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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 91, Number 2, June 1984 

EQUIVARIANT TRIVIALITY THEOREMS 
FOR HILBERT C*-MODULES 

J. A. MINGO AND W. J. PHILLIPS 

ABSTRACT. The purpose of this paper is to give an exposition of the various triviality 
theorems, the equivariant version of a result due to L. Brown, and a simplification of 
the proof of Kasparov's triviality theorems. 

0. Introduction and notation. In [5] several triviality theorems are given for 
continuous fields of Hilbert spaces (SC(z), F) over a paracompact space B. When B 
is locally compact and & is the subspace of F of functions vanishing at infinity, then 
S is a Hilbert C0(B)-module. 

Recently some of these triviality theorems [5, Theoreme 4 and Corollaire 3] have 
been generalized to the case of Hilbert C*-modules for noncommutative algebras [2, 
6, 7, 9]. Our purpose is to give an exposition of the various triviality theorems, the 
equivariant version of the triviality theorem of [2], and a simplification of the proof 
of Kasparov's triviality theorems [7, 9]. 

Although Hilbert C*-modules had been considered earlier than [7] (see e.g. [10]), 
we will adopt the notation of Kasparov [7, ?2, Definitions 1-4]. If & is a Hilbert 
A-module then &' denotes the direct sum of & with itself countably many times; an 
isomorphism of Hilbert A-modules is denoted by . JCA denotes A' where A is 
considered a module over itself [7, ?2, Example 1]. 

The two triviality theorems then are 

THEOREM 1.4 [5, 6, 7, 9]. Let & be a countably generated Hilbert A-module; then 
S @ }CA M}'A' 

THEOREM 1.9 [2, 5, 6]. Let & be a full countably generated Hilbert A-module. If A 
has a strictly positive element, then & 'KA' 

1. Triviality theorems without group actions. In this section we consider the 
triviality theorems mentioned in ?0 but without any group actions. A crucial notion 
in this section is that of a strictly positive element. 

DEFINITION 1.1 [1]. If e is a positive element of a C*-algebra A and O(e) # 0 for 
all states 4 on A, then e is strictly positive. 

The following lemma, observed in [2], can be deduced from [1], but since it has a 
straightforward proof, we give it here. 

LEMMA 1.2. If e is a positive element of A then e is strictly positive if and only if eA is 
dense in A. 
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226 J. A. MINGO AND W. J. PHILLIPS 

PROOF. Suppose eA is not dense in A. Then by [4, 2.9.4] there is a state of A 
vanishing on eA. Such a state must vanish on e, so e is not strictly positive. 

Suppose k is a state of A for which f(e) = 0. Then, by the Cauchy-Schwarz 
inequality, 4 vanishes on eA. Thus eA is not dense. Q.E.D. 

Now we will apply Lemma 1.2 to the algebra Yu(S) (see [7, ?2, Definition 4]). 

LEMMA 1.3. If & is a Hilbert A-module and T is a positive element of SC(S), then T 
is strictly positive if and only if T has dense range. 

PROOF. If T is strictly positive then TXW(S) is dense in Yu(&). As '?(S) S = i, we 
have T& - TX(t;)& = Yu(S)S - S. 

If T has dense range, then given ( E S there exists a sequence (n E S such that 
-i (. So 6, = lim, TOt E TYL(6). So TYL(S) is dense and T is strictly 

positive. Q.E.D. 
Next we give a proof of the stabilization theorem. The original version of this 

theorem, for continuous fields of Hilbert spaces, is Theoreme 4 (p. 259) of [5]. A 
C*-algebra version is given in Theorem 3.1 of [2]. In this version B is a hereditary 
C*-subalgebra of A with strictly positive element, S = BA, D = X(S @ A'), and 
p E M(D) is the projection onto S. Then 1 - p -1 means A' S E A'. 

The proofs of [6 and 7] follow a Gram-Schmidt orthogonalization procedure. The 
proof below, using polar decomposition, is perhaps simpler. 

