# A PHOTOELECTRIC STUDY OF <br> THREE SOUTHERN $\delta$ SCUTI STARS 

Steven L. Morris

A thesis submitted as partial requirement for the degree of Master of Science from<br>Saint Mary's University © Copyright

Department of Astronomy
Saint Mary's University
1979

## TABLE OF CONTENTS

PAGE
ABSTRACT ..... $I$

1. INTRODUCTION
1.l The $\delta$ Scuti Stars ..... 2
1.2 Previous Work on AI, WZ and XX Scl ..... 6
2. PHOTOELECTRIC PHOTOMETRY
2.1 Photoelectric Equipment ..... 11
2.2 Reduction of All-Sky Photometry 2.2.1 General ..... 16
2.2.2 Extinction Measurements ..... 16
2.2.3 Transformation to Standard UBV System ..... 26
2.2.4 Results for AI, WZ and XX Scl ..... 31
2.3 Reduction of Differential Photometry ..... 37
3. AN OVERVIEW OF PERIOD-SEARCHING
3.1 basic Period-Searching Methods ..... 53
3.2 The Jurkevich Method ..... 60
3.3 The Jurkevich Method Applieत to Artificial Data ..... 63
3.4 The Maximum Entropy Method Appiied to Arti- ..... 68 ficial Data
4. PERIOD-SEARCHING USING THE JURKEVICH METHOD
4.1 The Initial Search for Periods ..... 75
4.2 AI Scl ..... 84
4.3 WZ Scl ..... 89
4.4 XX Scl ..... 95
5. PERIOD-SEARCHING USING OTHER METHODS
5.1 The Maximum Entropy Method ..... 100
5.2 Non-Linear Least Squares Fitting ..... 103

## TABLE OF CONTENTS Continued

6. CONCLUSIONS ..... PAGE
6.1 Analysis of the Colours of AI, WZ and XX Scl ..... 116
6.2 Analysis of the Periods of $A I, W Z$ and $X X$ Scl. ..... 121
6.3 Future Work ..... 124
7. APPENDICES
7.1 The Data for AI Scl ..... 125
7.2 The Dat.a for WZ Scl ..... 127
7.3 The Data for XX Scl ..... 132
7.4 A FORTRAN Version of the Jurkevich Method ..... 137
7.5 The Non-Linear Least-Squares Program ..... 140
8. REFERENCES ..... 143

## ACKNOWLEDGEMENTS

I would like to thank, first and foremost, Ds. David Dupuy for suggesting this research topic and acting as my thesis supervisor. My thanks also go to Rick Crowe for serving as my night assistant at the telescope while $I$ was down at Las Campanas, and to the University of Toronto for providing the observing time. Thanks go also to Gary Collins for diligently rooting out the information needed to run UCLA's non-linear least-squares fit software package, which greatly improved the accuracy of my results. And finally, I would like to collcctively thank Drs. David DuPuy, George Mitchell and Gary Welch for purchasing the Tektronix hardware (with National Research Council of Canada Operating Grants) that facilitated production of the diagrams in this thesis.

## ABSTRACT

Differential photometric observations of the three $\delta$ Scuti stars AI, WZ and XX Sculptoris were obtained on ten nights during October 1978. None of these three stars had been extensively observed before, and the detailed nature of their variability was therefore unknown. The data obtained were then carefully examined for periodic behaviour. For AI Scl, no strict periodicities were found, although a tendency to pulsate with a period of 134 minutes was found. For WZ Scl, periods of 94.69 and 138.16 minutes were found and for XX Scl, periods of 70.413 and 73.944 minutes were found. Because the periods for $X X$ Scl lead to a beat period of almost one day, the entire light curve could not be observed and there remains some ambiguity about the correct values of the periods. For all three sさars, the periods and colours were interpreted using theoretical studies of $\delta$ Scuti stars. Based on this study, it is suggested that all three stars are pulsating in overtone pulsation, and not the fundamental mode. For $X X$ Scl the two periods may be caused by a degenerate non-radial mode splitting into two distinct modes, due to rotation.

## CHAPTER ONE

INTRODUCTION

### 1.1 The $\delta$ Scuti Stars

$\delta$ Scuti stars are variable stars that lie in the Cepheid instability strip, above the zero-age main sequence and below the RR Lyrae stars. These stars have periods that are less than 0.25 days, and the amplitudes of fluctuation are generally small. For many years a distinction was made between variables with amplitudes less tnan 0.3 magnitudes and those with amplitudes greater than 0.3 magnitudes. The former group was referred to as the $\delta$ Scuti stars, while the latter group was called the AI Velorum stars, the dwarf cepheids or the RRs stars. Unfortunately, both groups have been referred to in the past as dwarf cepheids, $\delta$ Scuti stars, or ultra-short-period variables, resulting in a very confused nomenclature. The problem was well summarized by Breger (1979), who points out that the distinction between the two groups is unrealistic and should be dropped. He suggests that all these stars be referred to as $\delta$ Scuti. stars, and that practice will be followed here.

Almost all $\delta$ Scuti stars have amplitudes of 0.05 magnitudes or less, so that they are very difficult to identify and study. By 1956 only five $\delta$ Scuti stars were known. By 1973 more than 70 . $\delta$ Scuti stars had been discovered, and the number now stands at approximately 250. Surveys indicate that about one-third of all-stars in this
region of the HR diagram are $\delta$ Scuti stars. For several years it was suggested that the large-amplitude $\delta$ Scuti stars (then called AI Velorum stars) were below the Population I zero-age main sequence, and these stars were in a late evolutionary phase. It now seems that the true nature of all $\delta$ Scuti stars can be explained very simply: these stars are Population I A or F stars of approximately two solar masses, undergoing normal evolution on the main sequence or in the post-main-sequence shell hydrogen burning phase (Petersen 1975).

The best recent review of these stars is that by Breger (1979), which summarizes the main difficulties and discoveries in this field, and gives a large (but not comprehensive) catalogue of $\delta$ Scuti stars with their relevent properties. An earlier review article by Baglin et al. (1973) is now somewhat dated, but it gives an excellent discussion of the correct methods to be used for obtaining good photometric results for these stars, as well as a comprehensive list of all $\delta$ Scuti stars known at that time. Seeds and Yanchak (1972) produced an annotated catalogue and bibliography for $\delta$ Scuti stars, and it is still useful for finding references to the early literature and for its list of stars that are suspected to be $\delta$ Scuti variables. A recent review of the theoretical aspects of these stars was given by Petersen (1975), who summarized the information that stellar models have given us and the possible observational tests that could be performed to verify which models
most closely match the known $\delta$ Scuti stars.
Recent observations of stable periodicities in white dwarf stars (Nather 1978) have shown that the Cepheid instability strip extends from the classical Ceheids, past the $\delta$ Scuti stars and the main sequence and well into the white dwarf region of the HR diagram. The variability of these stars is due to pulsation, caused by instabilities in the He II and H ionization zones. Unlike the Cepheid variables however, many $\delta$ Scuti stars do not seem to have stable periodicities. Some observers have argued that many $\delta$ Scuti stars do not show strictly periodic behaviour (Breger 1979) and that any periods assigned to the stars are valid only in a statistical sense. Others, however (Fitch 1975), have insisted that these stars would show easilyexplained periodic behaviour if only more strings of data were obtained. The problem is complicated by the very poor signal-to-noise ratios that are common in such data. Although it now seems that at least some $\delta$ Scuti stars are not strictly periodic, the question has not been fully resolved. Petersen (1975) has listed some of the many explanations that have been offered to explain this quasiperiodic behaviour. The most probable explanation is based on the fact that the time scale of convection in these stars is of the same order as the period of pulsation, so that a strong coupling between pulsation and convection can create non-linear atmospheric effects. Many of these stars are spectroscopic binaries, and for these stars it has been
suggested that tidal modulation or magnetic coupling with the companion star is responsible for the non-periodic light curves. Much more observational and theoretical work will be needed to resolve this problem completely.

One reason that so much effort has been spent trying to understand the observed periodicities is that these periods are potentially a very powerful tool in understanding the composition and structure of these stars. Many $\delta$ Scuti stars pulsate simultaneously at two periods, and the ratio of these two periods provides a dimensionless number, free from any dependence on the distance scale or intexstellar absorption. Theory predicts that if the two periods olserved are the fundamental radial mode and its first overtone, the period ratio will be approximately 0.76 . Unfortunately, the period ratio turns out to be rather insensitive to the particular stellar model used. If the mass of the model star is changed by a factor of two or if the chemical composition is changed from extreme Population I to Population II, the period ratios change by only a few percent. A number of very accurately-determined period ratios will be necessary before the most accurate stellar models can be selected. Many authors have found values of the mean stellar density $p$ for $\delta$ Scuti stars from the models, and calculated the pulsation constant $Q=p \sqrt{p}$ for the various periods $P$ (in days) that have been observed. For pulsating stars, the values of $Q$ for each mode of pulsation is independent of mass. Unfortunately, the values of $Q$
$\left(Q_{0}=0.0333, Q_{1}=0.0252\right.$ etc. $)$ are too closely spaced to provide unambiguous information about the modes of pulsation or the masses of $\delta$ Scuti stars.

### 1.2 Previous Work on AI, WZ and XX Sculptoris

The three $\delta$ Scuti stars investigated in this thesis are AI, $W Z$ and $X X$ Sculptoris; the positions and other designations of these stars and the nearby comparison stars used in this thesis are listed in rable 1-1. The four comparison stars were chosen because they were the brightest early-type stars near the three variables, and for convenience they will be referred to as "\#1", "\#2", "\#3" and "\#4" throughout this thesis. There were several reasons for investigating these three variables. Most importantly, they were known to be $\delta$ Scuti stars, but had not been adequately investigated to determine their periods or period ratios. Because they passed almost overhead at local midnight at the telescope during the observing run, they could be observed at low airmass throughout the night, giving the long strings of high-quality data that are necessary if periods are to be determined accurately. Lastly, all three variables were so close together in the sky that separate comparison stars were not necessary for each variable. It has occasionally happened that an observer has recorded the magnitudes of a variable and one nearby comparison star, only to find during the analysis that the comparison star was also a variable

## TABLE 1-1

## PROGRAM AND COMPARISON STAARS

| Star Name | HR <br> Number | HD <br> Number | $\begin{gathered} \alpha \\ (1900) \\ \hline \end{gathered}$ | $\begin{gathered} \delta \\ (1900) \\ \hline \end{gathered}$ | $\begin{gathered} \alpha \\ (1979.0) \\ \hline \end{gathered}$ | $\begin{gathered} \delta \\ (1979.0) \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AI Scl | 359 | 7312 | $1^{\mathrm{h}} 08 . \mathrm{m} \cdot 2$ | $-38^{\circ} 23^{\prime}$ | $1^{\text {h }} 11.98$ | $-37^{\circ} 58^{\prime \prime}$ |
| WZ Scl | 431 | 9065 | $1^{\mathrm{h}} 24.2$ | $-34^{\circ} 17^{\prime}$ | $1^{\text {h }} 27.8$ | $-33^{\circ} 53^{\prime}$ |
| XX Scl | - | 9133 | $1^{\text {h }} 24 . \mathrm{m} 9$ | $-33^{\circ} 50^{\prime}$ | $1^{\text {h }} 28 .{ }^{\text {m }} 5$ | $-33^{\circ} 26^{\prime}$ |
| \#1 | - | 9093 | $1^{\mathrm{h}} 24.4$ | $-33^{\circ} 52^{\prime}$ | $1^{\text {h }} 28 . \mathrm{m} 0$ | $-33^{\circ} 28^{\prime}$ |
| \#2 | - | 9027 | $1^{\text {h }} 23 . \mathrm{n!} \cdot 8$ | $-33^{\circ} 32^{\prime}$ | $\mathrm{l}^{\text {h }} 27 .{ }^{\text {m }}$ 4 | $-33^{\circ} 08^{\prime}$ |
| \# 3 | - | 8833 | $\mathrm{l}^{\mathrm{h}} 21.9$ | $-33^{\circ} \mathrm{C4}$ | $1^{\text {h }} 25.5$ | $-32^{\circ} 40^{\prime}$ |
| \#4 | - | 7269 | $\mathrm{I}^{\mathrm{h}} 07.8$ | $-38^{\circ} 47^{\prime \prime}$ | $1^{\mathrm{h}} 11{ }^{\text {m }}$. 4 | $-38^{\circ} 22^{\prime}$ |

and that the fluctuations of the individual stars were irretrievable. It was decided for this study that two comparison stars would be observed each night, so that this problem would almost certainly be avoided. There was only one night when just one comparison star was used, and on a few nights a third or fourth comparison star was occasionally measured also. All four stars were constant to the limits of observational accuracy.

The star AI Sculptoris has a curious observational history. The Third Supplement to the General Catalogue of Variable Stars (Kukarkin et al. 1976) lists this star as " S Sct?", and gives $\mathrm{V}_{\text {max }}=5.93, \mathrm{~V}_{\min }=5.98$ and a period of 0.05 days (= 70 minutes). The reference given for this information is "Eggen, Aut. 1974 (preprint)", but a literature search of Eggen's publications on $\delta$ Scuti stars up to 1979 has not revealed this information. AI Scl is mentioned in one paper by Eggen (1976) where the following data are given:

$$
\begin{aligned}
\mathrm{V} & =5.91 \\
\mathrm{~b}-\mathrm{y} & =0.176 \\
\mathrm{~m}_{1} & =0.190 \\
\mathrm{c}_{1} & =0.809 \\
B & =2.781 \\
\mathrm{M}_{\mathrm{V}} & =2.3
\end{aligned}
$$

and it is mentioned that forty spectrograms of the star had been taken, showing this to be a spectroscopic binary with a mean radial velocity of $+8 \mathrm{~km} . / \mathrm{sec}$. No mention of the amplitude or period of either the magnitude or the radial
velocity is given, however. The only source Eggen gives for these measures is Stokes (1972), but this paper, which gives four-colour and $\mathrm{H} \beta$ photometry of 511 bright southern earlytype stars, does not mention AI Scl. The Catalogue of Bright Stars (Hoffleit 1964) lists this star's radial velocity of $+8 \mathrm{~km} . / \mathrm{sec}$. as variable, which is not surprising for a $\delta$ Scuti star. It does not state that it is a spectroscopic binary, however, and none of the three review articles mentioned in the first section of this thesis list AI Scl as a $\delta$ scuti star. Thus the status of this star is quite unclear. Presumably Stokes measured this star but for some reason omitted it from his 1972 paper, but references to the binary nature and variability of this star were not found.

The situation for WZ Scl is much clearer. The review paper by Breger (1979) gives the following information for WZ Scl;

$$
\begin{array}{ll}
b-y & =0.217 \\
(b-y)_{0} & =0.199 \\
m_{1} & =0.144 \\
\beta & =2.722 \\
c_{1} & =0.764 \\
M_{v} & =1.55
\end{array}
$$

but does not give a reference for this information. The only information on the star's variability is from Demers
(1969), who observed it on three occasions in 1968 and 1969. The longest run of observations he obtained was on June. 29, 1969 from 7:30 to 11:00 U.T. The data shown in his paper suggest variability, and from them he derives a period of $130 \pm 4$ minutes and an amplitude of 0.03 magnitudes. The observations on the other two dates were evidently not good. enough to indicate values for the period or amplitude. Demers is also the only source of information on the variability of $X X$ Scl, as he had originally used it as a comparison star for WZ Scl. The light curve for XX Scl from 7:30 to ll:00 U.T. is given in Demers' paper and was used to derive a period of $66 \pm 1$ minutes and an amplitude of 0.035 magnitudes. He comments that this is a large amplitude for such a short-period star, and that only two other $\delta$ Scuti stars (HR 812 and HR 8494) have shorter periods. The comparison star used in his work was star \#l (HD 9093) and he found it to be constant in brightness.

The purpose of the present study is to obtain light. curves of these stars, and analyze them as accurately as possible to find the periods, period ratios and amplitudes.

### 2.1 Photoelectric Equipment

To obtain the data for this thesis, twenty-one nights of observing time were scheduled on the University of Toronto's 24-inch $\mathrm{f} / 15$ Cassegrain telescope at Las Campanas, Chile. This telescope is located at a latitude of $-29^{\circ} 00^{\prime} 13^{\prime \prime}$, a longitude of $+70^{\circ} 42^{\prime} .1$ and an altitude of 2282 meters. Originally it had been planned that uvby observations would be obtained, as most investigations of $\delta$ Scuti stars use intermediate-band photometry, but these filters were not available at the time of the observing run. Instead, UBV observations were obtained using an EMI9658R photomultiplier (exterded S-20 photocathode), cooled with crushed dry ice that was placed in the photometer in the late afternoon and again at midnight.

Initially, a UBV photoelectric photometer with a lP2l photomultiplier was used, but once observing was begun it became clear that the readings obtained were wildly unstable. The next five nights were spent tracking down and repairing faults in the system. After five nights, it was concluded that one source of instabilities was the photomultiplier itself. For the remainder of the observing session, the backup photometer with an EMI9658R photomultiplier was used.

Although this photometer was usable, it gave erratic readings on occasion, and it was found towards the end of
the observing run that erratic readings could be caused by simply touching the controls for the right ascension and declination. Evidently a shielding problem existed somewhere between the photomultiplier and the pulse amplifier. Erratic readings occasionally occurred even when no equipment was being operated, and on the night of October 23 such readings occurred continuously for several minutes with no apparent cause. These occurrences were infrequent enough that useful results could be obtained, but it does indicate that individual readings that seem peculiar should not be trusted.

Previous users of this photometer encountered serious light leaks. To prevent this, the sides of the photometer were wrapped with black felt cloth. The main source of unwanted light was from the lamp above the photometer printer, a few feet away from the photometer. On October 25 it was decided that a test should be made of the changes in readings when the photometer was exposed to stray light. At $04^{\mathrm{h}} 51^{\mathrm{m}}$ U.T., ten readings cs dark sky were taken, which averaged 534 photoelectrons every ten seconds. When the lamp above the photometer printer was turned up to full intensity and pointed toward the photometer the average of ten readings was 562 photons every ten seconds, and when the light was turned off the average of ten readings was 533 photons every ten seconds. As readings on the program and comparison stars were never below 100,000 photons every ten seconds, it was concluded that the effects of any remaining
light leakage were insignificant.
A more important source of uncertainty in the measurements was round-off error. A single ten-second observation was printed out as a four-digit number, the last digit being an exponent. Thus, a reading of 2345 should be interpreted as $2.34 \times 10^{5}$ photons detected in a ten-second interval. While the first three digits could range between 100 to 999 , it so happened that in this program of differential photometry the digits always fell between 100 and 300. A reading of 100 has an uncertainty of $\pm 0.5$ counts, and this leads to a magnitude uncertainty of 0.0054 . Similarly, a reading of 300 has an uncertainty of $\pm 0.5$ counts, leading to a magnitude uncertainty of 0.0018 , and it was concluded that the average reaci-out uncertainty was about 0.0036 magnitudes. Because three readings were obtained instead of just one, the readout uncertainty was reduced by a factor of $\sqrt{3}$, to 0.0021 magnitudes. As this error applies to both the program stars and the comparison stars in differential photometry, this figure must be increased by a factor of $\sqrt{2}$, to 0.003 magnitudes.

Another source of uncertainty is shot noise, due to the random arrival of photons. If $N$ photons arrive on the average during a certain interval, the expected fluctuation of the measured number of photons is $\sqrt{N}$. Thus the uncertainty in a measured magnitude is given by $-2.5(\log N-\log (N+\sqrt{N}))$. Table $2-1$ tabulates an estimate of the uncertainties in magnitudes caused by shot noise for the stars that were used in differential photometry.

## Table 2-1

Estimates of uncertainties caused by shot noise, $\sigma$, in observations of the $\delta$ Scuti stars and their comparison stars. N gives the total number of counts in three tensecond integrations and o gives the calculated uncertainty in magnitudes caused by shot noise.

