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ORDER RESULTS FOR MONO-IMPLICIT
RUNGE-KUTTA METHODS*

K. BURRAGEt, F. H. CHIPMAN$, AND P. H. MUIR

Abstract. The mono-implicit Runge-Kutta methods are a subclass of the well-known implicit
Runge-Kutta methods and have application in the efficient numerical solution of systems of initial
and boundary value ordinary differential equations. Although the efficiency and stability properties
of this class of methods have been studied in a number of papers, the specific question of determining
the maximum order of an s-stage mono-implicit Runge-Kutta method has not been dealt with. In
addition to the complete characterization of some subclasses of these methods having a number of
stages s

_
5, a main result of this paper is a proof that the order of an s-stage mono-implicit

Runge-Kutta method is at most s + 1.
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1. Introduction. Implicit Runge-Kutta (IRK) methods were first presented in
[4] for use in the numerical solution of initial value ordinary differential equations.
Since that time there has been considerable attention devoted to these methods. The
reader is referred to [5] for an extensive review of these methods.

An IRK method can be used to compute an approximation to the solution of the
initial value problem

y’(t) f(y(t)), y(ti) Yi,

where y(t) E Rn and f Rn Rn. (For convenience we will consider only autonomous
systems.) Using an IRK method, we obtain an approximation, Yi+l, to the true
solution, y(t), evaluated at the point ti+l ti + hi, of the form

(1.1) Yi-i Yi + hi bf()),
r--1

where

(1.2) r Yi + hi ar,jf()j),
j=l

r:l,...,s.

These methods are often given in the form of a tableau containing their coefficients,
which, for the above method, would have the following form:
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Cl

C8

al,1 al,s

as,1 as,s

8where ci --j=l ai,j.

Let b (bl, b2,..., bs)T, A be the s s matrix whose (i,j)th component is ai,j,
and e be the vector of l’s of length s. Then c (Cl,C2,... ,c8)T can be expressed as
c Ae, and the stability function of the IRK method is given by

R(h) 1 + hbT(I- hA)-le.
Note that in (1.2) above, each stage, )r, is defined implicitly in terms of itself

and the other stages. Hence in order to obtain approximate values for the stages it
is necessary to solve a system of n. s, in general, nonlinear equations. This is often
done using some form of modified Newton iteration, which makes the calculation of
the stages a somewhat computationally expensive process.

A number of interesting subclasses of the IRK methods have recently been identi-
fled and investigated in the literature. These methods represent attempts to trade-off
the higher accuracy of the IRK methods for methods which can be implemented
more efficiently. Examples of such methods are singly-implicit Runge-Kutta methods
[2], diagonally implicit Runge-Kutta methods [20], and mono-implicit Runge-Kutta
methods [10].

In [18], an alternative representation of the IRK methods known as parameterized
implicit Runge-Kutta (PIRK) methods was presented. These have the form

(1.3) Yi+ Y + hi brf()),
r=l

where

(1.4) $ (1 v)yi + vrYi+l -- hi X,jf()j), r 1,..., s.
j=l

They are usually represented by a modified tableau; the above method would have
the tableau

Cl

58

Vl

V8

Xl,1 Xl,s

Xs,1 Xs,s

where ci vi + j=l xi,j. Substituting for yi+l from (1.3) in (1.4), it is easily seen
that the PIRK method given above is equivalent to the IRK method with coefficient
tableau
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c1

C8

X1,1 -{- vlbl Xl,2 -- vlb2 Xl,s + Vlbs

Xs,1 -- Vsbl xs,2 + vsb2 Xs,s + vsb

bl b2 bs

Let v (Vl, V2,..., Vs)T and X be the s s matrix whose (i,j)th component is

x,j. Then c Xe + v and, from [18], the stability function, R(h), of a PIRK satisfies

where

P(h, e v)R(h)-
P(h,-v)

P(h, w) 1 + hbT(I- hX)-lw, w e Rs.
If we impose on the PIRK methods the restriction that the matrix X be strictly

lower triangular then the resultant methods are known as mono-implicit Runge-Kutta
(MIRK) methods.

