67 (d, 2JP-C =  10.5 Hz, o-PPh2), 131.65 (d, 4JP-C = 2.4 Hz, p-PPh2), 

124.37 (2,7-Flu), 124.23 (m-Dipp), 120.22 (1,8-Flu), 117.07 – 117.24 (m, p-Dipp, (4,5)-

Flu, (3,6)-Flu), 50.74 (d, 1JP-C = 123.6 Hz,  9-Flu), 39.36 (d, 1JP-C =  48.64 Hz, PCH2), 28.55 

(CH(CH3)2), 22.48 (N-C-CH3), 24.75 (CH(CH3)2), 23.96 (CH(CH3)2) ppm. 

31P{1H} (C6D6, 121 MHz, 25 °C): δ -0.38 ppm. 
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4.4.3.4 Synthesis of Compound 4a – [Li+][Dipp-N--C(CH3)=(CH)-P(C6H5)2(η2-C13H9)] 

• Et2O 

  
To a 20 mL scintillation vial 223.2 mg (0.40 mmol) of yellow 3 was suspended in 6 mL 

diethyl ether, and to this golden yellow suspension 0.16 mL 2.5 M n-BuLi (0.40 mmol) in 

hexane were added rapidly at room temperature followed by an additional 2 mL diethyl 

ether. The solution became orange with yellow suspended solid within 2 hr, and stirring for 

24 hr afforded a red, clear solution. Filtration through a medium frit removed a trace of 

dark red solid that was discarded (turned green overnight) after eluting hot toluene through 

it afforded nothing. The filtrate was heated gently to a reflux and reduced to 1 mL until 

solid began forming and was sealed and placed in -35 °C overnight forming a 

microcrystalline solid. Decanting the diethyl ether and drying the solid in vacuo afforded 

202 mg (0.32 mmol) of a yellow microcrystalline solid that was analytically pure and 

suitable for X-ray analysis. 

Yield: 79% 

m.p. (°C): 135.5 – 136.3 
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Analytical Calc. for C44H49NPLiO: C: 81.83% H: 7.65% N: 2.17%. Found: C: 82.06% H: 

7.63% N: 2.14%. 

1H (C6D6, 300 MHz, 25 °C): δ 8.25-8.28 (m, 2H, (1,8)-Flu), 7.79 (d, 2H, JP-H = 7.1 Hz, 

(3,6)-Flu), 7.64-7.70 (m, 4H, (2,4,5,7)-Flu), 7.25 (m, 4H, o-Ph), 6.94-7.08 (m, 9H, m-,p-

Ph, m-,p-Dipp), 3.66 (d, 1H, 2JP-H = 19.4 Hz, PCH), 3.27 (2H, sept, 3JH-H = 6.9 Hz, 

CH(CH3)2), 2.31 (quart, 4H, 3JH-H = 7.1 Hz, Et2O(CH2),  1.89 (3H, d, 4JP-H = 2.1 Hz, N-

C(CH3)), 1.28 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2), 0.97 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2), 

0.31 (t, 6H, 3JH-H = 7.1 Hz, Et2O-CH3) ppm. 

13C{1H} (C6D6, 75 MHz, 25 °C): δ 171.70 (d, 2JP-C = 3.4 Hz, N-C(CH3)=(CH)), 149.25 

(ipso-Dipp), 142.43 (o-Dipp), 141.36 (d, 2JP-C = 10.9 Hz, (4a,4b)-Flu), 134.76 (d, 1JP-C = 

86.7 Hz, ipso-PPh2), 132.43 (d, 2JP-C =  10.0 Hz, o-PPh2), 132.00 (d, 2JP-C = 11.5 Hz, 

(8a,9a)-Flu), 130.9 (d, 4JP-C = 2.5 Hz, p-PPh2), 128.74 (d, 3JP-C =  11.5 Hz, m-PPh2), 124.57 

(3,6-Flu),  123.49 (p-Dipp), 123.42 (m-Dipp), 120.00 (4,5-Flu), 119.00 (1,8-Flu), 118.30 

(2,7-Flu), 63.76 (Et2O-CH3), 54.72 (d, 1JP-C =  113.8 Hz, PCH), 27.91 (CH(CH3)2), 25.12 

(d, 3JP-C
 = 17.0 Hz, N-C-CH3), 24.63 (CH(CH3)2), 24.42 (CH(CH3)2), 13.90 (Et2O-CH3) 

ppm. 

31P{1H} (C6D6, 121 MHz, 25 °C): δ -2.39 ppm. 

7Li (C6D6, 117 MHz, 25 °C): δ -0.58 ppm. 
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4.4.3.5 Synthesis of Compound 4b - [Li+][Dipp-N--C(CH3)=(CH)-P(C6H5)2(C13H9)] 

 
To a 20 mL scintillation vial 114 mg 3 (0.20 mmol) dissolved in 4 mL toluene had 0.09 mL 

2.5 M n-BuLi (0.23 mmol) in hexane added. The initial gold solution became more orange 

over 30 minutes and the solvent was concentrated in vacuo to ~2 mL, filtered and rinsed 

through a lint free wipe, concentrated again to ~2 mL and dried in vacuo affording 210 mg 

of a red crystalline paste. This was triturated with pentane (4 mL) and filtered through a 

medium porosity glass frit resulting in an orange powder that turned green upon drying (28 

mg) that was discarded. The dark red filtrate was dried as a red microcrystalline paste (99 

mg) and 4×0.5 mL rinses with pentane followed by decanting the solvent afforded 46 mg 

of a peach-coloured powder upon drying in vacuo (0.08 mmol). 

Yield: 40% 

Analytical Calc. for C40H39NPLi: C: 84.04% H: 6.88% N: 2.45%. Found: C: 82.47% H: 

7.59% N: 2.14%. 

1H (C6D6, 300 MHz, 25 °C): δ 8.26-8.29 (m, 2H, (1,8)-Flu), 7.56-7.65 (m, 6H, o-PPh2, 

(3,6)-Flu), 7.22-7.29 (m, 4H, (2,4,5,7)-Flu),  6.94-7.08 (m, 9H, m-,p-Ph, m-,p-Dipp), 3.58 

(d, 1H, 2JP-H = 19.4 Hz, PCH), 2.98 (2H, sept, 3JH-H = 6.8 Hz, CH(CH3)2), 1.78 (3H, d, 4JP-
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H = 2.1 Hz, N-C(CH3)), 1.17 (d, 6H, 3JH-H = 6.8 Hz, CH(CH3)2), 0.88 (d, 6H, 3JH-H = 6.8 

Hz, CH(CH3)2) ppm. 

13C{1H} (C6D6, 75 MHz, 25 °C): δ 171.84 (N-C(CH3)=(CH)), 148.85 (ipso-Dipp), 142.15 

(o-Dipp), 140.57 (d, 2JP-C = 10.9 Hz, (4a,4b)-Flu), 130.20 (d, 1JP-C = 87.1 Hz, ipso-PPh2), 

132.20 (d, 2JP-C =  10.0 Hz, o-PPh2), 131.81 (d, 2JP-C = 11.5 Hz, (8a,9a)-Flu), 130.03 (d, 4JP-

C = 2.5 Hz, p-PPh2), 128.78 (d, 3JP-C =  11.5 Hz, m-PPh2), 124.82 (2,7-Flu), 123.57 (p-, m-

Dipp), 120.27 (1,8-Flu), 118.86 (4,5-Flu), 118.76 (3,6-Flu), 55.08 (d, 1JP-C =  113.5 Hz, 

PCH), 27.90 (CH(CH3)2), 25.01 (d, 3JP-C
 = 17.0 Hz, N-C-CH3), 24.57 (CH(CH3)2), 24.29 

(CH(CH3)2) ppm. 

31P{1H} (C6D6, 121 MHz, 25 °C): δ -2.35 ppm. 

7Li (C6D6, 117 MHz, 25 °C): δ -2.19 ppm. 

 

4.4.3.6 Synthesis of Compound 5 - [Na+][(η1-Dipp)-N--C(CH3)=(CH)-P(C6H5)2(η4-

C13H9)] • THF 

 
In a 20 mL scintillation vial, 350 mg (0.50 mmol) 2 and 162 mg (6.80 mmol) NaH were 

suspended in 14 mL hexane for 3 days, with minimal changes (slight yellowing). 1 mL 
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toluene were added followed by removal of most of the solvent in vacuo, with addition of 

11 mL THF following removal of hexane progressing to a yellow, then orange, and finally 

a red with light-coloured precipitate the next day. A ~1 mL aliquot was taken, and removal 

of solvent in vacuo followed by dissolution into C6D6 showed complete conversion to 5. 

Removing the solvent in vacuo and adding the C6D6 solution to the red solid was followed 

with swirling the 0.5 mL solution around the vial leading to spontaneous crystallization. 

The solid was washed with 2×1 mL hexane resulting in immediate precipitation as the 

crystals went opaque. The solids were initially a non-uniform beige, yellow, orange and 

red, but drying in vacuo afforded 364 mg (0.50 mmol) of a homogenous beige solid. Final 

analysis using 1H NMR spectroscopy showed residual hexanes (~1/4 hexane to 5 ratio) 

resulting in an adjusted final yield of 0.35 g (0.48 mmol) for the ~96% dry solid. 

Yield: 96% 

m.p. (°C):  168.1-170.2 

Analytical Calc. for C44H47NPONa: C: 80.09% H: 7.18% N: 2.12% Found: C: 79.47% H: 

6.95% N: 2.22%. 

1H (C6D6, 300 MHz, 25 °C): δ 8.32 (d, 2H, 3JH-H = 7.8 Hz, (1,8)-Flu), 7.84 (dd, 4H, 3JH-H = 

7.5 Hz, 3JP-H = 12.0 Hz, o-PPh2), 7.54 (d, 2H, 3JH-H = 7.8 Hz, (4,5)-Flu),  7.03-7.26 (m, 10H, 

m-Ph, p-Ph, (2,3,6,7)-Flu ), 6.89-6.97 (m, 3H, m-,p-Dipp), 3.51 (d, 1H, 2JP-H = 21.3 Hz, 

PCH), 3.02 (2H, sept, 3JH-H = 6.9 Hz, CH(CH3)2), 2.75-2.87 (m, 4H, O(CH2)2), 1.84 (3H, 

d, 4JP-H = 2.2 Hz, N-C(CH3)), 1.21 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2), 1.04-1.12 (m, 4H, 

O(CH2)2(CH2)2), 0.74 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2) ppm. 
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13C{1H} (C6D6, 75 MHz, 25 °C): δ 169.95 (N-C(CH3)=(CH)), 150.02 (ipso-Dipp), 141.34 

(o-Dipp), 140.07 (d, 2JP-C = 13.7 Hz, 8a,9a-Flu), 135.46 (d, 1JP-C = 88.0 Hz, ipso-PPh2), 

132.73 (d, 2JP-C =  10.4 Hz, o-PPh2), 130.88 (d, 4JP-C = 2.2 Hz, p-PPh2), 128.83 (d, 3JP-C =  

11.7 Hz, m-PPh2), 127.6-128.4 (4a,5a-Flu), 123.97 (2,7-Flu), 123.57 (m-Dipp), 122.54 (p-

Dipp), 120.16 (1,8-Flu), 118.16 (4,5-Flu), 116.80 (3,6-Flu), 67.54 (O(CH2)2), 52.33 (d, 1JP-

C =  115.0 Hz, PCH), 27.44 (CH(CH3)2), 25.30 (O(CH2)2(CH2)2), 24.3-24.7 (N-C-CH3), 

24.36 (CH(CH3)2), 24.15 (CH(CH3)2) ppm. 

31P{1H} (C6D6, 121 MHz, 25 °C): δ -4.28 ppm. 

4.4.3.7 Synthesis of Compound 6a - [K+][(η2-Dipp)-N--C(CH3)=(CH)-P(C6H5)2(η5-

C13H9)] • Et2O 

 
To a 20 mL scintillation vial, 0.3630 g (0.56 mmol) compound 2 and 0.0470 g (1.17 mmol) 

KH were suspended in 10 mL diethyl ether as a white suspension with stirring overnight at 

room temperature. The solution became dark red, and filtration through a medium glass frit 

afforded a small amount of red solid that was discarded, and the golden filtrate was 

concentrated in vacuo to 5 mL that gave no solid upon cooling to -35 °C. Further 

concentration to 2 mL in vacuo, sealing the vial while boiling, and cooling to -35 °C gave 
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0.336 g (0.49 mmol) of 6a as analytically pure, X-ray quality yellow crystals upon 

decanting the solution and drying in vacuo. 

Yield: 88% 

m.p. (°C): Condensation at 120, non-homogenous melt from 135-230, fully molten at 245 

Analytical Calc. for C44H49NPKO: C: 77.95% H: 7.29% N: 2.07%. Found: C: 78.21% H: 

7.20% N: 2.08%. 

1H (C6D6, 300 MHz, 25 °C): δ 8.26 (d, 2H, 3JH-H = 7.8 Hz, (1,8)-Flu), 7.85 (dd, 4H, 3JH-H = 

7.0 Hz, 3JP-H = 11.8 Hz, o-PPh2)  (d, 2H, 3JH-H = 7.8 Hz, (4,5)-Flu),  7.04-7.20 (m, 10H, m-

Ph, p-Ph, (2,3,6,7)-Flu ), 6.88-6.97 (m, 3H, m-,p-Dipp), 3.43 (d, 1H, 2JP-H = 22.2 Hz, PCH), 

2.84 (2H, sept, 3JH-H = 6.8 Hz, CH(CH3)2), 1.85 (3H, d, 4JP-H = 2.2 Hz, N-C(CH3)), 1.17 (d, 

6H, 3JH-H = 6.8 Hz, CH(CH3)2), 0.69 (d, 6H, 3JH-H = 6.8 Hz, CH(CH3)2) ppm. 

13C{1H} (C6D6, 75 MHz, 25 °C): δ 168.02 (N-C(CH3)=(CH)), 149.95 (ipso-Dipp), 141.06 

(d, 2JP-C = 14.0 Hz, 8a,9a-Flu), 140.89 (o-Dipp), 136.05 (d, 1JP-C = 88.1 Hz, ipso-PPh2), 

132.81 (d, 2JP-C =  10.3 Hz, o-PPh2), 130.67 (d, 4JP-C = 2.4 Hz, p-PPh2), 128.72 (d, 3JP-C =  

11.8 Hz, m-PPh2), 127.59 (4a,5a-Flu), 123.84 (m-Dipp), 123.58 (2,7-Flu), 121.96 (p-Dipp), 

119.67 (1,8-Flu), 118.04 (4,5-Flu), 115.85 (3,6-Flu), 51.7 (d, 1JP-C =  115.7 Hz, PCH), 27.20 

(CH(CH3)2), 24.64 (CH(CH3)2), 24.26 (CH(CH3)2), 24.26 (d, 3JP-C =  17.8 Hz, N-C-CH3) 

ppm. 

31P{1H} (C6D6, 121 MHz, 25 °C): δ -3.33 ppm. 
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4.4.3.8 Synthesis of Compound 6b - [K+][(Dipp)--N--C(CH3)=(CH)P(C6H5)2(C13H9)] 

 
A white suspension of 165 mg (0.26 mmol) 2 and 37 mg (0.92 mmol) KH in 12 mL diethyl 

ether were stirred for one day at room temperature in a 20 mL scintillation vial. The 

resulting yellow solution with yellow solids was dried in vacuo and extracted with hot 

hexane using 6x1.5 mL aliquots through a diatomaceous earth pipette filter leaving yellow 

solid. The solid was eluted from the filter with 3×2 mL diethyl ether, dried in vacuo forming 

a glassy greenish yellow foam. 8 mL hexanes were added and allowed to stir with the 

suspended yellow solid for 3 days. The yellow solids were allowed to settle out of the 

faintly yellow hexane solution that was mostly removed via a pipette. Drying the remaining 

solution and yellow solid in vacuo for 8 hours over 2 days gave 0.050 g of a free-flowing 

yellow powder. NMR spectroscopy including 1H, 31P, and 31P HMBC indicated the solids 

were primarily 6 with a small amount of THF absorbed from the glovebox atmosphere, 

residual hexanes, and a trace of 3. Compound 6 was found to form yellow crystals upon 

cooling or slow evaporation of a concentrated diethyl ether solution containing a single 

diethyl ether adduct on potassium. Crystals with half a molecule of hexane and oligomeric 

6 were also found to form from slow evaporation of a concentrated hexane solution. Loss 
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of co-crystallized solvent does occur with prolonged drying in vacuo, though coordinating 

solvents were not able to be easily removed via dissolution in C6D6. Degradation into 3 via 

either hydrolysis or other unexplored reactivity occurred readily while working within the 

glovebox. 

Yield: 32% 

m.p. (°C):  116.0 – 118.1 

Analytical Calc. for C40H39NPK: C: 79.57% H: 6.51% N: 2.32% Found: C: 79.55% H: 

6.58% N: 2.32%. 

1H (C6D6, 300 MHz, 25 °C): δ 8.26 (d, 2H, 3JH-H = 7.8 Hz, (1,8)-Flu), 7.85 (dd, 4H, 3JH-H = 

7.0 Hz, 3JP-H = 11.8 Hz, o-PPh2), 7.39 (d, 2H, 3JH-H = 7.8 Hz, (4,5)-Flu),  7.04-7.20 (m, 10H, 

m-Ph, p-Ph, (2,3,6,7)-Flu ), 6.88-6.97 (m, 3H, m-,p-Dipp), 3.43 (d, 1H, 2JP-H = 22.2 Hz, 

PCH), 2.84 (2H, sept, 3JH-H = 6.8 Hz, CH(CH3)2), 1.85 (3H, d, 4JP-H = 2.2 Hz, N-C(CH3)), 

1.17 (d, 6H, 3JH-H = 6.8 Hz, CH(CH3)2), 0.69 (d, 6H, 3JH-H = 6.8 Hz, CH(CH3)2) ppm. 

13C{1H} (C6D6, 75 MHz, 25 °C): δ 168.02 (N-C(CH3)=(CH)), 149.95 (ipso-Dipp), 141.06 

(d, 2JP-C = 14.0 Hz, 8a,9a-Flu), 140.89 (o-Dipp), 136.05 (d, 1JP-C = 88.1 Hz, ipso-PPh2), 

132.81 (d, 2JP-C =  10.3 Hz, o-PPh2), 130.67 (d, 4JP-C = 2.4 Hz, p-PPh2), 128.72 (d, 3JP-C =  

11.8 Hz, m-PPh2), 127.59 (4a,5a-Flu), 123.84 (m-Dipp), 123.58 (2,7-Flu), 121.96 (p-Dipp), 

119.67 (1,8-Flu), 118.04 (4,5-Flu), 115.85 (3,6-Flu), 63.24 (d, 1JP-C =  121.2 Hz, PCH), 

51.66 (d, 1JP-C =  115.7 Hz, PCH), 27.20 (CH(CH3)2), 24.64 (CH(CH3)2), 24.26 

(CH(CH3)2), 24.26 (d, 3JP-C =  17.8 Hz, N-C-CH3) ppm, 15.55 (Et2O-CH3). 

