
NOTE TO USERS

This reproduction is the best copy available.

UMI

A ROLE BASED ACCESS CONTROL SYSTEM

FOR ELECTRONIC EDUCATION

By

Hong Zhao

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN APPLIED SCIENCE
AT

SAINT MARY’S UNIVERSITY
HALIFAX, NOVA SCOTIA

OCTOBER 2004

© Copyright by Hong Zhao, 2004

1^1 Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A0N4
Canada

Bibliothèque et
Archives Canada

Direction du
Patrimoine de l'édition

395, rue Wellington
Ottawa ON K1A0N4
Canada

Your file Votre référence
ISBN: 0-612-98945-3
Our file Notre référence
ISBN: 0-612-98945-3

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accordé une licence non exclusive
permettant à la Bibliothèque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par l'Internet, prêter,
distribuer et vendre des thèses partout dans
le monde, à des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protège cette thèse.
Ni la thèse ni des extraits substantiels de
celle-ci ne doivent être imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

Conformément à la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thèse.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

Canada

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

SAINT MARY’S UNIVERSITY

Date: October 2004

Author:

Title:

Hong Zhao

A ROLE BASED ACCESS CONTROL SYSTEM
FOR ELECTRONIC EDUCATION

Department: Mathematics and Computing Science

Degree: M.Sc. Convocation: May Year: 2005

Permission is herewith granted to Saint Mary’s University to circulate and
to have copied for non-commercial purposes, at its discretion, the above title
upon the request of individuals or institutions.

/Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEITHER
THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY BE PRINTED OR
OTHERWISE REPRODUCED WITHOUT THE AUTHOR’S WRITTEN
PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED FOR
THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS THESIS
(OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER
ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE
IS CLEARLY ACKNOWLEDGED.

To my family

IV

Table of Contents

Title Page

Signatures of Examiners... ii

Table of Contents...v

List of Tables.. ix

List of Figures.. xi

Acknowledgements... xiii

Abstract...xiv

Chapter 1. Introduction.. 1

1.1 Motivation of the thesis study.. 1

1.2 Organization of the thesis...3

Chapter 2. Access Control Techniques.. 5

2.1. Overview...5

2.2 Discretionary Access Control (DAC).. 7

2.3 Mandatory Access Control (M AC) .. 10

2.4 Access Control List (ACL)... 14

2.5 RBAC.. 17

2.5.1 Review of RBAC...17

2.5.2 RBAC Advantages.. 19

2.5.2.1 Time savings... 21

2.5 2.2 Cost savings.. 22

2.5.2.3 Simplified Systems Administration........................... 23

2.5.2.4 Reduced errors.. 23

2.5 2.5 Enhanced Systems Security and Integrity 23

2.6 Summary... 25

Chapter 3. Role Based Access Control Techniques..29

3.1 Overview of RBAC.. 29

3.1.1 History of RBAC... 29

3.1.2 RBAC background... 30

3.1.3 RBAC Characteristics and Policies... 31

3.2 RBAC Concept...34

3.3 RBAC Components... 36

3.3.1 Core RBAC.. 36

3.3.2 Hierarchical RBAC... 39

3.3.3 Constrained RBAC... 43

Chapter 4. Requirement and specification of RBAC based e-education system46

4.1 E-education system requirements .. 47

4.2 E-education specification.. 50

4.2.1 User access function specification.. 50

4.2.2 Administrative function specification..52

4.2.3 E-education with RBAC...53

Chapter 5. Design of the RBAC based E-education System errors57

VI

5.1 RBAC based e-education system errors...57

5.1.1 Core RBAC based e-education system58

5.1.1.1 System entities errors ..58

5.1.1.1.1 USERS .. 58

5.1.1.1.2 ROLES.. 59

5.1.1.1.3 Objects.. 61

5.1.1.1.4 Operations... 61

5.1.1.1.5 Permissions (needs examples for these
simple paragraphs).. 61

5.1.1.1.6 Sessions... 61

5.1.1.2 User/role assignment..62

5.1.1.3 Permission/role assignment...................................... 62

5.1.2 Hierarchical RBAC based e-education system 64

5.1.3 Constrained RBAC based e-education system......................66

5.2 E-education system interface design.. 67

5.2.1 Administrative support interfaces...69

5.2.2 Academic support interfaces 70

5.3 Systems functionality ... 71

5.3.1 Administrative functions..71

5.3.2 Supporting system functions.. 76

5.3.3 Review functions .. 78

5.4 Security and privacy... 79

5.4.1 Security... 79

5.4.2 Privacy...80

VII

Chapter 6. Implementation..81

6.1 Implementation Environment Overview..81

6.2 Administrative Interfaces..86

6.3 User Interfaces.. 113

6.3.1 Logon Interfaces...113

6.3.2 Registration Interface.. 117

6.3.3 Time-Controlled Interfaces... 118

6.4 Database implementation...122

6.5 System test and analysis... 127

Chapter 7 Summary and future works.. 129

7.1 Summary.. 129

7.2 Future W ork.. 132

REFERENCES... 134

A P P E N D IX .. 138

VIII

List of tables

Table 2.1 Simple comparison of MAC, DAC and ACLs....................................... 17

Table 5.1 Roles and their permissions in Core RBAC model for e-education .. 63

Table 5.2 Roles and their permissions in Hierarchy RBAC model for the e-
education system...65

Table 5.3 Z notation symbol explanation...73

Table 5.4 Explanation of an example function described in Z notation 74

Table 5.5 Definition and specification of administrative functions.................. 74

Table 5.6 Definition of user-role and permission-role assignment functions . . . 75

Table 5.7 Definition and specification of session related functions................ 77

Table 5.8 Definition and specification of system review functions......................78

Table 5.9 Three levels of administrators and their duties..................................... 79

Table 6.1 Registration information for the new users...89

Table 6.2 Users’ table containing all the users’ username, password, and SIN ..
... 89

Table 6.3 Data for all registered users... 89

Table 6.4 The /o/es table containing all roles of the system................................. 93

Table 6.5 The 5es5/b/75 table..93

Table 6.6 The conflictRolesXab\e.. 94

Table 6.7 The hierarchyRoles\ab\e.................................. 94

Table 6.8 The permissionRoles\Qb\e... 94

Table 6.9 The userRo!e\ab\e...99

Table 6.10 Ib e academicRecords\.ab\Q...99

IX

Table 6.11 The permissions table...101

Table 6.12 The oZyecfs table.. 101

Table 6.13 The operations \ab\e ... 102

List of Figures

Figure 2.1 User and System Resources relationship in D A C 8

Figure 2.2 User and System Resources relationship in M A C 11

Figure 3.1 Core RBAC.. 36

Figure 3.2 Users are assigned to a role...38

Figure 3.3 Permissions are assigned to a role...38

Figure 3.4 Use - Role - Permission relationships... 38

Figure 3.5 Hierarchical RBAC... 40

Figure 3.6 a. Role 1 inherit role2 and role 3 .. 40

Figure 3.6 b. Role 1 is an immediate descendant of role 240

Figure 3.7 General Role Hierarchy... 41

Figure 3.8 Limited Role Hierarchy... 42

Figure 3.9 Lattice Role Hierarchy... 43

Figure 3.10 Static Separation of Duty relations (SSD)....................................... 44

Figure 3.11 Dynamic Separation of Duty relations (D SD).....................................44

Figure 4.1 Various users and roles, and their relations.................................... 54

Figure 4.2 Roles sharing common permissions... 55

Figure 4.3 Complex RBAC model of this study..56

Figure 5.1 Role Hierarchical relationships in e-education system................... 64

Figure 5.2 User logon confirmation processes... 68

Figure 6.1 Three tier architecture of e-education system......................................82

Figure 6.2 Middle tier - Orion server... 83

XI

Figure 6.3 Interface for Level I administrators..86

Figure 6.4 Interface for Level II administrators.. 87

Figure 6.5 Interface for Level III administrators... 87

Figure 6.6 Processes of confirming new users’ registrations............................... 89

Figure 6.7 Role management interface... 92

Figure 6.8 Processes of Role Management...93

Figure 6.9 Interface for User Management duty.. 98

Figure 6.10 Processes of User Management...98

Figure 6.11 Permission Management Interface... 100

Figure 6.12 Processes of Permission Management...................................... 101

Figure 6.13 Interface for the role/user/permission assignment management .105

Figure 6.14 Processes of Role/User/Permission Management.................... 106

Figure 6.15 Showing the roles and sessions that the user e2651855 has . . . 107

Figure 6.16 Logon interface for regular users... 114

Figure 6.17 Login process.. 115

Figure 6.18 Logon interface for top level administrators................................. 116

Figure 6.19 Chief Administrators login process.. 116

Figure 6.20 Registration interface for new users.. 117

Figure 6.21 New users’ registration process 118

Figure 6.22 Assignment interface with time control..119

Figure 6.23 A quiz interface with time control..121

Figure 6.24 Assignment/quiz/exam submission involved processes 122

Figure 6.25 Database tables and their relationships 126

XII

Acknowledgement

First of all, I would like to thank my supervisor, Dr. Shyamala C. Sivakumar from

the Finance & Management Science Department of Saint Mary's University, for

her great support, and thoughtful/creative/stimulating advices through the entire

journey of this thesis study. Thanks to her encouragement and trust in me. It has

been a privilege to work with her. I cannot express enough appreciations to her.

I would also like to express my gratitude to all those who gave me the possibility

to complete this thesis. I want to thank my committee members. Dr. Pa wan

Lingras, Dr. Stavros Konstantinidis, and Dr. William Phillips, for taking time to

examine the study and for their comments and suggestions.

Also I want to thank the DEPARTMENT OF MATHEMATICS AND COMPUTING

SCIENCE of Saint Mary's University for their constant support on this thesis

study. In particular, Mr. Owen M. Smith, our department system manager, whose

help in the early stage of this study in building the client-server environment and

his trust in accessing the system server, I greatly appreciated these helps.

Thanks also go to Mr. Perry Sisk and Ms. Hanaa Aboushahia from Saint Mary's

University for providing information on Saint Mary's University’s information

management system.

XIII

Abstract

A ROLE BASED ACCESS CONTROL SYSTEM
FOR ELECTRONIC EDUCATION

By Hong Zhao

Role Based Access Control (RBAC) is an advanced and promising access
control technology. RBAC associates users with roles, roles with permissions,
and a user accesses a permission only when the user has an authorized role
which is associated with that permission.

The thesis is a study of the NIST RBAC standard, and a demonstration of
RBAC’s application in e-education system. It gives a requirement analysis and
specification for e-education system, and designs a hybrid RBAC model. This
study also introduces two unique features: one is to create a privacy attribute and
associate it with each permission; the other one is to have three levels of
administrative functions. It is proved that these novel techniques not only reduce
the number of conflict roles but also improve security and enforce privacy.

December 1,2004

X IV

Chapter 1

Introduction

1.1 Motivation of the thesis study

Today, organizations’ operation and management have started to heavily rely on

computers and Internet. Their success largely depends on how reliable and

secure their information resource system is. Effective and efficient access control

to their information system is needed. At present, an organization’s information

resource is usually controlled through the Access Control Lists (ACLs), which

specify, for each protected resource, a list of named individuals/users with their

respective modes of access to these objects. The access lists are updated by

system administrators as users’ needs and permissions change [Gavrila and

Barkley, 1998; Ferraiolo, et. al., 1999].

Though widely used, ACLs complicate matters by allowing the direct association

of users with permissions. A large number of users each with many permissions

implies a very large number of user/permission associations management. As

such, when a user takes on different jobs within the organization, the system

administrators may have to make many selective addition or deletion of

user/permission associations on all systems. This can be seen as a waste of

time, a source for Introducing errors, and thus a security risk [Saudhu Ravi,

2002]. This issue tends to get worse in organizations which have a large number

of users.

Because of the potential problems associated with this lack of operational

security assurance, organizations have resisted in making sensitive information

and resources available online; this not only limits organizations’ resource

utilization, but also deprives the organizations of potential productivity gains

[Gavrila and Barkley, 1998; Gallaher, 2002].

That is why Role Based Access Control (RBAC) has received increasing

attention in recent years [Ferraiolo, et. al., 1999, 2001]. Based on the “Proposed

NIST Standard for Role Based Access Control" [David F. Ferraiolo, et. al., 2001],

users are not directly assigned to permissions for each application. Instead,

users are assigned to roles and the roles are mapped to permissions,

permissions are associated with roles and users are made members of

appropriate roles. Roles are created based on the requirements of different job

functions in an organization. In this way, RBAC allows administrators to use the

natural structure of an organization to manage access control; it tends to reduce

the cost of information system management while improving the enforcement of

system security policies. The other advantages of RBAC over Access Control

List are that it requires less storage and less maintenance, and less

administration [Gallaher, 2002].

Under RBAC, roles can have overlapping responsibilities and privileges; that is,

users belonging to different roles may need to perform common operations.

Some general operations may be performed by all employees. In this situation, it

would be inefficient and administratively cumbersome to specify repeatedly these

general operations for each role that gets created. Role hierarchies can be

established to provide for the natural structure of an enterprise. A role hierarchy

defines roles that have unique attributes and may contain other roles; that is, one

role may implicitly include the operations that are associated with another role.

With the noticeable advantages, RBAC can be used in healthcare, bank,

government, and university. Coupled with the continuous advances in Internet

technology, RBAC has demonstrated its application potentials. In recent years,

user communities have expressed great interests with RBAC, but its application

potential has not been explored in e-education. This study is, therefore, carried

out to explore the RBAC’s application potential in e-education.

1.2 Organization of the thesis

Based on the “Proposed NIST Standard for Role Based Access Control”

[Ferraiolo, at. a!., 2001], this study introduces the standard RBAC component

models: Core RBAC, Hierarchal RBAC, and Constrained RBAC which contains

Static Separation of Duty Relations (SSD) and Dynamic Separation of Duty

Relations (DSD) [Ferraiolo, et. al., 2001]. It gives a discussion of e-education

system requirement, a hybrid RBAC model for e-educatlon system, and the

design and Implementations of the RBAC based e-educatlon system.

The thesis Is organized as follows. Chapter 2 overviews the traditionally and

currently widely used access control techniques. Including Discretionary Access

Control, Mandatory Access Control, and Access Control List. It also gives a brief

Introduction of role Based Access Control and Its advantages. Chapter 3

describes In detail the NIST standard concept and models of RBAC. Chapter 4

explores the potential of RBAC In e-educatlon application, and gives an analysis

and specification of e-educatlon requirement. Chapter 5 demonstrates the

detailed design of the e-educatlon system based on the requirement/specification

In Chapter 4 and on RBAC concept and models. The detailed Implementation Is

given In Chapter 6. Chapter 7 gives a conclusion and discussion future directions

for research.

Chapter 2

Access Control Technology

2.1 Overview

Access control is a set of procedures performed by hardware, software and

administrators to monitor access, such as identify users’ requesting access,

record access attempts, and grant or deny access based on pre-established

rules. It is the heart of security [Posulns, Shimonski and Faircloth, 2003]. It is

used to protect an organization’s data from unauthorized viewing, modification or

copying, and protect a system from unauthorized use, modification or denial of

service.

Access control technology evolved from the research and development in the

1960’s and 1970’s supported by the Department of Defense (US). That research

and development resulted in two fundamental types of access control techniques:

Discretionary Access Control (DAC) and Mandatory Access Control (MAC)

[Ferraiolo and Kuhn, 1992]. DAC has been perceived as being technically

correct for commercial and civilian government security needs, and has been

applied to single-level military systems in which all users are in the same security

level, but may have different access rights [Ferraiolo and Kuhn, 1992]. MAC is

mainly used for multi-level secure military systems and national security arenas

in which different users are in different security levels based on their rank; its use

in other applications is rare. In general, the two access control technologies were

applied to prevent unauthorized access to classified information.

Since then, advanced computer technology has been deeply and widely involved

in commercial and civilian government organizations. Civilian government and

corporations started to rely heavily on information processing systems to meet

their operational, financial, and information technology requirements. Online

transactions and communications have become regular business operations in all

industries, including education, government, commerce, manufacturing, finance,

and health. The emergence of e-government (e.g. tax department) and e-

business (e.g. online shopping) is an example. At the same time, it has been

understood that once organizations’ computer systems are connected by Internet

and Intranet, the organizations’ resources, plans, and data are at risk. Any

security failure to the computer systems, including corruption, unauthorized

disclosure, or theft of corporate resources, could disrupt the organization’s

operations and have immediate and serious impacts on finance, legal, human

safety, personal privacy, and public confidence. Therefore, significant and broad

sweeping security requirements exist outside the Defence systems. Access

control policies are required not only by computer systems in military but also In

all other industries and services that are computer systems facilitated. More

sophisticated and effective access control technology therefore is needed.

7

The most popular model that has emerged as a full fledged model is RBAC, and

it is as mature as traditional MAC and DAC concepts. It is becoming the leading

access control model for information security management and is incorporated in

major computer operating systems design [Ferraiolo et. al. 2001].

In addition to the above access control technologies, Access Control Lists (ACLs)

technology has also been widely used in the major computer operating systems,

such as Unix and Windows. This control technology was developed to facilitate

advanced network communications. ACLs technology has been used to restrict

multi-users’ access to Network and Internet information system resources.

In the following subsections we give a brief description of the following access

control technologies: I) Discretionary Access Control (DAC), II) Mandatory

Access Control (MAC), III) Access Control List (ACL), IV) and Role-based Access

Control (RBAC).

2.2 Discretionary Access Control (DAC)

DAC is generally used to restrict users’ access to system objects and programs.

It limits access to the system resources (objects and programs) based on the

identity of subjects and/or groups to which the users belong. DAC allows users to

grant and revoke access privileges to any of the system resources. As such,

users are the owners of the objects and programs under their control.

Users System Resources

Userz

User 3

User4 #

Resource A

Resource B

Resource C

Figure 2.1 User and System Resources relationship in DAC

Figure 2.1 shows that the access rights for each user in DAC are different. Userl

and UserS each can access one system resource, resource A and resource B,

respectively. The user2 has the right to access both resource A and Resource C.

The user4 can access all the system resources, Resource A, Resource B, and

Resource C.

However, for many organizations, the end users do not own the information for

which they are allowed access. It is the corporation or agency that is the actual

owner of system objects and programs. Access privileges are controlled by the

organization and are often based on employee functions rather than ownership.

For strong system security, the DAC mechanism is fundamentally inadequate.

That is because DAC access decisions are only based on user’s identity and

ownership, and it ignores other security-relevant requirement such as the roles of

the user, the function and trustworthiness of the program, and the sensitivity of

the objects (data and information). Each user has complete discretion over his

objects; this makes it impossible to enforce a system-wide security policy.

Furthermore, every program run by a user is allowed to inherit all of the

permissions granted to the user and is free to change access to the user's

objects, so no protection is provided against malicious software [Loscocco and

Smalley, 2001].

In addition, because the controls are discretionary, a user or process given

discretionary access to a resource is capable of passing that information

(resource) along to another subject [Jordan, 1987]. This may cause data integrity

issues.

DAC has been used by Unix, NT, NetWare, Linux, Vines, etc. An example of

using DAC is the standard Solaris system [Sun Trusted Solaris 7 Operating

Environment, 2004]. Solaris system uses file permissions and optional access

control lists to restrict access to information based on a user's identity or group

membership. DAC is discretionary and allows a file's owner to change its

permissions. But, in fact the permissions on system files can only be changed by

the administrator who owns them. Therefore, in the Solaris environment DAC

has to be used along with Mandatory Access Control to control access to system

files [Sun Trusted Solaris 7 Operating Environment, 2004].

10

Before network technology was introduced, an organization’s data and

information were normally stored in a single computer system. Using DAC to

control users’ access to system resources made sense then.

2.3 Mandatory Access Control (MAC)

The need for a MAC mechanism arises when the security policy of a system

dictates that protection decisions must not be decided by the object owners and

the system must enforce the protection decisions, that is, the system enforces the

security policy over the wishes or intentions of the object owner [Ferraiolo and

Kuhn, 1992].

MAC enforces the corporate policy or security rules by comparing the sensitivity

of the resource (e.g., file or storage device) with the clearance of the subjects

(e.g., user or application). MAC mechanisms assign a security level to all

resources, assign a security clearance to each user, and ensure that users only

have access to those resources for which they have a clearance. An example

could be: classified data may only be accessed by staff with a 'Secret' clearance

level.

11

users

tUserl

IUser2

tUserS

System Resources

Resource A
Top secret

Resource B
Secret

Resource C
Confidential

Figure 2.2 User and System Resources relationship in MAC

Figure 2.2 shows each resource has been labeled by security levels, either top

secret, or secret, or classified. Userl has Confidential security level, so can only

access resource C. User2 has Secret security level, so can access resource B

and C. UserS and user4 both have Top Secret security level, so they can access

all the resources.

MAC is usually appropriate for extremely secure systems including multilevel

secure military applications or mission critical data applications. An MAC access

control model often exhibits one or more of the following attributes.

• Only administrators can make changes to a resource's security label, and

data owners cannot.

• All data is assigned security level that reflects its relative sensitivity,

confidentiality, and protection value.

12

• All users can read from and post to a lower classification than the one they

are granted (e.g., a "secret" user can read an unclassified document).

• All users can post/submit to a higher classification (e.g., a "secret" user

can post information to a Top Secret resource).

• All users are given read/write access to objects only of the same

classification (e.g., a "secret" user can only read/write to a secret

document).

• Access is authorized or restricted to objects based on the time of day

depending on the labeling on the resource and the user's credentials

(driven by policy).

• In data communication Networks, access is authorized or restricted to

objects based on the security characteristics of the HTTP client (e.g., SSL

bit length, version information, originating IP address or domain, etc.)

Because MAC secures resources by assigning sensitivity labels on resources

and comparing this to the level of sensitivity a user is operating at, in general,

MAC mechanisms are more secure than DAC, but MAC has trade offs in

performance and convenience to users [Curphey, et. al. 2002].

Adding the MAC mechanism in an information system, the vulnerabilities of DAC

described in the previous section can be addressed. MAC access decisions are

based on labels that can contain a variety of security-relevant information. MAC

policy is defined by a system security policy administrator and enforced over all

subjects (processes) and objects (e.g. files, sockets, network interfaces) in the

13

system. MAC can support a wide variety of categories of users on a system, and

it can confine the damage that can be caused by flawed or malicious software.

MAC, as defined in the DoD's Trusted Computer Security Evaluation Criteria

(TCSEC), is "A means of restricting access to objects based on the sensitivity (as

represented by a label) of the information contained in the objects and the formal

authorization (i.e. clearance) of subjects to access information of such

sensitivity." These policies for access control are not particularly well suited to

the requirements of government and industry organizations that process

unclassified but sensitive information. In these environments, security objectives

often support higher level organizational policies which are derived from existing

laws, ethics, regulations, or generally accepted practices. Such environments

usually require the ability to control actions of individuals beyond just an

individual's ability to access information according to how that information is

labeled based on its sensitivity.

In addition, the traditional MAC mechanism is typically closely coupled to a multi

level security policy which bases its access decisions on classifications for

objects and clearances for subjects. It provides poor support for data and

application integrity, separation of duty, and least privilege requirements. It

requires special trusted subjects that act outside of the access control model. It

fails to tightly control the relationship between a subject and the code it executes.

This limits the ability of the system to provide protection based on the function

and trustworthiness of the code, to correctly manage permissions required for

execution, and to minimize the likelihood of malicious code execution.

14

MAC is mandatory because the labelling of information happens automatically,

and ordinary users cannot change labels unless they are authorized by an

administrator [Sun Trusted Solaris 7 Operating Environment, 2004].

In MAC it is the system that decides how the resources will be shared. Only the

administrators, not object owners, may change the object level. It is used in

systems where security is critical, i.e., military. MAC is also hard to program,

configure, and implement. It relies on the system to control access. For

example, if a file is classified as secret, MAC will prevent anyone from writing top

secret information into that file.

2.4 Access Control List (ACL)

ACL is typically a file used by the access control system to determine who may

access which programs and files, in what method and at what time. Different

operating systems may have different ACL terms. The typical types of access

include read, write, create, execute, modify, deiete, and rename.

ACL specifies, for each protected resource, a list of named individuals/users with

their respective modes of access to these objects. It is often considered as an

object that is associated with a file and contains entries specifying the access that

individual users or groups of users have to the file. ACL provides a

15

Straightforward way of granting or denying access for a specified user or groups

of users.

ACL is mostly used in computer operating systems and computer networks. In a

computer operating system, ACL is designed as a table that tells the system

which access rights each user has to a particular system object (such as an

individual file or file directory). Each object has a security attribute that identifies

its access control list. The list has an entry for each system user with access

privileges. The most common privileges include the ability to read a file, to write

to a file, and to execute a file (if it is an executable file or program).

Microsoft Windows NT/2000, Novell's Netware, Digital's OpenVMS, and Unix-

based systems are among the operating systems that use access control lists.

The list is implemented differently by each operating system. For instance, in

Windows NT/2000, each ACL is associated with a system object. It has one or

more access control entries that consist of the name of a user or group of users.

For each of these users or groups, the access privileges are stated in a string of

bits called an access mask. Generally, the system administrator or the object

owner creates the access control list for an object.

In computer network, ACLs are rules that control access between networks.

They provide security for the entire network. Access lists monitor network traffic

by controlling whether packets are forwarded or blocked at the switch's interfaces

[Technology Highlights, 2004]. Based on criteria specified within the ACL (source

16

address, destination address, upper-layer protocol, or other information), the

switch examines each packet to determine whether to forward or drop it. With

ACL, access to specific segments of the network can be controlled (e.g.. Host A

is allowed to access the Human Resources network while Host B is denied

access to the same segment). Access lists can also be used to decide which

types of traffic are forwarded or blocked at the switch interfaces. For example,

you can permit e-mail traffic to be routed, while at the same time all Telnet traffic

is blocked.

In general, these methods are effective in a static environment, but not in

dynamic environments, where users enter and leave, or change positions within

the organization often. The constant stream of changes and frequent updating of

access permissions have to be made; these are often time-consuming, expensive

and error-prone processes. A common security lapse with these approaches is

administrators not making timely permission updates, enabling unauthorized

users to access restricted data [RBAC Case study, 2004].

In summary, comparing the above three access control technologies (Table 2.1),

it is clear that MAC enforces great security, but too much to configure and

implement, and may not be applicable in organizations outside military. DAC is

not secure enough. ACLs provide a good access mechanism, but for a large

number of users, ACLs can be difficult to manage.

17

Table 2.1 Simple comparison of MAC, DAC and ACLs

How to enforce access

DAC Based on users’ identity

MAC Based on users’ identity and objects’ classification

ACLs Attach a list of users to each object of the system

To address these security management issues, Role Based Access Control

(RBAC) technology was developed. As described in the next section and

Chapter 3, RBAC is a better solution for information security management.

2.5 RBAC

2.5.1 Review of RBAC

RBAC is an advanced access control mechanism. While traditional approaches

(ACL, MAC, DAC) control access to system data and network resources by

directly specifying detailed permissions for each user, RBAC uses roles or job

responsibilities to organize access privileges.

In RBAC, rights and permissions are assigned to roles rather than to individual

users. Users acquire these rights and permissions as they are assigned

membership in appropriate roles. This simple idea greatly eases the

administration of authorizations and improves information system security.

18

On the surface, basing access on roles or job descriptions may seem a bit

restricting, but RBAC allows for granting groups multiple access permissions and

even the ability to allow specific individuals elevated access privileges. For

example, the accounting department staff would have access to financial systems

and data, but their managers could also be granted access to human resource

files and marketing projections. Roles can also be set up based on locations,

projects and management level [RBAC Case study, 2004].

RBAC has the potential to be used in almost any organization that uses a

computer network to limit access to particular pieces of information. Industries

that will especially benefit from RBAC are those for which information security is

a key, such as banking, health care, government, software development, and the

military [RBAC Case study, 2004].

