

\rightarrow Please print or type -acrire en bittres moulees ou dactylographier
Full Narme of Aufhor - Nom complat de lautetr
James william Bentley Allwright

Title of Thesis - Tiro de ta these
The Development of CCD Lmage Processing Techniques and Their Application to Surface Photometry of NGC 6166

Univershy Universite
Salift Mary's Uni versity
Degree for whith thesis was presented - Grade pour loavel celt these fut presentere
Master of Scienco
Year this degree conterred Abiné dobremtipn de cs grate
1985

> Name of Supervisor - Norr du tireoteur de these
> pr, G. A. We loh

Permission is harpby grinted fo the National LibRARy of CAMADA to mucrolim this thesis and to tend or sefl copies of the lilig.
The author resorves other publication rights, and nether the thesis nor extensiverextracts from it may be printed or othermise reproduced withoul the author's'arsten permizsion:

Lautoristion osi, par ia presente accoreze la bidltarye QUE NATIONALE DU CANADA de microlimer cote these ot de protter ou de vehdre des exemplaires du fim,
Lauteur se reserve les autres droits de pubtichton, th ta these? ni de longs extraits de collasti ne voivent être irmprimésebia autroment roproduts sme lathorsation érite de. lateur

THE DEVELOPMENT OF CCD IMAGE PROCESSING TECHNIQUES AND THELR APPLIGATION TO SUREACE PHOTOMEIRX

OF NGC 6166
by
f. W. B. Al1wright

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Astronomy

Saint Mary's University

July 1985
(C) J. W.. B. Allwright 1085
-•

Sigriatures of the Examining Comittee
G.. A. feleh Supervisor.

Abstract

The Development of $C C D$ Imace Processing Techniques

 and Their Application to surface Photometry of NGC 6166by
J. W: B. Allwright
Ju1y 29, 1985

A systematic procedure for processing and ceducing CCD-generated images has been devaloped. It involves removing unwanted objects and blemishes. subtracting the bias offset, removing the thermal background corcecting for areal sensitivity varlations, and remoting the sky background. This procedure has been appleed to images of the $C D$ galaxy NGC: 616ל in Abeli oluster $2199 . \quad$ Surface brightness profiles in B and R and $A B-R$ colour profile have been generated or NGC 6166 . Betwen lo and 4\$ kot the surface brightness profiles ogree with the data of oemler (1976) but beypna 4\$ kpe our proflles decline rapldiy The $(B-R)$ colour profile showg that the galaxy becomes bluer by 0.03 mag between galactocentrifotptances of 15 and 33 kpo In agreement with prevtous obsefyutions These results ade tentative penddng 4 mporgenent of our method of determining the sky background and examination of the complete set of data.

TABLE OF CONTENTS

LIST OF FIGURES (i+)
LIST OF TABLES (II)
ACKNOKL EDGEMENTS (111)
1
INTRODUCTION 1
2 DATA AQUISITION 7
2:1 Equipment 7
2.2 Programme 11
2.3 Introduction to CCDs 12
3 IMAGE PROCESSTNG AND DATA REDUCTION 20
3.1 Summary of Image Processing 23
32 Inqge G weanting 26
3.3 Bias Frame's 31
3,4 Dark Exames 33
3.5 Dome flat-f1elds 36
3.6 Sky Imace 6 38
3,7 Object Images 44
4 RESULTS AND DISCUSSION 49
41 Surface Brightness and Colour Prof iles 49
42 , Dlscussion 59
4,3 Fuțure Improvements In Data Reduction 69
5 SUMMARY 71
APBENDTX .Journal of Observations 73
REFERENCES! 79
CURRICULEVM VITAE 82
(i)
L1st of Figures
2.1 The response curve for the RCA SID53612 CCD. 8
2.2. The transission curve for the B filter. 9
2.3 The transmisaion curve for the R filter. 10
2,4 A schematic diagram of the RCA CCD. 14
3.1. Flowchart of the image procesping procedure 25
3.2 The spectrum of the night sky at Maina Kea. 39
$4.1 \therefore$ The B surface brightness profile of NGC 6166. 60
4.2 The R surface brightness proflle of NGC 6166. 6.1
4.3 The differences between the observed profiles 62 and a devaucouleurs law.
4.4 The ($B-R$) colour profile of NGC 6166. 65
4.5-A comparison of colour profiles. 67
3:1. \therefore Image Processing Programmes: Names Authors, 47 and Functions.
4.1 Instrumental Surface Brightness and Colour 54 Prof iles of NGC 6166
4.2 Normalized Surface Brightness and Colour 58 Profiles of NGC 6166

Acknowledgements

I. would like to thank Dr. Gary Wench for suggesting this topic, allowing me to use his data, and supplying much needed advice and encouragement over the past two years. $\therefore I$ would also like to thank prs. David Turner, George Mitchell, and Cameron Reed for reading (and surviving), the first draft, providing helpful comments, and participating in the defense process, Thanks go to Dr. John Kormendy for advice on image processing, to Dottie Welch for assistance with programing and to Laurie Reed for providing moral support. And last. but certainly not least, I thank my wife, Debbie, whose support, encouragement, and love made this thesis possible.

CHAPTER '1'

INTRODUCTION

Abstract

($)$ term 'cD' galaxy was Introduced.by Matthews, Morgan, and Schmidt (1964) . The 'çD' designation was based on Morgan's (1958) classification scheme 1ṇ which a Dalaxy was defined as having an elliptical-like nucleus surrounded by an extensive envelope. The D-like galaxies observed by Matthews. Morgan: and Schmidt had significantily larger and more diffuse envelopes than were typical of D galaxies. These large D galakies were' given the prefix ' c ' in analogy with the notation for supergiant stars in the Henry Draper spectroscopic classification scheme. Therefore, 'cD' galaxy reads as', supergiant D^{\prime} 'galaxy. cD galaxies are the largest, most luminous. and most massive galaxies known. Their absolute visual magnitudes range from -23 to -26 , and their masses are of the order of 10^{13} M (Jenner 1974). All known cDs are located in clusters of galaxies, and are usually near the cluster's projected centre.

Cists of CD candidates have been compiled by Matthews, Morgan, and Schmidt (1964, lo galaxies), and Morgan and Liesh (1965, 18 galaxies). Morgan, Kayser, and White. (1975) and Albert, White, and Morgan (1977) extended the search to poor
clusters (those not 1fsted-In Abel1's 195 (catalogue), and found a total of 23 possible cDs. Valentifn and B1fleveid. (1983) have compiled a list of 104 cD candidates., Which includes the earifer lists as well as CDs associated with X-ray sources. Cluster classification schemes which have a distinct class for clusters containing cDs; such as the schemes of Bautz and Morgan (1970) and Rood and Sastry (1971), also generate lists of candidates (cf. c cheir and van den Bergh 1977. Rood and Sastry 1971).

Photographic surface photometry of cDs. (e.g. Oemler 1973. 1976; Thuan and Romanishin 1981: Morbey and Morris 1983; gnd Valentifn 1983) has shown that these galaxies possess extensive diffuse halos. DeVaucouleurs (1948) and King (1966) laws can be successfully fit to the inner regions of cDs, but the halos tend to be much brighter than the predictions of these models. The luminosity of the halos of CDs correlates strongly with total cluster luminosity, the correlation being stronger for cDs in rich clusters \therefore than for those in poor clusters. \therefore This is interpreted as evidence that the cluster environment has had some effect on $C D$ formation: especialiy the halo.

Studies of colour gradients in cDs. (Gallagher, Faber, and Burstein 1980; and Valentijn 1983) show that cDs have steeper colour gradients than do normal ellipticals (Strom. and Strom $1978 \mathrm{Ba}, \quad b, c$). In cDs the changes in ($\mathrm{B}-\mathrm{V}$) from
the nucleus to 50 kpc from the centre range from 0.1 to 0.6 mag, whereas in normal ellipticals it is usually less than 0.1 mag. . These gradients need more detailed study so that reliable comparistons can be made. with the predictions of "cD galaxy formation hypotheses:

Normal galaxies are belleved to form by cantraction of a protagalactic mass in either a quasi-static. or free-fall mode. These modes apply to masses less than $10^{12} M_{\odot}$. Therefore, if cDs are indeed of the order of $10^{13} \mathrm{Mo}$ then these formation mechanisma are not necessarily appliciable (Rees 1985). This would present difficulties for theories which postulate that $c D s$ are the extension of the bright end of the galaxy luminosity function. Three alternative formation mechanisms have been proposed and are discussed. briefly below.

The cannibalism (or merger) model (ostriker and Tremaine 1975; Ostriker and Hausman 1977 and Hausman and Ostriker 1978) proposes that dynamical friction between galaxies causes them to lose kinetic energy and fall. to the centre of the ciuster potential well. The galaxies merge. there and are eventually joined by other cluster members. As the central galaxy grows by accreting its smaller neighbours, it develops an extended diffuse hala and takes on the appearance of $a \operatorname{cD}$. It is predicted that the merger of galaxies will result in a homogenous mixture of stars

With little or no radial colour changes.