31P{1H} (C6D6, 121 MHz, 25 °C): δ -3.33 ppm. 
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4.5 Conclusion 

Reacting a previously reported40 bulky phosphine-imine 1 with 9-bromofluorene 

results in a hydrobromide salt 2 that upon deprotonation forms a phosphonium 

fluorenylide/Enamine bidentate ligand precursor 3, along with alkali metal complexes of 

Li (4), Na (5), and K (6). Analysis of various solvates provided additional information about 

the η-interactions that occur within the solid state. Following the work presented in this 

paper, future work seeks to form other metal complexes including aluminum, rhodium, 

bismuth, and other transition and alkaline earth metal complexes using the free ligand 3 

and alkali metal complexes 4-6 as precursors to explore the bonding motifs and efficacy of 

forming other non-alkali metal complexes for further understanding their bonding and 

structure. Two small-scale reactions with metal halides (AlI3, ZrCl4) have resulted in 

multiple unidentifiable 31P NMR spectroscopy signals each, though attempts to isolate a 

single product only gave crystals of the hydrochloride and hydro triiodide salts. Though a 

literature gap exists for amide tethered phosphonium fluorenide ligands, we suspect the 

bidentate monoanionic [3]- will be good at stabilizing metal centers through the bulky 

amide tether that will hold the metal center directly adjacent the highly variable 

phosphonium fluorenide donor. Further studies will utilize 3-6 as precursors for preparing 

a variety of potential organometallic catalysts utilizing alkaline earth, transition, main-

group and lanthanide metals, with initial sights set on structural characterization to further 

understand how metals with higher oxidation states behave when bound with this ligand. 

One suspected avenue of decomposition expected is cleavage of the phosphonium 

fluorenide. Phosphonium ylides tend towards formation of phosphine oxides and alkene 
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products via Wittig reactions, implying instability of these complexes to carbonyl-

containing organic functional groups such as ketones and aldehydes; however, this 

decomposition may be beneficial resulting in a monoanionic (or neutral) bidentate 

phosphine-amide/imine ligand 1 and a 9-fluoreneylidene ligand on the metal similar to a 

Ru(II) complex baring a tridentate neutral ligand alongside two chloride ligands.41 
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5. Chapter 5: Dimethyl Aluminum and Indium Complexes of Oxygen, Sulfur, 

and Selenium Substituted Phosphine-Imine Ligands  

5.1 Abstract 

 A previously reported bidentate phosphine-imine1 1 was reacted with 30% 

hydrogen peroxide, sulfur powder, or gray selenium metal in toluene forming chalcogen 

substituted phosphine-imines 2, 3, and 4. Although 1, 3, and 4 have only been observed as 

the chalcogen substituted phosphine-imine, 2 was observed to crystallize as both the imine 

and (E)-enamine isomers since in solution, 1-4 undergo dynamic tautomerization. The 

acidic proton within C6D6, CDCl3, and CD3CN solutions dominantly resides on the 

backbone sp3 CH2 as the imine; however, minor tautomers exist with a sp2 CH backbone 

carbon while the acidic proton exists as either (E)- or (Z)-enamine isomers, with a possible 

fourth/fifth ylide tautomer with the proton residing as OH/SH/SeH, supported by gas-phase 

DFT calculations of compound 2. Reactions with trimethyl aluminum or trimethyl indium 

in toluene with 1-4 results in the loss of 1 eq. methane gas and cyclization into 5- (1-

AlMe2), 6-, and 12-membered dimethyl group 13 complexes. These monoanionic ligands 

chelate the metal atoms through the chalcogen and nitrogen for 6-membered complexes 5-

10, with compound 8 containing the phosphine-oxide donor with dimethyl indium 

dimerizing and forming a 12-membered metallacycle with nitrogen from one ligand and 

the phosphine oxide of another coordinated to the distorted tetrahedral indium center. The 

corresponding infrared spectroscopy, nuclear magnetic resonance spectroscopy, single 

crystal X-ray diffraction, and physical properties are described herein for the three ligands 

2-4 and the dimethyl aluminum and indium complexes 5-7 and 8-10. 
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5.1.1 Graphical Abstract 

 
5.2 Introduction 

Multidentate ligands are useful for organometallic chemistry of reactive metals 

offering greater steric bulk and tunable electronic properties for metal centers that can help 

prevent rapid decomposition upon exposure to air or moisture or stabilize reactive and 

uncommon metal environments. Ligands such as the bulky nitrogen-based bidentate ß-

diketimine family (“NacNacH” Figure 5.1 A)), once deprotonated, form ß-diketiminate 

ligands (“NacNac”) (Figure 5.1 B) that have proven capable of supporting uncommon and 

reactive metal environments such as Ni(I) nitrogen adducts and Ni(II) hydrides,2 stable 

aluminum(I) and gallium(I) complexes,3,4 and alkylation of benzene via an alkyl calcium 

dimer resulting in a calcium hydride dimer that is readily re-alkylated via insertion of a 

variety of alkenes (general structure of metal complexes, Figure 5.1 C).5 The NacNac 

ligand is monoanionic, yet spatially encompasses a significant area around the metal atom, 

while dimers are essentially fully protected with a reactive core shrouded in bulky N-

substituents like the commonly used 2,6-diisopropylphenyl (Dipp) group. NacNac ligands 

can offer significant steric bulk and have ubiquitous value as a general-purpose tunable  
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Figure 5.1 A: General structure of ß-diketimine (NacNacH) ligand precursors with R 

groups commonly R1 = alkyl, aryl, 2-6-diisopropylphenyl and R2 = methyl, t-butyl, 

aromatic. B: deprotonation of A affords B, the ß-diketiminate (NacNac) ligand. C: Typical 

chelation of the NacNac ligand where M = metal with varying ligands. D: A literature 

phosphine-oxide amine ligand precursor E: a phosphinimine amine bidentate ligand 

precursor to produce F: dimethyl aluminum complexes with E = O, or N-Dipp. G: 

Precursor 1 used to prepare 2-4 within this work, which was also used in the past to create 

H: a phosphinimine – imine bidentate ligand that then resulted in I: Pd and Ni complexes 

with no imine-metal interaction. 

 

ligand structure, ligands with similar groups directly bound to the metal center are 

suspected to have similar beneficial donor properties. The natural diversity of unique 

metallic elements that can be stabilized by bulky monoanionic bidentate ligands like the 

NacNac ligands encourages exploration into similar ligands to better understand their 

interaction with various metals to enable similar stabilization of reactive, catalytically 

active metal centers. One group explored a bidentate ligand similar to NacNac with one 

imine group replaced by either a phosphine oxide (Figure 5.1 D) or a phosphinimine (Figure 
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5.1 E) leading to alkyl aluminum complexes with a similar 6-membered chelation of these 

bidentate ligands when compared to dimethyl aluminum complexes of NacNac (Figure 5.1 

F).6,7 Exploration into an altered NacNac-type of analogue ligand with similar substitution 

of the phosphine imine (Figure 5.1 G = Compound 1) was used to prepare the ligands within 

the present work. This diphenylphosphinimine-imine ligand (Figure 5.1 H) was previously 

found to form both Ni and Pd complexes with a four membered ring, differing from the 6-

membered ring structure of similar NacNac nickel complexes (Figure 5.1 I) owing to 

increasing the reactivity of the α-carbon when a phosphinimine replaces one of the imine 

groups present within NacNac ligands.1,2  

Aluminum and other group 13 metal complexes are able to initiate ring-opening 

polymerization of monomers such as cyclic esters,8,9 and perform regioselective10 or 

functional group tolerant11  catalytic coupling of epoxides with environmentally and 

industrially important small molecules like carbon dioxide (CO2) or isocyanates (RNCO) 

forming cyclic carbonates and oxazolidinones, respectively. Therefore, the group 13 metals 

aluminum and indium were chosen for synthesis and characterization within this work. 

Aluminum complexes can enantioselectively couple epoxides with isocyanates with high 

yield conversions to the oxazolidinone products depending on the amount of metal atoms 

present in the complex (mono, bi, tri metallic species), the electronic effects of the donor 

atoms bound to the metal, and the steric bulk shielding the active metal center.10 In addition, 

functional group tolerance was shown for aluminum complexes within coupling reactions 

of epoxides (alcohol and halocarbon) with isocyanates (ether and halocarbon). Cyclic 

carbonate formation is also possible using epoxides, and it has been shown to possess even 



Page | 158  

 

greater functional group tolerance including alcohols, esters, halocarbons, alkynes, alkenes, 

amides, silyl ethers, and cyclic tertiary amines.11 Mechanisms have been suggested for 

chemical processes performed by mono- or bi-metallic aluminum complexes relying on 

aluminum acting as the active site for initial coordination of oxygen prior to ring opening 

polymerization or copolymerization processes.8,12 Some ligands have resulted in properties 

and applications including air stability,13,14 and the ability to completely fixate carbon 

dioxide with styrene oxide forming styrene carbonate at room temperature without extreme 

pressure using a tetrabutylammonium bromide cocatalyst, showing promise for utilization 

of carbon dioxide sequestered within capture technology to produce value added 

products.15,16 Active aluminum catalysts are often in the +3-oxidation state, or cationic with 

an associated borate anion.12 Catalysts often possess bulky group 15-16 based multi-dentate 

monoanionic donor ligands with coordinated solvent, alkyl chains, halogens, or lone pair 

electrons in the carbene-like group 13(I) heterocycles.3,8 Despite promising preliminary 

reactivity and catalytic performance, it remains uncertain that ligands enable group 13 

elements to achieve optimal performance for the currently known applications, and further 

exploration into unstudied group 13 ligand interactions may show significant improvement 

over current highly promising ligands.  

The following research into chalcogen substituted derivatives of a previously 

reported phosphine-imine bidentate ligand 1,1 resulted in ligands 2-4 bearing a phosphine 

oxide, sulfide, or selenide that undergo tautomerization in C6D6, CDCl3 and CD3CN 

solutions to at least 3 isomers. An unsuccessful attempt was made to form the phosphine 

telluride derivative, though complete conversion to a single product was not achieved. 
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From these three ligands, three dimethyl aluminum and three dimethyl indium complexes 

were prepared. The corresponding IR spectroscopy, nuclear magnetic resonance 

spectroscopy, single crystal X-ray diffraction, and general physical properties like stability 

and appearance follow. 

5.3 Results and Discussion 

5.3.1 Synthesis - Ligands 

From a previously reported phosphine-imine 1,1 compounds 2-4 were prepared 

from a toluene mixture of either 30 % H2O2 at room temperature for 2, or elemental sulfur 

powder or grey selenium metal heated to 100 °C for 3 and 4, respectively (Scheme 5.1). 

Compound 2 crystallized as both imine (2a) and (E)-enamine (2b) isomers depending on 

crystallization conditions. Compound 4 was observed to degrade in solution exposed to air, 

noted by precipitation of a red solid. Attempts to make the tellurium substituted phosphine 

were unsuccessful using tellurium metal powder heated in toluene or mesitylene at 100 and 

160 °C, respectively. Te-P chemistry is known to differ from patterns observed with other 

chalcogens through the weaker non-polar covalent interactions leading to instability, owing 

to the use of phosphine tellurides as tellurium transfer agents.17 Reaction of elemental Te 

was not as straightforward as the first phosphine telluride, tributyl phosphine telluride, 

which was successfully produced from the phosphine and powdered tellurium refluxed in 

toluene.18 Rather than attempting alternate Te sources such as Ph2Te2(Ph2Te2 -> Ph2Te + 

Te), this chemistry was not explored further. Compound 1 is crystallized from ethanol, and 

multiple impure (~70-90%) batches were harvested despite slow oxidation in air into 2 

resulting in a mixture that could not be separated. 3 was sometimes contaminated with 
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excess sulfur when 1 was the limiting reagent and could be cleaned using a column with an 

80:20 pentane-acetone mobile phase and silica gel stationary phase affording flaky white 

crystals (second UV-active fraction) upon removal of solvent after initial elution of S8 with 

pentane as an eluent.  

 
Scheme 5.1 Synthesis of three bidentate chalcogen substituted phosphine-imine ligands 2-

4 from compound 1. In the center a resonance conformation of the imine is shown 

highlighting the ability of neutral phosphine-chalcogenides to act as strong donors through 

the chalcogen substituent. 

 

5.3.2 NMR Spectroscopy and Computational Analysis - Ligands 

The 1H NMR spectra of compounds 2-4 is different across various deuterated solvents 

(CDCl3, CD3CN, C6D6) for the ratio of tautomeric imine/enamine/ylide and trace unknown 

isomers occurring in solution (Table 5.1, Scheme 5.2).  

Table 5.1 Ratio’s of observed isomers (imine:(E)-enamine:(Z)-enamine:ylide (E)- or (Z)-

isomers) in different deuterated solvents at 298 K based on 1H NMR integration. 

Compound solvent = CDCl3 solvent = C6D6 solvent = CD3CN 

2 (Oxygen) 84:11:5:0 80:20:<1:0 75:19:6:0 

3 (Sulfur) 75:6:19:<1 84:16:0:0 78:4:10:4 

4 (Selenium) 63:33:4:0 74:24:2:0 72:14:13:1 
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Scheme 5.2 Possible conformations expected to occur through solution-state isomerization 

processes. The (E)- and (Z)-isomers of the ylide may arise from rotation about the P=C 

bond following electron delocalization into a phosphonium carbanion (P+-C-). Low 

concentration or absence of the suspected fourth and fifth ylide isomers in various solutions 

at room temperature may afford different results at different temperatures, allowing for 

calculation of bond rotation activation energies.19 

 

Across all solvents, the imine is favored by 59-85 %, clear based on 1H NMR integration 

showing a 2:2 ratio for the P-CH2 with the two isopropyl (CH3)2CH. Compounds 2 and 3 

both maintained >75 % imine in all solvents with enamine the second most abundant isomer 

in CDCl3 and C6D6 solutions. In the 1H NMR spectra of 2-4 in CD3CN solutions, a sharp 

NH singlet from 7-10 ppm is observed along with a broad singlet between 4-6 ppm 

attributed to either an NH or a P-EH (E = O, S, Se) proton. Determination of the identity of 

each tautomer is conflicting based on a combination of inconclusive 1H NMR spectroscopy 

(very similar signals expected for (E)- and (Z)-enamine or P-EH tautomers), SC-XRD 
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analysis of 2 as the imine isomer and the (E)- enamine isomer, and gas phase calculations 

showing 2 as the (Z)-isomer is most stable. Each isomer is expected to potentially occur in 

solution via dynamic proton migration processes; however, in the (Z)-conformation the 

proton may migrate back and forth from nitrogen to oxygen or vice versa as a high energy 

intermediate state that rapidly rearranges to the more stable imine. When present in solution 

as the imine, both the bonds of the methylene bridge may rotate allowing for many different 

arrangements in solution, and with the abundance of heteroatoms, aromatic Dipp/Ph, along 

with a highly acidic proton, solution interactions such as hydrogen bonding (CDCl3 donor, 

CD3CN acceptor) or π-interactions (C6D6) are expected to influence the isomerization 

processes. For the sake of assignment, calculations were performed on compound 2 as the 

imine, enamine (Z and E), and with the acidic proton as P-OH.  A fourth tautomer in very 

low concentrations was observed for compound 3 in CD3CN solution, thought to be a high 

energy P-SH tautomer that rapidly rearranges to either the enamine or imine tautomer. 

For NMR spectroscopy of all ligands and dialkyl metal complexes, asymmetry 

down the possible centrosymmetric structure is clear by differences in the isopropyl CH3 

(Figure 5.2) 1H and 13C NMR spectra. By 13C NMR spectroscopy, the 2,6-diisopropyl 

symmetry is split either down the middle as unique “left and right of the plane” isopropyl 

NMR signals, or across the plane of the ring with one signal indicative of the “above” 

methyl groups of the isopropyl groups and the other to the “below”. The symmetric origin 

of this splitting of resonance in the 1H and 13C NMR spectra of the Dipp group methyl 

signals for compounds 2-10 was not further studied and remains unknown and both signals 

are simply indicated as CH(CH3)2 signals. 
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Figure 5.2 Asymmetry of the isopropyl groups within 1H NMR spectroscopy. This is 

observed to a different degree for all of compounds 1-10. 

 

To get an idea of the relative energy of each suspected isomer of 2, a series of 

calculations (Figure 5.3) were performed to guide NMR spectroscopic assignments since 

the non-imine isomers were not the major isomer in solution and the expected NMR signals 

of each minor isomer are very similar (doublet for CH backbone, singlet for NH or OH). 

Initial geometries were calculated at the B3LYP/6-31G(d) level of theory, followed by 

optimization at the PBEPBE/TZVP level of theory, with all stationary points verified using 

frequency calculations. These calculations were conducted by Dr. Masuda as a means of 

supporting the identification of various isomers within this work; however, it is important 

to note that gas phase calculations do not directly translate to solution state systems. 

Likewise, crystallography presented later is all solid state and does not correlate directly 

with solution state systems, resulting in the inability to identify between (E)- and (Z)-

isomers of the enamine or ylide.  
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Figure 5.3 Structural isomers of compound 2 in the gas phase. Initial geometries and later 

optimization were calculated at the B3LYP/6-31G(d) at PBEPBE/TZVP levels of theory. 

A shows the lowest energy (0 kcal/mol) for the chelating (Z)-enamine (OH in this 

conformation rearranges to enamine). B is the imine isomer that is most stable in solution, 

calculated with an energy of +1.4 kcal/mol in the gas phase. C is the (E)-conformation of 

the enamine that appears less stable at +3.8 kcal/mol, while the (E)-conformation with P-

OH (D) displays the highest energy at +23.5 kcal/mol. 

 

While gas phase calculations show the (Z)-enamine is the most stable followed by the imine 

and then (E)-enamine, solution-based NMR spectroscopy indicates the imine is most stable 

followed by the two enamine isomers. For the sake of assignment, the (E)-isomer was 

treated as the second most abundant minor isomer followed by the (Z)-isomers, except for 

when the most abundant N-H signal occurs as a broad singlet between 4-6 ppm by 1H NMR 
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spectroscopy that is thought to be broadened due to proximity to phosphorus since the (Z)-

isomer = 2JP-H while (E)-isomer would be 4JP-H coupling due to the possible proton transfer 

between adjacent heteroatoms (N, O, S, Se) as the (Z)-isomer. 

5.3.3 X-ray crystallography - Ligands 

 

 
Figure 5.4 Single crystal structures of 2-4 in the solid state. Anisotropic displacement 

ellipsoids are set to 50 % probability and hydrogen atoms are omitted for clarity except 

when present on a heteroatom or the central C1-C3 backbone. Top left and right (2a, 2b), 

bottom left and right (3, 4). See Supporting Information for details. 

 

In crystal structures of compound 2 both the imine 2a and enamine 2b tautomers 

were observed as colourless rhombohedral plates from pentane and radial colourless 

needles from acetone, respectively. Compounds 3 and 4 both crystallized as the imine from 

pentane as colourless rhombohedral plates and large prismatic shards, respectively. Figure 
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5.4 displays the four crystal structures obtained for these three ligands and Table 5.2 

contains relevant bond angles and lengths.  

Table 5.2 Bond lengths and angles of interest for ligands 2-4. 

