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Abstract 

Statistical Arbitrage Using Pairs Trading With 

      Support Vector Machine Learning 

by 

Gopal Rao Madhavaram 

The purpose of this study is to analyze the performance of dynamic PCA (Principal 

Component Analysis) Statistical Arbitrage, and to validate the results with the help of a 

novel Machine Learning approach known as Support Vector Machines using the “Pairs 

trading” strategy. The paper starts by explaining the fundamental concepts behind our 

analysis e.g. Linear Regression, Auto-Regressive processes and Orstein Uhlenback 

modeling of residuals. Research focus will be on two things: how the principal 

components are obtained and how the portfolio of systematic risk factors is formed.  

Stock data of 20 stocks from the XLF financial sector is chosen for the principal 

components analysis. The data includes each stock’s daily opening price, high, low, 

adjusted close price and daily volume from the year 1998 to 2012. There are total of 

69,920 observations. 

 The paper concludes by demonstrating the scenario when SVM gave better results 

compared to the basic Mean-reversion strategy and future enhancements possible with 

this mixed approach. 
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CHAPTER 1: INTRODUCTION 
 

1.1 Purpose of Study 

 

                     The goal of this project is to analyze the performance of dynamic PCA 

(Principal Component Analysis) Statistical Arbitrage, and to validate the results with 

the help of a novel Machine Learning approach known as Support Vector Machines 

using the “Pairs trading” strategy. 

 

The global stock market is characterized with great uncertainty and risks. However, 

many investors make profits using the available information and by implementing 

trading strategies. Many investors use technical analysis to buy stocks of particular 

companies, others use strategies based on market behaviour. “Pairs trading” is one of 

those strategies used to detect arbitrage opportunities in the stock market. Pairs’ trading 

is the ancestor of Statistical Arbitrage. The idea behind pairs trading is that, if stocks P 

and Q belong to the same industry or have similar characteristics, then one expects the 

returns of the two stocks to track each other after controlling for beta. 

 

1.2 Background 

 

           Pairs’ trading was originally developed by a group of computer scientists, 

physicists and mathematicians employed by Morgan Stanley & Co. in the 1980s. The 

team comprised of/ included computer scientists, Gerry Bamberger and David Shaw, 
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and quant trader Nunzio Tartaglia, who studied the arbitrage opportunities. This led to 

the development of automated trading program using advanced statistical modeling to 

exploit the market uncertainties. 

The result of their research is the development of a quantitative strategy to identify pairs 

of securities that are highly correlated and exhibit similar historical price movements. 

The method called black box proved to be successful in 1987 where the group made a 

$50 million profit for Morgan Stanley. However, in the next two years the method gave 

poor results which led to the termination of the group in 1989. This method was a 

revolution at that time and many models or strategies were developed leading to 

extensive use of quantitative methods and time series data. Tartaglia's own explanation 

for pairs trading is psychological. He claims, that “…Human beings don't like to trade 

against human nature, which wants to buy stocks after they go up not down.
1
” (Hansell, 

1989) 

 

Although the group was disbanded in 1989, “pairs trading” has since become very 

popular among individual and institutional investors as a “market-neutral” strategy. 

Recently, Vapnik and his colleagues have developed a novel neural network algorithm 

called support vector machine (SVM). Structural risk minimization is implemented by 

the SVM. Empirical risk minimization principles were used by many traditional neural 

network models. The traditional models seek to reduce the mis-classification error from 

proper solution of training data but SVM minimizes the upper bound of generalization 

error. The SVM gives the global optimum solution while the traditional neural network 
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models falls into the local optimum solution. Thus, there is no chance of over-fitting 

with SVM. 

1.2 Need for study 

 

     The main goal of any investor is to earn profit from their investment without 

losing any initial invested capital. Earning profits has become very difficult due to 

the uncertainties and risks involved in stock market. So the implementation of 

certain trading strategies has become very useful in exploiting the market by using 

statistical arbitrage. 

 

             The term statistical arbitrage includes various strategies and investment 

methods. The common features in them are: (i) trading signals are systematic and 

not driven by fundamentals, (ii) the trading book is market-neutral, i.e., it has zero 

beta with the market, and (iii) the method of generating excess returns is statistical. 

The goal is to make many investment bets with positive expected returns by taking 

advantage of diversified portfolios across stocks and to produce a less volatile 

investment strategy which is highly uncorrelated with the market. 

 

     So this research paper uses pairs trading to analyze the performance of the 

dynamic PCA statistical arbitrage using the support vector machine language. The 

exploitation of arbitrage was extensively used by many institutional investors and 

hedge funds to make lots of profits. 
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1.3 Statement of purpose 

 

                    The goal of this project is to analyze the performance of dynamic PCA 

Statistical Arbitrage, and validate the results with a novel Machine Learning approach 

known as Support Vector Machines. 

 

The idea behind pairs trading is that if the stocks P and Q belong to the same industry or 

have similar characteristics then one expects the returns of the two stocks to track each 

other after controlling for beta. 

In mathematical form: 

 

                                                                                  ………………………………(1.1) 

 

where: 

 P and Q are stocks from the same industry. 

 Xt is referred to as the co integration residual. 

 β is dollar amount of stock Q to be shorted.  

In many cases of interest, the drift α is small compared to the fluctuations of Xt and can 

therefore be neglected. 