## TABLE 2-1

| STAR | N | 0 |
| :---: | :---: | :---: |
| AI | $8.1 \times 10^{6}$ | . 0004 |
| Comparison star for AI | $4.5 \times 10^{5}$ | . 0016 |
| WZ | $4.5 \times 10^{6}$ | . 0005 |
| ```Comparison star for WZ``` | $4.2 \times 10^{5}$ | . 0017 |
| XX | $5.5 \times 10^{5}$ | . 0015 |
| Comparison star for XX | $4.2 \times 10^{5}$ | . 0017 |

assuming typical values of $N$. The uncertainty in a program star was taken to be the square root of the sum of the squares of the uncertainties for the program star and its comparison star. The resulting total uncertainties in the program stars due to shot noise is:

```
AI Scl: }\pm0.001
WZ Scl: }\pm0.001
XX Scl: \pm0.0023.
```

Because of round-off error and shot noise, a typical observation will have an estimated uncertainty of 0.0035 magnitudes. Other sources of error that may increase this lower limit are instabilities in the extinction coefficients, instabilities in the high-voltage supply, interference caused by inadequate signal shielding, and inexact centering of the star in the photometer aperture. Although the size of these extra errors is difficult to estimate, they are probably smaller than the shot noise and round-off errors mentioned above. This conclusion is supported by the light curves of the comparison stars shown in Figures 2-12 to 2-21, which show approximately this amount of scatter. It will also be shown in Section 5.2 that this is also the approximate amount of residual scatter in the light curves of WZ and XX Scl.

### 2.2 Reduction of All-Sky Photometry

### 2.2.1 General

On the night of October 24 , UBV observations of the program and comparison stars were obtained using "all-sky" photometry (i.e. non-differential photometry). The values of $\mathrm{V}, \mathrm{B}-\mathrm{V}$ and $\mathrm{U}-\mathrm{B}$ for the comparison and extinction stars were taken from Iriarte et al. (1965). A typical observation of one star in one colour consisted of three ten-second integrations on the stars, and two ten-second integrations on an adjacent region of sky. These two sets of numbers were averaged and the second subtracted from the first. A magnitude was then derived using the formula:

20-2.5 log(average star reading - average sky reading). The namber 20 was arbitrarily chosen. The sidereal time used is that of the second star reading in the blue filter. Airmass, X , was calculated using the relation: $x^{-1}=\sin (\phi) \sin (\delta)+\cos (\phi) \cos (\delta) \cos (H A)$, where $H A$ is the sidereal time minus the right ascension of the star, $\delta$ is the declination of the star and $\phi$ is the latitude of the telescope. For these observations, $\phi=-29^{\circ} \quad 00^{\prime} \quad 13^{\prime \prime}$.
2.2.2 Extinction Measurements

The $v, b-v$ and $u-b$ values (lower case denotes values untransformed to a standard system) for a star change with airmass according to the formulae:
$v_{0}=v-k_{v} X_{\text {, }}$
$(u-b)_{0}=(u-b)-k_{u b} X$ and
$(b-v)_{0}=(b-v)-k_{b v} X$, where $k_{b v}=k_{b v}^{\prime}+k_{b v}^{\prime \prime}(b-v) \quad$. $v_{0},(u-b)_{0}$ and $(b-v)_{0}$ are the instrumental magnitude and colours corrected for extinction, and $k_{v,}, k_{u b}, k_{b v}^{\prime}$ and $k_{b v}^{\prime \prime}$ are the extinction coefficients. To obtain $k_{v}$, the $v$ magnitudes of the extinction stars were plotted against airmass (shown in Figure 2-1) and were fitted by linear least squares to obtain a value of $k_{v}$ for each star. The weighted average of these values was taken to be the overall value of $k_{v}$ and was entered in Table 2-2. The values of ( $u-b$ ) were similarly plotted against $X$ in Figure 2-2 and used to derive a value of $k_{u b}$ entered in Table 2-2. The value of $k_{u b}$ for $H R 718$ was peculiar, but there seemed no reason not to include it. The point not used for $H R 8858$ (shown with a square symbol) was obtained during a short interval when erratic counts were suspected.

The $b-v$ values for each extinction star were plotted against airmass to obtain $k_{b v}$ and $(b-v)_{o}$ as shown in Figure 2-3. As $k_{b v}=k_{b v}^{\prime}+k_{b v}^{\prime \prime}(b-v)_{0}$, the values of $k_{b v}$ were plotted versus $(b-v)_{0}$ as shown in Figure 2-4 and the resulting least-squares fit on the weighted points gave the values for $\mathrm{k}_{\mathrm{bv}}^{\prime}$ and $\mathrm{k}_{\mathrm{bv}}^{\prime \prime}$ entered in Table 2-2. For the observations of transformation, extinction and.prograw and comparison stars, the values of $v_{0},(b-v)_{0}$ and $(u-b)_{0}$ were calculated and entered in Tables 2-3, 2-4 and 2-5 respectively.

## Figure 2-1

The $v$ magnitudes of the extinction stars plotted versus airmass for October 24,1978 . The magnitude scale for HR 8841 is given on the right-hand side of the graph.


Extinction and transformation coefficients derived from October 24 data.
$0.125 \pm .007$
$\mathrm{k}_{\mathrm{ub}}$
$0.20 \pm .03$
$k_{b v}^{\prime}$
$0.137 \pm .003$
$\mathrm{k}_{\mathrm{bv}}^{\prime \prime}$
$-0.016 \pm .002$
$\varepsilon$
$-0.057 \pm .02$
$\zeta_{V}$
$2.17 \pm .02$
$\mu$
$1.06 \pm .02$
$\zeta_{b v}$
$-1.05 \pm .02$
$\psi$
$1.22 \pm .02$
$\zeta_{\mathrm{ub}}$
$-1.34 \pm .02$

## Figure 2-2

The $u-b$ colours of the extinction stars plotted versus airmass. The square indicates a data point for HR 8858 that was not used in the analysis.


## Figure 2-3

The b-v colours of the extinction stars plotted versus airmass.

## Figure 2-4

A diagram of the $k_{b v}$ and $(b-v)_{o}$ values taken from Figure 2-3.







 -•••••••••••••••••••••••


 NNNNNOOOOOOOOOOOOOOOOOOO

|  | ロ） | －1 |
| :---: | :---: | :---: |
| $\geq 1$ | $\cdots$ | －1 |
|  | $\bigcirc$ | 0 |
|  | － | － |
|  | $\bigcirc$ | 0 |
| $>1$ | L | －1 |
|  | 0 | －1 |
|  | $\cdots$ | 士 |
|  | $\stackrel{\bullet}{+}$ | 士 |


| －1 | ¢の－N～かmo |  |
| :---: | :---: | :---: |
| a |  | ハッヘットかのが |
| 1 | のかのののロのロ | ¢0．0¢0．0． |
| $こ$ | －नoorrrr | NONON |




NMッNMNMNMNNNNNNNNNN

＾न土












|  | ぃのம¢ |
| :---: | :---: |
| ค | コココココココ」 |
| 1 |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |







 $\infty$
$\pm 0$
$\ddot{m}$
$\cdots$
$\sim$


 스NNNNHクロNNNかNHन













 mmmmmmmmmmトヘトにトスト

 ○0000000000000Nm00




### 2.2.3 Transformation to Standard UBV System

For all stars the values of $V, B-V$ and $U-B$ are calculated from the values of $v_{0},(b-v)_{0}$ and $(u-b)_{0}$ using the formulae:

$$
\begin{aligned}
v & =v_{0}+\varepsilon(b-v)_{0}+\zeta_{v} \\
(B-V) & =\mu(b-v)_{0}+\zeta_{b v} \\
(U-B) & =\psi(u-b)_{0}+\zeta_{u b}
\end{aligned}
$$

The observations of the transformation stars and the extinction stars at low airmass were plotted in Figures $2-5,2-6$ and $2-7$ and fitted using linear least squares. This gave the values for the transformation coefficients given in Table 2-2.

For all stars, values of $V$ were obtained using the formula $V=v_{0}+\varepsilon(b-v)_{0}+\zeta_{v}$ and listed in Tables 2-3, 2-4 and 2-6. For the transformation stars and the two extinction star observations that ware taken at small airmass, values of $\Delta V$ in the sense cf $V(J o h n s o n)-V(o b s e r v e d)$ were calculated and entered in Tables 2-3 and 2-4. The observations of the extinction stars at large airmass were not used for estimating the residuals, because the large airmass made their values of $V$ (observed) somewhat less certain than the values for the transformation stars. The plot of $\Delta V$ versus sidereal time as given in Figure 2-8 did not show any systematic trends, so the calculated values of $V$ could be accepted without further corrections. Table 2-6 shows the non-differential
$\mathrm{V}-\mathrm{V}_{0}$ versus $(\mathrm{b}-\mathrm{v})_{0}$ for the transformation stars.
$B-V$ versus $(b-v)_{o}$ for the transformation stars. The squares indicate data points that appeared suspicions and were not used in the analysis.



## Figure 2-7

$U-B$ versus $(u-b)_{0}$ for the transformation stars. The squares indicate data points that were not used in the final analysis.


## Figure 2-8

The residuals of $v$ versus time. No trends are evident in these residuals.


## VARIABLE AND COMPARISON STARS

| STAR | SIDEREAL <br> TIME | $\underline{V}_{\text {obs }}$ | $\xrightarrow{(B-V)}$ obs | $\xrightarrow{(U-B)}$ obs |
| :---: | :---: | :---: | :---: | :---: |
| WZ | 23:49.7 | 6.511 | . 343 | . 053 |
| WZ | 00:05.7 | 6.524 | . 339 | . 058 |
| WZ | 00:18.8 | 6.530 | . 341 | . 055 |
| WZ | 00:37.8 | 6.534 | . 345 | . 055 |
| WZ | 00:54.9 | 6.532 | . 342 | . 052 |
| WZ | 01:12.9 | 6.520 | . 340 | . 050 |
| WZ | 01:37.0 | 6.507 | . 334 | . 058 |
| WZ | 01:51.0 | 6.510 | . 335 | . 058 |
| WZ | 02:04.1 | 6.505 | . 341 | . 057 |
| WZ | 02:17.1 | 6.510 | . 344 | . 051 |
| XX | 23:55.7 | 8.843 | . 264 | . 148 |
| XX | 00:09.7 | 8.839 | . 262 | . 149 |
| XX | 00:22.8 | 8.847 | . 264 |  |
| XX | 00:41.8 |  |  | . 151 |
| XX | 00:59.9 | 8.833 | . 253 | . 164 |
| XX | 01:17.9 | 8.830 | . 258 | . 158 |
| XX | 01:42.0 | 8.843 | . 264 | . 158 |
| XX | 01:55.2 | 8.834 | . 258 | . 159 |
| XX | 02:08.1 | 8.824 | . 266 | . 143 |
| XX | 02:21.1 | 8.829 | . 263 | . 153 |
| AI | 00:00.7 | 5.901 | . 308 | . 125 |
| AI | 00:13.7 | 5.899 | . 309 | . 123 |
| AI | 00:32.8 | 5.889 | . 302 | . 125 |
| AI | 00:50.9 | 5.890 | . 307 | . 124 |
| AI | 01:03.9 | 5.891 | . 306 | . 124 |
| AI | 01:21.9 | 5.884 | . 301 | . 124 |
| AI | 01:46.0 | 5.879 | . 309 | . 129 |
| AI | 01:59.0 | 5.885 | . 309 | . 130 |
| AI | 02:13.1 | 5.890 | . 311 | . 118 |
| AI | 02:26.1 | 5.883 | . 310 | . 118 |
| \# | 00:27.8 | 9.087 | 1.126 | . 830 |
| \#1 | 00:45.8 | 9.087 | 1.128 | . 793 |
| \#2 | 03:07.2 | 9.252 | . 179 | . 154 |
| \#2 | 03:16.2 | 9.250 | . 155 | . 187 |
| \#3 | 04:29.4 | 9.279 | . 671 | . 106 |
| \# 3 | 04:33.5 | 9.281 | . 662 | . 145 |
| \#4 | 01:08.9 | 9.022 | . 522 | . 028 |
| \#4 | 01:25.9 | 9.019 | . 522 | . 016 |

magnitudes and colours for the varizile and comparison stars
 $B-V$ and $U-B$ between the tabulated values and the values found on this night. From the residuals given in Tables $2-3,2-4$ and $2-7$, one obtains the following standard deviations: $\Delta V=0.029, \Delta(B-V)=0.017, \Delta(U-3)=0.031$.
2.2.4 Results for $A I, W Z$ and $X X ~ S c=$

The results in Table $2-6$ were used to make Figures 2-9, 2-10 and 2-11. From these colour-colour and colourmagnitude diagrams it is clear that because these were nondifferential observations, any regular fluctuations were much smaller that the noise. A simple average of the results in Tanle $2-6$ gives the final result of this night of photometry, the average colours and magnitudes of the program and comparison stars, as given in Table 2-8. Although the remainder of this thesis will use magnitude differences and not magnitudes, the results can be easily converted, using the values in Table 2-8.

TABLE 2-7

## TRANSFORMATION STARS

| HR | $\xrightarrow{(B-V)} \mathrm{Obs}$ | $\Delta(B-V)$ | $\xrightarrow{(U-B)} \mathrm{Obs}$ | $\Delta(U-B)$ |
| :---: | :---: | :---: | :---: | :---: |
| 8060 | . 172 | -. 008 | . 136 | . 076 |
| 8278 |  |  | . 199 | -. 011 |
| 8418 | -. 099 | -. 029 | -. 274 | -. 004 |
| 8573 | -. 052 | . 008 | -. 068 | . 052 |
| 8628 | -. 129 | -. 009 | -. 394 | -. 072 |
| 612 | -. 154 | -. 004 | -. 501 | -. 011 |
| 708 | -. 028 | -. 008 | -. 077 | -. 037 |
| 740 | . 457 | . 017 | -. 014 | -. 014 |
| 811 | -. 142 | -. 002 | -. 462 | -. 012 |
| 818 | . 480 | . 000 | . 017 | . 017 |
| 1173 | . 409 | -. 011 | . 002 | -002 |
| 1213 | -. 122 | . 008 | -. 468 | -012 |
| 1240 | -. 125 | . 015 | -. 406 | -. 016 |
| 1298 |  |  | . 109 | -. 031 |
| 1520 | -. 170 | -. 010 | -. 509 | -. 009 |
| 1560 | . 236 | . 006 | . 137 | -. 033 |
| 1617 | -. 167 | . 023 | -. 718 | . 032 |
| 1621 | -. 050 | . 000 | -. 124 | -026 |
| 1679 | -. 198 | -. 008 | -. 889 | -021 |
| 1696 | -. 119 | -. 029 | -. 391 | . 009 |
| 1705 | -. 110 | -. 020 | -. 401 | -. 031 |
| 1789 | -. 174 | . 036 | -. 902 | -018 |
| 1861 | -. 155 | . 035 | -. 909 | . 021 |
| 1934 | -. 092 | . 018 | -. 791 | -. 021 |
| 718 | -. 077 | -. 017 | -. 099 | . 031 |
| 8858 | -. 153 | -. 013 | -. 572 | -. 022 |

## Figures 2-9, 2-10 and 2-11

The light curve, colour-magnitude and colour-colour diagrams for $A I, W Z$ and $X X$ Scl respectively on the night of October 24.









## Table 2-8

The averaged magnitudes and colours of the variables and comparison stars found on the night of October 24. The standard deviations for these magnitudes are:

$$
\begin{aligned}
\mathrm{V} & =0.03 \\
\mathrm{~B}-\mathrm{V} & =0.02 \\
\mathrm{U}-\mathrm{B} & =0.03
\end{aligned}
$$

TABLE 2-8

| STAR | $\underline{\langle V\rangle}$ | $\underline{\langle B-V\rangle}$ | $\underline{\langle U-B\rangle}$ |
| :--- | :--- | :--- | :--- |
| AI | 5.89 | 0.31 | 0.12 |
| WZ | 6.52 | 0.34 | 0.06 |
| XX | 8.84 | 0.26 | 0.15 |
| \#1 | 9.09 | 1.13 | 0.81 |
| \#2 | 9.25 | 0.17 | 0.17 |
| \#3 | 9.28 | 0.67 | 0.13 |
| \#4 | 9.02 | 0.52 | 0.02 |

### 2.3 Reduction of Differential Photometry

Differential photometry of the three variable stars was obtained on ten nights, using the $V$ filter and an $18^{\%}$ aperture in the photometer. A typical measurement consisted of three ten-second integrations on the star, and two tensecond integrations on an adjacent region of the sky. Occasionally the star would drift out of the aperture or spurious counts would appear, so that one of the readings would be unusable. When that occurred, the averages of the other readings were utilized. The Universal Time for each measurement was taken to be the time of the second of the three star readings, which was printed out to the nearest minute. The clock was checked against the WWV short-wave time signals thrse times during the observing run; it was never more than a few seconds off.

To analyze these data the observations were punched onto computer cards and read into permanent files. The three star readings and the two sky readings were averaged and converted to magnitudes. Corresponding airmass, Universal Time, and sidereal time data were also made available for data reduction. To convert to the Julian Date from the dates based on Universal Time used in this thesis, add 2443781.5 . Note that the time used in this thesis has not been converted to heliocentric time, and this correction must be made if these observations are linked to observations taken at some other time. Visual extinction coefficients for each night were determined by a least-squares fit to
magnitude versus airmass data for star \#l, the only comparison star observed every night. The resulting values for the visual extinction coefficient are shown in Table 2.9, along with other data relating to observing conditions. The visual extinction coefficient for the night of October 24 was taken from the results of the previous section. A zero-point correction of 2.07 magnitudes was added to the instrumental magnitudes to force the weighted average to equal 9.09, as found in Section 2.2.4. The large standard deviation in Table 2-9 for the night of October 23 was not due to random fluctuations, but was instead due to a slow increase in the sky's transparency over the course of the night, from $\mathbf{k}_{\mathrm{v}}=.15$ to $\mathrm{k}_{\mathrm{v}}=.11$. In differential photometry, such an increase does not have a significant effect on the final results although the random fluctuations will likely be slightly larger, compared to nights of lower and more constant extinction.

Using the nightly values for the extinction, a third set of data files was created. In each data file, each observation contained the name of the star, the Universal Time in fractions of a day, and the instrumental magnitude corrected to zero airmass. These results were then plotted on a Tektronix Model $4662 \mathrm{x}-\mathrm{y}$ digital plotter, and examined. On the basis of this examination several discordant data points were discarded. An examination of the light curves of the four comparison stars indicated that if they were oscillating at all, the amplitudes of oscillation were much

smaller than the amplitudes of the three variable stars.
The final operation that was needed to bring the data files into usable form for period-searching was to subtract the magnitudes of the comparison stars from those of the variable stars. This was necessary to correct for minor fluctuations in the atmosphere or in the response of the photometer. It was decided that star \#l would be used as the comparison star for both WZ and XX Sculptoris, as all three stars were close together in the sky, and that star $\mathbb{F}_{4}$ would be used as the comparison star for AI Sculptoris. Star \#2 and star \#3 had been observed on only three nights as a check on the stability of the other comparison stars, and trying to use them would have been an unadvisable complication. The comparison stars were, of course, observed at slightly different times than the program stars. For each observation of a program star, the one immediately previous and the one immediately following comparison star observations were linearly interpolated to give a comparison star magnitude. At the end-points of the data, the nearest two points were extrapolated to provide the comparison star magnitude. A more complicated fitting routine, such as a quadratic fit was considered, but this was deemed unnecessary, because the comparison star observations were spaced closely enough to accurately follow any reasonable fluctuations. Each observation now consisted of the variable star's name, the Universal Time in fractions of a day, and the difference between the magnitude of the variable and the interpolated
magnitude of the comparison star. For convenience in handling the data, these files were then arranged so that the nightly observations of each variable star were in separate files. In addition, a data file for each variable was created that contained all the observations of that variable. It is these data files that were used in the period-searching techniques given in Chapters Four and Five. The contents of these data files are given in Appendices $7.1,7.2$ and 7.3 and are shown in Figures $2-12$ to 2-21. The lines drawn through the data points will be explained in Section 5.2 .

Because some period-searching techniques require equally-spaced data, an extra set of nightly data files was created. In each new data file, the observations were placed at intervals of .004 days ( $=5.76$ minutes) with the time span of the new data file completely within the span of the old file. For example, if the observation times of the first and the last data points in an old data file were at 0.009 and 0.362, the first and last observation times in the new data file would be 0.012 and 0.360 . The new data files were created by a computer program that would linearly interpolate between the observations given in the old data files. The justification for using linear interpolation is the same as that given in the previous paragraph.