Compound N1-C2 (Å) C2-C1 (Å) C1-P1 (Å) P1-E1 (Å) 

2a 1.2724(18) 1.5145(18) 1.8219(14) 1.4905(10) 

2b 1.3486(17) 1.3661(19) 1.7540(14) 1.4949(10) 

3 1.2767(10) 1.5151(10) 1.8350(8) 1.9552(3) 

4 1.2660(28) 1.5164(31) 1.8303(23) 2.1069(6) 

 

5.3.4 Synthesis - Organometallics 

Despite 2 crystallizing as both imine (2a) and (E)-enamine (2b) isomers, the solids 

were used indiscriminately for synthesis of dimethyl aluminum and indium complexes 5 

and 8 due to solution state tautomerism occurring upon dissolution of 2, regardless of it 

being the enamine or imine in the solid state. All compounds were prepared and isolated 

via combining an excess of trimethyl aluminum or indium (M(Me)3, M = Al, In) and 2-4 

in toluene and heating for the day or stirring at room temperature for extended periods of 

time under inert conditions. The heavier chalcogens tended to require longer reaction times 

to fully convert into the corresponding metal complex. Removal of toluene in vacuo and 

crystallization from cooled/evaporated pentane solutions precipitated crystalline 5-10 with 

isolated yields above 70% (Scheme 5.3). If a catalytic process is finished via quenching the 

reaction mixture, extracting the ligand and re-complexing the alkyl-metals may be a 

possibility. Alternately, these complexes could pose as a source of very small and dispersed 

group-13 metal oxides or hydroxides via air or moisture exposure.  
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Scheme 5.3 General synthetic procedure for preparation of 5-10 from 2-4. Heating the 

ligand in the presence of trimethyl aluminum within toluene causes the loss of methane and 

subsequent cyclization of the bidentate ligand around the tetrahedral metal center. 

 

5.3.5 NMR Spectroscopy - Organometallics 

Table 5.3 1H NMR spectroscopy signals for organometallic complexes 5-10 with 

associated 31P-(77Se, 1H) coupling constants. 

NMR Nuclei 5 6 7 8 9 10 

PCH (ppm, d) 3.84 3.92 4.03 3.84 3.70 3.76 

CH-(CH3)2 (ppm, sept) 3.40 3.67 3.70 3.23 3.56 3.61 

CH(CH3)2  (ppm, d) 1.24 1.37 1.38 1.03-1.07 (m) 1.27 1.31 

CH(CH3)2 (ppm, d) 1.05 1.24 1.25 1.03-1.07 (m) 1.22 1.25 

M(CH3)2 (ppm, M = 

Al, In, broad s.) -0.29 -0.48 -0.49 0.11 -0.22 -0.27 
27Al (ppm) 67 73 71 - - - 
31P (ppm) 41.45 25.8 10.14 36.54 26.27 9.01 

77Se (ppm) - - -275 - - -294 
77Se  (1JSe-P, Hz) - - 496 - - 502 

PCH (2JP-H, Hz) 26.3 18.7 16.2 24.1 18.8 17.4 

P-C=C-CH3 (
4JP-H, Hz) 1.3 1.7 1.8 2.1 1.9 2.2 

CH(CH3)2 (
3JH-H, Hz) 7.0 6.9 6.9 6.9 from sept 6.9 6.9 

 

All NMR samples of compounds 5-10 contained 5-40 mg material dissolved in 0.4-

1.0 mL C6D6. Compounds 5-10 possess protons that couple to phosphorus, most notably 

the backbone P-CH and P-C=C-CH3 protons with 2JP-H and 4JP-H coupling, respectively. 

Some periodic trends exist for various coupling constants and NMR signals within 

complexes 5-10 (Table 5.3, Figure 5.5). For the PCH 1H NMR signal, the coupling constant 

is largest when oxygen is present, and lowest for selenium for both series of aluminum and 

indium complexes. For aluminum complexes 5-7, the 1H NMR signal in ppm for the PCH 
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proton increases from oxygen (3.84 ppm) to selenium (4.03 ppm), though the same trend 

isn’t followed when indium is present. For both series of metal complexes, the P-C=C-CH3 

1H NMR signal in ppm gets more positive from oxygen to selenium. The magnitude of the 

coupling constant of 4JP-H for this P-C=C-CH3 interaction becomes larger from oxygen to 

selenium for aluminum complexes, but no trend is followed for the indium complexes.  

 
Figure 5.5 Diagram of 1H NMR spectra from 4 to -1 ppm of compounds 5-10 in C6D6. 

Arrows illustrate trends from O→S→Se.  

 

The 27Al NMR spectroscopy of compounds 5, 6, and 7 presents as broad single 

peaks at 67, 73, and 71 ppm with a full width at half height of 1600, 2340, and 1550 Hz, 

respectively. The 31P NMR signal is most positive when oxygen is present (41.45 or 36.54 

ppm for 5 and 8), second largest for sulfur (25.80 or 26.27 ppm for 6 and 9), and lowest for 

selenium (10.14 or 9.01 ppm for 7 and 10) containing complexes. Oxygen and selenium 

had a shift to a lower ppm in the 31P NMR spectrum when indium was present, but sulfur 
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had the opposite with a lower ppm signal for the aluminum complex. The difference in 31P 

NMR spectroscopic signal between aluminum and indium complexes was greatest for 

oxygen (4.91 ppm), then selenium (1.13 ppm), and sulfur had the smallest difference (0.47 

ppm). Compared to isomers of the ligands 2-4, the 31P NMR chemical shifts for compounds 

5-10 were closest to the enamine isomer, which based on the single crystal structure of 2b, 

occur in solid state as the (E)-conformation, implying that in solution the expected solid 

state zwitterionic tetrahedral 6-membered rings may lose the donation from the phosphine 

chalcogenide in solution forming the non-cyclic trigonal structure (Figure 5.6) or dimers 

such as 8b.  

 

Figure 5.6 Hypothetical non-chelated structure of neutral dimethyl group-13 metal 

complexes that may occur in solution. 

 

Correlations between solid/liquid/gas states as mentioned before do not 

conclusively indicate anything about one another; i.e. observation of the (E)-enamine and 

not the (Z)-enamine in the solid-state structure of compound 2b does not imply that the (E)-

isomer is most stable in solution. Considering the evidence observed for the solid state of 
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2b as the (E)-enamine, most abundant minor isomer in each instance is associated with the 

isomer with N-H 1H NMR peaks above 7 ppm, and (Z)-enamine below 7 ppm. 

 

5.3.6 X-ray crystallography – Dimethyl Group 13 Complexes 

 

 
Figure 5.7 Single crystal structure of 5-7 in the solid state. Anisotropic displacement 

ellipsoids are set to 50 % probability and hydrogen atoms except for H1 are omitted for 

clarity. Top left and right (1•AlMe2, 5), and bottom left and right (6,7). See Supporting 

Information for details. 

 

Compound 5 formed radial needle crystals and plates, 6-7 formed prismatic 

rhombohedral crystals, 8a, 9, and 10 formed radial prismatic crystals and 8b formed as 

prismatic blocks, all from cooled pentane solutions. Compounds 6-7 and 9-10 represent the 

first reported instances of 6-membered metallacycles (Figure 5.7) of the structure -
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NC2PEM- (E = S, Se M = Al, In) within the CSD. One study looked at a variety of 

tetrahedral dialkyl aluminum complexes with bidentate monoanionic N/O, N/N, or N/S 

donors forming both mono-, bi-, and trimetallic 6-membered chelates, which resemble 5 

and 6.10 Table 5.4 lists some key bond lengths and angles corresponding to some similar 6-

membered tetrahedral dimethyl aluminum and indium compounds. In this work, compound 

8 formed two solid state structures from -35 °C pentane solutions; a 6-membered monomer 

(8a) when grown from a concentrated solution, and a 12-membered dimer (8b) when grown 

from a dilute solution. Similar crystallization of both 9 and 10 form 6-membered rings like 

8a from concentrated pentane solutions. Dimers of 9 and 10 were not observed (or sought 

after) and may form under different conditions. (Figure 5.8). 

Table 5.4 Bond lengths and angles surrounding the active aluminum and indium centers of 

similar bidentate chelates. 

Reference 

M1-E1 (M 

= Al, In and 

E = O,S,Se) M-N (Å) 

M1-C29 

(Å) 

M1-C28 

(Å) 

N1-M1-

E1 (°) 
C-M1-C 

(°) 

SNAl 20 2.285(3) 1.964(6) 1.957(8) 1.972(7) 94.8(2) 117.6(3) 

ONAl21 1.795(5) 1.954(6) 1.949(6) 1.955(7) 93.9(3) 118.6(4) 

SeNAl22 2.3953(13) 2.042(3) 1.950(5) 1.961(5) 99.21(11) 117.1(3) 

ONIn23 2.1010(13) 2.2685(16) 2.139(2) 2.140(2) 85.33(5) 142.33(9) 

2(ONIn)23 2.1404(13) 2.5745(16) 2.1673(18) 2.1710(18) 73.83(5) 128.41(8) 
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Figure 5.8 Single crystal structure of 8-10 in the solid state. Anisotropic displacement 

ellipsoids are set to 50 % probability and hydrogen atoms except for H1 are omitted for 

clarity. Top left and right (8a, 8b), bottom left and right (9, 10). See Supporting Information 

for details. 

 

Literature based on a Cambridge Structural Database (CSD, version 5.41 (Nov 

2019))24 search for tetrahedral dialkyl indium species “N-In(R2)-E” (R = C, E = O, S, Se) 

for comparison to compounds 8-10 is somewhat limited, with compound 10 appearing to 

be the first nitrogen/selenium chelate of dialkyl indium to our knowledge (Based on CSD 

and SciFinder searches). N/O chelates of dialkyl indium appear commonly dimerized like 
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8b, though instead of forming large single cyclic structures, multicyclic species with central 

In-O-In’-O’ 4-membered rings tend to be common.  

Table 5.5 Bond lengths and angles of interest for organoaluminum and indium complexes 

5-10. 

Compound P1-E1 (Å) M1-N1 (Å) 

M1-E1 (Å) 

(M = Al, In 

and E = 

O,S,Se) 

M1-C29 

(Å) 

M1-C28 

(Å) 

N1-

M1-

E1 (°) 

C28-

M1-

C29 (°) 

5 1.5233(59) 1.9220(69) 1.8292(61) 1.9811(95) 1.9536(88) 

98.92 

(28) 

118.14 

(43) 

6 2.0244(6) 1.8985(14) 2.3635(7) 1.9658(18) 1.9656(18) 

98.22 

(5) 

117.78 

(8) 

7 2.1735(2) 1.8996(7) 2.4955(3) 1.9689(9) 1.9655(9) 

98.42 

(2) 

118.17 

(4) 

8a 1.5249(16) 2.1899(18) 2.1660(15) 2.1479(23) 2.1524(25) 

91.02 

(7) 

134.28 

(10) 

8b 1.5173(8) 2.1883(9) 2.1625(8) 2.1493(14) 2.1605(14) 

95.60 

(3) 

125.46 

(6) 

9 2.0218(5) 2.1772(12) 2.5821(4) 2.1574(16) 2.1521(16) 

90.70 

(3) 

127.40 

(7) 

10 2.1765(3) 2.1782(9) 2.6808(1) 2.1590(12) 2.1535(12) 

91.32 

(2) 

127.16 

(5) 

 

One example of a dimethyl indium complex with a bidentate N/O ligand formed a 

6-membered ring like 8a,23 however no known 6-membered chelates exist and E = O, S, 

Se) to tetrahedral dialkyl indium complexes 8a, 9, and 10 was found during a CSD search. 

No similar example of a 12-membered ring analogous to 8b was observed during these 

searches; however, dialkyl N-InR2-O based complexes appear to have a tendency towards 

dimerization through additional In-O’ interactions (O’ being from the second ligand in the 

dimer), resulting in penta-coordinate complexes in the solid state. 

5.3.7 IR spectroscopy 

 Infrared spectra of compounds 2-10 is available in the SI; however, absolute 

assignments could not be completed conclusively for each compound. Oxygen substituted 
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ligand 2a as the imine displays the strongest signal at 1185 cm-1, suspected to be the P=O 

stretching vibration. The sulfur 3 and selenium 4 ligands display no single sharp dominant 

peak such as is seen with 2, though they do have one of their strong signals at 1101 and 

1097 cm-1, respectively, which may correlate with. For these two ligands, signals in the 

lower wave numbers for 3 include three strong peaks at 612, 700 and 735 cm-1 and 4 

contains four strong peaks at 527, 693, 727, and 751 cm-1. The aluminum complexes 

displayed significant differences with the oxygen containing 5 absorbing strongest between 

1050-1250 cm-1 with broad signals with a largest peak at 1118 cm-1. The sulfur analogue 6 

had far less absorption in the region below 1320 cm-1, with a large strong peak at 1504 cm-

1 and a broad medium signal at 692 cm-1. The selenium analogue 7 featured absorption 

patterns similar to 5, with the major absorbing region and largest single peak of 480-880 

cm-1 and 691 cm-1, respectively. For the indium complexes 8b-10, all three analogues 

possess strong absorption between 1320 – 1580 cm-1 with additional strong absorption 

between 480 – 880 cm-1. The dimeric oxygen analogue 8b has strong peaks at 1437 and 

695 cm-1, and both the sulfur and selenium analogues 9 and 10 display the same set of two 

strong peaks at 1500 and 1420 cm-1 along with medium broad peaks at 701 and 694 cm-1, 

respectively. Each IR spectra is available within the SI. 

5.4 Experimental 

5.4.1 Solvents, Reagents, and Materials 

 Nitrogen (gas and liquid) was supplied by Praxair and Air Liquide. Ethanol (95%) 

was purchased from Commercial Alcohols. Toluene, acetone, tetrahydrofuran, hexanes and 

85% phosphoric acid used as an external reference for 31P NMR were purchased from 
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Fisher Chemical or Fisher Scientific. Pentane was purchased from Sigma-Aldrich. All 

deuterated solvents including CDCl3 (0.05% v/v tetramethyl silane), C6D6, and CD3CN 

were purchased from Cambridge Isotope Laboratories Inc. 2,6-diisopropyl aniline (90%), 

chlorodiphenylphosphine (96%), 2.5 M n-BuLi in hexanes, N,N,N’,N’-tetramethyl-

ethylenediamine (99%), sulfur powder, selenium metal, 4 Å molecular sieves, calcined 

diatomaceous earth, and 2.0 M trimethylaluminum in heptane were all purchased from 

Sigma-Aldrich. Trimethyl indium (99.99%) was purchased from Strem Chemical 

Incorporated. Anhydrous magnesium sulfate was purchased from Caledon Laboratories. 

Activated alumina used for drying and filtering solvents was purchased from Anachemia 

and is 80-200 mesh. Heating was performed using a DrySyn aluminum heating block with 

50-1000 mL flasks. Potassium hydride was purchased as a 30% mineral oil dispersion from 

Sigma-Aldrich and washed four times with an appropriate amount of pentane then dried in 

vacuo to give a free-flowing powder. Alumina, calcined diatomaceous earth, and molecular 

sieves were pre-dried in a 140 °C oven for a minimum of one week before being dried at 

300 °C in vacuo in a half-filled round-bottom wrapped in aluminum foil within an aluminum 

block. Solvents (toluene, pentane, tetrahydrofuran) were purified using an Innovative 

Technology solvent purification system. Solvents (pentane, toluene, tetrahydrofuran, 

hexanes, benzene) were then dried using KH for 24-78 hours and subsequently filtered 

through dry alumina and stored over 4 Å molecular sieves (~1/10th the volume of solvents). 

Potassium bromide used for producing KBr pellets for infrared spectroscopic analysis was 

purchased from ACP Chemicals and dried at 140 °C and stored in a glovebox. 
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5.4.2 Equipment, Instruments and Analytical Methods 

All reactions were performed in dry, O2-free (< 10 ppm) conditions under an 

atmosphere of N2 within a mBraun Labmaster SP inert atmosphere glovebox in 20 mL 

scintillation vials or using Schlenk flasks sealed with rubber or glass stoppers with standard 

Schlenk techniques. Glassware was dried at 140 °C overnight prior to experimentation. 

NMR spectra were recorded on a Bruker Avance 300 MHz NMR spectrometer. Trace 

amounts of non- or partially deuterated solvent or tetramethyl silane were used as internal 

references for 1H and 13C NMR spectra. 31P NMR spectra were referenced to 85% 

phosphoric acid. Melting points were recorded on an Electrothermal MEL-Temp 3.0 using 

glass capillaries sealed under inert conditions for air sensitive compounds (5-10) or open 

to air for air and moisture stable compounds 2-4. Elemental analysis was performed within 

the Centre for Environmental Analysis and Remediation (CEAR) facility at Saint Mary's 

University using a Perkin Elmer 2400 II series Elemental Analyzer. Single crystal X-ray 

diffraction measurements first involved selection of a suitable single crystal, and mounting 

it on the tip of a MiTeGen MicroLoop with Paratone-N oil. Measurements were made on a 

Bruker D8 VENTURE diffractometer equipped with a PHOTON III CMOS detector using 

monochromated Mo Kα radiation (λ = 0.71073 Å) from an Incoatec micro-focus sealed 

tube at 100-125 K.25 The initial orientation and unit cell were indexed using a least-squares 

analysis of the reflections collected from a complete 180 phi-scan with 1 per frame. For 

data collection, a strategy was calculated to maximize data completeness and multiplicity 

in a reasonable amount of time, and then implemented using the Bruker Apex 3 software 

suite.25 The crystal to detector working distance was set to 4 cm. Data collection, unit cell 
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refinement, data processing and multi-scan absorption correction were applied using the 

APEX3 software package.25-27 The structures were solved using SHELXT28 and all non-

hydrogen atoms were refined anisotropically with SHELXL29 using a combination of 

shelXle30 and Olex231 graphical user interfaces. Unless otherwise noted, all hydrogen atom 

positions were idealized and ride on the atom to that they were attached. For comparison 

to literature examples of related crystalline materials, the Cambridge Structural Database 

was used.24 General bond lengths for elucidation of bond order were used from the 

following reference.32 Infrared spectroscopy was conducted using Bruker OPUS 7.5 

software with all samples analyzed as pressed KBr pellets using roughly 2-5 mg sample 

finely powdered in an agate mortar with 40-50 mg KBr.  

5.4.3 Synthesis of Precursors, Ligands, and Alkali Metal Complexes 

5.4.3.1 Synthesis of Compound 1 - Dipp-N=C(CH3)-(CH2)P(C6H5)2 

 
Part 1: Following a modified previously established synthesis,1 a solution of 100 

mL (0.5 mol) 2,6-diisopropylaniline in 200 mL (2.7 mol) acetone was refluxed for one 

week with ~40 mL anhydrous MgSO4 to encourage condensation, producing N-isopropyl-

N-2,6-diisopropylphenylimine with incomplete conversion possibly due to acid catalyzed 

hydrolysis of the imine. The resulting solution was filtered through calcined diatomaceous 

earth, acetone removed, and the mixture was distilled in vacuo affording a 1:2 ratio of the 
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amine to imine. Toluene, molecular sieves, and anhydrous calcium sulfate with refluxing 

over the course of a few weeks caused a 1:10 ratio of reagent to product. Distillation 

resulted in 3 fractions with the purest being the first, 9 grams of a 1:11 ratio of reagent 

amine to product imine.  

Part 2: In a 500 mL round bottom flask 8.6 g was used directly in a -78 °C reaction 

in 230 mL pentane with first 0.5 g TMEDA (43 mmol) followed by addition of 17.7 mL of 

a 2.4 M n-BuLi solution (42 mmol) with slow warming to room temperature over 2 hours. 

Cooling back to -78 °C is followed by addition of 8.7 g chlorodiphenylphosphine (39 

mmol) with warming to room temperature and stirring under nitrogen for two days. 

