Modifications to a Runge-Kutta Type Software Package for the
Numerical Solution of Boundary Value Ordinary Differential

Equations

By

Hui Xu

A thesis submitted in partial fulfillment of
the requirements for the degree of

Master of Applied Science (in Computer Science)

Saint Mary's University
Halifax, Nova Scotia

Submitted August 31, 2004

Copyright [Hui Xu, 2004]

All Rights Reserved

3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive license allowing the
Library and Archives Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Direction du
Patrimoine de I'édition

Bibliothéque et
Archives Canada

395, rue Wellington
Ottawa ON K1A ON4

Your file Votre référence
ISBN: 0-612-96135-4
Our file Notre référence
ISBN: 0-612-96135-4

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque et Archives Canada de
reproduire, préter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

| Lol]

Canada

Conformément a la loi canadienne
sur la protection de la vie privée,
guelques formulaires secondaires
ont été enlevés de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

Certification

Name: Hui Xu
Degree: Master of Science in Applied Science
Title of Thesis: Modifications to a Runge-Kutta Type Software Package for the

Numerical Solution of Boundary Value Ordinary Differential

Equations

Examining Committee:

Dr. William E. Jones, Acting DVan of Graduate Studies

Dr. David H. S. RIW Program Co-ordirator

Dr. Pat Keast, External Examiner
Dalhousje University

Dr. Paul Muir, Senior Supervisor

Dr. Walt Finden, Supervisory Committee

Dr. Milt Chew, Supervisory Comiriittee

Date Certified: August 31, 2004

@ Hui Xu, 2004

To My Family

Contents

1 Introduction 2
2 Review of Standard Techniques and Software 10
2.1 Imtroduction 10
2.2 Numerical Methods for BVODEs 11
2.2.1 Shooting/Multiple Shooting 11

222 Collocation 12

2.2.3 Finite Difference Methods 13

2.2.4 Runge-Kutta Schemes 13

2,25 Summary e e 16

2.3 Numerical Software 17
2.3.1 Shooting Software oL 17

2.3.2 COLSYS - Software Based on Collocation 18

2.3.3 TWPBVP - Software Based on Deferred Corrections 18

2.3.4 MIRKDC - Software Based on Defect Control 19

23.5 Comparison 20

3 Test Problems 21
3.1 Test Problems oo 21

3.2 Computer / Compiler Information 23

4 Modification of MIRKDC (I)— Software Modifications Based on

Existing Modules and Formulas 24
4.1 Computational Derivative Approximation. 25
4.1.1 Introduction Lo 25
4.1.2 Description of the Software Modification 25
4.1.3 Results and Discussion 26
4.2 Analytic Derivative Assessment 29
4.2.1 Introduction Lo 29
4.2.2 Description of Software Modification 29
4.2.3 Results and Discussion 30
4.3 Problem Sensitivity (Conditioning) Assessment 31
4.3.1 Introductiono 31
4.3.2 Description of the Software Modification 37
4.3.3 Results and Discussion, .. 38
4.4 Improved Runge-Kutta Methods 39
4.4.1 Introduction Lo 39
4.42 Results and Discussion 42
4.5 Preliminary Global Error Indicator 42
4.5.1 Introduction and Description of Software Modification 42

1

4.5.2 Results and Discussiono 44

5 Modification of MIRKDC (II) — Design and Analysis of Defect

Control Strategies 49
5.1 Introduction 49
5.2 Description of the Software Modification 50
5.3 Continuous Runge-Kutta Schemes 52
5.3.1 A Continuous Runge-Kutta Scheme of 2nd Order 52
5.3.2 A New Continuous 4th Order Scheme 54
5.3.3 A New Continuous 6th Order Scheme 58
5.4 Numerical Experiments and Results 63
5.4.1 Experimental Location of Maximum Defect 63

5.4.2 Comparison of Relaxed Defect Control, Strict Defect Control

and Safe—Guarded Strict Defect Control 73

5.5 Conclusions 81

6 Conclusions and Future Work 84
6.1 Conclusions 84

6.2 TFuture Work 85

11

List of Tables

2.1

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Tableau of an s-stage MIRK scheme 16

Absolute maximum difference between analytic and approximate Jacobian
on TP1 - TP5, method =4, Nsub=10. 28
CPU time for dfsub and dfsub_dif f for TP1 and TP2; method = 4, tol
= 1073, Nsub= 10, € = 0.04 for TP1, € = 1.4 for TP2; time in seconds. . . 28
CPU time for overall MIRKDC computation with dfsub.dif f and df sub on
TP1 and TP2; time inseconds. 28
Execution times for TP1 for COLROW and BSPCNDMAX/CRSLVE. . . 38
Execution times for overall MIRKDC computation with and without condi-

tioning constant estimate for TP1, TP3, and TP4, method = 4, tol = 1075,

€e=004, y=14,initial Nsub=2. 38
Tableau for 3-stage, 4th order, stage order 3, MIRK scheme. 40
Tableau for original 4-stage, 4th order, stage order 3, CMIRK scheme. . . 41
Tableau for new 4-stage, 4th order, stage order 3 CMIRK scheme. 41

iv

4.9

4.10

4.11

4.12

4.13

5.1

9.2

9.3

5.4

Comparison of MIRKDC mesh sizes and defect estimates for TP1, tol =
10~°, method = 4, ¢ = 0.001, for old interpolant from original MIRKDC
(Table 4.7) and new interpolant from Table 4.8.
Comparison of MIRKDC mesh sizes and defect estimates for TP2, tol =
107%, method = 4, € = 0.1, for old interpolant from original MIRKDC
(Table 4.7) and new interpolant from Table4.8.
Comparison of MIRKDC mesh sizes and defect estimates for TP1, tol =
107, method = 4, ¢ = 0.0001, for old interpolant from original MIRKDC
(Table 4.7) and new interpolant from Table 4.8.
Comparison of MIRKDC mesh sizes and defect estimates for TP2, tol =
107%, method = 4, € = 0.01, for old interpolant from original MIRKDC
(Table 4.7) and new interpolant from Table 4.8.

Comparison of CPU times for MIRKDC global error estimation.

The locations of the maximum defect for different numbers of subintervals,
method = 4, tol = 107, TP1-TP3..
The locations of the maximum defect for different numbers of subintervals,
method = 4, tol = 1072, for TP4-TP6.
General form for the tableau of 5-stage, 4th order, stage order 3 CMIRK
scheme with the discrete 3-stage, 4th order, stage order 3 MIRK scheme of
Table 4.6 embedded. L
Tableau of 5-stage, 4th order, stage order 3 CMIRK scheme which gives an

asymptotically correct defect estimate.

43

44

45

53

o4

9.9

9.6

5.7

5.8

5.9

5.10

Tableau of 9-stage, 6th order, stage order 3 CMIRK scheme which gives an
asymptotically correct defect estimate.
Comparison of MIRKDC execution sequences for TP1, e= 0.04; tol = 1079,
method = 4; tol = 107'?, method = 6; NI: the number of full Newton
Iterations. L L
CPU time (seconds) for defect control strategies for various initial Nsub
values; method = 4, tol = 107°, for TP1,e=0.04.
CPU time (seconds) for defect control strategies for various initial Nsub
values; method = 6, tol = 1079, for TP1,e=0.04.
Comparison of defect control strategies; TP1 with ¢ = 0.04, tol = 1079;
EX1: exact maximum defect - original interpolant; EX2: relaxed defect
control - original interpolant; EX3: safe-guarded strict defect control - new
interpolant. L.

Comparison of relaxed defect control and safe-guarded strict defect control

for TP1, € =0.04, tol = 1074, method =2.

vi

59

77

79

79

List of Figures

4.1

4.2

5.1

9.2

5.3

5.4

5.5

5.6

Comparison of ratio of estimate error and true error of solution com-
ponent 1 on TP7, method = 4,tol =107
Comparison of ratio of estimate error and true error of solution com-

ponent 2 on TP7, method =4,tol =107%.

Location of maximum defect on each subinterval for six test problems with
Nsub = 10, method =2, tol = 1079,
Location of maximum defect on each subinterval for six test problems with
Nsub = 50, method =2, tol =107°%.
Location of maximum defect on each subinterval for six test problems with
Nsub = 100, method = 2,tol = 107%.
Location of maximum defect on each subinterval for six test problems with
Nsub = 10 for the old 4th order method, tol = 107°.
Location of maximum defect on each subinterval for six test problems with
Nsub = 100 for the old 4th order method, tol = 107°.
Location of maximum defect on each subinterval for six test problems with

Nsub = 300 for the old 4th order method, tol = 10=°.

vil

47

3.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

Location of maximum defect on each subinterval for six test problems with
Nsub = 10 for the new 4th order method, tol = 107%.
Location of maximum defect on each subinterval for six test problems with
Nsub = 50 for the new 4th order method, tol = 107%.
Location of maximum defect on each subinterval for six test problems with
Nsub = 100 for the new 4th order method, tol = 107°.
Location of maximum defect on each subinterval for six test problems with
Nsub = 10 for the old 6th order method, tol = 107°.
Location of maximum defect on each subinterval for six test problems with
Nsub = 100 for the old 6th order method, tol = 107°.
Location of maximum defect on each subinterval for six test problems with
Nsub = 10 for the new 6th order method, tol = 107%.
Location of maximum defect on each subinterval for six test problems with
Nsub = 100 for the new 6th order method, tol = 107°.
Location of maximum defect on each subinterval for six test problems with
Nsub = 300 for the new 6th order method, tol =109,
Locations of maximum defects for TP6, uniform mesh, Nsub = 10, method
order 4. . . . L L e
Locations of maximum defects for TP6, nonuniform mesh, Nsub = 40,
method order 4.o
Locations of maximum defects for TP6, nonuniform mesh, Nsub = 156,

method order 4. L

viil

68

68

69

70

70

5.18 Locations of maximum defects for TP6, nonuniform mesh, Nsub = 205,

method order 4.

X

ACKNOWLEDGEMENTS

I express my sincere gratitude to all those who gave me the opportunity to complete
this thesis.

First of all, I would like to sincerely thank my supervisor, Dr. Paul Muir. He pro-
vided a motivating, enthusiastic, and critical atmosphere during the many discussions
we had. He opened the world of Numerical Analysis to me. It was a great pleasure
for me to conduct this thesis under his supervision.

Thanks also to my external thesis examiner, Dr. Patrick Keast (Dalhousie Univer-
sity), for his valuable comments and suggestions. I also would like to thank internal
examiners, Dr. Walt Finden (Saint Mary’s University) and Dr. Milton Chew (Saint
Mary’s University), for their critical review and useful suggestions on this thesis.

During my graduate study at Saint Mary’s University, my colleagues and pro-
fessors from the Mathematics and Computing Science Department gave me lots of
support and help. I really appreciated them.

Finally, I would like to give my special thanks to my husband, my son, and my
parents for their constant encouragement and love which enabled me to complete this

work.

Chapter 1

Introduction

A differential equation describes how something changes. It allows us to model phe-
nomena that change continuously over time or space. Mathematical models based on
differential equations are widely used in the sciences to attempt to describe the real
world. These models are essential tools from the molecular level in the analysis of
chemical reactions, to the cosmic level in the motion of planets or comets.

Computer modeling of complex phenomena now plays an important role in all
areas of science and engineering. It is usually the case that such models are based upon
complicated systems of differential equations. Furthermore, the complexity of these
systems implies that they cannot be treated with traditional analytic approaches,
and therefore sophisticated, robust software packages for the approximate numerical
solution of these systems must be employed.

An ordinary differential equation (ODE) is an equation involving a function of

one independent variable and its derivatives. There are two main types: initial value

ODEs (IVODEs) and boundary value ODEs (BVODEs). An IVODE consists of a
system of differential equations with solution information specified at one initial point.

A simple IVODE would have the form:
y'(t) = fltyt), t=a, (1.1)

y(a) = a, (1.2)
where y and f are vectors and a is the initial point and « is a given constant vector.
A BVODE consists of a system of differential equations on a given interval with
conditions on the solution at two or more points. We wish to find the solution of the

BVODE on this interval. A simple and common form for a two-point BVODE is [1]:
y'(t) = f(ty(®), (1.3)

9(y(a),y(b)) = 0, (1.4)

where y, f, g, and 0 are vectors and a and b are known endpoints. Equation (1.3)
subject to (1.4) is a first order system (which means that only first derivatives appear).
In general, if the ODE is pth order, the boundary conditions may involve derivatives
of the unknown function up to the (p — 1)st.

This thesis describes software development and modification associated with the
enhancement of the MIRKDC [18] software package. This Fortran 77 package is used
for the numerical solution of systems of first order, nonlinear, BVODEs, with sep-
arated boundary conditions. Given a mesh of points which partitions the problem
interval [a,b}, it employs mono-implicit Runge-Kutta methods [18] for the discretiza-
tion of the ODEs and monitors the quality of the numerical solution using defect

3

control. The discrete systems are solved by modified Newton iterations and extensive
use of adaptive mesh refinement is employed, based on equidistribution of the defect.

This thesis work has involved two phases. Phase one is concerned with the modi-
fication of the MIRKDC software package in order to incorporate a number of perfor-
mance enhancements including analytic derivative assessment, computational deriva-
tive approximation, problem sensitivity (i.e., conditioning) assessment, and the in-
troduction of an auxiliary global error indicator. In each of these modifications, we
build upon well established theoretical developments, numerical results, and robust
software components already available, and the focus is in the introduction of these
features into the existing MIRKDC package in a well-structured and well-documented
manner. Numerical results to demonstrate the impact of these enhancements will be
presented.

The second phase examines new approaches for control of the defect. The defect
of a numerical solution is the amount by which that solution fails to satisfy the ODE
system. For example, suppose that u(t) is the approximate solution to (1.3), (1.4).

Then the defect, §(¢), is defined as follows:

5(t) = u'(t) — f(t,u(t)).

That is, we substitute the approximate solution u(t) into the differential equation
y'(t) = f(t,y(t)) in place of y(¢t) and see how well u(t) satisfies the differential equation
by subtracting the right hand side from the left hand side. The difference is called
the defect.

