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Abstract. A long-standing open question associated with the use of collocation methods for
boundary value ordinary differential equations is concerned with the development of a high order
continuous solution approximation to augment the high order discrete solution approximation, ob-
tained at the mesh points which subdivide the problem interval. It is well known that the use of
collocation at Gauss points leads to solution approximations at the mesh points for which the global
error is O(h2k), where k is the number of collocation points used per subinterval and h is the subin-
terval size. This discrete solution is said to be superconvergent. The collocation solution also yields
a C0 continuous solution approximation that has a global error of O(hk+1). In this paper, we show
how to efficiently augment the superconvergent discrete collocation solution to obtain C1 continuous
“superconvergent” interpolants whose global errors are O(h2k). The key ideas are to use the theo-
retical framework of continuous Runge–Kutta schemes and to augment the collocation solution with
inexpensive monoimplicit Runge–Kutta stages. Specific schemes are derived for k = 1, 2, 3, and 4.
Numerical results are provided to support the theoretical analysis.
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1. Introduction. The method of collocation at Gauss points has enjoyed con-
siderable success in the numerical solution of boundary value ordinary differential
equations (BVODEs). The widely used COLSYS/COLNEW collocation codes [1], [3]
employ, respectively, a B-spline basis and a monomial spline basis to provide a piece-
wise polynomial approximation to the solution of a BVODE, which for the purposes
of this paper we will assume has the form

y′(t) = f(t, y(t)), t ∈ [a, b] y : < → <n, f : <× <n → <n,(1)

with boundary conditions

g(y(a), y(b)) = 0, g : <n ×<n → <n(2)

(although the particular form of the boundary conditions will not be important for
this paper). We will assume appropriate conditions on f and g to guarantee the
existence and local uniqueness of solutions to the BVODE (see [2, Section 3.1.2]).
The above form is referred to as a first order system form. See [2] for a discussion on
conversion of more general BVODEs to this form. While many software packages for
the numerical solution of BVODEs require the system of equations to be written in
the form (1), the COLSYS/COLNEW codes have the advantage in that they can be
used to treat mixed order systems directly.
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The collocation method assumes that the problem domain is partitioned into N
subintervals by a mesh, {ti}Ni=0, with t0 = a and tN = b. Letting k be the number
of collocation points per subinterval, the continuous collocation solution, on the ith
subinterval, [ti−1, ti], is a polynomial of degree k which can be written in the form

ûi(t) =

k∑
j=0

cijBij(t),(3)

where each Bij(t) is a polynomial basis function of degree k and each cij ∈ <n is a
vector of unknown coefficients to be determined by requiring ûi(t) to satisfy (1) at the
collocation points and to satisfy continuity conditions at the interior mesh points, or
the boundary conditions, as appropriate. The collocation points are t̂ir = ti−1 + ρrh,
where h = ti−1 − ti and, in COLSYS/COLNEW, the {ρr}kr=1 are the Gauss points
on [0,1].

From the theory for collocation at Gauss points (see, e.g., [4]) it is known that
the global error at the mesh points is

| ûi(ti)− y(ti) |∼ O(h2k), i = 0, . . . , N,(4)

while the global error at intermediate points is

| ûi(t)− y(t) |∼ O(hk+1), t ∈ (ti−1, ti), i = 0, . . . , N.

While the presence of a higher order solution approximation at the mesh points
is certainly a positive feature of collocation methods, it has long been recognized that
it is inconvenient that the associated collocation polynomial is of substantially lower
order. In [20], the author considers augmenting the high order discrete collocation
solution by constructing, for each subinterval, a high order, “superconvergent” poly-
nomial interpolant having a global error also of O(h2k) and based on mesh point
solution approximations from several adjacent subintervals. The author reports some
difficulties, one of which is that the numerical stability of the approach depends on
the ratio of subinterval sizes; these ratios can be large for the nonuniform meshes
which arise in the solution of difficult BVODEs.

In [21] the authors consider constructing a local superconvergent polynomial in-
terpolant having a global error of O(h2k), using only information from the current
subinterval. On each subinterval, in addition to the (high order) end point solution
values, sufficient extra high order derivative information is obtained by performing
a “secondary collocation.” A Hermite–Birkhoff interpolant is then constructed based
on these high order values. While this is perhaps the natural approach to providing a
high order local interpolant, there is some question, nonetheless, about the efficiency
of this approach since it requires, in general, the solution of a nonlinear system of size
O(nk) on each subinterval. Assuming a Newton-type iteration is used to solve these
nonlinear systems, with q iterations to convergence, this leads to an overall cost of
O(Nqn3k3), which is approximately the same operation count as that associated with
computing a continuous collocation solution having a global error of O(h2k) simply
by starting over using 2k collocation points per subinterval.

In this paper, we place the question of developing a superconvergent polynomial
interpolant in the context of continuous Runge–Kutta (CRK) schemes, which are nat-
urally able to yield high order interpolants using solution and derivative information of
various orders. The general form of an efficient CRK scheme, for the ith subinterval,
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is (see [19] and references within)

ui(ti−1 + θh) = yi−1 + h
s∑
r=1

br(θ)f(t̂r, ŷr),(5)

where yi−1 is an approximation to y(ti−1), br(θ) is a polynomial in θ ∈ [0, 1], t̂r =
ti−1 + crh, and

ŷr = yi−1 + h
s∑
j=1

arjf(t̂j , ŷj), r = 1, . . . , s.(6)

The evaluations of the derivatives, f(t̂r, ŷr), will be referred to as implicit Runge–
Kutta (IRK) stages. It is also possible to write (6) in an equivalent “parameterized”
form [18]

ŷr = (1− vr)yi−1 + vryi + h
s∑
j=1

xrjf(t̂j , ŷj), r = 1, . . . , s,(7)

and we will refer to stages written in this form as parameterized IRK (PIRK) stages.
In the context of BVODEs it is common (see, e.g., [8], [9], [10], [11], [13], [14], [16]) to
employ monoimplicit Runge–Kutta (MIRK) stages, which follow from (7) by requiring
the matrix X (whose elements are the xrj ’s) to be strictly lower triangular, and thus
(7) takes the form

ŷr = (1− vr)yi−1 + vryi + h
r−1∑
j=1

xrjf(t̂j , ŷj), r = 1, . . . , s.(8)

Note that when both yi−1 and yi are available, the MIRK stages can be computed
quite efficiently since the calculations are explicit. Note also that any stage written in
MIRK form (8) can be transformed to IRK form (6) (see [18]), while any IRK stage
(6) can be trivially written in the form (7) with vr = 0 and xrj = arj .

After an approximate solution is computed by the collocation solver, the discrete
solution values at the mesh points and the derivative evaluations at the collocation
points will be available. The CRK schemes upon which our superconvergent inter-
polants are based are then constructed as follows. For each subinterval, the CRK
scheme will employ the discrete collocation solution value at the left end point, the
derivative evaluations at the collocation points (collocation stages), the derivative
evaluations at the end points (end point stages), and sufficient additional MIRK
stages (8) to obtain a scheme of the desired order of accuracy. Since the extra MIRK
stages and the end point stages can be computed explicitly, and the end point values
and collocation stages are already available, the associated computational costs will
be low. The idea is a very natural extension of the embedding of a discrete MIRK
scheme within a CMIRK scheme, as employed in MIRKDC [14] and as further con-
sidered in [17]. The inclusion of the end point and collocation stages within the CRK
scheme will define the coefficients for most of the stages; the coefficients for the addi-
tional MIRK stages and all the weight polynomials will be determined using the same
general approach as in [19], which involves the direct solution of continuous forms of
the Runge–Kutta order conditions.

It should be emphasized that the computations for the setup of the superconver-
gent interpolant occur after the collocation solution has been computed. Thus the
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stability of the calculation of the global solution is not affected. It should also be
noted that the dominant computational cost will be associated with the initial com-
putation of the collocation solution, rather than with the subsequent construction of
the superconvergent interpolant.

2. Derivation of interpolants. It is possible to consider the question of de-
riving or constructing superconvergent interpolants based on CRK schemes from at
least two perspectives.

One approach, which we call the Runge–Kutta approach, involves deriving CRK
schemes by directly solving certain sets of equations called order conditions which
depend on the coefficients of the scheme and characterize all schemes of a given global
order of convergence. The goal is to choose the minimum number of stages such that
there will be a sufficient number of free parameters to allow the order conditions to be
satisfied. An advantage of this approach is its generality; any scheme of the desired
order can be obtained in this way provided one is able to choose the coefficients of
the scheme to satisfy the order conditions. A disadvantage is that the process of
solving the order conditions while using as few free parameters as possible is not
straightforward and heuristics must frequently be used to help in the derivation. It
may also be necessary to impose extra conditions on the CRK scheme to ensure that
it yields an interpolant with C1 continuity.