The tidal debris model (Richstone 1975; 1976) proposes that collisions betwoen galaxies result in the removal of material from their halos... This material falls to the centre of the cluster and forms a diffuge halo around an existing, central gapaxy, Since the infalifng tiaterial is bluer than the exfisting central galaxy, the resulting. cD^{6} will have a radial colour gradient.

The cooling intracluster medium (ICM) model (Fabian and Nulsen : 1977; Fabian, Nulsen, and Cantzares 1982: Cowie and Binney 1977; and Sarazin and 0 Connell 1983) suggests that the observed X-ray emission frow the central regions of clusters (Jones and Forman 1984; and stewart et al. 1984) in excess of that expected from models of a hot $10^{8} \mathrm{~K}$ ICM is due to the presence of cooling gas in these regions. The pressure of the surrounding hot gas drives the cooler gas Inward, resulting in a large-scale mass inflow... The X-ray data suggest mass inflow rates as great as $400 \mathrm{M}_{\circ} \mathrm{Yr}^{-1}$, which over 10^{10} yr could result in the accumulation of $4 \times 10^{1.2} M_{\odot}$ - equivalent to a galaxy (Stewart el al $\because 1984$). It is proposed that the gas cools sufficientily that fragmentation occurs, resulting in the optical filaments reported by Fabian et al. (1981) and Heckman (1981). Further cooling and fragmentation eventually allows stars to form. The conditions in the filaments are such that the
upper mass cutoff of the initial mass function may be as low as 1 Moresulting in a population of faint red stars (Sarazin and 0 Connell 1983) This model predfcts that the halo should be coughly 0 , 2 mag: bluex in ($U-V$) than the inner regions.

CD galaxies ate lintrinsicaily very luminous and as such are usefui as standard candies in cosmological tests. According to most theories of their origin, they are also useful as probes of dynamical evolution within clusters of galaries. However thetr usefulness $1 s$ reduced by our Limitet understanding of how evolution affects their observable parameters. Studies of the distribution of light in cDs especially 1 n more than one bandpass, help to determine how cDs evolve. The primary aim of this study was to obtain a better understanding of the radral surface brightness and colour distributions of the $G D$ galaxies in Abell clusters 2199 and 1413 (hereinafter A2199, Al413), It was Roped thit these afstributions, especially the colour data, could be used to test the models discussed above. This thesis Involved 1$)^{\prime}$ the development of a systematic procedure for processing and reducing CCD Images, and 2) the generation of normal zed surface brightness and (B-F) colour profiles for the cD galaxy NGC 6166 in A2199. It should be stressed that the reduction procedure was developed for surface photometry oniy - not stellar photonetry. Problens were encountered in dealing with fluctuations the the thy
background Belays as a result of these problems did not allow the completion of processing of the Al413 images or the callibration field images.

Chapter 2 describes the equypment used. the programme galaxies, and the observing pocedure, and reviews CCDs, their operation and the types of images they generate. Chapter 3 is a discussion of the specific procedure developed here for COl 1 mage processing. Chapter 4 contains a description of the mefthod of generating surface brightness profiles, and a comparison of the results with previous work and theoretical predictions. Chapter 5 summarizes the results and the appendix contains a journal of observations.

CHAPTER 2

DATA AQUISTTHON

2.1 Equipment

The observations described here were obtained on $3 / 4$ and $4 / 5$ May 1984 by Dr. G.-. Welch using an RCA CCD c̣amera at the prime focus of the Canada-France-Hawaif (CFH) telescope. The 3.58 m (usable diameter) primary mirror has a focal length of 13.53 m . . The prime/coude upper end was used with the wide field corrector giving an flratio of 4.20 . The scale for this confiquration is 13.89 arcsec/mm (Racine and Lellevre 1982):

The detector used was an RCA SID536d\& chatge-coupled device (CCD) camera. The CCD 15 a thinned backside illuminated wochip with an imaging area of $512 \times 320(=163,840)$ picture elements $(=$ pixels $)$. The pixels are $30 \mu \mathrm{~m}$ square and are on $30 \mu \mathrm{~m}$ centres. The scale given above corresponds. to 0.417 arcsec/pixel giving sky coverage of roughly 3.56×2.22. The detector's sensitivity as a function of wavelength is given in figure 2.1.

The filters used were Mould's B and R with effective wavelengths and FWHM respectively of 4420 . \AA, and $1129 \AA$ in B , and 6485 A , and 1267 A in R (Ehristian 1984). The filter transmission curves are given in figures 2.2 and 2.3.

Figure 2.1. The response curve for the RCA SID53612 CCD (Christian 1984).

Figure 2.2. The transmission curye for the B filter (Christian 1984):

Figure 2.3 The transmissior curve/for the R filter (Christian 1984).

2.2 Programme

The programme objects consist of NGC 6166. In A2199 and the anonymous $C D$ in A1413. These galaxies are well established as being cDs on the basis of existing surface photometry (Thuan and Romanishin 1981, figure 7). Fheir surface brightness proffles display large departures from deVaucouleurs laws fit to their inner regions, in the sense that for a given radial digtance the galaxy is actually much brighter than predicted by the fit. These departures oceur close to the centres of these galaxies, which makes them: easier to detect and study. Both galaxies are known to have multiple nucie1: NGC 6166 has 4 , and the Al413 CD has at least 2. The presence of multiple nuclei may Indicate that mergers have occurred recently. Characteristics such as these make these galaxies excelient examples of the $c D$ phenomenon and prime candidates for study.

Existing photometry wll provide a valuable check on our reductions NGC 6166 and the cD in A1413 have been studied in detail by Oemler (1976): NGC 6166 has also been studied :by. Ninkowski (1961): Gallagher et.al. (1980), and Murphy et.al. (1983): The surface brightness profiles of Oemler. (1976) (as presented in Thuan and Romanishin 1981) and the colour profiles of Gallagher et al. (1980) and Valentifn (1983) will be used for comparison with the results of this study.

2.3 Introduction to CCDs

The following is a simplified description of CCDs, based on RCA's design, A CCD consists of a layer of n-type silicón (substrate) in which thin strips of p-type material known as channel stops are embedded. . The substrate is covered with an insulating layew of oxide. Electrodes, in the form of thin strips oriented perpendicular to the channel stops, are deposited on the oxide layer. Potential differences are applied to the electrodes to form potential wells in the silicon substrate. A picture element (hereinafter pixel) is formed by two channel stops and a set of three electrodes in which the central electrode is at a higher positive potential relative to the two outer electrodes, thus creating a potential well under the central electrode. The channel stops form 320 rows and the electrodes form 512 pixels per row, therefore the $C C D$ contains $512 \times 320=163.840$ pixels (see figure 2.4).

Electcons in the valence band are raised to the conduction band by the absorption of energy from photons incident on the silicon substrate. In the conduction band the efectrons are attracted to the potential well under the centrale exectrode of each pirel. During integration the potientials are fixed and electrons accumulate in the potential wells in direct proportion to the number of photons striking the silicon in their vicinity. Therefore,
each pixel contains information or the intensity of the source at its looation This information is collected by the process of reading-out the chip, which involves increasing the potential of the bounding. electrode closest to the output register, and decreasing the potential of the central electrode. The potential well and the electrons it contains are now underneath the bounding electrode: When these changes in potential occur three times the potential wells and electrons move the length of one pixel, and the first column of 320 pixels moves into the output shift register. The output shift register is a column of pixels like any other, but it does not form part of the image area and is onily used in the read-out process. It is located to the left of the image area on a displayed image (see figure 2.4). Before the next column is shifted, each pixel of the output shift registex ifs transfered to an on-board pre-amplifler, by the same method as outlined above... The electrons stored in each potential well produce an analog signal; which is converted to a digital number by external electronics. This information; in analog-to-digital units; hereinafter ADU, can be manipulated and stored bỳ a computer. When all 320 pixels have been read, the next column of the image is shifted into the output shift register and the process is repeated. This continues for 512 colums and results in a set of 163,840 numbers which represent the image.

Figure 2.4. . A schematic diagram of the RCA CCD showing the horizontal and vertical directions as used in the text: Note that in RCA's documentation these directions are interohanged. The horizontal direction corresponds to the direction of electron motion in the image area. The vertical diřection corresponds to the direction of electron motion in the output shift register.

The names given to the various types of frames or 1mages are: blas frames, park frames, dome flat-field frames, sky images, and object images. A bias frame is obtained by reading-out, the chip a few times) and then immediately reading it out again without ariy exposure to light, and with as little time elapsed since the end of the last cleaning as possible. This signal approximately represents the offset introduced by the electronics during read-out. The bias level actually consists of a fixed areal pattern, represented by the bias frame, added to a variable (from frame-to-frame) offset. This variable offset is管 represented by the mean of an overclocked area which will be described below. All other data frames must have a bias level subtracted (pixel-by-pixel) from them.

