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The Role of CB2 Receptors in Proliferative Vitreoretinopathy  

By: Carolyn McCurdy 

Abstract  

Proliferative vitreoretinopathy (PVR) is known to be the most common sight-

seeing complication of retinal detachment. The pathogenesis of PVR is characterized by 

the proliferation and migration of retina pigmented epithelial cells, which leads to 

formation of contractile cellular membranes and retinal breaks, as well as immune cell 

infiltration. The Endocannabinoid system modulates immune response; cannabinoid 

receptor 2 (CB2) is expressed in the cells of the immune system, but also found in the 

retina. The activation of the CB2 receptor by endogenous or exogenous ligands produces 

biological activities of immune function; the expression of this receptor is up-regulated 

by the activation of various inflammatory triggers. The purpose of this study is to further 

understand what role the CB2 receptor plays during inflammation in the retina and if it is 

involved in the mediation of immunosuppressive effects.   

An animal model (mice) was used to induce PVR with an intraocular injection 

(0.2μl) of 0.1U dispase, a proteolytic enzyme. The severity of PVR in wild type (WT) 

and CB2-/- saline and dispase groups were evaluated through the observation of cross-

sectioned H&E stained ocular tissues. IL-1β cytokine concentrations were captured using 

an enzyme linked immunosorbent assay with IL-1β sensitive antibodies.  

Histological H&E staining demonstrated pronounced ocular damage in CB2-/- 

animals compared to WT animals. IL-1β cytokine concentrations showed no significant 

difference (p>0.05) between WT and CB2-/- animals.       

From the results, the ocular damage was more pronounced in CB2-/- mice as compared to 

WT mice, which suggests an immunodulatory role for CB2 receptors.   
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Introduction 

The eye is a complex organ with many structures that are ultimately responsible 

for vision (Figure 1). It is covered by three layers: the outer layer consists of the anterior 

transparent cornea and the posterior white fibrous protective sheet known as the sclera. 

The middle layer, choroid, is found between the sclera and the retina and is the vascular 

layer of the eye which provides nutrients to the outer retina (Lens et al., 2008). The most 

inner layer is the retina, the site of transformation of light energy into an electrical neural 

signal. The retina provides an output of information or stimuli to the brain via axons of 

ganglion cells which is commonly known as the optic nerve (Jenkins, 2010). Before light 

reaches the retina, it enters the eye through the pupil, and then through the lens, which 

focuses images from different distances on retina.  The vitreous humor which is a clear 

gel-like substance, composing approximately 80% of the volume of the eye, is positioned 

between the lens and the retina.  
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Proliferative Vitreoreitnopathy 

Three decades ago what was termed massive periretinal proliferation was known 

to be a serious complication of post-retinal surgery with severe ocular trauma or 

intraocular inflammation. The owl monkey was used in experimental studies to 

demonstrate that massive periretinal proliferation was due to retinal detachment (Canto 

Seoler et al., 2002). Following further studies, this condition was modified away from the 

Machemer classification in 1978, and in 1983 the condition was coined as proliferative 

vitreoretinopathy (PVR) by the Retina Society Terminology Committee (Pastor, 1998). 

Today, PVR is known to be the most common sight-seeing complication of retinal 

detachment (Pastor, 1998) that may lead to blindness. The pathogenesis of PVR is 

characterized as the growth and contraction of cellular epiretinal membranes within the 

hyaloids, on the inner and outer retinal surfaces and within the vitreous humor (Limb, 

1991; Pastor, 1998). As the cellular membranes employ traction, this can create retinal 

breaks. This in turn cause a traction retinal detachment, macula distortion and impaired 

vision. Canataroglu (2005) and Nagasaki et al. (1998) add to Pastors characterization by 

indicating that the contraction of cellular membranes cause retinal detachment. This 

results from the proliferation and migration of trans-differentiated retina pigmented 

epithelial (RPE) cells and the breakdown of the blood-ocular barrier. In addition, the 

pathology of PVR involves immune cell activation and their infiltration of ocular tissues. 