MIRK methods have been discussed in the literature by a number of different
authors for more than a decade. A subclass of these methods was first suggested for
use in the solution of initial value ODE problems in [6]. The full MIRK class was
presented for initial value problems in [1] (w.here they were called implicit endpoint
quadrature formulas) and [10]. See [18] for a survey of these methods. It appears
that, for initial value ODE problems, the computational costs associated with the use
of MIRK methods are comparable to those of the best implementations of the more
general IRK methods, such as described in [5]. MIRK methods have been considered
for boundary value ODEs in [7]-[9], [11], [13], and [16]. For BVODEs, these methods
can be implemented at a cost comparable to that of explicit Runge-Kutta methods
(see [13]). MIRK methods have been used in the implementation of a software package,
for the numerical solution of BVODEs, using deferred corrections, called HAGRON
[7], [8], [12]. More recently, the MIRK methods have been used in a software package
which employs continuous extensions of these methods (see [19]) to provide defect
control for the numerical solution of BVODEs (see [14]).

Much of the above work has been concerned with the identification of particular
MIRK methods and the investigation of their efficient implementation. As well, there
has been some investigation of the forms of the order conditions for these methods, as
they relate to the well-known Butcher conditions for the standard IRK methods, in
[1] and [16]. However, a complete characterization of low-order MIRK methods has
not been undertaken, as has been done for low-order explicit Runge-Kutta methods
in [5]. This characterization is important because it allows an analysis of the resultant
families to determine new methods representing potential improvements upon those
currently available. Furthermore, the question of the maximum order of an s-stage
MIRK has not been answered. In [17], it was conjectured that this maximum order
is s + 1 and in [7] the maximum order question was identified as a significant open
problem in the study of MIRK methods.

In 2 we present characterizations for several subclasses of MIRK methods having
a small number of stages. In 3 we present some general results on the maximum order
of an s-stage MIRK method, and show that an upper bound for the maximum order
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is S + 1. In 4 we give some conclusions and suggestions for future work.

2. Low-order mono-implicit Runge-Kutta methods. In this section we
present characterizations for a number of families of MIRK methods, having 1, 2, 3,
4, or 5 stages.

For the standard IRK method to have at least stage order p, it must satisfy the
conditions B(p) and C(p) (see, e.g., [5, p. 289]), where

B(p)" bTck-l= l/k, k 1,... ,p,

C(p) Ack- ck/k, k l,... ,p,

where ca (c, c,..., c). For a MIRK method to have at least stage order p, it
must satisfy the conditions, B(p), as given above, and the following form of the C(p)
conditions,

C(p) v + kXck-1 c, k 1,... ,p,

since for a MIRK method expressed in standard IRK form, we have A X + vbT.
If, in addition, either of the conditions B(p + 1) or C(p + 1) do not hold, then either
class of methods has exactly stage order p. Throughout this paper, unless explicitly
stated otherwise, all references to order or stage order should be interpreted to be
exact order or exact stage order. Also, for an IRK or MIRK method to be of classical
order at least p + 1, it is sufficient for the method to satisfy B(p + 1) and C(p). See
[5, pp. 214-219].

It has recently become clear (see, for example, [15]) that, in addition to the
usual Runge-Kutta order concept, it is important to take into consideration the stage
order of the Runge-Kutta method, at least in the context of solving stiff systems of
differential equations. The basic idea is that a pth order Runge-Kutta method with
stage order q, (q < p) when applied to a stiff ODE system, can yield errors of order q or
q+ 1, rather than the expected order p (see [15]). Thus, in searching for new methods it
is important to require relatively high stage order. For a pth-order method, we would
like to require stage order p- 1 because the order reduction phenomenon is then not
a concern and the order conditions needed to derive such a method are reduced to
simply the quadrature conditions. Despite the advantages of having methods with
high stage order, the following theorem shows that there is no point in searching for
methods with stage order higher than 3.

THEOREM 2.1. (i) A MIRK method having at least stage order 2 must have c 0
or c 1; (ii) a MIRK method having at least stage order 3 must have x2, 0 and
either c 0, c2 1 or (equivalently) Cl 1, c 0; and (iii) the maximum stage
order of an s-stage MIRK method is min(s, 3).

Proof. (i) The stage order 2 conditions for a MIRK method are v + Xe c, and
v + 2Xc c. The first equation from each of these gives Vl Cl and vl Cl from
which it follows that Cl 0 or 1.

(ii) The stage order 3 conditions are v +Xe c, v + 2Xc c2, and v +3Xc ca.
From (i) we have either c 0 or c 1. If c 0 then the second equation from each
of these is v + x2, c2, v c, and v c, from which it follows that x,l 0,
and c 1, so that the first and second stages are not the same. A similar argument
holds for the case where Cl 1.