THEOREM 1.4 (STABILIZATION). If S is a countably generated Hilbert A-module, then 
; E XA XA 

PROOF. We may assume A is unital; in fact, & may be considered an A-module; 
then S E SX7; -C; impliesS f E}CA -- 'KA, as SA = S and X;A- = W 

Let {1}> C E be a bounded countable set of generators with each generator 
repeated infinitely often. Let {(l} C 'YA be the standard orthnormal basis; that is, (i 
is the sequence with zeros everywhere but the i th place, where there is a 1. Define T: 

ICA ) ; D 'by 

T(() = 2-'l E) 4-iti. 

It is clear that T E ('CA, S @ E A); in fact, 

T - 2 2`On2- ,E , E (XA 1 e EDKA). 

As each -q is repeated infinitely often, -q E 2-G % E ran(T) for infinitely many k's. 
So -q, ( 0 E ran(T)- and thus 0 E (l E ran(T)-; thus ran(T) is dense in S; E 'A. 
Now 

4-4 0 442 4 ,2) 

T*T= 4o 4-12 + 4-34 4-4(2 2) I 

0 

_K+K1 withK,K' 0 . 
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EQUIVARIANT TRIVIALITY THEOREMS 227 

It is clear that ran( K) is dense so K is strictly positive. Thus T*T is strictly positive. 
So ran(T*T) is dense and thus ran(I TI) is also dense. Finally, define V: JCA ' f 0CA 

by V(l Tl ) = Tt. As IIV(l Tl I)ll H I TII 1, V has a continuous extension to 5CA 

where it becomes a unitary from 'CA to & 0 'CA. Q.E.D. 

COROLLARY 1.5. If S is a Hilbert A-module then & is countably generated if and only 
if 'hI(6) has a strictly positive element. 

PROOF. As in the proof of Theorem 1.4 we may suppose A is unital. By Theorem 
1.4 there is a projection P in EC(CA) with C _ P(CKA). Let {fn} be the standard 
orthonormal basis for 9CA. Then K = ll/nOT, is a strictly positive element of 
IC(JcA) by Lemma 1.3. Now ?J(&;) _ PKW(CA)P, so W(&) has a strictly positive 
element [3, Proposition 2.3], PKP. 

Conversely, if X(S) has strictly positive element K = E"O 6 7} with ,, 9 E &; 
then as KS is dense, (t,}> is a set of generators. 

DEFINITION 1.6. If S is a Hilbert A-module then <6, &S = Eri,): (, ) E 

is called the support of S. S is full if ( 5, S ) = A. 

LEMMA 1.7. If & is a full Hilbert A-module and A has a strictly positive element then 
there is a sequence {f ,} in S such that E < ,, ( 1 strictly in M(A). 

PROOF. This is precisely the statement of Lemma 2.3 of [2] when & = pA and 

(q, q ) * for p a projection in M(A) and (, qr E S. The proof goes over to the 

more general case with obvious modifications. Q.E.D. 

COROLLARY 1.8. If & is a full Hilbert A-module and A has strictly positive element 
then S?? A 0 ' for some Hilbert A-module W5. 

PROOF. Let {(l} be as in Lemma 1.7. Define T: A -4 S? by T(a)- (ta). As 

(({,a), (tia))= a*a, we see that ((la) E S6?. Define T*: Soo - A by T*(q1)= 
E 1, in1). By applying the Cauchy-Schwarz inequality we see that E( ,, -q,) con- 
verges in norm to an element of A. As T*T= idA we have that T 0 id: A 0 

(1 - TT*)SO -? S' is an isomorphism. Q.E.D. 

THEOREM 1.9. If S is a countably generated full Hilbert A-module and A has a 
strictly positive element, then S; JCA. 

PROOF. SX (A 0D 0)0? = 'KA 0 Q 'KA, where the last isomorphism follows 
from the stabilization theorem because C, being a complemented submodule of S', 
is countably generated. Q.E.D. 