The efficiency and cost savings come from the diminished administrative need in

maintaining a RBAC system. Employee turnover and assignment changes make

it difficult to keep up with the constantly changing human resources landscape.

That's not the case with roles, whose description usually doesn't change too

often. By only having to add and remove users from role groups, the organization

can cut down on the administrative costs and reduce the potential for error

[RBAC Case study, 2004].

19

RBAC provides greater productivity on the part of security administrators,

resulting in fewer errors and a greater degree of operational security. It can also

be argued that RBAC actually simplifies information system management,

administration and security. This is achieved by statically and dynamically

controlling the actions of users by establishing and defining roles, role

hierarchies, relationships and constraints [Ferraiolo, Cugini and Kuhn, 1995]. In

an RBAC environment, the main administrative tasks tend to be adding and

deleting users to and from roles. This differs from the more conventional and

less intuitive process of directly managing lower level access control

mechanisms, such as access control lists, on an object-by-object basis.

2.5.2 RBAC Advantages

In detail, RBAC has two unique advantages. First, RBAC is based on the user's

role rather than the user's identity, direct and indirect administrative costs are

greatly reduced. By assigning individuals to predefined roles, the administrative

process of establishing privileges is streamlined and management time for

reviewing privilege assignments is reduced. For example, if a user moves to a

new function within the organization, the user can simply be assigned to the new

role and removed from the old one, whereas in the absence of an RBAC model,

the user’s old permissions would have to be Individually revoked, and new

permissions would have to be granted. Secondly, RBAC provides greater

security because it prevents users from obtaining inconsistent or incompatible

privileges that can enable access violations [RBAC Case Study, 2004].

20

The major benefits of RBAC are the ability to express and enforce enterprise-

specific security policies and to simplify the process of security management.

RBAC is a framework of policy rich mechanisms that allow per-subject (role) as

well as per-object access review. Its configuration is dependent on

organizational policies. This allows RBAC to be adaptable (more so than other

types of access control) to any organizational structure and means of conducting

business. The policies implemented under RBAC can evolve over time as

enterprise and organizational structure and security needs change. RBAC has

been seen as a “commercial” and cost-effective alternative to the MAC concepts

[A Review Paper of Role Based Access Control, 1999].

Additionally, in a distributed environment, administrator responsibilities can be

divided among central and local protection domains [Ferraiolo, Cugini and Kuhn,

1995]. In other words, central protection policies can be defined at the enterprise

level while leaving protection issues that are of local concern at the

organizational unit level.

RBAC also has many operational benefits. One of the most significant is cost

savings to an organization. Definite figures of RBAC cost savings are

unavailable, but a survey of Information Security xqqlÙqxq conducted by the

Research Triangle Institute (RTI) on behalf of the National Institute of Standards

and Technology (NIST) provides a glimpse of financial benefit this new

technology can produce [Gallaher, O’Connor and Kropp, 2002].

21

Based on an ongoing RTI study, firms that implement a RBAC system yield two

major benefits: reduced administrative overhead and improved employee

productivity. With access based on roles, administrators aren't hampered by the

laborious task of updating individual user privileges. Consequently, employees

can gain faster access to systems critical to their jobs. To investigate the

potential magnitude of these benefits, RTI compiled the responses of more than

100 Information Security xeOiéQrs on the administrative costs associated with

various access control systems.

A recent report by SETA Corp., sponsored by NIST, asserted that organizations

with certain staffing, data and organizational characteristics could reap

tremendous benefits from deploying a RBAC system. These characteristics

reflect the common problems found in many IT-dependant organizations:

tremendous demand for services clashing with limited resources. According to

SETA, organizations with a large number of staffs with high turnover rates, limited

security resources, stable organizational structure and application, and maximum

control over IT resources and data would benefit the most from a role based

access system [A review paper of Role Based Access Control, 1999].

The quantifying examples that show the advantages of using RBAC, and other

security improvements are listed in the following few subsections.

2.5.2.1 Time savings

2 2

The study [RBAC Case study, 2004] by RTI indicates that organizations using

RBAC made significant timesaving over conventional user based access control

mechanisms in assigning privileges to new users, and slightly better ability to

update user privileges. Examining the number of times these tasks are

performed on a daily basis and the number of employees in an organization, it is

concluded that a RBAC system could save an organization 7.01 minutes per

employee, per year in administration functions [RBAC Case study, 2004]. When

take consideration of the average hourly salary of an IT administrator-$59.27 per

hour on average, this saving takes on significance. The annual cost savings

ranges from $6,924 a year for organizations with 1,000 employees to $692,471

for organizations with 100,000 employees.

2.5.2 2 Cost savings

The survey [RBAC Case study, 2004] also shows a great cost-saving which is

further amplified when combined with the reduced employee downtime. When

new and transitioning employees receive their system privileges faster through a

RBAC system, their productivity is increased. The average downtime for new

employees while waiting for system access privileges was 26.4 hours with non-

RBAC systems and 14.7 hours with RBAC systems. This means that using

RBAC can result in an overall saving in average downtime of 11.7 hours per new

employee. If the average employee hourly wage is $39.27, the annual employee

turnover rate is 13 percent, and the annual growth rate is 3 percent, the annual

23

productivity cost savings yielded by a RBAC system ranges from $75,000 for an

organization of 1,000 employees to $7.4 million for an organization of 100,000

employees.

2.5.2 3 Simplified Systems Administration

In theory, if a role is attached with Xnumber of users, and the role has Knumber

of permissions, it is obvious that the administration cost with RBAC is {X+ V).This

is less than the cost of traditional administration (A* Y). When the number of

permissions and users increases, this cost becomes very impressive.

2.5.2.4 Reduced errors

Because less maintenance is required, the chance to make mistakes is limited.

RBAC minimizes each role’s privileges, and gives each role minimum necessary

permissions.

2.5 2.5 Enhanced Systems Security and Integrity

While security is a primary concern of many organizations, management more

often sees it as a drain on financial resources than as a benefit to the bottom line.

This perception persists until the inevitable happens - the organization suffers

from an insider security lapse. Various surveys, including those conducted by

Information Security, have found that a significant number of organizations have

24

experienced an insider security lapse, costing an average of about $250,000

(US) dollars per incident.

RBAC can reduce the impact from security violations in two ways. 1), RBAC

decreases the likelihood that a security violation occurs; 2), if a security violation

occurs, RBAC can limit the damage from the violation. Roles limit the possibility

of internal security breaches from individuals who should not have access to the

data and applications associated with each function. In addition, because

privileges are not assigned manually, it is less likely that the administrator will

make an error and inadvertently grant a user access to information or

applications to which he or she would otherwise be prohibited. The greater

control over users’ access to information and resources will result in minimized

potential for inside security violations.

The enhanced security provided by RBAC systems would result in further cost

savings. Some respondents, without providing specifics, did indicate that RBAC

systems reduced the number of security violations in their organizations.

In summary, the administrative savings, downtime savings and security benefits

derived from RBAC systems will vary based on the size of an organization and its

industry. The greater employee turnover, and in turn the number of people

changing roles, the greater the cost savings of RBAC relative to other access

control systems. Also, some organizations are very dynamic, and user roles and

25

permissions change quickly. In these environments, RBAC is more efficient in

moving users in and out of given roles and changing the permissions of given

roles than competing access control systems. This improved efficiency is

observable in the decrease in labor hours that the computer network support

team spends on administrative tasks.

Based on the survey [RBAC Case study, 2004], organizations of all sizes can

yield a satisfying return on investment - both in direct and indirect costs - by

deploying an RBAC system. It is also observed that medium- to large-sized

organizations would yield a quicker return of investment from deploying a RBAC

system, since the savings increase with the number of users on a system.

2.6 Summary

ACLs is one of the most common access control models [Gallaher, O’Connor and

Kropp, 2002]. When using ACLs, every piece of data or application has a list of

users associated with it who are allowed access. In such a system, the security

administrator will easily see which users have access to which data and

applications. Changing access to the piece of information is straightforward: the

administrator simply adds or removes a user from the ACL. Each set of data or

application has its own ACL, but there may or may not be a corresponding list

that gives the administrator information on all of the pieces of information to

which a particular user has access. Only by examining each piece of data

26

individually and checking for access can the administrator find any potential

security violations. If all accesses by a particular user need to be revoked, the

administrator must examine each ACL, one by one, and remove the user from

each list. When a user takes on different responsibilities within the organization,

the problem gets worse. Rather than simply eliminating the user from every ACL,

the administrator must determine which permissions need to be eliminated, left in

place, or altered.

In DAC it is the individual who owns the data that controls the access to the data.

ACLs is regarded as one implementation of DAC [Gallaher, O’Connor, and

Kropp, 2002]. DAC governs access to information based on the user’s identity

and rules that specify which users have access to which pieces of information.

Whereas ACLs are lists that specify which users can access a particular piece of

data, DAC consists of a set of rules that specify which users are allowed to

access the data [Gallaher, O’Connor, and Kropp, 2002].

When a user requests access to a particular piece of data, the system searches

for a rule that specifies which users are allowed to access the information. If the

rule is found, the user is given access; if not, the user is denied [Gallaher,

O’Connor and Kropp, 2002]. For example, a rule may state that users from a

certain group are not allowed to read a particular data file. Rule-based DAC is an

improvement over ACLs, but it is still susceptible to human error and therefore

suffers from potential security violations. DAC does not impose any restrictions

on data access for a particular user. Once users can access data, they can

27

change or pass that information onto any other user without the administrator’s

knowledge [Sandhu and Sa ma rati, 1994].

MAC is a departure from other access control mechanisms because it is based

on hierarchical security labels and assigns each user and each piece of

information or application a particular security level (e.g., confidential, secret, top

secret). Two common principles are then applied to determine if a user has

access to a particular piece of information: read down access and write up

access [Gallaher, O’Connor and Kropp, 2002]. Read down access gives users

the ability to access any piece of information that is at or below their own security

level. If a user has a secret security level, they are able to access secret and

confidential material but not top secret material. Write up access states that a

subject’s clearance must be dominated by the security level of the data or

information generated. For example, someone with a secret clearance can only

write things that are secret or top secret. With these two access control

principles, information can only flow across security levels or up security levels.

RBAC is now considered a comprehensive mechanism (details are given in

Chapter 3). It encompasses MAC and DAC as special cases and goes beyond

them in providing a policy-neutral framework [Gallaher, O’Connor and Kropp,

2002]. And, in recent years, user communities have expressed great interests

with RBAC but disenchantment with traditional MAC and DAC. This is because:

1) DAC is not applicable to the majority of personal information systems; 2) the

most commonly used MAC is the multilevel security mechanism used by the US

28

Department of Defence, which associates information with such labels as TOP

SECRET, SECRET, and CONFIDENTIAL This type of MAC is not flexible

enough for commercial use, nor is it adequate for the needs of personal

information systems [A Review Paper of Role Based Access Control, 1999].

29

Chapter 3

Role Based Access Control Technology

3.1 Overview of RBAC

3.1.1 History of RBAC

RBAC was first introduced by Ferraiolo and Kuhn in 1992. Since then, in order to

identify the true values of RBAC features in enterprises and the potential of its

practical implementation, university researchers, vendors, and the National

Institute of Standards and Technology have made great efforts. As a result of

these efforts, a number of RBAC models and applications were proposed, and

the potential benefits of RBAC technology have been recognized [Ferraiolo and

Kuhn, 1992].

While these models and implementations are relatively similar on fundamental

RBAC concepts, they differ in significant details. The models and applications

come from different commercial and academic backgrounds, little consensus

exists on what to call the different parts. Many models use different terminologies

to describe the same concepts. There were no attempts at standardizing main

RBAC features [Ferraiolo and Kuhn, 1992].

30

In order to address these issues of terminology and scope, and define a

consensus standard, the first effort was made at the 2000 ACM Workshop on

RBAC. Based on the follow-up comments and panel discussions at that

workshop, a formal proposal titled Proposed NIST Standard for Roie-Based

Access Contrôlées published in 2001 [Ferraiolo, et. al., 2001].

Through the past few years of research and practical implementations, RBAC’s

advantages and market values have been proven. On February 19, 2004, RBAC

became an American National Standard - ANSI INCUS 359-2004 [National

Institute of Standards and Technology].

3.1.2 RBAC background

Access control techniques are used to control the actions, functions, applications

and operations of legitimate users and to protect the integrity of the stored

information within an organization's computer system. The effectiveness of an

access control technology is measured on two criteria: reliability of security and

ease of administration [Andress, 2001]. RBAC can meet the two criteria,

because RBAC has two main advantages as discussed in Chapter 2.

Because of the two advantages, and the unique feature that it can map to

organizational structure, RBAC has been incorporated into major information

technology vendors’ product lines, ranging from defence to health care [Ferraiolo,

31

et. al., 2001 ; Role Based Access Control, 2003; A review paper of Role Based

Access Control, 1999], and RBAC has now become the leading model for

advanced access control, in particular, in large organizations where the natural

role hierarchies and separation of duty are well known [Jaeger, Michailidis and

Rada, 1999].

Though widely applied in many industries and services, RBAC has not been

practiced in education environments. Some e-educations, such as Moodle, have

started to use some of the RBAC features, but different from RBAC. That is why

this study was undertaken; it is to explore the potential of RBAC in e-education

system applications.

RBAC is an open architecture: its officially approved standards and specifications

are available to the public for free, and anyone can design add-on features for it;

it gives organizations the flexibility to meet their own specific needs.

3.1.3 RBAC Characteristics and Policies

RBAC is often described in terms of users, roles, role hierarchies, operations and

objects. To perform an operation on an RBAC controlled object, a user must be

active in some role. This assumes that the user is an authorized member of that

role. RBAC enables administrators to place constraints on role authorization, role

activation and operation execution. Constraints could include mutual exclusivity

rules that can be applied on a role-by-role basis. Constraints can also be placed

32

on the authorization of an operation to a role and on operations being performed

on objects, for example, time and location constraints.

The following list outlines some of the characteristics of RBAC [Ferraiolo, Cugini

and Kuhn, 1995]:

- under the RBAC framework, a user is an individual, a role is a set of job

functions, and an operation represents a particular mode of access to a

set of one or more RBAC objects;

- the type of operations and objects that RBAC controls is dependent on the

type of system in which it is implemented, for example, within a database

management system, operations would take the form of and exhibit all the

properties of a transaction, such as insert, update, and delete a record;

- roles can have overlapping responsibilities and privileges, that is, users

belonging to different roles may need to perform some common

operations. As a result, RBAC supports the concept of role hierarchies;

- a role hierarchy defines roles that have unique attributes and that may

contain other roles, for instance, that one role may implicitly include the

operations, constraints, and objects that are associated with another role;

- role authorization means association of user with a role, it can be subject

to the following:

■ the user can be given no more privileges than is necessary to

perform his/her job (principle of least privilege);

33

■ the role in which the user is gaining membership is not mutually

exclusive with another role for which the user already possesses

membership (static separation of duty);

- role activation involves the mapping of a user to one or possibly many

roles. A user initiates a session during which the user is associated with a

subset of roles for which that user has membership. A particular role for a

user can be activated if the followings are meet: the user is authorized for

the role being proposed for activation; the activation of the proposed role is

not mutually exclusive with any other active role(s) of the user; the

proposed operation is authorized for the role being proposed for activation;

- role execution of an operation can take place only if the user is acting

within an active role, that is, once it is determined that a role is part of the

authorized role set for the user;

- dynamic separation of duty can be provided with RBAC as long as the

following rule is satisfied: a user can become active in a new role only if

the proposed role is not mutually exclusive with any of the roles in which

the user is currently active;

- operation authorization can only be granted to a user if the operation is

authorized for the user’s proposed active role;

As shown above, RBAC is a framework of robust security policies, it can map to

various organizational structures and means of conducting business. Over time,

the security policies implemented under RBAC can evolve as enterprise and

security requirements change.

34

RBAC supports several well known security principles and policies critical to any

information system [A Review Paper of Role Based Access Control, 1999].

These include the enforcement of the concept of LeastPrivHege\ox

administrators and general users, and the enforcement of conflict of interest rules

that involve duty assignment and dynamic and static separation of duties. These

policies can be enforced (1) at the time operations are enforced for a role, (2) at

the time users are authorized as members of a role, (3) at the time of role

activation during a user’s active session, or (4) when a user (or an application)

attempts to perform an operation on an object [A Review Paper of Role Based

Access Control, 1999]. Which of the four strategies will be used depends on

individual system’s need and design.

3.2 RBAC Concept

RBAC simplifies administration by statically and dynamically regulating users’

actions through the establishment and definition of roles, role hierarchies,

relationships and constraints. This is in contrast to the conventional and less

intuitive process of administering lower level access control mechanisms directly

on an object-by-object basis.

Based on the standard Proposed NIST Standard for Roie Based Access Control

[Jaeger, Michailidis and Rada, 1999], the basic concept of RBAC is that: users

are assigned to roles, and permissions are assigned to roles; a user acquires

35

permissions by becoming a member of one or more roles. A large organization

may have a few thousands users, but only a few hundred roles, and some

permissions of the system are common to most of the users. RBAC groups the

users in different roles, which makes it simple for administrators to control the

users and permissions, and reduces management operations which in turn

reduce operational mistakes.

The RBAC standard [Jaeger, Michailidis and Rada, 1999] includes three models:

Core RBAC, Hierarchal RBAC, and Constrained RBAC. Core RBAC is the basic

model as it contains all the essential aspects of RBAC. Hierarchical RBAC is

introduced to accommodate the natural role hierarchy structure found within an

organization. Constrained RBAC includes Static Separation of Duty Relations

and Dynamic Separation of Duty Relations. The aim of Constrained RBAC is to

solve the issues relevant to duty/permission conflict of interests. Once the Core

RBAC model is understood, the other two models (Hierarchical RBAC,

Constrained RBAC) can be understood and deployed by adding extra features.

It is noted that not all RBAC features are appropriate for all environments nor do

vendors necessarily implement all RBAC features.

The following section is the descriptions of the RBAC concept and models based

on the standard [Jaeger, Michailidis and Rada, 1999].

36

3.3 RBAC Components

3.3.1 Core RBAC

Based on the proposed standard [Jaeger, Michailidis and Rada, 1999], Core

RBAC consists of the essential aspects of RBAC, and includes a set of elements:

USERS, ROLES, CBS, OPS, PERMISSIONS, SESSIONS, and a number of

assignment relationships as shown in Figure 3.1.

OBSOPSROLESUSERS

SESSIONS

PERMISSIONS

Figure 3.1 Core RBAC

• A usens a human being. For instance, Jen is an employee of a bank, so

she is a user of the banking computer system. The concept of a user can

also be extended to include a machine, a network, or an intelligent

autonomous agent, though this is not considered in this study.

37

• A role is a job function that is specified within an organization with some

associated semantics regarding the authority and responsibility. For

example, account manager is a role in a bank.

• An object\s a computer resource, such as a file, a directory, a program, a

printer or software.

• An operation is an executable image of the object. Upon invocation, it

executes some functions for the user. The types of operations and objects

that RBAC controls are dependent on the type of application systems in

which they will be implemented. It includes read, write, and execute.

• A permission is an approval to perform an operation on one or more

system protected objects. For example, reading the fiiex\s a permission.

• A session is a set of active roles. It is a subset of the whole set of roles

assigned to a user. One user has one session. Only one session can be

active at a time. A session allows selective activation and deactivation of

roles. During a session, the user can successfully perform any operations

permitted by these roles’ duties.

The important part of RBAC is the user - role assignment and permission - role

assignment relations (Figure 3.2 and Figure 3.3). Figure 3.2 shows a number of

users are assigned to a single role, and figure 3.3 shows a number of

permissions are assigned to a single role.

User 1

Role User 2

User N

Figure 3.2 Users are assigned to a role

38

Permission 1

Permission 2

Permission N

Figure 3.3 Permissions are assigned to a role

Role

Both user - role and permission - role assignment relationships can be many-to-

many (Figure 3.4), that is, the same user can be assigned to many roles, and a

single role can have many users. In the same way, a single permission can be

assigned to many roles, and a single role can have many permissions.

R o leassign assign Permission

Figure 3.4 User - Role - Permission relationships

A session is a mapping of one user to a set of roles. Each session is associated

with a single user and each user is associated with one or more sessions. A user

39

may be assigned to many roles, but not all of those roles are necessarily put in a

session. Only the roles that are active are in a session, that is, a session

contains the activated roles of a user.

3.3.2 Hierarchical RBAC

Hierarchies are a natural means of structuring roles to reflect an organization’s

authority and responsibility. It has been noticed that in an organization roles can

have overlapping responsibilities, that is, users belonging to different roles may

have some common permissions. In other words, within an organization there

might be a number of general permissions that are performed by different roles.

As such, it would be inefficient and administratively cumbersome to specify

repeatedly their general permission - role assignments. To support an

organization’s operational structure and improve efficiency, the proposed RBAC

standard incorporates role hierarchies; Hierarchical RBAC becomes a key aspect

of RBAC models (Figure 3.5).

Role hierarchies define an inheritance relation between roles (Figure 3.6a). For

example, r̂ and rz are two roles in an organization, if all permissions of ra are

also permissions of then it is called ri inheriting ï2 - If no role lies between ri

and t2 , it is said that ri is an immediate descendant of r2 (Figure 3.6b).

40

Role hierarchies allow senior roles to acquire the permissions of their juniors. The

proposed RBAC standard recognizes two types of role hierarchies. They are the

General Role Hierarchy and Limited Role Hierarchy.

USERS

Role hierarchy

U R ^ P_R
Roles

Sessions

OP

Permissions

OB

Figure 3.5 Hierarchical RBAC

(^ ^ R o le l^

Role3
Rolez

Figure 3.6a. Role1 inherits role2 and roleS b. Role1 is an imm ediate descendant of role2

41

The General role hierarchy supports multiple inheritances. It allows inheritance

of permissions from two or more roles and inheritance of user membership from

two or more roles (Figure 3.7). In this hierarchy, role 1 (R1) has permission P r i,

and role 2 (R2) has permission Pr2 , but there is no common permission between

RI and R2; so there can be no sharing of resources between two roles which are

on different branches of a tree structure. It is also noted that the top role may

obtain too much power because it can inherit all permissions and membership

from other individual roles.

R l (P r i)

Figure 3.7 General Role Hierarchy

Limited role hierarchy imposes restrictions resulting in a simpler and inverted tree

structure (Figure 3.8). In this tree structure, a role may have one or more

immediate ascendants, but is restricted to a single immediate descendant. In

Figure 3.8, department’s permission (Pd) is basic information for all users in the

department; rolel and role2 have their own permissions (P r i and Pr2,

respectively) and have common permission Pp. The same ideas are for the

role3.

42

To maximize the use of hierarchy structures, the lattice hierarchy structure is

introduced; it is a combination of the general role hierarchy and limited role

hierarchy. The lattice structure takes advantage of the above two hierarchy

structures. It prevents one role and its associated users from having monopoly

power of access, and also allows reasonable amount of inheritance. Figure 3.9 is

an example of the lattice hierarchy structure; it shows role 5 (R5) has most of

permissions from the roles in the department, but not all. Role 5 is on the top of

the structure, but it just inherits the necessary functions for it to perform its duties.

Role 5 shares the permissions of role 1, 3, and 4, as well as the basic ones of the

department, but it does not have the permissions that are designed for the role 2.

This hybrid structure will be used in this thesis to design an e-education system.

Department (P d)

R 3 (P r i + P d + P rs)

Figure 3.8 Limited Role Hierarchy

43

Department (Pd)

R4 (Pri + Pd + Pr4)R 3 (P r i + Pd + Prs)

R 5 (P ri + P d + P r4+ P rs)

Figure 3.9 Lattice Role Hierarchy

3.3.3 Constrained RBAC

Within an organization certain roles may be mutually exclusive. Normally, the

conflict of interest roles would not be allowed to be assigned to the same user,

but sometimes, some key users are allowed to have mutually exclusive roles.

For example, an employee of a bank can also be a client of this bank; in a

hospital, a doctor can be patient in his or her hospital. When a user acts as a

client of the bank, the user can only view his/her financial records, but not

allowed to modify them; when the user acts as an employee of the bank, he/she

can not access their own bank account, even their family member’s, but he or

44

she will have the right to modify customers’ financial records. In order to address

these types of issues, the Constrained RBAC is introduced (Figure 3.10 and

Figure 3.11).

Role hierarchy
Permission
assignment

User T;
assignment

Users

Sessions SSD

Permissions

Figure 3.10 Static Separation of Duty relations (SSD)

Role hierarchy
User ^ 7 Permission

assignment
Ro esUsers

Sessions

Permissions

Figure 3.11 Dynamic Separation of Duty relations (DSD)

The Constrained RBAC is based on the Core RBAC and Hierarchical RBAC.

Conflict of interest in a role-based system often arises as a result of a user

45

gaining permissions associated with conflicting roles as indicated in the above

example. The Constrained RBAC proposes two common ways to prevent the

conflict. 1) Static Separation of Duty (SSD) (Figure 3.10) enforces constraints on

the assignment of users to roles: one user can not have mutually exclusive roles

at all. 2) Dynamic Separation of Duty (DSD) (Figure 3.11) limits the permissions

that are available to a user by placing constraints on the roles that can be

activated within or across a user’s sessions. Some users can have mutually

exclusive roles but in different sessions, and only one session can be invoked at

the same time. It is observed that DSD is more flexible than SSD.

In summary, the Core RBAC model consists of the essential components, and it

provides the most basic elements for any RBAC based system. Hierarchy RBAC

and Constrained RBAC models are built based on the Core RBAC. Users can

incorporate the three models and build their own RBAC model, as shown in

Chapter 4 of this study where a hybrid RBAC model is built for an e-education

system.

46

Chapter 4

Requirements and specification of RBAC based e-education

system

The World Wide Web and Internet have changed the way people acquire and

share Information and knowledge. People become comfortable enough to take

online courses, called e-education, e.g., WebCT and Moodle. It is a professional

tool allowing students and instructors to involve in courses through Internet.

An e-education system can be considered as a virtual university. It has most of

the framework of a traditional education organization, except for the real

classrooms, campus, and face-to-face communication. Compared to traditional

education, e-education has the following advantages:

- Students do not need to physically attend lectures or labs

- Students can study at different times

- They can review course materials many times

- They can take the study in different locations in the world. E-education

makes it possible for many people, who may not be able to attend the

traditional education, to get training

- The same flexibility and benefits are applicable to education instructors

47

- Save costs for both students and the virtual university, because no real

campus and classrooms are required

Due to the above advantages and continuing advances in Internet technology, e-

education is becoming more and more popular.

A typical e-education system has a variety of components, such as roles, users,

and education resources. In order to effectively manage the complex

relationships among these components, a sophisticated access control

mechanism is required. From the discussion of RBAC characteristics in Chapter

3, it is clear that RBAC models are the most optimal solution for e-education

system’s access control. The e-education system designed and implemented

with RBAC concept can have a dramatic improvement in resources management

cost and security.

The objective of this study is, therefore, to design and develop an e-education

system using the RBAC concept and models, and to demonstrate that RBAC can

provide efficient and secure management for e-education system.

4.1 E-education system requirements

An e-education system is a simplified version of a real university. It has a less

complex organizational structure. The essential entities of an e-education

48

system include students, instructors, system administrators, and accountants.

Some less crucial entities could be teaching assistant, etc. These entities of the

e-education system have the same operational functions as those in a real

university.

An e-education also has system resources that include students and instructors’

personal information, student academic records, course curriculums, financial

status, etc.

An e-education system should be able to accept new users’ registration through

Internet. It will give different groups of users different access rights to the system

resources. For instance, an individual student’s personal data can only be

accessed by that student; one particular course material can only be accessed by

the students who have registered for the course within a specific period of time,

and their instructors. The system should be able to provide reliable and secure

online services. It should be available anytime and anywhere via Internet.

In summary, these requirements may be expanded into the following functions:

(1) Online registration: the e-education system must allow new users to

register; the registration form must be available to take new users’ name,

mailing address, phone, e-mail address, payment, etc.