(iii) For s 1 or 2, an s-stage MIRK method can only satisfy, simultaneously, at
most, either C(s + 1) and B(s), or C(s) and B(s + 1). In either case this implies that
the stage order is s. For s _> 3, suppose the MIRK method has at least stage order
4. Then it must satisfy the C(4) conditions which are v + Xe c, v + 2Xc c,
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v + 3Xc2 c3, and v + 4Xc3 c4. Again from (i) we have either Cl 0 or Cl 1.
For each value of cl, it follows from (ii) that x2,1 0 and c2 1 if Cl 0, or c2 0 if
Cl 1, so that the second stage is different from the first. Repeating this process for
the third equation from each set of C(4) conditions we come to the conclusion that
the third stage must be the same as either the first or the second stage, thus implying
that the MIRK method has only s- 1 distinct stages, a contradiction. Hence the stage
order of an s-stage MIRK method, with s _> 3, is at most 3. ]

In 3 of this paper we will show that the maximum order of an s-stage MIRK
method is order s + 1; hence in the following discussion, any s-stage MIRK method of
at least order s + 1 is of order exactly s + 1.

2.1. MIRK methods with I stage. For the class of one-stage MIRK methods,
a family of methods of at least order 1, including the explicit and implicit Euler
methods, is obtained when b 1, v c with c left as a free parameter. If we

then we obtain the unique one-stage MIRK method of maximum orderchoose Cl 5,
2, namely the midpoint rule.

2.2. MIRK methods with 2 stages. Specific examples of order 2 MIRK
methods are the trapezoidal rule (x2,1 0, c v 0, c2 v2 1, b b2 1/2)
and a one-parameter family of second-order two-stage MIRK methods given in [1]
(method II). A more interesting question involves searching for third-order MIRK
methods with 2 stages. An example of such a method is the two-point Gauss-Radau
IRK method (Radau IIA), given in MIRK form in [1] (method III).

In order to search for third-order methods we must examine the corresponding
order conditions for a two-stage MIRK method. It is a straightforward process to
convert the standard Butcher conditions for IRK methods (see [5, p. 234]) to modified
Butcher conditions that can be applied directly to methods expressed in terms of the
MIRK tableau, i.e., with the inclusion of the extra parameters Vl,V2,...,vs. For
example, for third-order two-stage MIRK methods we have the following conditions:
the quadrature conditions, denoted as B(3),

bCl 2 2b + b2 1, bl Cl -[- b2c2 -, -k b2c2 -,
and the condition,

b2x2,1Cl -[- 1/2 (51Vl -[- b2v2) .
Solving the above system, we get the following one-parameter family of two-stage
third-order MIRK methods (letting Cl be the parameter)"

al

3Cl 2

Cl

36c31 54c + 27cl 4

0

2(3Cl 3ci + 1)
0

9(20 1)
1 3(4c 4Cl + 1)

4(312 3C1 + 1) 4(3Cl 3c + 1)

From an examination of the order conditions for order 4, it can easily be seen that it
is impossible to choose the one free parameter, Cl, so that the above family can he.of
at least fourth order. Thus, for two-stage MIRK methods the maximum order is 3.

The linear stability function associated with this family of methods is

R(z) 6(1 2Cl)-- 2(2- 3Cl)Z -[-(1 --C)Z2

6(1 2Cl 2(1 3c)z cz2
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and the method is A-stable if and only if cl > 1/2. Also, note that if c2 -Cl + 0
then B(4) holds. This is the MIRK analogue of the two-stage Gauss method of
order 4.

The above family of methods has at least stage order 1. To find third order
methods having stage order 2, we must impose the C(2) conditions on the family of
third-order methods above. We find that the only members that have stage order 2 are
obtained by choosing cl 1 or 0 in the C(1) family which gives, respectively, method
III (from [1]) mentioned above (which is A-stable) and its reflection [21] (which is not
A-stable).

2.3. MIRK methods with 3 stages. We will first search for three-stage
methods having at least at least order 3 and at least stage order 2. It is then necessary
and sufficient to impose the B(3) and C(2) conditions. The latter condition implies
either c 0 or c 1. We consider the cl 1 case, noting that its reflection will yield
the Cl 0 case. We get the following three-parameter family of methods where c2,

c3, and v3 are the parameters, with the restriction that 1, c2, and c3 are all different.