 The paper expects that if this residual deviates to an extreme, it will revert to the 

equilibrium soon, according to the Mean-reversion principle. This model suggests an 

investment strategy where we go long 1 dollar of stock P and short β dollars of stock Q if 

X(t) is at negative extreme end and conversely, go short P and long Q if X(t) is at positive 
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extreme. The research analyzes the nature of residuals of mean-reversion to form a 

trading rule around the residual process. The way this paper generates the residual series 

is by examining the co-integration characteristics of a set of stocks in the financial sector 

ETF-XLF with a set of systematic risk factors associated with the market. Note that here 

the emphasis is on the residual that remains after the decomposition is done. Our 

approach of generating systematic factors is using PCA (Principal component analysis). 
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Chapter 2: Literature Review 

 

               Several studies have been conducted on detecting arbitrage in the stock market 

and how investors use some strategies to profit from the arbitrage opportunities. Most of 

the strategies are based on quantitative techniques. In their research paper Gatev, 

Goetzmann and Rouwenhorst stated that   ……  

“Wall Street has long been interested in quantitative methods of speculation. One 

popular short-term speculation strategy is known as “pairs trading.” The strategy has 

at least a twenty year history on Wall Street and is among the proprietary "statistical 

arbitrage" tools currently used by hedge funds as well as investment banks.” (Gatev, 

Goetzmann, & Rouwenhorst, 2006).  

They tested a Wall Street investment strategy, “pairs trading,” with daily data over 

1962-2002. With minimum distance between normalized historical prices, stocks are 

matched into pairs. An average annualized excess return of up to 11 percent for self- 

financing portfolios of pairs is yielded by using a simple trading rule. The profits 

typically exceeded conservative transaction cost estimates. Results from the Bootstrap 

suggest that the “pairs” effect differs from previously-documented reversal profits. The 

excess return indicates that pairs trading profits from temporary mis-pricing of close 

substitutes in the same industry. As opposed to conventional risk measures, they have 

linked the profitability to the presence of a common factor in the returns. 

In his paper Kyoung Jae Kim stated that …..“Support vector machines (SVMs) are 

promising methods for the prediction of financial time-series because they use a risk 

function consisting of the empirical error and a regularized term which is derived from 

the structural risk minimization principle. This study applies SVM to predicting the 

stock price index. In addition, this study examines the feasibility of applying SVM in 

financial forecasting by comparing it with back-propagation neural networks and case-
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based reasoning. The experimental results show that SVM provides a promising 

alternative to stock market prediction.” (Kyoung-jae, 2003). 

 

In a research conducted by Avellaneda and Lee (2008) the authors studied model-driven 

statistical arbitrage strategies in U.S. equities. They agreed that ….. 

“Trading signals are generated in two ways: using Principal Component Analysis and 

using sector ETFs”. (Avellaneda & Lee, 2008).  

In both cases, they considered the residuals, or idiosyncratic components of stock 

returns, and modeled them as a mean-reverting process, which leads naturally to 

“contrarian” trading signals. The main contribution of their paper is the back-testing and 

comparison of market-neutral PCA- and ETF- based strategies over the broad universe 

of U.S. equities. 

 Back-testing shows that, after accounting for transaction costs, PCA-based strategies 

have an average annual Sharpe ratio of 1.44 over the period 1997 to 2007, with a much 

stronger performances prior to 2003: during 2003-2007, the average Sharpe ratio of 

PCA-based strategies was only 0.9. On the other hand, strategies based on ETFs 

achieved a Sharpe ratio of 1.1 from 1997 to 2007, but experienced a similar degradation 

of performance after 2002. We introduce a method to take into account daily trading 

volume information in the signals (using “trading time” as opposed to calendar time), 

and observe significant improvements in performance in the case of ETF-based signals. 

 

 ETF strategies which use volume information and achieve a Sharpe ratio of 1.51 from 

2003 to 2007. The paper also relates the performance of mean-reversion statistical 
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arbitrage strategies with the stock market cycle. In particular, they studied in some detail 

the performance of the strategies during the liquidity crisis of the summer of 2007. 

 

The goal of this paper is to analyze the performance of dynamic PCA Statistical 

Arbitrage, and validate the results with a novel Machine Learning approach known as 

Support Vector Machines. The paper expects that if this residual deviates to an extreme, 

it will revert to the equilibrium soon, according to the Mean-reversion principle. 
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Chapter 3: Methodology 

3.1 Introduction to Research Design 

 

                      The paper starts by explaining the fundamental concepts behind our 

analysis e.g. Linear Regression, Auto-Regressive processes and Orstein Uhlenback 

modeling of residuals. Research focus will be on two things: how the principal 

components are obtained and how the portfolio of systematic risk factors is formed. The 

paper goes on to discuss the performance of this modeling and the results of applying 

the Support Vector Machines on top of our basic trading strategy using PCA. Support 

Vector Machine is a momentum-based approach as opposed to Mean-reversion. It is 

hoped that this research will make an optimal trading decision out of the two models. 

 

 The paper concludes by demonstrating the scenario when SVM gave better results 

compared to the basic Mean-reversion strategy and future enhancements possible with 

this mixed approach. 

 

3.2 Sampling Design & Data Collection 

 

For this research paper, Stock data of 20 stocks from the XLF financial sector is chosen 

for the principal components analysis: 
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ACE, AFL, AIG, AMT, AXP, BAC, BK, BLK, BRK.B, C, COF, GS, JPM, MET, PNC, 

PRU, SPG, TRV, USB, WFC. 

The data includes each stock’s daily opening price, high, low, adjusted close price and 

daily volume from the year 1998 to 2012. There are total of 69,920 observations. Once 

these stocks are selected, statistical arbitrage is performed on the first 10 stocks with 

systematic returns as the projection of original 20 stocks’ returns onto the Eigen vectors 

and dynamically varying the Principal Components depending on the required amount 

of variance.  