On several nights, a break occurred in the data while the dry ice was replaced in the photometer. Because a linear interpolation across such a break would not give a true

## Figures 12 to 21

Data points obtained on the photometric nights between October 9 and 29,1978. The $x$ axis gives the Universal Time in fractions of a day. The $y$ axis has been arbitrarily shifted, and does not represent the differential magnitude of any star. The size of the tic marks represent error bars of $\pm .005$ magnitudes, approximately the typical error found for the data points. For the stars WZ and XX Scl, the curves drawn are given by the formulae;

$$
\begin{aligned}
f(t)=-2.5623 & +.0057 \sin (95.554 t+1.8) \\
& +.0078 \sin (65.485 t+4.0) \\
f(t)=-.2445 & +.0088 \sin (128.50 t+0.0) \\
& +.0075 \sin (122.36 t+1.3)
\end{aligned}
$$

respectively, as explained in Section 5.2. For the other stars, the data points are connected with straight lines. The horizontal lines through the data points represents the average magnitude of the star for that night.
さ氏じロトトコロ山








picture for the light curves of the stars, a curve was drawn free-hand through the graph following the star's expected light curves, and the resulting magnitades were substituted into the new data files. To check that this did not influence the results, a few data files with and without these substituted magnitudes were searched for periods using the Jurkevich method. As the resulting two sets of periodograms were very similar in appearance, it was concluded that the hand-drawn interpolation did not distort the results. All the necessary data files were then available to search the data for periodicities.

## CHAPTER THREE

## AN OVERVIEW OF PERIOD-SEARCHING

### 3.1 Basic Period-Searching Methods

A basic aspect of data analysis is the search for periodicities in data, and many methods have been devised to carry this out. Unfortunately, no single method is generally agreed upon as the best, and for this thesis two methods were used to search for periods. In addition, a non-linear least-squares solution was used to refine the periods and amplitudes that were found using the previous methoas.

Figure 3-1 shows a set of data points that follow a sine curve given by the formula $y=A \sin (2 \pi x / P)$, where $A$ is the half-amplitude of the curve and $P$ is the period. For each data point $\left(x_{i}, y_{i}\right)$ the phase $\phi_{i}$ may be calculated using the formula $\phi_{i}=\bmod \left(\left(x_{i}-x_{0}\right) / P\right)$, where mod is a function that yields the fractional part of its argument, and $x_{0}$ is the average of the $x_{i}$ values. For example, mod (I7.673) $=.673$. A graph of ( $\phi_{i}, y_{i}$ ) is called a phase diagram, and Figure 3-2a shows an idealized phase diagram for the data in Figure 3-1. Figure $3-2 b$ represents a phase diagram for these data using an incorrect value for the period, causing the data points to scatter randomly along the $\phi$ axis. The differing mathematical properties between these two figures are used by many period-searching methods. The presence of the horizontal and vertical iines in these two figures will be explained in the next section.

## Figure 3-1

Artificial light curve given by $f(x)=A \sin (2 \pi x / P)$, where $P=100$ minutes.

## Figure 3-2a

Phase diagram for $P=100$ minutes, using the data given in Figure 3-1. This diagram is divided vertically into three 'bins', and the three horizontal lines labelled $\bar{Y}_{\mathbf{I}}$ ' $\bar{y}_{2}$ and $\bar{y}_{3}$ are the average values of $y_{i}$ for the data points in each bin.

## Figure 3-2b

The same as in Figure $3-2 a$, but for an incorrect value of the period.



A period-searching method generally investigates a number of trial periods, and to each trial period assigns an index $I(P)$. A graph of $I(P)$ versus $P$ is called a periodogram, and a typical example is shown in Figure 3-3. If a period $P$ is present in the data, a peak in the value of $I(P)$ appears. The trial periods must not be spaced so far apart that the peak is missed, but computer time will be wasted if the trial periods are spaced too closely together. Note that in Figure 3-3 the peak drops rapidly from $P$ to a very small value at $\mathrm{P}+\delta \mathrm{P}$. To find the value of $\delta \mathrm{P}$, assume the data are evenly distributed over a time span $L$. The number of cycles present will be $N=L / P$. It is not too difficult to see that if a slightly different period is chosen so that only $\mathrm{N}-1$ cycles occur across a time span $L$, then all the data points that ought to fall on a given phase will instead be distributed uniformly across the phase diagram; this will clearly cause the very small value of the index seen at $P+\delta P$. Therefore we have the two equations $L=N P$ and $L=(N-1)(P+\delta P)$, and solving for $\delta P$ gives $\delta P=P^{2} /(L-P) \simeq p^{2} / L$ when $L \gg P$. For this thesis it was decided to space the trial periods at intervals of $\mathrm{p}^{2} / 6 \mathrm{~L}$ to avoid missing the top of the peak. One difficulty common to most period-searching methods is aliasing, which is the presence of sevexal false peaks due to some peculiarity in the spacing of the data points along the x -axis. The most common and most serious alias occurs when the data are clustered at nightly intervals, with no data points obtained during the daytime. Suppose that two

## Figure 3-3

A periodogram of data similar to that given in Figure 3-1, using the Jurkevich method.

sets of data with period $P$ are separated by a time span $L$, so that the number of cycles is $N=L / P$. Aliasing arises because a period $P+\delta P$ that creates only $N-1$ cycles will fit the observations on the two nights almost as well as the period $P$. This leads to the same two equations $L=N P$ and $L=(N-l)(P+\delta P)$ that were found for the width of the periodogram peaks, so that $\delta P=P^{2} / L$ is the spacing to be expected between the true peaks and the aliased peaks in a periodogram. Peaks will also occur at distances of $2 \delta \mathrm{P}, 3 \delta \mathrm{P} . . . \mathrm{from}$ the true peak corresponding to $N-2, N-3 \ldots$ number of cycles, but these peaks will have progressively smaller indices because they do not fit the nightly data as well. The problem of aliasing can only be overcome by obtaining highquality data or by obtaining enough data to overcome the noise, and thereby distinguish between $N$ or $\mathbb{N}-1$ elapsed daytime cycles.

If two nearly equal frequencies $f_{1}$ and $f_{2}$ are present in the data, the resulting curves will have a frequency $\left(f_{1}+f_{2}\right) / 2$ with variable amplitude as shown in Figure 3-4. The variable amplitude is caused by the two frequencies alternately cancelling and re-enforcing, a phenomenon referred to as beating, and the frequency of the envelope, $f_{1}-f_{2}$, is called the beat frequency. In terms of periods, the curve will have a period $2 P_{1} P_{2} /\left(P_{1}+P_{2}\right)$ and a beat period of $\mathrm{P}_{1} \mathrm{P}_{2} /\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)$.

## Figure 3-4

Two sine curves of nearly equal frequency, and the modulated curve that results when the first two curves are added together. $B$ is the beat period.


さ《せZHトコロい

### 3.2 The Jurkevich Method

The Jurkevich period-searching method as outlined by Jurkevich (1971) will be used extensively in this thesis. To illustrate this method, suppose that $N$ data points of the form $\left(x_{i}, y_{i}\right)$ are to be searched for periodicities. The $x_{i}$ values need not be evenly spaced, and the periodic behaviour need not be sinusoidal. The procedures described in the previous section are used to find a suitable set of trial periods to be investigated. For each trial period a phase diagram is constructed and the $x$-axis divided into $k$ intervals, commonly called 'bins'. For each bin, the $y$ values of all the data points are averaged and are called $\bar{y}_{i}$ where $i$ runs from $l$ to $k$. Suppose there are $m_{i}$ data points in each bin and let $V$ represent the variance of the $N$ values of $Y_{i}$. Then for each trial period P, the Jurkevich method assigns and index $I$ given by $I=V^{2}-\sum_{i=1}^{k} m_{i} \bar{Y}_{i}^{2}$. For computational convenience it is assumed that the $N$ values of $Y_{i}$ have been averaged to zero. Figure 3-3 illustrates what a graph of $\sum_{i=1}^{k} m_{i} \bar{Y}_{i}^{2}$ will look like. When $P \neq P_{\text {TRUE }}$, the data points will scatter randomly in a phase diagram and the values of $\vec{Y}_{i}$ will be close to zero, as in Figure 3-2b. When $\mathbf{P}=\mathrm{P}_{\text {TRUE }}$ as in Figure $3-2 a$, the values of $\bar{Y}_{i}$ will not all be close to zero, and so $\sum_{i=1}^{k} \mathrm{~m}_{i} \bar{Y}_{i}^{2}$ will not be close to zero.

It is not immediately obvious what value should be used for $k$, the number of bins. Jurkevich comments in his paper that $k=3$ is the minimum value that should be used, but gives no guidance towards finding the optimum value. From
previous experience the author of this thesis has found that for small values of $N$ (between 20 and 80 ) the most pronounced peaks occur when $k=3$. This is not surprising because a large value of $k$ implies that occasionally the data points will be unevenly distributed among the bins. creating greater fluctuation in the values of $I(P)$. Figures 3-5a and 3-5b show the same periodogram but with $k=3$ and $k=9$ respectively. It is clear that for large values of N (in this case $\mathrm{N}=650$ ) the value of $k$ is not important, although ass increases the noise does increase slightly. Thus it can be taken as a general rule that the optimum value for $k$ iss three, and this value is used in the following analyses.

Suppose that a set of data gives for period $P$ a sinusoidal phase diagram like that shown in Figure 3-2. It would be very useful if the index $I(P)$ could be used to find the half-amplitude $A$ of this sine curve. The presence of another period or of noise will serve only to change this curve from a line to a wide band, but the values of $\overline{\mathrm{y}}_{1}^{2}, \overline{\mathrm{y}}_{2}^{2}$ and $\bar{y}_{3}^{2}$ should remain essentially unaltered. This argument assumes in effect that there are a large number of data points equally distributed among the three boins, but as long as $N$ is large ( $N>80$ ) this is a reasonable assumption. If the data points follow the functional dependence $y(x)=A \sin 2 \pi(x-\phi)$, what will be the value of $\bar{y}_{1}^{2}+\bar{y}_{2}^{2}+\bar{y}_{3}^{2}$ ? The value of $\bar{y}_{1}$ will be given by
$\bar{Y}_{1}=3 A \int_{0}^{1 / 3} \sin 2 \pi(x-\phi) d x=(3 A / 4 \pi)(3 \cos 2 \pi \phi-\sqrt{3} \sin 2 \pi \phi)$. Similarly, $\bar{Y}_{2}=(3 \sqrt{3} A / 2 \pi)(\sin 2 \pi \phi)$ and

## Figure 3-5a

Periodogram of the data obtained for $X X$ Scl, using $m=3$.

Figure 3-5b

Same as in Figure 3-5a, but using $m=9$.


$\bar{y}_{3}=(3 A / 4 \pi)(-3 \cos 2 \pi \phi-\sqrt{3} \sin 2 \pi \phi)$.
Squaring these and adding gives $\bar{Y}_{1}^{2}+\bar{y}_{2}^{2}+\bar{y}_{3}^{2}=81 A^{2} / 8 \pi^{2}$, and so $A^{2}=\left(8 \pi^{2} / 81\right)\left(\bar{Y}_{1}^{2}+\bar{Y}_{2}^{2}+\bar{y}_{3}^{2}\right)$.
It is useful to know that such a simple relation exists and is independent of $\phi$. Recall that Jurkevich originally defined the index to be $I(P)=v^{2}-\sum_{i=1}^{k} m_{i} \bar{Y}_{i}^{2}$. In future work, it appears more useful to set $k=3$ and to use the new index $I(P)=\left(8 \pi^{2} / 27 N\right) \sum_{i=1}^{k} m_{i} \bar{y}_{i}^{2}$, so that the value of $I(P)$ gives the square of the half-amplitude A for the sine curve of period $P$ that would be used to fit the data. In this thesis the index used was ( $80000 \pi^{2} / 27 N$ ) $\sum_{i=1}^{k} m_{i} \bar{Y}_{i}^{2}$ $\simeq(29243 / \mathbb{N}) \sum_{i=1}^{k} m_{i} \bar{y}_{i}^{2}$, so that the results are in hundredths of a magnitude. This is a more convenient measurement for the magnitude fluctuations found in $\delta$ Scuti stars.

### 3.3 The Jurkevich Method Applied to Artificial Data

To test how well this method could detect periods in noisy data, two sets of artificial data were created, according to the formulae:

$$
\begin{aligned}
& y(t)=.006 \sin (2 \pi t / 77)+.008 \sin (2 \pi t / 100)+\sigma(.005) \\
& y(t)=.006 \sin (2 \pi t / 77)+.008 \sin (2 \pi t / 100)+\sigma(.010),
\end{aligned}
$$ where $\sigma(x)$ represents Gaussian noise of standard deviation $x$, added to each data point. The time of observation $t$ is in minutes, and the number and spacing of the artificial data are identical to those obtained for AI Scl.

Figure 3-6 shows the phase diagram for $P=77$ minutes

## Figure 3-6a

Phase diagram for $P=77$ minutes, for data generated from $y(t)=.006 \sin (2 \pi t / 77)+.008 \sin (2 \pi t / 100)+\sigma(.005) \quad$.

Figure 3-6b

Phase diagram for $P=77$ minutes, for data generated from $y(t)=.006 \sin (2 \pi t / 77)+.008 \sin (2 \pi t / 100)+\sigma(.010)$.


for both data sets, and Figures 3-7 and 3-8 show their Jurkevich periodograms. The periodograms in Figures 3-7 and 3-8 show both periods remarkably well, considering the amount of noise present. The periods and amplitudes used in these sets of data are typical of those found in periodic $\delta$ scuti stars, and in Section 5.2 it will be shown that the noise level for the observations obtained for this thesis was approximately o(.005). Figure 3-8 clearly shows the period at 77 minutes of half-amplitude 0.006 , despite the noise level of approximately o(.018) due to the Gaussian noise component of $\sigma(.010)$ and the presence of the period at 100 minutes with half-amplitude 0.008 . The half-amplitude detected in this case is three times smaller than the noise, and as the noise level in the data is approximately $\sigma(.005)$. one would therefore expect to detect any periodicities in the real data down to at least a half-amplitude of 0.0017 magnitudes. Of course, if more than one period is present or if the oscillation in the data is not strictly periodic, this lower limit would have to be increased.

In all periodograms several smaller peaks to the sides of the true peaks are found. From Figures 3-7 and 3-8, the two peaks beside the peak at 77 minutes were found to be at 73.35 and 81.22 minutes (measured on expandedscale periodograms), and the peaks beside the peak at 100 minutes were found to be at 93.44 and 107.43 minutes. Using the formula for aliasing given in Section 3.1, the time-spans L that would give rise to such aliasing were calculated to

## Figure 3-7

Jurkevich periodogram of data generated from: $y(t)=.006 \sin (2 \pi t / 77)+.008 \sin (2 \pi t / 100)+\sigma(.005)$.



## Figure 3-8

Jurkevich periodogram of data generated from: $y(t)=.006 \sin (2 \pi t / 77)+.008 \sin (2 \pi t / 100)+\sigma(.010)$.


be 1547, 1482, 1424 and 1446 minutes for the four peaks. It is clear that these peaks are caused by aliasing due to the spacing of one day ( 1440 minutes) between the nights of observation, and that such peaks may be expected when the real data are analyzed. Figure 3-9 shows the peak at 77 minutes on an expanded-scale periodogram for the second set of data, and it may be seen that despite the great amount of noise present, the Jurkevich method was able to give a very good estimation of the true period.

### 3.4 The Maximum Entropy Method Applied to

## Artificial Data

The maximum entropy method of spectral analysis is an adaptation of the standard Fourier method that has been in use for many years. If a function $g(t)$ is composed of $N$ sinusoids of frequency $f_{i}$, then its Fourier transform $G(f)=\int_{-\infty}^{+\infty} g(t) \exp (\sqrt{-l} f t) d t$ will be a series of Dirac delta functions, $G(f)=\delta_{1}\left(f-f_{1}\right)+\delta_{2}\left(f-f_{2}\right)+\ldots+\delta_{N}\left(f-f_{N}\right)$, which will indicate the correct frequencies. Unfortunately, this method assumes that a function $g(t)$ is known for $-\infty<t>+\infty$. In practice, $g(t)$ is known for only a few intervals of time, or for only a finite number of points. Deeming $(1975,1976)$ has published a short computer program that generates the Fourier transform for a discrete number of unequally-spaced points, but this method suffers from severe aliasing problems because of the lack of data over

## Figure 3-9

Expanded-scale Jurkevich periodogram of data generated from: $y(t)=.006 \sin (2 \pi t / 77)+.008 \sin (2 \pi t / 100)+\sigma(.010)$. The vertical line at $P=77$ minutes indicates one of the two periods present in the data.

the entire time range. Gray and Desikachary (1973) present a technique that generates the Fourier transforms of a function known at only a few intervals, and predicts how the aliasing will appear. The best Fourier technique would be one that is maximally noncommittal about the behaviour of $g(t)$ outside the regions where $g(t)$ has been measured. As entropy is a measure of the lack of information about a system, such a method would be called a maximum entropy method, and the computational details of just such a method have been given by Anderson (1974), based on the well-known algorithin first published by Burg (1967). The computer program used in this study was supplied by Dr. J.R. Percy; the principles of the computation will not be reviewed here. See Percy (1977) for a brief review of the method and experiments with artificial data, produced to resemble some short-period variable stars.

One severe difficulty with this particular maximum entropy program that greatly limits its usefulness to astronomers is that it can only be used on equally-spaced data. The observations taken during one night can be interpolated to produce equally-spaced data points, but these sets of nightly data cannot be linked together in this program and searched for periods using this method. Anderson (1978) has suggested a method for linking nights together, but this approach has not yet appeared in the astronomical literature. To test the maximum entropy method, the artificial data generated using $\sigma(.005)$ in the previous section were broken into
nightly sets of data, and linearly interpolated to produce equally spaced observations. Figure 3-10 is a typical periodogram based on the artificial data generated for the night of October 23. The solid line is a period-search of moderate resolution, and the broken line is a period-search of higher resolution. The units along the $Y$ axis are arbitrary, and may have different scales for the two curves. Nightly periodograms were constructed for all six nights and the locations of the peaks measured and placed in Table 3-1. The periods generally occurred around 77 and 100 minutes, and these two sets were averaged together to produce two mean periods for the entire set of data. It may be seen from Table 3-1 that the peaks at 77 and 100 minutes are located with an accuracy of about two percent. Percy (1977) has noted that even using data with low noise, the periods found are generally inaccurate by one or two percent. Swingler (1979a) has reported, however, that this error car be reduced by using a simple window function, so this may not be an obstacle in the use of this method. Percy (1975) finds that the light curve of the star $C Y$ Aquarii can be modelled by a sawtooth curve, and that a previous aralysis of this light curve based on the maximum entropy method was incorrect, because a sawtooth function generates several false peaks in its periodogram. A bin-type period analysis like the Jurkevich method is relatively insensitive to asymmetric light curves, as demonstrated by Stellingwerf (1978). Swingler (1979b) has also found that the maximum entropy

## Figure 3-10

Maximum entropy method periodogram generated by the function: $Y(t)=.006 \sin (2 \pi t / 77)+.008 \sin (2 \pi t / 100)+\sigma(.005)$. The solid line is a periodogram of medium resolution, and the broken line is a periodogram of higher resolution. The 84 data points used in this periodogram were equally spaced over an interval of 478 minutes.

Date of Observation

(October) \begin{tabular}{c}
Periods (minutes) <br>
(Moderate Resolution)

$\quad$

Periods (minutes) <br>
(High Resolution)
\end{tabular}

| 23 | 80,98 | 78,97 |
| :--- | :--- | :--- |
| 25 | 84 | 79,86 |
| 26 | 102 | 80,105 |
| 27 | 80 | 77,101 |
| 28 | 78,100 | $76,82,100$ |
| 29 | 98 | 78,98 |

Average of
All Nights
80.5, 99.5
79.5, 100.2
method should not be automatically regarded as superior to the much simpler discrete Fourier transform. In Section 5.1 it is shown that when the nightly maximum entropy periodograms are averaged together ('stacked'), they are very similar to the stacked Jurkevich periodograms. Both methods appear equally powerful when used on continuous, equallyspaced data, but the Jurkevich method is more appropriate for discontinuous data, where $I_{s} \ggg$.

## CHAPTER FOUR

## PERIOD-SEARCHING USING THE JURKEVICH METHOD

### 4.1 The Initial Search for Periods

To begin searching for periodicities in the data, a free-hand curve was drawn through the data points and the times of local maxima and minima were measured. The difference between a maximum and an adjacent minimum, when multiplied by two, gives a period for the oscillation of the star at that time. These periods were plotted against the time of observation, as shown in Figures 4-1, 4-2 and 4-3 for $A I, W Z$ and $X X$ Scl respectively. This is, of course, a poor method for finding periods in a star, because noise and personal bias will seriously alter the results. Also, if twc periods are present, then the periods found by this method will be spread over a wide range around the true periods. This method does, however, indicate the approximate range that should be searched for periodicities, and after some consideration of the data in Figures 4-1, 4-2 and 4-3. it was decided that any periods present in all three stars must lie between 42 and 160 minutes.