V3

0 0 0

c2 (c2 1) 0

c3 (c3 2c2 + v3 (2c2 1) v3 + c3 (c3 2)

6c2c3 -3c3 -3c2 +2 3c3 3c2 -1

6(c2 1)(c2 c3) 6(C3 1)(3 (:2)

The linear stability function is

6( + 2(c )z + (c2 1)z2R(z)
6( 2(2( + )z + (a +/(c2 + 1))z2 ]2z3’

where

O--(C3- 1)(C3- C2), and 1/2(V3 -- C3(C3 2))(3c2 1).

The methods are A-stable if and only if /a > 0 and (3c2 1)/a < 1/2. If we were to
require stage order 3, thus making c2 x2, 0, v3 c](3- 2c3), x3, c(c3 1),
and x3,2 c3(c3 1)2, the resulting method is A-stable if and only if c3 > 1. The
reflection of this method, with Cl 0, can only be A-stable if c9. 1, and hence

X2,1 0.
If we now search for three-stage, order 4 MIRK methods with at least stage order

2, we get a one-parameter family of methods with either Cl 0 or cl 1. Considering
the case cl 1, we have the following one-parameter family (where the parameter is

c2 is a real number, satisfying c # 1/4, , or 1)"
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C2

22- 1

6c2 2

c(2- c2)

0 0 0

c(c- ) 0 0

(1 2c2)(1 4c2) (4c2 1)a
2(c2- 1)7 2(c2.- 1)7

6c2 -6c2 + 1 1

6(4c2- 1)(c2- 1) 6(C2- 1)a
2(3c2- 1)3

3(4c2 1)a

where

180c- 240%3 + 121c- 26c2 + 2, 7 4(3c2 1)4

=1-10c2+24c-18c23, and a-6c-@2+1.
The linear stability function for this family of methods is given by

(z) P(z,c)
Q(z,c)

12(1 3c2) + 6(1 2c2)z + (1 c2)z2

12(1 3c2) 6(1 4c2)z + (1 7c2)z2 + c2z3’

and the methods are A-stable if and only if c2 > or c2 0. The choice of c2 0
gives stage order 3.

The cl 0 case gives the stability function,

R(z)
Q(-z, 1 c2)
P(-z, 1 c2)’

and hence methods that are only A-stable for the one choice c2 1, the stage order
3 case. It is easy to show that this stage order 3 method is the only such fourth-
order, three-stage method. It is given in [1] (method IV) and is obtained by choosing
cl=v1=0, c2=v2=1, x2,1=0, c3=v3= ,andx3,1=-x3,2=.

2.4. MIRK methods with 4 stages. As might be expected, is not difficult
to obtain four-stage MIRK methods of order at least 4. Two examples are given in
[1] (methods V and VII), both of which have stage order 2. Below we give a three-
parameter family of four-stage methods of at least order 4 having stage order 3. These
are obtained by imposing the B(4) and C(3) conditions. The parameters are c3, c4,
and v4, with the restrictions that c3 :/- c4, c3 0, 1/2, 1, and c4 # 0, 1.

c](3 2c3)

V4

0 0 0 0

0 0 0 0

c3 (c3 1)2 c32 (c 1) 0 0

6C3 6(C3 --. 1) 6c3(c3,-- 1)
0

2c4 1 1 2c3

12C3 C4 12(1 C3 (1 C4 12C3 (C4 C3 (1 c3 12c4 (c4 C3 (1 C4

where

C 6C4C3 A- V4 3c3V4 3C3C42 A- 2C43 3ca2, 7 3C3(C V4) 2(C43 V4),

ti 1 2(c3 + c4) + 6c3c4, 3 4(c3 + ca) + 6c3c4,
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and
C42(2C4 3) + V4.

The linear stability function is

R(z) Po + plz + p2z
2 + paz3

qo + ql z + q2z2 + q3z3

where

po q0 12ca (ca 1 )(ca ca ), pl 6C4 C4 1 )(ca c3 (c 254 3 -f- V4 )(2C3 1 ),

ql --6c4 (c4 1)(c4 c3) (c42 (2c4 3) + V4)(2C3 1),

P2 C4(C4 1)(c4 c3) + (c](2c4 3) -I- v4)(c3 2)(2c3 1),

q2 c4(c4 1)(c4 c3) -4- 1/2(c42(2c4 3) + v4)(53 -- 1)(2c3 1),

P3--l (c42(2c4 3) A- v4)(2c3 1)(c3 1), q3 -- (C](2C4 3) + V4)C3(2c3 1).

nd( )/6( )(4-)>0.The family will be A-stable if and only if c3 >
It is also possible to generate four-stage, fifth-order MIRK methods. However,

from Theorem 2.1 it is only worthwhile to search for four-stage, fifth-order MIRK
methods having at most stage order 3. Below we present a four-stage, fifth-order
family of at least stage order 2, which includes a four-stage,, fifth-order family of stage
order 3. The stage order 2 family has two parameters, c2 and c3.