This second phase of this thesis work involves an investigation of new approaches

4

for the defect control strategy employed within MIRKDC for the estimation of the
maximum defect on each subinterval of the mesh which subdivides the problem in-
terval. The main goal is to try to compute an approximate solution so that the
corresponding defect is less than some user defined tolerance, over the whole problem
interval [a,b]. We investigate a new class of continuous solution approximations which
lead to an asymptotically correct estimate of the maximum defect, determined by a
single evaluation of the defect on each subinterval. This is potentially a significant
improvement over the previous strategy employed in MIRKDC, which estimated the
maximum defect by choosing the largest of several samples of the defect within each
subinterval.

In [16], it is pointed out that, for the design and implementation of ODE software
over the last few decades, there are two frameworks where such software is now widely
used. One of these frameworks is generally referred to under the title of Problem
Solving Environments (PSEs), e.g. MATLAB [32] or MAPLE [30]. In PSEs, scientists
and engineers are often able to solve their problem without having much knowledge
of the underlying numerical algorithms. This convenience associated with the PSE is
often offset by a loss in efficiency within the numerical computation. The second major
framework, called General Scientific Computing (GSC), provides more efficiency, but
there is a cost to the user in terms of ease of use. In the GSC environment, the user

is able to access high quality, robust, efficient numerical algorithms through software
modules available from various libraries, e.g. IMSL [39], NAG [33], and Netlib [37],

but the user must be able to write driver programs in a high level programming

language, such as Fortran or C, in order to call these modules. The MIRKDC package,
to‘ be considered in this thesis, falls into this class, and therefore, throughout this
thesis, one important assessment of the modifications we undertake will be a measure
of their contribution to the overall efficiency of the computation, as measured in terms
of execution or CPU time and of the complexity added to the interface.

Recent efforts, e.g. Shampine et al. [26], have sought to bridge the gap between
these two environments by employing an updated version of the Fortran programming
language known as Fortran 90/95. In this language, one is able to dramatically
simplify the interface to a sophisticated software module by employing various new
language features such as optional parameters, structured data objects, and dynamic
memory allocation. The user can call such a module using a simple driving program
template, and generally interact with the module in a fairly simple way, while largely
enjoying the significant advantages in overall computational efficiency associated with
a GSC environment.

This thesis involves modification of the MIRKDC software package in order to

incorporate a number of significant performance enhancements including:

1. Computational derivative approzimation — In the current version of MIRKDC,
the user must supply several subroutines including fsub, gsub, df sub, and dgsub.
The first two subroutines describe the ODEs and boundary conditions respec-
tively; the latter subroutines describe the partial derivatives of the ODEs and
boundary conditions. When the ODEs are complicated, it is usually difficult for

the user to supply correct df sub and dgsub subroutines. By modifying MIRKDC

to allow it to provide numerical approximations to the partial derivatives, we
can avoid asking the user to supply the df sub and dgsub routines and can sig-
nificantly improve the ease-of-use of the package. (We should note that the use
of numerical derivative approximation does add to the overall computational

costs.)

. Analytic derivative assessment — When the ODEs are complicated, the devel-
opment of a correct Jacobian subroutine is an error prone process. When the
user does provide the df sub and dgsub routines, the purpose of analytic deriva-
tive assessment is to let MIRKDC attempt to check these routines to see if they
correspond to the partial derivatives of the expressions given in the fsub and
gsub routines. This check is done by comparing the results from the df sub and

dgsub routines with numerically generated partial derivatives.

. Problem sensitivity (i.e., conditioning) assessment — The MIRKDC solver at-
tempts to compute a numerical solution whose defect is less than a user pre-
scribed tolerance. It can be shown - see, e.g. [25], that the global error, i.e. the
difference between the true solution and the approximation solution, is bounded
by the product of the defect and the conditioning constant for the BVODE,
which gives a measure of the sensitivity of the BVODE to slight changes in the
problem definition. When the conditioning constant is large, the problem is ill-
conditioned and a small defect will not imply a small error. In the extreme case
when the product of the conditioning constant and the defect of the computed
solution is greater than one, the error can be very large and the solution may

7

have no correct digits; in this case the computed solution is sometimes called a
pseudosolution. In this modification to MIRKDC we added the capability for
estimating the conditioning constant of the BVODE. This estimate can be re-
turned to alert the user to the fact that the BVODE is ill-conditioned, implying
the possibility of a loss of accuracy in the solution, and in the extreme case, the

possibility of a pseudosolution.

. New Runge-Kutta methods — As mentioned previously, the discretization of the
ODEs is performed in MIRKDC using Runge-Kutta methods. In [21] new opti-
mal mono-implicit Runge-Kutta methods with interpolants are derived. In this
thesis work, we added a new interpolant of order 4 to MIRKDC and compared

the performance with the original method.

. Preliminary auxiliary global error indicator — While the primary mode for
MIRKDC is defect control, i.e., the computation of a numerical solution whose
defect satisfies a given tolerance, it might be considered useful to also provide
a low cost estimate of the global error in the final computed solution. The
global error is the difference between the approximate solution and the true
solution. That is, if y(¢) is the true solution to (1.3), (1.4) and u(t) is an
approximate solution to (1.3), (1.4), then the global error is simply y(¢) —
u(t), the difference between them. In this modification, once MIRKDC has
obtained a final approximate solution, we compute a global error estimate by
computing a second global solution on a new mesh and then comparing it with
the original final solution. This provides a high quality global error estimate but

8

the additional costs are significant. However this approach provides a baseline

for future work in the development of lower cost global error estimates.

6. Defect control improvements — An investigation of new approaches for the de-
fect control strategy employed in MIRKDC is presented. In the current version
of MIRKDC, relaxed defect control, in which we sample the defect at several
points on each subinterval and then select the largest of these samples as an
estimate of maximum defect, is used to monitor the quality of a numerical so-
lution. We have investigated another defect control strategy called strict defect
control in this thesis. Strict defect control samples the defect at one point per
subinterval using a special interpolant and is guaranteed to give an asymptoti-
cally correct estimate of maximum defect when the subinterval size is sufficiently
small. In this thesis, we derive special interpolants of orders 4 and 6, that lead

to asymptotically correct defects.

This thesis is organized as follows. In chapter 2, we review standard numerical
methods for BVODEs. Some software packages for the numerical solution of the
BVODE:s are also discussed. In chapter 3, we provide all the test problems which
will be used in this thesis. Chapter 4 presents all the modifications to MIRKDC
we have considered except that involving improvement of the defect control strategy.
Chapter 5 describes the modifications we implemented for defect control and gives an
analysis of our experimental results. Chapter 6 gives our conclusions and suggestions

for future work.

Chapter 2

Review of Standard Techniques

and Software

2.1 Introduction

Most approaches for the numerical solution of BVODESs use a mesh to partition the
problem interval [a,b], into several subintervals. The mesh points are usually cho-
sen in an adaptive way to control some estimate of the error. On each subinterval
one employs a numerical method which discretizes the ODEs; the resultant set of
equations together wi£h the boundary conditions leads to a large system of nonlinear
equations, which is usually solved using a modified Newton’s method. Some form of
error estimate is also obtained through an auxiliary computation. Once an approxi-
mate solution and error estimate are obtained, the error is assessed to see if it satisfies

the given user tolerance. If not, the error distribution over the problem interval is

10

used to guide a mesh redistribution algorithm. Once the new mesh is obtained, the

above process is repeated.

2.2 Numerical Methods for BVODEs

2.2.1 Shooting/Multiple Shooting

One of the most popular approaches for the numerical solution of BVODEs is the
simple shooting method. It is a simple, intuitive method that builds on the IVODE
approach; shooting is a straightforward extension of initial value techniques. Essen-
tially, one shoots trajectories of the same ordinary differential equation, with esti-
mated initial values employed at the left end of the problem interval, until one hits
the given boundary values at the right end of the problem interval.

Consider the equation (1.3); we denote by y(z) = y(z;c¢), the vector solution of
the ODE which satisfies the initial (or left end point) condition y(a;c) = c. We can
then write h(c) = g (v(a; ¢), y(b; ¢)) = g(c, y(b; ¢)) = 0, from the boundary conditions.
This gives a set of nonlinear equations for the unknown initial conditions c.

The advantages of this approach are simplicity and the ability to make use of
the excellent initial value ODE software [3]. Difficulties in shooting are that the
conditioning of each shooting step depends on the conditioning of the IVODE, not
on the conditioning of the BVODE. It is well known that simple shooting is unstable,
i.e., errors can grow in an unbounded fashion [1].

An improvement on simple shooting is called multiple shooting. In this approach,

11

one uses a set of mesh points or shooting points to partition the problem interval,
and then on each subinterval one sets up and solves a local initial value problem
with an estimated initial condition employed at the left end of each subinterval. This
gives a larger set of unknowns, but the interval over which each IVODEs needs to
be solved is smaller, making each of the local IVODEs easier to solve. Requiring the
local initial value solutions to match at the internal mesh points and to satisfy the
boundary conditions leads to a large system of nonlinear equations. The shooting
points are chosen according to the difficulty of the local initial value problem, so that
a problem of comparable difficulty is solved on each subinterval. Multiple shooting
can be ineffective for singularly perturbed problems because of the possible presence
of rapidly increasing solution modes that can not be dealt with using an initial value

solver.

2.2.2 Collocation

Another popular technique for solving BVODEs is collocation. This approach begins
by selecting a set of basis functions, usually piecewise polynomials, defined on a mesh
of points which partitjon the problem interval. Continuity of the basis functions at
the mesh points is usually imposed. The collocation approach requires the solution
approximation to satisfy the differential equation at a set of collocation points defined
over the problem interval. The resultant equations, called collocation conditions,
together with the continuity and boundary conditions, give a large system of nonlinear

equations. Important aspects of this approach are the choice of appropriate basis

12

functions and collocation points. These have been discussed in many papers, see,
e.g., [4],[13]. One standard choice is to use B-splines [6] for the basis functions and

Gauss points for the collocation points.

2.2.3 Finite Difference Methods

In the text book [1], the basic steps for the use of a finite difference method for the

numerical solution of a BVODE are as follows:

1. For a given mesh m: a =1z; < 25 < - -+ < xny < Tny41 = b, define approximate

solution values y; =~ y(z;).

2. Form a set of equations for the approximate solution values by replacing deriva-
tives with finite difference quotients in the differential equations and boundary

conditions, e.g. y'(z;) = I?—/J—‘—L:iiz
2 7

3. Solve this set of equations together with the boundary conditions for the ap-

proximate solution values.

2.2.4 Runge-Kutta Schemes

Explicit Runge-Kutta (ERK) schemes were originally proposed for the numerical
solution of IVODEs by Runge and then were further developed by Heun and Kutta
- see, e.g., [7]. Implicit Runge-Kutta methods were later recognized as appropriate
for stiff initial value differential equations [7]. Runge-Kutta schemes have also been

considered for use in the numerical solution of BVODEs for some time.

13

Again assuming a mesh and discrete approximation solution values as in section
2.2.3, on each subinterval we replace the ODE, y/(t) = f(¢t, y(t)), using a Runge-Kutta

scheme which discretizes the ODE at ¢;, the general form being

h r=1

. — 9. S s
Yit1 — Y _ ZbrKra or Yit1 :ymuhzbr[(ﬁ
r=1

where K, = f(ti—i—crh,yﬁ-th:l aijj), r=1,..,8 h =ty —t;, and b, ¢,
and a,; are the coefficients of the Runge-Kutta scheme. For example, the classical

fourth-order explicit Runge-Kutta method is expressed as follows [7],

i1 — Yi 1 1 1
&}—l——& = -6—K1 + g(K2 + Kg) + 6K4,

1 1
Kl zf(t‘i’yi)) K2=f(ti+§h,yi+§hK1),

h 1
Ky = f(t: + ¥t éhK2), Kq= f(ti + h,y; + hK3),

and we have s = 4;by = by = %,bg = b3 = %;cl =0,c0 = ¢c3 = %,04 = l;a;; =

ya31 = Q33 = az4 =

(R

a1z = @13 = ayg = 0,421 = 3,40 = ag3 = ag = O,a3: =
0,a43 = 1, a41 = ag2 = ag4 = 0. These methods represent generalizations of the finite
difference methods and for y'(t) = f(¢, y(¢)) also include the collocation schemes.
More recent work [11],[17],[21] has included studies of a subclass of the implicit
RK schemes called mono-implicit Runge-Kutta (MIRK) schemes (18], which have
been found to be appropriate for BVODEs. The scheme is defined by the number
of stages, s, the coefficients, [v,]]_, and [:crj];;i:le, and the weights [b,]’_,. The
abscissa, [cr]‘:zl, are defined by the condition that ¢, = v, + Z;;} zr;. We also define

the following notation to be used later in this thesis:

c= (Cla027"'7cs)Ta v = (’Ul,'UQ,"’,’Us)T,

14

b = (blabZa o '7bS)T>

and
0 0 0
Ty 0 - e 0
X = 0
0
Ts1 Ts2 ' Tes—1 O

The coefficients of a MIRK scheme are usually presented in a tableau [7] of the form
given in Table 2.1. The general form of the MIRK scheme, which relates the solution

approximation at ¢; to that at ¢;,4, is

Yi+v1 = Yi + thTKT) (21)

r=1
where

r—1
Kr = f (ti + Crh, (1 - 'Ur)yi + UrYit1 +h Z CL',»]'K]') .

j=1

The application of the Runge-Kutta method on each subinterval together with the
boundary conditions, leads to a large system of nonlinear equations. In the survey
paper [10], the use of irﬁplicit Runge-Kutta methods for singularly perturbed problems
is discussed, and it is shown that some classes of implicit Runge-Kutta formulaé are

both stable and accurate for such problems.

15

c | n 0 0 ce R 0
CZ vz x21 0 . e 0
Cs | Us | Ts1 Ts2 - Tss—1 0

bl b2 e e bs

Table 2.1: Tableau of an s-stage MIRK scheme

2.2.5 Summary

1. The simple shooting method is straightforward to implement and it is good
for relatively easy problems that may need to be solved many times. But it
is unstable and the improved version, multiple shooting, can be ineffective for

singularly perturbed problems.

2. By using basis functions which are high-degree splines (piecewise polynomials)

the collocation approach can be superior to the finite difference approach [24].

3. The attraction 6f the finite difference scheme approach is its simplicity. The
disadvantage of this approach is that the one step methods have only second-
order accuracy at most. This is not very efficient for many applications. One
approach to extend the finite difference methods is to define families of higher

order one-step methods such as implicit Runge-Kutta schemes. Another exten-

16

sion is to define higher order finite difference schemes over several subintervals.