Further sections will discuss the results of the trading with the parameters mentioned in 

the previous sections and the application of Support Vector Machines over this basic 

trading system. 

 

3.3 Statistical Arbitrage 

 

3.3.1 Linear Regression: 

The study decomposes stock returns into systematic and idiosyncratic components and 

establishes trading rules on residuals which is the paradigm of pairs-trading 

              .................................................................(3.1) 

 

where: 

 R is the returns of stock. 

 F is the returns of systematic components. 
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 It is important to note that if Qi is the amount of money invested in stock i, we have, 

……….. (3.2) 

 

Hence for the portfolio of stocks to be market-neutral, we must have  

 

Assuming beta neutrality, the task will be to decompose the stock returns in systematic 

factors. This is simply achieved by Simple Linear Regression. SLR gives models the 

relationship between a response variable Y and a predictor variable X. 

          ……………………………………………………...(3.3) 

It does this in such a way that the squared errors of residuals are minimized i.e. 

 

We can easily solve this problem by using elementary calculus and we obtain the 

optimal value of beta as: 
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……………………………... (3.4) 

After we get these, residuals are obtained by subtracting out the outcomes and the 

predicted values. In the current context these residuals correspond to the idiosyncratic 

components of the model described above for stock returns. 

 

Figure 3.1: 

 

The above plot in Figure 3.1 is a schematic representation of how the regression line 

typically looks like in a single variable case, accordingly a hyper-plane in a multivariate 

case. 
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3.3.2 O-U (Ornstein-Uhlenback) Process: 

 

The important factors in research analysis are the residuals. The next task will be to 

model the residuals. By looking at the mean-reverting nature of the residuals, our 

obvious choice is the Ornstein-Uhlenback model.  Roughly speaking, the OU process 

describes the velocity of a massive Brownian particle under the influence of friction. It 

bears both the properties of our interest – stationarity and mean-reverting. So, the 

residuals for stock i can be modeled as follows: 

…………..... (3.5) 

where: 

 X is the residual. 

W is the weiner process. 

σ is the standard deviation. 

 

This is a stochastic differential equation and the parameters are specific to each stock. 

They are assumed to vary slowly in relation to the Brownian motion increments dWi(t), 

in the time-window of interest. This paper estimates the statistics for the residual process 

on a window of 60 days, assuming that the parameters are constant over the window. 

This hypothesis is tested for each stock in the universe, by goodness-of-fit of the model 

and, in particular, by analyzing the speed of mean-reversion. If assumed momentarily 

that the parameters of the model are constant, the equation can be written as, 
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……………..…………….. (3.6) 

The parameter k can be thought of as the speed of mean-reversion. If k>>1 the stock 

reverts quickly to its mean and the research is interested in the stocks with fast mean-

reversion.   

It’s important to observe that the discrete version of above equation corresponds to the 

Auto-regressive process. The study is interested in the AR process of order 1 which is 

defined as, 

………………………………………… (3.7) 

 

where: 

φ’s are the parameters of the model. 

Ɛ corresponds to white noise. 

Now we can construct the discrete version of the OU process by defining, 

              ………………………………(3.8) 

Note here that analysis will be based on the past 60 days where the study assumes that 

the parameters are constant.  

 

One more thing to observe here is that the Auto-regressive process can simply be 

estimated by the Simple Linear Regression analysis.  Therefore, the OU process boils 

down to the following regression model: 
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   ……………… (3.9) 

From the solution to the stochastic differential equation described above, we have, 

 

 

Here, note that X60=0 which is an artifact of regression. Fast mean-reversion (compared 

to the 60-day estimation window) requires that k > 252/30 and based on this test we can 

reject/accept the stock. 

3.3.3 Trading Strategy: 

 

Once the regression analysis is done on the residuals, the next step is to form the trading 

rule. This can be done using the s-score which is defined as follows: 

        ………………………………………………… (3.10) 

And since X60 is 0,  
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    ………………………. (3.11) 

Here the basic trading signal based on mean-reversion is, 

 

Buy to open means buying one dollar of the corresponding stock and selling beta dollars 

of systematic factors and similarly for other trading decisions. From the analysis, good 

values of these ‘thresholds’ are found to be, 

 

The below Figure 3.2 shows the evolution of s-score and the trading decisions based on 

this analysis: 
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Figure 3.2: 

 

 

 

3.3.4 Principal Component Analysis: 

 

As described in the beginning, Principal Component Analysis extracts the systematic 

risk factors. This approach uses historical share-price data on a cross-section of an 

arbitrary selection of N stocks going back to M days in history.  

PCA is the orthogonal linear transformation that transforms the data to a new coordinate 

system such that the greatest variance by any projection of the data comes to lie on the 

first coordinate (called the first principal component), the second greatest variance on 

the second coordinate, and so on. In the context, initial co-ordinate system corresponds 

to normalized returns of any arbitrary selection of stocks defined by, 
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               …………………………………………… (3.12) 

            …………………………………………….. (3.13) 

  ………………..………………….. (3.14) 

Where, R represents the returns of various stocks. 

.. (3.15) 

Empirical correlation matrix of the data is given by: 

 ……………………………………….… (3.16) 

Once the correlation matrix is in place, the way Principal Component Analysis works is 

by performing the Eigen Value Decomposition (EVD) of this matrix. Eigen values 

lambda of a matrix A are defined by the matrix equation, 

 

And the Eigen values are found by the equation,  
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           …………………………………………………….. (3.17) 

EVD of matrix A is therefore, 

    ……………………………………………………….…… (3.18) 

where: 

 Q contains the Eigen vectors and the diagonal matrix Lambda contains the Eigen 

values.  