The infiltrating immune cells include glia cells (Müller cells, astrocytes, and microglia) 

and inflammatory cells (macrophages and lymphocytes) (Nagasaki et al., 1998).  
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Inflammation 

Acute inflammation is a natural and essential response to injury, stress and 

infection. This innate process provides protection, tissue maintenance and homeostasis by 

recruiting several immune cells from local vasculature (Gronert, 2010). The cell types 

that are typically involved in the early onset of an inflammatory response are 

macrophages, central nervous system microglia and phagocytic cells (neutrophils) which 

release pro-inflammatory cytokines, such as tumour necrosis factor alpha (TNF-α) and 

interleukin 1 beta (IL-1β), amongst others. These cells are responsible for maintaining the 

inflammatory response by up-regulating the secretion of immune cells through autocrine 

signaling and self-synthesizing (Kaiser, 2012; Collins, 2012). 

Chronic or exaggerated inflammation on the other hand is detrimental as 

extensive tissue damage and scarring can occur. With prolonged permeability of 

vasculature to cytokines and neutrophils, blood will accumulate at the site of injury. 

Lysosomal contents from neutrophils will be discharged affecting surrounding healthy 

tissue to be destroyed and eventually turn to scar tissue (Kaiser, 2012).  

 

Macrophages, Microglia and Cytokines 

 Macrophages are mediators in innate and adaptive immunity. Their effects occur 

through recognition, phagocytosis and destruction of cellular and tissue debris and 

foreign agents (Croxford and Yamamura, 2005; Pastor et al., 1998). Macrophages secrete 

inflammatory mediators, such as nitric oxide (NO) to kill bacteria, growth factors and 

cytokines to carry signals to other cells (Croxford & Yamamura, 2005). Microglia cells 

are phenotypically and functionally related to macrophages (Croxford & Yamamura, 
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2005). Microglia normally reside in a quiescent state in the healthy central nervous 

system (CNS) and make up 10% of the total glial adult CNS cell population. In response 

to injury or inflammation microglia undergo morphological changes to become amoeba-

like and proliferate. Once activated, they produce proinflammatory factors including 

various cytokines, chemokines, prostaglandins and nitric oxide and up-regulate surface 

antigens (Town, 2005).  

Cytokines are known as local signaling molecules that are released in responses to 

inflammation in an autocrine, paracrine and endocrine fashion. One method of cytokine 

classification is dividing them into pro-inflammatory and anti-inflammatory groups. Pro-

inflammatory cytokines are those that amplify inflammation responses due to infection or 

injury, whereas, anti-inflammatory cytokines are those that inhibit or limit inflammation 

responses.  The growth factors and cytokines secreted by microglia include pro-

inflammatory cytokines such as interferon gamma (IFN-γ), IL-1β and TNF-α (Nagasaki, 

1998; Town, 2005).  

IFN- γ possesses antiviral activity and plays a central role in immunoregulatory 

processes. This cytokine is involved in host defenses against unwarranted intracellular 

organisms and has the ability to activate macrophages and enhance their ability of 

phagocytosis. IL-1β is produced by activated macrophages and is an important mediator 

during an inflammatory response. This cytokine is involved in a variety of cellular 

activities, including cell proliferation, differentiation, and apoptosis. However, if there 

are high concentrations of this cytokine, it can cause increased inflammation and 

degeneration of neurons (Russell, 2004). Lastly, TNF-α is also secreted primarily by 

macrophages. It is a key player in the local chronic inflammatory immune response and 
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initiates a cascade of cytokines and increases vascular permeability, thereby recruiting 

macrophage and other immune cells to the site of infection (Goldsby, 2003).     