2.3 Numerical Software

Since the underlying mathematical theory for initial value problems is much better
understood than for the boundary value case, and since the former problem class is
much smaller than the latter, the state of software development for IVODEs is well
ahead of that for BVODEs. For IVODESs, software based on multi-step and Runge-
Kutta methods has been available for over 40 years. Thus, many IVODEs can be
solved by existing codes with reasonable efficiency and reliability. On the other hand,

the codes for BVODESs, although in wide use, are still less well developed.

2.3.1 Shooting Software

From our previous discussion, we know that the simple shooting method is based
on an IVODE solver and a nonlinear equation solver. Thus, one couples a program
module for solving nonlinear equations with a module that solves the corresponding
IVODEs. Examples of IVODE solvers include RKSUITE [36] and CVODE [28] while
an example of a nonlinear equation solver is KINSOL [29].

Multiple shooting has been implemented in many packages, some of which are
part of standard libraries for numerical software. For example, MUSL [38] based on
the multiple shooting method is designed for nonstiff linear BVODESs, while MUSN
[38] also based on the multiple shooting method, is designed for nonstiff nonlinear

BVODE:s.

17

2.3.2 COLSYS - Software Based on Collocation

COLSYS (COLlocation for SYStems)[2] and COLNEW (a later version)[5] are de-
signed to solve mixed order systems of nonlinear BVODEs. The method of spline
collocation at Gaussian points is implemented using a B-spline basis in COLSYS and
a monomial spline basis in COLNEW. A damped Newton’s method is employed for
the nonlinear iteration. The mesh refinement procedure in COLSYS automatically
adapts the subinterval distribution to accommodate the solution behaviour based on
a global error estimate for the continuous approximation. Approximate solutions are
computed on a sequence of automatically selected meshes until a set of user-specified

tolerances is satisfied.

2.3.3 TWPBVP - Software Based on Deferred Corrections

A-stable, symmetric mono-implicit Runge-Kutta (MIRK) schemes have been em-
ployed in a software package for the numerical solution of BVODEs, called TWPBVP
[12]. TWPBVP is designed for the numerical solution of first order systems of nonlin-
ear BVODEs. TWPBVP uses a deferred correction method based on mono-implicit
Runge-Kutta formulas of orders 4, 6 and 8. The deferred correction approach involves
first computing a 4th order solution approximation using the 4th order formula and
then using the 6th order formula to generate a ”correction” to the 4th order solution
to make it 6th order. One then repeats this process using the 8th order formula to
correct the 6th order solution to make it 8th order. The code controls a global error

estimate of the solution approximations at the mesh points. Its original version did

18

not include an option for a continuous solution approximation. However more recent
work [9] has provided TWPBVP with continuous solution approximations for graph-
ical purposes only, i.e., a lower order interpolant is employed and no attempt is made

to control the error in the continuous solution approximation.

2.3.4 MIRKDC - Software Based on Defect Control

MIRK software based on defect control called MIRKDC employs continuous MIRK
(CMIRK) schemes to provide C! continuous approximate solutions.

The basic algorithm employed in MIRKDC uses MIRK formulas to discretize the
ODE system; the resulting equations, together with the boundary conditions, give a
nonlinear system for the solution approximations at the mesh points. Once this so-
lution is obtained, a CMIRK scheme is used to provide a C' solution approximation
over each subinterval for use in the computation of defect estimates, mesh redistri-
bution, and initial guesses for subsequent Newton iterates. For the discrete schemes,
Enright and Muir [18] employ symmetric MIRK schemes of orders two, four, and six.
Because it is efficient to reuse the stages from the MIRK scheme within the CMIRK
scheme, they embedded the MIRK scheme within the CMIRK scheme. In MIRKDC,
to solve the nonlinear system, a combination of damped Newton iterations and fixed
Jacobian iterations, with a scheme for switching between the two, is used. The Ja-
cobian matrices arising from the nonlinear system have a special sparsity structure
called almost block diagonal, and a software package, called COLROW [14], designed

to handle this kind of structure, is employed.

19

Both the termination criterion for the overall computation and the mesh selection
algorithm reqﬁire an estimate of the maximum value of the defect on each subinterval.
In MIRKDC, this is estimated by sampling the defect at several points within each
subinterval. The MIRKDC algorithm controls defect estimates rather than global
error estimates. The estimate of the maximum defect is required to satisfy a user

provided tolerance.

2.3.5 Comparison

1. An advantage of the MIRK formulas over the collocation formulas is that, be-
cause the methods are being used in the BVODE context, the calculations on

each subinterval are explicit and therefore can be implemented more efficiently.

2. For the MIRKDC software the major new aspects are the use of continuous
MIRK formulas and the use of defect estimation rather than global error esti-

mation for accuracy control and mesh selection.

3. The COLSYS/COLNEW software has proven to be competitive with the other
robust software for solving BVODESs and to be particularly effective for difficult

problems.

20

Chapter 3

Test Problems

3.1 Test Problems

We will make use of seven test problems in this thesis. Unless otherwise stated, no
closed form solution is available.
The first test problem (TP1) is a nonlinear fluid flow problem from [1], page 23,

Example 1.20:

ef"(t) + F(&)f" () + g(t)g'(t) =0, eg"(t) + F(t)g'(t) — f'(t)g(t) =0, (3.1)

with boundary conditions

f(0) = f(1)= f'(0) = f'(1) =0, g(0)=—1, g(1)=1; ¢ is a parameter.

The second problem (TP2) is a shock wave problem from [1], page 21, Example

21

(¢t "(t -1
Ao) - [3 + 1 —ea@]wu+ B0+ 2O L (T2] <o,
(3.2)
where A(t) = 1+ t2, v = 0.04, and ¢ is a parameter. The boundary conditions are:

w(0) = 0.9129, u(1) = 0.3750.

The third problem (TP3) is a fluid flow problem from [1], page 22, Example 1.18:

FU6) =" =2f () + (f' (1) = (9(1))*, g"(t) = 2f'(t)g(t) — 2/ (1)g'(2), (3.3)

with f(0) = f'(0) =0, g(0) = 1, f'(c0) = 0, g{c0) = 7; 7 is a parameter.

The fourth problem (TP4) is from [31], test problem 17:

VO = 3.9

t
e+t2

with y(0.1) = —y(-0.1) = \/gi;gm; ¢ is a parameter. The true solution is y(¢)

The fifth problem (TP5) is from [31], test problem 31:

y' () =sin(0(t)), O'()=M(t), eM'(t)=-Q(t),

eQ'(t) = (y(t) — 1) cos (0(t)) — M (t) [sec (6(t)) + eQ(¢) tan (8(¢))], (3.5)

with (0) = y(1) = 0, M(0) = M(1) = 0.

22

The sixth problem (TP6) is from [31], test problem 32:

y"(t) = Ry ()y" () —y()y" (1)), (36)

with y(0) = ¢/(0) =0, y(1) = 1, ¢'(1) = 0; R is a parameter.

The seventh problem (TP7) is from [31], test problem 20:
ey (1) + (' (1) = 1, (3.7)

with y(0) = 1 + eIn(cosh(=%:™)), y(1) = 1 + eIn(cosh(%22)); € is a parameter. The

true solution is y(t) = 1 + eln(cosh(t‘oe-745))_

3.2 Computer / Compiler Information

The computer which we used for CPU time testing has a 296.0 MHz SPARC-based
CPU; the floating-point controller is Sun-4. The Fortran compiler is Sun WorkShop
6, update 2, FORTRAN 77, 5.3. The computer which we used to do the other
experiments is an HP ProLiant DL380G2 with two 1.40GHz Pentium III processors.

The compiler is gnu Fortran (gcc) 3.3.3.

23

Chapter 4

Modification of MIRKDC (I)—
Software Modifications Based on

Existing Modules and Formulas

In this chapter we describe modifications to the MIRKDC package which are based
on previously developed software modules and formulas and involve straightforward
implementations within the MIRKDC package. The emphasis for this portion of the
thesis work is on the software engineering effort associated with modifying MIRKDC
to add the new component, taking care to pay attention to the user interface, mem-
ory management issues, documentation, etc. As well, we have focused on analyzing
the impact of each modification, especially in terms of its contribution to the over-
all execution time of the MIRKDC package. We consider modifications associated

with computational derivative approximation, analytic derivative assessment, prob-

24

lem sensitivity assessment, new Runge-Kutta methods, and a preliminary global error

estimate.

4.1 Computational Derivative Approximation

4.1.1 Introduction

For the ODE system, y/(t) = f(¢,y(¢)), MIRKDC requires the Jacobian (matrix) of
partial derivatives of f(t,y(¢)). Therefore, in addition to providing a subroutine which
computes f(¢,y(t)), the user also has to provide a subroutine which computes the
Jacobian matrix. A similar situation holds for the boundary condition subroutines.
When f(t,y(t)) is complicated, the development of a correct Jacobian subroutine is
an error prone process for the user. However, the Jacobian can be approximated.
One possibility is to use divided differencing to approximate the components of the
Jacobian matrix. A basic formula for the approximation of the derivative of a given
function, f(z), is the simple forward divided difference formula which gives f'(z) ~
(f(z + h) — f(z))/h, where h is some carefully chosen increment, e.g., h ~ ,/eps,

where eps is machine epsilon.

4.1.2 Description of the Software Modification

First, we chose an existing Fortran subroutine fdjacl from the MINPACK software
library (available at netlib [37]) which calculates a finite difference approximation to

the Jacobian matrix, evaluated at y(t), for a given vector function, f(y(¢)), which

25

can be evaluated through a subroutine call. Since the parameter list for the function
call in fdjacl is different from that of the MIRKDC function, fsub, which evaluates
f(t,y(t)), we modified fdjacl, to employ the fsub parameter list, calling the new
subroutine fdjacl_fsub. To the parameter list for fdjacl_fsub, we also added the
independent variable ¢ in order to be able to compute the approximate Jacobian of a
non-autonomous ODE system, i.e., a system of the form y/(¢t) = f(t, y(t)) rather than
y'(t) = f(y(t)). This does not add extra derivative computations because MIRKDC
does not need the derivative of f with respect to t. We also wrote a new subroutine
called df sub_dif f, which can replace the call to the user defined dfsub which pro-
vides the analytic Jacobian of f(¢,y(t)). The dfsub_diff subroutine computes the
approximate Jacobian by calling the fdjacl_fsub routine, mentioned above. We also
modified the main MIRKDC subroutine by adding the parameter approz_jac, which
the user should set to be zero if df sub is provided, and otherwise, set to be one. We
have also developed similar subroutines called fdjacl_gsub and dgsub_dif f, which

compute the approximate Jacobian matrix for the boundary conditions.

4.1.3 Results and Discussion

For the numerical experiments we ran both versions of MIRKDC on several of the test
problems, as indicated below. After making the above modifications, we did some
testing of the df sub dif f and dgsub_dif f routines.

We now present and discuss numerical results for five test problems. In MIRKDC

there is a parameter named 'method’ which stands for the method order. We chose

26

method = 4, tolerance = 107%, the initial number of subintervals, Nsub = 10, ¢ =
0.04 for TP1, TP4 and TP5, € = 1.4 for TP2; and v = 1.4 for TP3. The results given
in Table 4.1 reveal that the differences in the entries of the approximate Jacobians
computed by df sub_dif f and dgsub_dif f range from 107¢ to 1078, except the linear
test problem TP4. These differences are not significant; the differences in the resulting
numerical solutions to the BVODEs are only about 107'?(not shown in this thesis.)
Becasue the execution time for the dgsub_dif f subroutine is too small to be timed,
we focused only on timing df sub_dif f. We chose both a non-autonomous ODE system
(TP2) and an autonomous ODE system (TP1) for our test problems. Timing the cost
of calling df sub_dif f and the overall cost for the main MIRKDC subroutine on TP1
and TP2 were done separately. Results are given in Table 4.2 and Table 4.3. We
chose method = 4, tolerance = 1073, number of subintervals, Nsub = 10, and ¢ =
0.04 for TP1, ¢ = 1.4 for TP2. For TP1, the call to dfsubdiff is about 4 times
more than the call to df sub but the overall execution cost for MIRKDC when divided
difference Jacobians are used is only about 5 percent more than MIRKDC when an
analytic Jacobian is provided. For TP2, the call to df sub_dif f is about 3 times more
than the call to df sub and the divided difference approximation of the Jacobian adds

about 4 percent to the overall cost.

27

TP1 TP2 TP3 TP4 TP5

max difference | 596 x 107 {123 x 1076 [2.72x 1078 | 0 |2.38x 1077

Table 4.1: Absolute maximum difference between analytic and approximate Jacobian on

TP1 - TP5, method = 4, Nsub = 10.

CPU time TP1 TP2

df sub 0.44 x 1076 || 0.22 x 107

dfsub diff || 1.97 x 10~6 || 0.62 x 10-3

Table 4.2: CPU time for df sub and df sub_dif f for TP1 and TP2; method = 4, tol = 1073,

Nsub= 10, ¢ = 0.04 for TP1, ¢ = 1.4 for TP2; time in seconds.

TP1 TP2
€ 0.004 | 0.004 | 0.0004 || 0.04 | 0.04 | 0.04
Tol 10| 10°°| 10° {1078 |10°°| 1071

MIRKDC with dfsub 0.28 | 1.22 | 298 | 0.06 | 0.24 | 0.40

MIRKDC with dfsubdiff | 029 | 1.27 | 3.08 | 0.06 | 0.24 | 0.46

Table 4.3: CPU time for overall MIRKDC computation with dfsub.diff and dfsub on

TP1 and TP2; time in seconds.

28

4.2 Analytic Derivative Assessment

4.2.1 Introduction

For the ODE system, v'(t) = f(¢,y(t)), we recall from the previous section that one of
the options available to the user of the MIRKDC package is to provide a subroutine
which gives the Jacobian of partial derivatives of f(t,y(t)). However it is common for
users to make mistakes in the development of this subroutine. The idea we discuss
in this section is that, prior to using the Jacobian subroutine provided by the user,
MIRKDC should attempt to check if this subroutine is correct or not. Our basic
approach is to compute finite difference approximations to the Jacobian (based on
evaluations of f(t,y(t)) at the points of the initial mesh, using an initial solution
approximation, and then compare these with evaluations of the analytic Jacobian

provided by the user.