A FORTRAN computer program was written to compute the Jurkevich index for 500 consectutive periods and plot the resulting periodogram using the Tektronix PLOT-10 subroutine package and digital $x-y$ plotter. The periodogram results from the nightly data files were searched for peaks between 42 and 300 minutes, and the location of all signif-

Figure 4-1

Periods derived from the individual oscillations in the light curve of AI Scl.


## Figure 4-2

Periods derived from the individual oscillations in the light curve of $W Z$ Scl.



## Figure 4-3

Periods derived from the individual oscillations in the light curve of XX Scl.


icant peaks were entered in Table 4-1. As an extra precaution the data files were also searched for periods between 14 and 42 minutes, but no significant peaks were found. Figure 4-4 shows two typical examples of these nightly periodograms.

A more accurate way of finding the periods is to stack the nightly periodograms. Figures 4-5, 4-6 and 4-7 are the stacked periodograms obtained for AI, WZ and XX Scl respectively, and the periods that gave peaks in these figures are listed in Table 4-l. AI Scl shows several small peaks, but only the peaks at 64 and 134 minutes are large enough to have any significance. Both WZ and XX Scl show two large peaks, but for $X X$ Scl the period for the second peak is almost exactly double the first peak, which means that the second peak is probably not real, but is instead an artifact of the method.

The great advantage of the Jurkevich method is that, unlike many other methods, the data do not have to be equally spaced, and so the Jurkevich method can be applied to the complete run of observations of a star and not just the nightly observations. When doing this, one must of course keep in mind that the period increment must not be made so large that peaks in the periodogram are missed. Such periodograms were constructed for all three stars, and the results are discussed below.

## TABLE 4-1 <br> PERIODS FROM JURKEVICH PERIODOGRAMS

$\left.\begin{array}{cccc}\begin{array}{c}\text { Time of } \\ \text { Observation }\end{array} & \begin{array}{c}\text { AI } \\ \text { (minutes) }\end{array} & \begin{array}{c}\text { WZ } \\ \text { (minutes) }\end{array} & \end{array} \begin{array}{c}\text { XX } \\ \text { (minutes) }\end{array}\right)$

## Figure 4-4

Two periodograms for $X X$ Scl for the night of October 14.



## Figure 4-5

The stacked periodogram of AI Scl.

Figure 4-6

The stacked periodogram for $W Z$ Scl.



## Figure 4-7

The stacked periodogram of XX Scl.


### 4.2 AI Scl

A periodogram for the entire run of data on AI Scl is shown in Figure 4-8. Based on the stacked periodograms shown in Figure 4-5, one would expect to see Figure 4-8 dominated by two large peaks at 64 and 134 minutes. The periodogram is surprising however, as it does not show any significant peaks near 64 minutes and instead shows several peaks between 120 and 150 minutes. Figure 4-9 shows these two regions in more detail, and in both cases the great number of large peaks makes it unlikely that these are anything but noise. Nonetheless additional periodograms were constructed to obtain exact periods for the two highest peaks in Figure 4-9a and the three highest peaks in Figure 4-9b, and these periods were entered into Table 4-I.

The peak with the largest index was at 134.387 minutes, and Figure 4-10 shows the phase diagram that results from this period, as well as three horizontal lines showing the average magnitude in each bin. There is such a great deal of scatter in this diagram that it is difficult to say if a period is truly present. The phase diagrams for the other possible periods appeared to be a random scatter of points. These data suggest 134.387 minutes is the most likely periodicity, if any are present. Assuming this is indeed the major period in the data, the nightly light curves were re-plotted with a sine curve of this period drawn through the data points. Figure $4-11$ shows such a plot for the night of October 29, when the star was fluctuating strongly.

## Figure 4-8

A periodogram of AI Scl for all data points.


## Figure 4-9a

A high-resolution periodogram of AI Scl.

## Figure $4-9 b$

A high-resolution periodogram of AI Scl.



Figure 4-10

Phase diagram of AI Scl for a period of 134.387 minutes.


## Figure 4-11

Observations of AI Scl on October 29. The solid curve was generated from the formula: $f(t)=-3.1346+.004 \sin (67.32636 t+2.019)$, corresponding to a period of 134.387 minutes. As can be seen, this curve does not fit the observations.


As can be seen, the curve does not fit the observations, and this was true for the other nights as well.

In Section 3.3 it was concluded that if any strictly periodic fluctuations with half-amplitudes greater than 0.0017 were present, these periods would be detected in the Jurkevich periodogram. As the fluctuations in the data are much greater than this, it was concluded that AI Scl did not exhibit periodic behaviour during this observing run, based on Figure 4-9. However, many aperiodic $\delta$ Scuti stars are known to £avour certain periods without following them exactly. Based on Figure 4-5 it was concluded that AI Scl did show some pulsations with periods of 64 and 134 minutes, but these pulsations were not strictly periodic over a time scale of a few days. Detailed observations of AI Scl at other epochs would be useful to investigate more completely this star's behaviour.

### 4.3 WZ Scl

A periodogram search for periods between 42 and 900 minutes found two very large peaks at 94.68 and 138.2 minutes, as seen in Figure 4-12. A remarkable feature of both these peaks is that they have a peak at each side of slightly less height, and that all the large peaks have a great number of small peaks at their base. In view of the discussion in Section 3-1 it seems likely that all these extra peaks are caused by aliasing. To verify this, the locations of the

## Figure 4-12

Two periodograms of WZ Scl.


two large peaks accompanying each peak at 94.68 and 138.2 minutes were found to be at $88.89,101.36,126.18$ and 152.88 .minutes, leading to beat periods of 1454 minutes (1.009 days). 1437 minutes (.9977 days). 1451 minutes (1.007 days) and 1439 minutes (.9995 days) respectively. Obviously, this aliasing is caused by the uncertainty of counting the cycles that take place during daylight hours. Similarly when the locations of the many small peaks were measured, they were found to generate a beat period of approximately 13 days. This can be explained by noticing that no data were obtained on the nights of October 17, 18, 20 and 21, because of non-photometric sky conditions. This split the data into two sections with the centres of both sections separated by about ten days. As the agreement between the two numbers is not exact, the problem was resolved by obtaining a periodogram for the data between October 22 and October 29. When this was done, the small peaks vanished, as expected.

The phase diagram for the period at 138.2 minutes was constructed, and the curve found in this diagram was subtracted from the data to create a new data file. This technique is known as prewhitening, and is very common in spectral analysis. The phase diagram for the period at 94.68 mimutes, based on this new data file, will contain scatter due to noise but not scatter due to the other period; it is shown in Figure 4-13a. The process was repeated to obtain the prewhitened phase diagram for the period at 138.2 minutes, and this is shown in Figure 4-13b. The data were then pre-

## Figure 4-13a

A prewhitened phase diagram of $W Z$ Scl for a period of 94.68 minutes.

Figure : 4-13b

A prewhitened phase diagram of WZ Scl for a period of 138.2 minutes.


whitened for both periods, so that if any more periodicities existed in the data they would not be obscured by the two large-amplitude periodicities already found. As a period search did not show any large peaks, it was concluded that only two periods are present. It is quite common for $\delta$ Scuti stars to have two, but only two, periods present in their light curves. Only a few $\delta$ Scuti stars exhibit more than two periodicities (Hodson, Stellingwerf and Cox 1979). The amplitudes and $x$-intercepts in Figure $4-13$ were measured by eye, and from this information the double-sine curve that would fit the observations was found to be:

$$
\begin{aligned}
f(t)=-2.5621 & +.006 \sin (95.58698 t+.980) \\
& +.008 \sin (65.44509 t+4.863)
\end{aligned}
$$

where $f(t)$ is the magnitude and $t$ is the time of observation. The number -2.5621 was found by simply taking the average magnitude of all observations. Note that the sine function is in radians. The nightly data and the function were plotted together, and the agreement between them was found to be very good. Figure $4-14$ shows this curve and the original data for the night of October 14. A slightly better curve is found in Section 5.2 , based on the result of a leastsquares fitting technique, and this slightly-improved curve is used in Figures 2-12 to 2-21 where the results for all nights are given.

## Figure 4-14

Observations of WZ Scl on October 14. The solid line was generated from the formula:

$$
\begin{aligned}
f(t)=-2.5621 & +.006 \sin (95.58698 t+.980) \\
& +.008 \sin (65.44509 t+4.863)
\end{aligned}
$$



### 4.4 XX Scl

It is clear from Figure 4-7 that only the region around 70 minutes needs to be searched, but as a precaution, a range from 45 to 170 minutes was searched using the entire data file. As expected, the only large peaks occurred near 70 minutes; these are shown in Figure 4-15. These periodograms are remarkable for the number of peaks present and their regular spacing. The small peaks around each of the large peaks, best seen in Figure 4-15b, were investigated and found to be caused by the gap in the data that had also caused small peaks in the $W Z$ Scl periodograms. The presence of the large peaks is more troublesome. By examining the original data it can be seen that there seems to be only one peiciod, but with a modulated amplitude. This can most easily be explained by the presence of two nearly-equal periods beating against each other. The most likely candidates are the periods at $67.155,70.465$ and 73.856 minutes, as deduced from expanded periodograms at these periods. However, it is very difficult to decide which pair are the correct periods. The problem is all the more difficult since adjacent periods have a beat period of about 1480 minutes (1.028 days), so that the same part of the beat cycle.is observed every night. This appears to be a difficult case to analyze with the available data and particular care is required. Figures $4-16,4-17$ and $4-18$ show the phase diagrams for $67.1546 ; 70.465$ and 73.856 minutes respectively. From these figures, it was found that these three periodicities

## Figure 4-15a

Medium-resolution periodogram of XX Scl.

Figure 4-15b

High-resoluiion periodogram of XX Scl.



## Figure 4-16

Phase diagram of $X X$ Scl for a period of 67.1546 minutes.

Figure 4-17

Phase diagram for XX Scl for a period of 70.465 minutes.


## Figure 4-18

Phase diagram of XX Scl for a period of 73.856 minutes.

could be fitted by the formulae:
$f(t)=.0061 \sin (134.745 t-.45)$,
$f(t)=.0075 \sin (128.405 t+1.95)$, and
$f(t)=.0056 \sin (122.487 t-1.33)$.
It was found that by choosing any pair of these, a good fit to the data could be obtained. This is a case where only a least-squares fitting technique, as given in Section 5.2, can judge which periods are most likely present in the data. For all three stars, Table 4-1 shows the periods that were found in this chapter.

## CHAPTER FIVE

## PERIOD-SEARCHING USING OTHER METHODS

### 5.1 The Maximum Entropy Method

In Section 3.4 it was shown that the maximum entropy method was capable of locating the correct periodicities in artificial data to within a few percent. Although the previous chapter contains accurate values of the periods found from the Jurkevich method, it was felt advisable to confirm these results using some other technique. Thus, the maximum entropy method was applied to the nightly data obtained for AI, WY and $X X$ Scl, and the resulting periods listed in Table 5-1. In general the high-resolution (dotted) curves contained too many peaks to be useful, and so only the moderate-resolution (scilid) curves were examined for peaks. Figure 5-1 shows the periodogram obtained for XX Scl on October 14; the corresponding periodogram using the Jurkevich method is shown in Figure 4-4. Table 5-l indicates that the maximum entropy method finds approximately the same peaks as the Jurkevich method when applied to the nightly data. By comparing the values in Table 5-1 with the more exact values in Table 6-1 found using the least-squares fitting technique, it may be seen that the maximum entropy method locates the correct period to within one or two percent, about the same accuracy as the Jurkevich method when applied to nightly data. Because the data from different nights could not be linked together and searched for periodicities, the nightly

## TABLE 5-1

## PERIODS FOUND USING THE

## MAXIMUM ENTROPY METHOD

$\left.\begin{array}{cllll}\begin{array}{c}\text { Date } \\ \text { (October) }\end{array} & \begin{array}{c}\text { AI Scl } \\ \text { (minutes) }\end{array} & & \begin{array}{c}\text { WZ Scl } \\ \text { (minutes) }\end{array} & \end{array} \begin{array}{c}\text { XX Scl } \\ \text { (minutes) }\end{array}\right)$

## Figure 5-1

The maximum entropy periodogram for XX Scl on October 14. The solid line represents moderate resolution, and the dotted line represents high resolution.

PERIOD 〔MINUTESУ
periodograms were averaged together (stacked) so that periodicities that occurred every night would become prominent. Figures 5-2, 5-3 and 5-4 show the stacked periodograms for AI, WZ and XX Scl respectively. The locations of the peaks in the moderate-resolution (solid) curves are listed in Table 5-1; these figures do locate the correct periods, but without great accuracy. Figures 5-2, 5-3 and 5-4 are similar in appearance to Figures $4-5,4-6$ and $4-7$ which show the stacked periodograms.from the Jurkevich method. In general, the results of the maximum entropy method agree with the results of the Jurkevich method, but do not increase the accuracy.

### 5.2 Non-Linear Least Squares

In Chapter 4 it was found that the light curves of both WZ and XX Scl could be fitted with the formula $f(t)=A+B \sin (C t+D)+E \sin (F t+G)$, where $f(t)$ is the magnitude and $t$ is the Universal Time. In Chapter 4 the initial estimates were also found for the values of the scven parameters in this formula using the Jurkevich method. It is desirable to improve these values by fitting the function to the data using the method of least squares, to obtain the 'best' possible estimate of the parameters based on the available data. A non-linear least-square fitting program from the Dalhousie University computer library was used: the BMDP3R routine, which was part of the Biomedical Statistical Package from the University of California, Los

## Figure 5-2

The stacked maximum entropy periodogram for AI Scl.

Figure :5-3

The stacked maximum entropy periodogram for WZ Scl.



Figure 5-4

The stacked maximum entropy program for $X X$ scl.


Angeles. Appendix 7.5 contains all the information needed to use this program.

When this program was applied to the data for WZ Scl, it converged quickly to the values shown in Table 5.2. The period $P_{1}$ in minutes is obtained from the parameter $C$ using $P_{1}=2 \pi \times 1440 / C$, and the standard deviation of $P$ is obtained from $C$ and $\sigma(C)$ using $\sigma(P)=2 \pi \times 1440 \times \sigma(C) / C^{2}$. Similar relations hold between $P_{2}$ and $F$, giving rise to $P_{1}=94.69 \pm .01$ minutes and $\mathrm{P}_{2}=138.16 \pm .01$ minutes. The period ratio $R=P_{1} / P_{2}$ is given by $R=F / C$, and its uncertainty is given by $\sigma(R)=F / C x\left(\sigma^{2}(F) / F^{2}+\sigma^{2}(C) / C^{2}\right)^{\frac{3}{2}}$. For WZ Scl. $R=0.6853 \pm .0001$. Note that the errors quoted for the periods and period ratios are formal errors only, and are derived assuming the residuals are caused by Gaussian noise. Any other factors, such as changing periods or amplitudes, will make the true errors larger than the errors quoted here. The values of the parameters as given in Table 5-2 were then used to generate the light curves found in Figures 2-12 to 2-21.

The least-squares fitting technique used here is not capable of finding the absolute minimum of the hypersurface representing the partial derivatives of a function, but only a local minimum. It is of interest to ask whether the program will converge if any of the parameters are altered by a reasonable amount. To test this, the program was run several times using the data for WZ Scl, with one of the initial parameters slightly changed. The parameter A was tested first by adding the half-amplitudes $B$ and $E$ to it,

$$
=4 \left\lvert\, \begin{array}{ccc}
n & n & 0 \\
\underset{\sim}{\infty} & \underset{\infty}{\infty} & 0 \\
i & i & 0 \\
0 & 0 &
\end{array}\right.
$$

$$
=\left\lvert\, \begin{array}{lll}
0 & \infty & \infty \\
\infty & \infty & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right.
$$

$$
\text { a| } \left\lvert\, \begin{array}{lll}
\infty & \infty & \text { N } \\
0 & -i & 0
\end{array}\right.
$$

Least-squares
fitted parameters
Standard deviations for the least-squares fitted parameters

$$
m \left\lvert\, \begin{array}{lll}
m & 0 & \hat{1} \\
0 & \text { in } & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right.
$$

$$
\begin{aligned}
& 0\left|\begin{array}{lll}
n & 0 & \text { n } \\
0 & \vec{J} & \vec{J} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right| \\
& 0 \left\lvert\, \begin{array}{llll}
M & & \\
0 & 0 & H \\
\infty & 0 & \square & 0 \\
\vdots & 0 &
\end{array}\right.
\end{aligned}
$$

so that the new curve passed well above all the data points. The program converged correctly, and as an excellent initial value of $A$ can always be found by simply taking the average of the $y$ values of the data points $\left(x_{i}, Y_{i}\right)$, it was concluded that an initial value of $A$ could always be estimated sufficiently well to ensure convergence.

The half-amplitude $B$ was first doubled to $B=.012$, and then set to $B=0.0$. In both cases the results converged, and so it was concluded that B could be estimated well enought to allow convergence. Similarily the phase shift $D$ was first set to 2.55 and then 4.12 , corresponding to phase shifts of $90^{\circ}$ and $180^{\circ}$, the most inaccurate value possible. In both cases the program converged, so it seems that the value of $D$ will not cause divergence.

As could be cxpected, the parameter $C$ associated with the period did not converge when the initial value of $C$ was greatly altered. Figure $5-5$ shows in detail the peak in the Jurkevich periodogram associated with this parameter and indicates which runs did, and did not, converge correctly. It is clear that the initial estimate of the period must be very good, or the least-squares approach will not converge correctly. Thus this approach may be used as a periodrefinement method, but not a period-searching method. For the work in this thesis however, Figure 5-5 shows that the Jurkevich method provides a sufficiently narrow peak in the periodogram to locate sufficiently accurate initial periods. On this basis, it was concluded that the initial periods used

## Figure 5-5

Detailed Jurkevich periodogram for WZ Scl. Solid lines indicate initial periods that converged correctly in the least-squares fitting method, broken lines indicate initial periods that converged incorrectly. The line labelled 'I' is the initial period obtained from the Jurkevich method, and 'F' is the final period obtained from the least-squares fitting routine.

in this thesis were sufficiently accurate to locate the least-squares values for the parameters.

In Section 4.4, it was shown that the periods in XX Scl could not be unambiguously determined because of aliasing, but that three well-determined periods were the most likely candidates. To resolve this, the least-squares method was applied to all possible combinations, to find which combination gave the best fit to the data. To make sure that no possible candidates were overlooked, the amplitudes and phases for $P=64.133$ and $P=77.940$ minutes were measured and included, even though the Jurkevich method indicated that they were almost certainly aliases, and not true periods. Table 5-3 gives the initial values of the parameters for the different periods, and Table 5-4 gives the standard deviations for the least-squares fitting results. It is clear that while the combination of 70.413 and 73.944 minutes is favoured, the combinations of 67.136 and 73.873 minutes, and 70.455 and 77.955 minutes, cannot be ruled out. Values of the parameters and their uncertainties for the first combination is given in Table 5-5. The period ratio for the periods 70.413 and 73.944 minutes is $R=.9522 \pm .0001$ and the beat period is $1474 \pm 3.4$ minutes.

It is unfortunate that the periad ambiguity has not been clearly resolved. The only way to accomplish this is to look at two separate sections of the beat cycle. The periods of 1474 minutes and 1440 minutes $(=1$ day) beat against each other with a period of $63000 \pm 6000$ minutes

## INITIAL PARAMETER VALUES FOR XX SCL

| P <br> (minutes) | B <br> (or E) | C <br> (or F) | D <br> (or G) |
| :--- | :---: | :---: | :---: |
|  |  |  |  |
| 64.133 | .005 | 141.0785 | 3.07 |
| 67.1546 | .007 | 134.7307 | 5.92 |
| 70.463 | .007 | 128.4048 | 1.89 |
| 73.856 | .006 | 122.5058 | 4.78 |
| 77.940 | .005 | 116.0866 | 2.52 |

## TABLE 5-4

## LEAST-SQUARES FITTING RESULTS FOR XX SCL

| Least- Squares Value of $\mathrm{P}_{1}$ | Least-Squares Value of $\mathrm{P}_{2}$ | Standard Deviation of Residuals |
| :---: | :---: | :---: |
| 64.215 | 67.174 | . 00672 |
| 67.112 | 70.498 | . 00675 |
| 70.413 | 73.944 | . 00594 |
| 73.823 | 77.995 | . 00714 |
| 64.098 | 70.475 | . 00679 |
| 67.136 | 73.873 | . 00623 |
| 70.445 | 77.955 | . 00624 |


| G | .0084 |
| :--- | :--- |
| 4.78 | .0069 |
| 1.3 | .00594 |
| 1.1 | .00595 |
| 2 |  |

F
122.5058
122.36
.01
122.37
.01

No fitting attempted
Initial parameters
Initial parameters
Least-squares
fitted parameters
Standard deviations for the least-squares fitted parameters Least-squares fitted parameters with Standard deviations fitted parameters with
(= $=44 \pm 4$ days). Thus observations on two nights separated by approximately 22 days should resolve the ambiguity: if XX Scl is in the same part of the beat cycle on these two nights, the correct periods are either 67.136 and 73.873 minutes or 70.445 and 77.955 minutes; if the beat cycles are $180^{\circ}$ out of phase on the two nights, the correct periods are 70.413 and 73.944 minutes.