The second approach, which we call the boot strap approach, involves deriving in-
terpolants based on CRK schemes within the context of a “boot-strapping” algorithm
[12] which we now briefly describe for the current context. As indicated previously,
we assume that the discrete superconvergent collocation solution approximations at
the mesh points (see (4)) and the lower order collocation stages are available. As well,
we assume that the evaluations of the corresponding end point stages have already
been performed. The boot-strapping algorithm begins with this information and pro-
duces a sequence of interpolants, each one order higher than the previous, until an
interpolant of the desired order is obtained. The key idea is that new stages of the
appropriate order required for each new interpolant are obtained by using the high
order end point information plus evaluations of the previous interpolant, which is one
order lower. We will describe the first few steps of this process.

On each subinterval, the natural interpolant associated with the collocation method
is the collocation polynomial (3), which is of degree k and has local error O(hk+1).
(On the ith subinterval, of length h, a CRK scheme (5) has a local error of O(hp+1)
if |ui(t) − yi(t)| ∼ O(hp+1) for ti−1 ≤ t ≤ ti, where yi(t) is the true solution to the
local initial value ODE

y′(t) = f(t, y(t)), y(ti−1) = yi−1,(9)

where yi−1 is the approximate solution value at ti−1.) Here we will refer to the
collocation polynomial as u(0)(t). The next interpolant, which we will refer to as
u(1)(t), is a polynomial of degree k+1 having local error O(hk+2) on each subinterval;
it is obtained by requiring it to interpolate the end point solution values and by
requiring its derivative to interpolate the end point stages, as well as k− 2 additional

stages, f(t
(1)
j , u(0)(t

(1)
j )), j = 1, . . . , k − 2. These latter stages have a local error of

only O(hk+1) but since each is multiplied by h when it appears in the CRK scheme,
the contribution to the local error of u(1)(t) is O(hk+2). Thus u(1)(t) is uniquely
determined by k + 2 interpolation requirements involving information having a local
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Table 1
Number of extra stages required to compute interpolant.

Boot Boot Runge– Runge–
k strap strap Kutta Kutta

l.e. O(h2k) O(h2k+1) O(h2k ) O(h2k+1)
1 0 0 0 0
2 0 1 0 1
3 3 6 1 3
4 9 14 3 8
5 18 25 18 25
6 30 39 30 39
7 45 56 45 56

error of at least O(hk+2). The next interpolant, u(2)(t), a polynomial of degree k+ 2,
having local error O(hk+3), is defined by interpolation conditions based on the end
point values and end point stages plus k − 1 additional stages, having a local error

of O(hk+2) of the form f(t
(2)
j , u(1)(t

(2)
j )). When multiplied by h, these latter stages,

plus the end point information, provide interpolation conditions having a local error
of at least O(hk+3) and uniquely determine u(2)(t) with a local error of O(hk+3). This
process continues until an interpolant having the desired local error is obtained.

The final interpolant, associated with each subinterval, includes explicit depen-
dence on the solution and derivative information at both end points of the subinterval
and is constructed so that it interpolates these solution values and its derivative inter-
polates the derivative values. Hence the resultant global interpolant has C1 continuity.

We conclude this section with a comparison of these two approaches. In Table
1, for k = 1, . . . , 7 (the range of k values available in the COLSYS/COLNEW code),
we give the number of extra stages that will need to be computed in order to obtain
interpolants having local errors of O(h2k) and O(h2k+1). We will assume that the
end point stages and collocation stages are already available. The boot strap data is
obtained from a consideration of the boot strap derivation process described above.
For k = 1, . . . , 4, the Runge–Kutta data corresponds to the smallest number we have
been able to achieve and results justifying these claims are presented in subsequent
sections of this paper. For k = 5, . . . , 7, the Runge–Kutta data is equal to that of the
boot strap approach; this follows from the observation that the interpolant obtained
from the boot strap approach can be rewritten as a CRK scheme. In fact the boot
strap approach can be viewed as a strategy for introducing simplifying assumptions
to allow the straightforward solution of the order conditions.

For general k, the boot-strapping approach requires 3k
2 (k − 3) + 3 extra stages

to obtain the interpolant having local error O(h2k) and k
2 (3k − 5) extra stages to

obtain the interpolant having local error O(h2k+1). As observed above, these values
also represent upper bounds for the Runge–Kutta approach. Furthermore, we observe
from Table 1 that for k = 1, . . . , 4 it is frequently possible, by employing the more
general Runge–Kutta approach, to use substantially fewer stages than required by the
boot strap approach. Because of this, in the remainder of this paper we will restrict
our attention to the Runge–Kutta approach for the derivation of superconvergent
interpolants.

3. Background. In this section we describe our approach for deriving C1 su-
perconvergent interpolants for discrete collocation solutions based on the use of CRK
schemes.

When the CRK scheme (5) uses PIRK stages (7), the coefficients are usually
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written in a tableau,

c v X

b(θ)T
,

where c = [c1, . . . , cs]
T , v = [v1, . . . , vs]

T , b = [b1(θ), . . . , bs(θ)]
T , and the i, jth com-

ponent of the s by s matrix X is xij . A CRK scheme is of order p if its local error,
on a subinterval of length h, is O(hp+1). The rth weight polynomial, br(θ), is a
polynomial in θ of degree p. A CRK scheme of order p is determined by requiring
its coefficients and weight polynomials to satisfy certain equations, called continuous
order conditions. Another important attribute of a CRK scheme is its stage order. A
CRK scheme with PIRK stages has stage order q(≤ p) if it satisfies (see [5])

SOl ≡ Xcl−1 +
v

l
− cl

l
= 0, l = 1, . . . , q,(10)

where cl = [cl1, . . . , c
l
s]
T and c0 is a vector of 1’s of length s. We will also say that

the rth stage has stage order m (possibly higher than the overall stage order q) if the
rth equation of SOl is satisfied for l = 1, . . . ,m. The continuous order conditions,
mentioned above, have two forms (see [19]): quadrature conditions,

b(θ)T cp−1 =
cp

p
,(11)

where p is a positive integer, and nonquadrature conditions, which can be described
in terms of the stage order conditions (10). The nonquadrature conditions to be
employed in this paper are of the form

(a) b(θ)T (SOl) = 0, (b) b(θ)T c(SOl) = 0, (c) b(θ)TX(SOl) = 0,(12)

b(θ)T c2(SOl) = 0, b(θ)T cX(SOl) = 0,(13)

b(θ)TXc(SOl) = 0, b(θ)TX2(SOl) = 0,(14)

where l is a positive integer. Thus the basic idea is to choose the coefficients and
weight polynomials of the CRK scheme (5), (8) to satisfy sufficient order conditions
to obtain a scheme of a desired order, and this is the approach we shall employ in this
paper. Some of the stage coefficients are determined by requiring the CRK scheme to
include certain specific stages associated with the underlying collocation scheme.

The collocation polynomial associated with the collocation method can be ex-
pressed in a form alternative to that given in (3). On the ith subinterval, the col-
location polynomial, ûi(t), can be viewed within the framework of the continuous
Runge–Kutta schemes; it has the form

ûi(t) = ûi(ti−1 + θh) = yi−1 + h
k∑
r=1

b̂r(θ)f(t̂r, ŷr),(15)

where t ∈ [ti−1, ti], b̂r(θ) is a polynomial in θ ∈ [0, 1]; yi−1 is the discrete collocation
solution approximation at ti−1,

t̂r = ti−1 + ρrh, ŷr = yi−1 + h
s∑
j=1

arjf(t̂j , ŷj);
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and the coefficients arj characterize the implicit Runge–Kutta scheme which is equiv-
alent to the collocation scheme (see [24]). The collocation stages, f(t̂r, ŷr), are the
evaluations of the right-hand side of the BVODE that occur during the calculation
of the collocation solution. The collocation stages have stage order k, i.e., the stage
coefficients satisfy (10) with q = k. The weight polynomials, b̂r(θ), have derivatives
that are the Lagrange interpolating polynomials for the abscissa set {ρr}kr=1.

A superconvergent interpolant is obtained from a CRK scheme which, on the
ith subinterval, will use the superconvergent end point values yi−1 and yi, the corre-
sponding stages f(ti−1, yi−1) and f(ti, yi), the collocation stages, and as many extra
MIRK stages as necessary to achieve the desired order. Thus the first k + 2 rows of
the tableau of the CRK scheme, with the stages expressed in PIRK form (7), will be

0 0 0 0 . . . . . . . . . . . . . . . 0
1 1 0 0 . . . . . . . . . . . . . . . 0
ρ1 0 0 0 a11 . . . a1k 0 . . . 0
...

...
...

...
...

...
...

...
...

...
ρk 0 0 0 ak1 . . . akk 0 . . . 0

.(16)

Note that the collocation stages originally expressed in IRK form (6) can be written in
PIRK form (7) by setting the extra free parameters v3, . . . , vk+2 to zero, as indicated
in (16).