4.2.2 Description of Software Modification

We wrote a new subroutine, df sub_check, which compares analytic and approximate
Jacobian values. Its purpose is to compute the maximum difference between the
analytic Jacobian computed by the user-supplied subroutine dfsub and the divided
difference Jacobian computed by the MIRKDC subroutine df sub_dif f. If the max-
imum relative difference is greater than 1%, then the dfsub_check routine gives an
output message which warns the user that the user-supplied subroutine, df sub, may

not be correct. The subroutine also will identify which entries of the Jacobian may

29

have errors. The final action of this subroutine is to set a flag which causes MIRKDC
to terminate when an incorrect Jacobian has been encountered. We also developed
a similar subroutine called dgsub_check, which checks the Jacobian matrix generated
by the user-supplied subroutine dgsub for the boundary conditions.

We modified the main MIRKDC subroutine to add calls to the dfsub_check
and dgsub_check subroutine. If approzr_jac = 0 (which implies that the user will
provide dfsub and dgsub), then the main MIRKDC subroutine automatically calls

df sub_check and dgsub_check to perform a check on df sub and dgsub.

4.2.3 Results and Discussion

We employed test problem TP1 with method = 4, tolerance = 1073, initial Nsub =
10, € = 0.04 and approx_jac = 0. We introduced several deliberate errors within
the dfsub and dgsub routines. Test results (not included in this thesis) show that
df sub_check and dgsub_check are able to detect typical errors in dfsub and dgsub
routines. If there are errors in df sub and/or dgsub, the df sub_check and dgsub_check
routines will indicate which components of the user defined subroutine may contain

errors by outputting the row number and column number for each component.

30

4.3 Problem Sensitivity (Conditioning) Assessment

4.3.1 Introduction

As stated earlier, MIRKDC controls the defect or residual of the numerical solution.
This is the amount by which the numerical solution fails to satisfy the ODEs and
boundary conditions. An advantage of considering the defect is that it allows one to
adopt a backward error analysis viewpoint for the error in the numerical approxima-
tion. When computation and control of the defect are coupled with an estimate of the
sensitivity or conditioning of the BVODE, as we describe in this section, a backward

error analysis provides us three kinds of information:

1. the knowledge that we have a numerical solution whose computed defect is less

than the given user tolerance,

2. an indication of the sensitivity of the problem to small changes in its definition

(i.e., an estimate of the magnitude of the conditioning constant).

3. an upper bound on the magnitude of the global error (equal to the product of

the maximum defect and the conditioning constant).

The second of these is particularly important as it gives the application expert, who
is using the MIRKDC software, an indication of the sensitivity of the solution to
the accuracy of the application dependent parameters present in the mathematical
model. That is, based on the size of the conditioning constant estimate, the user can

tell how much small changes in these parameters will affect the solution.

31

If u(t) is the numerical solution to (1.3), (1.4), then 4(¢), the defect of u(t) with

respect to the ODEs, is given by

8(t) = u'(t) = f(t,u(?)),

and the defects, ¢,, and d,, of u(a) and u(b) with respect to the boundary conditions,

are given by

The above equations can be rewritten as

uw'(t) = f(t, u(t)) +6(2), (4.1)

and
9a(u(a) — 82 =0, gy(u(b)) — &, = 0. (4.2)

Equations (4.1) and (4.2) are important because they show us that u(¢), the numerical
solution of (1.3), (1.4), is the ezact solution to the "nearby” problem (4.1), (4.2). This
perturbed problem differs from the original problem by the amounts 6(t), d,, and &,
which are usually small; in the case of MIRKDC these quantities are required to be
less than the user tolerance.

However, even when 6(t), 8,, and J, are small, the size of the difference between
u(t) and the true solution y(t), i.e., the global error, depends on the conditioning of the
problem. A well-conditioned problem can be described as follows: if there is a small
change in f, g,, or g, arising in the BVODE problem definition, y'(t) = f(t,y(¢)),
da(y(a)) = 0, gs(y(b)) = 0, then it will produce only a small change in the solution y(t).
Otherwise, it is called an ill-conditioned problem. Thus, if a stable, accurate numerical

32

method is applied to solve a well-conditioned BVODE, the numerical solution will be
accurate; i.e., the difference between the nurnerical‘solution and the true solution will
be small. The conditioning of a BVODE is characterized in terms of a conditioning
constant.

We consider this in more detail; the following is based on [1] and [25]. Let us

consider the linear BVODE,
y'(t) = At)y(t) + q(t), a<t<b, Byy(a)+Byy(b) =5, (4.3)

with smooth coefficients A(t) € R™*", ¢(t) € R", y(t) € R*, and § € R", B,,B, €
R™™. Under certain assumptions, the solution can be represented as [[1], pg. 111-

112,

y(§) =Y (R0 + [Gt)al)dz (4.9

where Y'(t) is a fundamental solution defined by
Y'(t) = AQ)Y(t), a<t<b, Y()=I,

Q = B,Y (a)+ ByY (b), and G(t, 2) is the n x n Green’s function [[1], pg. 94-95], given

by
O(t)B,®(a)0"(2), =2z<t,
G(t,z) =
~O(t)By®(b)@7!(2), 2>t
where ®(t) = Y (£)Q L.
Let u(t) be the numerical solution to (4.3). In this case, the defects §(¢) and J4

are given by

and

dap = Byu(a) + Byu(b) — .

If we rewrite these two equations, we observe that the approximate solution wu(t)

satisfies

u'(t) = A@)u(t) +q(t) + 6(t), Baul(a) + Byu(b) = 8+ o (4.5)

That is u(t) is the ezact solution to (4.5). Of course y(t) satisfies
y'(t) = A(t)y(t) + q(t), Bay(a) + By(b) = 6, (4.6)

and we have seen that y(¢) is given by expression (4.4). Since u(t) is the exact solution

of equation (4.5), we can also use (4.4) to write
u(t) =Y ()@ 5+) + [Glt,2)(a(z) +(2))d (4.7

Therefore, from (4.4) and (4.7) we have

u(t) — y(t) = Y(£)Q 60 + / ’ Gt 2)8(2)de. (4.8)

Taking || - || norms on each side of equation (4.8) and using standard norm inequal-

ities, we get

max ||u(t) — y(t)||o = max ||Y (£)Q 16us + /ab G(t, 2)0(2)dz||0o

a<t<b a<t<b

b
< max [V ()Q loelldutlloo + s [G, 2)leol16(2) ez

a<t<b

b
< max IV (Q " loolduslloo + 135 16(leo | G t,2) ootz

T a<t<b

< masx ma 600l 120l

s (V00 o+ [1602

ma.
a<t<b

34

= - mave e 5(6) oo 1o

where
b
— -1
o= e ([160wtz + 1Y 00 1) (49
Thus e(t) = u(t) — y(t) satisfies
8 lle(®)lloo < - mavx (mx 1(0)loo, oo) (4.10)

Equation (4.10) says that the error is bounded by the conditioning constant, , times
the maximum of the defects of the ODE and the boundary condition. A given BVODE
is well-conditioned if k is of moderate size.

While (4.9) does give us an expression for the conditioning constant, we need a

more practical way of estimating . From [[1], pg. 202], let

G(ti,ta) -+ Glt,tve) Y(t)Q™

G(tyyi,t2) -+ Gltner,tve1) Y(inve)Q7!

where {¢; }j\]:tl is a mesh of N + 1 points which partitions the problem interval [a,b]
(with ¢ty = a and tyy; = b). When a Runge-Kutta method is used to discretize
the linear ODE system (4.3), the resultant equations, together with the boundary
conditions, form a linear system with coefficient matrix
S1 Ry

SQ R2

Sy Ry

35

where Sj, R; are n X n matrices. Also as in [[1],pg. 202], let D be the block diagonal

matrix given by

Ry!

Ry}

Ry

I

Define h; = t;;, —t; and h = max)Y; h;. Then Theorem 5.38 of [1] states that

1<i<N+1

N
|M™' Dl = max (Z hillG(ti, tir)lloo + 1Y (8)Q Hloo + O(h)> :
j=1
Assuming sufficiently small h and approximating the sum by an integral, we have

b
-1 N -1
M7 Dl g, (1Y (00 o + [16,2).

Finally, Theorem 5.38 of [1] also states that for a sufficiently fine mesh, ||M~!D|j ~

|A~Y|0o- This gives

b
-1 ~ -1
147 e sy (IVOQ e+ 160).

and we note that the right hand side of this equation is k. Thus, we have ||A™}||o & &.

The matrix A arises in the computation of the numerical solution; we need to setup
and solve linear systems having A as the coefficient matrix, and during this solution
process it is possible to estimate ||A™}||o, as we describe in the next subsection. The
algorithm described in [25] also takes into account that the error and the defect are

in fact scaled, but we do not include these details here.

36

4.3.2 Description of the Software Modification

The original MIRKDC used COLROW [14] for the linear equations which arise in the
computation. In the new version of MIRKDC, we employ a slightly updated version
of the COLROW [19] subroutine, and also a modification of the subroutine BSPCND
[20] called BSPCNDMAX [22]. The new COLROW has a parameter called ’job’ which
can be used to specify which of Az = b or ATz = b is to be solved. BSPCND uses
this feature to compute an estimate of the condition number (cond(A) = [|A||||A7|])
in the 1-norm. BSPCNDMAX is a modification of this which uses the infinity or max
norm.

In the BSPCNDMAX routine, ||A]|« is computed by calling the ABDNRMMAX
[19] routine. Then, a factorization of A is performed using the subroutine CRDCMP
[19] from COLROW, which decomposes the matrix A using modified alternate row
and column elimination with partial pivoting. Then, an estimate of ||A™}||o is ob-
tained by using the DONEST [19] and CRSLVE [19] subroutines. The DONEST
subroutine estimates the norm of a matrix. CRSLVE will solve a linear system once
A is decomposed. We modified BSPCNDMAX so that it does not compute ||Al|oo
and cond(A) = ||Allo]] A7 ||co but rather only computes and returns an estimate of
|A~!||lco, since this is all that is needed for the estimate of x, as explained in the
previous section.

We added a new parameter, called cond_check, to the parameter list of MIRKDC.
If cond_check = 0, MIRKDC will not compute the conditioning constant estimate. If

cond_check = 1, MIRKDC will compute an estimate of x.

37

CPU Time | Nsub =100 | Nsub= 500 | Nsub = 1000

calling COLROW 0.02999 0.149999 0.319999

calling BSPCNDMAX and CRSLVE | 0.0499991 0.259999 0.529999

Table 4.4: Execution times for TP1 for COLROW and BSPCNDMAX/CRSLVE.

CPU Time TP1|TP3 | TP4

without k estimate | 0.10 | 0.04 | 0.01

with Kk estimate 0.13 | 0.07 | 0.01

Table 4.5: Execution times for overall MIRKDC computation with and without condition-
ing constant estimate for TP1, TP3, and TP4, method = 4, tol = 107%, ¢ = 0.04, v = 1.4,

initial Nsub = 2.

4.3.3 Results and Discussion

Using TP1, we did some tests of the CPU time for calls to the BSPCNDMAX,
CRSLVE, and COLROW subroutines. We chose method = 4, tolerance = 107% and
€ = 0.04, initial Nsub = 100, 500, and 1000. We also did tests to measure the CPU time
for the overall execution of MIRKDC on TP1, TP3 and TP4, using the conditioning
constant estimation option.

The test results are shown in Table 4.4 and Table 4.5. From Table 4.4, we see that
the CPU time for calling BSPCNDMAX and CRSLVE together is approximately 1.5
to 2 times more than that of calling COLROW alone. Table 4.5 shows that for TP4

there is no additional cost for the x estimate, for TP1 there is about a 30% cost, and

38

for TP3 the cost is about 75%.

In the néw version of MIRKDC we compute an estimate of ||A™!||o, whenever we
set up and factor a new A matrix. This makes estimates of x available throughout the
computation and these estimates could be used to monitor and guide the computation.
A much less expensive alternative would be to only compute the estimate of [|A™! ||
after an acceptable solution has been obtained. This would involve a few extra back
solves involving the final A matrix and would add very little to the overall cost, while

providing the user with an estimate of x for the BVODE.

4.4 Improved Runge-Kutta Methods

4.4.1 Introduction

Recall that the general form of a discrete MIRK scheme is as given in (2.1), with the
coefficients usually represented in the tableau given in Table 2.1. The general form

of a CMIRK scheme on the subinterval [t;, ¢;11] is

r=1
where K, = f(t; + crhy, (1 — vp)ys + vrYig1 + b ;;% zr; K;), and b.(6) is a polynomial

in 0, § € [0, 1], and s* is the number of stages. The general form of the corresponding

tableau is

39

where b(6) = [b:(0),b2(6), - - -, bs«(9)]T. A pth order method has a local error that is

O(h?*'). A MIRK or CMIRK method with stage order ¢ has coefficients which satisfy

In the original MIRKDC software, the discrete 3-stage, 4th order, stage order
3, MIRK scheme has the tableau that is shown in Table 4.6. This scheme can be
embedded in a 4-stage, stage order 3, CMIRK scheme which provides the interpolant
for the discrete solution values. The tableau for this continuous scheme is given in
Table 4.7, where

6(20 — 3)(36°% — 30 + 2
(o) = - 22—) (6 = -
_20%(667 — 140 + 9)

3 b

62(1262 — 200 + 9)
6 b
_166%(0 — 1)°
—

b3(0) by(6) =

1/211/2|1/8 —1/8 0

1/6 1/6 2/3

Table 4.6: Tableau for 3-stage, 4th order, stage order 3, MIRK scheme.

In the paper[21], Muir derived a new optimized 4th order CMIRK scheme, con-

taining the discrete scheme of Table 4.6. It has the tableau shown in Table 4.8.

where

b,(6) = _9(39—4)(5192 —60+3)

bo) - -2 (39—;)(59—6), bu(6)

62(56% — 66 + 2)
g :

_1256%(6 — 1)?

B 12 '

40

1| 1 0 0 0 0
/2| 1/2 | 1/8 -1/8 0 0

3/4|27/32|3/64 —9/64 0 0O

bi(0) b62(0) b3(6) b4(6)

Table 4.7: Tableau for original 4-stage, 4th order, stage order 3, CMIRK scheme.