The inverse of the period ratio is $1.05016 \pm .0001$ which is very close to $21 / 20=1.05$. To investigate this, the least-squares program was run with the constraint that $1 / R=1.05$ exactly. The resulting values for the seven parameters and their standard deviations are listed in Table 5-5. The resulting periods are $P_{1}=70.416 \pm .005$ and $P_{2}=73.937 \pm .005$ minutes, with a beat period of $1478 \pm 3$ minutes $(=1.027 \pm .002$ days). The standard deviations for the residuals increases only slightly with this constraint, so that it is a possibility that the periods are locked together in this ratio. However, as the time span of the data is not long enough to demonstrate this conclusively, the values of the unconstrained parameters will be assumed correct for the remainder of this thesis. Figures 2-12 to 2-21 show the data for $X X$ Scl and the light curve based on these parameters.

## CHAPTER SIX

CONCLUSIONS

### 6.1 Analysis of the Colours of AI, WZ and XX Scl

Table 6-1 lists all the available absolute photometry of $A I, W Z$ and $X X$ Scl. The $V, B-V$ and $U-B$ values were taken from Section 2.2 . The spectral classifications for AI and WZ Scl were taken from the Catalogue of Bright Stars (Hoffleit 1964), and for XX Scl from the Henry Draper Catalogue (Cannon and Pickering 1918). For AI and WZ Scl, the values of the absolute magnitude $M_{v}$ were taken from Eggen (1976) and Breger (1979), and the quoted uncertainty is the one suggested by Breger (1979). Unfortunately, no published values of $M_{v}$ exist for XX Scl and so the only method available now to obtain $M_{y}$ is by using the method of spectroscopic parallaxes. Therefore, for the purpose of deriving the interstellar extinction only, a luminosity ciass III-IV was assumed and $M_{v}=1.8$ obtained (Allen, 1973).

With these absolute magnitudes, the visual extinction $A_{v}$ and the de-reddened UBV colours could be obtained. The values of $A_{v}$ were found using the standard relation $\log r=\left(V-A-M_{v}+5\right) / 5$ and the cosecant law given by Parenago (1945), and calibrated by Sharov (1964) on 1500 OB stars: $A_{v}=\alpha_{0} \beta \csc |b|\{1-\exp (-r \sin |b| / \beta)\}$, where $r$ is the distance to the star in parsecs, $\alpha_{0}$ is the line of sight extinction in magnitudes per parsec, and $\beta$ is the scale height in parsecs. The values of these scale parameters for

## TABLE 6－1

| Parameter | AI Scl | WZ Scl | XX Scl |
| :---: | :---: | :---: | :---: |
| V | $5.89 \pm .03$ | $6.52 \pm .03$ | $8.84 \pm .03$ |
| B－V | $0.31 \pm .02$ | $0.34 \pm .02$ | $0.26 \pm .02$ |
| U－B | $0.12 \pm .03$ | $0.06 \pm .03$ | $0.15 \pm .03$ |
| b | －78．37 | －79：59 | －79：72 |
| Spec．Class | A7 III | FO IV | F0 |
| $\mathrm{M}_{\mathrm{v}}$ | 2． $3 \pm .2$ | $1.55 \pm .2$ |  |
| A | ． $066 \pm .005$ | ． $10 \pm .01$ | ． $16 \pm .02$ |
| $r$（parsecs） | $50 \pm 4$ | $94 \pm 10$ | $230 \pm 100$ |
| （ $\mathrm{B}-\mathrm{V}$ ）${ }^{\text {o }}$ | ． $29 \pm .02$ | ． $31 \pm .02$ | ． $21 \pm .02$ |
| $(\mathrm{U}-\mathrm{B})_{0}^{\circ}$ | ． $11 \pm .03$ | ． $04 \pm .03$ | ．11さ． 03 |
| $b-y$ | ． 176 | ． 217 | ． 15 |
| （b－y） | ． 162 | ． 199 | ． 11 |
| $\mathrm{m}_{1}$ ， | ． 190 | ． 144 | － |
| B | 2.781 | 2.722 | $\square$ |
| ${ }^{\mathrm{C}} 1$ | ． 809 | ． 764 |  |
| $\mathrm{P}_{1}$（min．） | 64 | $94.69 \pm .01$ | $70.413 \pm .005$ |
| $\mathrm{P}_{2}$（min．） | 134 | 138．16土．01 | $73.944 \pm .005$ |
| R | ． 5 | ．6853土．0001 | ． $9522 \pm .0002$ |
| $\Delta^{\text {c }} 1$ | ． 05 | ． 16 | － |
| log 9 | 4.2 | 3.80 | － |
| T | 7700 K | $7200{ }^{\circ} \mathrm{K}$ | － |
| M | 1.8 | 1.8 | － |
| $Q_{1}$ | ． 025 | ． 052 | － |
| $\mathrm{Q}_{2}$ | ． 019 | ． 027 | － |

the Sculptor region are $\alpha_{0}=.0016$ magnitudes per parsec and $\beta=114$ parsecs. A few iterations of these formulae gave the values of $A_{v}$ and $r$ found in Table 6-1. As may be seen from the small uncertainty quoted for $A_{v}$, the values of $A_{v}$ are not strongly dependent on the assumed values of $M_{v}$. The errors quoted for $r$ are formal errors only, and will be larger if the calibrations used to derive $M_{v}$ are incorrect. The un-reddened colours were obtained using the ratio of total to selective extinction of $\mathrm{R}=3.3$ (Herbst 1975) to obtain the colour excesses $E(B-V)=A / 3.3$ and $E(U-B)=0.72 \mathrm{E}(\mathrm{B}-\mathrm{V})$ (Allen 1973). The unreddened colours were then found from $(B-V)_{O}=(B-V)-E(B-V)$ and $(U-B)_{O}=(U-B)-E(U-B)$. The values of $(b-y), m_{1}, \beta$ and $c_{I}$ were taken from Section $1 . \%$. As no unreddened value of (b-y) was available for AI Scl, the relation given by Crawford \& Barnes (1970) between the colour corrections for ( $\mathrm{B}-\mathrm{V}$ ) and $(b-y)$ were used to obtain $(b-y)_{0}=(b-y)-0.7 E(B-W)$. For xx Scl , it was possible to transform the values of $\mathrm{B}-\mathrm{V}$ and $(B-V)_{\circ}$ to $b-y$ and $(b-y)_{0}$ using the information in Crawford and Perry (1966), but nu accurate transformations exist for $m_{1}, \beta$ and $c_{1}$. The periods and period ratios were taken from Section 5.2 . For AI and WZ Scl, the formulae givien by Petersen and Jorgensen (1972) were used to find the values of $\log g, T_{e}$, the mass $M$ in units of the solar mass and the pulsation constant $Q$ for each period.

Figure 6.1 shows the positions of AI and WZ Scl on the HR diagram along with all other $\delta$ Scuti stars with accurate

Figure 6-1
An $H R$ diagram showing all $\delta$ Scuti stars with accurate photometry (Breger 1979).

photometry (Breger 1979). Both stars are within the instability strip indicated by dashed lines and are near the cooler edge, where $\delta$ Scuti stars are expected to pulsate in their fundamental modes (Breger 1975). Many authors (Leung 1970) have given period-luminosity and period-luminosity-colour relations over the years. The most recent one, by Breger (1979), is: $M_{v}=-3.052 \log P+8.456(b-y)-3.121$, where $P$ is in days. For $A I, W Z$ and $X X$ Scl, this relation predicts periods of $80 \pm 30$ minutes, $180 \pm 50$ minutes and $100 \pm 40$ minutes respectively, where the uncertainties are based on the scatter in the diagram used to derive the relation. The observed periodicities for $W Z$ and XX Scl lie within the error bars, and the periods found in this study for AI Scl are so tentative that one cannot say that AI Scl violates this relation. From the catalogue of $\delta$ Scuti stars given by Petersen and Jorgensen (1972), it may be seen that the value of $\log g$, $T$ and $M$ derived here for $A I$ and $W Z$ Scl are all consistent with values found for other $\delta$ Scuti stars. According to their $\log \mathrm{g}, \log \mathrm{T}$ graph, $A I S c l$ is very close to the zeroage main sequence and is still in the central hydrogenburning phase, while WZ Scl is in the shell hydrogen-burning phase. Petersen and Jorgensen find from their model calculations that values of $Q$ accurate to better than $10 \%$ can only be found for stars with amplitudes less than .08 magnitudes, and point out that at the time their paper was written, only twelve stars with amplitudes less than .08 magnitudes
had their periods determined to an accuracy of better than 10\%. For these stars, the observed values of $Q$ fall very close to the theoretical values of $Q$ for the fundamental mode and the first three overtones at $Q_{\overline{\mathrm{o}}}=.0333, Q_{1}=.0252$, $Q_{2}=.0201$ and $Q_{3}=.0170$. Although AI Scl was found to pulsate in an unstable manner, it is of interest to note that one of the observed values of $Q$ falls very close to the value of $Q$ for the first overtone. For $W Z$ Scl, the observed value of $Q=.027$ lies very close to the expected value of the first overtone. The value of $Q=.019$ lies close to both the second and third overtone, and on this basis alone it cannot be said which overtone is excited. Unfortunately, nothing can be said about the colours of XX Scl , except that the $\mathrm{U}-\mathrm{B}$ and $\mathrm{B}-\mathrm{V}$ colours place this star very close to the zero-age main sequence.
6.2 Analysis of the Periods of AI, WZ and XX Scl

For AI Scl, it was found in Section 4.2 that while the star's brightness did fluctuate with an amplitude of .02 magnitudes, the periods of 64 and 134 minutes were not strict, but were present in a statistical sense. As was pointed out in Chapter 1, there is some evidence to indicate that AI Scl is a spectroscopic binary, and that it has been suggested that tidal modulation or magnetic coupling will inhibit pulsational stability. Thus neither the periods nor the period ratio of $R=0.5$ can be considered meaningful. For WZ Scl, the period ratio $\mathrm{R}=0.6853 \pm 0.0001$
indicates that the star is not pulsating in the fundamental radial mode. Petersen (1975) has published a very useful list of theoretical period ratios for radial and non-radial modes, based on his assumed models for $\delta$ Scuti stars. In the previous section it was suggested that, based on the value of $Q$, WZ Scl was pulsating in the first radial overtone, and the second or third radial overtone. From Petersen's work, these two alternatives correspond to theoretical period ratios of . 806 and .675, respectively. No other theoretical period ratios close to . 685 have realistic values for WZ Scl, and so the best explanation for the observed behaviour of this star is that it is pulsating in the first and third radial overtone, corresponding to Petersen's predicted values of $Q_{1}=.0252, Q_{3}=.0170$ and $R=.675$. Fetersen states that his theoretical ratios for radial mode pulsations are accurate to $1 \%$ for $\delta$ Scuti stars, and so the difference between the observed and theoretical ratios of . $6853 \pm .0001$ and $.675 \pm .007$ is not considered objectionable.

The period ratio for XX Scl of . $9522 \pm .0001$ is surprising but not inexplicable. Petersen's tables show that for a zero-age main-sequence $\delta$ Scuti star, pulsation in the first-overtone radial mode and the lowest-order non-radial mode will give the values $\mathrm{R}=.950,2_{1}($ radial $)=.0252$ and $Q_{0}($ non-radial $)=.0240$. Petersen does not give uncertainties for these values, but notes that non-radial modes depend critically on the internal structure of the star. Thus the observed value of $R$ for this star may serve as a useful test
of $\delta$ Scuti star models. XX Scl is not unique in its large value of R. Michael and Seeds (1974) observed the $\delta$ Scuti star $\tau$ Pegasi and found the periods . 05433 and .04895 days, giving $R=.9010$. They do not give any analysis of this ratio. Shobbrook and Stobie (1976) claim to have found three equally-spaced frequencies in the star 1 Monocerotis, with a period ratio of . 98 for adjacent frequencies, and they suggest that this is caused by a degenerate non-radial mode splitting due to stellar rotation. This could also be the cause in $X X$ Scl; only a detailed study of the rotational broadening of the spectrum of XX Scl and a mathematical prediction of the rotational velocity based on the ratio of the observed periodicities will be able to demonstrate whether or not this phenomenon is occurring in $X X$ Scl.

### 6.3 Future Work

For AI Scl, it would be advisable to obtain several consecutive or closely-spaced nights of observation, working only on this star to get a very well-determined light curve, to demonstrate conclusively whether or not this star contains strict periodicities. It would also be useful to determine whether or not this star is a spectroscopic binary. For XX Scl, it has already been pointed out that two nights of observation spaced 22 nights apart are necessary to thoroughly resolve the aliasing problem that exists for this star. Four-colour photometry is needed to calculate the $Q$ values for the observed periods, to test if the non-radial modes chosen on the basis of the value of $R$ are correct. As was pointed out in the previous paragraph, a study of the rotation velocity of $X X$ Scl would confirm the nature of the period ratio for this star. For $W Z$ Scl, the periods found in this research seem well-enough determined that another extended analysis does not seem necessary, except to look for changes in the pulsation. However, if a series of short observing sessions on this star spaced judiciously across several years were carried out, it would be able to demonstrate long-term stability or gradual change in this star's period. If the star is strictly periodic, a period ratio accurate to several decimal places could be obtained.

## APPENIIX 7.1

## IIATA FOR AI SCULFTORIS

UNIUERSAL
time magnitude
$23.0035-3.1441$
$23.0160-3.1475$
$23.0313-3.1309$
$23.0424-3.1119$
$23.0528-3.1256$
$23.0632-3.1319$
$23.0729-3.1359$
$23.0826-3.1407$
$23.0924-3.1428$
$23.1021-3.1382$
$23.1125-3.1365$
$23.1229-3.1283$
$23.1333-3.1231$
$23.1431-3.1195$
$23.1694-3.1384$
$23.1794-3.1338$
$23.1965-3.1329$
23.2229 -3.1386
$23.2340-3.1351$
$23.2444-3.1368$
$23.2549 \quad-3.1310$
$23.2667-3.1248$
$23.2785-3.1390$
$23.2889-3.14 .49$
$23.3000 \quad-3.1452$
$23.3097-3.1290$
$23.3189-3.1302$
$23.3265-3.1364$
$23.3389-3.1385$
$25.0090-3.1232$
$25.0201-3.1292$
$25.0299-3.1319$
$25.0389-3.1367$
$25.0479-3.1430$
$25.0569-3.1444$
$25.0674-3.1366$
$25.0764-3.1365$
$25.0854-3.1339$
$25.0951-3.1412$
$25.1049-3.1288$
$25.1139-3.1274$
$25.1236-3.1414$
$25.1333-3.1361$

UNIUERSAL
TIME MAGNITUIE

| 25.1438 | -3.1395 |
| :--- | :--- |
| 25.1535 | -3.1230 |
| 25.1694 | -3.1412 |
| 25.1792 | -3.1375 |
| 25.1889 | -3.1293 |
| 25.1979 | -3.1155 |
| 26.0104 | -3.1344 |
| 26.0194 | -3.1250 |
| 26.0271 | -3.1242 |
| 26.0375 | -3.1300 |
| 26.0465 | -3.1358 |
| 26.0556 | -3.1334 |
| 26.0653 | -3.1484 |
| 26.0757 | -3.1367 |
| 26.0861 | -3.1348 |
| 26.0951 | -3.1372 |
| 26.1056 | -3.1361 |
| 26.1153 | -3.1284 |
| 26.1250 | -3.1254 |
| 26.1410 | -3.1341 |
| 26.1535 | -3.1414 |
| 26.1653 | -3.1332 |
| 26.1750 | -3.1412 |
| 26.1854 | -3.1416 |
| 26.2028 | -3.1333 |
| 26.2542 | -3.1392 |
| 26.2639 | -3.1419 |
| 26.2736 | -3.1406 |
| 27.0104 | -3.1405 |
| 27.0201 | -3.1439 |
| 27.0306 | -3.1470 |
| 27.0403 | -3.1446 |
| 27.0507 | -3.1310 |
| 27.0618 | -3.1227 |
| 27.0722 | -3.1377 |
| 27.0833 | -3.1379 |
| 27.0951 | -3.1362 |
| 27.1007 | -3.1324 |
| 27.1111 | -3.1349 |
| 27.1222 | -3.1404 |
| 27.1389 | -3.1297 |
| 27.1507 | -3.1290 |
| 27.1597 | -3.1363 |
| 2 |  |

UNIUERSAL
TIME MAGNITULE

| 27.1694 | -3.1336 |
| :--- | :--- |
| 27.1785 | -3.1346 |
| 27.1882 | -3.1395 |
| 27.2097 | -3.1308 |
| 27.2264 | -3.1276 |
| 27.2424 | -3.1356 |
| 27.2535 | -3.1378 |
| 27.2639 | -3.1340 |
| 27.2736 | -3.1337 |
| 27.2840 | -3.1360 |
| 27.2931 | -3.1445 |
| 27.3021 | -3.1405 |
| 27.3118 | -3.1232 |
| 27.3215 | -3.1293 |
| 27.3306 | -3.1318 |
| 27.3417 | -3.1454 |
| 27.3493 | -3.1434 |
| 27.3549 | -3.1500 |
| 28.0590 | -3.1365 |
| 28.0688 | -3.1262 |
| 28.0792 | -3.1237 |
| 28.0917 | -3.1295 |
| 28.1014 | -3.1302 |
| 28.1125 | -3.1354 |
| 28.1243 | -3.1428 |
| 28.1354 | -3.1406 |
| 28.1465 | -3.1311 |
| 28.1563 | -3.1245 |
| 28.1660 | -3.1317 |
| $28+1771$ | -3.1310 |
| $28+1861$ | -3.1327 |
| 28.2563 | -3.1210 |
| $28+2653$ | -3.1290 |
| 28.2743 | -3.1436 |
| 28.2833 | -3.1368 |
| 28.2917 | -3.1316 |
| $28+3014$ | -3.1334 |
| 28.3111 | -3.1367 |
| 28.3201 | -3.1422 |
| 28.3292 | -3.1480 |
| 28.3396 | -3.1354 |
| 28.3472 | -3.1292 |
| 28.3583 | -3.1268 |
|  |  |

AFFFENHIX 7.1, CONTINUEA

UNIUEKSAL
TIME MAGNITUDE

| 28.3639 | -3.1346 |
| :--- | :--- |
| 29.0444 | -3.1321 |
| 29.0528 | -3.1307 |
| 29.0625 | -3.1334 |
| 29.0722 | -3.1381 |
| 29.0840 | -3.1331 |
| 29.0944 | -3.1288 |
| 29.1056 | -3.1375 |
| 29.1153 | -3.1312 |
| 29.1271 | -3.1333 |

UNIVERSAL
TIME MAGNITUNE
$29.1375-3.1311$
$29.1493-3.1377$
$29.1583-3.1301$
$29.1688-3.1357$
29.1785-3.1419
$29.1889-3.1375$
$29.2083-3.1244$
$29.2215-3.1222$
$29.2528-3.1371$
$29.2639-3.1403$

UNIUERSAL
TIME MAGNITUNE
$29.2722-3.1457$
$29.2819-3.1415$
$29.2917-3.1453$
$29.3007-3.1223$
$29.3104-3.1175$
$29.3208-3.1436$
$29.3313-3.1405$
$29.3410-3.1295$
$29.3500-3.1261$
$29.3597-3.1381$
$29.3660-3.1514$