REMARK 1.10. With Theorem 1.9 we may quickly obtain a proof of [3, Theorem 
1.2]. Suppose A and B are strongly Morita equivalent; in our notation this means 
that there is a full Hilbert B-module & with A _ Y(5). If A and B have strictly 
positive elements then S is countably generated by Corollary 1.5 and we may apply 
Theorem 1.9 to conclude that S' fi3X. Now, as in [8, ?2.9], 

( S O) = 5(5 X ) -o Yc (S) 0 '(JO( X) 
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228 J. A. MINGO AND W. J. PHILLIPS 

and, similarly, X( q3') =- (6 ) 0 'Y('C). Thus 

A 0W 5c - (S) 0 X (cK) 
_ Xc(S 00) _C Yu( ,)x ) _ cK,( ) 0 (JC) ?? B 0 C. 

So A and B are stably isomorphic. 

2. Triviality theorems with group actions. Let (A, a, G) be a C*-dynamical system. 
DEFINITION 2.1 (SEE [7, DEFINITION 1]). A Hilbert (G - A)-module S is a Hilbert 

A-module which is also a left G-module satisfying: 

(i) t -(ta) = (t - )a,(a), 
(ii) t t ( is continuous, 

(iii) (t (, t r -) = a,t((t, -)) 

forall ,q E S, t E Ganda &A. 
Let S, and 62 be Hilbert (G - A)-modules. There is an action of G induced on 

(&I' 62), namely (t T)(() = t T(t-' -) for t E 61, T E C'(&; I2) and t E G. 
Note that T is G-equivariant iff t T = T for all t E G. In general, the map t -t T 
is strongly continuous. T is called G-continuous in case this map is continuous in 
norm (see [9, 1.3]). 

If 6S and 62 are Hilbert (G - A)-modules then we can make SI E 62 into a 
Hilbert (G - A)-module by defining the G action as follows: t ( 0' =2) (t , t 

42) for t E G, j E S1, and 42 E 2 Similarly, if & is a Hilbert (G-A)-module then 
so is S'. A itself is a Hilbert (G - A)-module where t a=(() for t E G and 

E&A. 
If S is a Hilbert (G - A)-module we can make COO(G, S) (the continuous 

compactly supported functions from G to S) into a pre-Hilbert (G - A)-module as 
follows: 

(ta)(t) = (t)a, (s - )(t) =s - (s-'t), 0t7) JG( -q)7(t)) dt 

for ,q &E COO(G, S), s E G and a E A. 
DEFINITION 2.2 (SEE [9, 1.4]). L2(G, 5) is the completion of COO(G, S) as a Hilbert 

(G - A)-module. 
Note that L2(G, &) is a completion of the algebraic tensor product L2(G) 0 5 and 

the G action is the tensor product of the left regular representation with the G action 
on S. In view of [4, 13.11.3], the following result should not be surprising. 

LEMMA 2.3. If 6S and 62 are isomorphic as Hilbert A-modules then L2(G, 61) and 
L2(G, 62) are isomorphic as Hilbert (G - A)-modules (i.e. by a G-equivariant isomor- 
phism of A-modules). 

PROOF. Let U be a unitary operator in C(S &2). Define VE C(L2(G, 61), 
L2(G, 6;2)) by (V{)(t) = t U(t-' - ((t)) for ( E CO(G, 61). It is not difficult to 
check that V is an A-module map, G-equivariant and unitary. Q.E.D. 

The Hilbert (G - A)-module version of Theorem 1.9 now follows. 

THEOREM 2.4. Let S be a Hilbert (G - A)-module which is countably generated and 
full as a Hilbert A-module. Then L2(G, &)' is isomorphic to L2(G, A)' by a 
G-equivariant isomorphism of Hilbert A-modules. 
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PROOF. There are obvious G-equivariant isomorphisms L2(G, &)X L2(G, S& ) 
and L2(G, A)' L2(G, AX). By Theorem 1.9 S' and A' are isomorphic as Hilbert 
A-modules and so by Lemma 2.3 there is a G-equivariant isomorphism L2(G, S&) 
L 2(G, Ax). Q.E.D. 