For the CRK scheme (5) assuming PIRK stages (7) there will be explicit depen-
dence on yi−1 and on the derivative values at the end points of the subinterval. In
subsequent sections of this paper we will exhibit CRK schemes, with weight polynomi-
als derived from the order conditions, which interpolate the solution value yi−1 at the
left end point and which have derivatives that interpolate y′i−1 ≡ f(ti−1, yi−1) and
y′i ≡ f(ti, yi) at the left and right end points, respectively. Since there is no explicit
dependence in (5) on yi, the weight polynomials must satisfy special conditions for
interpolation of yi (see [23]). In the current setting these conditions are

b1(1) = b2(1) = 0, br(1) = b̂r−2, r = 3, . . . , k+2, br(1) = 0, r = k+3, . . . , s,(17)

where b̂r = b̂r(1) in (15). Under these conditions, the evaluation of the CRK scheme
at the right-hand end point gives yi in terms of the (discrete) implicit Runge–Kutta
method equivalent to the collocation method. Then the CRK scheme interpolates
yi and the corresponding global interpolant will have C1 continuity. This assumes
that all of the collocation stages are included within the CRK scheme. However,
in subsequent sections we shall demonstrate that although the conditions (17) are
naturally satisfied by the higher order CRK schemes, derived only by applying the
order conditions, some of the lower order schemes (see section 4 and subsection 5.1)
do not satisfy them. This happens because the desired order can be obtained for these
schemes without requiring the use of all of the collocation stages. Such schemes lead
to an interpolant that is only “approximately” continuous to order O(h2k). That is,
in general there may be jump discontinuities in the interpolant, at the mesh points,
of size O(h2k). However, it is also possible to derive related CRK schemes which
include all the collocation stages and which satisfy the conditions (17). For lower
order CRK schemes, we will derive schemes using the minimum number of stages and
having “approximate” continuity to order (O(h2k) as well as schemes having an extra
stage that allows them to have “exact” continuity. In either case the derivative will
be continuous.
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When a k-point Gaussian collocation scheme is used in the numerical solution of
a BVODE, the discrete collocation solution will have a local error of O(h2k+1) and
a global error of O(h2k) [4]. In order to examine the global error of the associated
collocation polynomial, we begin by letting yi(t) be the true solution to the local
problem on the ith subinterval (9), where the initial value yi−1 is the superconvergent
solution value at ti−1. Since the global error for yi−1 is O(h2k), it follows that

|yi(t)− y(t)| ∼ O(h2k),

i.e., the true local solution agrees with the true global solution to within a (global)
error of O(h2k). The collocation polynomial on the ith interval, ûi(t), agrees with the
true local solution, yi(t), to within a local error of O(hk+1), i.e.,

|yi(t)− ûi(t)| ∼ O(hk+1).

Thus for k ≥ 1 we have

|ûi(t)− y(t)| ∼ O(hk+1),

i.e., the global error of the collocation polynomial is O(hk+1).

We now consider the CRK interpolants, similarly. Since the global error of the
true local solution yi(t) is O(h2k), it is sufficient for the CRK scheme to agree with
yi(t) to within a local error of O(h2k). Then the local error of the CRK scheme agrees
with the global error of the true local solution and the global error of the CRK scheme
will also be O(h2k). On the other hand, it is sometimes useful, e.g., if the defect of
the solution is important, to have an interpolant whose local error is dominated by
the global error of the discrete solution. Thus in subsequent sections of this paper
for each value of k = 1, 2, 3, 4 we will derive two CRK schemes, each having a global
error of O(h2k). The first scheme will have a local error of O(h2k) while the second
will have a local error of O(h2k+1).

To summarize, we will derive CRK schemes by imposing specific order and stage
order conditions on the coefficients and weights of the scheme. Some of the coefficients
will be specified by requiring the CRK scheme to include end point and collocation
stages. For some low order schemes, we will also impose continuity conditions (17) in
order to ensure C1 continuity for the interpolant.

4. Collocation with k = 1. A collocation scheme with collocation at one
Gauss point per subinterval is equivalent to the 1-stage IRK scheme called the mid-
point scheme. Its local error is O(h3); its global error is O(h2). The associated C0

collocation polynomial written in CRK form (15) is

ûi(ti−1 + θh) = yi−1 + θhf

(
ti−1 +

h

2
,
yi−1 + yi

2

)
.

Its local and global error are both O(h2). Thus in this case the collocation polynomial
is already “superconvergent.”

A 2-stage CRK scheme (5) can be employed to provide an interpolant with global
error O(h2) which has a continuous first derivative (unlike the collocation polynomial).
We construct this scheme using the end point stages f(ti−1, yi−1) and f(ti, yi). This
determines the c, v, and x coefficients of the scheme. The weight polynomials are
determined by imposing the continuous Runge–Kutta order conditions up to order 2,
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i.e., the two quadrature conditions (11) with p = 1, 2. This scheme has local error
O(h3) and global error O(h2). Its tableau is

0 0 0 0
1 1 0 0

θ(2−θ)
2

θ2

2

.

This scheme is the continuous version of the trapezoidal scheme. It does not use the
collocation stage, and therefore the associated interpolant has only O(h2) continuity,
although its derivative is continuous.

A C1 continuous interpolant is obtained from a CRK scheme (5) whose three
stages are the two end point stages and the collocation stage. The weight polynomi-
als are determined from the order conditions (11) with p = 1, 2 and the continuity
conditions (17). Its tableau is

0 0 0 0 0
1 1 0 0 0
1
2

1
2 0 0 0

θ(θ − 1)2 θ2(θ − 1) θ2(3− 2θ)

.

This scheme has local error O(h3) and global error O(h2).

5. Collocation with k = 2. The implicit Runge–Kutta scheme corresponding
to collocation at two Gauss points per subinterval is given in [7]. Its local error is
O(h5) and its global error is O(h4). The stage order of each stage and thus of the
whole scheme is 2. The associated C0 collocation polynomial, written in CRK form
(15), has the tableau

1
2 −

√
3

6 0 1
4

1
4 −

√
3

6

1
2 +

√
3

6 0 1
4 +

√
3

6
1
4

( 1+
√

3
2 )θ −

√
3

2 θ
2 ( 1−√3

2 )θ +
√

3
2 θ

2

.

The local and global errors for this scheme are both O(h3).

5.1. A superconvergent interpolant with local error O(h4). We now de-
rive a CRK scheme (5) with local and global errors of O(h4) whose first two stages
are the end point stages and whose third stage is one of the collocation stages. This
determines the c, v, and x coefficients of the scheme. Since the stage order of the first
two stages is 3 and the stage order of the third stage is 2, the stage order of the whole
scheme is 2. The three weight polynomials are determined by requiring the scheme
to satisfy the order conditions for order 3, which in this case are the three quadrature
conditions (11) with p = 1, 2, 3. The tableau of the resultant scheme is

0 0 0 0 0 0
1 1 0 0 0 0

1
2 −

√
3

6 0 0 0 1
4

1
4 −

√
3

6

1
2 +

√
3

6 0 0 0 1
4 +

√
3

6
1
4

b1(θ) b2(θ) b3(θ) b4(θ)

,(18)
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where

b1(θ) =
(3 +

√
3)

12
θ(4θ2 − (9−

√
3)θ + 6− 2

√
3),

b2(θ) =
(3−√3)

12
θ2(4θ − 3 +

√
3), b3(θ) = θ2(3− 2θ),

and b4(θ) ≡ 0. (The scheme is written as a 4-stage scheme to clarify the representation
of the collocation stages. Since the fourth weight is identically zero, the scheme can
be implemented as a 3-stage scheme.) Since only one of the collocation stages is
included, the associated interpolant will have a continuous derivative but itself will
have only continuity to O(h4).

An interpolant with C1 continuity is obtained by including the second collocation
stage within (18), i.e., b4(θ) must not be identically zero. Using the same tableau as
in (18), the weight polynomials are determined by requiring them to satisfy the three
quadrature conditions and the conditions (17). The resultant weight polynomials are

b1(θ) = θ(θ − 1)2, b2(θ) = θ2(θ − 1),

and

b3(θ) = b4(θ) =
1

2
θ2(3− 2θ).

5.2. A superconvergent interpolant with local error O(h5). We conclude
this section by deriving a C1 interpolant based on a CRK scheme (5) with global
error O(h4) and local error O(h5). The first two stages of the scheme will be the end
point stages and the third and fourth stages will be the collocation stages. The stage
order of the scheme is 2. The scheme must satisfy the order conditions for order 4,
which in this case are the four quadrature conditions (11) with p = 1, . . . , 4 and the
nonquadrature condition (12)(a) with l = 3. Since these conditions are independent
(as can be seen by examining the right-hand sides of the equations), the CRK scheme
must employ five stages; thus we add a fifth MIRK stage, to which we apply the stage
order 4 conditions. The embedding of the end point and collocation stages defines
the first four components of c and v and the first four rows of x. The application of
the stage order 4 conditions to the fifth stage defines x51, x52, x53, and x54, in terms
of c5 and v5, and since the stage is monoimplicit, x55 = 0.