## APPENIIX 7.2

## LIATA FOR WZ SCULFTORIS

## UNIUERSAL

TIME MAGNITUDE

| 14.0174 | -2.5729 |
| :--- | :--- |
| 14.0208 | -2.5719 |
| 14.0285 | -2.5747 |
| 14.0319 | -2.5744 |
| 14.0375 | -2.5688 |
| 14.0403 | -2.5673 |
| 14.0444 | -2.5647 |
| 14.0486 | -2.5603 |
| 14.0535 | -2.5530 |
| 14.0563 | -2.5529 |
| 14.0604 | -2.5487 |
| 14.0639 | -2.5450 |
| 14.0688 | -2.5423 |
| 14.0715 | -2.5472 |
| 14.0778 | -2.5494 |
| 14.0806 | -2.5498 |
| 14.0861 | -2.5532 |
| 14.0889 | -2.5539 |
| 14.0931 | -2.5619 |
| 14.0958 | -2.5692 |
| 14.1000 | -2.5741 |
| 14.1028 | -2.5766 |
| 14.1076 | -2.5791 |
| 14.1104 | -2.5771 |
| 14.1167 | -2.5786 |
| 14.1194 | -2.5793 |
| 14.1236 | -2.5806 |
| 14.1264 | -2.5749 |
| 14.1319 | -2.5633 |
| 14.1347 | -2.5648 |
| 14.1361 | -2.5607 |
| 14.1410 | -2.5520 |
| 14.1438 | -2.5562 |
| 14.1486 | -2.5550 |
| 14.1521 | -2.5567 |
| 14.1583 | -2.5544 |
| 14.1611 | -2.5572 |
| 14.1660 | -2.5585 |
| 14.1681 | -2.5589 |
| 14.1722 | -2.5585 |
| 14.1750 | -2.5561 |
| 14.1785 | -2.5556 |
| 14.1819 | -2.5554 |
| 10 |  |

## UNIUEFSAL

TIME MAGNITUME

| 14.1854 |  |
| :---: | :---: |
| 14.1882 | -2.5559 |
| 14.2514 | -2.5584 |
| 14.2542 | -2.5563 |
| 14.2597 | -2.5512 |
| 14.2625 | -2.5485 |
| 14.2667 | -2.5479 |
| 1.4.2694 | -2.5499 |
| 14.2736 | $-2.5524$ |
| 14.2771 | $-2.5505$ |
| 14.2806 | -2.5559 |
| 14.2833 | $-2.5633$ |
| 14.2868 | -2.5610 |
| 14.2896 | -2.5670 |
| 14.2924 | $-2,5681$ |
| 14.2951 | -2.5695 |
| 14.3007 | -2.5752 |
| 14.3035 | $-2.5751$ |
| 14.3069 | -2.5777 |
| 14.3104 | -2.5756 |
| 14.3146 | -2.5712 |
| 14.3174 | -2.5707 |
| 14.3208 | -2.5678 |
| 14.3236 | $-2.5672$ |
| 14.3278 | $-2.5620$ |
| 14.3306 | -2.5534 |
| 14.3347 | -2, 5534 |
| 14.3382 | -2,5558 |
| 14.3431 | -2.5594 |
| 14.3458 | -2.5592 |
| 14.3500 | $-2.5580$ |
| 14.3528 | -2.5583 |
| 14.3569 | $-2.5604$ |
| 14.3597 | -2.5562 |
| 14.3653 | -2.5612 |
| 14.3681 | -2.5651 |
| 14.3722 | -2.5640 |
| 14.3743 | $-2.5571$ |
| 14.3813 | -2.5497 |
| 14.3840 | -2.5588 |
| 14.3882 | -2.5579 |
| 14.3917 | -2.5536 |
| 14.9979 | -2.5504 |

UNIUERSAL
TIME

| 15.0014 | -2.5461 |
| :--- | :--- |
| 15.0042 | -2.5479 |
| 15.0097 | -2.5553 |
| 15.0125 | -2.5607 |
| 15.0160 | -2.5602 |
| 15.0188 | -2.5608 |
| 15.0229 | -2.5616 |
| 15.0250 | -2.5586 |
| 15.0292 | -2.5616 |
| 15.0313 | -2.5590 |
| 15.0363 | -2.5590 |
| 15.0389 | -2.5556 |
| 15.0431 | -2.5615 |
| 15.0444 | -2.5544 |
| 15.0507 | -2.5566 |
| 15.0535 | -2.5585 |
| 15.0569 | -2.5574 |
| 15.0597 | -2.5644 |
| 15.0632 | -2.5676 |
| 15.0667 | -2.5660 |
| 15.0701 | -2.5648 |
| 15.0736 | -2.5711 |
| 15.0771 | -2.5751 |
| 15.0799 | -2.5693 |
| 15.0833 | -2.5732 |
| 15.0861 | -2.5726 |
| 15.0917 | -2.5687 |
| 15.0938 | -2.5676 |
| 15.1042 | -2.5588 |
| 15.1083 | -2.5525 |
| 15.1125 | -2.5514 |
| 15.1153 | -2.5514 |
| 15.1194 | -2.5513 |
| 15.1222 | -2.5512 |
| 15.1271 | -2.5552 |
| 15.1285 | -2.5521 |
| 15.1313 | -2.5555 |
| 15.1368 | -2.5628 |
| 15.1403 | -2.5660 |
| 15.1438 | -2.5696 |
| 15.1465 | -2.5712 |
| 15.1507 | -2.5726 |
| 15.1535 | -2.5743 |
| 15 |  |

## APPENIIX 7.2, CONTINUED

## UNIUERSAL

TIME MAGNITUNE

| 15.1563 | -2.5764 |
| :--- | :--- |
| 15.1590 | -2.5775 |
| 15.1632 | -2.5816 |
| 15.1660 | -2.5803 |
| 15.1708 | -2.5759 |
| 15.1736 | -2.5755 |
| 15.2243 | -2.5529 |
| 15.2264 | -2.5576 |
| 15.2319 | -2.5577 |
| 15.2347 | -2.5559 |
| 15.2382 | -2.5567 |
| 15.2417 | -2.5599 |
| 15.2451 | -2.5564 |
| 15.2479 | -2.5580 |
| 15.2514 | -2.5624 |
| 15.2542 | -2.5613 |
| 15.2583 | -2.5683 |
| 15.2611 | -2.5696 |
| 15.2646 | -2.5683 |
| 15.2674 | -2.5744 |
| 15.2729 | -2.5760 |
| 15.2750 | -2.5742 |
| 15.2792 | -2.5706 |
| 15.2813 | -2.5711 |
| 15.2854 | -2.5701 |
| 15.2896 | -2.5643 |
| 15.2931 | -2.5606 |
| 15.2958 | -2.5591 |
| 15.2993 | -2.5543 |
| 15.3014 | -2.5522 |
| 15.3056 | -2.5581 |
| 15.3076 | -2.5534 |
| 15.3125 | -2.5544 |
| 15.3153 | -2.5515 |
| 15.3201 | -2.5576 |
| 15.3236 | -2.5554 |
| 15.3271 | -2.5631 |
| 15.3299 | -2.5630 |
| 15.3361 | -2.5684 |
| 15.3382 | -2.5731 |
| 15.3424 | -2.5721 |
| 15.3451 | -2.5759 |
| 15.3486 | -2.5782 |
| 15.3563 | -2.5792 |
| 15.3590 | -2.5836 |
| 15 |  |

## UNIVERSAL

TIME MAGNITUDE

| 15.3646 | -2.5777 |
| :--- | :--- |
| 15.3674 | -2.5725 |
| 15.3708 | -2.5704 |
| 15.3736 | -2.5666 |
| 15.3799 | -2.5616 |
| 15.3826 | -2.5614 |
| 15.9931 | -2.5602 |
| 15.9965 | -2.5586 |
| 16.0028 | -2.5686 |
| 16.0056 | -2.5664 |
| 16.0125 | -2.5670 |
| 16.0153 | -2.5689 |
| 16.0215 | -2.5654 |
| 16.0313 | -2.5643 |
| 16.0340 | -2.5629 |
| 16.0403 | -2.5608 |
| 16.0431 | -2.5611 |
| 16.0514 | -2.5644 |
| 16.0542 | -2.5701 |
| 16.0611 | -2.5634 |
| 16.0632 | -2.5626 |
| 16.0694 | -2.5617 |
| 16.0722 | -2.5659 |
| 16.0792 | -2.5648 |
| 16.0819 | -2.5670 |
| 16.0882 | -2.5637 |
| 16.0910 | -2.5588 |
| 16.0972 | -2.5554 |
| 16.1000 | -2.5540 |
| 16.1049 | -2.5621 |
| 16.1090 | -2.5608 |
| 16.1153 | -2.5638 |
| 16.1188 | -2.5608 |
| 16.1243 | -2.5669 |
| 16.1278 | -2.5748 |
| 16.1354 | -2.5762 |
| 16.1375 | -2.5747 |
| 16.1444 | -2.5702 |
| 16.1472 | -2.5680 |
| 16.1535 | -2.5648 |
| 16.1556 | -2.5629 |
| 16.1618 | -2.5579 |
| 16.1639 | -2.5489 |
| 16.1694 | -2.5499 |
| 16.1722 | -2.5549 |
|  |  |

## UNIUERSAL <br> TIME MAGNITUEE

| 16.1840 | -2.5562 |
| :--- | :--- |
| 16.1868 | -2.5572 |
| 16.2451 | -2.5617 |
| 16.2479 | -2.5623 |
| 16.2576 | -2.5591 |
| 16.2604 | -2.5573 |
| 16.2667 | -2.5601 |
| 16.2694 | -2.5593 |
| 16.2771 | -2.5573 |
| 16.2799 | -2.5607 |
| 16.2866 | -2.5629 |
| 16.2896 | -2.5656 |
| 16.3028 | -2.5647 |
| 16.3049 | -2.5683 |
| 16.3111 | -2.5691 |
| 16.3146 | -2.5730 |
| 16.3208 | -2.5739 |
| 16.3236 | -2.5731 |
| 16.3299 | -2.5748 |
| 16.3326 | -2.5749 |
| 16.3382 | -2.5698 |
| 16.3417 | -2.5754 |
| 16.3493 | -2.5604 |
| 16.3528 | -2.5581 |
| 16.3590 | -2.5601 |
| 16.3611 | -2.5563 |
| 16.3688 | -2.5509 |
| 16.3715 | -2.5533 |
| 22.0042 | -2.5770 |
| 22.0083 | -2.5623 |
| 22.0132 | -2.5564 |
| 22.0167 | -2.5438 |
| 22.0208 | -2.5367 |
| 22.0236 | -2.5417 |
| 22.0271 | -2.5416 |
| 22.0319 | -2.5465 |
| 22.0375 | -2.5529 |
| 22.0403 | -2.5478 |
| 22.0444 | -2.5584 |
| 22.0472 | -2.5599 |
| 22.0521 | -2.5647 |
| 22.0549 | -2.5599 |
| 22.0583 | -2.5631 |
| 22.0611 | -2.5652 |
| 22.0660 | -2.5775 |
|  |  |

APFENIIX 7.2, CONTINUED

## UNIUERSAL

TIME MAGNITUDE

| 22.0701 | -2.5773 |
| :--- | :--- |
| 22.0743 | -2.5731 |
| 22.0785 | -2.5712 |
| 22.0806 | -2.5704 |
| 22.0847 | -2.5681 |
| 22.0875 | -2.5659 |
| 22.0917 | -2.5596 |
| 22.0944 | -2.5626 |
| 22.1000 | -2.5565 |
| 22.1021 | -2.5524 |
| 22.1069 | -2.5486 |
| 22.1097 | -2.5519 |
| 22.1153 | -2.5602 |
| 22.1188 | -2.5542 |
| 22.1227 | -2.5508 |
| 22.1264 | -2.5533 |
| 22.1319 | -2.5555 |
| 22.1354 | -2.5603 |
| 22.1472 | -2.5596 |
| 22.1500 | -2.5608 |
| 22.1542 | -2.5623 |
| 22.1563 | -2.5623 |
| 22.1604 | -2.5638 |
| 22.1646 | -2.5615 |
| 22.1681 | -2.5633 |
| 22.1722 | -2.5726 |
| 22.1778 | -2.5637 |
| 22.1819 | -2.5776 |
| 22.1868 | -2.5754 |
| 22.1903 | -2.5722 |
| 22.1958 | -2.5649 |
| 22.1986 | -2.5637 |
| 22.2042 | -2.5650 |
| 22.2090 | -2.5558 |
| 22.2174 | -2.5512 |
| 22.2222 | -2.5533 |
| 22.2319 | -2.5552 |
| 22.2354 | -2.5572 |
| 22.2444 | -2.5679 |
| 22.2479 | -2.5714 |
| 22.2521 | -2.5770 |
| 22.2549 | -2.5771 |
| 22.2590 | -2.5772 |
| 22.2625 | -2.5725 |
| 22.2701 | -2.5694 |
|  |  |

UNIUERSAL
TIME MAGNITUDE

| 22.2736 | -2.5681 |
| :--- | :--- |
| 22.2778 | -2.5677 |
| 22.2806 | -2.5514 |
| 22.2854 | -2.5543 |
| 22.2875 | -2.5616 |
| 22.2917 | -2.5584 |
| 22.2944 | -2.5607 |
| 22.2993 | -2.5627 |
| 22.3021 | -2.5637 |
| 22.3063 | -2.5639 |
| 22.3090 | -2.5598 |
| 22.3139 | -2.5563 |
| 22.3167 | -2.5564 |
| 22.3222 | -2.5577 |
| 22.3257 | -2.5600 |
| 22.3306 | -2.5644 |
| 22.3333 | -2.5640 |
| 22.3375 | -2.5680 |
| 22.3403 | -2.5617 |
| 22.3451 | -2.5610 |
| 22.3479 | -2.5569 |
| 22.3521 | -2.5555 |
| 22.3556 | -2.5544 |
| 22.3597 | -2.5605 |
| 22.3632 | -2.5660 |
| 22.3660 | -2.5649 |
| 22.3681 | -2.5650 |
| 22.3708 | -2.5772 |
| 22.3750 | -2.5738 |
| 22.3778 | -2.5783 |
| 22.9965 | -2.5539 |
| 23.0007 | -2.5559 |
| 23.0076 | -2.5465 |
| 23.0125 | -2.5556 |
| 23.0215 | -2.5570 |
| 23.0257 | -2.5574 |
| 23.0347 | -2.5660 |
| 23.0389 | -2.5715 |
| 23.0458 | -2.5711 |
| 23.0500 | -2.5736 |
| 23.0563 | -2.5653 |
| 23.0597 | -2.5648 |
| 23.0660 | -2.5514 |
| 23.0701 | -2.5452 |
| 23.0757 | -2.5403 |
|  |  |

## UNIUERSAL <br> time magnitune

| 23.0792 | -2.5478 |
| :--- | :--- |
| 23.0861 | -2.5491 |
| 23.0903 | -2.5489 |
| 23.0951 | -2.5496 |
| 23.0993 | -2.5515 |
| 23.1056 | -2.5580 |
| 23.1097 | -2.5658 |
| 23.1160 | -2.5652 |
| 23.1201 | -2.5679 |
| 23.1257 | -2.5648 |
| 23.1299 | -2.5682 |
| 23.1368 | -2.5608 |
| 23.1403 | -2.5652 |
| 23.1660 | -2.5588 |
| 23.1729 | -2.5514 |
| 23.1771 | -2.5535 |
| 23.1924 | -2.5544 |
| 23.2201 | -2.5686 |
| 23.2271 | -2.5718 |
| 23.2313 | -2.5744 |
| 23.2375 | -2.5760 |
| 23.2417 | -2.5701 |
| 23.2472 | -2.5670 |
| 23.2521 | -2.5657 |
| 23.2576 | -2.5597 |
| 23.2639 | -2.5523 |
| 23.2715 | -2.5465 |
| 23.2764 | -2.5485 |
| 23.2819 | -2.5514 |
| 23.2861 | -2.5542 |
| 23.2924 | -2.5594 |
| 23.2965 | -2.5644 |
| 23.3028 | -2.5715 |
| 23.3063 | -2.5706 |
| 23.3125 | -2.5714 |
| 23.3160 | -2.5729 |
| 23.3215 | -2.5716 |
| 23.3243 | -2.5737 |
| 23.3319 | -2.5601 |
| 23.3361 | -2.5546 |
| 23.3417 | -2.5632 |
| 23.3465 | -2.5602 |
| 25.0021 | -2.5603 |
| 25.0049 | -2.5603 |
| 25.0125 | -2.5592 |
|  |  |

## AFPENIIX 7.2, CONTINUEI

UNIUERSAL
TIME MAGNITUNE

| 25.0167 | -2.5608 |
| :--- | :--- |
| 25.0229 | -2.5619 |
| 25.0264 | -2.5632 |
| 25.0326 | -2.5640 |
| 25.0361 | -2.5585 |
| 25.0417 | -2.5626 |
| 25.0451 | -2.5655 |
| 25.0507 | -2.5597 |
| 25.0549 | -2.5654 |
| 25.0611 | -2.5712 |
| 25.0646 | -2.5723 |
| 25.0701 | -2.5666 |
| 25.0736 | -2.5722 |
| 25.0799 | -2.5703 |
| 25.0826 | -2.5693 |
| 25.0889 | -2.5656 |
| 25.0924 | -2.5660 |
| 25.0979 | -2.5582 |
| 25.1014 | -2.5563 |
| 25.1076 | -2.5507 |
| 25.1111 | -2.5466 |
| 25.1181 | -2.5559 |
| 25.1215 | -2.5584 |
| 25.1271 | -2.5568 |
| 25.1306 | -2.5652 |
| 25.1361 | -2.5649 |
| 25.1410 | -2.5730 |
| 25.1472 | -2.5793 |
| 25.1507 | -2.5773 |
| 25.1618 | -2.5726 |
| 25.1660 | -2.5672 |
| 25.1722 | -2.5588 |
| 25.1764 | -2.5546 |
| 25.1826 | -2.5507 |
| 25.1861 | -2.5454 |
| 25.1917 | -2.5499 |
| 25.1951 | -2.5449 |
| 26.0035 | -2.5628 |
| 26.0076 | -2.5713 |
| 26.0132 | -2.5722 |
| 26.0167 | -2.5690 |
| 26.0208 | -2.5664 |
| 26.0243 | -2.5566 |
| 26.0299 | -2.5609 |
| 26.0347 | -2.5562 |
| 2 |  |

UNIUERSAL
TIME MAGNITULIE

| 26.0403 | -2.5569 |
| :--- | :--- |
| 26.0438 | -2.5600 |
| 26.0486 | -2.5579 |
| 26.0528 | -2.5546 |
| 26.0576 | -2.5567 |
| 26.0611 | -2.5601 |
| 26.0681 | -2.5603 |
| 26.0722 | -2.5636 |
| 26.0792 | -2.5574 |
| 26.0833 | -2.5589 |
| 26.0889 | -2.5565 |
| 26.0924 | -2.5608 |
| 26.0986 | -2.5574 |
| 26.1028 | -2.5608 |
| 26.1083 | -2.5608 |
| 26.1125 | -2.5677 |
| 26.1188 | -2.5680 |
| 26.1222 | -2.5676 |
| 26.1278 | -2.5734 |
| 26.1375 | -2.5720 |
| 26.1438 | -2.5641 |
| 26.1486 | -2.5550 |
| 26.1569 | -2.5486 |
| 26.1625 | -2.5506 |
| 26.1681 | -2.5459 |
| 26.1722 | -2.5537 |
| 26.1785 | -2.5626 |
| 26.1819 | -2.5574 |
| 26.1965 | -2.5733 |
| 26.2007 | -2.5787 |
| 26.2465 | -2.5431 |
| 26.2514 | -2.5444 |
| 26.2569 | -2.5528 |
| 26.2611 | -2.5556 |
| 26.2657 | -2.5634 |
| 26.2708 | -2.5684 |
| 26.2764 | -2.5697 |
| 27.0035 | -2.5651 |
| 27.0076 | -2.5547 |
| 27.0139 | -2.5523 |
| 27.0174 | -2.5464 |
| 27.0236 | -2.5529 |
| 27.0278 | -2.5521 |
| 27.0333 | -2.5543 |
| 27.0375 | -2.5570 |
| 2 |  |