While microglia play an important role in host defense and tissue repair, the 

chronic activation of these cells results in deleterious effects or extensive “bystander 

damage” on the surrounding neurons depending on the intensity and temporal activation 

of microglia. The destructive properties of the long-term activation of microglia have 

been demonstrated in neurodegenerative diseases such as, but not limited to, multiple 

sclerosis, Alzheimer’s and Parkinson’s (Russell, 2004). Microglia and the IL-1β cytokine 

are the main focus in this research due to their assisting and degenerative properties 

during an immune response to inflammation. These assumptions are based on a growing 

body of evidence that suggests the endocannabinoid system modulates the activity of 

microglia and cytokines and can be neuroprotective in a variety of inflammatory 

conditions.  

 

Endocannabinoid System  

 Cannabis sativa (marijuana plant) has been used by humans for thousands of 

years due to its psychoactive and medicinal properties. The main psychoactive 

component of the cannabinoid plant ∆9-tetrahydrocannabinol (∆9-THC) has been 

identified (Gaoni and Mechoulam 1964; Mechoulam 1970), allowing rapid advancement 

in cannabinoid research.  

The endocannabinoid system is known as the “late comer” of the 

neuromodulatory family (Pacher, 2011). This system is composed of neuromodulatory 

lipid based endogenous ligands, enzymes responsible for their synthesis and degradation, 
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and cannabinoid receptors 1 and 2 (CB1 and CB2) (Svizenska, 2008). The endogenous 

ligands are arachidonoylethanolamide (AEA) (also known as anandamide) and 2-

arachidonyl-glyceryl (2-AG), both of which are physiological agonists for the 

cannabinoid receptors. The CB1 receptor was identified and cloned in 1990 from a clone 

DNA library. This receptor codes for 473 amino acids, and is a G-protein coupled 

receptor (Klein, 1998). The CB1 receptor is the most abundant G-protein coupled 

receptor within the nervous system, primarily within the brain on presynaptic neurons. 

AEA has high binding affinity to the CB1 receptor and is mainly synthesized (on 

demand) by postsynaptic neurons which act as retrograde messengers to modulate 

neurotransmitter release from CB1-expressing presynaptic terminals. The binding of 

AEA to the CB1 receptor controls and mediates the behavioural, pharmacological and 

psychoactive effects of cannabinoid usage, as well as pain and synaptic 

neurotransmission (Tanasescu 2010; Croxford and Yamamura 2005; McAllister 2002). 

The activation of the CB1 receptor can be thought of as protective to the nervous system 

from over-activation or over-inhibition of neurotransmitters.  

The CB2 receptor was identified by cloned DNA using the polymerase chain 

reaction and showed a 44% similarity to the CB1 receptor. Unlike CB1, the CB2 receptor 

only has 360 amino acids but also uses G-proteins (Klein, 1998; Svizenska et al., 2008). 

The CB2 receptor is predominantly expressed in the cells of the immune system, 

including microglia cells, but is also found in the retina (Svizenska, 2008). In microglia 

cells, the expression of the CB2 receptor is upregulated by the activation of various 

inflammatory triggers such as damage and invasion of bacteria or a virus. Therefore, 

decreases the microglia reactivity (Pacher, 201; Croxford and Yamamura, 2005).  The 2-
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AG endocannabinoid ligand exhibits high affinity for the CB2 receptor and when bound 

together show biological activities of immune function, cell proliferation, 

neuroprotection, neuromodulation, and inflammatory responses (Svizenska 2008; 

Tanasescu 2010). It is therefore possible that the CB2 receptor plays an 

immunomodulatory role in the retina.    

∆9-THC has been known to have effects on immune function and the suppression and 

inhibition of macrophage secretion of the pro-inflammatory cytokines such as TNF-α, 

IFN-γ and IL-1β (Tanasescu, 2010; Eisenstein, 2007).   