The weight polynomials are determined by solving the above order conditions and
we obtain a 2-parameter family of CRK schemes, with c5 and v5 as the free parameters,
with the restriction that c5 6= 0, 1

2 , 1. Since the expressions for the coefficients of the
fifth stage and the weight polynomials are somewhat complicated, we do not give
them here. An example of a specific CRK scheme from this family is obtained by
choosing c5 = v5 = 2

5 . The tableau of the resultant scheme is

0 0 0 0 0 0 0
1 1 0 0 0 0 0

1
2 −

√
3

6 0 0 0 1
4

1
4 −

√
3

6 0

1
2 +

√
3

6 0 0 0 1
4 +

√
3

6
1
4 0

2
5

2
5

36
625 − 6

625 − 3
125 + 54

√
3

625 − 3
125 − 54

√
3

625 0

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ)

,
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where,

b1(θ) =
1

4
θ(θ − 1)2(5θ + 4), b2(θ) =

1

3
θ2(θ − 1)(10θ − 7),

b3(θ) = −1

2
θ2(3θ − 2)(5θ − 6), b4(θ) = b3(θ), b5(θ) =

125

12
θ2(θ − 1)2.

6. Collocation with k = 3. The implicit Runge–Kutta scheme that is equiva-
lent to collocation with three Gauss points is given in [7]. It has a local error of O(h7)
and a global error of O(h6). Its stage order is 3. The corresponding C0 collocation
polynomial (15) has local and global errors of O(h4). It uses the three stages of the
IRK scheme, and the weight polynomials have derivatives equal to the Lagrange inter-
polating polynomials for the abscissa of the IRK scheme. The collocation polynomial
is presented in [15].

6.1. A superconvergent interpolant with local error O(h6). This C1 su-
perconvergent interpolant is based on a CRK scheme (5) with local and global errors
of O(h6). Since the scheme will include the three collocation stages, its stage order will
be 3. The scheme must satisfy the five quadrature conditions (11) with p = 1, . . . , 5
and the nonquadrature condition (12)(a) with l = 4. An inspection of the right-hand
sides of these conditions shows that they are independent and thus the CRK scheme
will require six stages. In addition to the two end point stages and the three colloca-
tion stages, we will need one extra MIRK stage, which we will require to have stage
order 5. The nonquadrature condition leads to the requirement that

b5(θ) =
5

4
b4(θ)− b3(θ).

This leaves b1(θ), b2(θ), b3(θ), b4(θ), and b6(θ) to satisfy the remaining five quadrature
conditions.

The two end point stages and the three collocation stages define the first five
components of c and v and the first five rows of x. The imposition of stage order 5 on
the sixth stage gives expressions for x61, . . . , x65 in terms of c6 and v6 and since it is
a monoimplicit stage, x66 = 0. The order conditions give expressions for b1(θ), b2(θ),
b3(θ), b4(θ), and b6(θ) in terms of the free parameters c6 and v6 with the restrictions

that c6 6= 0, 1, or 1
2 ±

√
5

10 . Since the expressions for x61, x62, x63, x64, and x65 and for
the weight polynomials are somewhat complicated we do not present them here. An
example of a specific scheme from this family is obtained for the choice of c6 = v6 = 3

5 ;
we get the CRK scheme with tableau

0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0

1
2 −

√
15

10 0 0 0 5
36

2
9 −

√
15

15
5
36 −

√
15

30 0

1
2 0 0 0 5

36 +
√

15
24

2
9

5
36 −

√
15

24 0

1
2 +

√
15

10 0 0 0 5
36 +

√
15

30
2
9 +

√
15

15
5
36 0

3
5

3
5 − 78

3125
72

3125
6
√

15
125 − 47

1875
488
9375 − 6

√
15

125 − 47
1875 0

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ) b6(θ)

,
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where

b1(θ) =
θ (θ − 1)

2 (
5 θ2 − 10 θ + 3

)
3

, b2(θ) =
θ2 (θ − 1)

(
30 θ2 − 35 θ + 9

)
4

,

b3(θ) =
(−5 +

√
15)

36
(60 θ3 − 15

√
15θ2 − 195 θ2 + 220 θ + 32 θ

√
15− 18

√
15− 90)θ2,

b4(θ) = −4 θ2
(−18 + 62 θ − 75 θ2 + 30 θ3

)
9

, b6(θ) =
125 θ2 (2 θ − 1) (θ − 1)

2

12
,

and

b5(θ) = − (5 +
√

15)

36
(60 θ3 − 195 θ2 + 15

√
15θ2 − 32 θ

√
15 + 220 θ + 18

√
15− 90)θ2.

6.2. A superconvergent interpolant with local error O(h7). We conclude
this section by considering a superconvergent C1 interpolant based on a CRK scheme
(5) with a local error of O(h7) and a global error of O(h6). Its stage order is 3 and
it must satisfy 10 continuous order conditions: the 6 quadrature conditions (11) with
p = 1, . . . , 6 and the 4 nonquadrature conditions (12)(a) with l = 4, 5, (12)(b) with
l = 4, and (12)(c) with l = 4.

In the analysis to follow, we will show that it is possible to satisfy the 10 order
conditions using a CRK scheme with 8 stages. The resultant scheme will contain the
end point stages and collocation stages embedded within it and will include 3 extra
MIRK stages assumed to have at least stage order 5. We will follow a strategy similar
to that of [19]. We focus on the 4 nonquadrature conditions. Since all stages except
the third, fourth, and fifth have at least stage order 5, the first 3 nonquadrature
conditions

reduce to

b3(θ)

(
1

400

)
+ b4(θ)

(
− 1

320

)
+ b5(θ)

(
1

400

)
= 0,

b3(θ)

(
1

800
−
√

15

4000

)
+ b4(θ)

(
− 1

640

)
+ b5(θ)

(
1

800
+

√
15

4000

)
= 0,

b3(θ)

(
1

200
− 3
√

15

10000

)
+ b4(θ)

(
− 1

160

)
+ b5(θ)

(
1

200
+

3
√

15

10000

)
= 0.

These are all satisfied if

b4(θ) =
8

5
b3(θ) and b5(θ) = b3(θ).

We now return to the last of the nonquadrature conditions, namely,

b(θ)TX

(
Xc3 +

v

4
− c4

4

)
= 0.
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Since all stages except the third, fourth, and fifth are chosen to have at least stage
order 5, this condition reduces to

b3(θ)

(√
15

8000

)
+ b5(θ)

(
−
√

15

8000

)
+ b6(θ)

(x63

400
− x64

320
+
x65

400

)

+ b7(θ)
(x73

400
− x74

320
+
x75

400

)
+ b8(θ)

(x83

400
− x84

320
+
x85

400

)
= 0.

Since b3(θ) = b5(θ), this condition is satisfied if we choose

xr5 =
5

4
xr4 − xr3, r = 6, 7, 8.(19)

We can then determine the six weight polynomials b1(θ), b2(θ), b3(θ), b6(θ), b7(θ),
b8(θ) by requiring them to satisfy the remaining six quadrature conditions.

The above strategy requires us to be able to impose the stage order 5 conditions
as well as the conditions (19) on the last three stages. For the sixth stage, these
requirements force c6 = 1

2 and the parameter v6 is left free. When we apply the stage
order 5 conditions plus (19) to the seventh stage, we are left with c7 and v7 as free
parameters. For the eighth stage, we apply stage order 6 (there are sufficient free
parameters to allow higher stage order to be imposed) and (19), which leaves c8 and
v8 free.

The weight polynomials are expressed in terms of the free parameters v6, c7, v7,
c8, v8 with the restrictions

c7 6= 0, 1,
1

2
, c8, 1− c8, 1

2
±
√

15

10
, c8 6= 0, 1,

1

2
.(20)

Since the expressions for the coefficients of the last three stages and for the weight
polynomials are somewhat complicated we do not give them here. An example of a
scheme from this family is obtained for the choice of the free parameters, v6 = 1

2 , c7 =
1
3 , v7 = 1

3 , c8 = 2
3 , v8 = 2

3 ; we get the scheme with tableau

0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0

c3 0 0 0 5
36

2
9 −

√
15

15
5
36 −

√
15

30 0 0 0

1
2 0 0 0 5

36 +
√

15
24

2
9

5
36 −

√
15

24 0 0 0

c5 0 0 0 5
36 +

√
15

30
2
9 +

√
15

15
5
36 0 0 0

1
2

1
2 x61 x62 x63 x64 x65 0 0 0

1
3

1
3 x71 x72 x73 x74 x75 x76 0 0

3
5

3
5 x81 x82 x83 x84 x85 x86 x87 0

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ) b6(θ) b7(θ) b8(θ)

,

where

c3 =
1

2
−
√

15

10
, c5 =

1

2
+

√
15

10
,
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x61 = − 1

32
, x62 =

1

32
, x63 =

5
√

15

96
, x64 = 0, x65 = −5

√
15

96
,

x71 = − 2

243
, x72 =

4

243
, x73 =

25

729
+

10
√

15

243
,

x74 =
40

729
, x75 =

25

729
− 10

√
15

243
, x76 = − 32

243
,

x81 = − 1038

15625
, x82 =

684

15625
, x83 =

131

20625
+

2298
√

15

34375
,

x84 =
1048

103125
, x85 =

131

20625
− 2298

√
15

34375
, x86 =

26208

171875
, x87 = − 26244

171875
,

and the weight polynomials are

b1(θ) =
θ(θ − 1)2(75θ3 − 63θ2 + 17θ + 3)

3
,

b2(θ) =
θ2(θ − 1)(125θ3 − 234θ2 + 149θ + 36)

4
,

b3(θ) = − 5

18
θ2(300θ4 − 876θ3 + 945θ2 − 460θ + 90),

b4(θ) =
8

5
b3(θ), b5(θ) = b3(θ),

b6(θ) = −16θ2(θ − 1)2(25θ2 − 26θ + 9), b7(θ) =
81

8
θ2(θ − 1)2(25θ2 − 25θ + 9),

b8(θ) =
3125

24
θ2(θ − 1)2(3θ2 − 3θ + 1).