## UNIUERSAL <br> TIME MAGNITUDE

| 27.0417 | -2.5642 |
| :--- | :--- |
| 27.0458 | -2.5650 |
| 27.0549 | -2.5747 |
| 27.0583 | -2.5786 |
| 27.0653 | -2.5730 |
| 27.0694 | -2.5720 |
| 27.0757 | -2.5637 |
| 27.0806 | -2.5602 |
| $27+0882$ | -2.5569 |
| $27+0917$ | -2.5532 |
| 27.0979 | -2.5520 |
| $27+1042$ | -2.5536 |
| 27.1083 | -2.5581 |
| 27.1146 | -2.5604 |
| $27+1194$ | -2.5653 |
| 27.1319 | -2.5678 |
| 27.1368 | -2.5648 |
| 27.1431 | -2.5665 |
| 27.1479 | -2.5648 |
| 27.1535 | -2.5697 |
| 27.1569 | -2.5670 |
| 27.1632 | -2.5752 |
| 27.1667 | -2.5718 |
| 27.1715 | -2.5725 |
| $27+1750$ | -2.5714 |
| 27.1813 | -2.5574 |
| 27.1861 | -2.5682 |
| 27.1993 | -2.5630 |
| 27.2056 | -2.5547 |
| 27.2160 | -2.5532 |
| $27+2222$ | -2.5507 |
| 27.2306 | -2.5594 |
| 27.2396 | -2.5735 |
| 27.2465 | -2.5770 |
| $27+2507$ | -2.5785 |
| 27.2569 | -2.5807 |
| 27.2674 | -2.5732 |
| 27.2715 | -2.5688 |
| 27.2778 | -2.5629 |
| 27.2813 | -2.5600 |
| 27.2868 | -2.5480 |
| 27.2958 | -2.5499 |
| 27.3000 | -2.5485 |
| 27.3049 | -2.5551 |
| 27.3090 | -2.5530 |
| 2 |  |

AFFENIIX 7.2, CONTINUED

## UNIUERSAL <br> TIME MAGNITUDE

27.3146 -2.5625
$27.3188-2.5631$
$27.3236-2.5634$
$27.3278-2.5653$
$27.3347-2.5613$
$27.3389-2.5640$
$27.3444-2.5624$
27.3514 -2.5722
$28.0521-2.5621$
$28.0563-2.5544$
$28.0625-2.5567$
$28.0660-2.5581$
$28.0722-2.5560$
$29.0764-2.5555$
$28.0847-2.5528$
$28.0889-2.5588$
$28.0944-2.5649$
$23.0986-2.5714$
$28.1042-2.5657$
$28.1083-2.5733$
$28.1167-2.5709$
$28.1205-2.5774$
$28.1278-2.5677$
$28.1319-2.5662$
$28.1382-2.5642$
28.1431 -2.5607
$28.1493-2.5609$
$28.1528-2.5585$
$28.1590-2.56 .36$
28.1632 -2.5685
$28.1688-2.5714$
$28.1743-2.5718$
$28.1799-2.5725$
$28.1833-2.5725$
$28.2493-2.5625$
$28.2535-2.5588$
$28.2590-2.5520$
$28.2632-2.5497$

## UNIUERSAL <br> TIME MAGNITUNE

$$
28.2681 \quad-2.5479
$$

$$
28.2722-2.5490
$$

$$
28.2771-2.5530
$$

$$
28.2806-2.5569
$$

$$
28.2854-2.5616
$$

$$
28.2889-2.5669
$$

$$
28.2944-2.5664
$$

$$
28.2986-2.5676
$$

$$
28.3042-2.5823
$$

$$
28.3083-2.5828
$$

$$
28.3139-2.5728
$$

$$
28.3174-2.5704
$$

$$
28.3229-2.5668
$$

$$
28.3264-2.5642
$$

$$
28.3319-2.5481
$$

$$
28.3361-2.5750
$$

$$
28.3417-2.5635
$$

$$
28.3451-2.5596
$$

$$
28.3507-2.5650
$$

$$
28.3549-2.5615
$$

$$
28.3604-2.5713
$$

$$
29.0458-2.5663
$$

$$
29.0500-2.5565
$$

$$
29.0556-2.5553
$$

$$
29.0597-2.5570
$$

$$
29.0653-2.5626
$$

$$
29.0694-2.5654
$$

$$
29.0771-2.5679
$$

$$
29.0813-2.5649
$$

$$
29.0875-2.5657
$$

$$
29.0917 \quad-2.5694
$$

$$
29.0972-2.5669
$$

$$
29.1021-2.5600
$$

$$
29.1083-2.5583
$$

$$
29.1125-2.5548
$$

$$
29.1194 \quad-2.5529
$$

$$
29.1243-2.5482
$$

$$
29.1299-2.5526
$$

UNIUERSAL
TIME

| 29.1347 | -2.5566 |
| :--- | :--- |
| 29.1403 | -2.5542 |
| 29.1438 | -2.5561 |
| 29.1514 | -2.5626 |
| 29.1556 | -2.5685 |
| 29.1611 | -2.5633 |
| 29.1660 | -2.5682 |
| 29.1715 | -2.5668 |
| 29.1757 | -2.5642 |
| 29.1813 | -2.5637 |
| 29.1861 | -2.5647 |
| 29.1993 | -2.5576 |
| 29.2042 | -2.5595 |
| 29.2125 | -2.5587 |
| 29.2160 | -2.5617 |
| 29.2444 | -2.5613 |
| 29.2493 | -2.5636 |
| 29.2569 | -2.5547 |
| 29.2618 | -2.5531 |
| 29.2667 | -2.5578 |
| 29.2701 | -2.5599 |
| 29.2750 | -2.5594 |
| 29.2799 | -2.5648 |
| 29.2847 | -2.5679 |
| 29.2889 | -2.5752 |
| 29.2944 | -2.5677 |
| 29.2979 | -2.5628 |
| 29.3035 | -2.5636 |
| 29.3069 | -2.5564 |
| 29.3132 | -2.5622 |
| 29.3174 | -2.5525 |
| 29.3250 | -2.5404 |
| 29.3292 | -2.5421 |
| 29.3340 | -2.5431 |
| 29.3382 | -2.5539 |
| 29.3431 | -2.5526 |
| 29.3472 | -2.5540 |
| 29.3528 | -2.5659 |
| 29.3569 | -2.5695 |
| 29.3625 | -2.5694 |
|  |  |

## APFENIIX 7.3

IIATA FOR XX SCULFTORIS

## UNIUEFSAL

TIME MAGNITUNE

## UNIUERSAL

TIME MAGNITUDE

| 14.0194 | -.2366 |
| :--- | :--- |
| 14.0222 | -.2425 |
| 14.0306 | -.2508 |
| 14.0340 | -.2575 |
| 14.0389 | -.2242 |
| 14.0417 | -.2484 |
| 14.0472 | -.2355 |
| 14.0500 | -.2396 |
| 14.0549 | -.2359 |
| 14.0576 | -.2403 |
| 14.0625 | -.2425 |
| 14.0660 | -.2483 |
| 14.0701 | -.2450 |
| 14.0729 | -.2300 |
| 14.0792 | -.2473 |
| 14.0819 | -.2486 |
| 14.0875 | -.2415 |
| 14.0903 | -.2383 |
| 14.0944 | -.2449 |
| 14.0972 | -.2484 |
| 14.1014 | -.2486 |
| 14.1049 | -.2535 |
| 14.1090 | -.2565 |
| 14.1118 | -.2532 |
| 14.1181 | -.2587 |
| 14.1208 | -.2572 |
| 14.1250 | -.2547 |
| 14.1285 | -.2465 |
| 14.1333 | -.2397 |
| 14.1375 | -.2378 |
| 14.1424 | -.2415 |
| 14.1458 | -.2412 |
| 14.1500 | -.2464 |
| 14.1535 | -.2499 |
| 14.1597 | -.2522 |
| 14.1625 | -.2532 |
| 14.1667 | -.2543 |
| 14.1694 | -.2510 |
| 14.1736 | -.2443 |
| 14.1764 | -.2362 |
| 14.1806 | -.2364 |
| 14.1826 | -.2320 |
| 14.1868 | -.2255 |
| 1 |  |


| 14.1896 | -.2322 |
| :--- | :--- |
| 14.2528 | -.2579 |
| 14.2556 | -.2585 |
| 14.2611 | -.2636 |
| 14.2639 | -.2593 |
| 14.2681 | -.2534 |
| 14.2708 | -.2414 |
| 14.2750 | -.2375 |
| 14.2785 | -.2351 |
| 14.2819 | -.2278 |
| 14.2847 | -.2342 |
| 14.2882 | -.2292 |
| 14.2938 | -.2380 |
| 14.2965 | -.2409 |
| 14.3021 | -.2507 |
| 14.3042 | -.2547 |
| 14.3097 | -.2601 |
| 14.3118 | -.2557 |
| 14.3160 | -.2580 |
| 14.3188 | -.2556 |
| 14.3229 | -.2514 |
| 14.3250 | -.2467 |
| 14.3319 | -.2338 |
| 14.3368 | -.2328 |
| 14.3396 | -.2394 |
| 14.3403 | -.2396 |
| 14.3444 | -.2402 |
| 14.3514 | -.2517 |
| 14.3549 | -.2565 |
| 14.3583 | -.2556 |
| 14.3611 | -.2602 |
| 14.3667 | -.2498 |
| 14.3694 | -.2468 |
| 14.3729 | -.2375 |
| 14.3771 | -.2371 |
| 14.3826 | -.2279 |
| 14.3854 | -.2235 |
| 14.3896 | -.2184 |
| 14.9993 | -.2473 |
| 15.0021 | -.2420 |
| 15.0056 | -.2483 |
| 15.0111 | -.2442 |
| 15.0139 | -.2487 |
| 1 |  |

UNIUERSAL
TIME MAGNITUDE

| 15.0174 | -.2390 |
| :--- | :--- |
| 15.0201 | -.2444 |
| 15.0236 | -.2451 |
| 15.0264 | -.2379 |
| 15.0299 | -.2396 |
| 15.0326 | -.2373 |
| 15.0382 | -.2427 |
| 15.0403 | -.2424 |
| 15.0458 | -.2412 |
| 15.0521 | -.2441 |
| 15.0542 | -.2393 |
| 15.0583 | -.2463 |
| 15.0604 | -.2490 |
| 15.0653 | -.2425 |
| 15.0681 | -.2422 |
| 15.0750 | -.2403 |
| 15.0785 | -.2378 |
| 15.0813 | -.2364 |
| 15.0847 | -.2438 |
| 15.0875 | -.2376 |
| 15.0931 | -.2464 |
| 15.0951 | -.2467 |
| 15.1063 | -.2390 |
| 15.1097 | -.2402 |
| 15.1139 | -.2382 |
| 15.1167 | -.2459 |
| 15.1209 | -.2378 |
| 15.1236 | -.2492 |
| 15.1299 | -.2525 |
| 15.1326 | -.2553 |
| 15.1382 | -.2514 |
| 15.1410 | -.2549 |
| 15.1451 | -.2454 |
| 15.1479 | -.2468 |
| 15.1514 | -.2466 |
| 15.1542 | -.2417 |
| 15.1576 | -.2385 |
| 15.1604 | -.2396 |
| 15.1646 | -.2392 |
| 15.1674 | -.2484 |
| 15.1722 | -.2479 |
| 15.1743 | -.2502 |
| 15.2257 | -.2401 |

## AFFENDIX 7.3. CONTINUED

## UNIUERSAL <br> TIME MAGNITUDE

| 15.2278 | -.2421 |
| :--- | :--- |
| 15.2333 | -.2482 |
| 15.2361 | -.2537 |
| 15.2403 | -.2529 |
| 15.2431 | -.2465 |
| 15.2465 | -.2443 |
| 15.2486 | -.2447 |
| 15.2535 | -.2404 |
| 15.2556 | -.2360 |
| 15.2597 | -.2349 |
| 15.2625 | -.2326 |
| 15.2660 | -.2400 |
| 15.2688 | -.2362 |
| 15.2743 | -.2437 |
| 15.2764 | -.2438 |
| 15.2709 | -.2515 |
| 15.2826 | -.2545 |
| 15.2882 | -.2566 |
| 15.2910 | -.2517 |
| 15.2944 | -.2465 |
| 15.2965 | -.2462 |
| 15.3000 | -.2354 |
| 15.3028 | -.2442 |
| 15.3063 | -.2421 |
| 15.3090 | -.2352 |
| 15.3139 | -.2427 |
| 15.3160 | -.2435 |
| 15.3222 | -.2481 |
| 15.3243 | -.2532 |
| 15.3285 | -.2581 |
| 15.3326 | -.2585 |
| 15.3375 | -.2585 |
| 15.3396 | -.2527 |
| 15.3438 | -.2491 |
| 15.3465 | -.2497 |
| 15.3507 | -.2417 |
| 15.3528 | -.2451 |
| 15.3576 | -.2410 |
| 15.3604 | -.2385 |
| 15.3660 | -.2363 |
| 15.3688 | -.2395 |
| 15.3722 | -.2389 |
| 15.3750 | -.2384 |
| 15.3813 | -.2532 |
| 15.3840 | -.2501 |
| 15 |  |

## UNIVERSAL

TIME MAGNITUDE

| 15.9944 | -.2389 |
| :--- | :--- |
| 15.9972 | -.2369 |
| 16.0042 | -.2354 |
| 16.0069 | -.2341 |
| 16.0139 | -.2357 |
| 16.0160 | -.2327 |
| 16.0229 | -.2362 |
| 16.0257 | -.2408 |
| 16.0326 | -.2509 |
| 16.0417 | -.2466 |
| 16.0444 | -.2470 |
| 16.0528 | -.2498 |
| 16.0556 | -.2453 |
| 16.0625 | -.2435 |
| 16.0646 | -.2386 |
| 16.0708 | -.2427 |
| 16.0736 | -.2446 |
| 16.0806 | -.2400 |
| 16.0833 | -.2443 |
| 16.0896 | -.2437 |
| 16.0924 | -.2478 |
| 16.0986 | -.2472 |
| 16.1014 | -.2462 |
| 16.1076 | -.2481 |
| 16.1104 | -.2478 |
| 16.1167 | -.2427 |
| 16.1201 | -.2383 |
| 16.1257 | -.2360 |
| 16.1285 | -.2414 |
| 16.1361 | -.2389 |
| 16.1389 | -.2485 |
| 16.1438 | -.2482 |
| 16.1479 | -.2462 |
| 16.1542 | -.2479 |
| 16.1569 | -.2496 |
| 16.1625 | -.2446 |
| 16.1646 | -.2461 |
| 16.1708 | -.2437 |
| 16.1729 | -.2455 |
| 16.1854 | -.2404 |
| 16.1875 | -.2410 |
| 16.2465 | -.2474 |
| 16.2493 | -.2495 |
| 16.2507 | -.2504 |
| 16.2590 | -.2506 |
| 10 |  |

## UNIUERSAL <br> TIME MAGNITUDE

| 16.2618 | -.2537 |
| :--- | :--- |
| 16.2681 | -.2513 |
| 16.2708 | -.2542 |
| 16.2785 | -.2470 |
| 16.2813 | -.2438 |
| 16.2882 | -.2422 |
| 16.2910 | -.2362 |
| 16.3042 | -.2521 |
| 16.3063 | -.2500 |
| 16.3132 | -.2608 |
| 16.3160 | -.2547 |
| 16.3222 | -.2556 |
| 16.3243 | -.2543 |
| 16.3313 | -.2438 |
| 16.3333 | -.2418 |
| 16.3403 | -.2324 |
| 16.3424 | -.2412 |
| 16.3438 | -.2393 |
| 16.3507 | -.2415 |
| 16.3542 | -.2535 |
| 16.3604 | -.2594 |
| 16.3625 | -.2592 |
| 16.3701 | -.2527 |
| 16.3729 | -.2465 |
| 22.0063 | -.2532 |
| 22.0104 | -.2482 |
| 22.0153 | -.2461 |
| 22.0181 | -.2252 |
| 22.0222 | -.2281 |
| 22.0250 | -.2212 |
| 22.0299 | -.2291 |
| 22.0333 | -.2358 |
| 22.0389 | -.2437 |
| 22.0417 | -.2509 |
| 22.0458 | -.2521 |
| 22.0486 | -.2551 |
| 22.0535 | -.2493 |
| 22.0563 | -.2389 |
| 22.0597 | -.2447 |
| 22.0632 | -.2450 |
| 22.0689 | -.2420 |
| 22.0715 | -.2441 |
| 22.0757 | -.2450 |
| 22.0792 | -.2419 |
| 22.0826 | -.2463 |
| 10 |  |

AFPENDIX 7.3 , CONTINUED

## UNIVERSAL

TIME MAGNITUDE

| 22.0861 | -. 2477 |
| :---: | :---: |
| 22.0889 | -. 2495 |
| 22.0931 | -. 2536 |
| 22.0958 | -. 2563 |
| 22.1007 | -. 2547 |
| 22.1042 | -. 2439 |
| 22.1083 | -. 2367 |
| 22.1125 | -. 2339 |
| 22.1174 | -. 2333 |
| 22.1201 | -. 2367 |
| 22.1250 | -. 2398 |
| 22.1278 | -. 2432 |
| 22.1333 | -. 2499 |
| 22.1368 | -. 2501 |
| 22.1486 | -. 2499 |
| 22.1514 | $-.2493$ |
| 22.1556 | -. 2444 |
| 22.1576 | -. 2402 |
| 22.1632 | $-.2362$ |
| 22.1660 | -. 2316 |
| 22.1708 | -. 2339 |
| 22.1736 | -. 2469 |
| 22.1799 | -. 2489 |
| 22.1833 | -. 2507 |
| 22.1917 | -. 2479 |
| 22.1972 | -. 2445 |
| 22.2007 | -. 2436 |
| 22.2063 | -. 2501 |
| 22.2104 | -. 2434 |
| 22.2201 | -. 2435 |
| 22.2257 | -. 2453 |
| 22.2340 | -. 2503 |
| 22.2375 | -. 2440 |
| 22.2465 | $\cdots+2439$ |
| 22.2493 | $-.2483$ |
| 22.2535 | $-.2389$ |
| 22.2563 | -. 2451 |
| 22.2604 | - +2472 |
| 22.2674 | -. 2376 |
| 22.2722 | -. 2501 |
| 22.2750 | -. 2450 |
| 22.2792 | $-.2428$ |
| 22.2826 | $-.2403$ |
| 22.2868 | -. 2355 |
| 22.2889 | -. 2406 |

## UNIUERSAL

TIME MAGNITUDE

UNIUERSAL
TIME
MAGNITUDE

| 23.1174 | -.2363 |
| :--- | :--- |
| 23.1215 | -.2364 |
| 23.1271 | -.2458 |
| 23.1313 | -.2387 |
| 23.1375 | -.2531 |
| 23.1417 | -.2442 |
| 23.1674 | -.2485 |
| 23.1736 | -.2458 |
| 23.1785 | -.2433 |
| 23.1944 | -.2394 |
| 23.2215 | -.2493 |
| 23.2285 | -.2497 |
| 23.2319 | -.2480 |
| 23.2389 | -.2412 |
| 23.2431 | -.2405 |
| 23.2486 | -.2381 |
| 23.2535 | -.2363 |
| 23.2597 | -.2407 |
| 23.2653 | -.2517 |
| 23.2736 | -.2493 |
| 23.2771 | -.2434 |
| 23.2833 | -.2407 |
| 23.2875 | -.2365 |
| 23.2938 | -.2312 |
| 23.2979 | -.2344 |
| 23.3042 | -.2438 |
| 23.3076 | -.2446 |
| 23.3139 | -.2484 |
| 23.3174 | -.2489 |
| 23.3229 | -.2450 |
| 23.3250 | -.2444 |
| 23.3340 | -.2375 |
| 23.3375 | -.2383 |
| 23.3431 | -.2473 |
| 23.3472 | -.2558 |
| 25.0035 | -.2397 |
| 25.0063 | -.2326 |
| 25.0139 | -.2365 |
| 25.0181 | -.2444 |
| 25.0243 | -.2533 |
| 25.0278 | -.2580 |
| 25.0340 | -.2611 |
| 25.0375 | -.2548 |
| 25.0431 | -.2471 |
| 25.0465 | -.2432 |
|  |  |
| 2 |  |