0] 0 0 0 0 0
1|1 0 0 0 0
1/2|1/2] 1/8 —-1/8 0 0

2/5|2/5 | 17/125 —13/125 —4/125 0

b1(0) b2 (0) b3(0) ba(6)

Table 4.8: Tableau for new 4-stage, 4th order, stage order 3 CMIRK scheme.

In the new version. of MIRKDC, we replaced the original CMIRK scheme of Ta-
ble 4.7 with the new CMIRK scheme of Table 4.8.

Muir[21] also describes an optimized 5-stage discrete, sixth order, stage order 3,
embedded in a 6th order, 8-stage CMIRK scheme and has reported test results for
these schemes which showed that the new schemes led to significant improvements in

overall performance. These had already been added to MIRKDC; we simply modified

41

the code to make these formulas the default 6th order schemes.

4.4.2 Results and Discussion

The purpose of our experiments is to investigate the impact of the new 4th order
interpolant. We did some testing using the two test problems TP1 and TP2. The
testing was done with a tolerance of 1072, € equal to 0.001 and 0.0001 for TP1, € equal
to 0.1 and 0.01 for TP2 (v = 1.4), and a uniform initial mesh of 2 subintervals. The
results are given in Table 4.9 and Table 4.11 for TP1, and Table 4.10 and Table 4.12
for TP2.

From Tables 4.9 - Table 4.12, we see that the improved interpolant leads to a defect
of comparable size using fewer mesh points. The improvement is more significant for
the more difficult problems. The fact that the code uses fewer mesh points leads to

significant savings in execution time.

4.5 Preliminary Global Error Indicator

4.5.1 Introduction and Description of Software Modification

The primary approach used in MIRKDC for monitoring the quality of the numerical
solution is defect control. MIRKDC will normally return a solution whose defect sat-
isfies the user tolerance. After this computation is completed, it might be considered
useful to also have a rough, low cost indicator of the global error of the numerical

solution.

42

Old Interpolant | New Interpolant
Nsub Def Est Nsub Def Est
2 6.89 2 2.03
8 11.49 8 1.21
16 7.64 % 1072 16 4.72 % 1072
64 3.96 x 107 64 9.86 % 107*
256 5.70 x 107° 256 5.53 % 1077
844 3.80 x 10710 699 7.57 % 107°
1069 7.73% 10710 853 6.32 x 10710

Table 4.9: Comparison of MIRKDC mesh sizes and defect estimates for TP1, tol = 1072,
method = 4, € = 0.001, for old interpolant from original MIRKDC (Table 4.7) and new

interpolant from Table 4.8.

Over the last 20 years, there have been a number of papers, see, e.g.,[8], [23],[27]
which have considered the development of global error estimation techniques. The
paper [27] classified, described and compared 13 ways to estimate global error. We
note that almost all of these techniques are applied only to initial value problems.
In the text book [1], global error estimation strategies for BVODEs are discussed in
section 9.3.

In the new version of MIRKDC, the preliminary technique we use for obtaining
a global error estimate involves calculating a second numerical solution to the same

problem using a doubled mesh, i.e., we repeat the final calculation using a mesh in

43

Old Interpolant New Interpolant
Nsub Def Est Nsub Def Est
2 2.44 2 1.05
4 5.41 % 1072 4 1.86 x 1072
16 5.38 x 1074 16 4.07 x 1074
64 9.19 % 107 64 5.76 % 1077
256 2.45 % 1077 256 1.56 x 107°
375 4.23%1071 340 3.88 x 10710

Table 4.10: Comparison of MIRKDC mesh sizes and defect estimates for TP2, tol = 1077,
method = 4, ¢ = 0.1, for old interpolant from original MIRKDC (Table 4.7) and new

interpolant from Table 4.8.

which each subinterval is split in half. We compare the numerical solutions from the
original mesh and the doubled mesh at the mesh points of the original mesh to get
a global error estimate for the original numerical solution. In order to compare this
estimate with the true error, we choose a test problem, TP7, having a closed form

solution.

4.5.2 Results and Discussion

We employ a tolerance set of 1078, We use an absolute measure of the error | YN sub —
Younsub|, Where Yy is the numerical solution from the original mesh, Y3, ysus is the

numerical solution from the doubled mesh. In Figures 4.1 - 4.2, we plot the errors

44

Old Interpolant New Interpolant
Nsub Def Est Nsub Def Est
2 18.84 2 15.56
32 2.11 32 0.43
64 5.96 % 102 64 2.66 % 1072
256 3.75 % 1075 256 3.63 % 107°
1024 8.38 x 107° 1017 3.22% 1078
1638 2.05 % 107° 1334 1.20 % 1079
1801 2.02 % 107° 1467 1.09 % 107°
1981 2.85 % 10710 1613 4.32 %1010

Table 4.11: Comparison of MIRKDC mesh sizes and defect estimates for TP1, tol = 1079,
method = 4, ¢ = 0.0001, for old interpolant from original MIRKDC (Table 4.7) and new

interpolant from Table 4.8.

for solution components y; and y;. From the results, we see that the error estimate
is within a factor of 10 of the true error.

In order to examine the cost of computing this global error estimation in MIRKDC,
we measured the CPU time for MIRKDC with and without the global error indicator.
The results, shown in Table 4.13, indicate that the CPU time for computing the global
error estimate increases the cost of the computation by a factor of 2 or 3. For large
Nsub the factor will be bigger.

While the global error estimates in this test are of reasonable quality, the cost of

45

Old Interpolant New Interpolant
Nsub Def Est Nsub Def Est

2 — 2 -

4 — 4 _

8 - 8 —

16 — 16 -

32 - 32 ~
64 2.95 x 1072 64 1.27 * 1072
256 4.64 x 1076 256 6.38 x 107°
929 1.32% 1078 818 7.74 % 1079
1205 9.67 x 10710 1035 1.49 x 10~°
1138 3.07 % 10710

Table 4.12: Comparison of MIRKDC mesh sizes and defect estimates for TP2, tol = 1079,
method = 4, ¢ = 0.01, for old interpolant from original MIRKDC (Table 4.7) and new

interpolant from Table 4.8.

obtaining them is too high. However, these results can serve as a baseline for future
work in which the tradeoffs between the quality of the global error estimate and its

cost are explored.

46

e e o © o © o o
N W -~ o o ~ -3 © -
: T - & T : T T

, . . . L L . .

ratio of solution component 1 {estimated error/rue error}

o
T
A

>
-

L L 1 L L 1
] 0.1 0.2 03 04 05 0.6 0.7 08 0.9 1
mesh points

c

Figure 4.1: Comparison of ratio of estimate error and true error of solution component

1 on TP7, method = 4, tol = 107°.

© e © © © © o o
N LW o v [-~ o ©w —
T ; - T T ; T T
A L , . . L L .

ratio of solution component 2 (estimated error / true error)

o
T
L

o
-
-

L L L s e '
0.1 02 03 0.4 0.5 0.6 07 08 03 t
mesh points

=3

Figure 4.2: Comparison of ratio of estimate error and true error of solution component

2 on TP7, method = 4, tol = 107°.

47

(method, tol, Nsub, ¢)

With global error indicator

Without global error indicator

(4,1075,10,0.5) 0.03 0.01
(4,1078,20,0.06) 0.11 0.04
(6,107°,20,0.5) 0.04 0.02
(6,107, 20, 0.06) 0.17 0.07

Table 4.13: Comparison of CPU times for MIRKDC global error estimation.

48

Chapter 5

Modification of MIRKDC (II) —
Design and Analysis of Defect

Control Strategies

5.1 Introduction

In this chapter we consider techniques which can lead to improved control of the
defect of the approximate solution to a BVODE system. The approach is based
on considering special kinds of interpolants for the representation of the continuous

solution approximation.
The paper[15] considers specially constructed continuous solution approximations

which lead to defects having the special form,
(1) = @, (O)Rah? + pir ()71 + O(h7*2), (5.1)

49

where 6 = (t — t,_,)/h, and ¢,(0) is a polynomial in 6 whose coefficients depend
on the method but not on the problem and the step size h. x, depends only on
the test problem, and p is the order of the RK method. In this case, the defect
is said to be asymptotically correct because as h — 0, the maximum of the defect
on each subinterval is located at the maximum of the polynomial ¢,(6), which can
be determined ahead of time. In order for the defect estimate to be asymptotically
correct, the h? term must be significantly bigger than the AP*! term. If k,41(6)
is comparable in size to 90;,(9)&,, and h is not sufficiently small, then we cannot in
practice expect the maximum defect to be at the maximum of ¢}, (6).

We can sample the defect at a set of points in the subinterval and use the maximum
of these samples as an estimate of maximum defect. This is called ’relaxed defect
control’; it is reliable and effective for many practical problems. However, as explained
above, we can employ one-point sampling of the defect provided we employ a special
kind of interpolant, which leads to an asymptotically correct form for the defect. This

1s called ’strict defect control’.

5.2 Description of the Software Modification

We have designed new interpolants (based on CMIRK schemes) that lead to asymp-
totically correct defects, implemented them as an option within MIRKDC, and then
performed experiments to test our new schemes to see if they in fact give asymptoti-
cally correct defects and to see what the implications are for the execution time.

It turns out that the second order continuous scheme already employed in MIRKDC

50

leads to an asymptotically correct defect. We will consider this in more detail shortly.
We have added new schemes for orders 4 and 6. We have also added an option called
'defect_control’ to the parameter list for the new version of MIRKDC to let the user
choose the type of defect control: ’relaxed defect control’, or a modification of ’strict
defect control’ which we call 'safe-guarded strict defect control’, to be described mo-
mentarily. When the user selects 'relaxed defect control’, we choose two-point sam-
pling for the defect estimate using the 4th and 6th order continuous schemes discussed
in the previous chapter. When the user selects ’safe-guarded strict defect control’, we
will use new 4th and 6th order continuous Runge-Kutta schemes which yield a defect
with the form given in (5.1). The basic idea for ’safe-guarded strict defect control’ is
that the step size h should be small enough so that we can use one-point sampling;
otherwise we will employ extra sample points in order to estimate the maximum de-
fect on each subinterval. If we are not in the asymptotic region because the step size
h is not small enough (we have experimentally determined a threshold of 0.01 for the
methods of orders 2 and 4, and a threshold of 0.002 for the method of order 6), the
new version of MIRKDC will do two extra samples (at § = 0.55 and 6 = 0.47 for the
2nd order method, at # = 0.54 and 6 = 0.56 for the 4th order method, and at § = 0.22
and 6 = 0.81 for the 6th order method) determined through numerical experiments
(see Tables 5.1 and 5.2). Otherwise, we will only do one point sampling at § = 0.5
for the 2nd order method, at 8 = 0.5453 for the 4th order method and at § = 0.5 for
the 6th order method. These are the points where the maximums of the ©4(8), ©}(6),

and ¢g(6) polynomials occur. (We will consider the details shortly.)

51

Initial Nsub TP1 TP2 TP3
100 0.54 — 0.55 0.55 0.55
50 0.54 — 0.55 | 0.54 — 0.55 0.55
40 0.54 — 0.55 | 0.55 - 0.56 0.55
30 0.54 — 0.55 | 0.54 — 0.57 | 0.54 — 0.55
20 0.53 — 0.56 | 0.53 — 0.58 | 0.54 — 0.55
10 0.42 — 0.66 | 0.55 — 0.59 | 0.54 — 0.55
8 0.44 —0.64 | 0.55—-0.6 | 0.54 —0.55

Table 5.1: The locations of the maximum defect for different numbers of subintervals,

method = 4, tol = 1079, TP1 - TP3.

5.3 Continuous Runge-Kutta Schemes

5.3.1 A Continuous Runge-Kutta Scheme of 2nd Order

The continuous scheme for second order has the form

u(t) = ’U,(ti + th) =1y; + hi (bl(g)Kl + b2(0)K2))

where

K1 = f(ti, ys),

Ky = f(tis1, Yitr),

This scheme has coefficients which satisfy

52

() I Iﬁw
Il
S
I
+

0

and b1(0) =6(1 — =),

2

no e

Initial Nsub TP4 TP5 TP6

100 0.54 — 0.55 | 0.54 — 0.56 | 0.54 — 0.55
20 0.54 —0.55 | 0.54 — 0.55 | 0.54 — 0.55
40 0.54 —0.55 | 0.54 — 0.55 | 0.54 — 0.55
30 0.563 —0.56 | 0.53 — 0.57 | 0.54 — 0.57
20 0.51 —0.57 1 0.52 - 0.57 | 0.53 — 0.58
10 0.49 —0.93 | 0.42 — 0.69 | 0.29 — 0.59
8 0.48 —0.93 | 0.43 —0.67 | 0.54 — 0.60

Table 5.2: The locations of the maximum defect for different numbers of subintervals,

method = 4, tol = 1079, for TP4 - TPS.

where ¢ = (1,1,---,1)7, and it therefore has stage order 2. Letting y(¢) be the true
solution, we know from standard theory for Runge-Kutta methods, [7], that a local

error expansion for this scheme has the form

3

4(0) = ult) = o (F(0) - 5) 0+ 0(h)

where h is the size of the step or subinterval,

and Cj is problem dependent but not dependent on §. Substituting the above values

into ¢o(6) = b7 (0)c* — % gives $5(6) = & — &

and then ¢4(f) = 6 — 62, with a
maximum at § = % We will explain further in the next section how the above form
of the error leads to the specific form of the defect in (5.1).