A dark frame is an integration (of 900 seconds in this case). without exposure to light. The signal is due to the accumulation of thermal charge in the potential wells. No matter how cold the chip is maintained (near $-110^{\circ} \mathrm{C}$ for the present observations) a few electrons will have sufficient energy to occupy the silicon conduction band. These electrons are present whether or not the chip is exposed to light.. The contribution of these electrons to the total signal must be removed from other frames. This is accomplished by subtracting (pixel-by-pixel) a dark frame scaled to the exposure length of the frame being treated. The scaling is required because the dark signal is a
function of time. This procedure assumes that the temperature of the chip remains sufficiently congtant $\left(\pm 1^{\circ} \mathrm{C}\right)$ throughout the observing run.

A dome flat-field frame is obtained by a short integration ($60-90$ seconds) of a smooth flat white painted surface on the interior of the dome which is illuminated by a high intensity lamp. It is assumed that the true image is areally uniform (flat) because the source is far out of focus. Therefore, within random ercor, each pixel receives the same number of photons. If the CCD were perfect, each pixel would outpuit the same signal (within the random errorl. The dome flat-field ig a measure of how the actual sensitivity of the chip varies from pixel to pixel. The method of using dome flat-field frames to partially remove sensitivity variations wil be discusged in section 3.5 .

The sky images are obtalned by exposing the CCD to a relatively empty region of $s \mathrm{ky}$. The exposure times are the same as those of the object images in the corresponding filter. In this study the sky fields are between 5^{\prime} and 30° north or south of the object image fields. Inevitably these |empty regions have numerous faint stars and galaxies which must be removed to make the image useful.

The purpose of the sky images is two-fold; First; the dome flat-field frames do not remove all the effects of pixel-to-pixel sensitivity variation across the chip. This sensitivity variation is a function of the spectral energy distribution of the source. The high interisity lamp and the sky. do not have the same spectral energy distributions, therefore the response of the CCD to the two sources is not the same, and fiat-fieiding with the dome images will not completely remove the effects of sensitivity variation. The residual sensitivity variation is removed by a second, flat-fielding operation using a suitably smothed mean of the sky images.

Second, these images are also used to determine the sky background. level appropriate to object images. : An accurate determination is required because the halo brightness level is only. a small fraction of the sky level.

Object images are exposures of the objectis to be studied and of calibration fields. Integration times. for the galaxies are 1200 seconds in B and 900 seconds in R. Each imaging sequence of the cDs consists of twa images placed "end-to-end" (with $1 / 4$ overlap of the images along their long dimension) to cover the galaxy in the radxal direction. The calibration fielas, containing sequences. of standard stars, are.those in the globular clusters M92 and NGC 4147. (Christian et al. : 1985). Exposures of these
flelds range from 60 tom 20 seconds. Thege images wilp pe yised to determine the extinction and weransformation coefficients.

Common to all images is an overclocked area. . This areas 19 obtained by continuing the chip read-out after the 512 columns containing the actual image data have been read and stored. On the CFHI CCD, the overclocked area consists of 13 columns of data. The process of obtainipg the overclocked area effectively cleans out any 'leftover' electrons which might have spilled out of the potential wells during the readout. The gignal in the overciocked area typlcally shows a sharp decline over the first 4 colums to a relatively constant level over the last 9 columns. These last 9 columns are used to fix the bias offset for oach image by determining the average ADU/pixel value in the region between columns 517 and 525 and yows 2 and 319 .

Abstract

frames and the second part of a cD imaging sequence This followed the same format as the firstimart except that the Fleld of view was offset whthin the galaxy as described above The order of fliter usage was not necesiarily as specifled above. When both galaxies had been imaged a few more calibration field mages and bias framesere taken. At the end of the night the CCD camera was set to Sutomatically obtain dack fames by performing repeated 900 second integrations with the shutter closed fotherthark frames Here atso obtained during the observing spssion. A detailed 11 of the observations $1 s$ given tn the tppendix.

CHAPTER 3

IMAGE PROÇESSING AND DATA REDUCTION

The images generated by a CCD require a considerable amount of processing to render them useful for quantitative work. For example; surface photometry of diffuse objects may require that star images in the field be renoved The effect of pixel-to-pixel sensitivity variations in the CCD must be removed in order to accurately measure the light distribution in extended objects.

A computer system is used to perform all handling and manipulation of the image data. In this case the sistem is based on a DEC PDP $11 / 23$ running under the RT-11SJ operating system. A Kennedy Model 9800 tape drive is uised for archival storage of datar \because A DSD B80 31.1 Megabyte Winchester hard disk. used for peripheral storage during processing: Display of images is accomplished with a Matrox 8-bit gray scale image display system and a TV monitor:

The image processing procedure consists of removing unwanted objects and blemishes (cleaning), removing the bias level introduced by the electronics iblias frame subtraction), cemoving the thersal background (dark frame subtraction forcecting for areal sensitivity variation (dome and sky flat-ifeiding) r and removing the sky
background. The images form a hierarchy in the sense that processing an image involves the use of all image types Which preceed it in the hierarchy. The following is a list of the image types ordered according to the number of operations involved in processing thems bias frames, dark frames, dome flat-fields, sky. images, and object images. Bias frames require cleaning and subtraction of the mean of the overclocked area, Dark frames requitre cleaning, overclock-subtraction; and subţraction of the bias frame. Dome flat-field frames require the same processing as the dark frames, as well as subtraction of a dark frame. Sky images require the same processing as the dome flat-fields, as well as flat-fielding using the dqme flat-fields. Object images require the same processing as sky images, as well as sky flat-fielding and subtraction. These operations require the use of large number of programmes which were written either Individualify or in groups by G. collins. D. M: K. Welch, G. A. Nelch, and the author The reduction procedure took about a year to develop and represents, the majority of the time spent on this thesis. For this reason, and because the procedure ist not documented elsewhere, a fairly thorough description will be given. Section 3:1 gives a brief sumary of the method of processing an obfect. fmage (see also Figure 3.1). Section 3.2 describes the general methods of cleaning, and sections 3.3 through 3.7:
describe the treatment of the various types of images. Table 3.1 gives descriptions of the functions of the various programmes. Listings of these programmes are available from Dr: G. A. Welch.

-.3.1 Summary of Image Processing:

The following is a summary of the method of processing an object image using the sof tware existing at the time of writing:
(1) Blemishes and objects larger than the filter to be used should be removed using programme FUZH and any hot rows or columns can be removed using programme CLEAN.
(2) Smaller blemishes can be removed using programme MEDFR with a filter size of 21 pixels, a digcriminant of 20 ADU, and unit weights.
(3.) The average of the overclocked area can be calculated using programme RECTH and subtracted from each pixel of the object image using programme ARITIR. This procedure removes the $D C$ of fset introduced by the electronics.
(4) A bias frame (or ideally a mean of many: blas frames collected over the observing runl should be subtracted using programme SUBR. This will remove the fixed pattern of nofse introduced by the electronics during read-out.
(5) An appropriately scaled dark frame (or mean dark frame) should be subtracted using programme SUBR. This will remove the thermal background.
(6) First order sensitivity variations can be removed by flat-fielding with an average dome flat-field uging programme FLATR.
(7) Residual sensitivity variations can be removed by flat-fielding with a cleaned mean sky (possibly smoothed by averaging in blocks using programme BLKAVG)

Figure 3.1. A flowchart of the various stages of image processing, including the types of images each stage applies to, and the programes used at each stage.

3.2 Image Cleaning

All CCD fmages suffer from cosmetic flaws. These may be caused by rows or columns of pixels or single pixels which do not behave 'normally' in that they do not respond to. photions in a manner similar to the majority of pixels. Some areas of the chip may be completely "dead' rendering one or more pixels insensitive to light. In contrast, some areas 'bloom', that is they produce a signal larger than the background with or without exposure to light. In its milder forms this latter problem results ini a bright spot (similar In appearance to a stellar image) often called an LED (light emitting diode). In more severe cases it can result in a hot row created by smearing the excess electrons along the now during readout.

Another problem results from cosmic ray events. These produce hot spots or streaks (depending on the angle of incidence) comprising as many as $8-10$ pixels. The cosmic rays responsible are probably muons and electrons with energies in the 10 to 10^{3} MeV range, which deposit some of their energy in the silicon substrate by exciting and Ionizing silicon atoms (Leach and Gursky 1979). Cosmic rays are incident at a rate of roughly $0.08 \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$. which for a chip $1.47456 \mathrm{~cm}^{2}$ results in 420 events hr^{-1} : The majority of events cause minor blemishes which are lost in the noise. Typically 8-10 cosmic ray.blemishes were removed on each
image. This type of blemish is found on all images except the bias frames.

Astronomical objects that are not part of the programme need to be removed. These occur only on sky and object images: and on average in roughly equal numbers.

A number of programmes were developed to remove these unwanted objects and blemishes. The most stralghtforward of these was programme CLEAN." This is an interactive programme, which fis used to replace a specific area of the image, usually part of a few rows or colums, with either a specified value or a value interpolated in one dimension from the pixels bordering. the area. This programme was usually used to remove hot rows in overclocked areas.