C2

C3

c2 (2 c2)

c3 (2 c3 + 2x3,2 (c2 1)

X4,1 X42 X4,3

0 0 0 0

c2 (c2 1) 0 0 0

c3 (C3 1) Z3,2 (2c2 1) X3,2 0 0

X4,1 X4,2 X4,3

l-b2 -b3 -b4
5(a3 5(C2 125fl

)(C2, C3 (C3, C2 12/

where
a 10C2C3 5(C2 "4- 3) A- 3, / 6C2C3 2(c2 + C3) -4- 1,

(5 O)(5C2 O)(5C3 O),

5(c)=10c2-8c+1, where c=c2 or c3,

(c,d)=12(1-c)(d-c)(5c3-a), where c,d=c2,c3 or c3, c2,

(2c2c3 + c2 + c3 1)(1 c3)(c2 C3)
x3,2 (3c2- 1)(c2- 1)5(c2)

a () (2ca 1) x4,2(2c2 1)
75(c2)

x4,1- -1 -x43 x4,3= 6255(c3_1)(c2_c3),
and

(5- )(hcZ- )(53 2)- 125Sx,3(3s 1)(s 1)
x4, 15s(3- 1)(- 1)

There are several restrictions on the values of the two parameters: c2 # c3, c2 ,
1, s # 1, 5(c) # 0, # 0, # 0, (, cs) # 0, and (cs, c2) # 0.
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where

The linear stability function for this family is given by

R(z)
WO ’Jc- W Z nc W2z2 nt- W3z3

to tlz t2 z2 t3z3 t4z4

w0 to 60(3c2 1),

Wl 12(3c2 1)a, w2 3/(3c2 1)+ 6(a- 2/)(2c2 1), w3 (a- 2/3)(c2 1)

and

tl 12(3c2 1)(5 a), t2 6(a 2/)(4c2 1) 9/(3c2 1),

t3 --/(3C2 1) (7c2 1)(a 2/), t4 c2(ce 2/).

The methods are A-stable if and only if 0 < (2/ a)(2c2 + 1)//(3c2 1) < .
A one-parameter four-stage, fifth-order, stage order 3 family, contained within

the above family, is obtained simply by choosing c2 0. In this case, the methods are
A-stable if and only if c3 > 1.

2.5. MIRK methods with 5 stages. We focus, in this section, on five-stage
methods of maximum order 6. An example of such a method is given in [1] (Method
VIII), where the stage order has the maximum value of 3. This method is generalized
to a five-stage, sixth-order, one-parameter family of methods having stage order 3
in [16, Table 2]. In this section we complete the generalization of these methods
by presenting a two-parameter family of five-stage, sixth-order methods having stage
order 3. The parameters are C3 and c4; by choosing C3 (1-p)/2 and c4 (1 + p)/2
we get the one-parameter family (with parameter p) given in [16]. The restrictions on
the parameters C3 and C4 are C3 0, 1, C4 0, 1, a =/= 3 = 0, ](C3) 0, ?’](C4) 0,
(c3, c4) 0, (c4, c3) - 0, 6(c3) - 0, and "(c4) : 0. The two-parameter family is
given below.

C3

C4

c](3 2c3)

c42(3 2c4) + 6x4,3c3 (c3 1)- X5,1 X5,2 X5,3 X5,4
P

0 0 0 0 0

0 0 0 0 0

C3(a3 1) ](C3 1) 0 0

(a3 -I- 4 1)3(C4, C3
0 0X4,1 X4,2 25(C3 )y(C3)

x5,1 x5,2 x5,3 x5,4 0

bl b2 b3 b4 b5

0

where

X4,1 C4(C4 1) 2 X4,3(3C3 1)(C3 1), X4,2 42(C4 1) X4,3(3C3 2)C3,

X5,1 --C5(C5- 1)2- X5,3(3C3- 1)(C3- 1)- x5,4(3c4- 1)(c4- 1),

X5,2 C52(C5 I) x5,3(3c3 2)c3 x5,4(3c4 2)c4,

1 54 ((C4) 0( 0)/(C3)T](C3)77(54)
X5,3 60b55(c3) x4’355 x5,4 ((c3) x5,4 (c4, c3)/6
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bl
5c] (10c 12ca + 3) 5ca (12c 1554 -- 4) -- (15c 20c4 -- 6)