For the purposes of this research, PVR will be induced by the intravitreal 

injections of dispase in the eyes of adult mice in order to observe if the CB2 receptor has 

immunomodulatory effects against the Il-1β cytokine.  Dispase is a proteolytic enzyme 

derived from Bacillus polymyxa that cleaves fibronectin and collagen lV, and therefore 

results in cleavage of the basement membrane in various tissues (Tan 2012; Valeria 

Canto Soler 2002). More important for this research, dispase also creates an 

inflammatory response causing ocular changes in the vitreous, retina and anterior 

chamber where several immune cells aggregate and are actively involved in the site of 

injection. Therefore, dispase serves as a useful model for our study. 

 

Hypothesis and Objectives 

The overall objective of my research is to investigate the role of CB2 receptor 

modulation in the animal model of PVR.  I will use wild type (WT) and CB2 receptor 

knockout (CB2-/-) mice to examine the role of the endocannabinoid system and its 

receptors during an inflammatory response in the retina.  The activation of the CB2 
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receptor decreases the inflammatory response associated with PVR and therefore 

preserves retinal integrity. Animals lacking the CB2 receptor should show no defense or 

down regulation of harmful cytokines and microglia. To observe the behavior of the CB2 

receptor, this study will: 

(1) compare ocular pathology in a WT vs. CB2-deficient mouse model of   

     PVR and, 

(2) examine the expression of the pro-inflammatory cytokine, IL-1β, in WT vs.  

     CB2-deficient mouse model of PVR.  

The significance of this research is to further understand what role the CB2 receptor plays 

during inflammation in the retina and if it is involved in the mediation of 

immunosuppressive effects.   

 

Methods 

Animals 

C57BL/6 male mice (20-25 g; Charles Rivers, QC, Canada), and CB2 receptor knockout 

animals (20-25g; in-house breeding) were used for experiments.  The animals were 

housed on a 12 hour light/dark cycle, with unrestricted access to food and water.   All 

experiments were conducted in accordance with the standards and procedures of the 

Canadian Council on Animal Care and the Dalhousie University Animal Care 

Committee.    
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Experimental groups and Injections 

The mice were divided into four groups: WT injected with saline, WT injected 

with 0.1U dispase, CB2-/- injected with saline and CB2-/- injected with dispase. Each 

group contained three mice, therefore a sample size of 12 mice in total.  PVR was 

induced in CB2-/- mice and wild type (Blk57) animals with an intraocular injection of 

dispase (Sigma), a neutral protease, which cleaves the basement membrane of the dorso-

lateral quadrant of the left eye which is the active site of this enzyme. Dispase was 

diluted to the concentration of 0.1U l-1 in a sterile Ringer saline solution. Intraocular 

injections (2l) were made using a microscope with a Hamilton syringe attached to a 30 

G needle. Control animals received 2l of sterile Ringer saline solution. 

Twenty four hours following the intraocular dispase or saline injection mice were 

sacrificed with an intraperitoneal injection of 0.2ml euthanyl (pentobartibal sodium) and 

the left eye was enucleated from each animal. Each left retina was either placed in a 

numbered Eppendorf tube suspended in Dulbeccao’s phosphate buffered saline (PBS) 

and then used for protein preparation, or the whole eye was removed, and prepared for 

histological staining.  

 

Tissue Digestion and Protein Extraction 

A preparation of standard proteins of known concentrations and proteins from 

retinal tissue were used to quantify the amount of protein present in each retina in order 

to make a protein standard curve. Protein extraction was carried out by homogenizing the 

retinal tissue in a RIPA solution containing protease inhibitors. The RIPA solution 

comprises of approximately 400mL distilled water, 5mL Triton X-100, 0.5g 20% SDS, 
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4.39g NaCl, 1.21g Tris-HCl base and 2.5g deoxycholic acid (pH 8 must be reached in 

order for deoxycholic to dissolve).  

The protease inhibitors used and mixed into the RIPA solution (RIPA+) above are 

1μl/ml Pepstatin A, 1 μl/ml Leupeptin, 5 μl/ml PMSF and 2mg/ml Iodoacetamide. These 

contents are only added to RIPA on the day that it is needed. 