(2) Remote access via Internet: the system must be available for users to

access anytime, anywhere, 24 hours a day, 7 days a week through a web

49

browser. The access control should be enabled via the authorized logon

ID and password.

(3) Resource access for learning: once a user logs on to the system, the

system should display corresponding data for that user. Similarly groups

of users can only access the resources allocated to that groups. For

instance, student users are only allowed to view the information that is

related to them; they are not allowed to view the information of the

courses that they have not registered for; students are not allowed to view

other students’ personal data. In the same way, an instructor can only

view and evaluate the data of students who are registered for his/her

courses. The system must also be able to identify users’ roles; if the logon

user is an administrator, the system will direct the user to the

corresponding administrative WebPages; if the user is a student, the

system will direct him or her to the student learning sites.

(4) Create and post course materials: the system should allow instructors to

create and post course curriculums, assignments, quizzes, etc., and

distribute the assessed works back to students.

(5) Submit work for evaluation: once completing a work, such as assignment,

quiz, and exam, a student should be able to submit it to the appropriate

instructors for an assessment.

(6) Manage system resources: the system resources, such as, personal

records, course curriculums, assignments, etc. must be managed and

maintained up-to-date by administrators.

50

4.2 E-education specification

To meet the above requirements, the foilowing sections give explicit specification

of the e-education system. In general, there are two streams of specifications.

One stream specifies how users, inciuding students, instructors, teaching

assistants, and accountants, access the e-education system. The other stream

specifies how the system administrators manage the system resources.

4.2.1 User access function specification

Students, teaching assistants (TA), and instructors can only access their own

personal information, academic data and payment status. Students are allowed

to get information (assignments, handouts, quizzes, etc.) from only the courses

for which they have registered. Instructors create course materials (handouts,

quizzes, assignments, exams, etc.), and make them available to the registered

students. The foliowing tasks are performed by instructors, TA, and students,

respectively.

■ instructors:

- Create course activities, inciuding references and tutorial materials,

homework, quizzes, and examinations

- Read students responses

- Grade students responses

■ Students:

51

TA

Select a course to register in

Create responses to activities posted by instructors

Submit completed responses to such activities

View their own grades/marks/payments

Read students assignments/quizzes/exams in designated courses

Write students grade for the designated courses

Given these tasks, the e-education system must protect the privacy and integrity

of these course data, and the following access control requirements must be

upheld.

■ Instructors:

- Can only access data associated with their own courses

- Can read/write activities that are under development

- Can read/write activities that have been assigned

- Can assign students to activities

- Can only read responses that have been submitted by students

- Can read/write the assigned courses grades

■ Students:

- Can only access data associated with own courses

Can read/write activities that are under development for their

courses

- Can read/write activities that have been assigned for this course

- Can only read responses that have been submitted

52

TA

Can not write responses that have been submitted for assessment

Can read own grades

Can not write their own grades

Can read students grades for the designated/assigned courses.

Can read activities that have been designated/assigned

Can grade activities that have been designated/assigned

4.2.2 Administrative function specification

Administrators piay a critical role in the e-education system management. Their

functions are to ensure efficient and effective data communications among

different users (students, instructors, accountants, and TA), and to ensure and

maintain integrity and security of system data. For instance, course materials

must be protected; unnecessary access is not allowed. Each course material

should be strictly protected and only allowed access by the designated

instructors, TAs, and registered students.

Administrators are required to confirm a new user’ registration information (e.g.,

names, address, payment, courses interested) and accept the new user’s

registration based on online provided data. If the new user’s registration is

confirmed and accepted, the administrators will issue a set of logon username

and password to this user. Based on the request at the time the user registered,

53

administrators assign the user the requested role, which will be the user’s default

role.

In summary, administrators’ tasks/functions should include the following:

- Take new users’ registration requests

- Create and maintain users’ profiles

- Confirm and add system resources

- Control users’ access to system resources

In order to provide a high quality and user satisfied service (reliable, secure,

available anytime and anywhere), the good system design is very critical, though

Internet traffic condition and network connectivity (reliability and bandwidth) are

also important for a successful e-education, which are beyond the scope of this

study. From the discussion of RBAC characteristics in previous chapters, it is

obvious that incorporation of RBAC models into the e-education system design

can provide the power for an efficient and effective system. The following section

is a discussion of e-education system specification with RBAC concept and

models.

4.2.3 E-educatlon with RBAC

As described in Chapter 3, RBAC has five basic components: users, roles,

objects, operations, and permissions. These components and their functional

relationships can be fully demonstrated in the e-education system. In the e-

54

education system, all Individual participants are users. Student, faculty, TA,

administrator, account manager are the roles in this system. Different users can

be assigned to these roles (Figure 4.1). The various resources, such as course

assignments, quizzes, etc. are the set of objects. Read/write/execute these

objects are the set of operations.

User Role

Tom

Joe Student

Tammy

John

Mark

Jen

Wendy

Figure 4.1 Various users and roles, and their relations

The e-education system has roles that may have common permissions (Figure

4.2). If these common characteristics can be inherited among the roles, the

design and implementation will become more efficient and simpler. As shown in

Chapter 3, this inheritance requirement is one of the key features of hierarchical

RBAC.

55

Roles Permissions

Execute printer

Read/Execute DB2

Execute Power point

Figure 4.2 Roles sharing common permissions

in the e-education system, a great deal of permission access and inheritance

should be constrained. For example, TA can inherit student role permissions, it is

allowed to access some of the student role’s permissions, but is not allowed to

access students’ personal information. Similarly, a system administrator can

inherit faculty’s role permission, but is not allowed to access faculty’s salary

information. Constraint RBAC can be used to address these types of issues.

The e-education system is required to handle a large number of users’ access

information and also maintain a large amount of course data. Based on the

discussion in Section 4.1, it is clear that RBAC can be used to improve e-

education system application development.

56

Based on the above requirement analysis and the discussions in Chapter 3, this

study proposes a hybrid model, it is a combination of the standard Core RBAC

model, Dynamic Separation of Duty Constrained RBAC model, and Hierarchy

RBAC model. Figure 4.3 illustrates this proposed model. It is most similar to the

standard Constraint RBAC model (dynamic separation of duty) (see the details in

Chapter 3). Comparing to the standard Constraint RBAC model, the model here

also puts constraints on the role hierarchy relations. It categorizes the

permissions associated with a role into two groups: private permissions and

public permissions. Only the public permissions can be inherited. This not only

improves privacy but also reduces the number of conflict roles.

Role hierarchies

User ^ Permission
assignment / ^ assignment

RolesN <------------>Users

/
Sessions

Permissions

Figure 4.3 Complex RBAC model of this study

In summary, this Chapter gives a requirement analysis and specification for e-

education. The requirement analysis and specification are based on the standard

RBAC concept and models. It proposes a hybrid RBAC model for the e-

education. In the following chapter a detailed design will be given based on this

model and the above requirement analysis and specification.

57

Chapter 5

Design of the RBAC based E-education System

The effectiveness, robustness and efficiency of an e-education system largely

depend on system design. In this study the e-education system is designed and

implemented under the RBAC framework and is expected to provide enhanced

security and improved management.

This chapter gives a description of the design of the e-education system, based

on the analysis of requirements and specifications discussed in the previous

chapter. This chapter contains three parts: the first part illustrates the

incorporation of the three RBAC models in the e-education system, including the

enforcement of security and privacy, the second part discusses the design of

user interfaces, and the last section discusses the design of system functions.

5.1 RBAC based e-education system

This section gives step by step explanations on how the e-education system is

designed based on RBAC concept and models. The design starts with the Core

58

RBAC model, followed by the Hierarchical RBAC model and the Constrained

RBAC model in sequence.

5.1.1 Core RBAC based e-education system

5.1.1.1 System entities

With the Core RBAC model, the e-education system is designed to have five

basic groups of elements called users (USERS), roles (ROLES), objects (OBS),

operations (OPS), and permissions (PRMS). The combination of an object and

an operation forms a permission entity. In order to control users’ access to the

system resources, a user is required to be a member of one or more roles, and a

permission is assigned to one or more roles.

5.1.1.1.1 USERS

The USERS represents the individual participants in the e-education system.

Any individual who has a set of valid logon username and password is a user of

the system, such as Jen, Wendy, Tom, Mark, Frank, Joe, etc., who has a valid

logon username and password. Different users have different access rights to

system resources depending on their functions in the education system. A large

number of users will use the e-education system in the student role. A relatively

small group of users will perform in the instructor role. A few users will be in the

administrator role to perform system management functions.

59

5.1.1.1.2 ROLES

The ROLES in the e-education system may include student, academic

administrator (department head, dean), registrar’s officer, system administrator,

faculty, teaching assistant (TA), and account manager. Because an e-education

system normally has some resources that should be accessed by all users, a

global role is needed to oversee the public resources, such as the introduction of

education programs. Every user in the education system will at least be assigned

to this global role, such that the public resources can be shared.

Because this study is an implementation of the RBAC concept, the following six

roles are chosen and designed. They are the most important roles in the e-

education, and they can cover all the RBAC concept (hierarchy, constraints).

Global user - this role allows all users to share the e-education system’s basic

information. This is the most basic role. On a hierarchical tree relationship it will

be at the bottom of the tree, thereby allowing inheritance. For example, the

student role can inherit this role’s permissions.

Student - a student role is an abstract representation of users who join the e-

education system to learn. Users who are assigned this role can access more

resources than a user who is assigned only the global role, for example, read the

specific courses’ information and submit their response.

60

Faculty - this role is an abstract representation of participants who deliver

information and knowledge to the students, including students' assignments,

marks, etc. Relatively, this role will have a smaller number of users than the

student role.

Teaching assistant (TA) - this role is designed to help faculty to evaluate

students’ activities, such as marking assignments and quizzes.

Account manager - this role represents a group of users who monitor students’

payment status (debit and credit), faculty and administrators’ payroll balances.

This role is restricted to accessing only financial data of the system’s users. For

example, an account manager can only access students’ financial accounts and

modify students account’s balance but can not view students’ academic records.

Administrator - this role represents a group of users who maintain and update all

the RBAC components and assignment of relationships among these

components. It has the right to modify the users and roles information, set up

permissions and assign these different roles.

Among these roles, student, faculty, account manager, and administrator are the

key roles of this study. Other roles can be flexible. Different e-education

systems may focus on different interests; therefore, they may have a different set

of roles.

61

5.1.1.1.3 Objects

Objects in the e-education system include individual courses, assignments,

quizzes, personal records, etc. Their existence depends on the nature of the

education program. If the education program offers more courses and has a

large number of users, it is highly likely that the system will have more objects. In

this design, for simplicity, the objects are individual web pages/links, i.e., HTML

files.

5.1.1.1.4 Operations

Operations are the executions of read, write, and modify. They are the actions

performed on different objects. For instance, reading an assignment and

modifying a grade are both actions.

5.1.1.1.5 Permissions

Permissions represent access rights that a user is allowed to perform on certain

system objects. Any permission is a combination of an operation and an object.

It indicates what action can be performed on an object.

5.1.1.1.6 Sessions

62

For test purposes, three sessions are set up for the e-education system, though

many more can be set if required. A default session will be created at the time

the user is accepted for registration. All the active roles assigned to the user will

be put in the default session. A second session will not be established unless

two or more conflict of interests roles are required to be activated. For instance,

a user has a default session with the student role, and the student role and

administrator role are in conflict of interests; when the user is assigned the TA

role and requires this TA role to be active, this TA role will be put in the default

session, but when the user is assigned the administrator role and requires to

activate this role, this role is not allowed to put in the current default session, a

new session must be created to contain this role.

5.1.1.2 User/role assignment

In the education system, each user must have at least one role. The user-role

assignments are performed by administrators. One user can have many roles,

and one role can be assigned to many users. For example, while the user Jen is

assigned to a student role, she can also be assigned to a TA role.

5.1.1.3 Permission/role assignment

In this study, each role is assigned at least one permission. Table 5.1 shows the

assignment relationships between permissions and roles.

63

Table 5.1 roles and their permissions of the e-education system

ROLES Objects accessed
Global users 1. basic information about the e-education system

2. course information
Students 1. basic information about the e-education system

2. course information
3. assignment
4. quiz
5. handout
6. exam
7. grade (private)

Teaching Assistant
(TA)

1. basic information about the e-education
2. course information
3. assignment
4. quiz
5. handout
6. exam
7. students marks

Faculty 1. basic information about the e-education
2. course information
3. assignment
4. quiz
5. handout
6. exam
7. students marks
8. evaluate students works

Account manager 1. basic information about the e-education
2. course information
3. students account

Administrator 1. basic information about the e-education
2. course information
3. assignment
4. quiz
5. handout
6. exam
7. students marks
8. can modify the assignment due date
9. students account
10. management duty

64

5.1.2 Hierarchical RBAC based e-education system

In the e-education system, some public permissions are shared by all roles, for

example, the basic information about the e-education. It would be better to have

this kind of information inherited by all roles. It is also noted that certain roles

have hierarchical relationships, for instance, a hierarchical relation between the

faculty role and TA role. These observations are not handled in the Core RBAC

model. Therefore, hierarchical RBAC is needed in the system design. Figure 5.1

shows the hierarchical relationships among the six roles.

Administrator

Student

Global users

Account manager

Figure 5.1 Role Hierarchical relationships in e-education system

65

With the role hierarchy being established, the amount of permissions/roles

assignments made by administrators is reduced. The less the assignment of

permissions to roles means the less the chance for administrators to make

mistakes, and in turn, the less the chance for users to maliciously access

resources. As a result, system security will be enhanced. The permissions/roles

assignments in Hierarchical RBAC are included in table 5.2.

Table 5.2 Roles and their permissions in hierarchy RBAC model for e-education

ROLES PERMISSIONS
Global users 1. basic information about the e-education (read)

2. course information (read)
Students 1. Global users’ permissions (inherited)

2. response for assignments (read/write)
3. response for quizzes (read/write)
4. handout (read)
5. response for exams (read/write)
6. grade (private) (read)

Teaching Assistant
(TA)

1. Student's permissions (inherited)
2. Students marks (read/write)

Faculty 1. TA’s permissions (inherited)
2. the assignment due date (read/write)

Account manager 1. Global users’ permissions (inherited)
2. Students account (read/write)

Administrator 1. All role’s permissions (inherited)
2. Management duty (read/write)

As shown in the above table, the basic difference between the Core RBAC based

system design and Hierarchical RBAC based system design, is to introduce

hierarchical relationships, which results in less assignment processes.

66

5.1.3 Constrained RBAC based e-education system

The constrained RBAC model is introduced into this study because of three

issues: privacy, security, and conflict of interest roles.

It is recognized that some permissions should not be inherited. For example,

student marks and grades are private data for each student, TA and faculty

should not view them all after certain period of time. It is better that this

information is kept private and not inherited.

In order to prevent an administrator from having monopoly actions in managing

the education system resources, the most important management processes,

such as permissions and roles assignments, are required to be performed by two

or more administrators. Less important administrative duties, such as assigning

basic role to new users, are allowed to be conducted by one administrator. This

issue is addressed by designing three levels of administrator roles. The level one

role is allowed to perform the basic administrative duties; the level two role gains

more administrative duties; the level three role is allowed to carry out all the

administrative duties, but it requires two three level administrator users to perform

the duties (detailed discussion is available in Chapter 6).

Normally a user has a set of active roles and they are managed by one session.

But sometimes, it is natural that a user may have some roles that are mutually

exclusive in functions. The organization policy of a well designed RBAC system

67

should not allow the user to access the conflict of Interest roles at the same time.

These roles cannot be placed in the same session; they should be put into a

separate session. During one specific login, the user can only perform the duties

related to one session, and not the other session. The user can only access the

other session through a new login.

This Constrained RBAC education system design will be implemented in Chapter

6 of this study.

5.2 E-education system interface design

A universal interface is designed. It represents the homepage to the e-education

system. The interface includes an introduction to the e-education, the login frame

through which all users enter the system, and the register link that will take a new

user to a registration page. All users, including administrators, students, faculty,

etc., enter the system through the login frame.

Then, based on the system requirements, two classes of interfaces are designed.

One is for the administrators to manage the system resources, and the other one

is for the regular users (students, faculty, TA, Account Manager) to use the

system.

68

When an existing user enters her/his user name and password, the system will

confirm the user’s identity. If the logon information is correct, the corresponding

interface will be returned with available resources; if the information is not correct,

the system will ask the user to logon by entering correct logon information, or

suggest that user register. When a user has the role of performing the level three

administrative duties, the user will be directed to the level three administrative

duties logon interface (Figure 5.2).

NO

NOVerify New User?

YES YES

Corresponding
user interface

Registration
interfaces

Perform level three
administrative

duties?

YES Request
logon

NONO

YESDuty
performance

interfaces

Verify

A logon request

Figure 5.2 User logon confirmation processes

69

Each user has one initial role and one default session. After a user logon, the

system will display all the sessions and roles the user has. If the interface shows

more than one session, that means the user has conflicting roles that are in

separate sessions. For one particular logon, the user can only choose to go with

one session. If the user wants to perform duties upheld in another session, the

user has to logout and make a new logon request.

5.2.1 Administrative support interfaces

To address the security concern discussed in section 5.1.3, a special login

interface is designed for level three administrators role. This interface is for

administrators to manage the most important system resources. It provides two

sets of usernames and passwords, and requires two level three role

administrators to appear and logon at the same time.

Because of the required duties, administrator interfaces include: accept/confirm

new user registration, user management, role management, user/role

assignment and permission/role assignment, and session management (detailed

descriptions are available in Chapter 6).

The administrative interfaces will allow administrators to accept the new users,

place new users’ registration information into a database table, and at the same

time create a session for the user.

70

Administrators can assign a role to a user. In order to make the role active, the

administrator will put the role into one of the user’s sessions where no conflict of

interest roles exist.

The administrative interfaces also provide tools for administrators to assign

permissions to role, add/remove roles to/from the system, add/remove

permissions to/from roles, and create hierarchy relations and conflict role

relations.

5.2.2 Academic support interfaces

The interfaces for regular users are simple and straightforward. They display the

data that a registered user requests and entitles. They allow users to view

course information, personal academic and financial records, and

feedbacks/evaluations from faculty; they also allow users to submit assignments

and exams for evaluation. All the interfaces for regular users will be htmhWes.

For the student role, three basic types of interfaces are designed. One is a very

basic interface, allowing students to view course information, and faculty’s up-to-

date postings. The second type of interfaces are about assignments; a time limit

is set for each assignment, and each assignment has a fixed due date. Students

can only submit the answers to the assignment before the due date. The third

71

one is about quizzes and exams; students must complete and submit the

answers to the exams within a specified period of time. After the specified time

limit, submission is disabled. The time is counted from the time users open the

pages.

5.3 Systems functionality

5.3.1 Administrative functions

The administrative functions include creation and maintenance of system entities:

USERS, ROLES, OPS (operations), OBS (objects), and PRMS (permissions). Of

these elements, the existence of OPS and OBS is essentially for PRMS. In the e-

education system, OBS represents the individual webpage, for example, a

webpage showing the assignment of a particular course, or a webpage showing

the personal records of a student. OPS represents read/write/modify actions to

the web pages.

Administrators create and delete OPS, OBS, USERS, and ROLES, and establish

and maintain relations between OPS and OBS, forming PRMS, between roles

and users, and between roles and permissions.

Below are a formal definition of the above entities and relationships that are used

in this thesis.

72

- USERS, ROLES, OPS, OBS, and SESSIONS represent the set of

users, roles, operations, objects, and sessions respectively.

- PRMS = , the set of permissions.

- U _ R œ u s e r s X ROLES is a many-to-may assignment mapping

between users and roles.

- P _ R c PRMS X ROLES is a many-to-many assignment mapping

between permissions and roles.

- Uassigned : {r : ROLES) -4- 2 '̂^™, the mapping of role r onto a set of users.

Formally, Uassigned(r) = {u e USERS \ (u , r) eU _R}

- Passigned : (r : ROLES) -> 2™"^, the mapping of role r onto a set of

permissions. Formally, Passigned(r) = {p e PRMS \ { p , r) e P _ R)

- U_S-. (u: USERS) 2 '^ ° ^ , the mapping of user u onto a set of

sessions.

S _R :(s: SESSIONS) -> 2̂ ®“ ^, the mapping of sessions s onto a set of

roles.

Required administrative functions for different entities of the e-education system

are listed in the Table 5.5. The notation used in the following specifications is

basically the Z notation. The representation of a schema is: Schema-Name

(declaration) < Predicatel;...; PredicateNo . An explanation of the symbols is

listed in Table 5.3 below:

73

Table 5.3 Z notation symbol explanation

Symbol Example Meaning

G A g B Membership. Is true if object A is a member of B.

g A ë B Non - membership

Ah->B Maplet. A graphic way of expressing the ordered pair (A,B)

<!> <!> Empty set. It has no members

\ A \B Set difference. The members of A \ B are those objects which are

members of A but not of B

U A U B Set union. The members of the set A U B are those objects which are

members of A or B or both

V V5 • P Universal quantifier. Is true, if whatever values are taken by the

variables introduced by s which make the property of S true, the

predicate P is true as well

USERS' Represent the after state of USERS

A=>B Implication

Ç A ç B Subset relation. A is a subset of B

A A a B Conjunction

A :B A is a member of set B

Note: the symbols and explanations are from Spivey (1989)

An explanation of the informal notation of an example function is briefed in Table

5.4 below. The function is to delete a user from the system. It first checks if the

user (u) exists in the system. If so, the system will check all the sessions which

belong to this user and delete these sessions. Then the system updates the sets:

U_R, Ugssignedi snd USERS.

74

Table 5.4 Explanation of an example function described in Z notation

The function: delete a user

< u e USERS Precondition: check if u exists in system

U _ S = U _ S \ { u \ ^ U _S{u)} Remove the user-sessions mappings of

this user u, and update the U_S

U _R '=U _ R \ { r : ROLES •u i - ^ r } Post and pre states of U _ R

Post and pre states of Uassigned

USERS’= USERS \ {u}> Post and pre states of U S E R S

- variables without ’ describe the pre state
- variables with ’ describe the post state of an operation

Table 5.5 Definition and specification of administrative functions

Entities Description Functions
USERS addUser (u):

to add the user u, the
system updates USERS
and U_S

< u i USERS
USERS'= USERS [j {u}
U _S '=U _S [j { u y - ^ ^ } >

deieteUser (u):
to delete the user u, the
system updates USERS,
U_R, U_S, Uassigned

<1 M € USERS
U _ S = U _ S \ { u h ^ U _S{u)}

U _R '=U _ R \ { r \ ROLES • u ^ r]

(r) \ {w})}
USERS'=USERS\{u}>

PRMS addObject (ob):
to add the object ob, the
system updates OBS

<ob ^ OBS
OBS’=OBS[j {ob}>

deleteObject (ob):
to delete the object ob, the
system updates OBSau6
PRMS

<ob e OBS
OBS'=OBS\{ob}
PRMS'= PRMS \ {ob : OBS • op h-» ob} >

addOperation(op):
to add the operation op, the
system updates OPS

< op ^ OPS
OPS=OPS{J{op}t>

deleteOperation(op):
to delete the operation op,
the system updates OPS
and PRMS

< op e OPS
OPS’=OPS\[op}
PRMS = PRMS \ [op : OPS •oph^ ob} >

75

makePermission(op, ob):
to create the permission,
the system updates P R M S

< op ̂OPS ; ob e OBS
PRMS'= PRMS U {(op f-̂ ob) g PRMS} >

removePermission(op, ob):
to remove the permission,
the system updates P R M S
and P _R

< p e PRMS
PRMS^=PRMS\{p]
P_R ' ^P _R\ { p - .PR MS* ph^ r } >

ROLES addRole (r):
to add the role r, the
system updates RO LES,
Uassigned̂ and Pgssigned

< r i ROLES
ROLES’^ ROLES [j { r }

Uassigned ’= ^a ss ig n e d U (r l->

deleteRole (r):
to delete the role r, the
system updates ROLES,
U_R, P_R, S_R, Ugssignedi
and Pgssigned

< r e ROLES

U _ R’= U _ R \ [u : USERS • m r}

^a ss ig n e d ^a s s ig n e d ̂ ̂ ̂ assigned (^) {
P _ R ^ = P _ R \ { p : PRMS • p \ - ^ r }
P P \ f y 1 ̂ P (y ̂ 1

assigned assigned 1 assigned V ' / J
[\/s e SESSIONS • k g S _ R(s)
=* S _R\ { s S_R(s) } [j {s {S_R(s) \ { r }) }]
ROLES’= ROLES \ { r] >

The main functions required to establish and maintain the user-role and

permission role relations are listed in Table 5.6.

Table 5.6 Definition of user-role and permission-role assignment functions

Relations Description Functions
USERS/
ROLES

assignUser (u, r):
to assign the user u to the
role r, the system updates
U_R and Uassigned

<1 M G USERS;r e ROLES;(u \-̂ r) i U _R
U _ R [} { u v ^ r}

^a ss ig n e d ~ ^a ss ign e d ̂ ̂ ̂^a s s ig n e d (^) 1 U
(«})}>

deassignUser (u, r):
to de-assign the user u
from the role r, the system
updates, U_R, and
Uassigned

<u e USERS',r e ROLES,{u t-> r) e L/_Æ;
V5 G SESSIONS • s e S _ R{u) =>
dropActiveRole{u, r, s)
U _R'= U _R \ { u r}

^a ss ign e d ~ ^a ss ig n e d ̂ ̂ ̂^a s s ig n e d (^) } U

76

PRMS/
ROLES

grantPermission (p, r):
to grant the permission p
to the role r, the system
updates P _ R and P a ss ig n e d

< p e PRMS ; r e ROLES ;

P _ i? ’= P _ / ? U { p h ^ r}

^assigned ~ ^assigned ̂ ̂ ^assigned (^) } U

revokePermission (p, r):
to revoke the permission p
from the role r, the system
updates P _ R and P a ss ig n e d

< /? € PRMS;r e ROLES',
(p\-^ r)e P_R;

P _ R ’= P _ R \ { p h ^ r }

^assigned ^assigned ̂ ̂ ̂^assigned (^) } U

5.3.2 Supporting system functions

The supporting system functions are required for session management and in

making access control decisions. Each user is associated with a default session

which consists of a number of active roles. A user may have been assigned

many roles, but only the roles that are in a session can be accessed. The

composition of a session can be altered by adding or deleting active roles.

To create a new session with a given user as owner and an active role, the

function (Table 5.7) is valid if and only if:

The user is a member of the USERS, and

The active role is a role that has been assigned to that user.

The function that adds a role as an active role to a session is valid if and only if:

The user is a member of the USERS data set,

The role is a member of the ROLES data set.

77

The session is a member of the SESSIONS data set,

The role is assigned to the user, and

The session is owned by that user.

The schema that describes this function is given in Table 5.7.

To delete a role from the active role set of a session owned by a given user, the

function (Table 5.7) is valid if and only if the user is a member of the USERS, the

session is a member of the SESSIONS, the session is owned by the user, and

the role is an active role of that session.

Table 5.7 Definition and specification of session related functions

Descriptions Functions
createSession(u, ar, s):
to create the session s for
the user u with the role ar,
the system updates
SESSIONS, U_R, and S_R

< M e USERS;

ar Œ{ r : ROLES \ (u r) eU _R};
s g SESSIONS
SESSIONS = SESSIONS U

[/ _ 5 ’= t / _ 5 \ {m [/ _ 5(m)} U
{u h-> (U _S(u)\J{s})}
S _R ’= S _R\J{s h-» ar] >

addActiveRole(u, r, s):
to add the role r as the
active role to the session s
of the user u, the system
updates S_R

< u e USERS; s e SESSIONS;
r € ROLES; s eU _S{u)
{u \-> r) & U _ R ; n S_ R{s)
S _ R '= S _ R \ { s \ ^ S _ R { s) } {)

dropActiveRole(u, r, s):
to delete the active role r
from the session s of the
user u, the system updates
S_R

< M € USERS ; s € SESSIONS ;
r e ROLES;s eU _S(u)
(u r) e U _R; r e S _ R(s)
S _R ’= S_ R\ { s S_R(s)}\J

78

5.3.3 Review functions

After user-to-role assignment and permisslon-to-role assignment have been

made, the system should be able to display the contents of these assignment

relations from all the three perspectives: role, user, and permission. For

example, the administrators should be able to view all the users that have been

assigned to a given role, all the permissions that have been assigned to a given

role, all the roles assigned to a given user, and all the roles assigned to a given

permission. The Table 5.8 below lists these review functions.