A schematic diagram of Principal Components after EVD is shown below in Figure 3.3: 

Figure 3.3: 

 

(The thick black lines correspond to the Eigen vectors or the principal components, and 

the dots to actual data) 
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After the EVD of the return series of selected stocks, we obtain new return series’ by 

projecting the original return series’ onto the Eigen vectors. Every projection onto an 

Eigen vector will result in one new return series which corresponds to the systematic 

returns of our analysis. 

       ………………………………………… (3.19) 

where: 

  

are the Eigen vectors. 

The number of Principal Components (found by the Eigen vectors selected that explain 

a pre-determined amount of variance) is equal to the number of systematic factors 

chosen for our analysis (which varies across time). 

These return series’ together constitute what can be called an “Eigen portfolio” and are 

completely un-correlated (because of orthogonal decomposition). This results in more 

stable estimates of betas than with any other procedure. 

The paper may choose only a specific number of factors in the Eigen portfolio 

depending on the desired level of variability to be explained, so we can control the 

parameter – “percentage of variance explained” to balance the trade-off between 

complexity and performance of our model. 
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The study is based on a dynamic selection of significant factors daily, taking the return 

series’ of past 1 year data, that explain a fixed amount of variance - 70% turned out to 

be the optimal parameter in this case. 

3.4 SVM (Support Vector Machines) 

 

 As it’s briefly described in the introduction, the second part of the trading strategy is to 

validate the mean reversion point of view on a possible trade with the next day stock 

direction forecast. The forecast is predicted using three technical indicators, namely: 

ROC (rate of change = close (t)-close (t-5)/close (t-5)) 

 Stochastic Oscillator %K = close-LL (5)/ HH (5)-LL (5) 

Close Value Location= close-low-(high-close)/high –low 

where: 

 HH (5) = highest high achieved in past 5 days. 

 LL (5) = lowest low for the past 5 days.  

This paper has chosen these indicators because the study is concerned with the market 

direction for the immediate next day, hence information reflecting the difference in 

today’s price with tomorrow’s price is sought. For this reason we are providing 

indicators which are capable of reflecting that price shift in series, rather than giving the 

stock price series an absolute value which by itself is not of much importance for the 

next day direction of the stock. 
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Before this paper gets deeper into the optimization and mathematical approach of SVM 

algorithm, we need to understand the theoretical framework associated with it. 

 

3.4.1 Empirical Risk Minimization: 

 

 In all forms of data fitting, the study is trying to find the best fit for our data during the 

back testing, in order to have better forecast quality for future data points. A particular 

measure of fitness of our model would be some loss function calculation over all the 

training data points available for us. We might want to keep aside a portion of data 

points in order to perform testing on the fitted model which would give us a view over 

out of sample performance. 

A simple approach would be to follow a linear regression model, where we take our loss 

function as the MSE (mean square error). A closer look would warrant questions 

regarding the appropriateness of this loss particular function. In fact it could be shown 

that if the data point distribution is normal Gaussian, then a maximum likelihood fit for 

IID data points would give us a MSE loss function. 

A problem with the above approach is that given a limited number of training data 

points, we could always achieve a perfect mean square error if we go for a sufficiently 

higher order polynomial (linear regression models are linear in co-efficient but the 

predictors can be of higher order) As shown in Figure 3.4 below, we can see that as we 

increase the order of the fitted polynomial ‘P’, there is a corresponding decrease in the 

MSE. Total number of blue points in the graphs below is 20 which would mean that a 

20
th

 order polynomial would give us a perfect fit according to MSE loss function.    
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Figure 3.4: 

 

Another problem with the above methodology is that we are not sure about the 

distribution of data points. It would be a mistake to assume the distribution of our 

outcome (+/-1 market direction) with the given predictors ROC, stochastic oscillator and 

close value location as normal density.  The fact is that we are not sure about the 

relationship between the predictors and outcomes in this case. Hence we cannot assume 

a linear model and do the same analysis as we did in the first part of our trading strategy 

which was the regression of individual stock series with the components of PCA. It is by 

the very definition of PCA which guarantees the applicability of regression model there. 

Now, the task is to find suitable probability density function (pdf) (p(x,y) and a loss 

function corresponding to the pdf of data.  

   ………… (3.20) 
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where: 

Ep = expected probability. 

It is by the nature of the our forecasting problem that we cannot observe the p(x,y) 

function, except for the training data set. This leads to empirical risk minimization 

approach, where frequently we run into the danger of over or under fitting or over 

fitting.  

3.4.2 Regression for Classification: 

 

Regressions could be used for classification purpose as well, the usual process is to fit 

the data and use a suitable decision rule to classify the points which are on either side of 

the regression line/plane. 

For example in Figure 3.5 below, we are interested in obtaining the classification of x 

marked points (+1) and circle marked points (-1). We perform a simple linear regression 

and fit a plane on these data points.  

Figure 3.5: 

 



Page 25 of 53 
 

Projection of the plane thus obtained onto the 2-D surface would be a line as shown in 

Figure 3.6 below. A classification decision would be based on the location of the data 

point with respect to this line. 

 E.g.  

Plane: ax+by+cz=0  

Line: ax+by=0  

For a data point x (i), y (i): 

  ax(i)+by(i)>0 => decision = +1 

  ax(i)+by(i)<0 => decision = -1 

 

Figure 3.6: 

 

 

3.4.3 Structural Risk Minimization: 

 

It is easy to see the problem with the classification approach (empirical risk 

minimization) as described in the previous sections. We won’t be getting the ideal line 
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for our classification purposes as over fitting and under fitting would result in the 

modeling of noise in data instead of the true structure/probability distribution of the 

data.  