Once the RIPA+ solution was made, the Dulbeccao’s phosphate buffered saline solution 

that the mouse retinas were suspended in was replaced with 100μl of RIPA+. Tubes were 

then incubated on ice for 20 minutes and centrifuged for 15 minutes at 4°C at 13 000rpm. 

The supernatant was transferred to fresh Eppendorf tubes and stored at -80°C. 

 

Protein Quantification Assay 

Thermo Scientific Pierce® BCA Protein Assay Kit was used to create a Bovine 

Serum Albumin (BSA) standard curve based on absorbance and known concentrations. 

This curve was then used to estimate the amount of protein present in each of our retina 

samples based on their absorbance reading at 562nm. Briefly, each sample with an 

unknown protein concentration had 5μl pipetted from the original tube to a clean 

Eppendorf tube which contained 45μl of deionized water and 50μl of 1% SDS. A volume 

of 1ml of BCA working reagent was added to each tube and incubated for 30 minutes. 

Samples and standards were transferred to a microplate for the absorbance to be read at 

562nm. A standard curve was made with the seven standards and subsequently the 

protein concentrations of the samples were calculated based on this standard curve.  
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Enzyme-Linked Immunosorbent Assay (ELISA) 

The ab100690 Interleukin-1 beta Mouse ELISA Kit from Abcam was performed 

using retinal tissue lysates from individual mice. 

ELISA is used to detect and measure an antibody or antigen of interest. The most 

commonly used ELISA is the antibody-sandwich. The Abcam ELISA kit is an in vitro 

enzyme-linked immunosorbent assay for the quantitative measurement of mouse 

interleukin-1 beta (IL-1β) in cell lysate and tissue lysate. This assay employs an antibody 

specific for Mouse IL-1β coated on a 96-well plate. Standards and samples prepared by 

the protocol of Abcam were pipetted (100µl) into the wells and if any IL-1β was present 

in a sample it bound to the wells by the immobilized antibody after being incubated at 

room temperature for 2.5 hours. The wells were washed and biotinylated anti-Mouse IL-

1β antibody was added (100µl) and incubated for one hour at room temperature. After 

washing away unbound biotinylated antibody, HRP-conjugated streptavidin was pipetted 

(100µl) to the wells and incubated at room temperature for 45 minutes. The wells were 

again washed and 100µl of a TMB (3,3’,5,5’-tetramethylbenzidine) substrate solution 

was added to the wells and colour developed in proportion to the amount of IL-1β bound. 

The Stop Solution was added (50µl) to each well and is responsible for changing the 

colour from blue to yellow, depending on the IL-1β concentration. The intensity of colour 

was measured immediately by a spectrophotometer at 450nm. 
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Histological Samples 

Animals were sacrificed 24 hours after the intraocular injection, eyes were 

enucleated and inserted into a cassette and immersed in 10% formalin for 24 hours to 

preserve the tissue. The formalin was then washed out with 70% ethanol three times and 

eyes were suspended and dehydrated in a container of ethanol then embedded in paraffin 

wax to be cut later for slide preparation. Each paraffin wax block was cut (sagittal 

section) with a microtome at 5μm thick and sections were placed on eight slides with five 

sections per slide to be stained with hematoxylin and eosin (H&E).  

H&E staining is a common technique used in histology and pathology and is 

essential for recognizing tissue types and morphological changes within a tissue (Fischer, 

2008). This staining method comprises of two main dyes: Haematoxylin and Eosin. 