23

5.3.2 A New Continuous 4th Order Scheme

A standard continuous Runge-Kutta scheme for fourth order requires 4 stages. A
continuous Runge-Kutta scheme which gives a maximum defect having the special
form will be presented here; it uses 5 stages. The tableau of coefficients for this
scheme which we denote by CMIRK543 is shown in Table 5.3. It has the 3-stage
discrete 4th order MIRK scheme of Table 4.6 embedded within it. The continuous
solution approximation u(t) based on this CMIRK scheme has the form

u(t) =y + hi i b (0)K,. (5.2)

r=1

We now discuss the derivation of this scheme. Let

1 1 1 _1

2 | 2 8 8 0 0 0
Cq | Vg T4 T42 Z43 0 0
¢s | vs | Zs1 Tsg Tsz Tsg 0

bi(8) b2(0) b3(6) ba(8) bs(6)
Table 5.3: General form for the tableau of 5-stage, 4th order, stage order 3 CMIRK scheme

with the discrete 3-stage, 4th order, stage order 3 MIRK scheme of Table 4.6 embedded.

c= (011)1/2)C4a65)Ta v= (0,1,1/2,U4,U5)T,

€= (1) 1) 1) 1) 1)T7 b(@) = (bl(e)) b2(0), b3(9)’ b4(9)a b5(6))T7

o4

and

1
8

ZTg1 Ta2 Taz 0 O

Ts1 Tsy Tsz Tsg O

The embedded discrete method is said to have stage order 3. This means that

[
)

=< X+

v C
2 2’

Xe+tv=c¢, Xc+ % 5
Here ¢™ means that the every element of ¢ should be taken to the nth power. We will
also require the extra stages 4 and 5 to satisfy these stage order conditions. Requiring
that these stage order conditions be satisfied allows us to fix z41, 242, T43, T52, T53, Tsa

in terms of the free variables cq, cs, v4, U5, Z51.

The 4th order continuous order conditions for a Runge-Kutta method with stage

order 3 are
62 63 64
T, __ 9 bT - bT 2__ 7 T 3 .
be=0, b (0=, b (0 3 b (0)c” =
The two order conditions for 5th order are
6° v 6°
BT (0)ct = = Ta(3 :>=—.
b ()¢ 5,l_)()XQ-%-4 50

By satisfying the first 5th order condition above in addition to all the 4th order
conditions, we get five sets of equations for the coefficients of the five weight polyno-
mial b1(6),---,bs(0). This leaves us with the 5 free coefficients c4, cs5, v4, Vs, T5;. We
arbitrarily chose: ¢4 = vq =

%, s = v5 = %, Ts) = %. (A more optimal choice of

95

these free parameters could lead to a better method with smaller error coefficients
but this is left for future work.) This leads to the tableau of coefficients for the

CMIRK543 scheme shown in Table 5.4. The weight polynomials are

2

6 0
b (8) = 52(80—9)(3093 — 6060?4370 —6), by(6) = 51—(—27+2360-45092 +2406%),
62 2 3 125 2 2 3
bs3(0) = ﬁ(—27+2180—:~300¢9 +1200%), by(6) = ~15° (—27 + 7460 — 726 + 246%),
125) 5

00 0 0 0 0 0

111 0 0 0 0 0

11 1 _1

2 2 8 8 0 0 0
11| 6 _2 _6 g 0
10 10 1000 1000 125

o 19| 3 _3 3 _3
10 10 40 40 40 40

bi(0) b2(0) b3(0) ba(0) bs(0)

Table 5.4: Tableau of 5-stage, 4th order, stage order 3 CMIRK scheme which gives an

asymptotically correct defect estimate.

We conclude this section by considering how this continuous scheme leads to a
defect that has the form (5.1).(The basic idea applies generally to pth order schemes
as well.) Suppose that y(t) is the true solution of the BVODE. Then we know that

(according to standard theory for Runge-Kutta methods, [7],)

y(t) — u(t) = Cy (b7(0)e —) h+ C; (QT(Q)Q —~ g) R

56

T 2 03 3 T 3 94 4
+C5 (B1(0) — 5) 1° + Gy (B7(6) — 7 |

5

% 0
+ (s (870) - 2) + 0 [67(0) <Xg3 + %) - R+ O(RS),
b} 4 20
where h is the subinterval size. For a fourth order method the coefficients of h, h?, h®,
and h* are zero. We have explained above that we also chose the coefficients of our

scheme such that (QT(G) - %) = 0. This leaves
y(t) — u(t) = a(0) Ksh° + O(R°), (5.3)

where ¢4(0) = b7 (0)(X 3+ 2) - g—g and K5 = Cse.

Recall that ¢ = ¢;4 6h which implies § = =%, We therefore have that 4 = 448 —

%?1%' Taking derivatives in equation (5.3) with respect to ¢, we get

& W0 — () = () — (1) = & (SO + O(R%)) = Kb T ,(0) + O(A°),

ld
= Kshf’E@@(e) + O(h®) = ¢,(8)Ksht + O(h®),
where ' = % on the right hand side of the above equation.
Thus

Y'(t) — ' (t) = ¢u(0) Ksh* + O(K).

The defect, 6(t) = u'(t) — f(¢,u(t)), can be rewritten as follows (recall that y'(t) —

f(t,y(t)) = 0 because y(t) is the true solution):

o(t) = u'() = f(t,u(®)) = (¥ (t) = £(£,y(®)) = u'(t) — y'() = (f(t,u(t)) = f(t,y(2)) .

Assuming f satisfies a Lipschitz condition with constant L, then

[f (& u(t) = £ y@)] < Llu(t) ~ y(t)| = O(R°).

o7

Thus

§(t) =u'(t) — y/(t) + O(h®) = ¢4(0) Ksh* + O(h®), (5:4)
where we recall that ¢4(8) = b7 (0)(Xc® + %) — %. From this we have that

1
"(0) = ———60(6 — 1)(1006% — 1246 — 3

and the maximum value of the defect, when the stepsize h is sufficiently small, is at

the maximum of ¢(6) for § = [0, 1] which turns out to be about 0.5453.

5.3.3 A New Continuous 6th Order Scheme

In the new version of MIRKDC, the discrete 5-stage, 6th order, MIRK scheme is
embedded in an 8-stage, 6th order CMIRK scheme - see Muir[21]. Here we present a
9-stage, 6th order CMIRK scheme, containing the discrete 5-stage, 6th order MIRK
scheme, which leads to a defect which is asymptotically correct. The coefficients of

this scheme are shown in Table 5.5, where

3531:ﬁ+‘g—2—;,$32=f—i+-§,$41=11—4—%,5542:]—41—%7
Ts1 = ‘1_2—2,5552 = %,3353 = 717\/?,%3 = %“éﬁ,
1561:%‘5‘{%,3362:%—%,

Te3 = %+%,m54 = %— 2l rgs = "igsﬁ,
=35+ s T = T80~ 1

720421 764 _ 28 729v/21
Ts1 = oo000 T 15625 L82 = 5625 T 500000 *

510331 _ 834 72070
T84 = 950000 85 = 13625 31250 °

o8

0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
Ly 2l L8R gy g 0 0 0 0 0 0 0
LovBL L 8L g gy O 0 0 0 0 0 0
i : Ts1 Tsy Tss Tsa 0 0 0 0 0
% — ‘1/77 % — -1‘%7 T61 T62 T3 Te4 Tes 0 0 0 0
% + ‘1/77 % + —1‘/17 rn T79 T73 74 Z7s 0 0 0 0
% % Ts1 Ts2 0 Tsa Tss Tss Lsr 0 0
% % L91 Z92 0 0 95 96 97 Z9g 0
bi(0) b2(0) b3(0) ba(0) b5(8) bs(0) () bs(0) bo(6)

Table 5.5: Tableau of 9-stage, 6th order, stage order 3 CMIRK scheme which gives an

asymptotically correct defect estimate.

_ _49 _ 54817 | 5103v21 _ 49 5481v7 | 510321
T86 = 15635 — 500000 T 250000 ' T87 = Tm625 T 500000 T 250000 ’
__ —8581 _ —27931 _ 17607
Z91 = 00000° L92 = B00000 > T95 = 125000
Top = =82877 _ 13237 Loy = =62377 1323v7 Toq — 81
96 T T90625 580000 * “97 — 90625 580000 * “98 ~ 1160°

and where

b1(0) = — 35 (4063560 — 13361062 + 2025400° — 1419486* 4 350008° + 20006° — 4860),
ba(0) = — 25 (—2565 + 270700 — 8780062 + 11005263 — 490006* -+ 20006°),

b3(6) = —z=6%(—135 + 15100 — 563082 + 92500% — 70006* + 20006%),

ba(0) = —256%(—135 + 15100 — 563002 + 92506° — 70006* + 200065),

bs(6) = —862(—135 + 15100 — 563062 + 925068 — 70006 + 20006°),

135

be(6) = f5ez07(0—1)%(220006° — 3300062 — 600+/76% +14132046001/79 — 1566 —81/7),

99

b7(0) = 22-6%(6—1)2(220006° — 3300062 +600+/762 + 141320 — 6001/ 76 — 1566+ 81V/7),

bg(6) = 2125 (9 — 1)202(27 + 766 — 39662 + 3206),

14094

bo(6) = 2B=(6 — 1)26%(—27 + 2446 — 5640° + 3206°).
We next consider the derivation of this scheme. We use a Hermite-Birkhoff inter-

polation approach. The general form for the continuous solution approximation on

the 7th subinterval is
+h; (b1(60) K1 + b2(0) Ko + bs(0) Ko + b7(60) K7 + bg(8) K + bg(6) Ko) (5.5)

where K; = f(t; + ¢;h,9;),7 = 1,2,6,7,8,9, with ¢; = 0,91 = yi,co = 1,92 = Yir1;
the other ¢; and g; values are to be determined.

We consider the local error associated with each of the terms in (5.5). Since we
are looking at local error, y; and K; = f(¢;,y;) are considered to be exact. The
right end point value, y;41, for a 6th order method has local error O(h!) as does
Ky = f(ti+1, Yiv1) (assuming a Lipschitz condition on f). We note that the factor of
h; multiplying the sum of K terms implies that the contribution to the error in u(t)
in (5.5) from K, will then be O(h8). With a similar argument we see that we want
the remaining K terms, K, - -, Ko, to also have a local error that is O(h]) so that
they will also contribute an O(h8) error to u(t). This will leave only the y;;, term
contributing an O(h!) term to the error.

The main task is to construct four new stages, Kg, K+, K3, Ky, each of which is
based on a corresponding argument s, 97, Us, jo. Those arguments have to have a
local error that is O(h7). This is done by requiring s, 97, Uis, Jo, to satisfy the stage

60

order 6 conditions. Then on subinterval [t;,¢;+1], u(t) will be based on 7 pieces of
O(hg) data, and one piece of O(h}) data, namely y;4+1. Since the interpolation error
will be O(h$), the only contribution to the leading term in the defect will come from

the term d;(0)y;41. The value g has the general form

5

o = (1 - vﬁ)yi + VeYis1 + P Z xﬁjKj’
j=1

and g7, s, and g are given by similar expressions.

For the new four stages, we must apply the stage order 6 conditions,

We can apply these 6 equations to gg to solve for cg, Tg1, Tg2, T63, Tes, Tes i terms of
ve. Similarly, we can apply the stage order 6 conditions to g7 to solve z7;(j = 1, --,6)
in terms of ¢z, v7; to gs to solve zg; (j = 1,---,7,7 # 3) in terms of cg, vs, Tg3; and to
o to solve xg;(j = 1,---,8,7 # 3 and j # 4) in terms of cg, vg, Zg3, Zgsa. Finally we
make some arbitrary assignments: vg = % - g, T =U7 = % + g, Cg = Vg = 115, Ccg =
Vg = -19—0, Tg3 = Toz = Toq = 0. (A different choice of the values could lead to a method
with a smaller truncation error but this is left for future work.)

Having constructed the four extra stages, we now consider the weight polynomials,
do(6),d1(8),b1(0),b2(8), bs(8), b7(6), bg(8), bg(#), which are degree 7 polynomials. The
Hermit-Birkhoff interpolant (5.5) interpolates the y; value at 0 and the y;,; value at
1, and its derivative will interpolate K at ¢; = 0, Ky at ¢, = 1, K¢ at cg, K7 at ¢z,
Ky at cg, and Kg at cq.

Each of these interpolation conditions leads to conditions on the weight poly-

61

nomials do(6), di(0), b1(8), ba(), bs(0), bz(0), bs(), be(#). For example the first

interpolation condition,

u(t;) = u(t; + Ohy) = do(0)y; + d1(0)yit

+hi (bl(O)Kl + bg(O)KQ + b6(0)K6 + b7(O)K7 -+ bg(O)Kg + bg(O)Kg) = Y,

implies dp(0) = 1,d;(0) = 0,5,(0) = by(0) = be(0) = b7(0) = bg(0) = bg(0) = 0.
Applying all eight interpolation conditions similarly leads to a total of eight conditions
on each of the weight polynomials. These conditions turn out to be sufficient to
uniquely specify each of the degree 7 polynomials. By comparing powers of 8 and
the corresponding coeflicients of the weight polynomials, the interpolation conditions

reduce to a matrix system of the form

MC =1,

where the columns of C give the coefficients of the weight polynomials, and where

[

0 1 2¢ 32 4¢3 5¢5 665 78

0 1 2 3c3 4¢3 b5cg 65 7c§

62

It then follows that the columns of C are the columns of M~!; we can compute
these explicitly using Maple [30], and from these we get the coefficients which define
do(6),d1(8),b1(0),b2(0), b(6), b7(6), bg(8), bg(#). The final step is to substitute in (5.5)
for y;41 using the discrete 6th order MIRK scheme to convert (5.5) to the standard

CMIRK form similar to that given in (5.2) but with 9 stages.

5.4 Numerical Experiments and Results

In order to obtain a good estimate of the actual location of the maximum defect on
each subinterval, we added some (temporary) code to the new version of MIRKDC

to perform 100-point sampling of the defect on each subinterval.

5.4.1 Experimental Location of Maximum Defect
2nd order method

The 2nd order schemes which are employed in the new version of MIRKDC are the
same as in the original MIRKDC. For order 2, we chose the number of subintervals,
Nsub = 10, 50, 100 and the tolerance to be 10~°, for all six test problems. The
results are shown in Figures 5.1 - 5.3. From these results, we see that when the step
size h is sufficiently small, the location of maximum defect will be about 0.5. The
results further show that the 2nd order continuous method in the original version of
MIRKDC gives an asymptotically correct defect. This is supported by the theoretical

analysis of this scheme, given earlier in this chapter.

63

location of maximum detect
o
n

L I L L ‘ ' . L N L
o 1 2 3 4 s 6 7 8 9 10 "
Nsub «10

Figure 5.1: Location of maximum defect on each subinterval for six test problems with
Nsub = 10, method = 2, tol = 10~°.