The Hilbert (G - A)-module version of Theorem 1.4 is the following: 

THEOREM 2.5 (KASPAROV [9, THEOREM 2.1]). Let S be a Hilbert (G - A)-module 
which is countably generated as a Hilbert A-module. There is a G-continuous isomor- 
phism from S E L2(G, A)x to L2(G, A)X. If G is compact this isomorphism can be 
chosen to be G-equivariant. 

PROOF. By Lemma 2.3 and Theorem 1.4 we have equivariant isomorphisms 

L (G, AY)Y L2(G, Ax )x L2(G, S, E AX )x L2(G, &)x0 D L2(G, AxY)x 

Let q E Coo(G) with Ikk112 = 1. Let V: S L2(G, S) be given by (V()(t) = k(t). It 
is easy to check that Vis a G-continuous isometry. Now define U: E; E L2(G, &;)0- 
L2(G, S)0 by 

U(tO, l I2 ) = (vZ0 ? (1 - VV*)%1, vv*1 + (1 - vv*)42,...). 

U defines a G-continuous unitary with 

U* (q I1 '213,**) = (v*l, VV*q2 + (1 - VV*)>q, VV*q3 + (1 -VV*)q2,...). 

Thus 

S E L2(G, A)? S E L2(G, S)0 E L2(G, AX)x 

- L2(G, S)0 E L2(G, AX)X L2(G, A)X. 

The resulting isomorphism is G-continuous. 
If G is compact we may take q = 1. Then V and U are equivariant and thus 

S E L2(G, A)?? L2(G, A)x by a G-equivariant unitary. Q.E.D. 
To conclude we shall explain why Theorem 2.4 is the equivariant version of the 

triviality theorem of [2]. The equivariant version of [2, Lemma 2.5] is 

COROLLARY 2.6. Let (A, a, G) be a C*-dynamical system and suppose A has a 
strictly positive element. If p in M(A) is a full invariant projection then p 0 1 -1 0 1 
in M(A 0 '1X( L2(G)x)) by an invariant partial isometry. 

Theorem 1.9 and Corollary 2.6 (in the case of a trivial action) are, in fact, proving 
the same thing. Indeed, suppose B has a strictly positive element and & is a 
countably generated full Hilbert B-module. Let A = '( & E B); A is the linking 
algebra for the strongly Morita equivalent C*-algebras 'X(&;) and B as in [2, 
Theorem 2.8 and 3, Theorem 1.1]. By Lemma 1.2, B, when considered as a Hilbert 
B-module, is countably generated (by a single element in fact). Thus &; ED B is 
countably generated as a Hilbert B-module; so by Corollary 1.5, A = '(S @ B) has 
a strictly positive element. Let p and q be the projections in M(A) with ranges S and 
B, respectively. It is easy to check that AqA is dense in A and similarly ApA is dense 
in A because S is full. Thus p and q are full projections [2, Lemma 1 .1]. 
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Now as in [8, ?2.9] 'JC(& 0 B) 0 X _ X((& 0 B) 0 X), so 

A 0 X- X (& 013(0 B 0 17)). 

Under this isomorphismp 0 1 and q 0 1 become the projections onto & 0 1K 7-W ? 
and B 0) 1- B?, respectively. Thusp 0 1 -1 0 1 - q 0 1 gives &; _ B'. 

PROOF OF COROLLARY 2.6. Let S & pA; then & is a Hilbert (G - A)-module. As 
1(S) = pAp, which being a corner of A has a strictly positive element [3, Proposi- 
tion 2.3], we have that & is countably generated by Corollary 1.5. Also, as 
&, & > =pAp we see that & is full. So & 0 L2(G) _ A 0 L2(G)' by an equi- 

variant isomorphism, that is, p 0 1 -1 0 1 in 

0(A 0 L (G)x)-M(A 0 h(L2(G)y)) 

by an invariant partial isometry. Q.E.D. 
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