APPENDIX 7.3, CONTINUED

UNIVERSAL
time magnitude

| 25.0521 | -.2399 |
| :--- | :--- |
| 25.0556 | -.2405 |
| 25.0618 | -.2391 |
| 25.0653 | -.2436 |
| 25.0708 | -.2549 |
| 25.0750 | -.2594 |
| 25.0806 | -.2591 |
| 25.0840 | -.2638 |
| 25.0896 | -.2563 |
| 25.0731 | -.2504 |
| 25.0993 | -.2410 |
| 25.1028 | -.2344 |
| 25.1090 | -.2370 |
| 25.1125 | -.2369 |
| 25.1194 | -.2469 |
| 25.1229 | -.2521 |
| 25.1278 | -.2507 |
| 25.1319 | -.2573 |
| 25.1382 | -.2437 |
| 25.1424 | -.2460 |
| 25.1486 | -.2378 |
| 25.1521 | -.2314 |
| 25.1632 | -.2478 |
| 25.1674 | -.2502 |
| 25.1736 | -.2502 |
| 25.1778 | -.2531 |
| 25.1833 | -.2522 |
| 25.1875 | -.2458 |
| 25.1931 | -.2394 |
| 25.1965 | -+2351 |
| 26.0049 | -.2574 |
| 26.0083 | -.2590 |
| 26.0139 | -.2569 |
| 26.0181 | -.2429 |
| 26.0215 | -.2319 |
| 26.0257 | -.2216 |
| 26.0313 | -.2226 |
| 26.0354 | -.2230 |
| 26.0417 | -.2446 |
| 26.0451 | -.2523 |
| 26.0500 | -.2582 |
| 26.0542 | .- .2610 |
| 26.0590 | -.2566 |
| 26.0632 | -.2536 |
| 26.0701 | -.2435 |
| 2 |  |

UNIUERSAL
TIME MAGNITUIE

| 26.0736 | -.2338 |
| :--- | :--- |
| 26.0806 | -.2352 |
| 26.0847 | -.2319 |
| 26.0903 | -.2480 |
| 26.0938 | -.2492 |
| 26.1000 | -.2540 |
| 26.1042 | -.2511 |
| 26.1097 | -.2511 |
| 26.1139 | -.2605 |
| 26.1201 | -.2380 |
| 26.1236 | -.2342 |
| 26.1292 | -.2371 |
| 26.1389 | -.2494 |
| 26.1458 | -.2504 |
| 26.1500 | -.2178 |
| 26.1521 | -.2054 |
| 26.1590 | -.2433 |
| 26.1632 | -.2448 |
| 26.1694 | -.2469 |
| 26.1736 | -.2400 |
| 26.1792 | -.2452 |
| 26.1840 | -.2431 |
| 26.1979 | -.2461 |
| 26.2014 | -.2469 |
| 26.2479 | -.2421 |
| 26.2528 | -.2372 |
| 26.2583 | -.2388 |
| 26.2625 | -.2405 |
| 26.2681 | -.2444 |
| 26.2722 | -.2442 |
| 26.2778 | -.2418 |
| 26.2924 | -.2518 |
| 27.0049 | -.2365 |
| 27.0090 | -.2342 |
| 27.0153 | -.2376 |
| 27.0188 | -.2461 |
| 27.0250 | -.2508 |
| 27.0292 | -.2587 |
| 27.0347 | -.2529 |
| 27.0389 | -.2533 |
| 27.0431 | -.2465 |
| 27.0479 | -.2415 |
| 27.0563 | -.2352 |
| 27.0604 | -.2364 |
| 27.0667 | -.2419 |
| 2 |  |

UNIUERSAL
TIME MAGNITUDE

| 27.0701 | -.2367 |
| :--- | :--- |
| 27.0771 | -.2466 |
| 27.0813 | -.2542 |
| 27.0896 | -.2546 |
| 27.0931 | -.2477 |
| 27.0993 | -.2407 |
| 27.1056 | -.2313 |
| 27.1097 | -.2311 |
| 27.1167 | -.2375 |
| 27.1208 | -.2431 |
| 27.1340 | -.2574 |
| 27.1375 | -.2545 |
| 27.1444 | -+2469 |
| 27.1493 | -.2377 |
| 27.1542 | -.2356 |
| 27.1583 | -.2332 |
| 27.1639 | -.2419 |
| 27.1681 | -.2451 |
| 27.1729 | -.2531 |
| 27.1764 | -.2562 |
| 27.1826 | -.2526 |
| 27.1875 | -.2489 |
| 27.2028 | -.2367 |
| 27.2076 | -.2393 |
| 27.2194 | -.2512 |
| 27.2243 | -.2565 |
| 27.2333 | -.2568 |
| 27.2410 | -.2496 |
| 27.2479 | -.2421 |
| 27.2521 | -.2404 |
| 27.2583 | -.2425 |
| 27.2625 | -.2412 |
| 27.2688 | -.2504 |
| $27+2729$ | -.2527 |
| 27.2792 | -.2503 |
| 27.2826 | -.2474 |
| 27.2882 | -.2382 |
| 27.2917 | -.2387 |
| 27.2972 | -.2351 |
| 27.3007 | -.2382 |
| 27.3063 | -.2386 |
| 27.3097 | -.2384 |
| 27.3160 | -.2517 |
| 27.3194 | -.2443 |
| 27.3250 | -.2474 |
| 2 |  |

# AFFENHIX 7.3, CONTINUEI 

UNIUEFSAL
TIME MAGNITUNE

UNIUEFSAL
TIME MAGNITUNE

UNIUEFSAL TIME MAGNITULE

| $27+3292$ | -.2408 | 28.2785 | -.2450 |
| :--- | :--- | :--- | :--- |
| 27.3361 | -.2460 | 28.2819 | -.2418 |
| 27.3403 | -.2398 | 28.2868 | -.2469 |
| 27.3458 | -.2445 | 28.2903 | -.2439 |
| 27.3528 | -.2461 | 28.3000 | -.2557 |
| 28.0535 | -.2520 | 28.3056 | -.2593 |
| 28.0576 | -.2617 | 28.3097 | -.2543 |
| 28.0639 | -.2593 | 28.3146 | -.2481 |
| 28.0674 | -.2549 | 28.3188 | -.2369 |
| 28.0736 | -.2423 | 28.3243 | -.2348 |
| 28.0778 | -.2399 | 28.3278 | -.2403 |
| 28.0861 | -.2328 | 28.3333 | -.2397 |
| 28.0903 | -.2298 | 28.3382 | -.2467 |
| 28.0958 | -.2395 | 28.3424 | -.2548 |
| 28.0993 | -.2482 | 28.3458 | -.2629 |
| 28.1056 | -.2472 | 28.3521 | -.2515 |
| 28.1097 | -.2554 | 28.3535 | -.2653 |
| 28.1181 | -.2506 | 28.3563 | -.2622 |
| 28.1222 | -.2509 | 28.3618 | -.2679 |
| 28.1292 | -.2363 | 29.0410 | -.2655 |
| 28.1333 | -.2387 | 29.0472 | -.2501 |
| 28.1396 | -.2285 | 29.0514 | -.2374 |
| 28.1444 | -.2382 | 29.0569 | -.2314 |
| 28.1507 | -.2469 | 29.0611 | -.2164 |
| 28.1521 | -.2505 | 29.0667 | -.2401 |
| 28.1549 | -.2585 | 29.0708 | -.2410 |
| 28.1604 | -.2650 | 29.0785 | -.2522 |
| 28.1618 | -.2610 | 29.0826 | -.2602 |
| 28.1646 | -.2609 | 29.0889 | -.2528 |
| 28.1701 | -+2515 | 29.0931 | -.2491 |
| 28.1715 | -.2513 | 29.0993 | -.2361 |
| 28.1757 | -.2458 | 29.1035 | -.2243 |
| 28.1813 | -.2423 | 29.1097 | -.2226 |
| 28.1847 | -.2357 | 29.1139 | -.2294 |
| 28.2507 | -.2541 | 29.1208 | -.2340 |
| 28.2549 | -.2514 | 29.1222 | -.2397 |
| 28.2604 | -.2465 | 29.1257 | -.2433 |
| 28.2639 | -.2448 | 29.1313 | -.2623 |
| 28.2694 | -.2423 | 29.1326 | -.2614 |
| 28.2729 | -.2415 | 29.1354 | -.2618 |
|  |  |  |  |


| 29.1417 | -.2503 |
| :--- | :--- |
| 29.1424 | -.2479 |
| 29.1479 | -.2346 |
| 29.1528 | -.2331 |
| 29.1569 | -.2367 |
| 29.1625 | -.2320 |
| 29.1674 | -.2381 |
| 29.1729 | -.2407 |
| 29.1771 | -.2452 |
| 29.1833 | -.2572 |
| 29.1875 | -.2533 |
| 29.2014 | -.2346 |
| 29.2056 | -.2347 |
| 29.2139 | -.2302 |
| 29.2194 | -.2442 |
| 29.2465 | -.2504 |
| 29.2514 | -.2486 |
| 29.2590 | -.2433 |
| 29.2625 | -.2368 |
| 29.2681 | -.2463 |
| 29.2715 | -.2423 |
| 29.2771 | -.2339 |
| 29.2806 | -.2425 |
| 29.2861 | -.2569 |
| 29.2903 | -.2496 |
| 29.2958 | -.2481 |
| 29.2993 | -.2397 |
| 29.3049 | -.2385 |
| 29.3083 | -.2448 |
| 29.3146 | -.2478 |
| 29.3181 | -.2379 |
| 29.3264 | -.2329 |
| 29.3299 | -.2378 |
| 29.3354 | -.2441 |
| 29.3396 | -.2408 |
| 29.3444 | -.2325 |
| 29.3486 | -.2426 |
| 29.3542 | -.2462 |
| 29.3583 | -.2391 |
| 29.3639 | -.2493 |
| 2 |  |

## APPENDIX 7.4

A FORTRAN VERSION OF THE JURKEVICH NETHOD

| FROGRAM JUFKK (MATA, INFUT = WATA, OUTFUT) |  |
| :---: | :---: |
| C |  |
| c | TS MESCRTEEI IN JURKEUTCH, I 1971, ASTROPHYSTCS AND SFACE SCTENCE |
| C | VOL, 13, PAGE. 154. THE MODIFICATIONS TO THTS TNDEX AFE MESCRTEEL IN |
| C | GECTION 3.2 OF THIS THESIS. AS NOTEN IN SECTION 3,2, THE BEST UALUE |
| C | FOF NTOTAL TS 3y ANI THE EEST UALUE OF CONST IS 8*FT**2/27/NFOXNTS |
| $C$ | $=2.92433 / N F O T N T S$ |
| 0 | TO TEST THIS FrGGRAM, FEUN IT ON THE FOLIOWNG FIUE MATA FOTNTS: |
| C |  |
| $C$ |  |
| C | NFEFRIOX=10 - THE OUTFUT SHOULI BE: |
| C. | . 1000ETO. 0. |
| C | . $1250 \mathrm{E}+01$. $8773 \mathrm{E}+00$ |
| 0 | -1500E+01 -3509E+01 |
| c | . $1750 \mathrm{E}+01$. $3509 \mathrm{E}+01$ |
| C | . $2000 \mathrm{E}+010$. |
| C | , 22505+0. -3509E+01 |
| C | +2500E+01 +3509E+01 |
| 0 | .2750E+01 +3509E+01 |
| C | . $3000 \mathrm{E}+01$, 4874E+00 |
| C | -3050E+01 - 8773E+00 |
| C |  |
| 0 | NFOTNTS NUMBER OF DATA FOTNTS TO SEREAT IN. |
| 0 | $X \quad X$-VALUES OF THE LIATA. |
| 0 |  |
| $C$ | FHI PWASE OF EACH MATA POTNT. |
| C | XAUE AUEFAGE OF THE VALUES OF $X$. |
| C | YAUE AUEFACE OF THE VALIUES OFF $Y$. |
| C | PSTAFTT INITIAL FERIOL. |
| C | FOELTA SFACTNG GETWEEN FERIONS. |
| C | NFERTOI NUMEEF OF FERIODS TO EE SEARCHED. |
| C | PEFIOX FEFIOL. |
| $c$ | RESULT TNDEX FOR THE FERIOI. |
| C | NTOTAL TOTAL NUMBER OF EING IN THE FHASE DIAGRAM. |

## APPENDIX 7.4, CONT.


$\begin{array}{ll}C & E T N X E X \\ C & C O N S T \\ C & N E I N \\ C & \text { ICOUNT } \\ C & \text { IA } \\ C & \text { IG } \\ C & \end{array}$

FOR EACH FEFYTON, CALCULATE THE INHEX.
MO 9 TAM 1 , NPERTOD
UALUE OF THE INDEX IN EACH BIN. MULTIFLICATJUE FACTOR FOR THE INNEX. ACH GATA FOINT FALLS INTO.
IN EACH BIN.

COUNTEF FOF NESTEM MO LOOFS.
INTEGER IA,IByNBIN,NFERIOHyNFOINTS,NTOTAL,ICOUNT (2O) COUNTER FOR NO LOOFS.
COUNTEF FOR NESTEM MO
 COUNTER FOR HO LOOPS.


FEAL BTNMEX(20), PERYOL(500), FHT(700), RESULT(500) y X(700) y Y(700)
 DO


APPENDIX 7.4, CONT.
$\approx$

## APPENDIX 7.5

THE NON-IINEAR LEAST-SQUARES PROGRAM

This appendix gives instructions on how to fit the equation $y(x)=A+B \sin (C x+D)+E \sin (F x+G)$ to a set of data using the method of least squares. First, ask the computer centre to make available the non-linear regression program BMDP3R, a library program in the Biomedical Statistical Package from the University of California, Los Angeles. Put it into a data file called BMDP3R. Then create the following six files:

NONLIN :

```
/JOR
NOSEQ
ATFN:CM200000.T20.
/EEAK,MYACCT
MONE(O)
/REAMYMYFLLE
ATTACH, KMOFLIG/UN=LIB.
```



```
FTN,L=OUT,FL=15000%A.
LDSET, FRESET:OO
LLSET, LIH=BMCN゙LIB.
LOAD!l.GO.
BMCF゙3F.
GOT0%1.
EXIT.
1,MAYFILE,OF.
REFLACE,DF/NA.
IFE,EF,EQ,O),THEN.
NOTIFY. JOB SUCCESSFUL.
ELSE,THEN.
NOTIFY, JOB FFaILEn.
ENOIF, THEN.
FEFLACE,gOUY/NA.
FEFILACE,OUTFUT=FESULT/NA.
/EOF
/EEALIGFUN
/EOE
/FEALI,CNTRL
/EOF
```

FUN :

```
GUEFROUTTNE FUN(F,I,F゙,X,N)
    IIMENSION I(7),F(7),X(7)
    F=F(1)+F'(2)*SIN(F'(3)*X(1)+F(4))+F'(5)*SIN(F'(6)*X(1)+F'(7))
    n(1)=1.
    I\prime(2)=SIN(F(3)*X(1)+F'(4))
    I(3)=F(2)*X(1)*COS(F'(3)*X(1)+F(4))
    II}(4)=F\cdot(2)*C0S(F'(3)*X(1)+F'(4)
    IN
    IN(6)=F'(5)*X(1)*C口S(F'(6)*X(1)+F'(7))
    IN(7)=F'(5)*COS(F'(6)*X(1)+F'(7))
    FEETUFN
    ENI
```

CNTRL:
FFOBLEH TITLE IS "FERTOM SEAKCH" * INFUY VARIABLES AFE 2. UNJT IS 9. CASES AFEE 6"M. FUFMAT JS (2X, 2F7.4) */
WARIARLE NAMES AKE TIME AMF +
FEEGFESSION TITLE IS "AME UERSUS TIME"* HALUTNG IS 50.
ITEFATTON IS 30
IEFENOENT IS AMF.
NUMEEFI IS J.
FAFAMETTEFS AFE 7,1
FAFIAMETEF NAMES AFE AyEyCy IIE, FYG.

MINIMUMS AFE $-10, y-10, y-10,-10, y-10 .,-10,-10,0$. MAXIMUMS AKE 200. 2000. $2000+200+200.9200+200+0.1$
/END
/FINISH

MYACCT:

USEF (SMCRI5 , ARGHH)

MYFILE:

IN:

$$
\begin{array}{ccc}
\times \times 14.0194 & -.2366 \\
\times X 14.0222 & -.2425 \\
\times X 14.0306 & -.2508 \\
\times X 14.0340 & -.2575 \\
\times X 14.0389 & -.2242 \\
\times X 14.0417 & -.2484 \\
\times X 14.0472 & -.2355 \\
\vdots & \vdots & \vdots \\
\vdots & \text { lines } \\
\vdots & \vdots & \vdots \\
X X 29.3639 & -.2493
\end{array}
$$

NONLIN calls all the other data files and the BMDP3R program. FUN contains the function and its partial derivatives. CNTRL gives the number of data points to be fitted (654 in this case), the format of the data and the initial values for the parameters. These lines must be changed to suit the daia as given in IN and to suit the estimated values of the parameters. MYACCT lists the user's account name and password, and MYFILE gives the name of the file containing the input. IN contains the data.

To run the program, type:

> OLTI,NONLIN. SUBMTT NONLTN.

The output will appear in a file called RESULT. A file called DF will also be created, containing the dayfile for the computer run. If the program doesn't work, DF will contain diagnostics of the problem.

## REFERENCES

Allen, C.W. 1973, Astrophysical Quantities (3rd Edition)
Univ. of London, The Althone Press.
Andersen, N. 1974, Geophys. 39, 69. 1978, private communication to J. R. Percy. Baglin, A., Breger, M., Chevalier, C., Hauck, B., Ie Contel, J.M., Sareyan, J.P., and Valtier, J.C. 1973, Astron. and Astrophys. 23, 221.

Breger, M. 1975, Variable Stars and Stellar Evolution, IAU Colloq. No. 67, p. 231.

1979, P.A.S.P. 91, 5.
Burg, J.P. 1967, Paper presented at the 37th Annual International Society of Exploration Geophysics Meeting, Oklahoma.

Cannon, A.J., and Pickering, E.C. 1918, The Henry Draper Catalogue, Annals of the Astronomical Observatory of Harvard College 91.

Crawford, D.L., and Barnes, J.V. 1970, A.J. 75, 978.
Crawford, D.L., and Perry, C.L. 1966, A.J. 71, 206.
Deeming, T.J. 1975, Astrophys. Space Sci. 36, 137. 1976, Astrophys. Space Sci. 42. 257.

Demers, S. 1969, P.A.S.P. 81, 861.
Eggen, O.J. 1976, P.A.S.P. 88, 402.
Fitch, W.S. 1975, Multiple Periodic Variable Stars, IAU Colloq. No. 29, p. 167.

Gray, D.F., and Desikachary, K. 1973, Ap. J. 181, 523.
Herbst, W. 1975, A.J. 80, 498.
Hodson, S.W., Stellingwerf, R.F., and Cox, A.N. 1979, Ap. J. 229, 642.

Hoffleit, D. 1964, Catalogue of Bright Stars, Yale University Observatory.

Iriarte, B., Johnson, H.L., Michell, R.I., and Wisniewski, W.K. 1965, Sky and Telescope 30, 21.

Jurkevich, I. 1971, Astrophys. and Space Sci. 13, 154.
Kukarkin, B.V., Kholopov, P.N., Fedorovich, V.P., Frolov, M.S., Kukarkina, N.P., Kurochrin, N.E., Medvedeva, G.L., Perova, N.B., and Pskovsky, Yu.P. 1976, The Third Supplement to the Third Edition of the General Catalogue of Variable Stars, The Academy of Sciences of the U.S.S.R., Moscow.

Leung, K. 1970, A.J. 75, 643.
Michael, J.L., and Seeds, M.A. 1974, A.J. 79, 1091.
Nather, R.E. 1978, P.A.S.P. 90, 477.
Parenago, P.P. 1945, Astronomical Journal U.S.S.R. 22. 129.
Percy, J.R. 1975, Astron. and Astrophys. 43, 469.
1977, MiN.R.A.S. 181, 647.
Petersen, J.O. l975, Multiple Periodic Variable Stars, IAU Colloq. No. 29, p. 195.

Petersen, J.O., and Jorgensen, H.E. 1972, Astron. and Astrophys. 17, 367.

Seeds; M.A., and Yanchak, G.A. 1972, The Delta Scuti Stars.

Bartol Research Foundation of the Franklin Institute, Swathmore, Pennsylvania.

Sharov, A.S. 1964, Sov. Astron. A.J. 7. 689.
Shobbrook, R.R., and Stobie, R.S. 1976, M.N.R.A.S. 174, 401. Stellingwerf, R.F. 1978, Ap. J. 224, 953.

Stokes, N.R. 1972, M.N.R.A.S. 160, 155.
Swingler, D.N. 1979a, A Modified Burg Algorithm for Maximum Entropy Spectral Analysis, to be published in Proc. IEEE. 1979b, Burg's Maximum Entropy Algorithm vs. The Discrete Fourier Transform as a Frequency Estimator for Truncated Real Sinusoids, preprint.