We note that for the sixth test problem (TP6), the true solution near the left
boundary exhibits a sharp boundary layer; that is, the solution derivatives in this
region are very large. In this case the O(hP™!) term in (5.1) is not dominated by
the O(h?) term and we can see from Figures 5.2 - 5.3 that the location of maximum
defect is not at 0.5 for the first few subintervals, at the left end of the domain.

During a standard computation, as MIRKDC adapts its mesh, it would place
more subintervals in this layer using smaller subintervals where appropriate leading

to smaller A values, which would restore the dominance of the O(h?) term in the

defect, and give the maximum defect at 0.5.

4th order method

First, we tested the 4th order continuous scheme which we implemented as described

in section 4.4 (which we will call the old 4th order scheme) with all six test problems

64

E—

ol
o
v
s

A TP4
. PS5

o
©
T

- TP6
- - TP2

o
N
-

e
)
s

location of maximum defect
(=]
o

04t 1
0.3f 1
02 _ B
0.1t 1
0 s A . . A
0 10 20 30 40 50
Nsub =50

Figure 5.2: Location of maximum defect on each subinterval for six test problems with

Nsub = 50, method = 2, tol = 1079,

— TP
. TP3
09} a TP4
- TPS
TP6
08 o _TP2 H

°
N
T

L

06 q

location of maximum defect
o b4
=
T
)

o
w
T

"

Nsub =100

Figure 5.3: Location of maximum defect on each subinterval for six test problems with

Nsub = 100, method = 2, tol = 1079,

65

location of maximum defect
° 3
» n
T
B .
-~
*
»
»
-
»
!
!
1
!
L &
[
i
L

|

TP1
TP3
TP4
TP
TP6
TP2

o

[
T
-4

it

o
L

L L " s 2 L
4 H 6 7 8 9 10 1
Nsub =10

o
b
w

Figure 5.4: Location of maximum defect on each subinterval for six test problems with

Nsub = 10 for the old 4th order method, tol = 1079.

for Nsub = 10, 100, 300, and tol = 10~°. The results are shown in Figures 5.4 - 5.6.
Secondly, we tested the new 4th order continuous scheme described in section 5.3.1
with all six test problems for Nsub = 10, 50, 100, and tol = 107°. Figures 5.7 - 5.9
show the results.

From Figures 5.4 - 5.6, we see that old 4th order scheme does not lead to an
asymptotically correct estimate; even with h fairly small, the position of the maximum
defect is not consistently in the same location over all problems and subintervals.
From Figures 5.7 - 5.9, we see that new 4th order scheme does give an asymptotically
correct estimate and that the location of maximum defect is about 0.54 — 0.55. This

is consistent with the theory shown earlier in this chapter which predicts that the

location of the maximum defect will be at about 0.5453.

66

1 T T T T T T T v T v
08 1
oy
0.8 b
07 1
206 1
3
3
E
405 B
E — e e
k]
g 041 4
FRE
03 1
02 — TP1
* TP3
& TPa
LRI TPS
P8
- -TP2
° . . 1 2 L N) n . T
° 10 20 30 40 50 60 70 80 % 10 110

Figure 5.5: Location of maximum defect on each subinterval for six test problems with

Nsub = 100 for the old 4th order method, tol = 1079.

a

0
T
s

o
@
T
3

-3
N

T
s

o

@
T

L

location of maximum defect
o o
» «n
T
n

o
w

T
1

o
[N
T

o
-
o
o

o

L
40 50 60 70 80 90 100 110
Nsub =300

o
3
-1
8

Figure 5.6: Location of maximum defect on each subinterval for six test problems with

Nsub = 300 for the old 4th order method, tol = 10~°.

67

08}

©
o
T

location of maximum defect
° ° °
w by [
T T T
L 2

°
~
T
2

°
T

o

6 7 8 9 10 1"
Nsub =10

o
N
w
IS
w

Figure 5.7: Location of maximum defect on each subinterval for six test problems with

Nsub = 10 for the new 4th order method, tol = 1077.

1

[
©
T

o -
»
Y

o
N
T

4
o
T

location of maximum defect
° o
»~ w0
T
\

a
w
T

i

o

N
T

L

[
——
L

)

.
25 30 38 40 45 50
Nsub =50

°
&
B
&
-1

Figure 5.8: Location of maximum defect on each subinterval for six test problems with

Nsub = 50 for the new 4th order method, tol = 10~°.

68

- TP1
» TP3
09 a TP4 H

os} --TP2H

©
@

location of maximum defect
° ° °
@ a o

o
N

o

o

" . L L s L . L s
20 30 40 50 60 70 80 20 100 110
Nsub =100

©
st

Figure 5.9: Location of maximum defect on each subinterval for six test problems with

Nsub = 100 for the new 4th order method, tol = 107,

6th order method

First, we tested the 6th order continuous scheme, described in section 4.4, (which we
will call the old 6th order scheme) with all six test problems for Nsub = 10, 100, and
tol = 10~°. Secondly, we tested the new 6th order scheme, described in section 5.3.2,
with all six test problems for Nsub = 10, 100, 300, and tol = 10~°. Figures 5.10
- 5.11 show the results for the old 6th order method; Figures 5.12 - 5.14 show the
results for the new 6th order method.

From Figures 5.10 - 5.11, we see that old 6th order scheme does not give an
asymptotically correct estimate. From Figures 5.12 - 5.13, we see that new 6th order
scheme is giving a defect for which the maximum is either at 0.5 or at about 0.8.
This tells us that for this value of h = O(#5), there are two terms dominating the
error. The location of a maximum defect at 0.50 is consistent with the theoretical

analysis, shown earlier in this chapter. In Figure 5.14, we consider a smaller value of

69

o
©
T

iocation of maximum defect
° ° o ° o °
w ES @ » ~ ©
T T T T T T

o
N
T

0.1 F

0 s 1 s ' 1 I s 1 L
o 1 2 3 4 5 B 7 8 9 10 1"
Nsub =10

Figure 5.10: Location of maximum defect on each subinterval for six test problems with

Nsub = 10 for the old 6th order method, tol = 107°.

|
3

°
w©
T

"

o
@
T

L

e
by

e
>

location of maximum defect
s o
> n
T
"

o
W
T
n

o
N
T

i

110

Nsub =100

Figure 5.11: Location of maximum defect on each subinterval for six test problems with

Nsub = 100 for the old 6th order method, tol = 1072,

70

0.7}

location of maximum defect
©
[
T

04} 1
03
« TP
TP3
L TP4 4
02 TPS
TP6
A .
otk P2 4
0 L L L L L "
o 2 4 10 12 14

Nsub =10

Figure 5.12: Location of maximum defect on each subinterval for six test problems with

Nsub = 10 for the new 6th order method, tol = 107°.

1 T T T T T T T T T
09} b
0.6 AN LA ARSI SIS St
[+Rd o a
$o6l -]
E N
5
E ¢
F T e et -
E
k]
<
g o4 R
3 — TP1
k-3 *® TP3
a3k A TP4 <
- TP5
TPS
0.2} - - TP2 B
01fF -
° s
0 10 20 30 40 50 60 70 80 90 100

Nsub =100

Figure 5.13: Location of maximum defect on each subinterval for six test problems with

Nsub = 100 for the new 6th order method, tol = 1079,

71

b
04f

location of maximum defact

. TP1
k 3
o3 A Tes
. TP5
TP6 — ”~ |

0.2fF TP

[+ AN o

Nsub =300

Figure 5.14: Location of maximum defect on each subinterval for six test problems with

Nsub = 300 for the new 6th order method, tol = 107°.

h and can see that the second term, whose maximum defect was at 0.8, is no longer
as significant.

These experiments raise an important point. Even when A is not small enough for
one term to dominate, only a small number of terms contribute significantly to the
error, each contributing its own defect maximum location. Thus a more robust defect
estimation strategy is to conduct a small number of additional defect samples at the
points corresponding to the locations of maximum defects of the other contributing
terms. This is the basis for what we call ”safe-guarded strict defect control”.

In fact for this case we would be happier with an interpolant for which a single
term dominates the error for A values that do not need to be as small as the ones
we see in the experiments reported here. A strategy which is likely to produce a
more satisfactory interpolant would base the interpolant on a CMIRK scheme which

could have all but one of the order conditions for 7th order satisfied. We employed

72

an equivalent strategy for the 4th order case. This is left for future work.

Asymptotically Correct Defects on Non-uniform Meshes

In the previous experiments in this section, we considered only uniform meshes. In
this experiment we tested the new 4th order continous method in a standard com-
putation in which MIRKDC employs a sequence of non-uniform meshes to obtain a
numerical solution to within the user tolerance. We solved TP1 with the new 4th
order method, with a tolerance of 1079, and the initial number of subintervals equal
to 10. We are interested in the "solution profile”, which is given by a sequence of
ordered pairs (Nsub, NI), where Nsub is the number of subintervals and NI is the
number of Newton iterations MIRKDC uses to find the solution to the discretized
boundary value ODE system. For this problem, the solution profile is (10,6), (40,
2), (156,1), (205,1). Figures 5.15 - 5.18 show the relative locations of the maximum
defects within each subinterval. These results show that the location of maximum
defect is at approximately 0.54, even when the total number of subintervals is only

40.

5.4.2 Comparison of Relaxed Defect Control, Strict Defect
Control and Safe-Guarded Strict Defect Control

As mentioned earlier, we added a new option called defect_control to the MIRKDC
parameter list. If defect_control = 0, MIRKDC will choose ’relaxed defect control’

(standard two-point sampling). If defect_control = 1, MIRKDC will choose ’safe-

73

Non-unitorm sampling of TP6 with method=4(new),
tol=16-9, Nsub=10 in MIRKDCS.5

1 T T T T T y T T T

location of maximum defect
e ° o ° °o o ° °
L w > w = ~ o w0
T T T T T T ¥ T
\
.
[4
v
\
A
P
-
N
n ¢ s) L L n s

°
T
L

° . L L ' L L s L n
] 1 2 3 4 5 6 7 8 9 10
Nsub =10

Figure 5.15: Locations of maximum defects for TP6, uniform mesh, Nsub = 10, method

order 4.

TP6 with method=4({new), tol=1e-3, Nsub=40 in MIRKDC5.5

1 T T T T T T T

o

©
T
1

o
@
T
s

o
=
T
L

o
F
T
L

location of maximum defect
o o
o wn
T T
s .

e
t
T

I

021 B

01 R

° L L L " s L L
0 5 10 15 20 25 30 35 40
Nsub =40

Figure 5.16: Locations of maximum defects for TP6, nonuniform mesh, Nsub = 40, method

order 4.

74

Non-uniform sampling of TP6 with method=4{new), tol=1e-9, Nsub=156 in MIRKDC5.5
1 T T T

bt

©
T
L

o
o
T
s

o
~
T
1

o
o
T
1

location of maximum defect
°© °
» o
T T
L L

14
w
T
"

0.2F B

0 50 100 150
Nsub =156

Figure 5.17: Locations of maximum defects for TP6, nonuniform mesh, Nsub = 156,

method order 4.

Non—uniform sampling of TP6 with method=4(new), tol=1e-9, Nsub=205 in MIRKDCS .5
T T T T

T T T T T

o
0
T
5

g
@
T
L

o
N
T
"

o
o
T
£

location of maximum defect
o o o
kol » i
T T T
s " s

o
N
T

"

o
T
s

0 ! . " L L s L L x
0 20 40 60 80 100 120 140 160 180 200
Nsub =205

Figure 5.18: Locations of maximum defects for TP6, nonuniform mesh, Nsub = 205,

method order 4.

75

guarded strict defect control’.

Suppose that doq(t) is the defect estimate computed by using two-point sampling
and the continuous solution uyy(t) based on the CMIRK scheme described in section
4.4. It is generally the case that d,4(t) will underestimate the true maximum defect.
Suppose that dye, () is the defect estimate computed by using one-point sampling and
the continuous solution e, (t) based on the CMIRK scheme described in section 5.3.
We will usually get a correct estimate of the maximum defect, when A is sufficiently

small. If upe,(t) is significantly more accurate than uyy(t), then we have

ly(t) — uoa(t)] = ,‘<;°m(9)hp+1 + O(hP*%), and

P
[4(£) = tnew(t)] = o (0)r; " H7T + O(AP*?),

with

[9(0)p=| < | (0)].

In the above, t = t; + 6h which implies § = Z%. Then,
So1a(t) = (m;ld(ﬁ))/h” + O(hP*!), and as in (5.4):

Snew(t) = WL (O)KIEURP 4+ O(hPHY),

p

and we have

[¥5(0)mp™] < (5 %(0))',

P
which implies |6new| < |0o1dl-
On the other hand, if %ne, () is not significantly more accurate than wu,,4(t) (which

is the usual case), then we will normally have [6ney,(t)] > [6,a(t)] since ey (t) is a

76

better estimate of the maximum defect than §yq(t). Since [Snew(t)] > [00a(t)], it will
usually take more subintervals and a finer mesh to satisfy the defect tolerance.

That is, one gets a better solution in the sense that the corresponding defect is
more likely to satisfy the user tolerance, but the cost of obtaining this solution is
greater, (a) because the new method will require more subintervals, and (b) because
the new method will employ more stages per step. In this section we consider a test
which examines the accuracy of the defect reported by MIRKDC using (i) the original
two-point sampling and (ii) the new one-point sampling. The results for (i) and (ii)

are given in Table 5.6. We employ an initial uniform mesh of 100 subintervals.

Order 4 Order 6

Nsub NI Def. Est. Nsub NI Def. Est.

original 100 1 85%1078 100 1 26x10712

237 1 9.3%10710 125 1 24%10°13

new 100 1 30x10°8 100 1 6.0x10°1

202 1 7.0x1071° 196 1 9.4x10713

Table 5.6: Comparison of MIRKDC execution sequences for TP1, e= 0.04; tol = 1079,

method = 4; tol = 10~!2, method = 6; NI: the number of full Newton Iterations.

From Table 5.6, we see that, for the methods of order 4, the new scheme with
one-point sampling leads to smaller defect estimates, using fewer mesh points. This
is an unusual result. The original method underestimates the maximum defect. The

new method gives the correct maximum defect. However the estimate from the new

77

method is smaller than the estimate given by the original method. This happens
because, as mentioned above, the new method employs a more accurate interpolant
leading to a defect which has a true maximum that is in fact smaller than the true
maximum defect for the original method. On the other hand, for the 6th order
methods, the original scheme with two-point sampling appears to do better. However,
it is underestimating the true maximum defect and is thus returning a solution which
may have a larger defect than that of the new method.