Filtration through calcined diatomaceous earth and removal of pentane in vacuo affords a 

yellowish white solid. Dissolution in minimal hot ethanol affords a golden solution which, 

upon cooling, crystallizes 1 as white crystals that can be isolated by filtration with 3×5 mL 

ethanol rinses. Concentration of the filtrate in vacuo can afford additional crops of crystals, 

and three were harvested with masses of 12.97 g, 0.77 g, and 0.05 g in order of collection. 

Purity decreased in later crops, with the first to third crop occurring at 91, 86, and 84% 

purity with an impurity of the oxide of 2. The third crop presented as more suitable distinct 

single crystals for X-ray analysis compared to the first two crops that both occurred as 

highly radial spherical crystalline clumps. 

Yield (if pure): Crop 1 = 82% Crop 2 = 5% Crop 3 = 0.32% 

Yield (adjusted purity): Crop 1 = 75% Crop 2 = 4% Crop 3 = 0.27% 

I.e.: Crop 1 = 12.97 g, 91% purity, so 82%*0.91 = ~75%. This is a rough estimation of 

yield owing to difference in molecular weight of product 1 and impurity 2 of ~4%. 
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5.4.3.2 Synthesis of Compound 2 - Dipp-N=C(CH3)-(CH2)P(C6H5)2O 

 
In a 20 mL scintillation vial, a biphasic solution containing 5 mL toluene, 135 mg (0.34 

mmol) 1, and 1.5 mL 30% H2O2 (15 mmol) was mixed thoroughly for 3 hours. The layers 

were left to settle, and the organic layer was removed with a pipette. The aqueous layer was 

washed with 3×2 mL toluene and the organic fraction dried with MgSO4. Filtering through 

calcined diatomaceous earth and evaporation in vacuo gave 140 mg (0.34 mmol, 99%) of 

an analytically pure white powder. Layering a toluene solution with pentane formed white 

radial needles, recrystallization from hot pentane gave colourless thin X-ray quality platy 

crystals, and acetone affords both plates and needles. The plate morphology from hot 

pentane form as the imine isomer, while the needles from acetone present as the enamine 

isomer.  

Yield: 99% 

m.p. (°C): 141.5 - 143.4 (Plate, imine).  

Analytical Calc. for C27H32NOP: C: 77.67% H: 7.73% N: 3.35 P: 7.42% O: 3.83%. Found: 

C: 77.49% H: 7.63% N: 3.22%. 

Major isomer CDCl3: imine, 84%:  
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1H NMR (CDCl3, 300 MHz, 25 °C): δ 7.87 – 7.94 (4H, m, m-PPh2), 7.46 – 7.58 (6H, m, o-

, p-PPh2), 7.01 (3H, m, m-Dipp, p-Dipp) 3.71 (2H, d, 2JP-H = 14.2 Hz, PCH2), 2.30 (2H, 

sept, 3JH-H = 6.9 Hz, CH(CH3)2), 1.92 (3H, d, 4JP-H = 1.6 Hz, N=C(CH3)), 0.93 (d, 6H, 3JH-

H = 6.9 Hz, CH(CH3)2), 0.92 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2) ppm. 

13C{1H} NMR (CDCl3, 75 MHz, 25 °C): δ 164.93 (d, 2JP-C =  7.0 Hz, N=C), 145.39 (ipso-

Dipp), 136.34 (o-Dipp), 132.89 (d, 1JP-C = 100.7 Hz, ipso-PPh2), 131.95 (d, 4JP-C = 2.8 Hz, 

p-PPh2), 130.94 (d, 3JP-C = 9.8 Hz, m-PPh2), 128.73 (d, 2JP-C =  12.8 Hz, o-PPh2), 123.65 

(p-Dipp), 122.90 (m-Dipp), 44.16 (d, 1JP-C =  60.6 Hz, PCH2), 27.73 (CH(CH3)2), 23.42 

(CH(CH3)2), 23.25 (CH(CH3)2), 22.81 (s, N=C(CH3)) ppm. 

31P{1H} NMR (CDCl3, 121 MHz, 25 °C): δ 28.34 ppm. 

Minor isomer CDCl3: (E)-enamine, 11%:  

1H NMR (CDCl3, 300 MHz, 25 °C): δ 8.80 (1H, s, NH), 7.76 - 7.83 (4H, m, m-PPh2), 4.27 

(1H, d, 2JP-H = 20.8 Hz, PCH), 3.17 (septet, 2H, 3JH-H = 6.8 Hz, CH(CH3)2), 1.63 (3H, s, 

N=C(CH3)), 1.18 (d, 6H, 3JH-H = 6.8 Hz, CH(CH3)2), 1.04 (d, 6H, 3JH-H = 6.8 Hz, CH(CH3)2) 

ppm. 

13C{1H} NMR (CDCl3, 75 MHz, 25 °C): δ 162.37 (N=C), 147.56 (ipso-Dipp), 136.67 (d, 

1JP-C = 103.5 Hz, ipso-PPh2), 135.00 (o-Dipp), 130.86 (m, m-PPh2), 128.38 (d, 2JP-C =  12.8 

Hz, o-PPh2), 123.86 (p-Dipp), 123.25 (m-Dipp), 76.26 (d, 1JP-C =  114.8 Hz, PCH), 28.29 

(CH(CH3)2), 24.62 (CH(CH3)2), 21.81 (d, 2JP-C = 7.6 Hz, N=C(CH3)) ppm. 

31P{1H} NMR (CDCl3, 121 MHz, 25 °C): δ 29.72 ppm. 

Minor isomer CDCl3: (Z)-enamine, 5%: 
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1H NMR (CDCl3, 300 MHz, 25 °C): δ 5.27 (1H, s, NH), 4.04 (1H, d, 2JP-H = 20.2 Hz, PCH), 

3.17 (2H, sept, 3JH-H = 6.9 Hz, CH(CH3)2), 1.27 (d, 6H, 3JH-H = 6.8 Hz, CH(CH3)2) ppm. 

31P{1H} NMR (CDCl3, 121 MHz, 25 °C):  δ 26.17 ppm. 

Major isomer C6D6: imine, 80%:  

1H NMR (C6D6, 300 MHz, 25 °C): δ 7.82-7.89 (4H, m, m-PPh2), 7.03-7.13 (9H, m, o-, p-

PPh2, m-Dipp, p-Dipp), 3.25 (2H, d, 2JP-H = 14.5 Hz, PCH2), 2.55 (2H, sept, 3JH-H = 6.9 Hz, 

CH(CH3)2), 1.93 (3H, d, 4JP-H = 1.6 Hz, N=C(CH3)), 1.06 (d, 6H, 3JH-H = 6.9 Hz, 

CH(CH3)2), 1.02 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2) ppm. 

13C{1H} NMR (C6D6, 75 MHz, 25 °C): δ 165.18 (d, 2JP-C =  7.7 Hz, N=C), 146.49 (ipso-

Dipp), 136.53 (o-Dipp), 134.67 (d, 1JP-C = 99.5 Hz, ipso-PPh2), 131.58 (d, 4JP-C = 2.7 Hz, 

p-PPh2), 131.32 (d, 3JP-C = 9.6 Hz, m-PPh2), 128.67 (d, 2JP-C =  11.6 Hz, o-PPh2), 124.11 

(p-Dipp), 123.37 (m-Dipp), 43.98 (d, 1JP-C =  61.8 Hz, PCH2), 28.18 (CH(CH3)2), 23.74 

(CH(CH3)2), 23.41 (CH(CH3)2), 21.72 (d, 3JP-C = 14.4 Hz, N=C(CH3)) ppm. 

31P{1H} NMR (C6D6, 121 MHz, 25 °C): δ 25.39 ppm. 

Minor isomer C6D6: (E)-enamine, 20%:  

1H NMR (C6D6, 300 MHz, 25 °C): δ 9.91 (1H, s, NH), 7.89 – 7.94 (m, 4H, m-PPh2), 7.03-

7.13 (9H, m, o-, p-PPh2, m-Dipp, p-Dipp), 4.27 (d, 1H, 2JP-H = 22.5 Hz, PCH), 3.36 (septet, 

2H, 3JH-H = 6.9 Hz, CH(CH3)2), 1.56 (3H, d, 4JP-H = 1.9 Hz, N=C(CH3)), 1.13 (d, 6H, 3JH-H 

= 6.9 Hz, CH(CH3)2), 1.06 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2) ppm. 

13C{1H} NMR (C6D6, 75 MHz, 25 °C): δ 162.47 (N=C), 147.93 (o-Dipp), 137.95 (d, 1JP-C 

= 102.7 Hz, ipso-Ph), 123.67 (m-Dipp), 77.22 (d, 1JP-C = 113.3 Hz, PCH), 28.80 

(CH(CH3)2), 24.65 (CH(CH3)2), 22.67 (CH(CH3)2), 21.63 (N=C(CH3)) ppm. 
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31P{1H} NMR (C6D6, 121 MHz, 25 °C): δ 28.56 ppm. 

Trace isomer C6D6: (Z)-enamine, <1%: 

1H NMR (C6D6, 300 MHz, 25 °C): δ 5.18 (1H, bs, NH) 

Major isomer CD3CN: imine, 75%:  

1H NMR (C6D6, 300 MHz, 25 °C): δ 7.84-7.91 (4H, m, m-PPh2), 7.50-7.61 (6H, m, o-, p-

PPh2), 6.93-7.04 (3H, m, m-Dipp, p-Dipp) 3.75 (2H, d, 2JP-H = 14.2 Hz, PCH2), 2.35 (2H, 

sept, 3JH-H = 6.9 Hz, CH(CH3)2), 1.80 (3H, d, 4JP-H = 1.4 Hz, N=C(CH3)), 0.96 (d, 6H, 3JH-

H = 6.9 Hz, CH(CH3)2), 0.85 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2) ppm. 

31P{1H} NMR (C6D6, 121 MHz, 25 °C): δ 26.82 ppm. 

Minor isomer CD3CN: (Z)-enamine 19%: 

1H NMR (CD3CN, 300 MHz, 25 °C): δ 6.47 (1H, s, NH), 3.80 (m, 1H, PCH), 3.16 (septet, 

2H, CH(CH3)2), 2.20 (3H, s, N=C(CH3)), 1.14-1.21 (12H, m, CH(CH3)2) ppm. 

31P{1H} NMR (CD3CN, 121 MHz, 25 °C): δ 28.61 ppm. 

Minor isomer CD3CN: (E)-enamine, 6%:  

1H NMR (C6D6, 300 MHz, 25 °C): δ 9.05 (1H, s, NH), 7.76 – 7.83 (m, 4H, m-PPh2), 4.27 

(d, 1H, 2JP-H = 20.8 Hz, PCH), 3.16 (septet, 2H, CH(CH3)2), 1.64 (3H, s, N=C(CH3)), 1.14-

1.21 (6H, m, CH(CH3)2), 1.02 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2) ppm. 

31P{1H} NMR (CD3CN, 121 MHz, 25 °C): δ 22.74 ppm. 
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5.4.3.3 Synthesis of Compound 3 - Dipp-N=C(CH3)CP(C6H5)2S 

 
To a 50 mL sealed reaction vessel under nitrogen, a solution containing ~10 mL toluene, 

162 mg (0.40 mmol) 1 and 13 mg (0.40 mmol) S8 were heated for 3.5 hr at 100 °C. 

Reduction to ~5 mL in vacuo and filtering through calcined diatomaceous earth gave a 

colourless solution. Evaporation of toluene in vacuo yields ~0.5 mL of a colourless oil 

turning to an analytically pure white crystalline solid after the addition of 10 mL pentane 

and removal in vacuo with gentle swirling and heating from a heat gun. Dissolution in 

minimal boiling pentane, slowly cooling to room temperature, cooling overnight at -18 °C 

followed by decanting and washing with minimal cold pentane twice and drying in vacuo 

produced X-ray quality thin rhombohedral prismatic colourless crystals. One large single 

rhombohedral monohydrate crystal was grown from slow evaporation of ethanol at room 

temperature open to air.  

Yield: 97%. 

m.p. (°C): 98.1 - 99.4.  

Analytical Calc. for C27H32NSP: C: 74.79% H: 7.44% N: 3.23% P: 7.14% S: 7.40%. Found: 

C: 74.53%, H: 7.68%, N: 3.59% 

Major isomer CDCl3: imine, 75%:  
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1H NMR (CDCl3, 300 MHz, 25 °C): δ 8.00 – 8.05 (4H, m, m-PPh2), 7.43 – 7.53 (6H, m, o-

, p-PPh2), 6.96 – 7.11 (3H, m, m-Dipp, p-Dipp), 3.90 (2H, d, 2JP-H = 15.0 Hz, PCH2), 2.43 

(2H, sept, 3JH-H = 6.9 Hz, CH(CH3)2), 1.92 (3H, d, 4JP-H = 1.6 Hz, N=C(CH3)), 0.98 (d, 6H, 

3JH-H = 6.9 Hz, CH(CH3)2), 0.92 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2) ppm. 

13C{1H} NMR (CDCl3, 75 MHz, 25 °C): δ 164.56 (d, 2JP-C =  6.5 Hz, N=C), 145.60 (ipso-

Dipp), 136.35 (o-Dipp), 132.94 (d, 1JP-C = 81.8 Hz, ipso-PPh2), 131.70 (d, 4JP-C = 2.7 Hz, 

p-PPh2), 131.53 (d, 3JP-C = 10.6 Hz, m-PPh2), 128.68 (d, 2JP-C =  12.5 Hz, o-PPh2), 123.69 

(p-Dipp), 123.01 (m-Dipp), 46.16 (d, 1JP-C =  49.5 Hz, PCH2), 27.83 (CH(CH3)2), 23.53 

(CH(CH3)2), 23.37 (CH(CH3)2), 22.64 (N=C(CH3)),)  ppm. 

31P{1H} NMR (CDCl3, 121 MHz, 25 °C): δ 38.10 ppm. 

Minor isomer CDCl3: (E)-enamine, 19%:  

1H NMR (CDCl3, 300 MHz, 25 °C): δ 8.55 (1H, s, N-H), 7.90 – 7.97 (4H, m, m-PPh2), 4.43 

(1H, d, 2JP-H = 18.9 Hz, PCH), 3.09 (2H, sept, 3JH-H = 6.9 Hz, CH(CH3)2), 1.70 (3H, s, 

N=C(CH3)), 1.19 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2) ppm. 

13C{1H} NMR (CDCl3, 75 MHz, 25 °C): δ 160.81 (N=C), 147.3 (ipso-Dipp), 136.69 (o-

Dipp), 135.10 (d, 1JP-C = 70.0 Hz), 130.98 (p-Ph), 124.05 (p-Dipp), 123.40 (m-Dipp), 76.29 

(d, 1JP-C = 97.7 Hz, PCH), 28.47 (CH(CH3)2), 24.90 (CH(CH3)2), 23.73 (CH(CH3)2), 21.81 

(d, 2JP-C = 14.4 Hz, N=C(CH3)) ppm. 

31P{1H} NMR (CDCl3, 121 MHz, 25 °C): δ 27.96 ppm. 

Minor isomer CDCl3: (Z)-enamine, 6%:  
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1H NMR (CDCl3, 300 MHz, 25 °C): δ 5.25 (1H, s, N-H), 3.72 (1H, d, 2JP-H = 14.3 Hz, 

PCH), 2.31 (2H, sept, 3JH-H = 6.9 Hz, CH(CH3)2), 1.62 (3H, s, N=C(CH3)), 0.91 – 1.00 (m, 

12H, CH(CH3)2) ppm. 

31P{1H} NMR (CDCl3, 121 MHz, 25 °C): δ 28.34 ppm. 

Trace isomer CDCl3: ylide, <1%:  

31P{1H} NMR (CDCl3, 121 MHz, 25 °C): δ 34.50 ppm. 

Major isomer C6D6: imine, 84%:  

1H NMR (C6D6, 300 MHz, 25 °C): δ 7.93 – 8.01 (4H, m, m-PPh2), 6.98-7.12 (9H, m, o-, p-

PPh2, m-Dipp, p-Dipp), 3.42 (2H, d, 2JP-H = 14.9 Hz, PCH2), 2.69 (2H, sept, 3JH-H = 6.9 Hz, 

CH(CH3)2), 1.92 (3H, d, 4JP-H = 1.8 Hz, N=C(CH3)), 1.13 (d, 6H, 3JH-H = 6.9 Hz, 

CH(CH3)2), 1.01 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2) ppm. 

31P{1H} NMR (C6D6, 121 MHz, 25 °C): δ 37.46 ppm.  

Minor isomer C6D6: (E)-enamine, 16%:  

1H NMR (C6D6, 300 MHz, 25 °C): δ 9.37 (1H, s, N-H), 8.01-8.09 (4H, m, m-PPh2), 6.98-

7.12 (9H, m, o-, p-PPh2, m-Dipp, p-Dipp), 4.28 (1H, d, 2JP-H = 18.5 Hz, PCH), 3.26 (2H, 

sept, 3JH-H = 6.9 Hz, CH(CH3)2), 1.50 (3H, s, N=C(CH3)), 1.22 (d, 6H, 3JH-H = 6.9 Hz, 

CH(CH3)2) ppm. 

31P{1H} NMR (C6D6, 121 MHz, 25 °C): δ 28.13 ppm.  

Major isomer CD3CN: imine, 78%:  

1H NMR (CD3CN, 300 MHz, 25 °C): δ 7.97 – 8.05 (4H, m, m-PPh2), 7.48 – 7.57 (6H, m, 

o-, p-PPh2), 6.94 – 7.05 (3H, m, m-Dipp, p-Dipp), 3.99 (2H, d, 2JP-H = 14.7 Hz, PCH2), 2.51 
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(2H, sept, 3JH-H = 6.9 Hz, CH(CH3)2), 1.83 (3H, d, 4JP-H = 1.4 Hz, N=C(CH3)), 1.01 (d, 6H, 

3JH-H = 6.9 Hz, CH(CH3)2), 0.86 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2) ppm. 

31P{1H} NMR (CD3CN, 121 MHz, 25 °C): δ 38.10 ppm. 

Minor isomer CD3CN: (Z)-enamine, 10%: 

1H NMR (CD3CN, 300 MHz, 25 °C): δ 3.80 (d, 1H, 2JP-H = 17.3 Hz, PCH), 3.07 (2H, sept, 

3JH-H = 6.8 Hz, CH(CH3)2), 1.80 (3H, d, 3JP-H = 1.5 Hz, N=C(CH3)), 1.23 (d, 6H, 3JH-H = 

6.8 Hz, CH(CH3)2), 1.17 (d, 6H, 3JH-H = 6.8 Hz, CH(CH3)2) ppm. 

31P{1H} NMR (CD3CN, 121 MHz, 25 °C): δ 27.39 ppm. 

Minor isomer CD3CN: (E)-enamine, 8%:  

1H NMR (CD3CN, 300 MHz, 25 °C): δ 8.55 (1H, s, N-H), 7.90 – 7.97 (4H, m, m-PPh2), 

4.43 (1H, d, 2JP-H = 18.9 Hz, PCH), 3.18 (2H, sept, 3JH-H = 6.9 Hz, CH(CH3)2), 1.67 (3H, s, 

N=C(CH3)), 1.20 (6H, d, 3JH-H = 6.9 Hz, CH(CH3)2), 0.93 (6H, d, 3JH-H = 6.9 Hz, CH(CH3)2) 

ppm. 

31P{1H} NMR (CD3CN, 121 MHz, 25 °C): δ 33.93 ppm. 