Programme CLEANH was developed for the purpose of automatically removing single pixels and small groups of pixels (up to 4-6 pixels) which differ from the local background by more than some discriminant. The discriminant can be a multiple of the standard deviation of the ADU/pixel value in some area of the image or its value can be specifted by the user. "The me "od 1 s "to compare a plxel with its immediately adjacent mighbours for the absolute value of the pixel differs from the local background by more than the discriminant then it is replaced by the local background value. The local background value is ciculculated
from the previous background and a weighted mean of the surrounding pixels from which the central pixel differed by more than the discriminant. A rapid increase in ADU/pixel values was found in the upper- and lower-most. rows of all' images. This posed a problem because. CLEANH treated these rows as hot and attempted to clean them. The problem was solved by having the programme ignore the upper and lower 10 rows of the image. The first 16 columns presented a similar problem and these were algo ignored. The programme can also ignore specified rectangular areas of the image. This option was developed for use on the dark frames.

CLEANH cannot remove blemishes larger than 4-6'pixels square because in these cases the pixels used for comparison are not representative of the local background. Although CLEAN can remove larger blemishes it is restricted to an interpolation in one dimension. The highly interactive programme FUZH was developed to overcome these limitations. The user specifies the parameters of an ellipse to be drawn around the object to be removed. A squaire box is then drawn around the ellpase A least-squares fit. of a two-dimensional linear function is made to the region between the ellipse and the box, and is used to interpolate over the area contained within the ellipse. The user can graphicaliy . check whether the feature has been satisfactorily removed, and if desired store.the chianges in
a new file. The interpolations appear as obvious modifications on the TV monitor but it. is the lack of random noise in the interpoliations which gives the cleaned areas their strikingly smooth appearance.

FUZH and CLEANH tend to be rather time-consuming lup to 4 hours per image on our system), and CLEANH's method of determining whether a pixel should be cleaned is more complicated than necessary. To speed up the cleaning process we developed programme MEDFR which uses the technique of the weighted median filter (Brownrigg 1984). This programme eventually replaced CLEANH and to a large extent FUZH because it is capable of removing blemishes in a large rañge of sizes. It is also fully automatic and therefore requires less processing. time (~30 minutes). The r.method consists of examining a set of 9 pixels at the corners and midpoints of a square, the size of which is an odd integer specified by the user. This. set of 9 pixels forms the filter: The programme finds the median value of the 9 pixels and replaces the central pixel with the median if it differs from the median by more than a specifled discriminant. The 9 pixels can be weighted when determining the median. This programme can completely remove any blemish smaller than the filter; however, a border around the image of width equal to half the filter size will not be
cleaned. The detailed cleaning procedure for each type of imaqe will be discussed in the appropriate section below.

3.3 Bias Frames

As mentioned previously, bias frames are essentially zero second integrations representing the offset level introduced by the electronics during the read-out process. The first step in the treatment of the bias frames was to use programme RECTH (which performs various statistical computations within a specifled rectangular areal to determine the typical ADU value of these images, the numbers and types of hot spots, and the size of any large scale gradients. A vertical cut through a typical blas frame showed a rapid drop over the first 100 rows (from 476-456 ADU) and a decrease of 2 ADU from row 101 to 320. This vertical gradient is believed. to be due to the synchronization of the read-out of the output shift register with the ambient 60 Hz frequency. There was no noticable overall horizontal gradient. The overclocked area showed none of the hot rows or gradients found in other inages:

A number of bias frames were examined to obtain some idea of the typical signal to be found in these images. Typical values range from 453 to 457 ADU/pixel.. The frames were examined using the byte selection option of programme DISH (used to display images on a- TV monftor) to locate extremely hot pixels (± 32000 ADU).

Programme CLEANH was used to remove these hot pirels using a discriminant of 10 times the standard deviation determined in the 51×51 pixel box defined by columns 200 and 250, and rows . 150 and 200. The standard deviation typically found was between ± 3.1 and $\pm 3,4:$ ADU; therefore, the discriminant was between 31 and 34 ADU. Typically 1 or 2 extremely hot pixels were found per image.

A mean value for the overclocked areas. was determined using programme RECTH with a rectangle defined by columns 513 and 525, and rows 2 and 319 . The upper- and lower-most single rows were excluded because they' wer'e abnormally high. The mean determined within this rectangle was subtiracted from each pixel of the frame . This was done separately for each bias frame using programie ARITIR. These frames. will. be referced to as overclock-subtracted frames

Once all the bias frames from both nights were overclock-subtrácted they were combined using programme AVR to produce mean blas frame (file: B001CM). The :average signal of the mean bias frame was - 0.35 ADU. This mean bias frame is assumed to represent an underlying areal structure common to all 1mages. Added to this structure is the variable offset represented by the mean of the overclocked area of each image. The offsat is variable in the sense that it 1 s uniquer for each image.

3.4 Dack Frames

The dark frames are 15 minute integrations without exposure to light and represent the thermal charge accumulated during an integration of equal lengthi The most striking aspect of these frames the the appearance of bryght spots at the same locations in all the frames. These are the LEDs referred to previously. They are caused by the diffusion of electrons from the valence band into the potential wells in the conduction band. The accumulation of electrons in these areas mimics the effect of photons incident on the areas during integration.

At the suggestion of Kormendy (1984) we did not gepove the lems in the dark frames, since they ought to be removed from other frames when the mean dark frame was subtracted. To do this we needed to tocate the bright spots common to the 29 usable dack frames. Programmes HUNIH and RIXH were written for this purpose HUNTH uses CLEANH detection code, but Instead of replacing the detected hot pixels it merely stores thelr coordinates in fale, PIXH then searches the flies created by HUNTH (one file per frame) to locate pixel coordinates whith are copmon to all frames. Only those plxels which are briqnt/an ali frames are defined as LADs. A discriminant of 15 ADU, which $1 s$ approrimately 5 times the standard deviation of the noise, was used, in HUNH. A total of 60 pixels. forming 16 groups of 1 to 30
pixels, were found to be comon to all 29 dark frames.

A rectangle was placed around each group of bright pixels and CLEANH was modified so that it would not operate Insfde the boundaries of the spectifed rectangles. CLEANH شas cun on all dark frames using ARCH1.DAT with a discriminant of 15 ADU and the upper and lower Io rows skipped. Typically 180-220 bright pixels were found per image:

[^0]mean bias- and * oferclock-subtracted odark frame (file: D001CB).

The accumulation of thermal charge is assumed to be a linear function of time, so that dark frames corresponding to diffepent integration times can be constructed from the mean darik frame simply by multiplying by the ratio of the integration times. For example, the mean dark frame for B object images which have integration times of 1200 seconds would be equal to the original mean dack frame (D001CB) muitiplied by (1200/900).

3.5 Dome Flat-Field Frames

The dome flat-fleld frames are exposures of 60 seconds (in R) or 90 seconds (in B). of a white screen attached to the inside of the dome. The only remarkable thing about them is their high signal typicaliy of the order of 10^{4} ADU/pixel.

The dome flat-fields were processed with CLEANH using a discriminant of 1500 ADU $(=50 \sigma$ to 300σ) and with the upper and lower 10 rows skipped. Examination of the overclocked area showed visual evidence of hot rows. .In most images these were found at rows $130,237,238$, and $239 \therefore$ The mean and standard deviation in the standard rectangle were calculated after each row (or set of rows) was removed by interpolating in the vertical direction uging CLEAN. When the mean changed by less than $0: 10$. ADU/pixel, no further modifications were made. The mean of the overclocked area was subtracted as usual from the corresponding frame:

The overclock-subtracted dome flat-fields (12 per handpass) were averaged in each bandpass. The mean bias frame was subtracted from each of the mean overclock-subtracted dome flat-fields. The mean dark frame was scaled down by the appropriate factors, $60 / 900=0.06667$ for R. and $901900=0.1000$ for B, and the scaled mean dark frames were subtracted from the \because blas- and-overclock-subtracted dome flat-fields producing a mean bias-
and- dark-corcected dome flat-field frames for each handpass.

3.6 Sky Images

The sky images are integrations 1900 seconds in R and 1200. seconds in B) of 'blank areas of sky. These images are of course not truly vacant, but contain many faint stars and galaxies: The R images display interference fringes. since the chip acts as a thin film for wavelengths in the R bandpass: The fringes are belleved to be due to a number of strong night sky emission lines in this region. in particular, neutial oxygen at $6300 \AA$ and $6364 \AA$ isee figure 3.11: These electromagnetic waves interfere constructively and destructively, according to the thickness of the chip at a given point, producing an interference pattern by the same mechanism which produc̣es Newton's rings.; By comparing different sky images, it could be seen qualitatively that, the shape of the interference fringe pattern was not variable, although the intengity did vary slightly. The amplitude of the fringes above the local background is estimated to be less. than 1\%: No attempt was made to remove the fringes.

Two of the sky images were checked for large scale gradients by sampling 40×40 pixel squares at various locations. Over the whole image; a less than 2% change in the backgrouid was found horizontally, and the shape was consistent between images with a peak in the middle and a drop to both sides. A top to botton decrease of less than

Figure 3.2. The spectrum of the night sky at Mauna Rea (Racine and Lelievre 1982).