7. Collocation with k = 4. In this section we consider collocation at four
Gauss points per subinterval. The equivalent IRK scheme is given in [6]. This scheme
has a local error of O(h9) and a global error of O(h8). The corresponding C0 collo-
cation polynomial (15) employs the four stages of this IRK scheme and has weight
polynomials whose derivatives are the Lagrange interpolating polynomials for the ab-
scissa of the implicit Runge–Kutta method. The complete collocation polynomial is
presented in [15]. Its local and global errors are O(h5) and its stage order is 4.
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7.1. A superconvergent interpolant with local error O(h8). We consider
a C1 interpolant based on a CRK scheme (5) having local and global errors of O(h8).
We will assume the 2 end point stages and the 4 collocation stages are to be embedded
and that the extra stages are required to have at least stage order 4 so that the stage
order of the whole scheme will be 4. With this latter assumption, the desired scheme
must satisfy 11 order conditions: the 7 quadrature conditions, (11) with p = 1, . . . , 7
and the 4 nonquadrature conditions (12)(a) with l = 5, 6, (12)(b) with l = 5, and
(12)(c) with l = 5. In order to simplify the analysis, we make the further assumption
that the new stages will have stage order 6. The complete derivation, which is a
somewhat more complicated generalization of that given in the previous section, is
given in [15]. Within that analysis, it is shown that it is possible to choose some of the
coefficients to make 2 of the nonquadrature conditions dependent on the others, and
thus the total number of stages required for this scheme is 9. The resultant family
has 5 free parameters, c8, c9, v8, v9, and x98. We conclude this case by presenting a
specific CRK scheme obtained by setting c8 = 1

5 and c9 = 4
5 , v8 = c8, v9 = c9, and

x98 = 0. The tableau is

0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
c3 0 0 0 x33 x34 x35 x36 0 0 0
c4 0 0 0 x43 x44 x45 x46 0 0 0
c5 0 0 0 x53 x54 x55 x56 0 0 0
c6 0 0 0 x63 x64 x65 x66 0 0 0
c7 v7 x71 x72 x73 x74 x75 x76 0 0 0
1
5

1
5 x81 x82 x83 x84 x85 x86 x87 0 0

4
5

4
5 x91 x92 x93 x94 x95 x96 x97 0 0

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ) b6(θ) b7(θ) b8(θ) b9(θ)

,

where c3, c4, c5, c6 are the abscissa and x33, . . . x36, x43, . . . x46, x53, . . . x56, x63, . . . x66,
are the stage coefficients associated with the 4-stage, eighth order, implicit Runge–
Kutta method given in [6] (see [15] for further details). Also,

c7 = v7 =
1

2
+

√
7

14
, x71 =

3
√

7

392
− 3

392
, x72 =

3
√

7

392
+

3

392
,

x73 = −5
√

30
√

7

1176
− 3
√

30α1

10976
− 3
√

7

784
+

27α1

5488
,

x74 =
5
√

30
√

7

1176
+

3
√

30α2

10976
− 3
√

7

784
+

27α2

5488
,

x75 =
5
√

30
√

7

1176
− 3
√

30α2

10976
− 3
√

7

784
− 27α2

5488
,

x76 = −5
√

30
√

7

1176
+

3
√

30α1

10976
− 3
√

7

784
− 27α1

5488
,

x81 = − 992

140625
+

152
√

7

140625
, x82 = − 628

140625
+

152
√

7

140625
,
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x83 =
452α1

109375
+

193
√

30

18750
+

152
√

30
√

7

140625
− 76

√
7

9375
− 226

√
30α1

984375
+

9

3125
,

x84 =
452α2

109375
− 193

√
30

18750
− 152

√
30
√

7

140625
− 76

√
7

9375
+

226
√

30α2

984375
+

9

3125
,

x85 = − 452α2

109375
− 193

√
30

18750
− 152

√
30
√

7

140625
− 76

√
7

9375
− 226

√
30α2

984375
+

9

3125
,

x86 = − 452α1

109375
+

193
√

30

18750
+

152
√

30
√

7

140625
− 76

√
7

9375
+

226
√

30α1

984375
+

9

3125
,

x87 =
4256

√
7

140625
, x91 =

628

140625
+

152
√

7

140625
, x92 =

992

140625
+

152
√

7

140625
,

x93 = − 9

3125
+

452α1

109375
− 193

√
30

18750
− 76

√
7

9375
− 226

√
30α1

984375
+

152
√

30
√

7

140625
,

x94 = − 9

3125
+

452α2

109375
+

193
√

30

18750
− 76

√
7

9375
+

226
√

30α2

984375
− 152

√
30
√

7

140625
,

x95 = − 9

3125
− 452α2

109375
+

193
√

30

18750
− 76

√
7

9375
− 226

√
30α2

984375
− 152

√
30
√

7

140625
,

x96 = − 9

3125
− 452α1

109375
− 193

√
30

18750
− 76

√
7

9375
+

226
√

30α1

984375
+

152
√

30
√

7

140625
,

x97 =
4256

√
7

140625
, α1 =

√
525 + 70

√
30, α2 =

√
525− 70

√
30.

The expressions for the weight polynomials, even with the use of specific values for
the free parameters, are very complicated. Thus we provide them in a simpler form
by reducing the coefficients to 16 significant digits. This gives

b1(θ) = 118.2155391766658θ7 − 450.2127204516691θ6 + 677.9074502047085θ5

−506.6326577159307θ4 + 190.3161507410786θ3 − 30.59376195485317θ2 + 1.0θ,

b2(θ) = −60.9238725099991θ7 + 249.6918871183337θ6 − 401.4282835380396θ5

+316.7368243825975θ4 − 122.3369840744121θ3 + 18.26042862151984θ2,

b3(θ) = −312.8902724924551θ7 + 1182.484831564545θ6 − 1760.013679899522θ5
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+1290.052895837388θ4 − 465.9005706172412θ3 + 66.44072302985349θ2,

b4(θ) = −305.5922221060167θ7 + 1134.240232880773θ6 − 1652.285224203485θ5

+1181.297756609701θ4 − 415.3918067568098θ3 + 58.05733615326755θ2,

b5(θ) = 61.0377890325620θ7 − 278.2997171236728θ6 + 497.0100823644751θ5

−432.9611914049309θ4 + 182.2499138934502θ3 − 28.71080418445299θ2,

b6(θ) = 182.4447055659099θ7 − 725.9253473216322θ6 + 1143.788821738517θ5

−890.8894610421607θ4 + 341.5424634806017θ3 − 50.78725499866808θ2,

b7(θ) = 214.9122807017543θ7 − 752.1929824561483θ6 + 1032.438596491236θ5

−700.6140350877189θ4 + 238.1228070175432θ3 − 32.66666666666666θ2,

b8(θ) = 429.1380138467125θ7 − 1603.256196611661θ6 + 2349.773462964071θ5

−1685.448258473616θ4 + 588.9108452680820θ3 − 79.11786699358911θ2,

b9(θ) = −326.3419612151336θ7 + 1243.470012401131θ6 − 1887.191226121963θ5

+1428.458126894669θ4 − 537.5128189522927θ3 + 79.11786699358910θ2.