Table 5.8 Definition and specification of system review functions

Descriptions Functions
asslgnedUsers (r, result):
to view the users that
have been assigned to
the role r

< r : ROLES
result = {u : USERS r) e U _R}>

asslgnedUserRoles (u,
result):
to view the roles that
have been assigned to
the user u

< u e USERS',
result = {r : ROLES \ {u \-^ r) eU _R} >

asslgnedPermlsslons (r,
result):
to view the permissions
that have been granted
to the given role r

< r : ROLES

result = {p ; PRMS \(p \-^ r) e P _ R }>

asslgnedPrmnRoles (p,
result):
to view the set of roles
that are associated with
the given permission p

< p e PRMS
result = [r : ROLES 1 (p l-> r) e P_R] >

79

5.4 Security and privacy

5.4.1 Security

It is often heard that most security threats are from inside intruders. In order to

enhance the system security, this e-education system comes up with a design

with three levels of system administration. The entry level administrators are only

allowed to perform the basic duties. The middle level administrators have more

privileges than the entry level; they have more responsibilities. The top level has

all the privileges to manage the system. To avoid security failures from monopoly

access to the system resources, two individual administrators must be present at

the same time to perform their top privileged duties.

The duties for each level are summarized in Table 5.9.

Table 5.9 Three levels of administrators and their duties

LEVEL DUTY
Level one 1. confirm a new user’s information

2. delete user from the system
Level two 1. Have all duties of level one

2. create/delete new permissions and objects
3. assign/design a role to a user, but not activate them

Level three 1. have all duties of level one and two
2. set up conflict role
3. set up relationship for inheritance
4. delete a role or add a role to the system
5. change permissions for a role
(To do the duty, two administrators login in together at same time)

80

5.4.2 Privacy

In order to enforce users’ privacy, a set of logon username and password is

issued to each user. Username is set as a string of one letter combining seven

digits. A username starts with one letter then seven digits. It is hard to guess a

user’s real name and role based on the username - a string of letter and digits.

As a result, users’ privacy is protected. Compared to the traditional way in which

username is set as a user’s fist name initial plus last name, this way of setting up

username gives users more privacy.

A password is randomly generated as a string mixed with ten digits and 26

letters. Like Social Insurance Number or student ID number, it may not be easy

to remember at the beginning, but after a while, people will get used to it.

Privacy concerns are also considered when role inheritance is designed. It is

reasonable and understandable that every role has something that should be

kept private. For instance, the privilege that students view their own academic

grades should not be inherited by TA role. Therefore, in this study each role’s

permissions are divided into two groups. One group can be inherited, but the

other group should not be inherited, which only belongs to this role itself.

Having a private attribute for each role’s permissions is a unique design of this

study. It improves privacy and reduces the number of conflict of interest roles.

And it is demonstrated in the following chapter that this design is effective.

81

Chapter 6

Implementation

The implementation is carried out using software and connectivity drivers that are

free of cost and widely distributed from Internet. They are compatible to each

other and suitable for client/server environment deployment. The computer

programming languages chosen are the most popular and available ones. The

use of these implementation tools in this study will allow other researchers to

repeat and compare their study with the results of this thesis.

6.1 Implementation Environment Overview

In order to implement the RBAC based e-education system, this study used a

three-tier client server architecture environment (Figure 6.1). The three tiers are

client, web server, and database server.

82

Client

linternet

Web Server Database Server

Client

Figure 6.1 Three tier architecture of e-education system

The client tier is individual Internet browsers. It allows users to access online

education information, view assignments, take online exams, submit answers,

and display feedback information from the education system, as well as allows

administrators to maintain and update the system resources.

The database server is a MySQL database. It contains the e-education system

information including users, roles, permissions, objects, operations, sessions,

hierarchicairelations, and conflict roie relations. For example, it maintains users’

personal data, academic records, payment statements, as well as usernames

and passwords. All the resources are stored as relational database tables.

The web server serves as the middle tier; it is an Orion server (Figure 6.2). It

hosts Java Servlet and JDBC driver. The function of the Java Servlet is to

process client requests and server feedbacks. The Servlet takes client requests,

processes the requests, passes the processed requests over to the server tier,

and then takes server’s feedbacks and sends back to the client.

83

All Java Servlet files are held and maintained in the directory Orion/default-web-

app/WEB-INF/classesoi the Orion server. All HTML files are also stored and

maintained in the Orion server, but in the directory Orion/default-web-app.

In the three tiers communications, the connections between the client tier (web

browsers) and the middle tier (the web server) are made by the Internet, and the

connections between the middle tier and database server tier (mySQL) are made

by the JDBC driver.

Internet

Orion Web Server

Database Server

JDBC Driver

Java Servlet

Figure 6.2 Middle tier - Orion server

The rationale for using MySQL is that MySQL is the most popular open source

SQL database management system [MySQL Manual, 2003]. Open source

means that anyone can use and modify the software, can download the MySQL

84

software from the Internet and use It without paying anything. Anyone may study

the sources code and change It to suit their needs. The MySQL database server

Is fast, reliable, and easy to use. It offers a variety of useful functions. Its

connectivity, speed, and security make It highly suitable for accessing databases

on the Internet. It works well In client/server or embedded systems.

The rationale for using an Orion server Is that the Orion server Is Its own web

server, and Its use eliminates the hand-off that usually occurs between the

application server and a web server like Apache. Another reason Is that it Is free

to download, with well-documented expert Instructions for Installation.

Because these two application systems (MySOL and Orion) are widely distributed

and easily available, other researchers can easily Implement one approach using

them. This study can be repeated and verified by other researchers using the

same techniques.

The Implementation of the RBAC based e-educatlon system Is essentially a

client-server application development. The initial Implementation phase Includes

the following tasks:

- Downloading, Installing, and configuring the Orion server

- Downloading and installing the MySQL database

- Installing and configuring the JDBC (server software tools)

85

Both Orion server and MySQL are downloaded from the Internet, and attached to

the Computer Science server of Saint Mary's University. After the client-server

environment is properly setup, the implementation starts. The following sections

describe the detailed implementations of the RBAC based e-education system.

The implementation is done in Java computer programming language, Java

Database Connectivity (JDBC), Java Server Development Kit (JSDK), HTML,

Java Script, and MySQL database. Coding and testing are conducted in the

UNIX operating system environment.

In order to make the system a thin client side application, HTML is used as much

as possible. Java Script codes are added when they are needed. For example,

Java Script is used for client side intelligence such as the timing device and the

auto-commit controls of a time-limited test and assignment (see section 6.2.2 for

details).

The prototype implementation of the e-education system contains about 3000

lines of Java source codes. Among them, about 2000 lines are for data

communications between tiers; about 1000 lines are for the user interfaces.

The implemented e-education system is virtually platform independent. It can be

compiled and run on any platform that supports Java and JDBC.

86

6.2 Administrative Interfaces

As discussed in Chapter 5, three levels of administrator roles are designed and

implemented. They are shown in Figures 6.3 to 6.5. As seen from Figure 6.3,

the level one (entry level) has the following functions: confirming new users’

registration, and user management. As seen from Figure 6.4, in addition to the

entry level duties, the middle level administrator role has its own duties which are

permission management, and user/role assignment, and permission/role

assignments. The top level administrator role inherits all the duties from the level

one and level two, plus its own unique duty - role management; administrators of

this level can perform all the duties that are relevant to system management

(confirming new users’ registration, user management, permission management,

role management, and user/role assignment and permission/role assignments)

(Figure 6.5). Table 5.7 in Chapter 5 lists detailed descriptions of these functions.

RHAC Administration
confirm t h e i r r e g is t r a t io n

S fc*^e«® S K lia® e@ B

Figure 6.3 Interface for Level I administrators

87

RBAC Administration
Set nev w e re in fcm «ti.dn ehd

Dseir Kanegeiunt

Perm ission Man»ge»errt

Role Assignment K anagem ^

Figure 6.4 Interface for Level II administrators

RBAC Administration
v e t nev u se rs in to rm ation and con tinu th e ix re g is t r a t io n

Role management

riser management

Perm ission management

Sole Assignment management

Figure 6.5 Interface for Level III administrators

As seen from Figure 6.5, the level three administrators’ interface, the overall

system administrative duties are divided into five groups: verification of new

users’ registration, role management, user management, permission

management, and role/user and role/permission assignment management. The

88

five duties are represented and accessed by five buttons on the interface. The

following are discussions of the five groups of interface implementation.

1) To confirm new users’ registration. Before administrators confirm new users’

registration, all the registration information (name, address, phone, payment, etc.)

is stored in the newUsers\3ib\e (see section 6.3.1 for more discussion on new

users’ registration). Figure 6.6 shows the steps for administrators to perform this

duty. First, access the newUsers \ab\e (Table 6.1) in the database, and get the

registration information of all the recently registered users. In the second step,

based on the returned data, create username and password for each new user,

and store the usernames and passwords in the 6/se/s table (Table 6.2); copy new

users’ registration data to the allUsers\ab\e (Table 6.3); empty the newUsers

table for future users registration. Then, send a copy of the newly created

username and password to the corresponding users.

Figure 6.6 also shows the communications among the three tiers. The

highlighted users, servlet, and database tables represent the parts that are

invoked in the corresponding processes. In this duty performance, administrators

users initiate the process. The work is done by the servlet acceptUsers. The

table aiiUsers, newUsers, and users axe passively involved in the processes.

89

Users
(client tier)

Administrators

Students

Faculty

TA

Accountants

access database
via middle tier

Java servlet
(middle tier)

acceptUsers
activeroles
assignmentQuizExa
m
assignmgt
chiefAdministrator
collectUserData
login
permissionmgt
registration
rolemgt
session
submitMarks
usermgt
viewMarks

create
usernames
/passwords

update users,
allUsers, and
newUsers table

Database
(server tier)

allUsers
academicRecords
conflictRoles
hierarchyRoles
newUsers
objects
operations
permissionRole
permissions
roles
sessions
userRole
users

Figure 6.6 Processes of confirming new users’ registrations

Table 6.1 Registration information for the new users

lastname firstname SIN rolename address Phone Email payment

W endy U serl 123456789 TA 26 Tower Road (902)4968152 uw @ yahoo.ca $200

Table 6.2 Users’ table containing all the users’ username, password, and SIN

Username Password SIN
• • • • • •

e2316986 \ \ w \ \ 123456789
• • • • • • • • •

Table 6.3 Data for all registered users

lastname firstname SIN rolename address Phone email payment

W endy U serl 123456789 TA 26 Tower Road (902)4968152 uw @ yahoo.ca $200

mailto:uw@yahoo.ca
mailto:uw@yahoo.ca

90

The key codes for the above process are given below.

a) to connect to the newUsers table.

try {Class.forName(''com.mysql.jdbc.Drlver").newlnstance();}

catch (Exception e) {toClient.println("Failed to load JDBC/ODBC driver.");}

try {Connection con = DriverManager.getConnection(''jdbc:mysql://localhost/h_zhao", "h_zhao",

"nRy2xN");

Statement st = con.createStatement();

St. executeU pdate("use h_zhao;");

ResultSet result = st.executeQuery("select * from newUsers;");

int fCol = result.findColumn ("lastname");

int ICol = result.findColumn ("firstname");

int sinCol = result.findColumn ("SIN");

int rCol = result.findColumn ("rolename");

int adCol = result.findColumn ("address");

int phCol = result.findColumn ("phone");

int emCol = result.findColumn ("email");

int paCol = result.findColumn ("payment");

b) to create username and password

String y = "1234567890"; //for username

91

String x = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZI 234567890"; //for

password

String username = "e";

String pw =

for (int j=0; j<7; j++) {

username = username + String.vaiueOf(y.ctiarAt((int)(Matti.random() * y.lengtti()))))));

}

for (int i=1; i<7; i++){

pw = pw + String.vaiueOf(x.cliarAt((int)(Matfi.random() * x.lengtfi())));

}

c) to return the username and password to corresponding users

toCiient.printlnC'Your username is: " + username +", password is: "+ pw);

d) to update the users, userRole, sessions, newUsers, and allUsers tables

st.exeouteUpdate("insert into users vaiues("'+username+"',"'+pw+'");");

st.executeUpdate("insert into userRole values('"+usemame+'","'+rnm+'");“);

st.executeUpdate("insert into sessions vaiues("'+username+"','S1 V''+rnm+"');");

st.executeUpdate("insert into ailUsers

vaiues("'+inm+"',"'+fnm+"',"'+sin+"',"'+rnm+"','"+ad+"',"'+ph+"',"'+em+"',"'+pa+"');"$

st.executeUpdate("deiete from newUsers;");

92

2) To perform the duty - role management. In this duty performance, the

following interface (Figure 6.7) is used, where administrators can add/remove

roles to/from the system, assign/remove conflict role relations, and setup/remove

hierarchical relations between roles.

ROI.K MAN U I KM K M '

i i n t v i ' A IK‘U- Idle

I A dd a H ole

■ assistant administrator v j Kemove the selected role

account manager #

■ account manager v |

f - 'o i i l l iv i K o le PîtiF '- i n t h e H B \ C S y s t e m

S student <—> account manager v ̂ vvAfWaiCOr^iCt ̂ ^ le .p w l ^ m g y e the 8eJecte.gj;fflriftidrQl^ :.

R o l e i l i e i 'a r t i u c a l r e l a t i o n s h i j) in (h r R R \ (S y s t e m

0 account manager—> basic user M J ::....Add ahieraMdty re l#on : F^etn#e the selected hiemrchy relationship

Figure 6.7 Role management interface

Administrators can enter a role name in the text box, and add it into the system

by pressing the Add a Role button; they can also select a role from the list, and

remove it from the system by pressing the button Remove the selected role.

In this process (Figure 6.8) the rolemgtsevj\e\ is invoked. When adding a role to

the system, the m/estable (Table 6.4) is updated. When removing a role from

the system, the tables, roles, ses5/b/75 (Table 6.5), conflictRoles (Jab\e 6.6),

hierarchyRoles ijab\e 6.7), and permissionRole (Jab\e 6.8), are all updated.

This servlet {rolemgt) will go to these tables and check if any record is related to

93

this role. Any entry and/or relation maintained in these tables, which is related to

this role, will be confirmed and removed from these tables.

Users
(client)

Administrators

Students

Faculty

TA

Accountants

access database
via rolemgt Servlet
 ►

Java servlet
(middle tier)

acceptUsers
activeroles
assignmentQuizExa
m
assignmgt
chiefAdministrator
collectUserData
login
permissionmgt
registration
roleiiigt
session
submitMarks
usermgt
viewMarks

update the
tables: roles,
sessions,
conflictRoles,
hierarchyRoles
permissionRole

Database
(server tier)

allUsers
academicRecords
conflictRoles
hierarchy Roles
newUsers
objects
operations
permissionRole
permissions
roles
sessions
userRole
users

Figure 6.8 Processes of Role Management

Table 6.4 The ro/es table containing all roles of the system

rolename
account manager
administrator
assistant administrator
basic user
chief administrator
faculty
student
TA

Table 6.5 The sess/b/7s table

username sname activeroles
• • •

e2651855 SI TA
... ...

94

Table 6.6 The conflictRoles \ab\e

rolename itsconflictroles

Account manager

Table 6.7 Ih e hierarchyRoles \ab\Q

parent child

faculty TA
TA

Table 6.8 Ih e permissionRoles\ab\e

permissionname rolename Privacy
• • • • • •

Read •> studenlMarks
• • •

To assign/remove conflict role relations, administrators select two roles from the

two separate role lists, and press the appropriate buttons; the conflictRoles \ab\e

will be updated (Figure 6.8). In a similar way, administrators can establish a

hierarchical relation by selecting two roles from the two separate role lists and

pressing the button Adda Conflict Roie Pair, or remove a relation by selecting a

relation pair from the list and pressing the remove button. In this process the

hierarchyRoles \ab\e will be updated (Figure 6.8).

The key codes for this duty performance are shown below.

95

a) to add a new role to the system

try {st.executeUpdate("insert into roles values

('"+(req.getParameter("newrole")).trlm()+"');");}

catch (SQLExceptlon sqle){

toClient.println("");

toClient.printlnC'duplicate entry, the role already exists");

toClient.println("");

}

b) to remove a role from the system

else if (req.getParameter("debtn") != null){

St. executeU pdate("delete from roles where

rolename='"+(req.getParameter("rolelist")).trim()+'";");

st.executeUpdate("delete from userRole where

rolename="'+(req.getParameter("rolelist")).trim()+"';");

st.executeUpdate("delete from permissionRole where

rolename='"+(req.getParameter("rolelist")).trim()+"';");

St.executeUpdate("delete from conflictRoles where

rolename-"+(req.getParameter("rolelist")).trim()+"' or

itsconflictrole='"+(req.getParameter("rolelist")).trim()+’";");

96

st.executeUpdate("delete from hierarchyRoles where

parent="'+(req.getParameter("rolellst")).trim()+"' or

chlld="'+(req.getParameter("rolelist")).trim()+"';");

st.executeUpdate("delete from sessions where

activeroles="'+(req.getParameter("rolelist")).trim()+"';");

}

c) to add/delete conflict rôles

else if (req.getParameter("addbtnC") 1= null){

st.executeUpdate("insert into conflictRoles values

C"+(req.getParameter("rolelist1 ")).trim()+"', "'+

(req.getParameter("rolelist2")).trim()+"');");

}

else if (req.getParameter("debtnC") != null){

String thePair = (req.getParameter("crolelist")).trim();

int sp = thePair.indexOf("<");

String ri = thePair.substring(0,sp-1);

String r2 = thePair.substring(sp+6,thePair,length());

st.executeUpdate("delete from conflictRoles where rolename-"+r1+"' and

itsconflictrole = '"+r2+"';");

}

97

d) to add/remove hierarchy roles

else if (req.getParameter("addbtnH") != null){

St.executeUpdate("insert into hierarchyRoles values

("'+(req.getParameter("rolelist1")).trim()+"',"'+

(req.getParameter("rolelist2")).trim()+"');");

}

else if (req.getParameter("debtnH") != null){

String thePair = (req.getParameter("hrolelist")).trim();

int sp = thePair.indexOf("-");

String r1 = thePair.substring(0,sp-1);

String r2 = thePair.substring(sp+5,thePair.length());

st.executeUpdate("delete from hierarchyRoles where parent="'+r1+"' and

child = '"+r2+"';");

3) To perform the duty - user management, the interface (Figure 6.9) is used,

where administrators can remove users from the system. In the interface all the

current users are listed; administrators choose a user form the select list and

press the remove button, then the user will be removed.

98

USER MANAGEMENT

C u r r e n t , u s e r s

Remove the selected usere2651855 M

Figure 6.9 Interface for User Management duty

In this process (Figure 6.10), the usermgtser^eW is invoked, and the tables, users

(Table 6.2), userRole !Jab\e 6.9), sessions {Jab\e 6.5), and academicRecords

(Table 6.10), are updated.

Users
(client)

\dministriit(tr.s

Students

Faculty

TA

Accountants

access database
via usermgt
Servlet

la \a sei\ Id
(i i ik UIIc I ici)

'

acceptUsers
activeroles
assignmentQuizExa
m
assignmgt
chiefAdministrator
collectUserData
login
permissionmgt
registration
rolemgt
session
submitMarks

viewMarks

jpdate the tables:
jsers, userRole,
sessions,
academicRecords

Database
(server tier)

allUsers
academicRecords
conflictRoles
hierarchyRoles
newUsers
objects
operations
permissionRole
permissions
roles
sessions
userRole
users

Figure 6.10 Processes of User Management

99

Table 6.9 The ^se//?o/e table

usename rolename

e2651855 TA

Table 6.10 The academicRecords Xab\e

studentID instructorname coursename term year aqe ans marks comments

6327 5 3 4 4 Jen C om m erce Spring 2004 Q uizi RBAC
stan d s for
role b a sed
a c c e s s
control

100 Very good

The key codes are given below. They are to update the tables where the users

related Information are stored.

if (req.getParameter("debtn") != null){

st.executeUpdate("delete from users wfiere username=’"+(req.getParameter("userllst"

)).trlmO+"’;");

st.executeUpdate("delete from userRole where username=’"+(req.getParameter("userllst"

)).trim()+"’;“);

st.executeUpdate("delete from sessions where username=’"+(req.getParameter("userllst"

)).trlm()+"’;"):

st.executeUpdateC'delete from academicRecords where studentlD=’"+{req.getParameter(

"userllst")).trlm()+"’;");

100

4) To perform the duty - Permission Management, the interface (Figure 6.11) is

used. Administrators enter an object or operation, press the Add buttons to

create them; they can select an object or operation to delete them from the

system. When creating a permission, administrators select one object and one

operation from the two individual lists, and press Make... button. When removing

a permission from the system, administrators must select a permission from the

list, and press the Remove... button.

I'ER M ISSIO N VIAN \GICMK;N I

E n te r a opération name

Operations

v g Remove the selected operation

En ter a new object name

I Add an Object

administratorDuties S Remove the selected object

Create a new permission

administratorDuties

MaKgJbf selg pair a permission

read — administratorDuties v: s e le t^ ^ Rgtn)!|siph

Figure 6.11 Permission Management Interface

101

In this process (Figure 6.12) the permisssionmgt servlet is invoked; the four

tables, permissions (Table 6.11), permissionRole (Table 6.8), objects (Table

6.12), and operations (Table 6.13), are updated.

Users
(client)

Administrators

Students

Faculty

TA

Accountants

access database
via permissionmgt
Servlet

 ►

Java servlet
(middle tier)

acceptUsers
activeroles
assignmentQuizExa
m
assignmgt
chiefAdministrator
collectUserData
login

;rmissionmgt
registration
rolemgt
session
submitMarks
usermgt
viewMarks

update the
tables:
objects,
operations,perm
issions,
permissionRole

Database
(server tier)

allUsers
academicRecords
conflictRoles
hierarchyRoles
newUsers
uhjeets
operations
permissionRole
permissions
roles
sessions
userRole
users

Figure 6.12 Processes of Permission Management

Table 6.11 The permissions table

operation object

read grades

Table 6.12 The table

objectname

chiefAdmlnistratorDuties

102

Table 6.13 Ihe operations \ab\e

operationname

Read

Following are the key codes that are used to perform the above duties.

a) to add an operation

if (req.getParameter("addbtnOP") 1= null){

try {st.0 xecuteUpdate("lnsert into operations values

('"+(req.getParameter("newoperat[on")).trlm()+"');");}

catch (SQLExceptlon sqle){

toClient.println("");

toClient.printlnC'duplicate entry, the operation already exists");

toClient.println("");

}

}

b) to delete an operation

else if (req.getParameter("debtnOP") != nuii){

St.executeUpdateC'delete from operations where

operationname='"+(req.getParameter("operationlist")).trim()+'";");

St.executeUpdateC'delete from permissions where

operation-"+(req.getParameter("operationlist")).trim()+"';");

}

103

c) to add an object

else if (req.getParameter("addbtnOBJ") != null){

try {st.executeUpdate("lnsert into objects values

('"+(req.getParameter("newobject")).trim()+"');");}

catch (SQLExceptlon sqle){

toClient.prlntln("");

toClient.printlnC'duplicate entry, the objects already exists");

toClient.println("");

}

}

d) to delete an object

else if (req.getParameter("debtnOBJ") 1= null){

St.executeUpdateC'delete from objects where

objectname='"+(req.getParameter("objectlist")).trim()+"';");

St.executeUpdateC'delete from permissions where

object="'+(req. getParameter("objectlist")) .trim ()+"'; ") ;

}

e) to add a permission

else if (req.getParameter("addbtnPERM") != null){

String op = (req.getParameter("operationlist1")).trim();

String obj = (req.getParameter("objectlist1")).trim();

104

try {st.executeUpdate("insert into permissions values

('"+op+'",'"+obj+"');");}

catch (SQLExceptlon sqle){

toClient.println("");

toClient.printlnC'duplicate entry, the permission already exists");

toClient. println("") ;

}

f) to delete a permission

else if (req.getParameter("debtnPERM") != null){

String thePair = (req.getParameter("permissionlist")).trim();

int sp = thePair.indexOf("-");

String op = thePair.substring(0,sp-1);

String ob = thePair.substring(sp+3,thePair.length());

St.executeUpdateC'delete from permissions where operation='"+op+'" and

object = '"+ob+"';");

5) To perform the duty - Role/User/Permission Assignment Management includes:

assign/remove a user to/from a role, put a role into a session and remove a role

from a session, and assign/remove a permission to/from a role (Figure 6.13).

The duty also includes: display the users that a role is associated, and display the

roles that a user has.

105

ROUC/USER/I’KIÜMISSION ASSKJNMKN I MAN ACîKMEM

82651655 account manager

Assigti th iite lected user to the selected role or session

DisplayAe selecled;user's roles and sessions

Disolewtheselected role s users

j | accountread -> administratoruirtes manager

Assign thB:selected:permissipnM###@WG*#dTQ^e Rtemoye thB ifledB d permission;from the selected role

Figure 6.13 Interface for the role/user/permission assignment management

In this process the assignmgtsexy\e\ is used, and the sessions, userRoie, and

permissionRoie\‘à\i\es are involved (Figure 14). All the current users, roles and

permissions are listed on the interface (Figure 6.13).

Administrators make a user-role assignment relation by selecting a role and a

user, leaving the sessions\\s\ blank, and pressing the button Assign... At the

same time the userRoie\Qb\e (Table 6.9) is updated. When removing a user-role

assignment relation, administrators will select a role and a user, leaving the

sessions list blank, and press the Remove... button. In this deassign process

both the userRoie\ab\e and sess/mstable (Table 6.5) are updated. When

deciding to make a user’ roles become active or de-active, administrators can

repeat the above steps, plus choose a session (S I, S2 or S3) from the sessions

select list. When doing this, only the 5e5s/b/7s table is involved and updated; the

userRoie\ab\e remains intact.

106

When performing the permission/role assignment, administrators select a

permission and a role, and press the Assign... button. In role hierarchy relations

it is determined that certain permissions of a role are not allowed to be inherited,

that is, certain permissions are only designated for certain roles. Therefore,

when doing the permission-role assignment, users must indicate whether or not

this permission is private for the role by ticking the Private permission box. When

removing such an assignment relation, users can simply select the role and

permission, and press the Remove... button. The permissionRoie\a\i\e (Table

6.8) will be updated accordingly.

Users
(clicnl)

Administrators

Students

Faculty

TA

Accountants

acceptUsers
activeroles
assignmentQuizExa
m

access database
via assignmgt
Servlet

Java servlet
(m iddle tier)

chiefAdministrator
collectUserData
login
permissionmgt
registration
rolemgt
session
submitMarks
usermgt
viewMarks

update the
tables:
sessions,
userRole,
permissionRole

Database
(server tier)

allUsers
academicRecords
conflictRoles
hierarchyRoles
newUsers
objects
operations
permissionRole
permissions
roles
sessions
userRole
users

Figure 6.14 Processes of Role/User/Permission Management

To show how many roles and sessions including their active roles that a user has,

or show how many users a role is associated with, administrators can press the

107

Display... mies and session button, or the Display... users button. For example,

the Figure 6.15 shows the user e2651855 has two roles: account manager and

TA, and one session which has an active role of TA.