We also conducted some CPU time testing for the three different defect control
strategies, 'relaxed defect control’, ’strict defect control’, and ’safe-guarded strict
defect control’. For 'relaxed defect control’ we use two sample points per subinterval.
For ’strict defect control’ we use 1-point sampling per subinterval. For ’safe-guarded
strict defect control’, we first check the subinterval size h; if it is less than the threshold
value we use 1-point sampling, otherwise we sample at three points. The CPU time
each case for methods of order 4 and 6, respectively, is shown in Tables 5.7 and 5.8.
From Table 5.7, we can observe that ’strict defect control’ and ’safe-guarded strict
defect control’ both work faster than 'relaxed defect control’ when the methods are of
order 4. Table 5.8 shows us that for the methods of order 6, 'relaxed defect control’
works faster when h is bigger, and that ’strict defect control’ and ’safe-guarded strict

defect control’ are faster when h is smaller.

78

Initial Nsub 10 50 | 100 | 150

Relaxed defect control 0.3310.42 | 0.29 | 0.39

Strict defect control 0.3310.38 | 0.26 | 0.33

Safe-guarded strict defect control | 0.33 | 0.36 | 0.26 | 0.33

Table 5.7: CPU time (seconds) for defect control strategies for various initial Nsub values;

method = 4, tol = 1079, for TP1, € = 0.04.

Initial Nsub 10 50 | 100 | 300 | 500 | 1000
Relaxed defect control 0.06 | 0.07 { 0.18 [0.52 | 0.85 | 1.73
Strict defect control 0.16 | 0.17 1 0.19 | 0.49 | 0.85 | 1.69

Safe-guarded strict defect control | 0.17 | 0.18 | 0.19 | 0.52 | 0.88 | 1.65

Table 5.8: CPU time (seconds) for defect control strategies for various initial Nsub values;

method = 6, tol = 1079, for TP1, € = 0.04.

Comparison of Solution Profiles for Defect Control Strategies

In this subsection, we study the solution profiles for a standard computation with
MIRKDC with the ’defect_control’ strategies described earlier. We will experimen-
tally determine the true maximum defect value on each subinterval. The initial num-
ber of subintervals is 10. The methods are of orders 4 and 6. The tolerance is 10~°
and the test problem is TP1 with ¢ = 0.04. In the first experiment (EX1), we use
the original continuous scheme from section 4.4 and then find the true maximum
defect on each subinterval, which MIRKDC will then employ instead of the estimate

normally obtained from two-point sampling. The idea is to see how much of a dif-

79

ference it makes to provide MIRKDC with the true maximum defect rather than the
underestimated maximum defect provided by two-point sampling.

The second experiment (EX2) uses the original relaxed defect control strategy.
The third experiment (EX3) uses safe-guarded strict defect control. All results are
given in Table 5.9.

From the results of EX1 and EX2 on method order 4, we see that there is not much
difference between the computation using the true maximum defects and that using
relaxed defect control. On the other hand, we see from EX3 that the more accurate
interpolant associated with the safe-guarded strict defect control gives smaller defects
and pays for itself, since it uses fewer subintervals to obtain the final solution.

For the 6th order case, there is again not much difference between the use of the
original method with the two-point sampling estimate of the maximum defect and
with the correct maximum defect. The use of the asymptotically correct defect re-
quires more subintervals and a larger computation because the underlying interpolant
is not substantially more accurate than the original and the corresponding improved
estimate of the maximum defect is therefore larger, implying that a finer mesh having
more subintervals is required.

We also compared the solution profiles of the method of order 2 with relaxed defect
control and safe-guarded strict defect control. The interpolant of method order 2 is
the same for both defect control strategies. The test problem is TP1; tolerance =
10~*, the initial Nsub is 10, and € = 0.04. The results are shown in Table 5.10.

Two observations can be made. One is that when both defect control strategies use

80

the same mesh points, the defect obtained from safe-guarded strict defect control
is bigger than the one from relaxed defect control. This shows that safe-guarded
strict defect control does a better job of estimating the maximum defect than does
relaxed defect control. Another observation is that safe-guarded strict defect control
forces MIRKDC to use more mesh points. Because safe-guarded strict defect control
returns a bigger defect, more mesh points are needed to provide a finer partition of
the problem interval in order to get a solution whose maximum defect is less than the

user tolerance.

5.5 Conclusions

In this chapter we see that while relaxed defect control can be faster, it does not
control the defect as well as the other strategies. On the other hand, safe-guarded
strict defect control costs more per subinterval but can give us an asymptotically
correct defect and the cost over the whole computation is about the same as for

relaxed defect control.

81

Order 4 Order 6
(Nsub,NI) Def. Est. | (Nsub,NI) Def. Est.
EX1| (10,6) 65x107* | (10,6) 22%10°°
(40, 2) 1.8% 107 (35,1) 9.1x10710
(160,1) 5.3%107°
(269,1) 5.1%1071°
EX2 | (10,6) 50%107* | (10,6) 1.4%107°
(40,2) 1.6%107% | (34,1) 9.7%1071°
(160,1) 4.5%107°
(261,1) 4.9%1071°
EX3| (10,6) 24%10™* | (10,6) 1.9%107°
(40,2) 54%1077 | (40,1) 1.8%x1078
(160,1) 1.8x107° | (72,1) 6.5%1071°
(222,1) 4.1%107%

Table 5.9: Comparison of defect control strategies; TP1 with € = 0.04, tol = 1072; EX1:

exact maximum defect - original interpolant; EX2: relaxed defect control - original inter-

polant; EX3: safe-guarded strict defect control - new interpolant.

82

Order 2

Nsub Def. Est.

relaxed defect control 10 1.3% 107!
20 4.7 % 1072
80 1.8 %1073
211 1.6%107*

290 6.9% 1075

safe-guarded strict defect control 10 1.5% 107!
20 541072
80 2.4%1073
230 1.9x 1074

327 7.3%107°°

Table 5.10: Comparison of relaxed defect control and safe-guarded strict defect control for

TP1, € = 0.04, tol = 1074, method = 2.

83

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have discussed six new features which have been added to the new
version of MIRKDC. Based on a computational derivative approximation, we have
provided an option in which MIRKDC can compute approximate Jacobian matrices.
This can be very convenient when the BVODE system is complicated. We have added
the capability for analytic derivative assessment, which can allow MIRKDC to make
sure that the Jacobian matrix subroutines supplied by the user are correct.

We have added an boption for problem sensitivity (conditioning) assessment, which
allows MIRKDC to provide an estimate for the conditioning constant. If the estimated
conditioning constant is large, then this is an indication that the problem is ill-
conditioned. Thus, when MIRKDC returns a solution and a larger conditioning

constant estimate, the user should be wary of the accuracy of the solution.

84

We introduced a new CMIRK formula for order 4, and demonstrated that it leads
to significant improvements in the performance of MIRKDC. We also designed and
analyzed new defect control strategies. Our analysis shows that relaxed defect control
sometimes works faster, but it cannot control the defect as well. On the other hand,
safe-guarded strict defect control gives a better control of the defect but costs more
on each subinterval, although not more overall.

We also performed some preliminary investigation for the computation of a global
error estimate. Our approach yielded a good estimate but the costs are too high.

However, the results do provide a good baseline for future research.

6.2 Future Work

Some possible further work following from this thesis includes:

e Reducing the cost of computing the estimate of x. In the new version of
MIRKDC, the computation of the estimate of k is done for each new matrix
that is constructed during the computation of the numerical solution. We might

only compute the estimate of « after an acceptable solution has been obtained.

e Adding an improved interpolant of order 6 which gives an asymptotically correct

defect, and is also more accurate than the standard 6th order interpolant.

e Further investigation of low cost global error estimation strategies.

85

Bibliography

* access date here means the date when we searched

and got the information from the website.

1] U. M. Ascher, R. M. M. Mattheij and R. D. Russell, Numerical Solution of
Boundary Value Problems for Ordinary Differential Equations, STAM, Philadel-

phia, USA, 1995.

[2] U. M. Ascher, J. Christiansen and R. D. Russell, Collocation software for

boundary-value ODEs, ACM Trans. Math. Softw., 7, 209-222, 1981.

[3] U. M. Ascher and L. R., Petzold, Computer Methods for Ordinary Differential

Equations and Differential-Algebraic Equations, STAM, Philadelphia, USA, 1998.

[4] U. M. Ascher and R. D. Russell, Evaluation of B-splines for solving systems of
boundary value problems, Tech. Rep., 77-14, Dept. of Comp. Sci., University of

British Columbia, 1977.

[5] G. Bader and U. M. Ascher, A new basis implementation for a mixed order

boundary value ODE solver, SIAM J. Sci. Stat. Comp., 8, 483-500, 1987.

86

[6] C. De. Boor, A practical guide to B-splines, Springer-Verlag, New York, 1978.

[7] J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations, Wiley,

Chichester, 1987.

[8] M. Calvo, D. J. Higham, J. I. Montijano and L. R’andez, Global error estimation
with adaptive explicit Runge-Kutta methods, IMA J. Numer. Anal., 16, 47-63,

1996.

[9] J. R. Cash, D. R. Moore, N. Sumarti and M. V. Daele, A highly stable deferred
correction scheme with interpolant for systems of nonlinear two-point boundary

value problems, J. Comput. Appl. Math. 155, 339-358, 2003.

[10] J. R. Cash, Runge-Kutta methods for the solution of stiff two-point boundary

value problems. Appl. Numer. Math., 22, 165-177, 1996.

[11] J. R. Cash and A. Snghal, Mono-implicit Runge-Kutta formulae for the numerical

integration of stiff systems. IMA, J. Numer. Anal., 2, 211-217, 1982.

[12] J. R. Cash and M. H. Wright, A deferred correction method for nonlinear
two-point boundary value problems: implementation and numerical evaluation.

SIAM J. Sci. Statist. Comput., 12, 971-989, 1991.

[13] J. Christiansen and R. D. Russell, Error analysis for spline collocation methods

with application to knot selection, Math. Comput., 32, 415-419, 1978.

87

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

22]

J. C. Diaz, G. Fairweather, and P. Keast, Fortran packages for solving certain
almost block diagonal linear system by modified alternate row and column elim-

ination, ACM Trans. Math. Softw., 9, 358-375, 1983.

W. H. Enright, Continuous numerical methods for ODEs with defect control, J.

Appl. Comput. Math., 125, 159-170, 2001.

W. H. Enright, The design and implementation of usable ODE software, Numer.

Alg., 31, 125-137, 2002.

W. H. Enright and P. H. Muir, Efficient classes of Runge-Kutta methods for

two-point boundary value problems, Computing, 37, 315-334, 1986.

W. H. Enright and P. H. Muir, Runge-Kutta software with defect control for

boundary value ODEs, STAM J. Sci. Comput., 17, 479-497, 1996.

P. Keast, COLROW, http://www.mscs.dal.ca/~ keast/research/leq/, 1992.

P. Keast and R. Affleck, BSPCND, software for estimation of the 1-norm con-
dition number of an almost block diagonal matrix, http://www.mscs.dal.ca/~

keast/, 1997.

P. H. Muir, Optimal discrete and continuous mono-implicit Runge-Kutta schemes

for BVODEs, Adv. Comput. Math., 10, 135-167, 1999.

J. Patterson, P. H. Muir and P. Keast, BSPCNDMAX, software for estima-
tion of the max norm condition number of an almost block diagonal matrix,

http://www.mscs.dal.ca/~ keast/, 2001.

88

http://www.mscs.dal.ca/~
http://www.mscs.dal.ca/~
http://www.mscs.dal.ca/'%5e

[23] P. J. Peterson, Global error estimation using defect correction techniques for
explicit Runge-Kutta methods, Tech. Rep. No. 192, Dept. of Comput. Sci., Uni-

versity of Toronto, 1986.

[24] R. D. Russell, A comparison of collocation and finite differences for two-point

boundary value problems. SIAM, J. Numer. Anal., 14, 19-39, 1977.

[25] L. F. Shampine and and P. H. Muir, Estimating conditioning of BVPs for ODEs,
to appear in Comput. Math. Appl., Special Issue on the Numerical Analysis of

Ordinary Differential Equations, 2004.

[26] L. F. Shampine and S. Thompson. A Friendly Fortran DDE Solver, A preprint of
a paper for Volterra 2004, The Third International Conference on the Numerical

Solution of Volterra and Delay Equations, 2004.

[27] R. D. Skeel, Thirteen ways to estimate global error, Numer. Math., 48, 1-20,

1986.

(28] http://www.lInl.gov/CASC/nsde/pubs/toms_cvodes_with_covers.pdf, access

date: 2004-06-17.
[29] http://www.llnl.gov/CASC/sundials, access date: 2004-06-21.
[30] http://www.maplesoft.com/, access date: 2004-06-03.

[31] http://www.ma.ic.ac.uk/~jcash/BVP _software/readme.php, access date: 2004-

06-25.

89

http://www.llnl.gov/CASC/nsde/pubs/toms_cvodes_with_covers.pdf
http://www.llnl.gov/CASC/sundials
http://www.maplesoft.com/
http://www.ma.ic.ac.uk/~jcash/BVP_software/readme.php

[32] http://www.mathworks.com/products/matlab, access date: 2004-06-02.

[33] http://www.nag.co.uk/numeric/numerical_libraries.asp, access date: 2004-06-

02.

[34] http://www.netlib.org/, access date: 2004-06-02.

[35] http://www.netlib.org/ode/index.html, access date: 2004-06-25.

[36] http://www.netlib.org/ode/rksuite, access date: 2004-06-17.

[37] http://www.netlib.org, access date: 2004-06-25.

[38] http://www.netlib.org/ode/index.html, access date: 2004-06-25.

[39] http://www.vni.com/products/imsl/index.html, access date: 2004-06-03.

90

http://www.mathworks.com/products/matlab
http://www.nag.co.uk/numeric/numericaLIibraries.asp
http://www.netlib.org/
http://www.netlib.org/ode/index.html
http://www.netlib.org/ode/rksuite
http://www.netlib.org
http://www.netlib.org/ode/index.html
http://www.vni.com/products/imsl/index.html