60(Ca- 1)(C4- 1)(- a)

b2
5c32(10c -8c4 -- 1)- 5C3(8C 7C4 + 1)+ y(C4)

60c3caa

(4)
64 ’(a)

60/)(c3, c4)T](c3) (0(c4, c3)r](c4) 60o(fl
and where

and

O 5C4C3 3(C3 -- C4) q- 2, / 10C3C4 5(C3 -t- C4) -- 3,

/(c) 5c2 5c +1, 5(c)=c(c-1)(2c-1), r/(c)=ce-a,

b(c, d) c(c 1)(c d).
The linear stability function is

R(z) wo + wz + wz + wz + wz
to tlz t2z2 t3z3 t4z4

where

w0 to 120(2ca- 1)e, 2/31 120(2ca- 1)c, tl 120(2ca- 1)(5cac4-2(ca+ca)+l),

w2 12(20ca2c4 25cac4 + 7c4 15c + 18c3 5),
t2 -12(20cc4 15c3c4 - 2c4 5c32 q- 3c3),

wa 2(10c32ca 16caca + 4ca 11c32 + 13ca 3),

ta 2(10ca2ca -4caca 2ca + c 5ca + 3),

w4 ca(1 ca ca), ta (ca 1)(1 ca c4).

and (1 ca ca)/ > O.The methods are A-stable if and only if ca <
3. The maximum order of an s-stage MIRK method. In this section,

we will present a proof giving an upper bound on the order of an s-stage MIRK
method, as given in (1.3) and (1.4), with coefficients represented by the vectors, c

(c,c2,... ,c8)T, v (v,v:,... ,vs)T, b (bl,b:,... ,b)T, and the strictly lower
triangular s s matrix X, whose (i, j)th component is xi,j. As before, e is the vector
of l’s of length s. The proof is based on a subset of the Runge-Kutta order conditions,
which we now present. (See [3, Thm. 7] for a related result.)

LEMMA 3.1. For an s-stage MIRK method having at least order s + 2,

(CTCs) bTxq-P(cp+I ) bTxq-p+I((p 1)cp e), p 1,... ,s, q p, ,s.

(We refer to these conditions as the"cabbage tree" conditions (CTCs), since they are
based on the order conditions associated with the set of trees, each consisting of a
trunk of "i" edges surmounted by a bunch of "j" edges.)

Proof. Among the order conditions that any Runge-Kutta method of order at
least s + 2 must satisfy are

bTAq-P+lcp p!/(q + 2)! and bTAq-Pcp+ (p + 1)!/(q + 2)!.
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Let t cp+I (p + 1)Acp. Then

bTAq-pt=O, p=l,...,s, q=p,...,s,

giving (for a MIRK method, where A X + vbT)
bTAq-pt bT(X + vbT)Aq-P-lt bTXAq-p-lt bTX2Aq-p-2t

bTXq-pt O.

Since, for a MIRK method, v c- Xe, we get

bTxq-P (cp+I (p + I)X IcP p+ 1
-c =0,

from which the result follows.
We note that since X is strictly lower triangular, the vector bTxi, i 1,..., s- 1

has at least zero elements, in the last positions. We are interested in the (poten-
tially) nonzero elements only, and so shall denote by yi (yi,1 yi,i)T, the vector
of length consisting of the first elements of bTxs-i, i 1,..., s 1.

With
c-cl c-c2 c--ck

v 1- 4 c c
c/ c c/ c c/ c

a k by k matrix, and

2Cl 1 2c2- 1 2ck-1 1

3Cl2 1 3c22 1 3c_ 1

(k+l)ck-1 (k+l)c2k-1 (k+l)ckk_l--1
a k by k- 1 matrix, the CTCs may be grouped and rewritten as

(1) Vy =0,

(2) V2y2 Vyl,

(3) V3y3 Vy.,

(s- 1) Vs-ys- V_2Ys-2,
and finally

1
() v,’s-lYs-I --where we note that CTC(k) consists of k equations, k 1, s. In the remainder
of this proof, the right-hand sides of some of the CTCs will reduce to the zero vector.
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When it arises in CTC(k), or in equations involving the vector Yk, 0 will denote the
zero vector of length k.