4\% was found. These gradients are probably due to large scale senisitivity variations, which are removed by the flat-fielding process described below.

At this stage some method of removing large unwanted objects (ie., stars and galaxies) was required. FUZH was developed for this purpose. The initial plan was to use FUZH to remove as many of the larger objects as possible and then use CLEANH to remove the smaller blemishes. The number of blemishes removed using FUZH sometimes ran as high as 60 , requiring up to 4 hours of work. Fortunately, only 6 (of 13) sky images were cleaned this way before prograqme MEDFR was developed. MEDFR is capable of removing blemishes as large as the filter, thereby eliminating many of the smailer blemishes which previously had to be removed using FUZH. The typical filter size used was 21×21 pixels. This size was choosen so as to minimize the size of the unfiltered border, and to avoid the distortion of the halo gradient which would have resulted from the use of a larger filter. A11 sky images were recleaned, using FUZH to remove blemishes larger than 21 pixels square ctypically 10 blemithes and 0.5 to 1 hour of work per imagel. followed by MEDFR to remove the smaller blemishes.

The overclocked areas showed no hot rows, but the ramp over the first 4 columing was present. The standard rectangle was used to determine the mean of the overclocked
area of each imager and this. was subtracted from the corresponding image. An average. overclock-subtracted sky image was calculated for each bandpass (6 in R and 7 in B), and the mean bias frame was subtracted from each of these.

Recall that when cleaning the dark frames (uling CLEANH and FUZH) the LEDs were excluded from treatment: MEDFR is not capable of excluding specified portions of an image: It therefore removes the LEDs. If unfiltered dark frames (with LEDs) were subtracted from filtered images " (without LEDs), the result would be negative numbers at the location of the LEDs. This problem was solved by filtering the mean dark frame using the same filter size, discriminant; and weights as were used in filtering the sky images. The filtered mean dark frame, with appropriate scaling, was then subtracted from the bias- and- overclock-subtracted. mean sky flat-fields.

Programme FLATR was used to correct the mean dark- and-bias-corrected sky images for areal non-uniformity of response (flat-fielded) using the mean dome flat-fields. The flat-ffelding process consists of dividing the ADU count of each pixel of the image to be corrected by the ADU count of the corresporiding pixel of a normalized flat-field frame. The flat-field is normalized by dividing each of its pixels by the average ADU count of the flat-field frame (Leach et.al. 1980). This may be expressed as

$$
\begin{equation*}
\mathbf{I}_{i}^{\prime}=\mathbf{I}_{i} /\left\{\mathbf{F}_{i} /\langle\mathbf{F}\rangle\right\}^{\prime} \tag{3.1}
\end{equation*}
$$

where, \dot{I}_{i}^{\prime} is the ith pixel of the corrected inage,
I_{i} is the corresponding pixel in the uncorrected 1mage.

Fi is the corresponding pixel in the flat-field framer \therefore 者
and $\langle F\rangle=(1 / N) \sum_{i}^{N} F_{i}$ is the average of the flat-field frame.

That this is in fact a correction for non-uniformity of response can be seen as follows. If we assume the chip images a uniform source, then the normalized flat-field gives for each pixel the factor by which it differs from the mean response of all pixels on the chip. If, for example. some pirel's normalized value is less than 1 ; then it has not responded as strongly as the 'mean pixel'. If the same pixel responds similarly during an image exposure then its ADU count will be lower than that of the mean pixel'. The correct ADU count is obtained by dividing by the normalized pixel, thereby increasing its ADU count so that it appears to have the same response as the 'mean pixel'.

The process of flat-fielding with the dome flat-fields does nót completely remove all sensitivity variations. because the chip responds differentiy to the different spectral energy distributions of the high intensity lamp and. the sky: Follawing Kormendy (1984): we used modified mean
sky images to perform a second flat-fielding operation. The process of modifying the mean sky images involves dividing the image into 16×15 pixel rectangles and replacing the individual pixels with their average value over the rectangle (programme BLKAVG). This procedure has the disadvantage of smoothling out any real smali-scale variations, but increages the overall signal-to-noise ratio (S/N) in the resulting image. This was degirable because of the low exposure level of typical sky images. The individual sky images. were then flaf-flelded with the appropriate smoothed mean gky flat-field, reducing, the large scale variation to less than 1\%.

The individual sky images were intended to be used to represent the sky background in the object images. However. direct subtraction of a treated individual sky image would significantly decrease the S / N of the resuiting net object image: To avoid this we decided to model the sky with a two-dimensional second order polynomial (using programme POLYFT). It was assumed that the varfation of the sky brightness oyer the chip was not sufficientiy rapid to warrant a higher order polynomial.

3.7 Object Images

The object images in this study are 900^{S} and 1200^{S} integrations (in R and B respectively) of the galaxies being studied, and 60° and 120° integrations of the photometric calibration fields. These images suffer the same problems as the sky images (ie. interference fringes. in R and a liberal sprinkling of stars and galaxies over the field) and were cleaned in basically the same manner. FUZH was used to remove the larger objects; and in some cases it was necessary to interpolate (vertically) over the hot rows 237 to 239. The overclocked area was cleaned and the mean ADU value within the standard rectangle determined in the usual mianner.

These images were also filtered, but the filter severely distorted the bright cores of the programme galaxies. The distortion of the inner regions. (less than 20 kpc from the centre in the case of NGC 6166) was obvious from visual inspection. In the case of NGC 6166, filtering resulted in the coalescence of the multiple nuclei and in the appearance of jet-like' structures radiating from the centre. A check of the average ADU/pixel value in a 10×10 plxel box showed that the difference between the filtered and unfiltered images was about 0.27\% at 21. Kpc from the centre of NGC 6166. To convince ourselves that the filtering had not affected the halo gradient, we took
horizontal and vertical profiles through an image created by subtracting: the filtered and unfiltered (but otherwise fully processed) verstons of the same image. The profiles showed random scatter about zero. indicating that the filtering process had not distorted the large scale gradients outside the core.

The individual images were biag- and- dark-corrected, mean dome flat-fielded, and mean sky flat-fielded as usual. The final step involved the removal of the $s k y$ background. The first attempt at this involved subtracting the polynomial fit to the sky image which was closest both spatially and temporaliy to the object image. This was initlally attempted, with apparent success, on R and B images of NGC. 6166: (QbJect:A332Y4; sky:C333Y4, object:A336Y4; sky:C335Y4). However, when the procedure was applied to a B image of the cD in A1413 (object.A322Y4; gky : C321Y4) it Fesulted in negative numbers over most of the image. Appacently the sky background was significantly variable $(\sim 5$ to 6% of the sky) during and/or between these exposures. When this procedure was applied to a second R image of NGC 6166 (object:A130Y4 sky:C131Y4), the same problem occurred \because The initial success with the other NGC. 6166 , images appears to have been fortuitous the possibility that the sky background varled significantly during those integrations must be consfdered: Reduction of
the calibration field images will provide a clear measure of the photometric quality of the sky.

Preliminacy investigations of the type to be described In section 4.1 indicated that the sky level may have been reached on the images of the centre qf NGC 6166. This pcovided another way. of estimating the sky background. We calculated the average ADU count in a rectangle placed in the upper right corner $(435,500,235,310=5016$ pixels) of the treated (but not sky-subtracted) object image and in the same place on the polynomial representing the corresponding sky 1mage, This area was choosen for the following reasons, The orientation of the galaxy on the images was such that the upper-right corner was the area farthest from the centre of the galaxy. Also, there was no apparent gradient due to the galaxy's halo in this area. The 'shape' of the sky, as represented by the polynomial, was assumed to remain constant and the polynomial was scaled by multiplying by the ratio of the two sky values. The scaling factors weres for C131Y多 $0.9438, \mathrm{C} 333 \mathrm{Y} 4: 1,1010, \mathrm{C} 3354 ; 1.058 \mathrm{y}$. The scaledpolynonials were subtracted from the corresponding object images.

TABLE 3.1. Image Processing Programmess Names, Authors, and Functions

TABLE 3.1. (Continued)

F (4)	Delineates isophotes, allows ellipses to be fit to them by eye, and determines the average $A D U /$ pixel value under the ellipses.
ELAVG1 (4)	Calculates the average ADU/pixel value under a single ellipse.
ELADG2 (4)	Calculates the average ADU/pfxel value between two ellipses if both ellipses He completely in the image area..
ELAVG3 (4)	Calculates the average ADU/pixel value between two ellipses if one or both ellipses intersect the edge of the image

Author notation: $1=$ G. Collins
$2=$ G. A. Welch
$3=$ D. M.: K. Welch
$4=\mathrm{J}$. W. B. Allwright
' m ' beside number means thé author modified the programme only.

CHAPIER 4

RESULTS AND DISCUSSION

Abstract

In section 4.1 the methods used. In generating the surface brightness profiles by fitting ellipses to the approximate isophotes wili be discussed, along with, the method of normalizing the profiles. Section 4,2 contains a discussion and comparison of these profiles with previous work. Section 4.3 outlines plans for improving the reduction procedure.