Haematoxylin is a basic dye responsible for staining acidic structures within a cell 

creating a purple/blue colour; nuclei, ribosomes and rough endoplamic reticulum have 

high affinity to this dye due to their high concentrations of DNA and RNA found. Eosin 

is an acidic dye responsible for staining basic structures within a cell and turning these 

structures pink in colour. The cytoplasm, intracellular membranes and extracellular fibers 

will stain pink upon application. The H&E protocol used was responsible for rehydrating 

the cells in order for successful adherence of the stains to the optic cells and then 

dehydrated for preservation. Rehydration is comprised of xylene and decreasing 

concentrations of ethanol (100%-70%) allowing water to enter the cells. Staining 

included single washings of Heamatoxylin and Eosin Y to adhere on presenting cells and 

lastly, dehydration included several washings of increasing ethanol concentration (70%-

100%) and xylene for permanent preservation. The ocular sections were photographed 
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with the Nikon Digital DXml200F microscope camera at 2.5x and 20x magnification for 

an overall morphology of the eye and retina in order to observe and score (scale 0-4) 

pathological changes characteristic of PVR. For PVR scoring please see Table 1.   

Table 1: Clinical evaluation of PVR (Retina & Optic Nerve Laboratory, Dalhousie University)  

 

Statistical Analysis 

 The histological scorings were analyzed by one-way ANOVA using GraphPad 

Prism 5 (GraphPad Software, Inc.). Analysis of cytokine expression, detected by ELISA, 

was performed using Student’s t-test. Data are presented as mean ±SEM. A statistical 

significant difference was assumed at p<0.05.  
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Results 

External Anatomy 

 

 

 

 

 

 

Figure 2: External anatomy of CB2-/- mouse eye (a) before and (b) after injection of dispase 

(0.1U).  

  

Figure 2 shows the external anatomy of a mouse eye before and after injections of 

dispase shows the retracted retinal layers characteristic of PVR.  

 

Histology 

 
 

Figure 3: PVR severity scoring by comparison of mean scores based on table 1 between WT and 

CB2-/- animals treated with saline or dispase (0.1U). 

a b 
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Figure 3 graphically represents results of PVR severity scoring for WT and CB2-/- 

groups. The more damage that the retina sustained the higher the score it received, 

whereas, if the retina sustained no or little damage a lower score was received (Table 1). 

There was no significant difference in histological scoring (p>0.05) between the WT 

mice injected with saline (n=9) and WT animals injected with dispase (n=9). However, 

there was a significant difference (p<0.05) between the saline treated (n=9) and dispase 

injected (n=9) CB2-/- animals. There was no significant difference between WT animals 

and CB2-/- animals injected with saline (p>0.05); however, there was a significant 

difference (p<0.05) between WT and CB2 animals injected with dispase (p<0.05), which 

suggests the involvement of CB2 receptors in PVR.   
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Figure 4: H&E histology staining on cross sections of WT and CB2-/- mice retinae at 2.5x and 20x 

magnification. (a & b) WT dispase mouse retina, (c & d) WT saline mouse retina, (e & f) CB2-/- 

dispase mouse retina and, (g & h) CB2-/- saline mouse retina.  
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The stained photomicrograph cross sections highlight the morphology of the 

whole eye and retina in WT and CB2-/- animal models (Figure 4).  Inflammatory cells 

(purple) and blood accumulation (pink/red) can be seen in dispase injected models while 

in saline injected models few to no immune cells are seen with an intact retina. Missing 

parts of the retina are due to mechanical errors, not pathological characteristics of PVR. 

 

IL-1β ELISA 

 

 

 

 

 

 

 

 
 

 

Figure 5: ELISA IL-1β cytokine concentrations in both control (saline) and experimental 

(dispase) models.  

 

An ELISA was performed along with quantifying the concentration of IL-1β with 

the use of a spectrophotometer. To see if there were any significant differences between 

and within groups t-tests were performed (Figure 5). A t-test was used to compare 

between WT dispase and CB2-/- dispase models and showed no significant difference (p > 

0.05).  T-tests were also performed within WT and CB2-/- groups. There was no 
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significant difference (p>0.05) between saline and dispase models within the WT group, 

but there was a significant difference (p<0.05) between saline and dispase models within 

the CB2-/- group. Standard error bards were added to indicate the range of error of 

performed t-tests.  

 

Discussion 

The present study supports a growing body of evidence that the CB2 receptor has 

an immunomodulatory and neuroprotective role during inflammatory conditions. 