Trace isomer CD3CN: ylide, 4%: 

1H NMR (CD3CN, 300 MHz, 25 °C): δ 3.75 (1H, d, 2JP-H = 14.3 Hz, PCH), 2.36 (2H, sept, 

3JH-H = 6.8 Hz, CH(CH3)2) ppm. 

31P{1H} NMR (CD3CN, 121 MHz, 25 °C): δ 26.91 ppm.  
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5.4.3.4 Synthesis of Compound 4 - Dipp-N=C(CH3)CP(C6H5)2Se 

 
In a 50 mL sealed reaction vessel a solution containing ~20 mL toluene, 105 mg 

(0.26 mmol) 1 and 25 mg (0.32 mmol) grey selenium metal powder was prepared under 

nitrogen, sealed, and heated overnight at 100 °C. Filtering through calcined diatomaceous 

earth in open air and evaporation of toluene results in a yellowish white, finely crystalline 

pure powder with a 95% yield. Dissolution in minimal boiling pentane and cooling to -18 

°C for 24hr produced radial tabular pale-yellow crystals affording 119 mg 4 (0.25 mmol). 

An unknown pink impurity was observed during some smaller scale reaction that may result 

from poor filtration of the fine selenium metal. A garlic odor attributed to selenium 

compounds was observed with prolonged storage under air.  

Yield: 95%. 

m.p. (°C): 81.8 - 83.4.  

Analytical Calc. for C27H32NSeP: C: 67.49% H: 6.71% N: 2.92% P: 6.45% Se: 16.43%. 

Found: C: 67.53%, H: 6.74%, N: 2.87% 

Major isomer CDCl3: imine, 63%:  

1H NMR (CDCl3, 300 MHz, 25 °C): δ 8.02 – 8.10 (4H, m, m-PPh2), 7.45 – 7.53 (6H, m, o-

, p-PPh2), 7.00 – 7.10 (3H, m, m-Dipp, p-Dipp), 4.10 (2H, d, 2JP-H = 15.1 Hz, PCH2), 2.51 
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(2H, sept, 3JH-H = 6.9 Hz, CH(CH3)2), 1.98 (3H, d, 4JP-H = 1.5 Hz, N=C(CH3)), 1.04 (d, 6H, 

3JH-H = 6.9 Hz, CH(CH3)2), 0.96 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2) ppm. 

13C{1H} NMR (CDCl3, 75 MHz, 25 °C): δ 164.51 (d, 2JP-C =  6.7 Hz, N=C), 145.56 (ipso-

Dipp), 136.28 (o-Dipp), 132.07 (d, 3JP-C = 10.7 Hz, m-PPh2),  131.77 (d, 4JP-C = 2.8 Hz, p-

PPh2), 131.73 (d, 1JP-C = 73.0 Hz, ipso-PPh2),  128.69 (d, 2JP-C =  12.4 Hz, o-PPh2), 123.44 

(p-Dipp), 123.03 (m-Dipp), 45.78 (d, 1JP-C =  42.8 Hz, PCH2), 27.85 (CH(CH3)2), 23.97 

(N=C(CH3)), 23.58 (CH(CH3)2), 23.36 (CH(CH3)2) ppm. 

31P{1H} NMR (CDCl3, 121 MHz, 25 °C): δ 27.64 (1JSe-P
 = 760 Hz) ppm. 

77Se NMR (CDCl3, 57 MHz, 25 °C): δ -333.46 (1JSe-P
 = 760 Hz) ppm. 

Minor isomer CDCl3: (E)-enamine, 33%:  

1H NMR (CDCl3, 300 MHz, 25 °C): δ 8.43 (1H, s, N-H), 7.97 – 8.01 (4H, m, m-PPh2), 7.11 

– 7.23 (3H, m, m-Dipp, p-Dipp), 4.51 (1H, d, 2JP-H = 17.6 Hz, PCH), 3.14 (2H, sept, 3JH-H 

= 6.9 Hz, CH(CH3)2), 1.76 (3H, s, N=C(CH3)), 1.24 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2), 

1.01 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2) ppm. 

 13C{1H} NMR (CDCl3, 75 MHz, 25 °C): δ 160.61 (N=C), 147.42 (ipso-Dipp), 134.70 (d, 

1JP-C = 78.2 Hz, ipso-PPh2), 134.52 (o-Dipp), 131.60 (d, 3JP-C = 11.3 Hz, m-PPh2), 131.07 

(d, 4JP-C = 2.9 Hz, p-PPh2), 128.46 (d, 2JP-C = 12.7 Hz, o-PPh2), 124.09 (p-Dipp), 123.71 

(m-Dipp), 74.88 (d, 1JP-C = 89.9 Hz, PCH), 28.50 (CH(CH3)2), 25.10 (CH(CH3)2), 22.70 

(CH(CH3)2), 22.42 (d, 3JP-C = 14.5 Hz, N=C(CH3)) ppm.   

31P{1H} NMR (CDCl3, 121 MHz, 25 °C): δ 13.14 (1JSe-P
 = 669 Hz) ppm. 

77Se NMR (CDCl3, 57 MHz, 25 °C): δ -272 (d, 1JSe-P
 = 669 Hz) ppm. 

Minor isomer CDCl3: (Z)-enamine, 4%: 
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1H NMR (CDCl3, 300 MHz, 25 °C): δ 5.35 (1H, bs, NH), 3.76 (1H, d, 2JP-H = 17.6 Hz, 

PCH), 3.20 (2H, sept, 3JH-H = 6.9 Hz, CH(CH3)2), 1.67 (3H, s, N=C(CH3)), 1.31 (d, 6H, 

3JH-H = 6.9 Hz, CH(CH3)2) ppm. 

31P{1H} NMR (CDCl3, 121 MHz, 25 °C): δ 22.51 ppm. 

 

Major isomer C6D6: imine, 74%:  

1H NMR (C6D6, 300 MHz, 25 °C): δ 7.95 – 8.02 (4H, m, m-PPh2), 6.97 – 7.13 (9H, m, o-, 

p-PPh2, m-Dipp, p-Dipp), 3.57 (2H, d, 2JP-H = 15.1 Hz, PCH2), 2.73 (2H, sept, 3JH-H = 6.9 

Hz, CH(CH3)2), 1.95 (3H, d, 4JP-H = 1.7 Hz, N=C(CH3)), 1.15 (d, 6H, 3JH-H = 6.9 Hz, 

CH(CH3)2), 1.01 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2) ppm. 

31P{1H} NMR (C6D6, 121 MHz, 25 °C): δ 27.13 (1JSe-P
 = 760 Hz) ppm. 

77Se NMR (C6D6, 57 MHz, 25 °C): δ -333 (1JSe-P
 = 760 Hz) ppm. 

Minor isomer C6D6: (E)-enamine, 24%:  

1H NMR (C6D6, 300 MHz, 25 °C): δ 9.23 (1H, s, NH), 8.02 – 8.11 (4H, m, m-PPh2), 6.97 

– 7.13 (9H, m, o-, p-PPh2, m-Dipp, p-Dipp), 4.39 (1H, d, 2JP-H = 16.9 Hz, PCH), 3.26 (2H, 

sept, 3JH-H = 6.9 Hz, CH(CH3)2), 1.50 (3H, s, N=C(CH3)), 1.13 (d, 6H, 3JH-H = 6.9 Hz, 

CH(CH3)2), 1.01 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2) ppm. 

31P{1H} NMR (C6D6, 121 MHz, 25 °C): δ 12.87 (1JSe-P
 = 677 Hz) ppm.  

77Se NMR (C6D6, 57 MHz, 25 °C): δ -272 (1JSe-P
 = 677 Hz) ppm. 

Trace isomer C6D6: (Z)-enamine, 2%: 
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1H NMR (C6D6, 300 MHz, 25 °C): δ 4.57 (1H, bs, NH), 3.79 (1H, s, 2JP-H = 15.8 Hz, PCH), 

3.10 (2H, sept, 3JH-H = 6.8 Hz, CH(CH3)2), 2.08 (3H, s, N=C(CH3)), 1.36 (d, 6H, 3JH-H = 

6.8 Hz, CH(CH3)2), 0.80 (d, 6H, 3JH-H = 6.8 Hz, CH(CH3)2) ppm. 

31P{1H} NMR (C6D6, 121 MHz, 25 °C):  δ 21.91 ppm. 

 

Major isomer CD3CN: imine, 72%:  

1H NMR (CD3CN, 300 MHz, 25 °C): δ 7.97 – 8.04 (4H, m, m-PPh2), 7.48 – 7.56 (6H, m, 

o-, p-PPh2), 6.94 – 7.05 (3H, m, m-Dipp, p-Dipp), 4.15 (2H, d, 2JP-H = 15.0 Hz, PCH2), 2.55 

(2H, sept, 3JH-H = 6.9 Hz, CH(CH3)2), 1.85 (3H, d, 4JP-H = 1.2 Hz, N=C(CH3)), 1.02 (d, 6H, 

3JH-H = 6.9 Hz, CH(CH3)2), 0.86 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2) ppm. 

31P{1H} NMR (CD3CN, 121 MHz, 25 °C): δ 27.99 (1JSe-P
 = 743 Hz) ppm. 

Minor isomer CD3CN: (E)-enamine, 14%:  

1H NMR (CD3CN, 300 MHz, 25 °C): δ 8.63 (1H, s, NH), 7.73 – 7.79 (6H, m, o-, p-PPh2), 

7.15 – 7.32 (3H, m, m-Dipp, p-Dipp), 3.78 (1H, d, 2JP-H = 17.2 Hz, PCH), 3.19 (2H, sept, 

3JH-H = 6.9 Hz, CH(CH3)2), 2.15 (3H, s, N=C(CH3)), 1.19 (d, 6H, 3JH-H = 6.9 Hz, 

CH(CH3)2), 0.92 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2) ppm. 

31P{1H} NMR (CD3CN, 121 MHz, 25 °C): δ 12.56 (1JSe-P
 = 661 Hz) ppm. 

Minor isomer CD3CN: (Z)-enamine, 13%: 

1H NMR (CD3CN, 300 MHz, 25 °C): δ 7.89 – 7.97 (m, 4H, m-PPh2), 7.48 – 7.56 (6H, m, 

o-, p-PPh2), 7.15 – 7.32 (3H, m, m-Dipp, p-Dipp), 6.54 (1H, s, NH),  4.60 (d, 1H, 2JP-H = 

17.8 Hz, PCH), 3.07 (2H, sept, 3JH-H = 6.8 Hz, CH(CH3)2), 2.15 (3H, s, N=C(CH3)), 1.24 

(d, 6H, 3JH-H = 6.8 Hz, CH(CH3)2), 1.17 (d, 6H, 3JH-H = 6.8 Hz, CH(CH3)2) ppm. 
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31P{1H} NMR (CD3CN, 121 MHz, 25 °C): δ 22.42 ppm. 

Trace isomer CD3CN: ylide, 1%: 

1H NMR (CD3CN, 300 MHz, 25 °C): δ 3.75 (d, 1H, 2JP-H = 17.8 Hz, PCH), 2.36 (2H, sept, 

3JH-H = 6.8 Hz, CH(CH3)2), 1.81 (3H, s, N=C(CH3)), 0.96 (d, 6H, 3JH-H = 6.8 Hz, 

CH(CH3)2), 0.65 (d, 6H, 3JH-H = 6.8 Hz, CH(CH3)2) ppm. 

5.4.3.5 Synthesis of Compound 5 - Dipp-N(Al-Me2)=C(CH3)CP+(C6H5)2O 

 
In the glovebox within a 20 mL scintillation vial, 73 mg (0.17 mmol) 2 was 

dissolved in ~4 mL benzene, followed by addition of two aliquots of 0.45 mL for a total of 

0.90 mL AlMe3 (2.0 M, heptane, 1.80 mmol) using 2 insulin syringes, dispensing directly 

into the benzene solution. This was left to stir for 5 days, pumped mostly dry in vacuo, and 

transferred to an NMR tube using triplicate benzene-d6 aliquots. The sample was put back 

into the dry box having shown complete PNMR conversion, transferred to a 20 mL vial 

and the solvent stripped in vacuo. The white residue with hints of beige was dissolved 

entirely into ~8 mL pentane with stirring and was then filtered into a pre-weighed vial 

through a calcined diatomaceous earth pipette filter with triplicate pentane washings 

totalling ~12 mL. Placing this in the freezer caused crystals to form that were re-dissolved 

into the bulk solution with gentle low heat from a heat gun. Once re dissolved, the solution 
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was reduced to ~8 mL in vacuo with frequent observation until crystallization began. 

Redissolution with low heat and placing into the freezer similarly caused radial fine white 

needles to form. Decanting the bulk solution and rinsing the crystals with ~1 mL cold 

pentane and drying in vacuo gave 63 mg (0.13 mmol) when dry.  

Yield: 76%.  

m.p. (°C):  166.3 – 167.0. 

Analytical Calc. for C29H37NAlOP: C: 73.55% H: 7.88% N: 2.96% Found: C: 73.55% H: 

7.95% N: 3.08%.  

1H NMR (C6D6, 300 MHz, 25 °C): δ 7.63 – 7.70 (4H, m, m-PPh2), 6.98 – 7.16 (9H, m, m-

,p-Dipp, o-, p-PPh2), 3.84 (1H, d, 2JP-H = 26.3 Hz, PCH), 3.40 (2H, sept, 3JH-H = 7.0 Hz, 

CH(CH3)2), 1.67 (3H, d, 4JP-H = 1.3 Hz, N=C(CH3)), 1.24 (d, 6H, 3JH-H = 7.0 Hz, 

CH(CH3)2), 1.05 (d, 6H, 3JH-H = 7.0 Hz, CH(CH3)2), -0.29 (6H, s, Al(CH3)2) ppm. 

13C{1H} NMR (C6D6, 75MHz, 25 °C): δ 175.2 (s, N=C), 145.6 (s, o-Dipp), 142.6 (s, ipso-

Dipp), 133.45 (d, 1JP-C = 111.0 Hz, ipso-PPh2), 132.11 (d, 4JP-C = 2.4 Hz, p-PPh2), 131.74 

(d, 3JP-C = 10.6 Hz, m-PPh2), 128.6 (d, 2JP-C =  12.5 Hz, o-PPh2), 126.46 (s, p-Dipp), 124.04 

(s, m-Dipp), 66.31 (d, 1JP-C =  103.3 Hz, PCH), 28.2 (s, CH(CH3)2), 25.67 (d, 3JP-C = 15.6 

Hz, N=C(CH3)), 25.01 (s, CH(CH3)2), 24.46 (s, CH(CH3)2), -9.38 (s, Al(CH3)2) ppm. 

27Al NMR (C6D6, 78 MHz, 25 °C): δ 67 ppm +/- 1600 Hz. 

31P{1H} NMR (C6D6, 121 MHz, 25 °C): δ 41.45 ppm. 
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5.4.3.6 Synthesis of Compound 6 - Dipp-N(Al-Me2)-C(CH3)=(CH)P+(C6H5)2S 

 
In a 20 mL scintillation vial 66 mg (0.15 mmol) 3 was dissolved in 2 mL toluene 

and added to a 50 mL sealed reaction vessel with a PTFE stopper followed by addition of 

0.087 mL AlMe3 (2.0 M, heptane, 0.17 mmol) added to 2 mL toluene prior with 3×2 mL 

rinsing totalling 10 mL toluene. Heating at 100 °C for 1.5 hours, cooling, and filtration 

through a calcined diatomaceous earth pipette filter in the glovebox with triplicate rinsing 

into a pre-weighed 20 mL scintillation vial. Drying in vacuo and rinsing with 2×1 mL 

pentane gave 62 mg (0.13 mmol) of an analytically pure crystalline white solid. Colourless 

prismatic crystals were grown from cooling a pentane solution of 6. 

Yield: 83% 

m.p. (°C): 149.9-151.3 

Analytical Calc. for C29H37NAlSP: C: 71.14% H: 7.62% N: 2.85% Found: C: 71.22% H: 

7.63% N: 2.92% 

1H NMR (C6D6, 300 MHz, 25 °C): δ 7.68 – 7.75 (4H, m, m-PPh2), 7.10 – 7.19 (3H, m, m-

,p-Dipp), 6.98 – 7.05 (6H, m, o-,p-PPh2), 3.92 (1H, d, 2JP-H = 18.7 Hz, PCH), 3.67 (2H, 

sept, 3JH-H = 6.9 Hz, CH(CH3)2), 1.72 (3H, d, 4JP-H = 1.7 Hz, N=C(CH3)), 1.37 (d, 6H, 3JH-
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H = 6.9 Hz, CH(CH3)2), 1.24 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2), -0.48 (6H, s, Al(CH3)2) 

ppm. 

13C{1H} NMR (C6D6, 75 MHz, 25 °C): δ 170.3 (s, N=C), 145.8 (o-Dipp), 142.8 (ipso-

Dipp),  134.9 (d, 1JP-C = 90.2 Hz, ipso-PPh2), 131.5 – 131.7 (m, m-,p-PPh2), 128.6 (d, 2JP-C 

=  12.5 Hz, o-PPh2), 126.6 (p-Dipp), 124.1 (m-Dipp), 66.1 (d, 1JP-C =  103.3 Hz, PCH), 28.2 

(CH(CH3)2), 27.2 (d, 3JP-C = 15.6 Hz, N=C(CH3)), 25.1 (CH(CH3)2), 24.6 (CH(CH3)2), -7.8 

(Al(CH3)2) ppm. 

27Al NMR (C6D6, 78 MHz, 25 °C): δ 73 ppm +/- 2340 Hz.  

31P{1H} NMR (C6D6, 121 MHz, 25 °C): δ 25.80 ppm.  

5.4.3.7 Synthesis of Compound 7 - Dipp-N(Al-Me2)-C(CH3)=(CH)P+(C6H5)2Se 

 
In a 20 mL scintillation vial 33 mg (0.07 mmol) 4 was dissolved in 1 mL toluene 

followed by addition of 0.040 mL AlMe3 (2.0 M, heptane, 0.08 mmol) below the liquid 

level to avoid decomposition. Triplicate rinsing followed mixing with an additional 5mL 

toluene into a 50 mL sealed reaction vessel with heating at 100 °C for 4 hours. The toluene 

was stripped in vacuo and the solids rinsed twice with 1 mL pentane. Dissolution in 2 mL 

toluene, filtering through calcined diatomaceous earth, and rinsing the flask and filter three 

times with 1 mL aliquots of toluene was followed by drying in vacuo giving 28 mg (0.05 
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mmol) of an analytically pure crystalline white solid. Colourless prismatic crystals were 

grown from cooling a pentane solution of 7. 

Yield: 77%  

m.p. (°C): - 168.3-171.3. 

Analytical Calc. for C29H37NAlSeP: C: 64.92% H: 6.95% N: 2.61% Found: C: 65.13% H: 

6.95% N: 2.55% 

1H NMR (C6D6, 300 MHz, 25 °C): δ 7.69 – 7.77 (4H, m, m-PPh2,
 5JSe-H = 80 Hz) , 7.10 – 

7.19 (3H, m, p-Dipp, m-Dipp), 6.98 – 7.03 (6H, m, o-, p-PPh2), 4.03 (H, d, 2JP-H = 16.2 Hz, 

PCH), 3.70 (2H, sept, 3JH-H = 6.9 Hz, CH(CH3)2), 1.76 (3H, d, 4JP-H = 1.8 Hz, N=C(CH3)), 

1.38 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2), 1.25 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2), -0.49 (6H, 

s, Al(CH3)2) ppm. 