4.1 Surface Brightness and Colour Profiles

Generating a surface brightness profile from the processed object images invalves three steps: 1) the identification of pixels with ADU values within a given range (i.e., isophote generation), 2) fitting eilipses to isophotes by visual inspection, and 3 determining the mean surface birightness at the radial distance from the centre of the galaxy represented by the ellipse. This method assumes that elliptical fsophotes are appropriate for cD galaxies on the basts that they are used satisfactorily in modelifing the light distribution of elliptical galaxies. Note that this process uses image coordinates in units of pixels; the conversion to physical coordinates in made after the profile
has been generated.

A more objective method of fitting elifises using numerical methods has been developed by Young et al. (1979) and modified by Kent (1983): This method will be applied to our data in the future.

The initial attempts, at finding isophotes; or regions of similar brightness, used programme conH. This programme essentially delineates an isophote by locating pixels which: have an ADU count larger than a specified level; and which have at least one neighbour with a lower ADU: count. This resulted in thin isophotes with fairly sharp edges in regions of rapidly changing ADU, but in broad isophotes with poorly defined edges in areas where the gradient was small.

The problem of ill-defined isophotes was partially solyed by creating programe ISOPHT. This programe is a modification of coNH which allows the user to specify the range of $A D U$ values used in defining the contour. This allows greater flexibility in :generating isophotes: For example; when a particular ADU range generates too 'fuzzy' an isophote, a narrower range can be specified to sharpen it.
th.

* The next step involved fitting ellipses to the isophotes using the ellipse drawing routines (ELLS2I; ELL2, and ELSAVI). These programmes allow the parameters of an ellipse to be adfusted while the ellipse is visualiy fit to the isophote generated by ISOPHT.

At this point SBPROF was written for the purpose of combining the tasks described above and thereby reducing processing time SBPROF firist checks each pirel to determine if its ADU count lies within the range specified. If so, its location is stored in the output file which is then displayed on a TV monitor. An ellipse is then fit by eye to the resulting isophote. The ADU values of pimels in the object image corresponding to thoge forming the ellipse are then combined to derive a mean ADU/pixel value along the ellipse. The programme can also calculate the mean : ADU/pixel value withfin an annulus .. defined by two non-intersecting ellipses (ELAVG1, ETAVG2, :and ELAVG3). This option; which saçrifices radial resolution, is used to increase the S / N in regions of low signal.

SBPROF was used to derive surface brightness profiles from .three images of NGC 6166, one in B (A332Y4) and two in R (A336Y4, A130Y4). The R image A336Y4 was analysed first. The isophote generating . option was used to find pixels in the range 499 - 501 ADU. This was the largest ADU value used because at larger values the distortion due to
filtering was greater than 1\%. A sirigle ellipse was fit to. the resulting isophote, and the average under the ellipse determined. This process continued for isophotes separated by 50 ADU out to the 199-201.1sophote, and at $20^{\circ} \mathrm{ADU}$ intervals thereafter out to the $99-101$ ADU isophote. Annuli were used to generate the remainder of the profile. The coordinates of the centres of all the annuli were taken as the average of the coordinates of the previous 12 ellipses. The coordinates of the centres of the ellipses were within ± 3 pixels of their average. The elifpticity and position angle of the outermost ellipse was used for all annuli. The first six annull were each 5 pixelg wide and separated by 10 pixels. The remaining 11 annuli varied fom 8 to 20 pixels wide.

The B surface brightness was determined from image A332SS using the same set of ellipses and annuli. Before this could be done the B and R images needed to be registered so that the coordinates of the ellipses and annuli referced to the same areas of the galaxy on both images. This was done by comparing the location of the peaks in the brightness distribution of two stars comon to both images and in diagonally opposite corners of the images. : As expected this showed that the images differed only by a translation in both directions, The same technique of registration was used on the second red image?
which served as a check on the systematic. errors.

The results described so far are given in Table 4.1 . Column (1) contains: \quad for the first 12 entries; the semi-major axis in pixelp of the best-fitting ellipse, and for the remaining l^{7} entries, the semi-major axes of the inner boundary of the annulus. Column (2) is the geometric mean " of the semi-major and semi-minor axes of the best-fitting ellipse $(\sqrt{\mathrm{ab}})$ to the power 0.25 . For annuli; the axes of the ellipse midway between the inner and outer borders is used. This gives r which is used for ease of comparison with previous work and is calculated from the foliowing:

$$
\begin{equation*}
r^{1 / 4}:=\{0.417(\mathrm{R} / 2) \sqrt{1-\mathrm{e}}(187000 / 206265)\}^{1 / 4} \tag{4.1}
\end{equation*}
$$

where 0:417 arcsec/pixel is the scale of the image, R is the major axis in pixels, e is the ellipticity, and $187,000 \mathrm{kpc}$ is the distance to NGC 6166 (Thuan and . Romanishin 1981). The factor $(R / 2) \sqrt{1}-e \sqrt{a b}$ is derived from the definition of elifpticity. $(b / a)=1-e$, and the fact that $a)(R / 2)$. Columns (3) and (4) contain the instrumental surface brightness as functions of x in B and R respectively. These are calculated as follows:

$$
\begin{equation*}
\mu^{\prime}=-2.5 \log \left\{0.417^{-2} \mathrm{I}\right\}+\mathrm{c}^{\prime} \tag{4.2}
\end{equation*}
$$

where I is the surfaçe brightness in ADU/pixel in the B or R

TABLE 4.1. Instrumental b (A332Y4) and r (A336Y4, A130Y4) Surface Brightness and ($b-r$) Colour Profiles of NGC 6166:

(1)	$\left(\mathbf{r p c}^{1 / 4}\right)^{1 / 4}$ (2)	$\cdots \mu_{b}$ $($ mag $($ A332Y4) (3)	$\because \mu_{r}$ $\left(\right.$ mag ${ }^{(4)}$) $(\mathrm{A} 36 \mathrm{Y} 4)$	$\mu_{b}-\mu_{r}$ (mag/ \ddots (5)		($\mu_{b}-\mu_{r}, 1$
46	1.97199°	-7.79434	-8.59836	0.804 .02	-8.63793	0.84359 .
50	2.0131.0	-7.63443	-8:44406	0.80963	-8.4/8730	0.885287
54	2.04834	-7.50379	-8.31577	0.81198	-8. 35776	0.85397
57	2.082 .99	-7.38554	-8.19355	0.80801	-8.23686.	0.85132
64	2.14368	$\because 7.18102$	-7.98104	0.80002	-8.02677	0.84575
72.	2.20357.	-6.96942	-7.76253	0.79311	-7.82224	0.85282
86	2.29513	-6.68622	-7.46899	0.78277	-7. 53477	0.84855
88	2.30018	-6.6.7921	-7.45633	. 0.77712	-7.52571	0.84650 .
97	2.34368	-6.54917	-7.32443	0.77526	-7. 39599	0.84682
106	2.39149	-6.40416	-7.17514°	0.77098	-7. 24532	0.84126
1.20	2.45702	-6. 20007	-6.97371	0.77364	-7. 046.45	0.84638
132	2.51602	-6.03057	-6.74783	0.71726	-6.86760	0.83703
140	2.56445	-5:88983	-6.55829	0.66846	-6. 71.869	0.82886
154	2.62.712	-5.67722	-6.32594	0.64872		
170	2.68951	-5.42155	-6.09708	0.67553	-6.26588	0.84433
186	2.74964	-5.19121	-5.86675	0.67554	-6.07849	0.88728
200	2:79920	-4.93811	-5.69780	0.75969	-5.87225	0.9341 .4
215	2.84954	-4.70861	-5.49552	0.78691	-5.67924	0.971 .13
230	2.90199	-4.42392.	-5.20410.	0.77718	-5.46820	1.04428
240	2.93544	-4.26789	-5.02322	0.75533	-5.33651	1.06862
. 250	2.96489	-4.11011	-4.86590	0.75579	-5.18063	1.07052
260	2.99629	-3.93419	-4.69692	0.76273	-5.05618	1.12199
. 272	3.03218	-3.57157	-4.44409	0.87252^{\prime}	-4.86522	1.29365
286	3.06947	-3.26149	-4.16440	0.90 .291	-4.64914	1.38765
300	3.10669	-3.18216	-3.91280	0.73064	-4.58055	1.39839
315	3.14 .384	-2.41862	-3.63788	1.21926	-4.26252	1.84390
330	3.17973	-1.99699	-3.37272	1.37573	-4.19390	2.19691
345	3.21443	-1.45296.	-3.00393	1.55097.	- -3.97906	2.52610
. 360	3:25355	-0.92717	-2.51500	1.58783	-3.80894	2.88177

band as calculated by SBPROF. $(0.417)^{-2}=5.7508$ pixelsi(arcsec) ${ }^{2}$ is the areal scale of the image, and c^{\prime} is an additive constant to be determined below. Column (5) is the difference of columns (3) and (4), giving the instrumental colour (b-r). Column (6) is the instrumental surface brightness in R^{*} from the second image (Al30Y4; superscript ('c') and column'(7) is the difference of colums (3) and, (6).