In the proof of the main result that follows, we need the following lemma.
LEMMA 3.2. Consider the matrix V and suppose ci cj for j, i,j

1,...,k.
(a) If ci2 ci for all ....1, k, then Vk is nonsingular.
(b) If cp2 cp for exactly one index p {1,..., k}, and if /k represents Vk with

column p replaced by its derivative with respect to Cp, then is nonsingular.
(c) If there exist two distinct indices p, e {1,..., k}, with C2p Cp and c ct

and k represents k with column replaced by its derivative with respect to ct, then
is nonsingular.
Proof. Part (a) follows immediately from the fact that

det(V) II(c c) (c c)
i--1

Parts (b) and (c) follow from the above expression for det(Vk) and the fact that

act(lz) det(V) and

We are now in a position to present and prove the main result of this section.
THEOREN g.a. The mximm order of an s-sage MIRK method cannot ezceed

s+l.
Proof. If s 1 or 2, then the result follows from 2.1 and 2.2. Hence we assume

s >_ 3. Suppose there is an s-stage MIRK method of order at least s + 2. We consider
the CTCs one at a time.

CTC(1) states that (c cl)yl, 0, and hence at least one of these two factors
must vanish. Suppose c2 c 0. Then, in fact, y, must also be zero, for consider
CTC (2), which becomes

(c2-c2) (-1)c2
3

c2
y2,2 1 Yl’ or

2 y1,1.

If y, : 0, then c2 0 or 1, both of which lead to contradictions in the above
equations. Hence y1,1 Yl 0. This result holds independently of whether or not

Cl
2 c, c2

2
c2, or c c2.

Note that if the ci are distinct and all different from zero or one, Lemma 3.2 and
the CTCs from (1) through (s- 1) give y 0 for all 1,..., s- 1. CTC(s) then
obviously fails to hold. Thus we see that if there is to be any possibility for a method
of at least order s + 2 to exist, we must satisfy at least one of the conditions

2 {1,..., 1} forij, i,j{1,..., 1}.c ci, E s- or ci Cj 8-

We shall refer to these as singularities of type I (c2 ci) and type II (ci cj, j).
(Note that a type I singularity implies that ci 0 or 1.)

Consider the first type II singularity that we encounter, involving ck ci for some
E {1,... ,k- 1}. Because columns and k in Vk are identical, we modify CTC(k)

by replacing Yk,i with y,i + Yk,k, replacing Ck with any real value different from all
the abscissae, and replacing Yk,k with zero. In fact, we carry out these modifications
on all the remaining CTCs, replacing each yj,i with y,i + Yj,k, ck with a real value
different from the abscissae, and each Yj,k with zero, for j k, k + 1,..., s- 1.



888 K. BURRAGE F. H. CHIPMAN AND P. H. MUIR

We remove all further type II singularities in this manner, and are left with
a modified set of CTCs for which, in the remainder of this proof, we will use the
same notation. Hence, even although a repeated abscissa ck has been replaced by an
arbitrary distinct value, we will still denote this new value by ck. Likewise, some of
the components of the yi’s no longer denote their original values.

If there is no type I singularity, we see that all the Yi, 1,..., s- 1, must
vanish, leading to a contradiction in CTC(s). Hence we must have at least one type I
singularity. In fact, there can be at most two such singularities (with abscissae equal
to 0 and 1), since any additional type I singularities could be considered type II and
removed as such.

We now continue our examination of the (modified) CTCs and assume that the
first type I singularity involves ck, k E {1,..., s- 1}. Then c ck and CTC(k) gives

Cl
2

Cl Ck_ Ck-1 Yk,1

kCkl Cl ak- Ck- Yk,k-

and since this coefficient matrix is nonsingular,

Yk,1 Yk,k-1 0 and Yk,k is arbitrary

If k s- 1, then the first two equations of CTC(s) cannot be satisfied and we have
a contradiction. Hence k E {1,..., s- 2} and CTC(k + 1) now gives

c2-cl c’_--Ck_ 2Ck--1

cl (k + -1

Yk+l,1

Ok+ Ck+l

Yk+l,k-1
_k+2
Ok+ Ck+l --Yk,k

Yk+l,k+l

Clearly Yk+l,k is arbitrary and its place has been taken by --Yk,k. Suppose that there
is exactly one type I singularity present. Then the above coefficient matrix is seen to
be nonsingular by Lemma 3.2, and thus we have Yk,k 0, Yk+l,k arbitrary, and all the
remaining components of Yk+l equal to zero. If k s- 2, CTC(s) once again leads
to a contradiction, and hence k (1,..., s- 3.