7.2. A superconvergent interpolant with local error O(h9). We conclude
this section by considering a C1 interpolant based on a CRK scheme (5) having
local error O(h9) and global error O(h8). This scheme will include the 2 end point
stages and the 4 collocation stages. We will choose the extra required stages to
have stage order 7; this reduces the complexity of the order conditions that must
be satisfied in order to derive the CRK scheme. With this assumption the stage
order of the CRK scheme will be 4 and must satisfy 19 order conditions: the 8
quadrature conditions (11) with p = 1, . . . , 8 and the 11 nonquadrature conditions
(12)(a) with l = 5, 6, 7, (12)(b) with l = 6, 7, (12)(c) with l = 6, 7, (13), (14). The
complete derivation, which is again a more complicated generalization of that given
in the previous section, is given in [15]. Within that analysis, it is shown that it is
possible to choose some of the coefficients to make 5 of the nonquadrature conditions
dependent on the others, and thus the total number of stages required for this scheme
is 14. The resultant family has 20 free parameters, cr, r = 9, . . . , 14, vr, r = 7, . . . , 14,
and xrj , j = 11, . . . , r − 1, r = 12, . . . , 14. An example of a specific scheme from
this family is obtained by choosing the free parameters to be vr = cr, r = 7, . . . , 14,
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xrj = 0, j = 11, . . . , r − 1, r = 12, . . . , 14, c9 = 1
8 , c10 = 1

4 , c11 = 3
4 , c12 = 7

8 , c13 = 2
5 ,

c14 = 3
5 . The tableau of this CRK scheme is

0 0 0 0 0 0 0 0 0 . . . 0
1 1 0 0 0 0 0 0 0 . . . 0
c3 0 0 0 x33 x34 x35 x36 0 . . . 0
c4 0 0 0 x43 x44 x45 x46 0 . . . 0
c5 0 0 0 x53 x54 x55 x56 0 . . . 0
c6 0 0 0 x63 x64 x65 x66 0 . . . 0
1
2

1
2 x71 x72 x73 x74 x75 x76 0 . . . 0

c8 v8 x81 x82 x83 x84 x85 x86 x87 . . . 0

1
8

1
8 x91 x92 x93 x94 x95 x96 x97 . . . 0

1
4

1
4 x10,1 x10,2 x10,3 x10,4 x10,5 x10,6 x10,7 . . . 0

3
4

3
4 x11,1 x11,2 x11,3 x11,4 x11,5 x11,6 x11,7 . . . 0

7
8

7
8 x12,1 x12,2 x12,3 x12,4 x12,5 x12,6 x12,7 . . . 0

2
5

2
5 x13,1 x13,2 x13,3 x13,4 x13,5 x13,6 x13,7 . . . 0

3
5

3
5 x14,1 x14,2 x14,3 x14,4 x14,5 x14,6 x14,7 . . . 0

b1(θ) b2(θ) b3(θ) b4(θ) b5(θ) b6(θ) b7(θ) . . . b14(θ)

,

where the coefficients for the third through sixth stages, c3, . . . c6 and x33, . . . x36,
x43, . . . x46, x53, . . . x56, x63, . . . x66, are the stage coefficients associated with the 4-
stage, eighth order, implicit Runge–Kutta method given in [6]. The expressions for
the remaining coefficients and the weight polynomials, even with the use of specific
values for the free parameters, are very complicated. Thus we provide them in a
simpler form by reducing the coefficients to 16 significant digits. This gives

x71 = −0.005208333333333333, x72 = 0.005208333333333333, x73 = 0.09768756687169055,

x74 = 0.1355546821755248, x75 = −0.1355546821755248, x76 = −0.09768756687169055

for the seventh stage;

x81 = −0.008066287689150030, x82 = 0.007239834759829562, x83 = 0.1371075768778618,

x84 = 0.09571675661727026, x85 = −0.05699647651059596, x86 = −0.06921542910219575,

x87 = −0.1057859749530199

for the eighth stage;

x91 = 0.01924728724952684, x92 = 0.0009231770064713210, x93 = 0.08269651783093607,

x94 = 0.04408472965941152, x95 = −0.03465768595451309, x96 = −0.02368831572171980,
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x97 = −0.01629234729465400, x98 = −0.07231336277545893

for the ninth stage;

x10,1 = 0.04018535463530762, x10,2 = −0.0007184435193296687, x10,3 = −0.05149956819838338,

x10,4 = −0.09119800053831042, x10,5 = −0.08421585380834320, x10,6 = −0.04206634835217353,

x10,7 = 0.001968952482382824, x10,8 = 0.03646061187208010, x10,9 = 0.1910832954267680

for the tenth stage;

x11,1 = −0.06747400064574176, x11,2 = 0.01129454483158386, x11,3 = 0.3416237837455131,

x11,4 = 0.3601250455762746, x11,5 = −0.005638214280780879, x11,6 = −0.1525401711723007,

x11,7 = 0.0, x11,8 = −0.3468850433707371, x11,9 = −0.3290534392809501,

x11,10 = 0.1885474945972381

for the eleventh stage;

x12,1 = −0.04536130701043499, x12,2 = −0.01881103880965994, x12,3 = 0.2633344008411732,

x12,4 = 0.2972755846582715, x12,5 = 0.04101039168870139, x12,6 = −0.08289233968810006,

x12,7 = 0.0, x12,8 = −0.4889108696816266, x12,9 = −0.3269404305894942,

x12,10 = 0.3612956085915711

for the twelfth stage;

x13,1 = 0.03608279120121541, x13,2 = 0.000131678572969903, x13,3 = −0.06639084080129527,

x13,4 = −0.1264523666751095, x13,5 = −0.1290426551933866, x13,6 = −0.06989044658201478,

x13,7 = 0.0, x13,8 = 0.2096860531012513, x13,9 = 0.1918513160723896,

x13,10 = −0.04597552969601728

for the thirteenth stage; and

x14,1 = −0.02178576193711737, x14,2 = 0.01258806317607745, x14,3 = 0.1140050201965098,

x14,4 = 0.07482936616593614, x14,5 = −0.1064001928984542, x14,6 = −0.1308449291677193,
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x14,7 = 0.0, x14,8 = 0.2764275204217753, x14,9 = 0.02735915640638052,

x14,10 = −0.2461782423633799

for the fourteenth stage.
The weight polynomials are

b1(θ) = −56.4436381199899809θ8 +253.812238715680954θ7−472.830314632608563θ6

+ 470.693366363888841θ5 − 268.758819699646491θ4

+ 87.3594339795958204θ3 − 14.8322666069205816θ2 + 1.0θ,

b2(θ) = −5.69610773245068821θ8 +50.8364699890024811θ7−132.057920434786811θ6

+ 158.758592464972902θ5 − 99.7238829667952135θ4

+ 32.3979667275106884θ3 − 4.51511804745335881θ2,

b3(θ) = 139.569462939216599θ8 − 619.032905126537271θ7 + 1130.29916088471430θ6

− 1090.73559549199596θ5 + 590.836359835776708θ4

− 173.262683582173419θ3 + 22.5001279635677711θ2,

b4(θ) = 261.659569486840656θ8 − 1160.53956246961816θ7 + 2119.04227185594448θ6

− 2044.86999039827639θ5 + 1107.67774193649958θ4

− 324.826349829763562θ3 + 42.1823919958046769θ2,

b5(θ) = 261.659569486840656θ8 − 1160.53956246961816θ7 + 2119.04227185594448θ6

− 2044.86999039827639θ5 + 1107.67774193649958θ4

− 324.826349829763562θ3 + 42.1823919958046769θ2,

b6(θ) = 139.569462939216599θ8 − 619.032905126537271θ7 + 1130.29916088471430θ6

− 1090.73559549199596θ5 + 590.836359835776708θ4
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− 173.262683582173419θ3 + 22.5001279635677711θ2,

b7(θ) ≡ 0,

b8(θ) = −8.31141909139675964θ8 +35.8322175766026252θ7−62.9476188360019762θ6

+ 57.5224348639371397θ5 − 28.7450946584199015θ4

+ 7.42078673440372007θ3 − 0.771306589124847742θ2,

b9(θ) = 7.27347428919318217θ8 − 31.3574264998826380θ7 + 55.0866082115286631θ6

− 50.3389308653337225θ5 + 25.1553560997614722θ4

− 6.49406568538233157θ3 + 0.674984450115374787θ2,

b10(θ) = −386.362601167096041θ8+1665.68772868304049θ7−2926.16765961508758θ6

+ 2673.97388040514592θ5 − 1336.23746088288139θ4

+ 344.960882598049104θ3 − 35.8547700211705086θ2,

b11(θ) = 259.073399405822063θ8 − 914.586544484416358θ7 + 1241.88211999852132θ6

− 802.572363669290092θ5 + 240.317838338893073θ4

− 21.9547396768517348θ3 − 2.15970991267827163θ2,

b12(θ) = −290.810166756651486θ8+1160.80477405211073θ7−1902.76704074845315θ6

+ 1651.04799261671893θ5 − 809.114117384592055θ4

+ 216.989550192195177θ3 − 26.1509919713281457θ2,

b13(θ) = 222.020049726361224θ8 − 862.278661743674837θ7 + 1301.05700745072286θ6

− 933.709750460122755θ5 + 296.226753266172454θ4

− 16.2792745946612059θ3 − 7.03612364479773211θ2,

b14(θ) = −543.201055405906023θ8+2200.39413890384742θ7−3599.93804687515232θ6

+ 3045.83595006062754θ5 − 1416.14877565704452θ4

+ 351.777526549014724θ3 − 38.7197375753868247θ2.
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8. Numerical results. In this section we present numerical results for imple-
mentations of superconvergent interpolants based on several of the CRK schemes
derived earlier. We consider collocation with k = 2, 3, and 4, and, for each value
of k, we consider the corresponding superconvergent interpolant based on the CRK
scheme having local error O(h2k). (For the k = 2 case we consider the interpolant
that has continuity to O(h4).) The double precision version of COLNEW was used
to compute all collocation solutions. These tests were run on a DEC alpha system
under the DEC UNIX operating system using the DEC UNIX Fortran 77 compiler.