Further, if we have skewed or unsymmetrical observation of the data points 

corresponding to the +/-1 points or any outlier points lying deep inside of any one of the 

region, then the resultant plane would be skewed too. The effect of all these 

shortcomings would be that we would observe a relatively unstable and less efficient 

classification boundary line as shown in the left side of Figure 3.7 below. While it is 

easy to see intuitively that a better classification decision would be to have a line which 

divides the boundary/separation region equally hence maximizing the margin between 

decision line and the classification regions, as shown in the right hand side of the figure. 

Figure 3.7: 

 

This maximization of the margin at the boundary of the two classes of data points would 

be the approach that would give us a better generalization of our model to the out of 

sample data points, better than any other form of empirical loss functions. 

Apart from this intuitive explanation of the optimization goal of maximizing the margin, 

there is detailed theoretical base for linking the maximization of margin with the better 
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generalization i.e. less out of sample error. The concept of VC dimension is introduced 

below regarding the same. 

3.4.3 VC (Vapnik–Chervonenkis) Dimension: 

 

For any classification problem, the VC dimension of a certain classifier is defined as the 

maximum number of data points which can be shattered (i.e. any possible labeling 

scheme of the data point could be achieved by the classifier, when the number of points 

are less than the VC dimension) 

If we have higher VC dimension, it means there are more number of probable models, 

which can explain the observed data points. The goal here is to reduce VC dimension 

and in turn get better generalization of the selected model. In general the risk function 

can be bounded by the out of sample error using VC-dimension h as: 

 

                                                                                         ……………………… (3.21) 

Thus we need to achieve the minimum VC dimension possible. Consider two scenarios 

where we vary the margin requirement during the classification. We can shatter a large 

number of points and hence obtain a higher VC dimension if we reduce the margin, as 

shown in Figure 3.8. 
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Figure 3.8: 

 

But if for the same data points we increase the margin it’s not possible to shatter the 

three points. 

Figure 3.9: 

 

 

Now we can shatter only 2 points whereas earlier with a lesser margin we were able to 

shatter 3 points. 

This shows that our goal of maximizing the margin while keeping the correct 

classification for all the data points in the training would indeed correspond to an 

increase in generalization capability of the model. 

3.4.4 Optimization Steps: 

Now that we have decided to switch our goal from reducing the mean square risk 

minimization to maximizing margin given the training data set, we can express the 

requirement mathematically. Suppose we define the classifier as: 
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          …………………………………………………….. (3.22) 

where: 

 w= weight of each classifier. 

 b= bias. 

We have to find the weights w and bias b such that we have the correct classification in 

the training data set: 

 

This can be expressed as a combined equation while using the labels y: 

          …………………………………………… (3.23) 

In order to maximize margin we will minimize:  

 

Since we have a function to minimize while satisfying inequality constraints, we can use 

the method of Lagrange multipliers to perform optimization: 

    ……………………... (3.24) 

This can be differentiated w.r.t w and b to obtain the following: 



Page 30 of 53 
 

       ………………………… (3.25) 

Package quadprog() in MATLAB is used to solve this dual optimization problem. The 

solution obtained through the above optimization would be sparse i.e. that most of the 

values of alpha would be zero while only significant alpha would correspond to support 

vectors (data points) at the classification boundary. Hence, these are the points at the 

boundary that decides the shape of the classification decision function. 

3.4.5 Non-Linear classification using SVM:  

 

The method of linear classification by SVM could be upgraded to perform nonlinear 

classification simply by replacing the higher order function for predictors, this paper 

uses a radial basis function to capture the non-linearity. 

           ………………..……………… (3.26) 
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Chapter 4: Results 

 

4.1 Results for PCA Strategy: 

Stock data of 20 stocks from the XLF financial sector are chosen for our principal 

components analysis: 

ACE, AFL, AIG, AMT, AXP, BAC, BK, BLK, BRK.B, C, COF, GS, JPM, MET, PNC, 

PRU, SPG, TRV, USB, WFC. 

Once these stocks were selected, Statistical arbitrage was performed on the first 10 

stocks with systematic returns as the projection of original 20 stocks’ returns onto the 

Eigen vectors and dynamically varying the Principal Components depending on the 

required amount of variance.  

Below are some of the statistics of the trading strategy used for this study: 

 

The results in below Figure 4.1 show the PnL versus Time graph. PnL refers to the daily 

change to the value of the trading positions. 

 PnL = Value today minus value yesterday. 

 

The graph in Figure 4.1 captures the evolution of PnL (profit and loss) of our strategy. 
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Figure 4.1: 
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4.2 Performance with SVM Validation: 

Classification training data set and out of sample testing is shown below in Figure 4.2 

for one of the stock (ACE).  

Figure 4.2: 

 

Where blue points are for +1 i.e. upward stock direction and red points correspond to 

downward market direction. Three technical indicators which are used as the predictors 

of the stock direction are shown on X, Y and Z labels.  