Some method of normalizing our measurements was needed in order to compare our results with other work. Time did. not permit processing the calibration fields, which would otherwise have been used to transform our measurements to the, standard system. Instead, we normalized our photometry to existing photometry at one radial point of the galaxy in order to obtain the additive constant friequation (4.2).

Gallagher et al. (1980; Table 1) give the extinction and $K-$ corrected colours, $(B-V)_{0}=0.97$ and $(\dot{V}-R)_{j}=0.79$ at $R_{e q}=22$ kpc, where $R_{e q}$ is assumed to be the same as the geometric radius $(\sqrt{a b})$ Thuan and Romanishin : (1981. figure 7) find $\mu_{V}=22.40$ mag $\operatorname{arcsec}^{-2}$ at the same radial distance. Assuming that the isophotes and isochromes have the same shapes, and disregarding the possible aperture smearing effects discussed by valentifn (1983); the blue surface brightness at this diatance is approximately,

$$
\begin{equation*}
\mu_{e}=(B-v)_{0}+\mu_{V}=0.97+22.40=23.37 \mathrm{mag} / \text { 回 } \tag{4.3}
\end{equation*}
$$

By interpolation between the entries for $a=64$ and 72 pirels in column（3）of Table 4．l．$\mu_{b}=-7.11049$. The correction to be added to the entries in column（3）is the difference of μ_{B} and μ_{b} i ie．．

$$
\begin{equation*}
\mathrm{c}^{\prime}=\mu_{\mathrm{e}}-: \mu_{\mathrm{i}}=30.4 \dot{8} \mathrm{mag} / \text { 回。 } \tag{4.4}
\end{equation*}
$$

For the colour at $R_{e q}=22 \mathrm{kpc}$ we find from Gallagher et al．．

$$
\begin{equation*}
\left(\mu_{B}-\mu_{R_{1}}^{\prime}=(B-R)_{0}=(B-V)_{0}+(V-R)_{0}=1.76 \operatorname{mag} / \square\right) \tag{4.5}
\end{equation*}
$$

while according to Table 4.1 column（5），$\mu_{b}-\mu_{r}=0.79772$ ． The correction to be added to the entries in column（5）is therefore，

$$
\begin{equation*}
\mathrm{c}^{\prime \prime}=\left(\mu_{\mathrm{B}}-\mu_{\mathrm{R}}\right)_{G}-\left(\mu_{\mathrm{b}}-\mu_{\mathrm{r}} \ddot{0}^{\prime} 0.96 \quad \mathrm{mag} / \mathrm{Q}\right. \tag{4.6}
\end{equation*}
$$

The entries in column（4）are normalized by adding $c^{\prime}-c^{17}$ ． The same procedure is applied in normalizing column（6）of Table 4．1．These profiles are tabulated in Table 4.2 ． Columin（1）is the same as column（2）of Tabie 4．1，column （2）As the normalized B surface brightness as á function of $r^{1 / 4}$ ．column（3）is the same for $R_{\text {r }}$ column（4）is the normalized．（B－R）profile，column（9）is the R profile of the second red Image（A130Y4），and column（6）．is the difference of columns（3）and（5）．For $r^{1 / 4}<2.6(\mathrm{kpc})^{1 / 4}$ the difference
is $\leqslant 11 \%$ For greater galactocentric distances, the difference gets progressively larger. Column (7) is the normalized colour profile derived from the second red image,

TABLE 4.2. Normatized (A332Y4) and R (A336Y4. A130Y4) Surface Brightness and ($B-R$) Colour Prof illes of NGC 6166.

The normalized B and R surface brightness profiles are presented in figures 4.1 and $4: 2$, respectively. Included in these plots are Oemler's V-band data as given in Thuan and Romanishin : (1981 figure 7). These data, and the deVaucouleurs law fit by. Thuan and Romanishin (1981), have been normalized by adding $(B-V)_{0}=0: 97$ in B and subtracting
 our profiles seem to agree with Oemler's out to roughly $r^{1 / 4}=2.6(\mathrm{kec})^{1 / 4}$, or $r \sim 45 \cdot \mathrm{kpc}$. Farther from the centre our profiles depart cadically from Oemler's. The rapid declepe exibited by our surface brightness profiles for r 745 kpc is probably caused by our method of determining the sky background. Our assumption that the sky has been reached in the upper-right corner of the object images nas probably resulted in the subtraction of not. only sky light but. some of the galaxy's light as well: To test this we determined the semi-major axis of the first annulus to intersect the region used to scale the sky. The Intensity of the galayy at the corresponding distance, as given by Oemler's profile, was subtracted from each of Demlex's data points, The resulting' profile is given by the solid squares in figure 4.1. It follows our observed proflle quite closely: This indicates that our method of determining the sky background has ptobably produced the rapid decline in our profiles.

Figure 4.3 The differences between the various oherved surface brightness profiles and the devatucouleurs. law given fin Eigures 4.1 and 42.2 Open eircles are for R (A33644) solid croles for , (A130y4) thiangles for (A33244); ang squates are for oenter's v-band ata.

The profile from the second red \because Image (A1, 10×4) is plotted as the open circles (O) tn Figure 4:2, where it differs from the A336Y4 profile by more than 10%. As can be seen from Table 4.2 and Figure 4.2 the prof iles from the two red images, are in fairly good agreement. (ie, 0.10 mag differencel. for $r^{1 / 4}<2.6$ For $r^{1 / 4}>2.6$ the difference becomes progressively greater.

In order to more clearly show the detalled structure of the proffles for $r^{1 / 4}<3.0$ the differences between the various profiles and the devaucouleurs law are plotted in figure 4.3. On this scale the departure of our profiles for $r^{1 / 4}>2.6$ from the trend shown by 0emler's data is more obvious. The trends displayed by each profile continue for $r^{1 / 4}>3.0$ our profiles tend to be much smoother than Oemler's, indicating that our observations are less noisy. This plot also shows that the deVaucouleurs law published by Thuan and Romanishin (1981) does not fit the observed profiles very weli. Accordingto 0emler's profile the' halo begins at $\sim^{1 / 4}=2.6$ our peofles indicate that it begins closer to the centre of the galaxy at $-1 / 4=2.35$. However, part of this difference could be due to the normalization of our observations.

The (B-R) colour profiles derived from the two red images are given in figure 4.4 . For clarity the data for $r^{1 / 4} \cdot 3.0(\mathrm{kpc})^{1 / 4}$ are not plotted. The Al30y4 data (©) show that the colour of the galaxy becomes bluer by ~ 0.03 mag for $2.0<r^{1 / 4}<2.6$, snd then ceddens rapidly. for r 在 >12.6. The A336Y4 data (O) show that the colour becomespluer by ~ 0.04 mag for $2.0<r^{1 / 4}<2.4$ then drops sharply by ~ 0.125 mag between $r^{1 / 4}=2.4$ and 2.6 . This is followed by á steep reddening trend similar to the Al30Y4 data. To model the effect, on our otreatment of the gky on the colour profiles we calculated the magnitude difference between
 modified as. described above (figure 4.1 (). : Thege differences represent the effect of subtracting galaxy light In addition to the light of the sky. The differences were plotted as a function of distiance and a mooth curve kas fit by eye to the potnts. The curve was normalized to $(B-R)=1.77$ at $x^{1 / 4}=2.0$ and plotted as thé aolid triangles In flgure 4.4. This profile shows what would be obtained if all the ercor introduced by our method of determining the sky level entered $1 \dot{n}$ the B bandpass: The actual: curve cannot be any, teeper than shown because the error in the R bandpass is in the same sense as in the B bandpass and therefore reduces the steepness of the curve "This result shows however that the overall magnitude and sense of the observed colour gradient could result from our method of

determining the sky level. On the other hand. the model cannot reproduce the complicated structure of the observed profiles, for example, the 0.01 mag bump at $r^{1 / 4}=2.05$. This kind of structure may in fact be real, thus fustifying comparison of these profiles with other work.

The arithmetic average of the two ($\mathrm{B}-\mathrm{R}$) colour profiles is plotted in figure 4.5 . The error bars represent the difference between the two profiles. Also plotted are colour profiles taken from Gallagher et al. (1980) and Valentifn (1983). Gallagher et al. give a (B-V) colour profile of NGC 6166, and Valentijn gives the average (B-V) values of ample of 6 cDs (not including NGC 6166) at galactocentric distances of 50 and 80 kpc . The ($\mathrm{B}-\mathrm{V}$) values were crudely transformed to ($B-R$) using the relationship between ($B-V$) and (V-R) for glant stars given by Johnson (1966). This relation was normalized to the (B-V) vs. (V-R) data for elliptical galaxies from Gallagher et al: (1980, Table 1) by subtracting $0.15 \mathrm{mag} \cdot \mathrm{In}$ ' $(B-V)$. In the mner regtion of our average prof $11 \mathrm{e}\left(2.0<r^{1 / 4}<2.45\right)$ the colour becomes bluer by 0.03 mag. This change is similar to the ovecall trend displayed by the data of Gallagher et al. The change in colour over the inner region is. larger than the typical error in the same region: The trend displayed In the inner regions confirms the general conclusion of previous observational studies and the prediction of the

Figure 4.5. The ayerage of the two coloux profiles in figure 4. 4 is given by the smooth curve. The error bars represent the difference petween the profiles. The normalized data of Gallagher et al (1980)are given by the squares, end that of Valentifn (1983) by the triangles:
tidal debris and the cooling intracluster medium models. that $c D$ galaxies become bluer at lacger galactocentric distances.