8.1. Rates of convergence. In this subsection we present results which numer-
ically investigate the orders of convergence for the discrete collocation solution, the
collocation polynomial, and the superconvergent interpolant. We consider uniform
meshes having N , the number of subintervals, equal to 4, 8, 16, 32, 64, 128, and 256.

The test problem is Swirling Flow III [2] (with ε = 0.075):

εf ′′′′(t) + f(t)f ′′′(t) + g(t)g′(t) = 0, εg′′(t) + f(t)g′(t)− f ′(t)g(t) = 0,

f(0) = f(1) = f ′(0) = f ′(1) = 0, g(0) = 1, g(1) = −1.

(Since no closed form solution is available the COLNEW code was run in quadruple
precision with a stringent tolerance to obtain a high accuracy reference solution.) For
each solution component, the initial solution approximation is a straight line through
the boundary conditions for components with boundary conditions and zero otherwise.
Other test problems have also been considered; see [15] for further examples.

To obtain discrete solutions on specific uniform meshes, COLNEW was run with
the communication parameters IPAR(8)=2 and IPAR(10)=2. When the correspond-
ing Newton iterations converged this meant that COLNEW would (i) compute a
solution on the given initial mesh, then (ii) generate a new mesh by doubling the
number of mesh points, then (iii) compute a second solution on the mesh from step
(ii), (iv) generate an error estimate, and then (v) terminate. This helped us to control
the meshes used by COLNEW so that comparisons of solutions obtained from meshes
of N and 2N subintervals, for experimental analysis of convergence rates, would be
possible.

The discrete solution values at the mesh points were obtained by subsequent calls
to the APPSLN routine, which is part of the COLNEW package. The global error for
the corresponding collocation polynomial was based on evaluating the approximate
solution, through calls to the APPSLN routine, at a large number of nonmesh sample
points on each subinterval. Once the COLNEW code has computed a numerical solu-
tion, it is straightforward to employ the CRK schemes derived in the previous sections
of this paper to construct a high order superconvergent interpolant. The algorithm
will be discussed in detail in the next subsection. Subsequent to the execution of
this algorithm, the superconvergent interpolant can be evaluated through calls to the
INTERPEVAL routine, from the MIRKDC package. The global error estimate for
the superconvergent interpolant was based on calls to the INTERPEVAL routine at
a large number of sample points on each subinterval.

In Tables 2, 3, and 4, we give the ratio, for each mesh, of the maximum value of
the global error of the approximate solution computed on the previous mesh to that
for the current mesh, for the discrete collocation solution, the collocation polynomial,
and the superconvergent interpolant. For each ratio, we also give in brackets the
maximum value of the global error. For a given k, the rates of convergence predicted
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Table 2
Error ratios (maximum errors): k = 2.

Discrete Collocation Superconvergent
N solution polynomial interpolant

4 14.4(7.2x10−3 ) 6.7(3.5x10−2) 5.9(5.5x10−2)
8 19.7(3.7x10−4) 5.5(6.3x10−3) 9.9(5.6x10−3)
16 16.8(2.2x10−5) 5.9(1.1x10−3) 12.7(4.4x10−4)
32 16.2(1.3x10−6) 6.9(1.5x10−4) 14.0(3.1x10−5)
64 16.1(8.3x10−8) 7.5(2.1x10−5) 14.4(2.2x10−6)
128 16.0(5.2x10−9) 7.7(2.7x10−6) 15.2(1.4x10−7)
256 16.0(3.3x10−10) 7.9(3.4x10−7) 15.6(9.1x10−9)

Theoretical 16 8 16

Table 3
Error ratios (maximum errors): k = 3.

Discrete Collocation Superconvergent
N solution polynomial interpolant

4 24.5(3.8x10−4) 4.7(7.7x10−3 ) 11.7(1.3x10−3)
8 41.7(9.1x10−6) 7.9(9.8x10−4) 31.3(4.2x10−5)
16 54.9(1.7x10−7) 11.2(8.7x10−5) 40.7(1.0x10−6)
32 61.3(2.7x10−9) 13.4(6.5x10−6) 50.5(2.1x10−8)
64 63.3(4.3x10−11) 14.7(4.4x10−7) 56.7(3.6x10−10)
128 63.1(6.8x10−13) 15.3(2.9x10−8) 60.1(6.1x10−12)
256 34.7(2.0x10−14) 15.7(1.8x10−9) 41.6(1.5x10−13)

Theoretical 64 16 64

by theory for these three solution approximations are, respectively, O(h2k), O(hk+1),
and O(h2k).

Note that as the accuracy of the approximate solutions begins to approach that of
the reference solution (which is close to the double precision roundoff level), the esti-
mate of the global error becomes unreliable, and thus the estimates of the convergence
rates become irrelevant.

From Tables 2–4, we can observe that the expected rates of convergence are
being approached by the numerical approximations and that the maximum error for
the superconvergent interpolant is usually about an order of magnitude larger than
that of the discrete collocation solution. A similiar situation has been examined in
Table 3 (ε = 0.0001 case) of [21, p. 723], where it was observed that the selection
of the free parameters of a scheme can have a significant effect on the accuracy of
the superconvergent interpolant. Table 3 of [21] shows superconvergent interpolant
errors, for reasonable choices of abscissa, that are, in some instances, one to two
orders of magnitude larger than the discrete solution error. The authors identify the
optimal selection of the secondary collocation abscissa as an important subject for
future investigation. For the schemes derived in this paper, the free parameters are
chosen somewhat arbitrarily, simply to avoid singularities arising in the expressions
for the coefficients and weight polynomials. We expect that somewhat more accurate
superconvergent interpolants could be obtained by a detailed analysis of the principal
error coefficients of the CRK schemes and an optimal selection of free parameters. See
[7] for the general approach and [17] for an example of its application in the derivation
of optimal MIRK and continuous MIRK schemes.

8.2. Execution times. In this subsection we consider execution time results for
the calculation and evaluation of the collocation solution and the setup and evaluation
of the associated superconvergent interpolant. The initial mesh is a uniform mesh of
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Table 4
Error ratios (maximum errors): k = 4.

Discrete Collocation Superconvergent
N solution polynomial interpolant

4 170.4(1.1x10−5 ) 10.9(1.5x10−3) 73.9(6.5x10−5)
8 138.1(8.1x10−8) 18.4(8.1x10−5) 71.6(9.1x10−7)
16 203.9(4.0x10−10) 24.8(3.3x10−6) 136.6(6.7x10−9)
32 241.8(1.6x10−12) 28.6(1.1x10−7) 188.7(3.5x10−11)
64 205.0(8.0x10−15) 30.4(3.8x10−9) 64.1(5.5x10−13)
128 0.9(9.3x10−15) 31.7(1.2x10−10) 2.6(2.1x10−13)
256 1.0(9.8x10−15) 32.2(3.7x10−12) 2.6(9.0x10−14)

Theoretical 256 32 256

five subintervals and a tolerance of 10−6 is applied to each solution component. We use
the test problem from the previous subsection. The COLNEW code ran to completion,
using a sequence of meshes and Newton iterations, until a converged solution within
the tolerance was obtained.

The construction of the superconvergent interpolant is based on the following
algorithm which assumes that COLNEW has already been used to compute an ap-
proximate solution.

Algorithm for the Construction of a Superconvergent Interpolant.

1. The APPSLN routine, from the COLNEW package, is used to evaluate the
solution at the mesh points and at the k collocation points within each subin-
terval.

2. The user-defined FSUB function is then called to compute the end point and
collocation stages from the solution values computed in the previous step.

3. The INTERPSETUP routine from the MIRKDC package is called, once for
each subinterval, to set up the extra MIRK stages, as specified by the CRK
scheme corresponding to the value of k, identified in the previous sections of
this paper.

In step 1, by calling the APPSLN routine we obtain the mesh point solution values
and the arguments for the collocation stages, which are then computed in step 2. A
somewhat more efficient implementation would involve recovery of the mesh point
values and the collocation stages by directly accessing them from the FSPACE array
retuned by the COLNEW code. This would avoid k + 2 calls to the APPSLN and k
calls to the FSUB routine for each subinterval. However, the approach implemented
here makes use of the interface routine provided by COLNEW and thus is perhaps
somewhat simpler and, as we will show shortly, introduces negligible extra cost. Upon
completion of the above algorithm, the superconvergent interpolant is then available
for evaluation. It can be evaluated using a call to the INTERPEVAL routine from
the MIRKDC package.