13C{1H} NMR (C6D6, 75 MHz, 25 °C): δ 170.1 (d, 3JP-C = 2.2 Hz, N=C), 145.9 (o-Dipp), 

142.9 (ipso-Dipp),  134.3 (d, 1JP-C = 83.0 Hz, ipso-PPh2), 132.0 (d, 3JP-C = 11.2 Hz, m-

PPh2), 131.6 (d, 4JP-C = 3.1 Hz, p-PPh2), 128.7 (d, 2JP-C =  12.8 Hz, o-PPh2), 126.7 (p-Dipp), 

124.1 (m-Dipp), 65.7 (d, 1JP-C =  96.6 Hz, PCH), 28.2 (CH(CH3)2), 27.7 (d, 3JP-C = 15.8 Hz, 

N=C(CH3)), 25.2 (CH(CH3)2), 24.6 (CH(CH3)2), -7.2 (Al(CH3)2) ppm. 

27Al NMR (C6D6, 78 MHz, 25 °C): δ 71 ppm +/- 1550 Hz.  

31P{1H} NMR (C6D6, 121 MHz, 25 °C): δ 10.14 ppm (1JSe-P
 = 496 Hz).  

77Se NMR (C6D6, 57 MHz, 25 °C):  δ -274.8 ppm (1JSe-P
 = 496 Hz).  
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5.4.3.8 Synthesis of Compound 8 -Dipp-N(In-Me2)-C(CH3)(CH)P+(C6H5)2O 

 
Both 0.2250 g (0.54 mmol) 3 and 0.0881 g (0.55 mmol) InMe3 were transferred to 

a 50 mL sealed reaction vessel along with 10 mL toluene. The reaction mixture was heated 

for 3 hours at 110 °C, cooled to room temperature and transferred into a glovebox. The 

solution was concentrated in vacuo to 5 mL, filtered through a pipette filter (3×2 mL 

toluene rinses) into a pre-weighed 20 mL scintillation vial and concentrated to a thick oil. 

Addition and removal in vacuo of 3×1 mL pentane to the oil resulted in a white solid 

forming that was dissolved in minimal pentane (4 mL) with heat in the sealed flask, 

followed by cooling to -35 °C overnight. The following day small white radial crystals had 

formed, and the solution was allowed to slowly evaporate to 2 mL and warm to room 

temperature causing growth of pink-hued larger bladed crystals growing from the central 

white core determined to be a 6-membered chelate by SC-XRD. The solids were rinsed 

once with 1 mL pentane and dried in vacuo totaling 0.2592 g. 1H NMR analysis of one 

clump of crystals after drying showed 1.1 equivalents of pentane remained within the radial 

crystal, so prior to elemental analysis the sample was crushed. Assuming the whole sample 

to have the same pentane ratio of 1.1 eq. within the crystals, the adjusted yield is 0.227 g 
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(0.40 mmol) of 8. A much more dilute solution in pentane cooled to -35 °C formed small 

colourless blocks that formed as dimers. 

Yield: 75% 

m.p. (°C): 90.1 - 92.3  

Analytical Calc. for: C29H37NInOP: 62.04% H: 6.64% N: 2.49% Found: C: 62.43% H: 

6.77% N: 2.37% 

1H NMR (C6D6, 300 MHz, 25 °C): δ 7.77 – 7.84 (4H, m, m-PPh2), 7.02-7.11 (9H, m, m-

Dipp, p-Dipp, o-, p-PPh2), 3.84 (2H, d, 2JP-H = 24.1 Hz, PCH), 3.23 (2H, sept, 3JH-H = 6.9 

Hz, CH(CH3)2), 1.71 (3H, d, 4JP-H = 2.1 Hz, ), 1.03-1.07 (12H, m, CH(CH3)2), 0.11 (6H, s, 

In(CH3)2) ppm. 

13C{1H} NMR (C6D6, 75 MHz, 25 °C): δ 175.3 (N=C), 144.7 (ipso-Dipp), 144.5 (o-Dipp), 

136.4 (d, 1JP-C = 109.2 Hz, ipso-PPh2), 132.0 (d, 3JP-C = 11.3 Hz, m-PPh2),  131.4 (d, 4JP-

C = 2.9 Hz, p-PPh2), 128.5 (d, 2JP-C =  12.6 Hz, o-PPh2), 125.6 (p-Dipp), 123.8 (m-Dipp), 

66.9 (d, 1JP-C =  123.4 Hz, PCH), 28.0 (CH(CH3)2), 27.4 (d, N=C(CH3)), 25.2 (CH(CH3)2), 

24.5 (CH(CH3)2), -6.7 (In(CH3)2 ppm. 

31P{1H} NMR (C6D6, 121 MHz, 25 °C): δ 36.54 ppm. 

5.4.3.9 Synthesis of Compound 9 - Dipp-N(In-Me2)-C(CH3)(CH)P+(C6H5)2S 
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Both 0.1842 g (0.42 mmol) 3 and 0.0694 g (0.43 mmol) combined in a 50 mL sealed 

reaction vessel along with 10 mL toluene and subsequent heating to 100 °C for 5.5 hours. 

The mixture was left to stand for 4 days, and 31P NMR analysis of the bulk solution with a 

few drops of C6D6 showed incomplete conversion of 3 to 9 and the mixture appeared to 

have a small amount of fine white precipitate, assumed to be InMe3 hydrolysis products. 

To the reaction mixture an additional 0.0018 g (0.01 mmol) InMe3 was added along with 

the NMR sample and 3 mL toluene to rinse, followed by ~10 minutes of heating with a heat 

gun until bubbling occurred. The toluene was then removed in vacuo resulting in a thick 

oil that solidified into a white solid upon addition and in vacuo removal of 2×1 mL pentane. 

3 mL pentane was then added to the flask with the solid and sealed, fully dissolving with 

mild heat until boiling occurred. The solution was transferred to a pre-weighed 20 mL 

scintillation vial with 3×1 mL pentane rinses through a lint free wipe plug in a pipette. The 

vial was heated and sealed once boiling began and then placed in a -35 °C freezer over 

night. The bulk solution was removed with a pipette, 1 mL pentane used to rinse, and 

subsequent drying in vacuo gave 0.1830 mg of large radial white crystals. 1H NMR analysis 

of one radial clump of crystals after drying showed 1.3 equivalents of pentane remained 

within the crystal clump, so prior to elemental analysis the sample was crushed. Assuming 

the whole sample to have the same pentane ratio of 1.3 eq. within the crystals, the adjusted 

yield is 0.157 g of 9. 

Yield: 72% 

m.p. (°C): 120.6-121.7 
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Analytical Calc. for C29H37NInSP: C: 60.32% H: 6.46% N: 2.43% Found: C: 60.43% H: 

6.50% N: 2.37%. 

1H NMR (C6D6, 300 MHz, 25 °C): δ 7.79 – 7.86 (4H, m, m-PPh2), 7.10 (3H, s, m-Dipp, p-

Dipp), 7.03-7.06 (6H, m, o-, p-PPh2), 3.70 (2H, d, 2JP-H = 18.8 Hz, PCH), 3.56 (2H, 

sept, 3JH-H = 6.9 Hz, CH(CH3)2), 1.78 (3H, d, 4JP-H = 1.9 Hz, N=C(CH3)), 1.27 (d, 6H, 3JH-

H = 6.9 Hz, CH(CH3)2), 1.22 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2), -0.22 (6H, s, In(CH3)2) 

ppm. 

13C{1H} (C6D6, 75 MHz, 25 °C): δ 171.02 (N=C), 145.09 (ipso-Dipp), 144.47 (o-Dipp), 

136.80 (d, 1JP-C = 89.1 Hz, ipso-PPh2), 131.63 (d, 3JP-C = 11.1 Hz, m-PPh2),  136.80 (d, 4JP-

C = 2.8 Hz, p-PPh2), 128.56 (d, 2JP-C =  12.9 Hz, o-PPh2), 125.70 (p-Dipp), 123.94 (m-

Dipp), 62.70 (d, 1JP-C =  107.0 Hz, PCH), 34.45 (CH(CH3)2), 27.98 (CH(CH3)2), 26.97 (d, 

3JP-C = 15.1 Hz, N=C(CH3)), 25.10 (CH(CH3)2), -6.67 (In(CH3)2 ppm. 

31P{1H} (C6D6, 121 MHz, 25 °C): δ 26.27 ppm. 

1H NMR (C7D8, 300 MHz, 25 °C): δ 7.75 – 7.83 (m, 4H, m-PPh2), 6.97 – 7.09 (m, 9H, m-

,p-Dipp, o-, p-PPh2), 3.66 (d, 1H, 2JP-H = 18.8 Hz, PCH), 3.50 (2H, sept, 3JH-H = 7.0 Hz, 

C(CH3)2H), 1.75 (d, 3H, 4JP-H = 2.0 Hz, N=C(CH3)), 1.24 (d, 6H, 3JH-H = 7.0 Hz, 

C(CH3)2H), 1.20 (d, 6H, 3JH-H = 7.0 Hz, C(CH3)2H), -0.29 (s, 6H, In(CH3)2). ppm. 
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5.4.3.10 Synthesis of Compound 10 - Dipp-N(In-Me2)-C(CH3)(CH)P+(C6H5)2Se 

 
Both 0.2050 g (0.43 mmol) 4 and 0.0712 g (0.45 mmol) InMe3 were added to a 50 mL 

sealed reaction vessel using 10 mL toluene. The solution was heated to 110 °C for 1.5 hr 

then cooled and left overnight. Heating the next day for an additional 2 hours was followed 

by cooling, transferring to the glovebox, and removing the toluene and methane in vacuo 

resulting in a thick gold oil. Addition and subsequent in vacuo removal of 3×1 mL of 

pentane gave a white solid precipitate and golden oil. 2 mL pentane was used to wash the 

solid, which crystallized upon slow evaporation. The remaining white solid was transferred 

to a 20 mL scintillation vial with pentane (5x2 mL), sealed, and warmed until the solid had 

completely dissolved. The vial was vented, heated until bubbling occurred, and sealed again 

and placed in -35 °C for 4 days. Decanting the pentane into the previous washings, rinsing 

with 1 mL cold pentane, and drying for 30 minutes prior to drying in vacuo left 0.1948 g 

slightly yellow radial prismatic crystals. 1H NMR analysis of one radial clump of crystals 

after drying showed 0.06 equivalents of pentane remained within the crystal clump, so prior 

to elemental analysis the sample was crushed. Assuming the whole sample to have the same 

pentane ratio of 0.06 within the crystals, the adjusted yield is 0.193 g (0.31 mmol) of 10. 

Yield: 73% 
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m.p. (°C):  141.7-143.0 

Analytical Calc. for C29H37NInSeP: C: 55.79% H: 5.97% N: 2.24% Found: C: 55.40% H: 

6.12% N: 2.15%. 

1H (C6D6, 300 MHz, 25 °C): δ 7.79 – 7.87 (4H, m, m-PPh2), 7.11 (3H, s, m-Dipp, p-Dipp), 

7.01 – 7.05 (6H, m, o-, p-PPh2), 3.76 (2H, d, 2JP-H = 17.4 Hz, PCH), 3.61 (2H, sept, 3JH-H = 

6.9 Hz, CH(CH3)2), 1.82 (3H, d, 4JP-H = 2.2 Hz, N=C(CH3)), 1.31 (d, 6H, 3JH-H = 6.9 Hz, 

CH(CH3)2), 1.25 (d, 6H, 3JH-H = 6.9 Hz, CH(CH3)2), -0.27 (6H, s, In(CH3)2) ppm. 

13C{1H} (C6D6, 75 MHz, 25 °C): δ 170.7 (d, 2JP-C =  2.3 Hz, N=C), 145.3 (ipso-Dipp), 144.4 

(o-Dipp), 136.0 (d, 1JP-C = 82.3 Hz, ipso-PPh2), 132.0 (d, 3JP-C = 11.3 Hz, m-PPh2),  131.4 

(d, 4JP-C = 2.9 Hz, p-PPh2), 128.6 (d, 2JP-C =  12.6 Hz, o-PPh2), 125.7 (p-Dipp), 124.0 (m-

Dipp), 61.0 (d, 1JP-C = 100.0 Hz, PCH), 28.0 (CH(CH3)2), 27.4 (d, 3JP-C = 15.8 Hz, 

N=C(CH3)), 25.2 (CH(CH3)2), 24.5 (CH(CH3)2), -6.5 (In(CH3)2 ppm. 

31P{1H} (C6D6, 121 MHz, 25 °C): δ 9.01 (1JSe-P = 502 Hz) ppm. 

77Se (C6D6, 57 MHz, 25 °C): δ -293.5 (1JSe-P
 = 502 Hz) ppm. 

 

5.5 Conclusion 

Reaction of a literature phosphine-imine1 with hydrogen peroxide, elemental sulfur 

or selenium affords three bidentate ligands 2-4 that chelate via N and either O, S, or Se to 

metal atoms. In either CDCl3, C6D6, or CD3CN solutions these compounds undergo 

significant molecular rearrangement via tautomerism. 1H, 13C, and 31P NMR spectroscopy 

shows some of the isomers including a major imine tautomer in all solutions with 2-4, 

minor (E)- and (Z)-enamine tautomers, and compound 3 within CD3CN solution gave rise 
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to what may be a fourth isomer visible by 31P NMR spectroscopy; however, very low 

concentration made absolute assignment inconclusive for 1H and 13C NMR spectroscopy. 

This fourth isomer is expected to be an ylide with the acidic proton on the chalcogen in 

each case. DFT calculations of compound 2 based on single crystal structure cif files of the 

imine and (E)-enamine or a drawn model of the (Z)-isomer as each of the proposed isomers 

in the gas phase show the (Z)-enamine (0 kcal/mol) to be most stable with the similar 

conformation ylide rearranging into the (Z)-enamine. The imine was modelled in the same 

(Z)-isomer chelate structure, rearranging into a more stable conformation (+1.4 kcal/mol) 

with the (E)-enamine the next most stable (+3.8 kcal/mol). The ylide, modelled in the same 

conformation as the (E)-isomer, was the highest in energy (+23.5 kcal/mol). As phosphorus 

ylide are prone to electron delocalization, the resulting phosphonium secondary carbanion 

produced may play a crucial role within the dynamic dance in solution and is thought to 

exist as a transient intermediate species between the dominant imine/(E)-enamine/(Z)-

enamine isomers. Compound 2 has been isolated as both the imine and (E)-enamine 

isomers, with the latter displaying hydrogen bonding from N-H…O’=P’.  

Six novel dimethyl group 13 metallacycles with a ring structure of ‘-N-M-E-P-

C=C-‘ (M = Al (5-7), In (8-10) and E = O (Ligand = 2, Al = 5, In = 8), S (Ligand = 3, Al 

=6, In = 9),  Se (Ligand = 4, Al = 7, In = 10),) have been prepared. Each metallacycle is 

zwitterionic, has an anionic tetrahedral metal center and cationic phosphonium formed via 

electron delocalization and subsequent donation to the metal via the oxide, sulfide and 

selenide. These metallacycles are mostly 6-membered cyclic monomers; however, 8 forms 

as a 12-membered cyclic dimer as well. Compounds 6-7 and 9-10 represent the first 
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reported instances of 6-membered metallacycles of the structure ‘-N-M-E-P-C=C-‘ (E = S, 

Se M = Al, In) within the CSD.  Exploration into these derivatives expands the list of known 

dimethyl organoaluminum complexes that can be studied further regarding the many 

potential applications as catalysts in ring-opening- or co-polymerization processes.  
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Chapter 6: Future Work 

This work involved a lot of troubleshooting that ultimately shed light on a very 

complex literature preparation in chapter 3 and the discovery of new procedures in chapters 

4 and 5. There are many things about the work completed in Chapter 3 that deserve 

finishing. One of the most important would be reproduction of the solid molybdenum 

precursors and further exploration into what properties of this reaction lead to the observed 

results. Water is produced in the reaction, and exposing the ethylene glycol to air will 

absorb some as well. This can be removed via heating or lowering pressure; however, the 

effect of this on the final product is not well understood. Temperature is also important as 

temperature variation led to different products. The relationship between the monomeric 

MoO2(OC2H4OH)2 and the other compounds is also of interest, as the exact process of 

MoO3 to these products is not understood. It could be that the brown oil and largest cluster 

is due to incomplete hydrolysis of the MoO3, or it could be clustering of the monomers 

produced, or a mixture of the two processes. Use of THF also complicated things, as this 

seemed essential for isolating the single dimeric molybdenum compound, and it is uncertain 

whether the polymeric dimers require contact with THF to form. In general, the compounds 

that can come from highly similar reaction conditions need greater understanding if any 

one of them is the crucial key to forming directly electrodeposited MoS2.  

 I believe crystalline molybdenum disulfide can be produced electrochemically; 

however, the variables are endless to tweak. An ideal synthesis would be easy, clean, 

reliable, controllable, and variable to alter the deposit for any given use. This is a very, very 

difficult task, and many people have failed to make this happen. I believe electrodeposition 
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may come from any number of alternate methods, and it is very difficult to predict what 

conditions would make for an ideal, non-amorphous deposit. It seems heat may be 

necessary; however, the lack of heat would be ideal with the expectation that proper 

application of applied current and voltage could overcome this energy barrier depending 

on the precursors used. I strongly feel like the ideal method to produce MoS2 via 

electrodeposition requires a series of steps, especially when using MoOx based precursors. 

Considering this, controlled monolayer electrodeposition of a molybdenum source that 

could be readily converted to the disulfide via a secondary treatment with a sulfur source 

may be a useful method of achieving this goal. Adhesion may be an issue as well, as 

electrodeposition will require some sort of material to be in contact with the bottom layer 

of sulfur atoms strongly, making electrode material an important variable to consider. 

Platinum was used for much of this project, ironically due to it is abundance in the lab 

compared to cheaper materials like glassy carbon.  

 The next projects in chapters 4 and 5 are thankfully clearer. Now that a variety of 

potential precursor materials have been identified, produced, and characterized in chapter 

4, future projects includes continuing investigations of the phosphonium-fluorenide ligand 

to observe how other metals and main group elements interact with this type of bidentate 

chelating monoanionic ligand. Of most interest to me include Mg, Ca, Sr, Ba as a series 

study along with the transition metals from group 4 (Ti, Zr), group 5 (V), group 8 (Fe), 

group 9 (Co, Rh, Ir), group 10 (Ni), group 11 (Cu, Ag, Au), group 12 (Zn), group 13 (B, 

Al, Ga, In), group 15 (P, Bi). Group 17 was indirectly studied including the chloride, 

bromide, and triiodide salts mostly via SC-XRD with complete characterization of the 
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bromide salt as the primary precursor used within the project. Characterization of these 

other halide salts as alternate precursors for different types of reactions may be of value as 

well if used in reactions with metal precursors such as [K][AuCl4] or [K][NiCl3] to form 

intermediate [Ligand][Anionic metal cluster] species that may be reduced to valuable 

molecules via methods such stirring with Zn, KC8, or Mg0. 