The sharp drop to bluer $\%$ colours between $r^{1 / 4}=2.45$ and 2.55 and the subsequent rapid reddening may be artifacts of our method of determining the sky level. Howerer, it is interesting to note that if the rapid drop between $r^{1 / 4}=2.45$ and 2.55 were extended it would give colours similar to Valentijn's. At this time we cannot infer anything further about the region beyond r ! 2.45 .

4.3 Future Improvementis in Data Reduction

Future efforts wll concentrate on developing a method of. determining the gky background dorrections. Three possibilities are given below.

We have examined only a spall oubset of the data obtained at the CFHT. Therefore we. will first process the complete data set using. the original technique of subtracting an unscaled polyromial fit to a sky image.

Alternatively, we.could deter㿽ine the sky level on the short exposures of the central regions of the galaxies (eg. AlloY4), and force the profiles obtained from the short exposures to fit those obtained from the long exposures. The sky background on the halo images would be fixed by forcing; the halo and central image profileg to agree in the region where the tmages overlap.: There may, however, be a problém with a low signalto-noise ratio in the short exposures.

If the halo images have not reached the outer halo then it may be possible to approximate the sky background using a suitable portion of the halo images. The sky background on the central images can then be flxed by forcing the profiles generated by the central and halo images to agree in the region where the two imates overlap.

Another improvement will involve developing a more objective method of fitting ellipses to isophotes (Young et. al. 1979 and Kent 1983). This will hopefully determine the run of elifpticity and position angle of the isophotes. Also, the calibration images will be used to determine the extinction and transformation coefficients.

CHAPTER 5

SUMMARY
H. and R CCD images of NGC6166 in A21.99 and the anonymous cD galaxy in Al413 have been obtained using the CFH 3.6m telescope. A systematic procedure for the processing of $C C D$ images has been developed:. It involves subtracting the bias level introduced by the electironics, subtracting the thermal background, removing unwanted objects and blemishes, and eorrecting for areal sensitivity variations across the CCD.

Surface brightness profiles in B and R for NGC 6166 were obtained by determining the average ADU/pixel values in concentric elliptical annuli, and were normalized using the photometry of Gallagher et al.(1980), and of 0emler (1976) as presented by Thuan and Romanishin. (1981). Our profiles agree with Oemler's out to' 45 kpc from the centre. Beyond this point our profiles drop rapidly compared to: Oemler's.. The sky background was found to vary significantly. The method used to determine the sky level probably produced the rapid decline displayed by our profiles.

The ($B-R$) colour profile becomes bluer by 0.03 mag between galactocentric distances of roughly 16 and 33 kpc . Beyond 33 kpe the profile shows a share dip to the blue
followed by a rapid reddening. Some of these trends in particular the rapid reddening; mat be caused by our method of determining the sky level. The 0.03 mag decline between 16 and 33 kpc is qualitatively consistent. with: the observations of Gallagher et al. (1980) and with the predictions of both the tidal debris and cooling ICM models of cD galaxy formation. However, these results are tentative pending examination and reduction of the complete data set.

DATE : 3/4 May 1984.

$3 / 4$ May 1984 continued.

DATE: $4 / 5$ May 1984

4/5 May 1984 continued:

REFERENCES

Apell. G. O. 1958, Ap. J. Suppl:, 3, 211.
Albert, C. E., White, R. A., and Morgan, W. W. 1977, Ap. J_, 162, 44.9 .
Brownigg, D. R. K. 1984 , Commun. of the Assoc. for Compert,
Machinery, 27, 807.
Christian, C. A. 1984, CFHT CCD and FOCAS User Manual (Hawail:Canadi-France-Hawail Telescope Corporation).
Christian, C. A. Adans, M. Barnes, J. V, Butcher. H. Hayes, D. S.. Mould, J. R., and Siegel; M. 1985, Pub. A. S. P: 97. 363.

Cowie, L. L., and Blnney, J. 1977, Ap. J., 215, 723.
de Vaucouleurs, G. 1948, Ann. d'Ap.., 11, 247.
Fabian, A. C. Kü, W. H. M. , Malin, D. F. Mushotzky r R', Fi, Nulsen, P. E. J. ${ }^{\text {and }}$ Stewart. G. C. 1981, M.N.R.A.S... 196. 35p.

Fabian, A: C. , and Nulsen, P. E. J. 1977, M.N.R.A.S., 180, 479.

Fabian, A, C. Nulsen, P. Ei: J., and Canizares, C. R. 1982. M.N.R.A.S. 201. 933.

Gallagher, J.S. Faber, S. M. and Bursteln, D. 1980 , Ap. J.; 235. 743.

Hausman, M. A. and ostriker, J. P. 1978, Ap. J. 224.320.

Heckman, T. M. 1981, Ap. T.: 250, L59.:
Johnson, H. L. 1966, Ann. Rev. Astr. Ap. 4 $^{\prime} 193$.
Jones, C. and Forman, W. 1984 Ap. J. $276,38$.
Kente.S.M. 1983, Ap, J. . 266 , 562.
Kinğ, I, R. 1966, A, J., 71 64:
Kormendy, J. 1984 , private communication.

Leach. R. W. and Gursky, H. 1979 , Rub. A. S. P. $91,855$.
Leach, R. W, Schild, R. E., Guraky, H., Madejaki, G. M., Schoartz, D, A. a and Wekes, T, © C. 1980 , Pub, A. S. P., 92. 233.

Leir. A. A: and van den Dergh, SS 1977, Ap. J. Suppl $34,361$.

Matthews, T. A.. Morgan, W. W. and Schmidt, M. 1964, Ap. J. $140,35$.
Minkowski, $\mathrm{R}, \mathrm{I} 961$, A.. J., 66 , $\$ 56$.
Morbey, C. and Morris, S. 1983, Ap $\because J, .274,502$.
Morgan, W. W. 1958;Pub. A:S. P. $70,364$.
Morgan, W, W.; Kayserrog and Whate, R.A. ${ }^{\circ} 1975$, Ap. J, 199, 545.

Morgan, W. W., and Lesh, J', R, 1965, Ap. J., 142 , 1364.
Murphy, H_{4} P, schild, R. E. . and Weekes, T. C. 1983, M.N.R.A.S: 202, 1127.

Opmlen, A. 1973 , Ap. J., 180,11
Oemler, A: 1976, Ap.. J. 209 . 693.
ostriker. f. P., and Hausman. M. A. 1977, Ap. J. 217. [125.

Ostriker, J. P. and Tremalne, S. D. 1975, Ap.J., 202 1113.

Racine, R. a and Lelievre, G. 1982. CFHT Observers Manual (Hawali:Cahada-France-Hawai'l Telescope Corporation):
Rees, M. 1985, Renarks made at a Conference on Galaxy Formation. University of Toronto, June 19-21.

Richstone, D, 0 . 1975, Ap. J., 200. 535.
Richstone: D. O: 1976. Ap. J. 204, 642:
Rood, H. J., and Sastry. G. N: 1971, Pub. A. S. P.: 83. 313.

Satazin. C. L., and O'Conne11, R. W. 1983, Ap, J. 268. 552.
stewert. G. C. Fablan, A, C., Jones. C., and Forman. W. $198,4 p \cdot J .265,1$.

Strom, K. M., and Strom, S. E. 197B, A. J, B3, 73.
Strom, S., E., and Strom, K. M. 1978b, A. J., 83, 732.
Strom, K, M, and Strom, S. E. 1978E; A. J. . 83, 1293.
Thuan, T. X., and Romanishin, W. 1981, Ap. J. 248. 439..
Valention E. A. 1983. Astr. Ap. 110^{1}. 123.
Valentijn, E.,A., and Bifleveld, W: 1983, Ästr. Ap., 125. 223.

Young, P. J., Sargent, W. L. W. , Kristian, J. \because and Westphal, J. A. 1979, Ap. J., 234, 76.

CURRICULUM VITAE

[^0]: Examination of the overclocked areas of the dark frames typically showed a decline over the first 4 columns (513-516), from the image area value of 459 ADU/pixel to the typlcal overclocked area value of ths4 ADU/pixel: In deterinining the average of the overclocked area the first four columns were avotded by using a rectangle defined by columns 517 to 525 and rows 2 to 319 (hereinafter called the standard rectangle) ... The mean generated from within this rectangle was subtracted: from each pirel of the corresponding image generating an overclock-subtracted dark fame. The set of 29 overclock-subtracted dark frames from both nights was combined "Eo produced a mean overclock-subtracted dark frame.
 Areal variation of the bias level was removed by
 subtracting the mean bias frame from the mean
 overclock-subtracted dark frame using programe supR (thich
 subtracts two fmages pixel-by-plael). This produced the