ROI.K/USKK/PIOtM ISSI ON ASS I GNMKN'I' MANAGl'MIÎNT

@2651856 account manager

Assign,: the; selected user to the selected role or session
Remove th e se lec ted user from the se lec ted ro le

Display the selected user s ro le s and sessions

Display the selectedLrdle s users

Figure 6.15 Showing the roles and sessions that the user e2651855 has

In the user/role/permission assignment management interface (Figure 6.13),

three sessions are available. Normally one user can have many sessions. It is

up to the organization that uses the RBAC concept to make a decision on the

number of sessions for each user. The reasons that this study implements three

sessions are: first, this study is a test of the RBAC concept and models, three

sessions are enough to fulfill the purpose of this study; second, if a user has more

than three sessions, that means the user has more than three roles that are in

conflict of interests, if this is the case, the organization needs to consider the

108

creation of a separate role, rather than maintain a number of sessions for one

user.

For each user, its initial role will be put into the default session - the session one.

Any other role that has been assigned to this user and has no conflict of interests

with the role in the session one can be put in this session. If the role is in conflict

of interests with any role in the session one, then this role must be put into a new

session.

The key codes for this duty performance are:

a) to create a user/role relation

if (req.getParameter("addbtnUserRole") != null){

String u = (req.getParameter(''userlist")).trim();

String s = (req.getParameter("sessionlist")).trim();

String r = (req.getParameter("rolelist")).trim();

if(s.compareTo('"')==0) {// this is simply a user and role assignment

try {st.executeUpdate("insert into userRole values (’"+u+"’,’"+r+"’);");}

catch (SQLExceptlon sqle){

toClient.println("");

toClient.printlnC'duplicate entry, user-role assignment already exists");

toClient.println("");

}

}

109

b) to put a role into a session

else { // this Is a session creation, first have to check if the user has such a role,

// if not, can not assign the roie to the session

boolean theUserHasTheRole = false;

ResuitSet sresuit = st.executeQuery("seiect * from userRole;");

int Coiu = sresult.findColumn ("username");

int Coir = sresuit.findCoiumn ("rolename");

String unm="";

String rnm="";

while(sresult.nextO) {

unm = sresuit.getString(Goiu);

rnm = sresuit.getString(Coir);

if (unm.compareTo(u) == 0 && rnm.compareTo(r) == 0) {

theUserHasTheRole = true;

break;

}

}

if (theUserHasTheRole == true) {

try{

st.executeUpdateC'insert into sessions values (’"+u+"V"+s+"’,’"+r+"’);");

}

catch (SQLExceptlon sqie){

toCiient.printin("");

110

toClient.printlnC'duplicate entry, this session-role already exists”);

toCiient.print!n(''");

}

}

else

toClient.printlnC'The user does not have such a role! Please assign the

role to the user, then you can add this role to a session!");

c) to remove a user/role relation

e!se if (req.getParameter("debtnUserRoie") != nu!l){

String u = (req.getParameter("userlist'')).trim();

String s = (req.getParameter("session!isf)).trim();

String r = (req.getParameter("ro!elist'')).trim();

if (s.compareTo("")==0) {// this is to remove the user from the roie

st.executeUpdate("de!ete from userRoie where username="'+u+'" and

rolename=’“+r+"’;");

st.executeUpdateC'deiete from sessions where username="'+u+'" and

aotiveroles=’"+r+'";");

}

eise //just remove the role from the user’s this session

St.executeUpdateC'deiete from sessions where username='"+u+'" and

sname=’"+s+"’ and $

I l l

d) to add a permission/role relation

else if (req.getParameter("addbtnPermRole") != null){

String p = (req.getParameter("permlist'')).trim();

String r = (req.getParameter("prolelist")).trim();

String ck = req.getParameter("yesnocheck“); // Important! don’t trim THIS ONE

String privacy = "no";

if (ck != null)

privacy = "yes";

try { st.executeUpdate("insert into permissionRole values (’"+p+"’,’"+r+"’,’"+privacy+"’);")$

catch (SQLException sqle){

toClient.println("");

toClient.printlnC'duplicate entry, this permission-role assignment already exists");

toClient.println(""):

}

}

e) to remove a permission/role relation

else if (req.getParameter("debtn Perm Role") != null){

String p = (req.getParameter("permlist")).trim();

String r = (req.getParameter("prolelist")).trim();

St.executeUpdateC'deiete from permissionRole where permissionname='"+p+"’ and

rolename='"+r+'”;");

}

112

f) to display a user’s sessions and roles

else if (req.getParameter("showbtnUserRole") 1= null){

String ur = (req.getParameter(''userlist'')).trim();

// add the user name into the first spot of the vector

userRole_vector.addElement(ur);

userRole_vector.addElement(''roles");

ResultSet uresult = st.executeQuery("select * from userRoie;");

int Colu = uresult.flndColumn (“username");

int Coir = uresult.flndColumn ("rolename");

String nmu='"';

String nmr="";

while(uresult.nextO) {

nmu = uresult.getString(Colu);

nmr = uresult.getStrlng(Colr);

if (nmu.compareTo(ur) == 0) {

userRole_vector.addElement(nmr);

}

}

// show the user’s sessions and roles

sesslonRole_vector.addElement(ur);

sessionRole_vector.addElement("sessions/roles");

sessionRole_vector1.addElement(ur);

113

g) to display a user’s sessions and roles

else If (req.getParameter("showbtnRoleUser") 1= null){

String rl = (req.getParameter(”rolelist")).trim();

// add the role name Into the first spot of the vector

roleUser_vector.addElement(rl);

roleUser_vector.addElement("roles");

ResultSet rresult = st.executeQuery("select * from userRoie;");

Int Colu = rresult.findColumn ("username");

Int Coir = rresult.findColumn ("rolename");

String nmu="";

String nmr="";

while(rresult.nextO) {

nmu = rresult.getString(Colu);

nmr = rresult.getString(Colr);

if (nmr.compareTo(rl) == 0) {

roleUser_vector.addElement(nmu);

}

}

}

6.3 User Interfaces

6.3.1 Logon Interfaces

114

The public logon interface (Figure 6.16) is implemented as an HTML file. It is for

all the users, including those who have roles of students, faculty, TA,

administrators, and accountants. All the users’ login is through this interface. It

has the following functions:

- To take a user’s username and password, and send them to the server

through middle tier for confirming

- To provide a new user with a registration form

- To provide users with information on e-education and programs

- To allow users to address their concerns to relevant personnel

Figure 6.16 Logon interface for regular users

In this process the login servlet is used (Figure 6.17). When a user enters his/her

username and password, the e-system will first check the t/se/s table (Table 6.2),

115

which contains each user’s username, password, and SIN, to verify the user’s

username and password.

If the logon is successful then the system will check the sess/b/7 5 table (Table

6.5), to find if the user has any session and related active role, and return a web

page, which contains the appropriate resources for this user. The system will get

the records from the sessions iab\e based on its primary key, username.

Users
(client)

Administrators

^Students

Faculty

TA

Accountants

access database
via login Servlet

Java servlet
(m iddle tier)

acceptUsers
activeroles
assignmentQuizExa
m
assignmgt
chiefAdministrator
collectUserData
login
permissionmgt
registration
rolemgt
session
submitMarks
usermgt
viewMarks

access tables:
users, sessions

Database
(server tier)

allUsers
academicRecords
conflictRoles
hierarchyRoIes
newUsers
objects
operations
permissionRole
permissions
roles
sessions
userRoie
users

Figure 6.17 Login process

When logon user has the top level administrator role and tries to perform this

role’s duty, the system will direct the user to the more secured logon interface

(Figure 6.18). This interface requires two chief administrators to logon at the

same time.

116

KUAC C m cf Aummisti^toi^

Figure 6.18 Logon interface for top level administrators

In this process, the required servlet is chiefAdminstrator (Figure 6.19).

Users
(client)

Administrators

Students

Faculty

TA

Accountants

access database
via login Servlet

Java servlet
(m iddle tier)

acceptUsers
activeroles
assignmentQuizExam
assignmgt
chiefAdministrator
collectUserData
login
permissionmgt
registration
rolemgt
session
submitMarks
usermgt
viewMarks

access tables;
users, sessions

Database
(server tier)

allUsers
academicRecords
conflictRoles
hierarchyRoIes
newUsers
objects
operations
permissionRole
permissions
roles
sessions
userRoie
users

Figure 6.19 Chief Administrators login process

117

6.3.2 Registration Interface

The registration interface (Figure 6.20) is an HTML file too. It takes a new user’s

information, such as name, mailing address, designated role request, etc. and

submits to the e-education system for acceptance. The submitted information is

stored in the newUsers\Qb\e (Table 6.3). In the following demonstration, User1

will be used as an example. Table 6.1 contains Userl’s registration data.

I ,,, fin

Figure 6.20 Registration interface for new users

In this process the collectUserData ser\i\Q\ is used. The newUsers\ab\e is

updated (Figure 6.21).

118

Users
(client)

Administrators

Students

Faculty

TA

Accountants

acceptUsers
activeroles
assignmentQuizExa
m
assignmgt
chiefAdministrator

access database
via Servlet

Java \c r \ Ici
(m iddle tier)

login
permissionmgt
registration
rolemgt
session
submitMarks
usermgt
viewMarks

update table:
newUsers

Database
(server tier)

allUsers
academicRecords
conflictRoles
hierarchyRoIes
newUsers
objects
operations
permissionRole
permissions
roles
sessions
userRoie
users

Figure 6.21 New users’ registration process

6.3.3 Time-Controlled Interfaces

The availability of an assignment is controlled by its due date. After the due date,

the submit button on the assignment interface will not be visible/available.

Students must submit the assignment before the due date. An example interface

is shown in Figure 6.22.

119

Ct̂ mame,
ÂHiga^QàiémiiMt.

î.m«r4oe»HBAÛ!(îwiïwï, ■
. ê. TWiïi IS üie adïsntsgf U fUSACf -

1 'What an ta banc «InMata S jr ^ A C Î

Figure 6.22 Assignment interface with time control

Part of the code for this interface is given as below.

<html>

<SCRIPT LANGUAGE="JavaScript">

var goLiveDate = "20030618"; // the post date

var expireDate = "20040920"; // the due date

var expireYear = explreDate.substring(0,4)

var expireMonth = expireDate.sllce(4,-2)

var expireDay = expireDate.slice(6)

var liveYear = goLiveDate.substring(0,4)

var liveMonth = goLiveDate.siice(4,-2)

var llveDay = goLlveDate.slice(6)

120

var nowDate = new Date();

var day = nowDate.getUTCDate();

var month = nowDate.getUTCMonth();

varmontht = month +1;

if (month! < 10){ month! = "0" + month! ;}

If (day < !0){ day = "0" + day;}

var year = nowDate.getYear();

var GMTdate = year + "" + month! + "" + day

if ((GMTdate < expireDate) && (GMTdate >= goLiveDate)) {

document.write(" <div align=’oenter’>This assignment posted on "

+iiveMonth+ "/" +iiveDay+ "/" +liveYear+ "
and will due on "

+expireMonth+ "/" +expireDay+ "/" +expireYear+". <brxbr> "

+ "Your username: <input type=’text’ name=’username’> <input name=’search’ type=’submit’

value=’Submit’> </div>")

}

</script>

</html>

A quiz must be completed within a specific period of time, starting from the time

the user opens the quiz interface. An example of such interface is shown in

Figure 6.23.

121

■ ln«t*wi»ï'''■
-" ../ Xwrsi-naAei;' --/''' '-

■ '*• {l««lgWeat/Qui3/%MMf and

i . ^ ; U » ï - ’I t e ® » ar^^ùp çocteo î iH ihnq lp£ i«P X ;:.. - ^.-'[.J... '• / . : ' ' .
31'. U s t , tW advantag«l «u^ à i »adwartt'«**l fojf/ak&k o f lima?" ' ' '
3.' Vhat is the majof d'i'ffeisnoe l^t«séîl‘ KBAp'a;id'oîîier aeoena'ooâtpali

. P _ . « . me r T ^ r !,,

Figure 6.23 A quiz interface with time control

Below is part of the code of this quiz interface.

<body bgcolor=8470FF text="#000000" Ilnk="#044d84" vlink=“#044d84" allnk="#a2937a">

<meta http-equiv="Refresh" content="15; URL=http://cs.stmarys.ca:8000/login.htmr'>

<form action=http://cs.stmarys.ca:8000/setvlet/qulz1 _servlet method=post>

In the above two interfaces, when the submit buttons are pressed, the

ass/gnmentQu/zExam serv\et\\i\W be used, and academ/cRecorcfsiab\e is

involved (Figure 6.24).

http://cs.stmarys.ca:8000/login.htmr'
http://cs.stmarys.ca:8000/setvlet/qulz1

122

Users Java servlet Database
(client) (iniildlc lien (server tier)

acceptUsers
activeroles allUsers

Administrators assignmentQuizExam
assignmgt

academicRecords
conflictRoles

Students chiefAdministrator
collectUserData

hierarchyRoIes
newUsers

Faculty access database
login

access tables:
objects

via Servlet permissionmgt academicRecords operations
TA registration permissionRole

permissionsrolemgt
Accountants session

submitMarks
usermgt
viewMarks

roles
sessions
userRoie
users

Figure 6.24 Assignment/quiz/exam submission involved processes

6.4 Database implementation

In order to store the system resources, thirteen MySQL database tables are

created. This section gives descriptions of these tables.

The table newUsersho\6s new user’s registration information. Every time when

an administrator logons and confirms the new users’ information, all the

registration information of the latest new users will be transferred into the table

allUsersiox a permanent storing. Right after the transferring, the table newUsers

will be emptied for the next batch of new users’ registration. The primary key for

each of the two tables is SIN (Social Insurance Number).

123

table newUsers (lastname varchar(30), firstname varchar(30), SIN

varchar(9), rolename varchar(30), address varchar(IOO), phone

varchar(20), email varchar(60), payment varchar(30), PRIMARY KEY

(SIN))

table allUsers (lastname varchar(30), firstname varchar(30), SIN

varchar(9), rolename varchar(30), address varchar(IOO), phone

varchar(20), email varchar(60), payment varchar(30), PRIMARY KEY

(SIN))

Once confirmed, the new user will be issued a set of username and password;

this logon information will be stored in the table users. This table will be checked

every time a user requests a logon.

table users (username varchar(30), password varchar(30), SIN varchar(9)

PRIMARY KEY (SIN))

The system roles, objects, operations, and permissions are maintained in the

table roles, objects, operations, and permissions, respectively.

table roles (rolename varchar(30))

table objects (objectname varchar(60))

124

table operations (operationname varchar(30))

table permissions (operation varchar(30), object varchar(60), PRIMARY

KEY (operation,object))

The 5ess/b/7s table, at the beginning is implemented with the fields: user name,

session name, and a string of active roles, with user name and session name

together as primary key. Later, it is noticed that the coding will not be efficient to

remove an active roie from the table; it needs a loop to check the active roie

string, taking more time. Eventually, the sess/b/7stable was implemented with

the fields: username, session name, and individual active role, and all the three

fields together becomes the primary key. This makes the adding and removing of

records more efficient.

table sessions (username varchar(30), sname varchar(30), activeroles

varchar(236), PRIMARY KEY (username,sname,activeroles))

The user-role and permission-role assignment relationships are maintained in the

table userRoie anû permissionRole.

table userRoie (username varchar(30), rolename varchar(SO), PRIMARY

KEY (username, rolename))

125

table permissionRole (permissionname varchar(97), rolename

varchar(30), privacy varchar(5), PRiMARY KEY (permissionname,

rolename))

The conflict role pairs and rôle hierarchy relations are stored in the following two

tables, respectively.

table conflictRoles (rolename varchar(30), itsconflictrole varchar(30),

PRIMARY KEY (rolename, itsconflictrole))

table hierarchyRoIes (parent varchar(30), child varchar(30), PRIMARY

KEY (parent, child))

The table academicRecords ho\6s student academic records. The field title aqe

represents the title of either assignments, or quizzes, or exams. The field ans

contains the submitted answers to the assignments/quizzes/exams.

table academicRecords (studentiD varchar(20), instructorname

varchar(20), coursename varchar(50), term varchar(9), year varchar(4),

aqe varchar(20), ans varchar(227), marks varchar(9), comments

varchar(127), PRIMARY KEY (studentlD, coursename, instructorname,

aqe, term, year));

126

The following figure is an overview of all the above database tables and their

relationships.

SESSIONS

username
sessionname
activeroles

has

Is involved In

allUsers
SIN

lastname
firstname
rolename
address
phone
email

payment

newUsers
SIN

lastname
firstname
rolename
address
phone
email

payment

USERS

SIN

username
password has

Is associated with

userRol^

username
rolename

academicRecords

StudentlD
instructorname

coursename
term
year
ape

marks
comments

IS

ROLES

rolename

associate with

hierarchyRoIes

parentrole
childrole

Is Involved in

Is involved In

Is associate with

permissio^ ^ole

permissionname
rolename
privacy

conflictRoles

rolename
itsconflictrole

OPERATIONS

is associate

PERMISSION

with

IS

operation
object

f

operationname

associate with
OBJECTS

objectname

is associate with

Figure 6.25 Database tables and their relationships

127

6.5 System test and analysis

To test the capability, efficiency and effectiveness of the e-education system,

1000 users, seven roies and 20 permissions (see Chapter 5) were created and

stored in the system. Because the student is the most common roie in the

system, 900 of the 1000 users are assigned to this roie.

With these numbers of users, roles, permissions, and relevant assignment

relationships, the system works smoothly: administrators can easiiy add/remove

and display any entity and its relations with other entities. For exampie, the

interface shows that the student role is associated with the 900 users.

To test how efficient and effective the system is when removing a roie, we

purposeiy removed the student roie from the system. Removing a roie means

that all the users associated with this role will have no access to the permissions

that are associated with this role. As a result there are 900 user-role assignment

relations that need to be updated. The system needs to check ail the tables that

are role-related, such as the tables: users, sessions, userRoies, roiePermissions,

hierarchyRoIes, and confiictRoies. It takes less than one second for the system

to do all the modifications. However, if this is implemented using ACLs that does

not have roles but maintains a list of users for each system object, the

administrators have to manually check all the user lists and make proper

128

modifications. This will take much longer time, may produce mistakes inevitably,

and also delay the system operations.

In summary, this chapter gives a detailed description of the implementation of the

RBAC based e-education system. The implementation includes: building a three

tier client-server environment, developing the administrative interfaces and

regular user interfaces, developing the system logon and new user registration

interfaces, and creating a database to store system resources. The next chapter

will give a summary/conclusion of the entire study.

129

Chapter 7

Summary and future work

7.1 Summary

This thesis studied the Role Based Access Control (RBAC) technology, and

explored its application potential in an educational environment. As a result of

this study, an RBAC based e-education system is designed and specified, a three

tier client-server environment is built, and a prototype of this design is

implemented.

The RBAC based e-education system is a software package that can be used by

any education organization to manage its daily business operations through the

Internet. All users including designated administrators, students, faculty, TA, and

account managers have pure online access to the education system. Through

the Internet, administrators perform system management duties; students and

faculty learn and teach.

To use this RBAC based e-education system, an organization is simply required

to install a web server and database server. The e-education system provides

two types of interfaces. One is for system administrators to perform

130

administrative duties, and the other one is for all the users to carry out their own

activities. Once they logon, the users will be taken to their corresponding

interfaces, which contain the resources they are entitled to. A set of

administrative interfaces are provided for the three levels of administrators.

Personal data, academic records, assignments, exams, and course curricula are

stored in the database server, and they are available via the middle tier - Java

Servlet.

The designed model of this study is a hybrid of three RBAC standard models:

Core RBAC, Hierarchical RBAC, and Constrained RBAC. It includes all the

essential parts of the three standard models. To take privacy issues into

consideration, this hybrid model has a unique design: it sets an additional

attribute for each permission, that is, each permission is associated with a privacy

attribute, either private or non-private. If it is private, this permission will not be

inherited, otherwise, the permission can be inherited.

Different from the proposed standard RBAC, this study created a privacy attribute

for the system entity - role. The creation of this unique concept can dramatically

reduce the number of conflict of interests in the system, also improve privacy.

This study encompasses every step of software development processes:

requirement analysis, specification, design, implementation, test, and

documentation. It also includes the set-up of a client-server environment, and

installation and configuration of software tools and servers.

131

This study has also demonstrated one of the unique features of RBAC that is

most appealing to this study: users’ access rights are based on the roles that

individual users have as part of an organization and RBAC uses an

organization’s natural business operation structure. Users are assigned to roles,

and permissions are assigned to roles. A user can only access the permissions

that are assigned to its role. Compared to a traditional access control technology

by which a user’s access right is based on the user’s identity, RBAC effectively

enforces enterprise-specific security policies and streamlines the security

management process.

To test this education system, 1000 users, 7 roles, and 20 permissions are set for

the system. When a user takes a new or different job (role), administrators will,

through the administrative interface, remove the user from the role and assign the

user to the new role. It takes less than a second for the administrators to update

the change. While in a system which uses ACLs, to update this change,

administrators will have to look at all the system objects and update their

attached access control lists. Comparing to RBAC system, it will take much

longer for the administrators to make the updates in a system that uses ACLs.

The analysis obviously shows the advantage of RBAC - reduced management

cost.

From this study, it is observed that RBAC has two major advantages: increased

security and reduced management cost. The feature of increased security can

132

be demonstrated in both small scale and large scale application environments,

while the feature of reduced management cost is better revealed in a large scale

system.

It is also learned that more and more people are now involved in the RBAC

research and application development. The impact of RBAC application is

potentially great; the use of RBAC applications will result in huge commercial

value, particularly in large organizations.

7.2 Future Work

Though the study results have not been used in real world cases, the study is an

effort to apply RBAC in e-education system, and demonstrates the potential

values of RBAC in e-education application. The groundwork laid by this effort

can be used in future development of a commercial software system.

In any future work, it would be reasonable to add more users, roles, courses, and

programs in the system to reflect one of the RBAC features - reduced

management cost.

In order to make it more realistic, future research can focus on more elaborate

interfaces with more interactive functions.

133

To further enhance the system security, future work may add a monitoring or

training program to the e-education system. This program will keep track of the

three-levels of administrators’ performances, and maintain a record including any

mistakes an administrator made and any complaints a user made to an

administrator. Based on the record, the administrators will be given a

performance evaluation. Only those administrators who perform outstandingly

will be promoted to a higher level of permissions in the RBAC system.

Administrators play a vital role in the system security. In the future, the e-

education system may use fingerprints to force administrators to logon to the

system to perform their administrative duties. This issue is a concern due to the

fact that most security breaches are from employees within the organization.

With the continuous advances in technology and the demand to tighten security,

this type of enforcement would become feasible and applicable in the near future.

134

References:

1. A Review Paper of Role Based Access Control. 1999.

httD://www.isrc.aut.edu.au/resource/techreport/aut-isrc-tr-1999-004.Ddf

2. Andress Mandy. 2001. “Reach Out and id Someone Access Control”.

Information Security. April 2001.

3. Curphey M. and other 16 authors. 2002. “A Guide to Building Secure Web

Applications”. The Open Web Application Security Project.

4. Ferraiolo D.F. and Kuhn R. 1992. "Ro/e Based Access Control”. Proceedings

of the NIST-NSA National Computer Security Conference, pp 554-563.

5. Ferraiolo D.F., Cugini J.A. and Kuhn D.R. 1995. “Role-Based Access Control

(RBAC): Features and Motivations”, 11th Annual Computer Security

Applications Proceedings, New Orleans, LA, December 13-15, pp 241-248.

6. Ferraiolo D.F., Barkley J.F. and Kuhn D.R. 1999. “A Role Based Access

Control Mode! and Reference Implementation Within a Corporate Intranet”.

ACM Workshop on Role-Based Access Control.

http://www.isrc.aut.edu.au/resource/techreport/aut-isrc-tr-1999-004.Ddf

135

7. Ferraiolo D.F., Sandhu R., Gavrila S., Kuhn D R. and Chandramouli R. 2001.

“Proposed NIST standard for role based access control”. ACM Transactions

on Information and System Security, Vol. 4, No. 3, pp. 224-274.

8. Gallaher M.P., O’Connor Alan C. and Kropp Brian. 2002. “The Economic

Impact of Role-Based Access Control. RTI Project”. March 2002.

9. Gallaher Michael P. 2002. “The economic impact of role-based access

control. Report to the National Institute of Standards and Technology”. Pages

145. httD://www.nist.aov/director/Droa-ofc/reDort02-1.Ddf

10. Gavrila S.I. and Barkley J.F. 1998. “Formal Specification for Role Based

Access Control User/Role and Role/Role Relationship Management”. ACM

Workshop on Role-Based Access Control.

httoV/citeseer.ni.nec.com/aavrila98formal.html

11.IDEF1X. 2004.

http://www.essentialstrateaies.com/Dublications/modeling/idef1x.htm

12. Jaeger T., Michailidis T. and Rada T. 1999. “Access control in a Virtual

Universitv”. IEEE 8th International Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises . June 16-18.

http://www.nist.aov/director/Droa-ofc/reDort02-1.Ddf
http://www.essentialstrateaies.com/Dublications/modeling/idef1x.htm

136

13. Jia X. 2002. ZTC: A type checker for Z notation - user’s guide.

http://venus.cs.deDaul.edu/fm/Papers/auide20.pdf

14. Jordan C.S. 1987. “A guide to understanding discretionary access control in

trusted systems”. National Computer Security Center.

15. Loscocco P. and Smalley S. 2001. “Integrating Flexible Support for Security

Policies into the Linux Operating System”, Proceedings of the FREENIX

Track: 2001 USENiXAnnua! Technical Conference, The USENIX

Association, June.

16. MySQL Manual. 2003. http://dev.mvsql.com/doc/mvsal/en/What-is.html

IT.Posulns J., Shimonski R.J. and Faircloth J. 2003. “SSCP study guide and

DVD training system”. Syngress.

18.RBAC Case Study. 2004.

http://infosecuritvmaa.techtaraet.com/articles/april01/cover.shtml

19. Role Based Access Control. National Institute of Standards and Technology.

2003. http://csrc.nist.aov/rbac/

http://venus.cs.deDaul.edu/fm/Papers/auide20.pdf
http://dev.mvsql.com/doc/mvsal/en/What-is.html
http://infosecuritvmaa.techtaraet.com/articles/april01/cover.shtml
http://csrc.nist.aov/rbac/

137

20. Sandhu R. and Samarati P. 1994. “Access Control: Principles and Practice”.

IEEE Computer, pp 40-48, September 1994.

http ://citeseer. ist.psu.ed u/sand h u94access. htm I

21.Saudhu Ravi. 2002. “Future directions in role based access control models”.

httD://www.iist.qmu.edu/confrnc/misconf/pdf ver/mmsOI-rbac-future.pdf

22.Spivey J.M. 1989. The Z Notation, A Reference Manual. Pretice Hail

international (UK) Ltd.