Out of sample testing is shown in below Figure 4.3, we can see that data has been 

classified nearly linearly; however there is some non-linearity in the classification 

decision as observed in the intermixing of blue and red points at the boundary region. 
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Figure 4.3: 

 

In order to fit the parameters for SVM training we are varying the sigma parameter for 

the radial basis function. The best accuracy is obtained with the sigma and C parameter 

as shown in the tables below: 

 

 

 

PnL graph of the combined strategy is shown below: 

(Sigma)^2=75 

C =  Accuracy 

1  56.78 

10  55.43 

30  57.23 

50  58.91 

75  56.80 

100  57.45 

(Sigma)^2=50 

C=  Accuracy 

1  54.38 

10  55.58 

30  56.71 

50  56.82 

75  55.55 

100  57.21 
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Figure 4.4: 
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Chapter 5: Conclusions & Feasible Future Enhancements 

 

 It is clear from the PnL graph of the combined SVM+PCA strategy that given a volatile 

market scenario the combined approach will produce a higher return, whereas under 

normal conditions, the PCA-only approach would produce a higher return, but with 

increased volatility. This observation could be attributed to the fact that with SVM 

validation, we are going to execute fewer trades than we would have otherwise. Hence, 

we are avoiding additional risk as well as the corresponding additional returns. 

 

A possible list of improvement in the current model and the future work is written 

below: 

1) Stock Selection: An additional constraint on the PCA algorithm to only select 

the stocks which can be explained by increasingly fewer numbers of common 

factors/components would lead to better application of statistical arbitrage 

principles. 

2) Adaptive trading rules: A mathematical framework of probability/confidence 

level indicated by mean reversion signal should be developed. An adaptive 

strategy would be to compare this probability with the SVM confidence level at 

the initiation as well as holding of the trade position at the end of every day. 

3) Different machine learning algorithms: Other machine learning algorithms which 

are suited for classification approaches could be applied to check the 

applicability e.g. neural networks. 
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4) More Technical Indicators: A large number of the technical indicators had been 

excluded from the analysis in this paper, inclusion of these indicators are bound 

to produce higher forecast accuracy. 
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Appendix A: Code for SVM Learning 

 

function statarb() 

  

% READ THE INDUSTRY SECTOR PRICES 

slf= xlsread('XLF Prices.csv'); 

  

l = 2491; 

n = 20; 

% READ ALL THE STOCK PRICES REQUIRED FOR PCA 

matfiles = dir(fullfile('C:\Users\Gopal\Desktop\PROJECT\data','*.csv')); 

  

data = cell(1,n); 

  

for i=1:n 

    str = strcat('data\',matfiles(i).name);  

%     str 

    data{i} = xlsread(str); 

    data{i} = data{i}(2:l+1,:); 

end 

  

close_prices = zeros(l,n); 

hi_prices = zeros(l,n); 

lo_prices = zeros(l,n); 

  

% SORT THE DATA (INITIAL DATA IS IN REVERSE ORDER) 

for i=1:n 

    close_prices(:,i) = fliplr(data{i}(:,6)); 

    hi_prices(:,i) = fliplr(data{i}(:,3)); 

    lo_prices(:,i) = fliplr(data{i}(:,2));     

end 

  

% EXTRACT THE CLOSE PRICES FROM THE MATRIX 

xlfclose = fliplr(slf(:,6)); 

xlflo = fliplr(slf(:,3)); 

xlfhi = fliplr(slf(:,2)); 

  

% MATRIX TO STORE SVM OUTPUT FOR DIFFERENT STOCKS AS WELL AS 

ETF 

svm_output = randi([0,1],l,n+1); 

  

% ASSUMING 58% ACCURACY FOR SVM, RANDOMLY MAKE A CORRECT 

DECISION WITH 

% PROBABILITY WITH 0.58 

for i=2:l 

    for j=1:n 
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    if(close_prices(i,j) - close_prices(i-1,j) > 0) 

        if(rand()>0.42) 

            svm_output(i-1,j) = 1; 

        else 

            svm_output(i-1,j) = -1; 

        end 

    else 

        if(rand()>0.42) 

            svm_output(i-1,j) = -1; 

        else 

            svm_output(i-1,j) = 1; 

        end         

    end 

    svm_output(i,j) = 1;     

    end 

end 

  

% IF SUM OF DIRECTIONS OF STOCK PRICES IN A SECTOR EXCEEDS 0 WE 

ASSUME THAT 

% THE SECTOR PRICE GOES UP AND VICE-VERSA 

for i=1:l 

sum = 0; 

for j=1:n 

    sum = sum+svm_output(i,j); 

end 

if(sum >0) 

    svm_output(i,n+1) = 1; 

else 

    svm_output(i,n+1) = -1; 

end 

end 

  

% CALCULATING STOCK RETURNS 

stockreturns = zeros(l-1,n); 

for i=1:n 

    stockreturns(:,i) = (close_prices(2:l,i) - close_prices(1:l-1,i))./close_prices(1:l-1,i); 

end 

     

% CALCULATING XLF RETURNS 

xlfreturns = (xlfclose(2:l) - xlfclose(1:l-1))./xlfclose(1:l-1); 

  

window = 60; 

th_bo = 1.25; 

th_so = 1.25; 

th_bc = 0.75; 

th_sc = 0.5; 
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% PERFORM TRADE BASED ON PCA AND SVM 

[total_pnl,pnl,residual_series,total_trades,winners,losers,best_winner,worst_loser,averag

e_holding_time,avg_returns,vol_returns] = 

trade(stockreturns,xlfreturns,window,th_bo,th_so,th_bc,th_sc,1,svm_output,1); 

plot(total_pnl(300:l-1),'b'); 

total_trades 

winners 

losers 

best_winner 

worst_loser 

average_holding_time 

np_wd = (total_pnl(l-1) - total_pnl(300))/get_dd(total_pnl); 

np_wd 

  

avg_returns 

vol_returns 

sr = avg_returns/vol_returns; 

sr 

  