 Chapter 5 resulted in the preparation of 6 compounds that are now prime candidates 

for catalytic testing. Dimethyl indium and aluminum have remarkable properties when it 

comes to ring-opening polymerization and co-polymerization. While exploring these 

avenues was out of the scope of this project, future work can be done testing these 

compounds following well defined literature procedures to gain knowledge about their 

efficacy, and more excitingly to further the comparison between the chalcogen substitution 

and how that plays a role in possible catalytic activity. The affinity of oxygen for aluminum 

may make the sulfur and selenium analogs highly effective due to preference for oxygen-

based substrates to interact with the active metal center. I am especially interested in the 

sulfur analog. The sulfur-based ligand formed very easy to handle crystals, and both the 

dimethyl aluminum and indium analogs formed even better crystals for physical 

manipulation. This is valuable as it allows accurate weighing of small samples that is useful 

for small scale as catalyst loading can be as low as a few mol percent. Sulfur proved to be 

highly beneficial over similar oxygen analogs in tetrahedral dialkyl aluminum N/S chelates 

for co-polymerization of isocyanates and epoxides, that could be a first step to studying the 

possible value of the complexes prepared in chapter 5. It would also be very worthwhile to 

test out formation of Al(I) and In(I) complexes via reduction. Conversion of these dimethyl 
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complexes to a dihalide followed by subsequent reduction may allow for isolation of highly 

reactive carbene analogs of the group 13, open to much more exciting and novel chemistry 

along with possible use as organometallic ligands for larger metals such as platinum. The 

lack of steric bulk on one side of these proposed group 13(I) ligands may give rise to square 

planar group 11 dihalides.  
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3. 3.7 Supplementary Information – Chapter 3 

3.7.1 Molybdenum Oil Images 

 
Figure 3.1 Images of B3a (gold, left), B5a (golden brown, middle), and B6a (brown, right) 

crude reaction mixtures of MoO3 and ethylene glycol after heating, concentration in vacuo, 

and filtration through diatomaceous earth. 

 

3.7.2 Crystal from Hydrolysis of D4a Black Solid 

 

Figure 3.2 Olex 2 screenshot showing the large anionic heteroatom-containing cluster 

[Mo12O40X]n- where X is best modelled as phosphorus. This is the dataset derived from a 

single isolated blue crystal (C4a) from hydrolysis of D4a residue and freezing at -18 °C. 

Co-crystallized solvent and cations could not be modelled effectively and were removed 

for this image. Poor data resulted in only evidence of this cluster forming. 
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3.7.3 NMR Spectroscopy of Ionic Liquid, Precursors, and 1,4-Butanedithiol 

 

Figure 3.3 1H NMR spectra of [PP13][Br] in CDCl3 (crops 1-3). 

 

Figure 3.4 1H NMR spectra of [PP13][Br] in CDCl3 
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Figure 3.5 13C NMR spectra of [PP13][Br] in CDCl3. 

 

Figure 3.6 1H NMR spectra of [PP13][TFSI] in CDCl3. 
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Figure 3.7 13C NMR spectra of [PP13][TFSI] in CDCl3. 

Figure 3.8 19F NMR spectra of [PP13][TFSI] in CDCl3. 



Page | 217  

 

 

Figure 3.9 1H NMR spectra of 1,4-butanedithiol in CDCl3. 

 

Figure 3.10 13C NMR spectra of 1,4-butanedithiol in CDCl3. 
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3.7.4 SEM-EDX Analysis of Amorphous Mo-Containing Deposit 

 
Figure 3.11 SEM-EDX analysis of Pt WE after CV of 0.05 mL B6a in 1.5 mL of 0.1 M 

PP13-TFSI in THF. Lu, Pb, and Zr are thought to be artifacts caused by Mo/Pt overlap. 
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3.7.5 Synthesis of Ionic Liquid and Precursors 

3.7.5.1 Synthesis of PP13-Br cation precursor 

In a 500 mL round bottom flask 15 mL 1-bromo propane, 20 mL N-methyl 

piperidine and 160 mL acetonitrile were heated to 70 °C for 2.5 hours with an air condenser 

open to air until solid began forming, then nitrogen was supplied for the remainder of the 

synthesis. At the 4-hour mark, aluminum foil was wrapped around the flask. The next day 

at the 23-hour mark, the solid had prevented stirring. This was filtered through a coarse 

glass frit and rinsed with 50 mL acetonitrile in 4 aliquots, transferred to a round bottom 

flask and dried at 42 °C under vacuum. A second crop was harvested by concentrating the 

solution until solid formed followed by cooling to 0 °C and filtering/rinsing as per crop 1. 

The third crop of crystals came from completely drying the filtrate to a yellow paste, 

triturating with 10 mL acetonitrile, then filtering and rinsed as before. The filtrate was 

disposed of, and the yield for each crop was 16.2, 8.2, and 4.9 g (44, 22, 13 % yield, total 

79%) in succession after drying in vacuo. By 1H NMR, each crop was pure PP13-Br with 

a trace of acetonitrile or water. 

3.7.5.2 First Synthesis of PP13-TFSI Ionic Liquid 

A solution of PP13-Br (0.9566 g) in 6 mL D.I. H2O was slowly added to a solution 

of Li-TFSI (1.2362 g) in 6 mL D.I. H2O with rapid stirring. And additional 2×2 mL D.I. 

H2O was used to completely transfer the PP13-Br solution and left to stir over night. Upon 

initial addition, the solution of Li-TFSI became cloudy and translucent. Ceasing stirring 

allowed a biphasic layer to form with PP13-TFSI on the bottom with an aqueous top layer, 

which was decanted off. Rinsing the bottom layer with 3×5 mL D.I. H2O with ~10 min 

stirring, settling, and decanting each time was followed by dissolution of PP13-TFSI in 6 

mL DCM which was similarly rinsed with 3×5 mL D.I. H2O. The next day, the organic 
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layer was dried over MgSO4 and filtered through a diatomaceous earth pipette filter, rinsing 

2× with ~3 mL MgSO4 dried DCM. The final solution was dried in vacuo at 105 °C for 14 

hours and the ionic liquid was pure by NMR, however when water was present, a shift was 

noticed clearly by 1H NMR spectroscopy for the two -CH3 groups with the shifted peaks 

disappearing with water loss. This indicates a strong interaction such as some sort of 

clustering or hydrogen bonding occurring between the ionic liquid and water. 

3.7.5.3 Second Synthesis of PP13-TFSI Ionic Liquid 

A 5.4601 g PP13-Br in 15 mL H2O solution was added to a 7.0475g LiTFSI in 20 

mL H2O solution in a 50 mL Erlenmeyer flask and rinsed with 3×5 mL totaling 50 mL. 

Stirring overnight was followed by quick settling of the layers the next day. Decanting the 

water was followed by addition of 15 mL CHCl3 was added to extract remaining product 

and was separated with a pipette to the ionic liquid bottom fraction. Triplicate washing of 

the organic fraction with 20 mL water with stirring, settling and decanting in between was 

followed by drying over MgSO4 for 20 minutes and filtering through diatomaceous Earth 

with 3×3 mL CHCl3 rinses and the combined solvent was removed in vacuo and heated the 

remaining thick colorless oil was heated to o 100 °C in two separate vials. One vial was 

dropped in the oil bath, losing the product. The remaining vial of PP13-TFSI when dried 

contained 0.1 eq H2O and weighed 4.5g. 

3.7.5.4 Third Synthesis of PP13-TFSI Ionic Liquid 

In a 125 mL Erlenmeyer flask 9.818 g PP13-Br dissolved in 60 mL H2O had a 

solution of 12.665 g Li-TFSI in 20 mL H2O added followed by 20 mL used to rinse the 

beaker 3 times into the reaction flask. Stirring for 1.5 hours, then add 20 mL CHCl3 and 

rapidly stir biphasic mixture for 2 minutes, followed by settling until no more visible tiny 

bubbles of CHCl3 were suspended in the water layer. Decanting the water was followed 
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with triplicate washing the organic layer with three 25 mL portions. The organic phase was 

transferred to a separatory funnel with an additional 75 mL water, the organic phase washed 

once more and separated, dried over MgSO4 for 20 min and filtered through diatomaceous 

Earth with 3×5 mL CHCl3 rinses and the solvent was removed in vacuo and heated to 105 

°C for 12 hours and store in a glovebox, total mass = 13.98 g (75 % yield) 

3.7.5.5 Fourth Synthesis of PP13-TFSI Ionic Liquid 

Two 10 mL water solutions were prepared containing 3.9630 g Li-TFSI and 3.1253 g 

PP13-Br. The PP13-Br solution was then added to the Li-TFSI solution, followed by 5 mL 

water to rinse. After 1.5 hours the biphasic mixture was allowed to settle, the aqueous phase 

was decanted, and the ionic liquid was washed 2× with 5 mL water by stirring for 0.5 hours. 

All three aqueous decantation’s were combined. The PP13-TFSI had 2×10 mL DCM added 

transferring to a separatory funnel with the organic layer being separated into anhydrous 

MgSO4 for further drying. Filtration through diatomaceous Earth into a 20 mL scintillation 

vial afforded 4.3161 g of PP13-TFSI after drying overnight in a vacuum desiccator. All 

glassware and the aqueous phase were extracted with an additional 50 mL, drying over the 

same MgSO4 after separation from the aqueous phase. Filtration through a cotton plug into 

a round bottom flask was followed by solvent removal in vacuo, with a final transfer and 

drying in vacuo in a 20 mL scintillation vial using an additional 2×3 mL DCM. Drying 

overnight in a vacuum desiccator afforded a second crop of PP13-TFSI weighing 1.4327 g. 

Combined yield = 98% (1st = 73 %, 2nd = 25%) 
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3.7.6 Crystallography Table and Additional Refinement Details 

Table 3.1 Data derived from single crystal X-ray diffraction of crystals of compounds 1-5 from the work in Chapter 3.  

Compound reference Compound 1 Compound 2 Compound 3 Compound 4 Compound 5 

Chemical formula C4H10MoO6 C8H18Mo2O10•C4H8O C16H36Mo4O20 C24H54Mo8O32•2(C2H6O2) [Mo6O19]•2[C9H20N] 

Formula Mass 250.06 538.21 932.21 1746.32 1164.16 
Crystal system 

Tetragonal Orthorhombic Orthorhombic Triclinic Monoclinic 

a/Å 9.46450(10) 16.7363(3) 34.2851(19) 8.5318(4) 9.4347(8) 

b/Å 9.46450(10) 24.6210(5) 9.7131(5) 11.0284(5) 16.0288(12) 

c/Å 17.3160(4) 8.8062(2) 8.4881(4) 14.5245(7) 10.9136(9) 
α/° 90 90 90 81.706(2) 90 

β/° 90 90 90 77.862(2) 101.838(3) 

γ/° 90 90 90 69.992(2) 90 
Unit cell volume/Å3 1551.11(5) 3628.72(13) 2826.7(3) 1251.55(10) 1615.3(2) 

Temperature/K 100.0 125.0 125 125.0 125.0 

Space group P41 Fdd2 Pna21 P1̄  P21/n 
No. of formula units per unit 

cell, Z 

8 8 4 1 2 

Radiation type MoKα MoKα MoKα MoKα MoKα 
Absorption coefficient, 

μ/mm-1 

1.675 1.436 1.819 2.040 2.339 

No. of reflections measured 110585 39690 281817 126602 42434 
No. of independent 

reflections 

12760 7050 13709 10104 4095 

Rint 0.0334 0.0568 0.0390 0.0407 0.0348 
Final R1 values (I > 2σ(I)) 0.0206 0.0309 0.0655 0.0219 0.0275 

Final wR(F2) values (I > 

2σ(I)) 

0.0509 0.0467 0.1341 0.0528 0.0626 

Final R1 values (all data) 0.0221 0.0485 0.0683 0.0267 0.0293 

Final wR(F2) values (all 

data) 

0.0519 0.0508 0.1353 0.0554 0.0635 

 

Compound 1 has four hydrogen bonding interactions between mono-deprotonated 

ethylene glycol ligands The asymmetric unit includes the O6-H6…O6 H-bond, while 

hydrogen bonds also occur between O12-H12…O11 across the symmetry element +Y,2-

X,-0.25+Z, O4-H4…O3 across 2-X,1-Y,0.5+Z, and O10-H10…O5 across 2-X,1-Y,0.5+Z. 

Compound 2 has one intramolecular hydrogen bond between O6-H6…O3 across the 

symmetry element 0.75-X,0.25+Y,-0.25+Z. Compound 3 has two disordered ethylene 

glycol units in a 62:38 and 65:35 ratio. Compound 3 has five hydrogen bonding interactions 

with one (O14B-H14D…O20) across the symmetry element 1-X,1-Y,-0.5+Z. The other 

four interactions occur between O5-H5…O4, O14A-H14C…O15, O17-H17…O11, and 

O1B-H1B…O7. Compound 4 has one disorder ethylene glycol methylene fragment in a 

72:38 ratio. Co-crystallized ethylene glycol solvent participates extensively in hydrogen 
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bonding within 4. Intermolecular bonding occurs first from O13-H13…O17 from the 

compound to the ethylene glycol, and the same hydroxy group donates back to the 

compound via O17-H17…O12 with further intramolecular bonding from O12-H12…O8. 

The other end of the ethylene glycol is hydrogen bound to an adjacent molecule of 4 as 

O18-H18…O4 across the symmetry element -1+X,1+Y,+Z. Additional intramolecular 

hydrogen bonding between each molecule of 4 from O16-H16…O3 across 1-X,1-Y,1-Z 

exists, holding the symmetry equivalent halves of the structure together among other bonds. 

Compound 5 only experiences minor two component disorder in an 83:17 ratio within the 

quaternary N-methyl-N-propylpiperidinium cations with the minor component’s methyl 

group shifting slightly closer to the [Mo6O19]
-2 anion. 

 

4. 4.7 Supplementary Information – Chapter 4 

4.7.1 NMR Spectroscopy of Compounds 2-6 
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Figure 4.1 1H NMR spectrum (300 MHz) of compound 2 in CDCl3. 

 

 
Figure 4.2 13C NMR spectrum (75 MHz) of compound 2 in CDCl3. 

 
Figure 4.3 31P{1H} NMR spectrum (121 MHz) of compound 2 in CDCl3. 
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Figure 4.4 31P NMR spectrum (121 MHz) of compound 2 in CDCl3. 

 
Figure 4.5 1H NMR spectrum (300 MHz) of compound 3 in C6D6. 
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Figure 4.6 13C NMR spectrum (75 MHz) of compound 3 in C6D6. Each * indicates 1-

(oxide) impurity. 

 
Figure 4.7 31P{1H} NMR spectrum (121 MHz) of compound 3 in C6D6. 
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Figure 4.8 31P NMR spectrum (121 MHz) of compound 3 in C6D6. 

Figure 4.9 1H NMR spectrum (300 MHz) of compound 4a in C6D6. 
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Figure 4.10 7Li NMR spectrum (117 MHz) of compound 4a in C6D6. 

Figure 4.11 13C NMR spectrum (75 MHz) of compound 4a in C6D6. 
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Figure 4.12 31P NMR spectrum (121 MHz) of compound 4a in C6D6. 

Figure 4.13 31P{1H} NMR spectrum (121 MHz) of compound 4a in C6D6. 
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Figure 4.14 1H NMR spectrum (300 MHz) of compound 4b in C6D6. 

Figure 4.15 7Li NMR spectrum (117 MHz) of compound 4b in C6D6. 
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Figure 4.16 13C NMR spectrum (75 MHz) of compound 4b in C6D6. 

Figure 4.17 31P{1H} NMR spectrum (121 MHz) of compound 4b in C6D6. 
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Figure 4.18 1H NMR spectrum (300 MHz) of compound 5 in C6D6. 

Figure 4.19 13C NMR spectrum (75 MHz) of compound 5 in C6D6. 
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Figure 4.20 31P{1H} NMR spectrum (121 MHz) of compound 5 in C6D6. 

Figure 4.21 31P NMR spectrum (121 MHz) of compound 5 in C6D6. 
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Figure 4.22 1H NMR spectrum (300 MHz) of compound 6a in C6D6. 

Figure 4.23 13C NMR spectrum (75 MHz) of compound 6a in C6D6. 
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Figure 4.24 31P{1H} NMR spectrum (121 MHz) of compound 6a in C6D6. 

Figure 4.25 31P NMR spectrum (121 MHz) of compound 6a in C6D6. 
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Figure 4.26 1H NMR spectrum (300 MHz) of compound 6b in C6D6. 

Figure 4.27 13C NMR spectrum (75 MHz) of compound 6b in C6D6. 
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Figure 4.28 31P{1H} NMR spectrum (121 MHz) of compound 6b in C6D6. 

Figure 4.29 31P NMR spectrum (121 MHz) of compound 6b in C6D6. 
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4.7.2 SC-XRD of Various Halide Salts Analogous to Compound 2 and Solvates 

 
Figure 4.30 Molecular structure of the triiodide analog of compound 2 as a benzene solvate 

with anisotropic displacement ellipsoids projected at the 50% probability level. Hydrogen 

atoms except for C1-H, N1-H and C40-H have been omitted for clarity.  

 
Figure 4.31 Molecular structure of the chloride analog of compound 2 as a benzene solvate 

with anisotropic displacement ellipsoids projected at the 50% probability level. Hydrogen 

atoms except for C1-H, N1-H and C40-H and C6 have been omitted for clarity.  
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Figure 4.32 Molecular structure of compound 2•(H2O) with anisotropic displacement 

ellipsoids projected at the 50% probability level. Hydrogen atoms except for N1-H, C1-H, 

C40-H, and O1b-H have been omitted for clarity.  
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4.7.3 Crystallography Table and Additional Refinement Details 

Table 4.1 Data derived from single crystal X-ray diffraction of crystals of compounds 2 and related halide salts from the work in 

Chapter 4. 

Compound reference Compound 2 2•(H2O) 2-Cl•(C6D6) 2-(I3)•(C6H6) 

Chemical formula [Br]•C40H41NP [Br]•C40H41NP•H2O [Cl]•C40H41NP•C6D6 [I3]•C40H41NP•C6H6 

Formula Mass 646.62 664.63 680.77 1025.51 
Crystal system 

Monoclinic Monoclinic Monoclinic Triclinic 

a/Å 12.741(2) 10.0975(5) 10.4185(11) 10.2940(4) 
b/Å 16.807(3) 18.3601(9) 21.123(2) 11.6462(5) 

c/Å 16.992(3) 18.9113(10) 17.2825(18) 18.0532(7) 

α/° 90 90 90 100.312(2) 
β/° 110.690(5) 101.673(2) 100.937(4) 91.631(2) 

γ/° 90 90 90 98.080(2) 
Unit cell volume/Å3 3404.0(9) 3433.5(3) 3734.2(7) 2105.03(15) 

Temperature/K 103.0 100.0 100.0 100.0 

Space group P21/c P21/n P21/c P1̄  
No. of formula units per unit cell, Z 4 4 4 2 

Radiation type MoKα MoKα MoKα MoKα 

No. of reflections measured 67232 97324 93934 118810 
No. of independent reflections 6946 7556 6898 12292 

Rint 0.0939 0.0436 0.3469 0.0766 

Final R1 values (I > 2σ(I)) 0.0673 0.0340 0.0876 0.0361 
Final wR(F2) values (I > 2σ(I)) 0.1666 0.0817 0.2000 0.0597 

Final R1 values (all data) 0.0945 0.0432 0.1684 0.0649 

Final wR(F2) values (all data) 0.1809 0.0865 0.2576 0.0697 

 

 

Table 4.2 Data derived from single crystal X-ray diffraction of crystals of compounds 3 and all solvates from the work in Chapter 4. 