23. Sun Trusted Solaris 7 Operating Environment. 2004

http://wwws.sun.eom/software/soiaris/trustedsoiaris/7/ts feature macdac.html

24.Technology Highlights: ACLs (Access Control Lists). 2004

http://www.ind.aicatei.com/technoioqies/index.cfm?cnt=aci

25. What is RBAC. 2003.

http://infosecuritvmaq.techtarqet.eom/articies/aprii01/cover.shtmi#case studv

http://www.iist.qmu.edu/confrnc/misconf/pdf
http://wwws.sun.eom/software/soiaris/trustedsoiaris/7/ts
http://www.ind.aicatei.com/technoioqies/index.cfm?cnt=aci
http://infosecuritvmaq.techtarqet.eom/articies/aprii01/cover.shtmi%23case

138

y *

Java Servlet codes

import java.io.*;
import java.net.*;
import java.util.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.utiI.Date;

public class acceptUsers_servlet extends HttpServlet {
public void doPost(HttpServletRequest req, HttpServletResponse res)

throws ServletException, lOException {res.setContentType("text/html");
PrintWriter toClient = res.getWriter();
boolean hasNewUser = false;
try {Class.forName("com.mysql.jdbo.Driver").newlnstance();
} catch (Exception e) {toClient.println("Failed to load JDBC/ODBC driver.");}
try {Connection con = DriverManager.getConnection(

"jdbc:mysql://localhost/h_zhao", “h_zhao", "nRy2xN");
Statement st = con.createStatement();
st.executeUpdateC'use h_zhao;");
ResultSet result = st.executeQueryC'select * from newUsers;");
int fCol = resullfindColumn (“lastname");
int ICol = result.findColumn ("firstname");
int sInCol = result.findColumn ("SIN");
int rCol = result.findColumn ("rolename");
int adCol = result.findColumn ("address");
int phCol = result.findColumn ("phone");
int emCol = result.findColumn ("email");
int paCol = result.findColumn ("payment");

while(result.nextO) {
hasNewUser = true;
String fnm = result.getString(fCol);
String Inm = result.getString(ICol);
String sin = result.getString(sinCol);
String rnm = result.getString(rCol);
String ad = result.getString(adCol);
String ph = result.getString(phCol);
String em = result.getString(emCol);
String pa = result.getString(paCol);

String y = "1234567890"; //for username
String x =

"abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890"; //for password
String username = "e";
String pw = "";

for (int 1=0; j<7;]++){

139

}

}

username = username + String.valueOf(y.charAt((int)(Math.randomQ * y.length())));
}

for (int 1=1 ; i<7; I++) {
pw = pw + String.valueOf(x.charAt((lnt)(Math.random() * x.length())));

}

toCllent.println(''<html><body bgcolor=\"#065932\''>"); // add background color
toClient.println("Your username is: " + username +", password is: "+ pw);
toCiient.println("
");

st.executeUpdate("insert into users vaiues(’"+username+"V''+pw+"’, ’"+sin+"’);'');

// assign this role to the user as a default role
st.executeUpdate("insert into userRole values("'+username+"',"'+rnm+"');");
// create a session s1 for this user and put the role into the session
st.exeouteUpdate("insert into sessions values(’"+username+"VS1 V"+rnm+"’);");
st.executeUpdate("insert into allUsers

valuesr+lnm+"V"+fnm+"V"+sin+'","'+rnm+''V''+ad+''V"+ph+"V''+em+''V''+pa+"’);'');
}

st.executeUpdate("delete from newUsers;");

if (lhasNewUser) {
toClient.println(''<body bgcolor=\"#065932V'>''); // add background color
toClient.println(”

");
toClient.println("<h3 align=\"center\" style=\"color:white\">Hello administrators: no new

user registered so far! check back later please!</h3>");
}

toC!ient.print!n(''</body></html>");
toC!ient.close();
st.closeO;
con.c!ose();

} catch (Exception e) {e.printStackTrace();}

import java.io.*;
import java.net.*;
import java.util.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.utiI.Date;
import java.util.*;

public class activeroles_servlet extends HttpServlet {

140

static Int forPrlvacyPurpose = 0; //ensure the current role’s private permissions are displayed
static Vector rpv = new Vector();// prevent the basic role permissions from displaying more than once

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, IOException{
res.setContentType(“text/html");
PrintWriter toClient = res.getWriter();
toClient.println(''<html>"):
toClient.println("<body bgcolor=\"8470FR">"):

String roleBtnName = (req.getParameter("rolebtn")).trim();

diaplayRolePermissions(toClient, roleBtnName);
forPrlvacyPurpose =0;
rpv.removeAIIEIementsO;

toClient.println("</body></html>");
toGlient.closeO;

} // end of doPostO

public void diaplayRolePermissions (PrintWriter out. String roleClicked) {// a recursive function
try {Class.forName(''com.mysql.jdbc.Driver").newlnstance();
} catch (Exception e) {System.out.println("Failed to load JDBC/ODBC driver.");}
try (Connection con = DriverManager.getConnection

("jdbc:mysql://localhost/h_zhao", "h_zhao", "nRy2xN");
Statement st = con.createStatement();
St.executeUpdateC'use h_zhao;");

// display this role's permissions
ResultSet rst2 = st.executeQueryC'select * from permissionRole;");
int pcol2 = rst2.findColumn ("permissionname");
int ccol2 = rst2.findColumn ("rolename");
int pvcol2 = rst2.findColumn ("privacy");

String pname, rname, pv;
String link = "";

if (forPrivacyPurpose ==0) {
while(rst2.next()) {

link = "http://cs.stmarys.ca:8000/";
pname = rst2.getString(pcol2);
pname = getPermName(pname); // trip of the operation and -->
rname = rst2.getString(ccol2);
pv = rst2.getString(pvcol2);

if (roleClicked.compareTo(rname)==0 && !(rpv.contains(pname))) {
if (pname.compareTo(''chiefAdministratorDuties")!=0){

link = link+pname+".html";
out.println(" "+pname+" ");
out.println("
 ");
rpv.addElement(pname);

http://cs.stmarys.ca:8000/

141

}
else {

link = link+"chiefAclmmistratorJogin.htmr';
out.println('' ”+pname+"'');
out.prlntln("

}

}

}
forPrivacyPurpose++;

}
else{

while(rst2.next()) {
link = "http://cs.stmarys.ca:8000/";
pname = rst2.getString(pcol2):
pname = getPermName(pname);
rname = rst2.getString(ccol2);
pv = rst2.getString(pvcol2);

!(rpv.contains(pname))){
lf(roleCllcked.compareTo(rname)==0 && pv.compareTo("yes'')l=0 &&

link = llnk+pname+".html";
out.prlntln(“ “+pname+" ");
out.prlntlnj"
 ");
rpv.addElement(pname);

}

ResultSet rst = st.executeQuery("select * from hierarchyRoles;");
Int pool = rst.flndColumn ("parent");
Int ccol = rst.flndColumn ("cfilld");
String chlldrenRole;
Vector chlldren_vector = new Vector();

whlle(rst.nextO) {
If (roleCllcked.compareTo(rst.getStrlng(pcol))==0) {

cfilldrenRole = rst.getStrlng(ccol);
diaplayRolePermissions (out, chlldrenRole);

}
} //end of rst
st.closeO;
con.closeO;

} //end of try con
catch (Exception e) (e.printStackTrace();}

}// end of method diaplayRolePermissions

public String getPermName (String p) {
Int X = p.lndexOf(">");
return (p.substrlng(x+1, p.length())).trlm();

}

http://cs.stmarys.ca:8000/

142

import java.io.*;
import java.net.*;
import java.utii.*;
import java.sqi.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.utiI.Date;

public class asslgnmentQuizExam_servlet extends HttpServlet {

public void doPost(HttpServietRequest req, HttpServletResponse res)
throws ServletException, lOException {res.setContentType("text/htmi");
PrintWriter toe = res.getWriter();
String ans = null;
String stnm = null;
String innm = null;
String conm = null;
String aqenm = null;
String te = null;
String ye = null;

ans = (req.getParameter("as")).trim();
stnm = (req.getParameter(”username")).trim();
innm = (req.getParameter("instname")).trim();
conm = (req.getParameter("coursename")).trim();
aqenm = (req.getParameter("aqen'')).trim();
te = (req.getParameter("term")).trim();
ye = (req.getParameter("year")).trim();

toc.printin("<html>'');
toc.printin("<body bgcolor=8470FF>");
toc.println("
<brxh3>Thank you, "+stnm+" "+", for submitting the work to "+" "+innm+"!</h3>");
toc.println("<brxh3>Here is a copy of the answers that you just submitted!</h3xbrxbr>");
toc.println(“ "+ans+"
");
toc.println("</html>");
toc.cioseQ;

// store the answers into database
try {Class.forName(''com.mysql.jdbc.Driver").newlnstance();
} catch (Exception e) {toc.printin("Faiied to load JDBC/ODBC driver.");}
try {Connection con = DriverManager.getConnection(

"jdbc:mysql://iocalhost/h_zhao”, "h_zhao", "nRy2xN");
Statement st = con.createStatement();
St.executeUpdateC'use h_zhao;");
st.executeUpdate("insert into academicRecords

values(’"+stnm+'”,’"+innm+"’,’"+conm+"’,’"+te+"’,"'+ye+"’,"'+aqenm+"’,’"+ans+"V’,”);"):

143

st.closeO:
con.closeO;

} catch (Exception e) {e.prlntStackTrace();}
}

}

Import java.io.*;
import java.net.*;
import java.util.*;
import java.sql.*;
import javax.sen/let.*;
import javax.servlet.http.*;
import java.utiI.Date;
import java.util.*;

public class asslgnmgt_servlet extends HttpServlet {

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, lOException {

res.setContentType("text/htmi“);
PrintWriter toClient = res.getWriter();
Vector role_vector = new Vector();
Vector user_vector = new Vectorj);
Vector permission_vector = new Vector();
Vector userRole_vector = new Vector();
Vector roleUser_vector = new Vector();
Vector sessionRole_vector = new Vector(); // hold the title
Vector sessionRole_vector1 = new Vector();
Vector sessionRole_vector2 = new Vectorj);
Vector sessionRole_vector3 = new Vectorj);

Vector prmsRole_vector = new Vector();
Vector rolePrms_vector = new Vector();

Vector session_vector = new Vector();
session_vector.addElement('"');
session_vector.addElement("S1");
session_vector.addElementj"S2");
session_vector.addElementj"S3");

toClient.println("<html>");
toClient.printlnj"<body bgcolor=\"#065932\">");
toClient.println(''<h2style=V'color:white\">ROLE/USER/PERMiSSION ASSIGNMENT

MANAGEMENT</h2>");

144

toClient.println(“<formaction=V'http://cs.stmarys.ca:8000/servlet/assignmgt_servletV'
method=post>");

I * * * * * * * * * * * * * * * connect to database and show again ******************/
try {Class.forName("com.mysql.jdbc.Driver'').newlnstance():
} catch (Exception e) {System.out.println("Failed to load JDBC/ODBC driver.");}
try {Connection con = DriverManager.getConnection("jdbc:mysqi://ioca!host/h_zhao“, "h_zhao",

“nRy2xN");
Statement st = con.createStatement();
St.executeUpdateC'use h_zhao;");

if (req.getParameter("addbtnUserRole") != null){
String u = (req.getParameter("userlist")).trim();
String s = (req.getParameter("sessionlist")).trim();
String r = (req.getParameter(''rolelist'')).trim();

if(s.compareTo("")==0) {// this is an simple user and role assignment
try (st.executeUpdate("insert into userRole values (’"+u+"’,"'+r+"’);");}
catch (SQLException sqle){

toClient.println("");
toClient.println("duplicate entry, user-role assignment already exists");
toClient.println("");

}

}
else {// this is a session creation

// first have to chech if the user has such a role, if not, can not assign the role to the session
boolean theUserHasTheRole = false;
ResultSet sresult = st.executeQueryC'select * from userRole;");
int Colu = sresult.findColumn ("username");
int Coir = sresult.findColumn ("rolename");
String unm="";
String rnm="";
while(sresult.nextO) {

unm = sresult.getString(Colu);
rnm = sresult.getString(Colr);
if (unm.compareTo(u) == 0 && rnm.compareTo(r) == 0) {

theUserHasTheRole = true;
break;

}

}

if (theUserHasTheRole == true) {
try (st.executeUpdate("insert into sessions values C"+u+"’,’"+s+'",”'+r+"’);");
} catch (SQLException sqle){

toClient.println("");
toClient.println("duplicate entry, this session-role already exists");
toClient.println("");

}

}
else

http://cs.stmarys.ca:8000/servlet/assignmgt_servletV'

145

toClient.printlnC'The user does not have such a role! Please assign the role to
the user, then you can add this role to a session!");

}
}
else if (req.getParameter("debtnUserRole") != null){

String u = (req.getParameter("userlist")).trim();
String s = (req.getParameter(''sessionlist")).trim();
String r = (req.getParameter("rolelist'')).trim();

if (s.compareTo('"')==0) {// this is to remove the user from the role
st.executeUpdateC'delete from userRole where username=’"+u+"’ and

rolename="'+r+"’;");
St.executeUpdateC'delete from sessions where username=’"+u+"’ and

activeroles=’"+r+"’;");
}
else // just remove the role from the user’s this session

St.executeUpdateC'delete from sessions where username=’"+u+'” and sname=’"+s+'"
and activeroles=’"+r+"’;");

}

else if (req.getParameter("addbtnPermRole") != null){
String p = (req.getParameter("permlist")).trim();
String r = (req.getParameter("prolelist")).trim();
String ck = req.getParameter("yesnocheck"); // important! don't trim THIS ONE
String privacy = "no";

if (ck != null)
privacy = "yes";

try { st.executeUpdate("insert into permissionRole values C"+p+"V"+r+'",’"+privacy+'");");}
catch (SQLException sqle){

toClient.println("");
toClient.println("duplicate entry, this permission-role assignment already exists");
toClient.println("");

}
}

else if (req.getParameter("debtnPermRole") != null){
String p = (req.getParameter("permlist")).trim();
String r = (req.getParameter("prolelist")).trim();
St.executeUpdateC'delete from permissionRole where permissionname="'+p+"’ and

rolename=’"+r+"’;");
}

else if (req.getParameter("showbtnUserRole") != null){
String ur = (req.getParameter("userlist")).trim();
// add the user name into the first spot of the vector
userRole_vector.addElement(ur);
userRole_vector.addElement("roles");
ResultSet uresult = st.executeQueryC'select * from userRole;");
int Colu = uresult.findColumn ("username");

146

}

int Coir = uresult.findColumn ("rolename”);
String nmu="";
String nmr="";
wfiile(uresult.nextO) {

nmu = uresult.getString(Colu);
nmr = uresult.getString(Colr);
if (nmu.compareTo(ur) == 0) {

userRole_veotor. add Element(nm r) ;
}

}

// show the user’s sessions and roles
sessionRole_vector.addElement(ur);
sessionRole_vector.addElement(“sessions/roles");
sessionRole_vector1.addElement(ur);
sessionRole_vector1 .addElement("session 1 ");
sessionRole_vector2.addElement(ur);
sessionRole_vector2.addElement("session 2");
sessionRole_vector3.addElement(ur);
sessionRole_vector3.addElement(“session 3“);

ResultSet rt = st.executeQueryC'select * from sessions;");
int Cu = rt.findColumn ("username");
int Cs = rt.findColumn ("sname");
int Cr = rt.findColumn ("activeroles");
String usernm="";
String sesnm="";
String actnm="";
while(rt.nextO) {

usernm = rt.getString(Cu);
sesnm = rt.getString(Cs);
actnm = rt.getString(Cr);
if (usernm.compareTo(ur) == 0) {

if (sesnm.compareTo("S1")==0)
sessionRole_vector1.addElement(actnm);

else if (sesnm.compareTo("S2")==0)
sessionRole_vector2.addElement(actnm);

else if (sesnm.compareTo("S3")==0)
sessionRole_vector3.addElement(actnm);

}
}

else if (req.getParameter("showbtnRoleUser") != null){
String rl = (req.getParameter("rolelist")).trim();
// add the role name into the first spot of the vector
roleUser_vector.addElement(rl);
roleUser_vector.addElement("roles");
ResultSet rresult = st.executeQueryC'select * from userRole;");
int Colu = rresult.findColumn ("username");
int Coir = rresult.findColumn ("rolename");

147

}

String nmu="":
String nmr=“";
whlle(rresult.nextO) {

nmu = rresult.getString(Coiu);
nmr = rresult.getStrlng(Colr);
if (nmr.compareTo(rl) == 0) {

roleUser_vector.addElement(nmu);
}

}

else if (req.getParameter("stiowbtnRolePrms”) != nuil){
String rp = (req.getParameter(''prolelist'')).trim();
// add the role name into the first spot of the vector
roiePrms_vector.addElement(rp);
rolePrms_vector.addElement(''permissions“);
ResultSet rpresuit = st.executeQueryC'select * from permissionRole;");
int Coip = rpresuit.findColumn ("permissionname");
int Coir = rpresuit.findColumn ("rolename");
String nmp="";
String nmr="";
while(rpresult.nextO) {

nmp = rpresult.getString(Colp);
nmr = rpresult.getString(Colr);
if (nmr.compareTo(rp) == 0) {

roiePrms_vector.addEiement(nmp);
}

}
}

else if (req.getParameter("showbtnPrmsRole") 1= nuil){
String pr = (req.getParameter("permiist")).trim();
prmsRoie_vector.addElement(pr);
prmsRoie_vector.addElement("roles");
ResultSet prresult = st.executeQueryC'select * from permissionRole;");
int Coip = prresult.findCoiumn ("permissionname");
int Coir = prresult.findCoiumn ("rolename");
String nmp="";
String nmr="";
while(prresuit.nextO) {

nmp = prresult.getString(Coip);
nmr = prresult.getString(Colr);
if (nmp.compareTo(pr) == 0) {

prmsRole_vector.addElement(nmr);

}
1

}

ResultSet roleresult = st.executeQueryC'select * from roles;");
int rCol = roieresuit.findColumn ("rolename");
String rnm="";

148

while(roleresult.nextO) {
rnm = roler6sult.getString(rCol);
role_vector.addElement(rnm);

}

ResultSet userresult = st.executeQueryC'select * from users;");
int uCol = userresult.findColumn ("username");
String unm="";
whlle(userresult.next()) {

unm = userresult.getStrlng(uCol);
user_vector.addElement(unm);

}

ResultSet permresult = st.executeQueryC'select * from permissions;");
int opeCol = permresult.findColumn ("operation");
int objCol = permresult.findColumn ("object");
String oper, obje;
wfiile(permresult.nextO) {

oper = permresult.getString(opeCol);
obje = permresult.getString(objCol);
permission_vector.addElement(oper + " --> " + obje);

}

st.closeO;
con.closeO;

} catch (Exception e) {e.printStackTrace();}

I * * * * * * * * * * update and display assignments * * * * * * * * * /

toClient.println("<h3style=\"color:white\">User/Role Assignment</h3>");
toClient.println("<table border =\"1\">");
toClient.println("<tr>");
toClient.println("<tdxh4style=\"color:white\">USERS</h4></td>");
toGlient.println(''<td><h4style=\"color:white\">SESSIONS</h4></td>'');
toGlient.println("<td><h4style=\"color;whiteV'>RQLES</h4></td>");
toGlient.println("</tr>");

toGlient.println("<tr>");
toGlient.println("<td>");
toGlient.println("<select name=\"userlist\">");
String ustr = "";
int s = user_vector.size();
for (int I = 0; i<s; i++) {

ustr = (String)user_vector.elementAt(i);
toGlient.println("<cption>"+ustr+"");

}
toGlient.println("</select>");
toGlient.println("</td>");

toGlient.println("<td>");
toGlient.println("<select name=\"sessionlist\">");
String snstr = "";

149

int sn = session_vector.size();
for (int i = 0; i<sn; i++) {

snstr = (String)session_vector.elementAt(i):
toClient.println(''<option>''+snstr+'"');

}
toClient.println("</select>'');
toClient.println{"</td>'');

toClient.println("<td>");
toCiient.printin(“<select name=V'roie!ist\">''):
String rstr =
int t = roie_vector.size();
for (int i = 0; i<t; i++) {

rstr = (String)role_vector.elementAt(i);
toCiient.println("<option>"+rstr+'"');

}
toClient.println("</seleot>“);
toClient.println(''</td>");
toClient.println(''</tr>");
toCiient.println("</tab!e>'');

toClient.println("<input name=\"addbtnUserRoleV type=V'submit\" value=\"Assign selected user to
selected role/sesslon\">");

toClient.println("<input name=\"debtnUserRole\" type=\“submit\" value=\"Remove selected user from
selected role\">");

toCllent.println(“

");

toClient.println("<input name=\"showbtnUserRole\" type=V'submit\" value=\"Display selected user’s
roles/sessionsV>");

diaplayAttrlbutes(toClient, userRole_vector); // some of tfie roles may not be in the user’s sessions
diaplayAttributes(toClient, session Role_vector);
diaplayAttributes(toClient, sessionRole_vector1);
diaplayAttributes(toClient, sessionRole_vector2);
diaplayAttributes(toClient, sessionRole_vector3);
toClient.println("
<brxbr>");
toClient.println("<input name=\"showbtnRoleUset\" type=\"submit\" value=\"Display selected role’s

users\">");
diaplayAttributes(toClient, roleUser_vector);
toCllent.println("

“);

/********* permission role assignment **********/
toClient.println("<h3style=\"color:white\''>Permission/Role Assignment</h3>");
toClient.println("<table border =\"1V>");
toClient.println(''<tr>");
toClient.println("<tdxh4 style=\"color:whlte\“>PERMISSIONS</h4x/td>");
toClient.println("<tdxh4style=\"color:white\">ROLES</h4x/td>'');
toClient.println("c/tr>");
toClient.println("<tr>");
toClient.println("<td>"):
toClient.println("<select name=\"permlist\">“):
String pstr =

150

int ps = permlssion_vector.size();
for (int i = 0; i<ps; i++) {

pstr = (String)permission_vector.elementAt(i);
toCiient.printin("<option>''+pstr+"”);

}
toClient.println("</seiect>");
toClient.println(''</td>");
toClient.println(''<td>");
toCiient.println("<select name=\"proieiist\">'');
String prstr =
int pt = roie_vector.size();
for (int i = 0; i<pt; i++) {

prstr = (String)roie_vector.elementAt(i);
toClient.println(''<option>''+prstr+""):

}
toClient.println(“</select>"):
toClient.println("</td>"):
toCiient.println("<td>");
toCiient.println("<input name=\"yesnocheck\" type=\"CHECKBOX\"xfont co!or=\"wfiiteV'> Private

permission!''):
toClient.printin(“</td>''):
toClient.println("</tr>");
toClient.printin("</tab!e>");
toClient.println(“<input name=\"addbtnPermRole\" type=V'submit\" value=\"Assign seiected

permission to selected role\">");
toClient.println("<input name=\"debtnPermRoie\" type=\"submit\" vaiue=\"Remove seiected
permission from seiected roie\">“);
toCiient.println("
<brxbr>");
toCiient.println("<input name=\"showbtnRoiePrms\" type=\"submit\" value=\"Display selected role’s

permissionsV>"):
diaplayAttributes(toClient, rolePrms_vector);
toClient.println("<brxbr>
'');
toClient.println("<input name=\"showbtnPrmsRole\" type=\"submit\" value=\"Display selected

permission’s roies\">");
diaplayAttributes(toCiient, prmsRole_vector);
toClient.println(“<b rxb rxb rxb rxb r> ");
toClient.println("<brxbrxbrxbrxbr>");
toClient.println("</formx/bodyx/html>");
toCiient.closeO:

}

public void diaplayAttributes (PrintWriter out, Vector v) {
int s = v.sizeO:
if (s>2) { / / has to be greater than 2, to prevent the case - no session

String strO = " "+(String)v.elementAt(0)+"
String fl = " "+(String)v.elementAt(1);

out.printin("<pxfont color=\"white\">"+strO+" has the foliowing "+fi+": ");
out.println("<fontcolor=\"white\">");

for (int i = 2; i<s; i++) {

151

String sir = (Strlng)v.eiementAt(i):
out.prlntln("''+str+'"');

}
out.prlntln("'');
}

}
}

import java.io.*;
import java.net.*;
import java.util.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.utiI.Date;

public class chiefAdminlstrator_log[n_servlet extends HttpServlet {

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, lOException {
res.setContentType("text/html");
PrintWriter toClient = res.getWriter();
toGlient.println("<form action=V'http://cs.stmarys.ca:8000/servlet/session_servlet\" method=post>");
String in_usernm1 = null;
String in_passwd1 = null;
String in_usernm2 = null;
String in_passwd2 = null;

Vector ussero_vector1 = new Vectorj);
Vector ussero_vector2 = new Vectorj);
Vector ussero_vector3 = new Vectorj);
int numsessions = 0;

in_usernm1 = jreq.getParameterj"username1")).trimj);
in_passwd1 = jreq.getParameterj"password1")).trimj);
in_usernm2 = jreq.getParameterj"username2")).trimj);
in_passwd2 = jreq.getParameterj"password2")).trimj);

try { Class.forNamej"com.mysql.jdbc.Driver").newlnstancej);}
catch j Exception e) { System.out.printlnj"Failed to load JDBC/ODBC driver.");}

try (Connection con = DriverManager.getConnectionj"jdbc:mysql://localhost/h_zhao", "h_zhao",
"nRy2xN");

Statement st = con.createStatementj);
st.executeUpdatej"useh_zhao;");

ResultSet result = st.executeQueryj"select * from users;");

http://cs.stmarys.ca:8000/servlet/session_servlet/

152

int usernmCol = result.findColumn ("username");
int passwdCol = result.findColumn ("password");

String usernm = passwd =
String returnPage =
int user! ok = 0, user2ok =0;

while(result.nextO) {
usernm = result.getString(usernmCol);
passwd = result.getString(passwdCol);

if (usernm.equals (in_usernm1) && passwd.equals (in_passwd1)) {
user1ok=1;

}
else if (usernm.equais (in_usernm2) && passwd.equals (in_passwd2)) {

user2ok=1;
}

}

// — get a user's sessions from the table sessions
ResultSet seresult = st.executeQueryC'select * from sessions;");
int usCol = seresult.findColumn ("username");
int seCol = seresult.findColumn ("sname");
int roCol = seresult.findColumn ("activeroles");

String usnm, senm, ronm;

while(seresult.nextO) {
usnm = seresult.getString(usCol);
senm = seresult.getString(seCol);
ronm = seresult.getString(roCol);

if (usnm.equals (in_usernm1)) {
numsessions++;
if (senm.equals("S1")) {

ussero_vector1.addElement(ronm);
}
else if (senm.equals("S2")) {

ussero_vector2.addElement(ronm);
}
else if (senm.equals("S3")) {

ussero_vector3.addElement(ronm);
}

}
}
// -— Chech how many sessions this user has -—
if (ussero_vector1.size() != 0)

numsessions++;
if (ussero_vector2.size() != 0)

numsessions++;
if (ussero_vector3.size() != 0)

153

numsessions++;

// check login username and password
if((user1ok==1)&&(user2ok==1)) {

// login succeed, Respond to client

Runtime rt = Runtime.getRuntimeQ;
try{ rt.exec("chmod 755 abc.html");}
catch(Exception e) { System.out.println(e.getMessage());}

String toPage=''http://cs.stmarys.ca:8000/chiefAdministratorDuties.html";
res.sendRedirect(toPage):

}
else{

// iogin not succeed, re-login
String relogin="http://cs.stmarys.ca:8000/chiefAdministratorJogin.html";
res.sendRedirect(relogin);

}
toClient.println("</form>");
toCiient.closeO;
st.closeO;
con.closeO;

} catch (Exception e) { e.printStackTrace();}

import java.io.*;
import java.net.*;
import java.util.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.utiI.Date;

public class collectUserData_servlet extends HttpServlet {

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, lOException {
res.setContentType("text/html");
PrintWriter toClient = res.getWriter();
String lastnm = (req.getParameter("lastname")).trim();
String firstnm = (req.getParameter("firstname")).trim();
String sin = (req.getParameter("sin'')).trim();
String rolenm = (req.getParameter("rolename'')).trim();
String addr = (req.getParameter("address")).trim();
String ph = (req.getParameter(''phone'')).trim();

http://cs.stmarys.ca:8000/chiefAdministratorDuties.html
http://cs.stmarys.ca:8000/chiefAdministratorJogin.html

154

String email = (req.getParameter("email")).trim();
String pay = (req.getParameter(”pay")).trim();

try {Class.forName(''com.mysql,jcibc.Driver").newlnstance():
} catch (Exception e) {System.out.println("Failed to load JDBC/ODBC driver.");}
try{

Connection con = DriverManager.getConnection(
"jdbc:mysqi://localhost/h_zhao", "h_zhao", "nRy2xN");