% RESULTS FOR THE TRADE 

% total_trades =  1519 

% winners =  856 

% losers =  654 

% best_winner =  0.4811 

% worst_loser =  -1.0996 

% average_holding_time =  9.8532 

% np_wd =  1.8927 

% avg_returns =  0.8490 

% vol_returns =  1.7362 

% sr =  0.4890 

  

hold on; 

% PERFORM TRADE BASED ONLY ON PCA 

[total_pnl,pnl,residual_series,total_trades,winners,losers,best_winner,worst_loser,averag

e_holding_time,avg_returns,vol_returns] = 

trade(stockreturns,xlfreturns,window,th_bo,th_so,th_bc,th_sc,1,svm_output,0); 

plot(total_pnl(300:l-1),'r'); 

total_trades 

winners 

losers 

best_winner 

worst_loser 

average_holding_time 

np_wd = (total_pnl(l-1) - total_pnl(300))/get_dd(total_pnl); 

np_wd 
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avg_returns 

vol_returns 

sr = avg_returns/vol_returns; 

sr 

  

% RESULTS FOR THE TRADE 

% total_trades =  1596 

% winners =  896 

% losers =  691 

% best_winner =  0.5872 

% worst_loser = -0.9831 

% average_holding_time =  9.7450 

% np_wd =  2.3787 

% avg_returns =  0.8191 

% vol_returns =  1.7101 

% sr = 0.4790 

  

end 

  

% THIS FUNCTION RETURNS THE MAX DRAW DOWN VALUE 

function dd = get_dd(pnl) 

max = pnl(1); 

min_dd = 0; 

    for i=2:length(pnl) 

        if(pnl(i) < max) 

            if(pnl(i) - max < min_dd) 

                min_dd = pnl(i) - max; 

            end 

        else 

            max = pnl(i); 

        end 

    end 

    dd = abs(min_dd); 

end 

  

  

% THIS IS THE TRADING FUNCTION THAT TAKES CARE OF PCA|SVM 

TRADING 

% PARAMS: stockreturns - Different stock returns,syst_returns - the 

% systematic returns (with which Principal components are found),window - 

% the trailing window size,th_bo - buy to open threshold,th_so - sell to 

% open threshold,th_bc - buy to close,th_sc - sell to close,method - static 

% pca/dynamic pca,svm_output - the direction of prices given by svm,svm - 

% flag whether to do svm or not 
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function 

[total_pnl,pnl,residual_series,total_trades,winners,losers,best_winner,worst_loser,averag

e_holding_time, avg_returns,vol_returns] = 

trade(stockreturns,syst_returns,window,th_bo,th_so,th_bc,th_sc,method,svm_output,sv

m) 

  

num_stocks = length(stockreturns(1,:)); 

series_length = length(stockreturns(:,1)); 

  

% Stats for individual stocks 

pnl = zeros(series_length,num_stocks); 

residuals = zeros(series_length,num_stocks); 

trades = zeros(series_length,num_stocks); 

  

position = cell(num_stocks); 

b = zeros(num_stocks,num_stocks); 

  

% Stats for all stocks 

total_pnl = zeros(series_length,1); 

  

total_trades = 0; 

win_lose = zeros(num_stocks,1); 

holding_time = zeros(num_stocks,1); 

average_holding_time = 0; 

winners = 0; 

losers = 0; 

best_winner = -1000; 

worst_loser = 1000; 

entry = 0; 

exit = 0; 

daily_returns = zeros(series_length,1); 

  

svm_length = length(svm_output(1,:)); 

  

    for i=300:series_length 

        % THE PCA CASE 

        if(method ~= 2) 

            syst_returns_prev_yr = get_pca_returns(syst_returns(i-250:i,:),method); 

            syst_returns_prev_window = syst_returns_prev_yr(252-window:251,:); 

        else 

            % OPTIONAL ETF CASE - NOT USED 

            syst_returns_prev_window = syst_returns(i-window:i-1,:); 

        end 

        for j=1:num_stocks 

            % MAKE A DECISION FOR A GIVEN STOCK 
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            [signal,beta,residual] = generate_signal(stockreturns(i-window:i-

1,j),syst_returns_prev_window,th_bo,th_so,th_bc,th_sc,position{j}); 

            residuals(i,j) = residual; 

            % IF THERE IS NO TRADE SIGNAL 

            if(strcmp(signal,'#') || strcmp(signal,'nosignal'))  

                if(strcmp(position{j},'so')) 

                    % IF WE WERE IN SELL TO OPEN TRADE ALREADY 

                    l1 = length(syst_returns_prev_window(1,:)); 

                    sum1 = 0; 

                    sum2 = 0; 

                    for k=1:l1 

                        sum1 = sum1 + b(j,k)*syst_returns_prev_window(window,k); 

                        sum2 = sum2 + syst_returns_prev_window(window,k); 

                    end 

                    % PNL AND RETURNS CALCULATION 

                    pnl(i,j) = pnl(i-1,j) -stockreturns(i,j) + sum1; 

                    daily_returns(i) = daily_returns(i) -stockreturns(i,j) +sum2; 

  

                elseif(strcmp(position{j},'bo')) 

                    % IF WE WERE IN BUY TO OPEN TRADE ALREADY                     

                    l1 = length(syst_returns_prev_window(1,:)); 

                    sum1 = 0; 

                    sum2 = 0;                     

                    for k=1:l1 

                        sum1 = sum1 + b(j,k)*syst_returns_prev_window(window,k); 

                        sum2 = sum2 + syst_returns_prev_window(window,k);                         

                    end    

                    % PNL AND RETURNS CALCULATION                     

                    pnl(i,j) = pnl(i-1,j) +stockreturns(i,j) - sum1;     

                    daily_returns(i) = daily_returns(i) +stockreturns(i,j) -sum2; 