If we next consider CTC(k + 2), we get a similar structure,

k+
ek+

_/+3 (k-l- 3)kk+2 1 ck+Elk+ 3"
(:1 Ok- Ck-

Yk+ 2,1

Yk+2,k-1 O.

ck+ --Yk+ ,k
k+ Ck+

Yk+ 2,k+

Yk+2,k+2

Again, Lemma 3.2 gives Yk+l,k 0 and all components of Yk+2 equal to zero except
the kth one, Yk+2,k, which is arbitrary. This same effect continues for each subsequent
CTC and corresponding yi vector, leading to the observation that ys-1 has all zero
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components, except for the kth one, which is arbitrary. Then CTC(s) becomes,

2Ck 1

Ys- l,k -where ck 0 or 1. Clearly the first two equations of the above condition lead to a
contradiction. Hence, if there is any chance for an s stage MIRK method to be of at
least order s + 2, there must be two type I singularities.

The final possibility is that there is a second type I singularity, which we will
suppose involves c, {k + 1,..., s 1}. That is c2 c with c ck. Then CTC(/)
has the form

y,

Yl,k-1
--Yl-l,k
Yl,k+

Yl,l-1

with Yl,k and Yl,l, arbitrary. The above matrix is nonsingular by Lemma 3.2 and thus
Yl-l,k 0, and all components of yl are zero, except for the kth and/th, which are
arbitrary. If s- 1, CTC(s) yields a contradiction. Hence E {k + 1,..., s- 2}
and CTC(/+ 1) becomes

2Ck C2k+ ck+ C_1 Cl-1 2C 1

)(l + 2)i+1 c/+2 A+2 (l-[- 2)ai+1k+ Ok+ (:’1--1 El--1 1

( Y+1,1

Yl+ ,k--1

--Yl,k
Yl/ ,k/

Yl/ ,l--

--Yl,i

with yt+l,k and yt+l,l arbitrary. The coefficient matrix above is nonsingular by Lemma
3.2 and thus we have Yt,k Yt,t 0, and all components of Yl+l equal to zero, except
the kth and /th, which are arbitrary. Obviously this effect continues through the
subsequent CTCs, and we reach the conclusion that ys-1 has all components equal to
zero, except the kth and/th, which are arbitrary. CTC(s) becomes

Ys- 1,k -[- Ys- 1,1 -(s + 1)c 1 (s + 1)c 1
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with ck 0 and c 1, or ck 1 and cl 0. The first three equations in this system
are then impossible to satisfy. This completes the final possibility for the existence of
an s-stage, order at least s + 2 MIRK method, and we conclude that no such method
can exist.

4. Conclusions. In this paper we have extended the knowledge of the class of
mono-implicit Runge-Kutta methods in several ways. We have completely charac-
terized many of the lower stage, lower-order families of this class which have optimal
stage order. This is significant, when solving stiff problems for example, because it
is now known that in this case the stage order rather than the classical order is the
appropriate measure of the accuracy of the method (see [15]). These characterizations
will be useful in an analysis for determination of new methods for use in a boundary
value ODE code using defect control, under development by one of the authors (see
[14]).

A general result giving an upper bound of 3 for the stage order of an s-stage
MIRK method is given. A main result of this paper shows that the order of an s-stage
MIRK method is at most s + 1. In 2 we have presented methods having s 1, 2, 3, 4,
and 5, for which this bound is met. We conjecture that the bound cannot be met for
s>6.

Future work in this area could include a systematic investigation of the linear and
nonlinear stability properties of the various families of MIRK methods identified in 2,
as well as possible further attempts to completely characterize low stage MIRK meth-
ods having lower stage orders. Also, an investigation of the possibility of embedded
families of MIRK methods of various orders would be very useful for error estimation
purposes in software implementations for both in the initial value and boundary value
problem areas. (Some embedded families of MIRK methods have been presented in
[1] and [16].)

Acknowledgment. We would like to thank the referees for many helpful sug-
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