Statement st = con.createStatement();
St.executeUpdateC'use h_zhao;");
st.executeUpdate("insert into newUsers values("'+lastnm+"’,"'+firstnm+"’, ’"+sin+"’, "'+rolenm+"’,

"'+addr+'", ’"+ph+‘", '"+email+"', ’"+pay+'");");

String relogin="http://cs.stmarys.ca:8000/finishRegistration.html";
res.sendRedirect(relogin);
toCiient.closeO;
st.closeO;
con.closeO;

} catch (Exception e) {
e.printStackTraceO;

}

}

}

import java.io.*;
import java.net.*;
import java.util.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.utiI.Date;

public class login_servlet extends HttpServlet {
public void doPost(HttpServletRequest req, HttpServletResponse res)

throws ServletException, lOException {
res.setContentType("text/html");
PrintWriter toClient = res.getWriter();
toClient.println("<formaction=\"http://cs.stmarys.ca:8000/servlet/session_servlet\" method=post>");
String in_usernm = null;
String injrasswd = null;

Vector ussero_vector1 = new Vector();
Vector ussero_vector2 = new Vector();
Vector ussero_vector3 = new Vector();
Int slActlveRoles = 0;
int s2ActiveRoles = 0;
int s3ActiveRoles = 0;

http://cs.stmarys.ca:8000/finishRegistration.html
http://cs.stmarys.ca:8000/servlet/session_servlet/

155

int numsessions = 0;

in_usernm = (req.getParameter("username")).trim();
in_passwd = (req.getParameter("password'')).trim();

try { Ciass.forName(''com.mysqi.jdbc.Driver'').newlnstance();}
catch (Exception e) { System.out.printin("Faiied to load JDBC/ODBC driver.");}

try{
Connection con = DriverManager.getConnection("jdbc:mysql://localhost/h_zhao", "h_zhao",

"nRy2xN");
Statement st = con.createStatement();
st.executeUpdate("use h_zhao;");
ResultSet result = st.executeQueryC'select * from users;");
int usernmCol = result.findColumn ("username");
int passwdCoi = resuit.findColumn (“password");
String usernm = passwd =
String returnPage = "";
int usernmok = 0, passwdok =0;

while(result.nextO) {
usernm = result.getString(usernmCoi);
passwd = result.getString(passwdCol);

if (usernm.equals (in_usernm)) {
usernmok=1 ;
if (passwd.equais (in_passwd)) {

passwdok=1 ;
break;

}

}

}

// — get a user's sessions from the table sessions
ResuitSet seresuit = st.executeQueryC'select * from sessions;");
int usCol = seresuit.findColumn ("username");
int seCol = seresult.findColumn ("sname");
int roCoi = seresult.findColumn ("activeroles");
String usnm, senm, ronm;
whiie(seresult.nextO) {

usnm = seresult.getString(usCol);
senm = seresuit.getString(seCol);
ronm = seresult.getString(roCol);
if (usnm.equals (usernm)) {

numsessions++;
if (senm.equals("S1")){

ussero_vector1.addElement(ronm);
}
else if (senm.equals("S2")) {

ussero_vector2.addElement(ronm);
}

156

else if (senm.equals("S3")) {
ussero_vector3.addElement(ronm);

}

}

}
// — Chech how many sessions this user has —
if (ussero_vector1.size() != 0)

numsessions++:
if (ussero_veotor2.size() != 0)

numsessions++;
if (ussero_vector3.size() != 0)

numsessions++:

// check login username and password
if((usernmok==1)&&(passwdok==1)) {

// login succeed, Respond to client
dlsplayResultPage(toClient, ussero_vector1, ussero_vector2, ussero_vector3);

}
else{

// login not succeed, re-login
String relogin=''http://cs.stmarys.ca:8000/relogin.html";
res.sendRedirect(relogin);

}
toClient.println(“</form>“);
toCiient.closeO;
st.closeO;
con.closeO;

} catch (Exception e) { e.printStackTraceO;}
}

/ / ---
// displayResultPage
//--
public void displayResultPage(PrintWriter out. Vector v1, Vector v2. Vector v3) {

out.println("<html>“);
out.printlnj "<body bgcolor=8470FF>");
out.println("
<brxcenter>");
out.println("<h2xfont face=\"Verdana\“>Welcome to RBAC system.</fontx/h2>");
out.println("</center>");
out.printlnj "<center>");
out.printlnj "<h2xfont face=V'Verdana\">You have the following sessions and roles.</fontx/h2>");
out.println("</center>");
out.println("<brxhr>");

// determine how many sessions the user have
int numOFsessions = 1 ; I I a user has one session by default
if (v2.size() >011 v3.size() >0) {

numOFsessions++;
}
if (numOFsessions > 1) { // once going to next page, will not be able to back to this page

out.println(" <script language=\"JavaScript\"> ");

http://cs.stmarys.ca:8000/relogin.html

157

out.println(" var nHist = window.history.length; ");
out.printlnj" if(wlndow.history[nHlst] != window.location) ");
out.printlnj" window.history.forward(); ");
out.printlnj" </script> ");

}
out.println("");

if (v1 .size() > 0) {
String sessionRoles = "Session 1 :
for(inti = 0;i<v1.size():i++){

if (i !=v1.size()-1)
sessionRoles = sessionRoles + (String)(v1.eiementAt(i)) +",

else sessionRoles = sessionRoles + (String)(v1.elementAt(i));
}
out.println("<input type = \"submit\" name=\"session\" value=\""+sessionRoles+"\”>");
out.printlnj"

"): -

}

if (v2.size() > 0) {
String sessionRoles = "Session 2:
for (int i = 0; i < v2.size(); i++) {

if (i !=v2.size()-1)
sessionRoles = sessionRoles + (String)(v2.elementAt(i)) +",

else sessionRoles = sessionRoles + (String)(v2.elementAt(i));
}
out.println("<input type = \"submit\" name=\"session\" value=\""+sessionRoles+"\">");
out.printlnj"
<brxbr>");

}

if (v3.size() > 0) {
String sessionRoles = "Session 3:
for (int i = 0; i < v3.size(); i++) {

if (i !=v3.size()-1)
sessionRoles = sessionRoles + (String)(v3.elementAt(i)) +",

else sessionRoles = sessionRoles + (String)(v3.elementAt(i));
}
out.println("<input type = \"submit\" name=\"session\" value=\""+sessionRoles+"\“>");
out.printlnj"
<brxbr>");

}
out.println("");

import java.io.*;
import java.net.*;
import java.util.*;
import java.sql.*;
import javax.servlet.*;

158

import javax.servlet.http.*;
import java.utiI.Date;
import java.util.*;

public class permissionmgt_servlet extends HttpServlet {
public void doPost(HttpServletRequest req, HttpServletResponse res)

throws ServletException, lOException {
res.setContentType("text/html");
PrintWriter toClient = res.getWriter();
Vector object_vector = new VectorQ;
Vector operation_vector = new Vector();
Vector permission_vector = new Vector();

toClient.println("<html>");
toClient.println("<body bgcolor=V'#065932\">");
toClient.println('‘<h2style=\"color:white\">PERMISSION MANAGEMENT</h2>”);
toClient.println(''<formaction=\"http://cs.stmarys.ca:8000/servlet/permissionmgt_servlet\''

method=post>");
/*************** connect to database and show again ******************/
try {Class.forName(“com.mysql.jdbc.Driver").newlnstance();
} catch (Exception e) {System.out.println("Failed to load JDBC/ODBC driver.");}
try {Connection con = DriverManager.getConnection(''jdbc:mysql://localhost/h_zhao", "h_zhao",

"nRy2xN");
Statement st = con.createStatement();
St.executeUpdateC'use h_zhao;");

if (req.getParameter("addbtnOP") 1= null){
try (st.executeUpdateC’insert into operations values

(’"+(req.getParameter("newoperation'')).trim()+'”);“);}
catch (SQLException sqle){

toClient.println("");
toClient.println("duplicate entry, the operation already exists");
toClient.println(''“);

}

}

else if (req.getParameter("debtnOP") 1= null){
St.executeUpdateC'delete from operations where

operationname=’''+(req.getParameter(''operationlist")).trim()+'";'');
St.executeUpdateC'delete from permissions where

operation=’"+(req.getParameter(''operationlist")).trim()+'";");
}

else if (req.getParameter("addbtnOBJ") != nuli){
try (st.executeUpdate("insert into objects values C"+(req.getParameter("newobject'')).trim()+"’);'');}

catch (SQLException sqle){
toClient.println("");
toClient.printlnC'duplicate entry, the objects already exists");
toClient.println("");

}
}

http://cs.stmarys.ca:8000/servlet/permissionmgt_servlet/''

159

else if (req.getParameter("debtnOBJ") 1= null){
St.executeUpdateC'delete from objects wtiere ob]ectname=’"+(req.getParameter("objectllst")).trlm()+"’;");
st.executeUpdate("delete from permissions where object=’"+(req.getParameter("objectlist")).trim()+"’;");

}
else If (req.getParameter("addbtnPERM") 1= null){

String op = (req.getParameter("operatlonlist1")).trlm();
String obj = (req.getParameter(“objectlist1")).trlm();
try {st.executeUpdateC'insert into permissions values (’"+op+"V"+obj+"’);");}
catch (SQLException sqle){

toClient.println("");
toClient.printlnC'duplicate entry, the permission already exists");
toClient.println("«c/font>");

}

}
else if (req.getParameter("debtnPERM") != null){

String thePair = (req.getParameter(''permisslonlist")).trim();
int sp = thePair.indexOf("-");
String op = thePair.substring(0,sp-1);
String ob = thePair.substring(sp+3,thePair.length());

St.executeUpdateC'delete from permissions where operation="'+op+'" and object = '''+ob+'";");
}

ResultSet opresult = st.executeQueryC'select * from operations;");
int opCol = opresult.findColumn ("operationname");
String opnm='"';
while(opresult.nextO) {

opnm = opresult.getString(opGol);
operatlon_vector.addElement(opnm);

}

ResultSet result = st.executeQueryC'select * from objects;");
Int oCol = result.findColumn ("objectname");
String objnm="";
while(result.nextO) {

objnm = result.getString(oCol);
object_vector.addElement(objnm);

}

ResultSet permresult = st.executeQueryC'select * from permissions;");
int operCol = permresult.findColumn ("operation");
int objeCol = permresult.findColumn ("object");
String oper="";
String obje="";
whlle(permresult.nextO) {

oper = permresult.getString(operCol);
obje = permresult.getString(objeCol);
permission_vector.addElement(oper + " -- " + obje);

}
st.closeO;
con.closeO;

160

} catch (Exception e) {e.printStackTraceO;}

/********** update and display operations *********/
toClient.println("<h4 style=V'color:whiteV>Enter a new operation name</h4>");
toClient.println("<input type=\"text\" name=\"newoperationV value=\"\">");
toClient.println("<input name=\"addbtnOP\" type=\"submit\" value=\"Add an Operation\">“);
toClient.printInj "
");
toClient.println("<h4style=\"color:white\">Operations</h4>''):
toClient.println("<selectname=V'operationlist\">"):
String opstr =
int ops = operation_vector.size();
for (int i = 0; i<ops; i++) {

opstr = (String)operation_vector.elementAt(i);
toClient.printin("<option>"+opstr+"");

}
toClient.println("</select>");
toClient.println("<input name=\“debtnOP\" type=\"submit\" value=V'Remove the selected

operation\">");
îoClient.println("

");

update and display objects *********/
toClient.println(”<h4 style=\”color:white\">Enter a new object name</h4>");
toClient.println("<input type=\"text\" name=\"newobject\" value=\"\">");
toClient.println("<input name=\"addbtnOBJ\" type=\"submit\“ value=\"Add an Object\">");
toClient.println("
");
toCiient.println("<h4styie=\"color:whiteV'>Objects</h4>");
toCiient.println("<selectname=\"ob]ectlistV'>");
String str =
int s = object_vector.size();
for (int i = 0; i<s; i++) {

str = (String)object_vector.elementAt(i);
toClient.println("<option>"+str+'"');

}
toClient.println("</select>''):
toClient.println("<input name=\"debtnOBJ\" type=\"submit\" vaiue=V'Remove the selected object\">");
toClient.println("

"):

update and display permissions "*****"/
toClient.println("<h4 style=V'color:whiteV'>Create a new permission</h4>'');
toClient.println("<table border =\"1\">");
toClient.println("<tr>");
toClient.println("<td><h5style=\"color:white\">OPERATIONS</h5></td>");
toCiient.println("<td><h5style=V'coior:whiteV'>OBJECTS</h5></td>");
toClient.println("</tr>");
toClient.println("<tr>");
toClient.println("<td>"):
toClient.printin("<select name=\"operationlist1\">");
String opstrt =
int opsi = operation_vector.size();
for (int i = 0; i<ops1;i++){

opstri = (String)operation_vector.elementAt(i);

161

toClient.println("<option>"+opstr1+"");
}
toClient.println("</select>");
toClient.println("</td>");

toClient.println("<td>"):
toClient.println("<selectname=\"objectlist1\">''):
String str1 =
int s i = object_vector.size();
for (int i = 0; i<s1 ; i++) {

strl = (String)object_vector.elementAt(i);
toClient.println("<option>"+str1+"");

}
toClient.println("</select>");
toClient.println(''</td>");
toClient.println("</tr>"):
toClient.println(''</table>");

toClient.println("<input name=V'addbtnPERM\" type=\"submit\" value=\"Make the selected operation
object pair a permission\">"):

toClient.println("
");
toClient.println("<h4style=\"color:white\"Permissions</h4>'');
toClient.println(''<select name=\"permissionlist\">");
String permstr =
int perms = permission_vector.size();
for (int i = 0; i<perms; i++) {

permstr = (String)permission_vector.elementAt(i);
toClient.println("<option>"+permstr+'"');

}
toClient.println(''</select>"):
toClient.println("<input name=\"debtnPERM\" type=\"submit\" value=\"Remove the selected

permlssion\">");
toClient.println("

<brxbr>");
toClient.println("</form></bodyx/htm!>");
toClient.closeQ;

}
}

import java.io.*:
import java.net.*:
import java.util.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.utiI.Date;
public class registration_servlet extends HttpServlet {

public void doPost(HttpServletRequest req, HttpServletResponse res)

162

throws ServletException, lOException {
res.setContentType("text/htmr'):
PrintWriter toClient = res.getWriter();
String firstnm = (req.getParameter(''flrstname")).trim();
String lastnm = (req.getParameter(''lastname")).trim():
String roienm = (req.getParameter("rolename")).trim();
String firstnm = (req.getParameter("firstname")).trim();
String lastnm = (req.getParameter("lastname'')).trim();
String roienm = (req.getParameter(''rolename")).trim();
String roienm = (req.getParameter("rolename”)).trim();

String usernm = firstnm.substring(0,1) + lastnm;
String pw = "123456";
toClient.printlnC'Your user name is: "+usernm);
toClient.println("Your password is: "+pw);
try {Class.forName("com.mysql.idbo.Driver").newlnstance();}
catch (Exception e) {System.out.println("Faiied to load JDBC/ODBC driver.");}
try{

Connection con = DriverManager.getConnection(
"jdbc:mysql://localhost/test", "h_zhao", "nRy2xN");

Statement st = con.createStatement();
st.executeUpdate("use test;");
st.executeUpdate("insert into users vaiues(’"+usernm+"’,’"+pw+"V"+rolenm+"’);");
toClient.printin("hello");
toCiient.closeO;
st.closeO;
con.cioseO;

} catch (Exception e) {e.phntStackTraceQ;}

import java.io.*;
import java.net.*;
import java.util.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.utiI.Date;
import java.util.*;
public class rolemgt_servlet extends HttpServlet {

public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, lOException {
res.setContentType("text/html");
PrintWriter toCiient = res.getWriter();
Vector roie_vector = new Vector();
Vector conflictRoie_vector = new Vector();
Vector hierarchyRole_vector = new Vector();
toClient.printin("<html>");

163

toClient.println(''<body bgcolor=\"#065932\">");
toClient.println(<h2 style=\"color:whiteV>ROLE MANAGEMENT</h2>");
toClient.println("<form action=\"http://cs.stmarys.ca:8000/servlet/rolemgt_servlet\" method=post>'');

/*************** connect to database and show again ******************/
try {Class.forName("com.mysqi.jdbc.Driver").newlnstance():
} catch (Exception e) {System.out.println("Failed to load JDBC/ODBC driver.");}
try (Connection con = DriverManager.getConnection(''jdbc:mysqi://ioca!host/h_zhao", "h_zhao",

''nRy2xN“);
Statement st = con.createStatement();
st.executeUpdateC'use h_zhao;");

if (req.getParameter("addbtn") 1= nuii){
try{
st.executeUpdate("insert into roles values (’"+(req.getParameter("newrole'')).trim()+"’);'');
}
catch (SQLException sqle){

toClient.println("“);
toClient.println("duplicate entry, the role already exists");
toClient.printin("“);

}

}

// delete the selected role
else if (req.getParameter(“debtn") != nuil){

st.executeUpdate("deiete from roies where rolename=’"+(req.getParameter("roieiist")).trim()+"’;");
st.executeUpdate("deiete from userRole where roiename=’"+(req.getParameter("rolelist")).trim()+"’;'');
st.executeUpdate(“deiete from permissionRole where

roiename=’"+(req.getParameter("roleiist“)).trim()+''’;");
st.executeUpdate(''delete from conflictRoles where

roiename=’”+(req.getParameter("rolelist'')).trim()+"’ or itsconfiictroie=’"+(req.getParameter("roleiist")).trim()+"’;");
st.executeUpdateC'delete from hierarchyRoles where

parent=’"+(req.getParameter(“rolelist'')).trim()+"’ or chiid=’"+(req.getParameter(“roieiist")).thm()+”’;");
St.executeUpdateC'delete from sessions where

activeroles=’“+(req.getParameter(''rolelist”)).trim()+'";'');
'}

// select and add the selected CONFLICT role pair
else if (req.getParameter("addbtnC") != null){

st.executeUpdateC'insert into conflictRoles values
(’"+(req.getParameter(''rolelist1'')).trim()+"’, "'+(req.getParameter("rolelist2'')).trim()+'");'');
}
// delete the selected CONFLICT role pair
else if (req.getParameter(“debtnC") != null){

String thePair = (req.getParameter(''crolelist")).trim();
int sp = thePair.indexOf("<“);
String r1 =thePair.substring(0,sp-1);
String r2 = thePair.substring(sp+6,thePair.iength());

St.executeUpdateC'delete from conflictRoles where rolename=’"+r1+"’ and itsconflictrole = ’"+r2+"’;'');

}

http://cs.stmarys.ca:8000/servlet/rolemgt_servlet/

164

// select and add HIERARCHY role pair
else if (req.getParameter("addbtnH") 1= null){

St.executeUpdateC'insert into hierarchyRoles values
{’"+(req.getParameter("rolelist1")).trim()+"V"+(req.getParameter("rolelist2")).trim()+"’);");
}

// delete the selected HIERARCHY role pair
else if (req.getParameter("debtnH") 1= nuil){

String thePair = (req.getParameter("hrolelist")).trim();
int sp = thePair.indexOf("-");
String r1 =thePair.substring(0,sp-1);
String r2 = thePair.substring(sp+5,thePair.length());

St.executeUpdateC'delete from hierarchyRoles where parent=’"+r1+"’ and child = ’"+r2+"’;");
}

ResultSet result = st.executeQuery("select * from roles;");
int rCol = result.findColumn ("rolename");
String rolenm="";
while(result.nextO) {

roienm = result.getString(rCol);
role_vector.addElement(rolenm);

}

ResultSet cresult = st.executeQueryC'select * from conflictRoles;");
int crCol = cresult.findColumn ("rolename");
int ccrCol = cresult.findColumn ("itsconflictrole");
String crolenm="";
String ccrolenm="";
while(cresult.nextO) {

crolenm = cresult.getString(crCol);
ccrolenm = cresult.getString(ccrCol);
conflictRole_vector.addElement(crolenm+" <—> "+ccrolenm);

}

/***** store hierarchy roles data *****/
ResultSet hresult = st.executeQueryC'select * from hierarchyRoles;");
int hpCol = hresult.findColumn ("parent");
int hcCol = hresult.findColumn ("child");
String hprolenm="";
String hcrolenm="";
while(hresult.nextO) {

hprolenm = hresult.getString(hpCol);
hcrolenm = hresult.getString(hcCol);
hierarchyRole_vector.addElement(hprolenm+" —> "+hcrolenm);

}

st.closeO;
con.cioseO;

} catch (Exception e) {e.printStackTraceO;}

165

/********** update and display roles *********/
toClient.println("<tabl6 width=250 border=\"2\">");
toClient.println("<tr><td align=center>'');
toClient.println("<h3 style=\"color:whiteV'>Enter a new role</h3>");
toClient.prlntln("<input type=V'text\" name=\"newroleV value=\"\">");
toCllent.prlntln("<lnput name=\"addbtn\" type=\"submitV‘ value=\"Add a Role\">”);
toClient.prlntln("
</tdxtd align=center>");

toClient.println(“<h3style=\"color:whlte\">Current Roles</h3>");
toCllent.println("<selectname=\"rolelistV'>");
String str =
int s = role_vector.size();
for (int i = 0; i<s; i++) {

str = (String)role_vector.elementAt(i);
toClient.println(''<option>''+str+""):

}
toClient.printin("</seiect>");
toClient.println("<input name=V'debtn\" type=\“submit\" value=\"Remove selected role\">");
toClient.printin(''</td></tr></table>

");

/****"*"* display and update conflict roles
toClient.println("<table widtfi=250 border=\"2\">");
toCiient.println("<trxtdalign=rigfit>");
toCiient.println("<h3style=\"color:whiteV>Available Roles</fi3>'');
toClient.println("<selectname=\"rolelist1V>"):
String strl =
int s1 = role_vector.size():
for (int i = 0; i<s1 ; i++) (

strl = (String) role_vector.elementAt(i) ;
toClient.println(”<option>"+str1+"");

}
toCiient.println("</select>");

toC lient.println("<brxbrxbrxbrx/tdxtd align=ieft>");

toClient.println("<ti3style=\"color:wtiiteV>Availabie Roles</ti3>");
toClient.printin("<selectname=\"rolelist2\">");
String str2 =
int s2 = roie_vector.size();
for (int i = 0; i<s2; i++) {

str2 = (String)roie_vector.eiementAt(i);
toClient.printin("<option>"+str2+"");

}
toClient.println("</select>"):
toClient.println("<brxbrxbrxbrx/tdx/tr>'');

toClient.println("<tr aiign=centerxtd>");
toClient.println("<fi3 style=\"color:wfiite\">Conflict Role Pairs</fi3>");
toClient.println("<select name=\"crolelistV>");
String strC =
int sc = conflictRoie_vector.size();

166

for (int j = 0; j<sc; j++) {
strC = (String)confliotRoie_vector.elem6ntAt(j);
toCllent.printin(''<cption>"+strC+'"');

}
toCllent.prlntln("</s6lect>");
toClient.prlntln("<input name=\"addbtnC\" type=\"submitV' value=\"Add Conflict Role pair\">");
toClient.println("<input name=V'debtnCV' type=V'submit\" value=\"Remove conflict role pair\">");
toClient.println("</td>");

* display hierarcfiy roles **************/
toClient.println("<td>");
toClient.println(''<fi3 style=\"color:wfiite\">Hierarchical role relations</fi3>");
toClient.println("<selectname=\"firolelistV'>");
String strH =
int sfi = hierarchyRole_vector.size();
for (int k = 0; k<sh; k++) {

StrH = (String)fiierarctiyRole_vector.elementAt(k);
toClient.println("<option>''+strH+"");

}
toClient.println("</select>“);
toClient.println("<input name=\"addbtnH\" type=V'submit\" value=\"Add hierarcfiy relation\">");
toClient.println("<input name=\"debtnH\" type=\"submit\" value=\“Remove fiierarcfiy relation\">");
toClient.printin("</td></tr>'');
toClient.println("</table>");
toClient.println(''</form></body></fitml>“);
toClient.close();

import java.io.*:
import java.net.*;
import java.util.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.utiI.Date;

public class session_servlet extends HttpServlet {
public void doPost(HttpServletRequest req, HttpServletResponse res)

throws ServletException, lOException (
res.setContentTypeC'text/htmr');
PrintWriter toClient = res.getWriterQ;
toClient.println(“<html>");
toClient.println("<body bgcolor=\"#065932\">");
toClient.println("<form action=\"http://cs.stmarys.ca:8000/servlet/activeroles_servlet\"

method=post>");

String sessionName =

http://cs.stmarys.ca:8000/servlet/activeroles_servlet/

167

String roles =
String temp = (req.getParameter("session“)).trim();
int sindex = temp.indexOf('':")+1 ;
sessionName = temp.substring(0, slndex).trim();
roles = temp.substring(slndex).trim();
toCiient.println("You are in "+ sessionName +" (with the following active roles)!");
toClient.println(''<brxbr>"):
StringTokenizer str = new StringTokenizer(roles);

while (str.hasMoreTokensO) {
String r = str.nextToken(",").trim();
toClient.println("");
toClient.println("<input name=\"rolebtn\" type=\"submit\" value=\""+r+"\">");
toClient.println("");

}
toClient.println("</form></body></html>“);
toCiient.closeO;

import java.io.*;
import java.net.*;
import java.util.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.utiI.Date;

public class submitMarks_servlet extends HttpServlet {
public void doPost(HttpServletRequest req, HttpServletResponse res)
throws ServletException, lOException {res.setContentType("text/html")

PrintWriter toe = res.getWriterQ;
String stuid = null;
String inst = null;
String course = null;
String work = null;
String te = null;
String ye = null;
String mark = null;

String comments = null;
stuid = (req.getParameter(''studentlD")).trim();
inst = (req.getParameter(''instname")).trim();
course = (req.getParameter("coursename")).trim();
work = (req.getParameter("aqename'')).trim();
te = (req.getParameter("term")).trim();
ye = (req.getParameter("year")).trim();
mark = (req.getParameter("mark")).trim();
comments = (req.getParameter("comment“)).trim();

168

toc.println("<html>");
toc.println("<body bgcolor=8470FF>");
toc.println("</html>“);

// put the marks and comments into database
try {Class.forName("com.mysql.jdbc.Driver'').newlnstance();
} catch (Exception e) {toc.println("Failed to load JDBC/ODBC driver.");}
try{

Connection con = DriverManager.getConnection(
”jdbc:mysql://localhost/h_zhao", "h_zhao", "nRy2xN");

Statement st = con.createStatement();
St.executeUpdateC'use h_zhao;");

int temp = st.executeUpdate("update academicRecords set marks=’"+mark+"’,
comments=’"+comments+"’ where studentID =’"+stuid+"’ and instructorname=’"+inst+"’ and
coursename=’"+course+"’ and term=’"+te+"’ and year=’"+ye+"’ and aqe=’"+work+"’;");

if (temp !=0)
toc.println("
<brxh3>Thank you for submitting the student mark!</h3>");

else
toc.println(''
<brxh3>The mark can not be submitted, please check the submit

informationl</h3>");
toc.closeO;
st.closeO;
con.cioseO;

} catch (Exception e) {e.printStackTraceO;}
}

}

import java.io.*;
import java.net.*;
import java.util.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.utiI.Date;

public class usermgt_servlet extends HttpServlet {
public void doPost(HttpServletRequest req, HttpServletResponse res)

throws ServletException, lOException {

res.setContentType("text/html");
PrintWriter toClient = res.getWriter();

toClient.println("<html>");
toClient.println("<body bgcolor=\"#065932\">");
toClient.println("<headxtitle>USER MANAGEMENT</titlex/head>“);
toClient.println("<h2style=\"color:white\">USER MANAGEMENT</h2>");

169

toClient.println(''<form action=\"http://cs.stmarys.ca:8000/servlet/usermgt_servlet\" method=post>“);

toClient.println(''<h3 style=\"color:white\">Current users</h3>");
toClient.println(''<selectname=\"userlist\">");