The important execution costs here are (i) the original call to COLNEW, which
yields the discrete solution on the final mesh of N subintervals, and (ii) the con-
struction of the superconvergent interpolant, using the above algorithm, in which
the costs are attributable largely to calls to the APPSLN routine (step 1) and the
INTERPSETUP routine (step 3). (For each call to the APPSLN routine there is
a subsequent call to the user-defined FSUB function (step 2) but the latter cost is
usually negligible.)

Another concern is the cost associated with the subsequent evaluation of the
superconvergent interpolant. Since the superconvergent interpolant typically employs
about twice as many stages as the collocation polynomial, we expect its evaluation cost
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Table 5
Size of final mesh and total execution times.

k N COLNEW APPSLN INTERPSETUP TOTAL SETUP

2 160 0.35 8.3x10−3 - 8.3x10−3

3 40 0.14 2.1x10−3 7.0x10−4 2.8x10−3

4 20 0.08 1.4x10−3 1.1x10−3 2.5x10−3

Table 6
Execution time for a single call.

k APPSLN INTERPEVAL

2 1.7x10−5 1.7x10−5

3 1.3x10−5 3.0x10−5

4 1.4x10−5 3.7x10−5

to be roughly twice that of the collocation polynomial; i.e., a call to the INTERPEVAL
routine will likely cost about twice as much as a call to the APPSLN routine.

In Table 5, for k = 2, 3, and 4 we list execution times (in seconds) for the initial
calculation of the collocation solution in the column labeled COLNEW and for each
of the two main steps of the algorithm for the construction of the superconvergent
interpolant. The times for step 1, which consist of N + 1 + kN calls to the APPSLN
routine, are given in the column labeled APPSLN, and those for step 3, which consist
of N calls to the INTERPSETUP routine, are in the column labeled INTERPSETUP.
The column labeled TOTAL SETUP gives the sum of the previous two columns and
represents the total setup time for the construction of the superconvergent interpolant.
We also give the number of subintervals in the final mesh required by COLNEW to
compute its solution in the column labeled N. Note that for k = 2, no extra stages are
needed for the superconvergent interpolant and thus no calls to the INTERPSETUP
routine are required.

From Table 5, one can observe that the significant execution costs associated
with setting up the superconvergent interpolant are negligible with respect to those
associated with the original computation of the discrete solution. For k = 2, 3, and
4, the total setup costs represent approximately 2.4%, 2.0%, and 3.1%, respectively,
of the cost associated with the calculation of the original collocation solution by
COLNEW.

In Table 6 we give the execution time for a single call to APPSLN and a single
call to INTERPEVAL; we observe that the cost associated with an evaluation of
the superconvergent interpolant is within a factor of at most 2.6 times that of the
collocation polynomial.

Since the execution costs for COLNEW are O(Nn3k3) while the costs for comput-
ing the superconvergent interpolant are O(Nnk2), for larger values of k, it is clear that
the cost of constructing a superconvergent interpolant will continue to be a negligible
fraction of the cost of computing the discrete solution.

In Table 7, we provide maximum errors for the discrete collocation solution, the
collocation polynomial, and the superconvergent interpolant for the cases considered
in Table 5. These results show that COLNEW yields a continuous solution that
approximately meets the tolerance, 10−6, while the discrete solution and the super-
convergent interpolant are substantially more accurate.

In Table 8, we provide maximum errors for the discrete collocation solution, the
collocation polynomial, and the superconvergent interpolant for the k = 2, 3, and
4 when the collocation solution is computed on a nonuniform mesh. The mesh was



252 W. H. ENRIGHT AND P. H. MUIR

Table 7
Size of final mesh and maximum error.

Discrete Collocation Superconvergent
k N solution polynomial interpolant

2 160 2.1x10−9 1.4x10−6 5.9x10−8

3 40 7.1x10−10 2.8x10−6 5.7x10−9

4 20 6.8x10−11 1.1x10−6 1.3x10−9

Table 8
Size of final nonuniform mesh and maximum error.

Discrete Collocation Superconvergent
k N solution polynomial interpolant

2 640 3.1x10−10 3.3x10−7 8.8x10−9

3 160 4.0x10−11 4.2x10−7 3.4x10−10

4 40 3.7x10−10 3.1x10−6 6.2x10−9

constructed to cluster a large percentage of mesh points near the center of the problem
interval. The maximum local mesh ratio is 100; the maximum global mesh ratio is
4952. Results are similar to those for Table 7, where uniform meshes were considered,
indicating as expected from the theory that the accuracy of the superconvergent
interpolants is not dependent on mesh ratios.

In Table 9, we provide maximum errors for the discrete collocation solution, the
collocation polynomial, and the superconvergent interpolant for more difficult ver-
sions of the test problem, with smaller ε values, whose solutions exhibit more severe
boundary layers.

These results generally agree with those of previous tables. The superconvergent
interpolant is substantially more accurate than the collocation polynomial and is
usually within about an order of magnitude of the discrete solution, even for problems
with severe boundary layers. We were unable to present results for k = 2 for any of
these values of ε or for k = 4 when ε = 0.0005 because COLNEW was not able to
obtain a solution (due to nonconvergent Newton iterations). We note that for the
problem with the very severe boundary layer (ε = 0.0005) the discrete solution is no
longer substantially more accurate than the collocation polynomial. This of course
affects the possible relative improvement of the superconvergent interpolant compared
to the collocation polynomial. We also note that for problems in which a very high
tolerance is applied, the resultant collocation polynomial solution will be very accurate
and roundoff will limit the superconvergent discrete solution from being substantially
more accurate. Again, this will mean that the superconvergent interpolant cannot be
substantially more accurate than the collocation polynomial.

9. Summary, conclusions, and future work. In this paper, the question of
developing an efficient method for augmenting the high order discrete solution yielded
by a collocation method is explored. It is observed that it is possible to make use of
the solution values at the mesh points and derivative values at the collocation points
(information that is naturally produced during the collocation calculation) in the con-
struction of a C1 continuous interpolant to the high order mesh point solution. The
approach is based on the use of CRK schemes, which incorporate the available infor-
mation from the collocation computation and augment it with additional derivative
information obtained using efficiently computable MIRK stages. C1 superconvergent
interpolants having global errors of O(h2k) based on two CRK schemes with local
errors of O(h2k) and O(h2k+1), respectively, are derived for k, the number of col-
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Table 9
Size of final nonuniform mesh and maximum error for small ε.

Discrete Collocation Superconvergent
ε k N solution polynomial interpolant

0.002 3 180 1.2x10−9 1.5x10−5 1.6x10−8

4 80 2.4x10−9 5.1x10−5 9.9x10−8

0.001 3 320 9.3x10−10 1.1x10−5 5.9x10−9

4 80 1.8x10−8 3.2x10−4 9.4x10−7

0.0005 3 440 2.2x10−8 2.5x10−6 2.2x10−8

location points, taking on the values 1, 2, 3, and 4. An alternative approach for
deriving CRK schemes, based on the use of a boot-strapping algorithm, is also dis-
cussed.

Although the derivation process is more tedious, the direct derivation of CRK
schemes, in which the coefficients which define the scheme are determined by requir-
ing them to satisfy continuous order conditions, leads to schemes which use fewer
stages and thus are more efficient than those obtained from the boot-strapping algo-
rithm, at least for the values of k considered in this paper. The implementation or
construction costs for these interpolants, when compared with the cost of computing
the original discrete solution using a collocation method, are demonstrated through
some numerical tests to be negligible. The cost of evaluating these interpolants is low;
it is about twice that of evaluating the lower order collocation polynomial produced
by the collocation process. Since the algorithm can be implemented through calls to
existing routines from the COLNEW and MIRKDC codes, the software development
effort associated with preparing the software that performs the construction and eval-
uation of the superconvergent interpolants is also quite reasonable. The numerical
testing indicates that we can expect the accuracy of the superconvergent interpolant
to be within about an order of magnitude of that of the discrete solution. Furthermore,
it indicates that the accuracy of the superconvergent interpolant is not particularly
sensitive to the use of nonuniform meshes or the presence of a numerical solution
which exhibits severe boundary layers.

There is a variety of directions for future work. One is to continue the development
of these interpolants for higher values of k, at least as far as k = 7 (the maximum value
supported by the COLNEW package). Another is to investigate the development
of superconvergent interpolants based on generalizations of CRK schemes or boot
strapping for higher order differential equations, since the collocation method is able to
handle such equations quite naturally. A third area of investigation involves modifying
the COLNEW code so that it computes a superconvergent interpolant which it then
uses for global error estimation and mesh selection.
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