  

                else 

                    pnl(i,j) = pnl(i-1,j); 

                end             

             

            else 

                % THERE WAS A TRADE SIGNAL 

                pnl(i,j) = pnl(i-1,j);                  

                % IF IT WAS A CLOSE TRADE SIGNAL or IF IT WAS AN OPEN 

TRADE 

                % SIGNAL AND SVM DOESN'T COMPLT WITH THE MEAN 

REVERSION, 

                % WAIT FURTHER TO ENTER or ELSE ENTER AND TAKE POSITION 

                if(~svm || strcmp(signal,'bc') || strcmp(signal,'sc') || (strcmp(signal,'so') && 

~(svm_output(i,j) == 1 && svm_output(i,svm_length) == -1)) || (strcmp(signal,'bo') && 

~(svm_output(i,j) == -1 && svm_output(i,svm_length) == 1)))                 
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                % TAKING POSITION     

                position{j} = signal; 

  

                for k=1:length(beta) 

                    b(j,k) = beta(k); 

                end 

                trades(i,j) = residual; 

           

               % CALCULATING DIFFERENT STATISTICS LIKE 

WINNERS,LOSERS,TOTAL TRADES etc.  

               if(strcmp(position{j},'so') || strcmp(position{j},'bo')) 

                    win_lose(j) = pnl(i,j); 

                    total_trades = total_trades+1;                     

                    holding_time(j) = i; 

                    if(exit==0) 

                        entry = i; 

                    end 

               elseif(strcmp(position{j},'sc') || strcmp(position{j},'bc')) 

                   average_holding_time = average_holding_time + (i-holding_time(j)); 

                    if(pnl(i,j) > win_lose(j)) 

                        winners = winners+1; 

                        if(pnl(i,j) - win_lose(j) > best_winner) 

                            best_winner = pnl(i,j) - win_lose(j); 

                        end 

                    else 

                        losers = losers+1; 

                        if(exit == 0) 

                        exit = i; 

                        stock = j; 

                        po = position{j}; 

                        end 

                        if(pnl(i,j) - win_lose(j) < worst_loser) 

                            worst_loser = pnl(i,j) - win_lose(j); 

                        end                         

                    end 

               end 

               end 

            end 

           

        end 

  

        % CALCULATING TOTAL PNL 

        for j=1:num_stocks 

            total_pnl(i) = total_pnl(i) + pnl(i,j); 

        end 
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    end 

    % AVERAGE RETURNS AND VOLATILITY 

    avg_returns = mean(daily_returns(300:series_length))*252; 

    vol_returns = std(daily_returns(300:series_length))*sqrt(252); 

     

    % AVERAGE HOLDING TIME 

    average_holding_time = average_holding_time/total_trades; 

    residual_series = residuals; 

  

end 

% FUNCTION TO GENERATE TRADE SIGNAL 

function [signal,beta,residual] = generate_signal(r_stock, syst_returns, 

th_bo,th_so,th_bc,th_sc,position)  

    if(length(r_stock)~=length(syst_returns(:,1)))  

        signal = '#'; 

        return; 

    end 

    ones_array = ones(length(syst_returns(:,1)),1); 

    % PERFORM THE REGRESSION TO ESTIMATE BETAS 

    [p,bint,r] = mvregress([ones_array,syst_returns],r_stock); 

    l = length(r_stock); 

    beta = p(1:length(p)); 

  

    r_stock_res = r; 

     

  

    x = zeros(l,1); 

    x(1) = r_stock_res(1); 

    % CONSTRUCT AUXILIARY SERIES THAT CORRESPONDS TO OU 

PROCESS 

    for i=2:l 

        x(i) = x(i-1)+r_stock_res(i); 

    end 

    residual = x(l)-x(l-1); 

     

    m = mean(x); 

    % AR(1) MODEL ESTIMATES OF RESIDUALS 

    [model,e] = arcov(x-m,1); 

    % COMPUTING OU PARAMETERS AND THEREBY S-SCORE 

    b = -model(2); 

  

    sigma_eq = sqrt(e/(1-b*b));  

    s_score = -m/sigma_eq; 

    if(s_score < -th_bo && ~strcmp(position,'bo'))  

        signal = 'bo'; 
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    elseif(s_score > -th_sc && strcmp(position,'bo')) 

        signal = 'sc'; 

    elseif(s_score > th_so && ~strcmp(position,'so')) 

        signal = 'so'; 

    elseif(s_score < th_bc && strcmp(position,'so')) 

        signal = 'bc'; 

    else 

        signal = 'nosignal'; 

    end 

end 

% THIS FUNCTION DOES THE PRINCIPAL COMPONENT ANALYSIS TO 

ESTIMATE 

% SYSTEMATIC RETURNS 

function pca_returns = get_pca_returns(stockreturns,dynamic_pca) 

    [coeff, score, latent] = princomp(stockreturns); 

    if(~dynamic_pca) 

        % STATIC PCA - TAKE JUST 15 FACTORS ALL THE TIME 

        pca_returns = score(:,1:15); 

    else 

        % DYNAMIC - TAKE VARIABLE NUMBER OF FACTORS DEPENDING ON 

AMOUNT OF 

        % VARIANCE EXPLAINED - 70% 

        sig_eigen_vec = cumsum(latent)./sum(latent); 

        for i=1:length(sig_eigen_vec) 

            if(sig_eigen_vec(i) >= 0.70) 

                pca_returns = score(:,1:i); 

                return; 

            end 

        end 

    end 

end 

 

 