// connect to database and show data
try {Class.forName("com.mysql.jdbc.Driver").newlnstance();
} catch (Exception e) {Sy$tem.out.println(''Failed to load JDBC/ODBC driver.");}
try {Connection con = DriverManager.getConnection(“jdbc:mysql://localhost/h_zhao", "h_zhao",

"nRy2xN");
Statement st = con.createStatement();
St.executeUpdateC’use h_zhao;“);

if (req.getParameter("addbtn") 1= null){ //first screen, no button is pressed, so req is ok here
try (st.executeUpdateC'insert into users values ("'+(req.getParameter("newuser"

)).trim()+"’,
catch (SQLException sqle){

toClient.println("“);
toClient.println("duplicate entry, the user already exists");
toClient.println("");

}

}
else if (req.getParameter("debtn") != null){

St.executeUpdateC'delete from users where username=”'+(req.getParameter("userlist")).trim()+'”;");
St.executeUpdateC'delete from userRole where username=’"+(req.getParameter("userlist")).trim()+'";");
St.executeUpdateC'delete from sessions where username=’"+(req.getParameter("userlist")).trim()+"’;");
St.executeUpdateC'delete from academicRecords where studentlD=’"+(req.getParameter("userlist"
)).trim()+'";");

}

ResultSet result = st.executeQueryC'select * from users;");
int rCol = result.findColumn ("username");
String usernm='"';

while(result.nextO) {
usernm = result.getString(rCol);
toClient.println("<option>"+usernm+"");

}
st.closeO;
con.cioseO;

} catch (Exception e) {e.printStackTraceO;}
toClient.println("</select>");
toClient.println("<input name=\"debtn\" type=\"submit\" value=\"Remove the selected user\">");
toClient.println("</form></body></html>");
toCiient.closeO;

}

}

http://cs.stmarys.ca:8000/servlet/usermgt_servlet/

170

import java.io.*:
import java.net.*;
import java.util.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.utiI.Date;

public class viewMarks_servlet extends HttpServlet {
public void doPost(HttpServletRequest req, HttpServletResponse res)

throws ServletException, lOException {
res.setContentType("text/html");
PrintWriter ot = res.getWriter();
String temp = "hasNoRecord";

// information from studentWorks page
String psnm = null;
String pinm = null;
String pcnm = null;
String paqenm = null;
String pte = null;
String pye = null;

psnm = (req.getParameter("stname'')).trim();
pinm = (req.getParameter("instname'')).trim();
pcnm = (req.getParameter(''coursename")).trim();
paqenm = (req.getParameter("aqen")).trim();
pte = (req.getParameter("term")).trim();
pye = (req.getParameter("year")).trim();

// information in database
String snm =
String inm =
String cnm =
String aqenm =
String te =
String ye =
String m =
String c =

try { Class.forName(''com.mysql.jdbc.Driver").newlnstance();}
catch (Exception e) { System.out.println("Failed to load JDBC/ODBC driver.");}
try{

Connection con = DriverManager.getConnection("jdbc:mysql://localhost/h_zhao", "h_zhao",
"nRy2xN");

Statement st = con.createStatement();
St.executeUpdateC'use h_zhao;");
ResultSet result = st.executeQueryC'select * from academicRecords;");
int snmCol = result.findColumn ("studentID");
int inmCol = result.findColumn ("instructorname");
int cnmCol = result.findColumn ("coursename");

171

int teCol = result.findColumn (“term");
int yeCol = resuit.findColumn ("year");
int aqeCol = result.findColumn ("aqe");
int mCol = result.findColumn ("marks");
int oCoi = resuit.findCoiumn ("comments");

while(result.nextO) {
snm = result.getString(snmCol);
inm = result.getString(inmCol);
cnm = resuit.getString(cnmCol);
te = resuit.getString(teCoi);
ye = result.getString(yeCol);
aqenm = result.getString(aqeCol);
m = result.getString(mCol);
0 = result.getString(cCol);

if (psnm.compareTo(snm)==0 && pinm.compareTo(inm)==0 &&
pcnm.compareTo(cnm)==0 && paqenm.compareTo(aqenm)==0 && pte.compareTo(te)==0 &&
pye.compareTo(ye)==0){

temp = "tiasRecord";
break;

}

}
st.closeO;
con.cioseO;

} catcti (Exception e) { e.printStackTraceO;}

//--
// display student works
//--
ot.println("<html>");
ot.printlnj "<body bgcolor=8470FF>“);
ot.println("<form action=\"tittp://cs.stmarys.ca:8000/servlet/submitMarks_servlet\" mettiod=post>");
ot.println("<brxbr>");
ot.println("<center>");
ot.println("<ti2xfont face=\"VerdanaV'>Following are tfie available answers to tfie

assignments.</fontx/fi2>“);
ot.println(“</center>");
ot.printlnj "<brxfir>");

ot.println(" Student ID: "+psnm+"
");
ot.println(" Instructor: "+pinm+"
");
ot.println(" Course: "+pcnm+"<brxbr>");

ot.println(" Work name: "+paqenm+"
'');
ot.println(" Term: "+pte+"
“);
ot.println(" Year: ''+pye+"<brxbrxbr>“);

if (temp.compareTo("fiasRecord")==0) {
ot.printin(" Your mark is: "+m+" and comments are: "+c+"
");

}

172

else {ot.println("<h2xfont face=\"VerdanaV>You has no records for this course, or the information
you entered is not correct, please reenter them.</fontx/h2>");}

ot.println("</body>");
ot.println("</html>");
ot.cioseO;

}

}

y**

HTML codes
* /

chiefAdministratorJogin

<html>
<body bgcolor="#065932">
<heacl>
<title>RBAC TEST</title>
</head>

<brxbr>
<h1 align="center" style=''color:white">RBAC Chief Administrators </h1>
<form action=http://cs.stmarys.ca:8000/servlet/chiefAdministrator_login_servlet method=post>

<table>
<tr>
<td width="180"x/td>
<td>
<table>
<tr>

<td width="100"xh4 style="color:white"> User1 Name: </td>
<td> <input name="username1" type=”text" size="20" value=""xbrx/td>

</tr>
<tr>

<td wldth=''100"> <h4 style="color:white''>Password:</td>
<td> <input name="password1" type="password" size="20" value='"'xbrx/td>

</tr>
</table>
</td>
</tr>
</table>

<brxbr>

<table>
<tr>

http://cs.stmarys.ca:8000/servlet/chiefAdministrator_login_servlet

173

<td width="180''> </td>
<td>
<table>
<tr>
<td width=“100“> <h4 style=“color:white“>User2 Name: </td>
<td> <input name="username2" type="text" size="20" value='"‘ color="white"xbr>
</td>
</tr>
<tr>
<td width="100"> <h4 style="color:white”>Password:</td>
<td> <input name="password2" type="password" size="20" value=""xbr>
</td>
</tr>
</table>

</td>
</tr>
<tr>
<td width="180“> </td>
<tdxinput type=SUBMIT name="LOG IN" value="LOG IN "xb rxb rxb r>
</td>
</tr>
<tr>
<td width=''180"x/td>
<tdximg src="J:\thesls\flgures\fleld_11_smail.jpg"width="500“ helght="200">
</td>
</tr>
</table>
</form>

< ! "

<ll> For normal users login</ax/li>
- - >

</body>
</html>

confirmUser

<html>
<body bgcolor="white">
<head>
<title>RBAC TEST</title>
</head>
<body>

<h3>RBAC TEST - For Reglsteration </h3>

<form aotlon="http://os.stmarys.ca:8000/servlet/acceptUsers_servlet'' method =post>
<input name="search" type="submit" value="Get user information from Database">

http://os.stmarys.ca:8000/servlet/acceptUsers_servlet''

174

</form>
</body>
</html>

assignment

<html>
<body bgcolor=8470FF text="#000000" Iink="#044d84" vlink="#044d84" alink=“#a2937a">

<formaction=http://cs.stmarys.ca:8000/servlet/assignmentQuizExam_servlet method=post>
<SCRIPT LANGUAGE="JavaScript">

<!-- This script and many more are available free online at -->
<!-- The JavaScript Source!! http://javascript.internet.com -->

<!-- Begin
// Set the dates below
var goLiveDate = "20030618";
//var expireDate = "20040831";
var expireDate = "20040929";

var expireYear = expireDate.substring(0,4)
var expireMonth = expireDate.slice(4,-2)
var expireOay = expireDate.s!ice(6)
var iiveVear = goLiveDate.substring(0,4)
var iiveMonth = goLiveDate.s!ice(4,-2)
var iiveDay = goLiveDate.slice(6)
var nowDate = new Date();
var day = nowDate.getUTCDate();
var month = nowDate.getUTCMonth();
var month 1 = month +1 ;

if (month 1 < 10){ month 1 = "0" + month 1 ;}
if (day < 10){ day = “0" + day;}

var year = nowDate.getYear();
var GMTdate = year + + month 1 + "" + day
if ((GMTdate < expireDate) && (GMTdate >= goLiveDate)) {

document.write(" <div align=’center’xb>This assignment posted on "
+liveMonth+ "/" +!iveDay+ "/" +!iveYear+ "
and will be due on "
+expireMonth+ "/" +expireDay+ "/" +expireYear+". <brxbr> "
+"<table>"
+"<trxtd>"
+ "Your Student ID: </tdxtdxinput type=’text’ name=’username’> </tdx/tr> "

+"<trxtd>"
+ "Instructor name: </tdxtdxinput type=’text’ name=’instname’> </tdx/tr> "

+"<trxtd>"

http://cs.stmarys.ca:8000/servlet/assignmentQuizExam_servlet
http://javascript.internet.com

175

+ "Course name: c/tdxtdxinput type=’text’ name=’coursename’> </tdx/tr> "

+"<trxtd>"
+ “Assignment/Quiz/Exam title:</tdxtd> <input type=’text’ name=’aqen’> </tdx/tr> '

+"<trxtd>"
+ “Term: </tdxtd> <input type=’text’ name=’term’> </td></tr> "

+"<trxtd>"
+ "Year: </tdxtd> <input type=’text’ name=’year’> </tdx/tr> "

+"<trxtdx/td>"
+ "<tdxinput name=’search’ type=’submit’ value=’Submit’> </tdx/tr>"
+"</tablex/div>")

}
</script>

<brxbr>
<table align=center>
<tr>
<td width="150"x/td>
<td> 1. What does ABAC stand for?
</td>

</tr>
<tr>
<td width="150"x/td>
<td> 2. What is the advantage of ABAC?
</td>
</tr>
<tr>
<td width="150"x/td>
<td> 3. What are the basic elements for ABAC?
</td>
</tr>
<tr>
<td width="150"x/td>
<td> Please put your answers in the following area!
</td>
</tr>

<tr>
<td width="150"x/td>
<td> <textarea name = "as" rows="7" cols="55''x/textarea>
</td>
</tr>
</table>
</form>
</body>
</html>

176

currentCourses

<html>
<body bgcolor=8470FF>

<brxbr>
<h1 align="center" style=''color:white“>For CSC 226:</h1>
<table>
<tr>
<td width="180"x/td>
<td>

 <h3>Assignment1</ax/li>
 <h3>quiz1</ax/li>

</td>
</tr>
</table>

<brxbr>
<table>
<tr>
<td width="200"x/td>
<tdximg src=''J:\thesis\figures\00715CDB.jpg" width="600" height="250">
</td>

</tr>
</table>

</body>
</html>

facultyPage

<html>

<body bgcolor="8470FF" text="#000000" Iink="#044d84" vlink="#044d84"
alink="#a2937a">
<brxbrxbr>
<table>
<tr>
<td width="300"x/td>
<td>FACULTY PAGE</td>
</tr>
<tr>
<td width="300"x/td>
<tdximg src="J:\thesis\figures\h.jpg" width="300" height="6"xbrxbrxbr>
</td>
</tr>
<tr>
<tdwidth=''300"x/td>
<td>

Ill

 Available Courses
 Program lnfo
 Online Payment
 Marks Online
 Account Statement
 Course Timetab(e
 Current Courses
 Programs, Faculty & Research</ll>
 Evaluate students works

</td>
</tr>

</table>
</body>
</html>

fInishRegistration

<html>
<body bgcoior=8470FF>
<head>
<title>RBAC TEST</title>
</head>

<brxbr>

<h1 allgn="oenter" style="color:whlte">You have done your reglsteration. You will get email with your username
and password within four working days.</h1>

<table>
<tr>
<td width="180"x/td>
<td>
<ii> <a h ref="registration. html"xh3>Back to homepage</ax/h3x/li>
</td>

</tr>
<tr>
<td width="200“x /td>
<tdximg src="J:\thesis\figures\00715CDB.jpg" width="600" height="240">
</td>
</tr>

</table>
</body>
</html>

leveloneAdministrator

<html>

178

<body bgcolor="#065932">
<head>
<title>RBAC TEST</title>
</head>
<brxbr>
<h1 align="center" style="color:white">RBAC Administration </h1>

<table>
<tr>
<td width="200"x/td>
<tdxform action="http://cs.stmarys.ca:8000/servlet/acceptUsers_servlet" method =post>

<input name="search" type="submit" value="Confirm users’ registration"x/form>
</td>
</tr>
<tr>
<td width=''200"x/td>
<tdxform action="http://cs.stmarys.ca:8000/servlet/usermgt_servlet'' method =post>

<input name="search" type="submit" value="User Management"x/form>
</td>
</tr>

</table>
<brxbr>
<table>
<tr>
<td width="200"x/td>
<tdximg src="J:\thesis\figures\field_11_small.jpg" width="500" height="200">
</td>

</tr>
</table>
</body>
</html>

levelthreeAdministrator

<html>
<body bgcolor="#065932">
<head>
<title>RBAC TEST</title>
</head>
<h1 align=“center" style="color:white">RBAC Administration </h1>
<table>
<tr>
<td width="180"x/td>
<td>

<form action="http://cs.stmarys.ca:8000/servlet/acceptUsers_servlet" method =post>
<input name="search" type="submit" value="Confirm users’ registration">

</formxbr>

<form action="http://cs.stmarys.ca:8000/servlet/roiemgt_servlet" method =post>

http://cs.stmarys.ca:8000/servlet/acceptUsers_servlet
http://cs.stmarys.ca:8000/servlet/usermgt_servlet''
http://cs.stmarys.ca:8000/servlet/acceptUsers_servlet
http://cs.stmarys.ca:8000/servlet/roiemgt_servlet

179

<input name="search" type="submit" value="Role Management">
</formxbr>

<form action='‘http://cs.stmarys.ca:8000/servlet/usermgt_serv!et" method =post>
<input name=“search" type="submit" value="User Management">
</formxbr>

<form action="http://cs.stmarys.ca:8000/servlet/permissionmgt_servlet“ method =post>
<input name="search" type="submit" value="Permission Managements
</formxbr>

<form aotion="http://cs.stmarys.ca:8000/servlet/assignmgt_servlet" method =post>
<input name="search" type="submit" value="Role Assignment Managements
</formxbr>

</td>
</tr>
<tr>
<td wldth=“180S</td>
<tdxlmg src="J:\thesis\figures\fleld_11_small.jpg"width="500'' height="200S
</td>
</tr>

</table>
</body>
</html>

leveltwoAdministrator

<html>
<body bgcolor="#065932S
<head>
<title>RBAC TEST</tltle>
</head>

<brxbr>
<h1 align="center" style="oolor:whiteSRBAC Administration </h1>

<tabie>
<tr>
<td width="200S</td>
<tdxform aotion="http://os.stmarys.oa:8000/servlet/acoeptUsers_servlet“ method =post>

<input name=“search" type="submit" value="Confirm users’ registrationS</form>
</td>
</tr>
<tr>
<td width="200S</td>
<tdxform action=“http://cs.stmarys.oa:8000/serviet/usermgt_serviet'' method =post>

<input name="search" type="submit" vaiue="User Managements
</form>

</td>

http://cs.stmarys.ca:8000/servlet/usermgt_serv!et
http://cs.stmarys.ca:8000/servlet/permissionmgt_servlet%e2%80%9c
http://cs.stmarys.ca:8000/servlet/assignmgt_servlet
http://os.stmarys.oa:8000/servlet/acoeptUsers_servlet%e2%80%9c
http://cs.stmarys.oa:8000/serviet/usermgt_serviet''

180

</tr>
<tr>
<td width="200"></td>
<tdxform action="http://cs.stmarys.ca:8000/servlet/permissionmgt_servlet" method =post>

<input name=“search" type="submit" value="Permission Management''x/form>
</td>
</tr>
<tr>
<td width="200''x/td>
<td><form action="http://cs.stmarys.oa:8000/servlet/assignmgt_servlet_admir' method =post>

<input name="search" type="submit“ value=“Role Assignment Management''></form>

</td>

</tr>
<tr>
<td wldth="200"x/td>
<td><lmg src="J:\thesis\flgures\field_11_small.jpg" width="500" height="200">
</td>
</tr>

</table>
</body>
</html>

login

<html>
<body bgcolor=8470FF>
<head>
<title>RBAC TEST</tit!e>
</head>
<p>
<h1 ailgn="center" style="color;white''>Welcome to E-education </h1>

<form action=http://cs.stmarys.ca:8000/servlet/iogin_serviet method=post>
<!-create a table with on borders -->
<table>
<tr>

<td width=''200"x/td>
<td>
<table>
<tr>
<td width="100"> User Name: </td>
<td> <input name="username" type=“text" iength="20" value='"'x/td>

</tr>
<tr>
<td width="100"> Password:</td>
<td> <input name="password" type="password" iength="20" vaiue=""x/td>
</tr>

</tabie>
</td>

http://cs.stmarys.ca:8000/servlet/permissionmgt_servlet
http://cs.stmarys.oa:8000/servlet/assignmgt_servlet_admir'
http://cs.stmarys.ca:8000/servlet/iogin_serviet

181

</tr>
<tr>
<td width="200"></td>
<td> <input type=SUBMIT name="LOG IN" value="LOG IN">

</form>
</td>
</tr>

<!”

<brxbr>
<ll> For Chief Administrators iogin oniy</ax/ii>
- - >

<tr>
<td width="200"x/td>
<td>

<h4>The introduction about the e-ecucation</h4></ax/li>
</td>

</tr>
<tr>
<td width="200''x/td>
<td>
< lixa href="program.html"xh4>Program information</h4x/ax/li>

</td>
</tr>
<tr>
<td width="200“x /td>
<td>
< lixa href=''registration.html"xh4>For a New User</h4x/ax/li>

</td>
</tr>
<tr>
<td width="200"x/td>
<td>
<pxh3 style="color:white">
If you have any concern, please contact us at :
Send Mail</ax/h3>
</p>

</td>
</tr>
<tr>
<td width="200"x/td>
<td>

</td>

</tr>
</table>
</body>
</html>

mailto:hong.zhao@stmarys.ca?subject=Hello%20again%22%3eSend

182

quiz

<html>
<body bgcolor=8470FF text="#000000" Iink="#044d84" vlink="#044d84“ alink=''#a2937a"><brxbr>
<meta http-equiv="Refresh” content="10; URL=http://cs.stmarys.ca:8000/login.html">
<formaction=http://cs.stmarys.ca:8000/servlel/assignmentQuizExam_servlet method=post>
<div align=’center’xb>This quiz must be completed in 30 minutes!
WATCH OUT YOUR
TIME! </fontx/b>
<brxbr>
<table>
<tr>
<td width=‘'100"x/td>
<td>Your username: </td>
<tdxinput type="text" name="username"x/td>
</tr>
<tr>
<tdx/td>
<td>lnstructor name:</td>
<tdxinput type="text" name="instname"x/td>
</tr>
<tr>
<tdx/td>
<td>Course name: </td>
<tdxinput type="text" name=''coursename"x/td>

</tr>
<tr>
<tdx/td>
<td>Assignment/Quiz/Exam and number: </td>
<tdxinput type="text" name="aqen"x/td>
</tr>
<tr>
<tdx/td>
<td>Term:c/td>
<tdxinput type="text" name="term"x/td>
</tr>
<tr>
<tdx/td>
<td>Year:</td>
<td> <input type="text" name="year"x/td>
</tr>
<tr>
< tdx /tdx tdx /td>
<tdxinput name="search" type="submit" value=”Submit"x/td>
</tr>

</table>
</div>

<table a!ign=center>
<tr>
<td width="200"x/td>

http://cs.stmarys.ca:8000/login.html
http://cs.stmarys.ca:8000/servlel/assignmentQuizExam_servlet

183

<td> 1. List three access control technologies? </td>
</tr>
<tr>
<td width="200"></td>
<td> 2. List the advantage and disadvantage for each of them?
</td>
</tr>
<tr>
<td width=“200"></td>
<td> 3. What is the major difference between ABAC and other access control?
</td>

</tr>
<brxbr>
<tr>
<td width="200"x/td>
<td> Please enter your answers in the following areal
</td>
</tr>

<tr>
<td width="200“></td>
<td> <textarea name = "as" rows="7" cols="55"x/textarea>
</td>

</tr>
</table>
</form>
</body>
</html>

registration

<html>
<body bgcolor=8470FF>
<head>
<title>RBAC TEST</tltle>
</head>
<h1 align="center" style="color:whlte">For Reglsteration for a New User</h1>
<form action="http://cs.stmarys.ca:8000/servlet/collectUserData_servlet" method =post>
<table>
<tr>
<td width = “180"></td>
<td>
<table>
<tr>
<td width = "100“>Last Name;</td>
-ctdxinput name="lastname" type="text" length="20" value="">
</td>
</tr>

http://cs.stmarys.ca:8000/servlet/collectUserData_servlet

184

<tr>
<td width = "100''>Flrst Name:c/td>
<tdxlnput name="flrstname'' type="text" length="20" value=""></td>
</tr>
<tr>
<td width = "100">SIN:</td>
<tdxinput name="sin" type="text" length="20" value=""x/td>
</tr>
<tr>
<td width = "100">Role Name:</td>
<tdxinput name="rolename" type="text" length="20''value=""x/td>
</tr>
<tr>
<td width = "100">Address:</td>
<tdxinput name="address" type="text" length="20"value='"'x/td>
</tr>
<tr>
<td width = "100”>PhoneNumber:</td>
<tdxinput name="phone" type="text" length="20"value='"'x/td>
</tr>
<tr>
<td width = ''100">E-Mail:</td>
<tdxinput name="email“ type="text" length="20"value='"'x/td>
</tr>
<tr>
<td width = "100">0nline Pay:c/td>
<tdxinput name="pay" type="text" length="20" value='"'x/tr>
</tr>
<tr>
<td width = "100"xinput name="search” type="submit" value="Submit">
</formx/td>
</tr>
</table>
</tr>
<tr>
<td width="180"x/td>
<tdximg src="J:\thesis\figures\00715CDB.jpg"width="600" height="240">
</td>
</tr>

</table>
</body>
</html>

relogin

<html>
<body bgcolor=8470FF>
<head>
<title>RBAC TEST</title>

185

</head>
<brxbr>
<h1 align=''center“ style=''color:white">Welcome to E-education </h1>
<formactlon=http://cs.stmarys.ca:8000/servlet/login_servletmethod=post>
<h3 allgn="center" style=''color:pink">Please put the correct user
name and password, and try again!</h3>
<table>
<tr>
<td width="180"x/td>
<td>
<table>
<tr>
<td width="80">User Name:</td>
<td> <input name="username" type="text" length="20" value="">
</td>
</tr>
<tr>
<td width="80">Password:</td>
<tdxinput name="password" type="password" length="20" value="">
</td>

</tr>
</table>
</td>
</tr>
<tr>
<td width="180"x/td>
<tdxinput type=SUBMIT name="LOG IN" value=''LOG IN"x/form>
</td>
</tr>
</table>

</td>
</tr>
<table>
<tr>
<td width="180"x/td>
<tdxli> Back to e-Education Homepage</ax/h3x/li>
</tr>
<tr>
<td width="180"x/td>
<tdximg src=“J:\thesis\figures\00715CDB.jpg''width="600“ height="240">
</td>

</tr>
</table>
</body>
</html>

studentPage

<html>

http://cs.stmarys.ca:8000/servlet/login_servletmethod=post

1 8 6

<body bgcolor="8470FF" text="#000000" Iink="#044d84" vlink="#044d84"
alink="#a2937a">
<brxbr>

<table>
<tr>
<td width="300"x/td>
<td>STUDENT PAGE</td>

</tr>
<tr>
<td width="300"x/td>
<tdximg src="J:\thesis\figures\h.jpg" width="300" height='‘6 "xb rx b rx b r>
</td>

</tr>
<tr>
<td width="300"x/td>
<td>

 Add/Drop Courses</ax/li>
 Program lnfo</ax/li>
 Online Payment</ax/li>
 Marks Online</ax/li>
 Account Statement</ax/li>
 Course Timetable</ax/li>
 Current Courses</ax/li>
 <a href>admc/ax/li>
 stu</ax/li>
 <a href>fac</ax/li>
 <a href>sta<yii>

</tdx/trx/table>
</body>
</html>

studentsMarks

<html>
<body bgcolor=8470FF>
<brxbrxbr>
<form action=http://cs.stmarys.ca:8000/servlet/viewMarks_servlet method=post>
<div align=’center’ style="color:white">
Please fill the following information to get your marks.<brxbr>
<table>
<tr>
<td width="80"x/td>
<td>lnstruotor name;c/td>
<td> <input type="text" name="instname"x/td>
</tr>
<tr>
<td width="80''x/td>

http://cs.stmarys.ca:8000/servlet/viewMarks_servlet

187

<td>Your student ID:c/td>
<tdxinput type="text" name="stname"x/td>
</tr>
<tr>
<td>
</td>
<td>Course name:</td>
<tdxinput type=“text" name=''coursename"x/td>
</tr>
<tr>
<tdx/td>
<td>Assignment/Quiz/Exam and number; </td>
<tdxinput type="text“ name="aqen"x/td>

</tr>
<tr>
<tdx/td>
<td>Term:</td>
<tdxinput type="text" name="term"x/td>
</tr>
<tr>
<tdx/td>
<td>Year:</td>
<tdxinput type="text" name="year"x/td>

</tr>
<tr>
<tdx/td>
<tdxinput name=’search’ type=’submit’ value=’View Marks’x /td>
</tr>
</tabel>
</divx/form>

<table>
<tr>
<td widths" 100"x/td>
<tdxlmg src="J:\thesis\figures\00715CDB.jpg" wldth="600" helght="250">
</td>
</tr>
</table>
</body>
</html>

studentWorks

<html>
<body bgcolor=8470FF text="#000000" Iink="#044d84" vlink="#044d84" alink="#a2937a"xbrxbr>
<formactlon=http://cs.stmarys.ca:8000/seivlet/evaluateWorks_servlet method=post>
<dlv align=’center’xb>Please fill the following information to get the student work! <brxbr>
<table>
<tr>

http://cs.stmarys.ca:8000/seivlet/evaluateWorks_servlet

188

<td width=“100''></td>
<td>lnstructor username:</td>
<tdxinput type="text" name="instname"> </td>

</tr>
<tr>
<tdx/td>
<td>Student ID:<td>
<tdxinput type="text" name="stname"x/td>

</tr>
<tr>
<tdx/td>
<td>Course name:</td>
<tdxinput type="text" name=“coursename''x/td>

</tr>
<tr>
<tdx/td>
<td>Assignment/Quiz/Exam and number: </td>
<tdxinput type="text“ name="aqen"x/td>
</tr>
<tr>
<tdx/td>
<td>Term: <input type="text" name="term"x/td>
<td>Year: <input type="text" name="year"x/td>
</tr>
<tr>
<tdx/td>
<tdxinput name="search" type="submit" value=”Get Student work and Evaluated </td>
</tr>
</tablexbrxbr>
<table>
<tr>
<td width="180"x/td>
<td>
<img src="J:\thesis\figures\00715CDB.jpg"
width="600" height="240">
</td>

</tr>
</table>
</div>
</form>
</body>
</html>