Compound reference 3 3•(0.5 Et2O) 3•(0.5 THF, 0.5 n-Hexane) 3•(3 THF) 

Chemical formula C40H40NP 2(C40H40NP)•C4H10O 2(C40H40NP)•C6H14, C4H8O C40H40NP•3(C4H8O) 

Formula Mass 565.70 1205.51 1289.67 782.01 
Crystal system Monoclinic Monoclinic Triclinic Triclinic 

a/Å 37.6440(13) 12.564(3) 9.5712(7) 9.8426(3) 
b/Å 9.8467(3) 14.284(3) 10.6830(8) 14.3465(5) 

c/Å 18.9160(7) 19.167(4) 18.3305(13) 16.0750(5) 

α/° 90 90 92.517(3) 88.7720(10) 
β/° 116.6140(10) 97.293(7) 94.855(3) 88.3920(10) 

γ/° 90 90 106.278(3) 74.9090(10) 

Unit cell volume/Å3 6268.7(4) 3412.2(12) 1788.2(2) 2190.52(12) 
Temperature/K 100.0 100.0 100.0 125.0 

Space group C2/c P21/c P1̄  P1̄  

No. of formula units per unit cell, 
Z 

8 2 1 2 

Radiation type MoKα MoKα MoKα MoKα 

No. of reflections measured 19148 56231 139342 149719 
No. of independent reflections 5778 7431 6537 14572 

Rint 0.0260 0.0967 0.0684 0.0441 

Final R1 values (I > 2σ(I)) 0.0359 0.0949 0.0381 0.0507 
Final wR(F2) values (I > 2σ(I)) 0.0864 0.2200 0.0917 0.1296 

Final R1 values (all data) 0.0403 0.1317 0.0428 0.0671 

Final wR(F2) values (all data) 0.0898 0.2423 0.0960 0.1423 
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Table 4.3 Data derived from single crystal X-ray diffraction of crystals of compounds 4-6 from the work in Chapter 4. 

Compound reference Compound 4a 4•(THF, 0.5 C6H6) Compound 5 Compound 6a 6b•0.5(C6H14) 

Chemical formula C44H49LiNOP C44H47LiNOP•C3H3 C44H47NNaOP C44H49KNOP C40H39KNP 
•0.5(C6H14) 

Formula Mass 645.75 682.79 659.78 677.91 646.88 

Crystal system 
Monoclinic Monoclinic Monoclinic Triclinic Monoclinic 

a/Å 10.6480(3) 22.6988(8) 10.4778(3) 9.3756(5) 34.9632(12) 

b/Å 14.3485(4) 9.1277(3) 20.5243(5) 10.5985(5) 10.2850(4) 

c/Å 24.1158(8) 19.9525(7) 17.3436(5) 20.4307(8) 26.1626(10) 

α/° 90 90 90 93.377(2) 90 

β/° 90.8970(10) 112.0830(10) 102.9070(10) 100.264(2) 129.7780(10) 
γ/° 90 90 90 104.180(2) 90 

Unit cell volume/Å3 3684.03(19) 3830.7(2) 3635.50(17) 1925.56(16) 7230.3(5) 

Temperature/K 125.0 100.0 125.0 125.0 125.0 
Space group P21/c P21/c P21/n P1̄  C2/c 

No. of formula units per unit cell, Z 4 4 4 2 8 
Radiation type MoKα MoKα MoKα MoKα MoKα 

No. of reflections measured 168628 191561 121993 137752 265612 

No. of independent reflections 16177 7119 8343 9776 10583 
Rint 0.0441 0.1163 0.0853 0.0413 0.0645 

Final R1 values (I > 2σ(I)) 0.0375 0.0401 0.0503 0.0553 0.0468 

Final wR(F2) values (I > 2σ(I)) 0.1027 0.0862 0.1039 0.1232 0.1152 
Final R1 values (all data) 0.0465 0.0598 0.0695 0.0643 0.0610 

Final wR(F2) values (all data) 0.1090 0.0983 0.1121 0.1312 0.1265 

 

 Halide salts (except that of the I3 anion) experience a hydrogen bonding interaction 

between the halide anion and the amine. Compound 2 has two component disorder in one 

of the isopropyl groups in a 63:37 ratio. The corresponding hydrate 2•(H2O) has the same 

disorder in a 59:41 ratio along with a disordered water molecule in an 81:19 ratio with both 

components hydrogen bound to the bromide anion. Within the structure of 3•(0.5 THF, 0.5 

n-Hexane) the molecule of n-hexane is split down the middle across the symmetry element 

-X,1-Y,1-Z and the n-hexane is modelled with two component wagging disorder for the 

C46 methylene group in a 73:27 ratio. Compound 3•(0.5 Et2O) has a molecule of diethyl 

ether split down the middle across the symmetry element -X,1-Y,2-Z and the diethyl ether 

is modelled with two component disorder in a 51:49 ratio. In the structure of 4•(THF, 0.5 

C6H6) the C6H6 in split in half down C45-C47 bonds across the symmetry element -X,-Y,-
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Z. Compound 6a has two component disorder in one of the isopropyl groups in a 69:31 

ratio and the diethyl ether coordinated to potassium is highly disordered and modelled as 

two components in a 62:38 ratio, with no success modelling three component disorder (the 

62% component remains with large thermal parameter). Within the structure of 6•(0.5 n-

Hexane) the molecule of n-hexane is split down the middle across the symmetry element 

1-X,+Y,0.5-Z and the n-hexane is disordered however attempts to model two component 

disorder was unsuccessful and C43 has large anisotropic displacement ellipsoids and the 

C43-C43’ bond length across the symmetry element is incorrectly short. 

 

5. 5.7 Supplementary Information – Chapter 5 

5.7.1 Infrared Spectroscopy 

Figure 5.1 Infrared spectra of compound 2a as a pressed KBr pellet. 
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Figure 5.2 Infrared spectra of compound 3 as a pressed KBr pellet. 

 
Figure 5.3 Infrared spectra of compound 4 as a pressed KBr pellet. 
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Figure 5.4 Infrared spectra of compound 5 as a pressed KBr pellet. 

 
Figure 5.5 Infrared spectra of compound 6 as a pressed KBr pellet. 
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Figure 5.6 Infrared spectra of compound 7 as a pressed KBr pellet. 

Figure 5.7 Infrared spectra of compound 8a as a pressed KBr pellet. 
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Figure 5.8 Infrared spectra of compound 9 as a pressed KBr pellet. 

Figure 5.9 Infrared spectra of compound 10 as a pressed KBr pellet. 
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5.7.2 NMR Spectroscopy 

 
Figure 5.10 1H NMR spectrum of compound 2 recorded at 298K on a 300 MHz Bruker 

spectrometer in CDCl3. 
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Figure 5.11 13C NMR spectrum of compound 2 recorded at 298K on a 300 MHz Bruker 

spectrometer in CDCl3. 

 
Figure 5.12 31P NMR spectrum (121 MHz) of compound 2 recorded at 298K on a 300 

MHz Bruker spectrometer in CDCl3. 
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Figure 5.13 31P{1H} NMR spectrum (121 MHz) of compound 2 recorded at 298K on a 300 

MHz Bruker spectrometer in CDCl3. 

 
Figure 5.14 1H NMR spectrum of compound 2 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 
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Figure 5.15 31P{1H} NMR spectrum (121 MHz) of compound 2 recorded at 298K on a 300 

MHz Bruker spectrometer in C6D6. 

 
Figure 5.16 1H NMR spectrum of compound 2 recorded at 298K on a 300 MHz Bruker 

spectrometer in CD3CN. 
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Figure 5.17 31P{1H} NMR spectrum (121 MHz) of compound 2 recorded at 298K on a 300 

MHz Bruker spectrometer in CD3CN. 

 
Figure 5.18 1H NMR spectrum of compound 3 recorded at 298K on a 300 MHz Bruker 

spectrometer in CDCl3. 
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Figure 5.19 13C NMR spectrum of compound 3 recorded at 298K on a 300 MHz Bruker 

spectrometer in CDCl3. 

 
Figure 5.20 31P{1H} NMR spectrum (121 MHz) of compound 3 recorded at 298K on a 300 

MHz Bruker spectrometer in CDCl3. 
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Figure 5.21 31P NMR spectrum (121 MHz) of compound 3 recorded at 298K on a 300 

MHz Bruker spectrometer in CDCl3. 

Figure 5.22 1H NMR spectrum of compound 3 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 
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Figure 5.23 31P{1H} NMR spectrum (121 MHz) of compound 3 recorded at 298K on a 300 

MHz Bruker spectrometer in C6D6. 

 
Figure 5.24 1H NMR spectrum of compound 3 recorded at 298K on a 300 MHz Bruker 

spectrometer in CD3CN. 
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Figure 5.25 31P{1H} NMR spectrum (121 MHz) of compound 3 recorded at 298K on a 300 

MHz Bruker spectrometer in CD3CN. 

 
Figure 5.26 1H NMR spectrum of compound 4 recorded at 298K on a 300 MHz Bruker 

spectrometer in CDCl3. 
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Figure 5.27 13C NMR spectrum of compound 4 recorded at 298K on a 300 MHz Bruker 

spectrometer in CDCl3. 

 
Figure 5.28 31P{1H} NMR spectrum (121 MHz) of compound 4 recorded at 298K on a 300 

MHz Bruker spectrometer in CDCl3. 
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Figure 5.29 31P NMR spectrum (121 MHz) of compound 4 recorded at 298K on a 300 

MHz Bruker spectrometer in CDCl3. 

 
Figure 5.30 77Se NMR spectrum (57 MHz) of compound 4 recorded at 298K on a 300 MHz 

Bruker spectrometer in CDCl3. 
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Figure 5.31 1H NMR spectrum of compound 4 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 

 
Figure 5.32 31P{1H} NMR spectrum (121 MHz) of compound 4 recorded at 298K on a 300 

MHz Bruker spectrometer in C6D6. 
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Figure 5.33 1H NMR spectrum of compound 4 recorded at 298K on a 300 MHz Bruker 

spectrometer in CD3CN. 

 
Figure 5.34 31P{1H} NMR spectrum (121 MHz) of compound 4 recorded at 298K on a 300 

MHz Bruker spectrometer in CD3CN. 
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Figure 5.35 1H NMR spectrum of compound 5 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 

 
Figure 5.36 13C NMR spectrum of compound 5 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 
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Figure 5.37 27Al NMR spectrum of compound 5 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 

 
Figure 5.38 31P NMR spectrum of compound 5 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 
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Figure 5.39 31P{1H} NMR spectrum of compound 5 recorded at 298K on a 300 MHz 

Bruker spectrometer in C6D6. 

 
Figure 5.40 1H NMR spectrum of compound 6 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 
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Figure 5.41 13C NMR spectrum of compound 6 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 

 
Figure 5.42 27Al NMR spectrum of compound 6 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 
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Figure 5.43 31P NMR spectrum of compound 6 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 

 
Figure 5.44 31P{1H} NMR spectrum of compound 6 recorded at 298K on a 300 MHz 

Bruker spectrometer in C6D6. 
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Figure 5.45 1H NMR spectrum of compound 7 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 

 
Figure 5.46 13C NMR spectrum of compound 7 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 
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Figure 5.47 27Al NMR spectrum of compound 7 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 

 
Figure 5.48 31P NMR spectrum of compound 7 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 
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Figure 5.49 31P{1H} NMR spectrum of compound 7 recorded at 298K on a 300 MHz 

Bruker spectrometer in C6D6. 

 
Figure 5.50 77Se NMR spectrum of compound 7 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 
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Figure 5.51 1H NMR spectrum of compound 8 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 

 
Figure 5.52 13C NMR spectrum of compound 8 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 
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Figure 5.53 31P NMR spectrum of compound 8 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 

 
Figure 5.54 31P{1H} NMR spectrum of compound 8 recorded at 298K on a 300 MHz 

Bruker spectrometer in C6D6. 
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Figure 5.55 1H NMR spectrum of compound 9 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6.

 
Figure 5.56 13C NMR spectrum of compound 9 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 
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Figure 5.57 31P NMR spectrum of compound 9 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 

 
Figure 5.58 31P{1H} NMR spectrum of compound 9 recorded at 298K on a 300 MHz 

Bruker spectrometer in C6D6. 
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Figure 5.59 1H NMR spectrum of compound 10 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 

 
Figure 5.60 13C NMR spectrum of compound 10 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 
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Figure 5.61 31P NMR spectrum of compound 10 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 

 
Figure 5.62 31P{1H} NMR spectrum of compound 10 recorded at 298K on a 300 MHz 

Bruker spectrometer in C6D6. 
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Figure 5.63 77Se NMR spectrum of compound 10 recorded at 298K on a 300 MHz Bruker 

spectrometer in C6D6. 
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5.7.3 SC-XRD of Compounds 2-10 

 
Figure 5.64 Single crystal structure of 2a (imine isomer) in the solid state. Anisotropic 

displacement ellipsoids are set to 50 % probability and hydrogen atoms except for C1-H 

and C3-H are omitted for clarity. 

 
Figure 5.65 Single crystal structure of 2b ((E)-enamine isomer) in the solid state. 

Anisotropic displacement ellipsoids are set to 50 % probability and hydrogen atoms except 

for C1-H and C3-H are omitted for clarity. 
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Figure 5.66 Single crystal structure of 3 in the solid state. Anisotropic displacement 

ellipsoids are set to 50 % probability and hydrogen atoms except for C1-H and C3-H are 

omitted for clarity. 

 
Figure 5.67 Single crystal structure of 4 in the solid state. Anisotropic displacement 

ellipsoids are set to 50 % probability and hydrogen atoms except for C1-H and C3-H are 

omitted for clarity. 
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Figure 5.68 Single crystal structure of 1-AlMe2 in the solid state. Anisotropic 

displacement ellipsoids are set to 50 % probability and hydrogen atoms except for C1-H 

are omitted for clarity. 

 

 
Figure 5.69 Single crystal structure of 5 in the solid state. Anisotropic displacement 

ellipsoids are set to 50 % probability and hydrogen atoms except for C1-H are omitted for 

clarity. 
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Figure 5.70 Single crystal structure of 6 in the solid state. Anisotropic displacement 

ellipsoids are set to 50 % probability and hydrogen atoms except for C1-H are omitted for 

clarity. 

 
Figure 5.71 Single crystal structure of 7 in the solid state. Anisotropic displacement 

ellipsoids are set to 50 % probability and hydrogen atoms except for C1-H are omitted for 

clarity. 
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Figure 5.72 Single crystal structure of 8a in the solid state. Anisotropic displacement 

ellipsoids are set to 50 % probability and hydrogen atoms except for C1-H are omitted for 

clarity. 

 

 
Figure 5.73 Single crystal structure of 8b in the solid state. Anisotropic displacement 

ellipsoids are set to 50 % probability and hydrogen atoms except for C1-H are omitted for 

clarity. 
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Figure 5.74 Single crystal structure of 9 in the solid state. Anisotropic displacement 

ellipsoids are set to 50 % probability and hydrogen atoms except for C1-H are omitted for 

clarity. 

 

 
Figure 5.75 Single crystal structure of 10 in the solid state. Anisotropic displacement 

ellipsoids are set to 50 % probability and hydrogen atoms except for C1-H are omitted for 

clarity. 
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5.7.4 Crystallography Table and Additional Refinement Details 

Table 4.1 Data derived from single crystal X-ray diffraction of crystals of compounds 2-10 and the dimethyl aluminium chelate of compound 1 from the work in Chapter 5. 

Compound reference 2a 2b 3 4 1-AlMe2 5 6 7 8a 8b 9 10 

Chemical formula C27H32NOP C27H32NOP C27H32NPS C27H32NPSe C29H37AlNP C29H37AlNOP C29H37AlNPS C29H37AlNPSe C29H37InNOP C58H74In2N2O2P2 C29H37InNPS C29H37InNPSe 
Formula Mass 417.50 417.50 433.56 480.46 457.54 473.54 489.60 536.50 561.38 1122.77 577.44 624.34 

Crystal system 
Monoclinic Monoclinic Monoclinic Monoclinic Triclinic Monoclinic Orthorhombic Orthorhombic Monoclinic Monoclinic Orthorhombic Orthorhombic 

a/Å 8.5833(3) 12.3073(3) 8.9711(4) 25.7547(14) 9.838(3) 33.496(2) 15.5886(12) 15.4976(3) 8.6720(5) 13.1361(4) 15.7440(7) 15.6585(2) 

b/Å 25.7233(8) 9.7254(3) 23.6926(10) 21.8166(12) 10.549(3) 10.7213(7) 16.7550(13) 16.8142(4) 17.5977(8) 14.1548(5) 16.8069(6) 16.9162(2) 
c/Å 11.4020(3) 20.0034(4) 12.4579(6) 17.7353(9) 13.541(4) 15.6598(11) 21.2732(17) 21.3983(4) 18.1245(10) 15.2502(6) 21.3702(10) 21.4668(4) 

α/° 90 90 90 90 72.135(3) 90 90 90 90 90 90 90 

β/° 111.2060(10) 90.1310(10) 110.367(2) 100.0610(10) 81.392(3) 103.480(2) 90 90 95.677(2) 99.9240(10) 90 90 
γ/° 90 90 90 90 85.805(3) 90 90 90 90 90 90 90 

Unit cell volume/Å3 2346.99(13) 2394.27(11) 2482.4(2) 9811.9(9) 1321.9(6) 5468.8(7) 5556.3(8) 5576.0(2) 2752.4(3) 2793.18(17) 5654.7(4) 5686.18(14) 

Temperature/K 100.0 125.0 125.0 125.46 125.01 125.0 100.0 100.0 125 100.0 100.0 100.0 
Space group P21/c P21/n P21/c P21/c P1̄  P21/c Pbca Pbca P21 P21/n Pbca Pbca 

No. of formula units per unit 

cell, Z 

4 4 4 16 2 8 8 8 4 2 8 8 

Radiation type MoKα MoKα MoKα MoKα MoKα MoKα MoKα MoKα MoKα MoKα MoKα MoKα 

No. of reflections measured 22736 36507 128850 117506 8868 361528 250697 223922 95735 439311 176943 48155 

No. of independent reflections 4290 6023 9447 22525 4866 10011 5098 14895 12036 11172 9844 6914 
Rint 0.0283 0.0507 0.0318 0.0649 0.0264 0.0774 0.1485 0.0457 0.0244 0.0346 0.0532 0.0198 

Final R1 values (I > 2σ(I)) 0.0356 0.0405 0.0321 0.0392 0.0403 0.0412 0.0308 0.0289 0.0158 0.0239 0.0255 0.0150 

Final wR(F2) values (I > 2σ(I)) 0.0870 0.0893 0.0898 0.0781 0.0848 0.1022 0.0746 0.0671 0.0414 0.0630 0.0513 0.0376 
Final R1 values (all data) 0.0384 0.0574 0.0354 0.0757 0.0570 0.0509 0.0458 0.0398 0.0160 0.0261 0.0392 0.0165 

Final wR(F2) values (all data) 0.0888 0.0998 0.0925 0.0901 0.0931 0.1108 0.0827 0.0711 0.0416 0.0654 0.0603 0.0383 

 

Compound 2b is the (E)-enamine isomer of 2. In the crystal structure hydrogen bonding between the donor N1-H and acceptor 

O1 across the symmetry element 0.5-X,0.5+Y,1.5-Z and 0.5-X,-0.5+Y,1.5-Z is observed forming a chain structure. The C3 methyl group 

in this structure is modelled with two component rotational disorder about the C3-C2 bond in a 59:41 ratio. 

 

 