Histology stains (Figure 4: E and F) demonstrate pronounced ocular damage in CB2-/- 

animals through activation and recruitment of immune cells causing retinal folds and 

dispersion of retinal layers which are characteristics of PVR. This indicates that animals 

without the CB2 receptor do not have the protective mechanisms to modulate or ward off 

damaging effects of immune cells. On the other hand, WT animals (Figure 4 A-D) have 

an intact retina with few or no immune cells present at the site of inflammation due to the 

presence of the CB2 receptor. The photomicrograph that best demonstrates the 

modulatory role of the CB2 receptor is Figure 4B as there is a dense population of 

immune cells and some bleeding, however, the retina shows no damage indicating that 

the receptor does seem to protect and down-regulate the number of cytokines and other 

immune cells at the site of inflammation.  

An important role of the endocannabinoid system is to maintain homeostasis in 

health and disease. Interestingly, some diseases such as Parkinson’s, Alzheimer’s and 

Multiple Sclerosis seem to trigger an up-regulation of cannabinoid receptors selectively 

in cells or tissues for symptom relief and inhibition of disease progression (Pertwee, 



25 

 

2009). A study based on CB2 receptors within the gastrointestinal tract and their 

regulatory systems during states of inflammation was conducted by Wright et al.(2009). 

In this study, it was also found that the CB2 receptor down-regulated leukocyte 

infiltration during inflammation through the inhibition of cytokine and chemokine 

production. This supports the findings that the CB2 receptor has immunomodulatory 

pathophysiology properties during a response to inflammation (Wright et al., 2009).  The 

histological results clearly demonstrate that the CB2 receptor has protective properties 

within the eye, in which case being able to medicinally target this receptor and its 

respective endogenous ligands in patients with such diseases could be beneficial in 

disease management.   

Since this study looked at the cytokine profile 24 hours after injection, it is 

appropriate to mention that IL-1β is released by activated macrophages within 1-3 days 

of inflammation recognition (Kaiser, 2012). Therefore, we should see relatively high 

concentrations of this cytokine in both WT and CB2-/- mice due to the chosen time point. 

The results of the targeted cytokine (IL-1β), a pro-inflammatory cytokine, were to see a 

higher concentration in CB2-/- mice, especially in the dispase treated mice and lower 

concentrations in WT mice as this group has the CB2 receptor to modulate cytokine 

migration and activation. However, after surgically removing the retinas at a 24 hour time 

point, there were no significant differences of IL-1β concentrations between or within 

WT and CB2-/- groups (Figure 5) after induction of PVR. Since IL-1β is known to be one 

of the first cytokines to reach a site of inflammation, it is thought that the initial needle 

prick to the mouse eye was enough to cause an inflammatory response that at 24 hours a 

large and almost equal concentration of IL-1β was found in all control and experimental 
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models (Figure 5). This level is expected to decrease in saline animals after 72 hours and 

should exacerbate in dispase models. Other possibilities as to why we did not see any 

significant differences in IL-1β between groups could be due to low protein levels in the 

retinas, not having enough CB2-/- animals and technical difficulties running the ELISA. If 

these variables are corrected in future studies, a concentration difference of IL-1β could 

be significant between WT and CB2 knockout models.    

In future research, looking at cytokine profiles at a longer or shorter time points 

would be beneficial in order to demonstrate if it is to be expected that cytokine-mediated 

pathways of chronic inflammation are involved in the pathogenesis of PVR. 

Identification and expression of other specific cytokines causing ocular pathology 

involved in PVR immune responses could be of therapeutic and pathogenic importance 

for this debilitating disease. To accurately identify the immune cells involved in PVR, 

immunohistochemistry staining should be conducted as this stain displays cell 

morphology. 

Due to limited time to conduct this research, a small sample size was used 

therefore, for further investigation into this topic a larger sample size within groups 

should be used for more robust statistical analysis.  
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