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ABSTRACT

The interior structure, the evolution, and the p-mode oscillation spectra of stellar models between 2.0 and
5 M are presented. Interior details, including convective core and envelope growth and decay, the develop-
ment of composition gradients, and the onset of hydrogen shell burning are shown to be testable by future
asteroseismology observations. The stellar age and mass dependence of the large- and small-spacing oscilla-
tion frequencies are discussed. The dependencies of the structure and the oscillation spectra on composition
and mixing length are also discussed. A new oscillation diagnostic for stellar mass is introduced.

Subject headings: stars: evolution — stars: interiors — stars: oscillations

1. INTRODUCTION

Numerical modeling of the equations of stellar structure
and evolution, with the aid of sophisticated compilations of
relevant opacities, the equation of state, and nuclear reac-
tion rates, has successfully mapped out our understanding
of the evolution of stars throughout the H-R diagram. Con-
firmation of stellar evolution theory has come from the
wonderful agreement between the predicted positions of
stars in the H-R diagram and their observed positions, and
the association of different phases of evolution with specific
regions in the H-R diagram. The pulsation behavior of
Cepheids and other nonlinear, radially oscillating stars has
further confirmed stellar modeling for specific stars.
Detailed confirmation of some of the physics of the stellar
model has also come from the better than one part in one
thousand agreement between the oscillation spectrum pre-
dicted by the standard solar model and the observed solar
p-mode oscillation spectrum. Additionally, and recently, is
the conclusion from the Sudbury Solar Neutrino Observa-
tory (SNO) collaboration (Ahmad, Allen, & Andersen
2001), using SNO (Boger et al. 2000) and Super-
Kamiokande (Fukuda et al. 1998) data, that the electron
neutrino has mass and hence oscillates, thus confirming that
the nuclear physics of the solar model is correct, that is, spe-
cifically, that both the p-p and CNO chains contribute to the
solar luminosity.

There remain many aspects of stellar theory that have not
been observationally confirmed. The matching of theoreti-
cal and observational H-R diagrams does not unambigu-
ously confirm the interior structure predictions of the stellar
models. With the exception of a few pulsating stars, our pic-
ture of the stellar interior is derived exclusively from the
physics of the stellar model, constrained by the observed
surface boundary conditions. Although it is unlikely that
the basic physics is in error, the opacities, the equation of
state, the model of convection, and the atmosphere calcula-
tion are uncertain to varying degrees. The uncertainties in
the opacity and equation-of-state calculations are estimated
to be approximately +15% for conditions that exist in the
deep interior of stars and as much as +30% in the cooler
outer layers. The mixing-length approximation, which has
long been suspect, is now known to incorrectly specify the
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structure of the surface layers in the Sun, as demonstrated
from seismic studies of the p-mode oscillation spectrum
(Demarque, Guenther, & Kim 1999). Furthermore, the
physics of the stellar model does not include the effects
of rotation or magnetic fields, which may turn out to be
important.

As is often stated, p-mode oscillation data from stars will
help constrain and test stellar models. Initially, oscillation
data will be used to constrain the models, for example, by
providing a determination of the radii of stars. Ultimately,
the data will be used to test stellar interiors and evolution.

Under the unrealistically ideal situation where the obser-
vational data are well determined, one can approach the
problem of how to use the oscillation data by comparing the
number of constraints to the number of variables in the
problem. Consider first a single star. To model an isolated
star, we need to know the mass, M, age, a, luminosity, L,
surface temperature, T, helium abundance, Y, heavy ele-
ment abundance, Z, and mixing-length parameter, «. In
order to obtain the luminosity of a star, we must know its
distance and bolometric magnitude. The latter can be
obtained by applying a bolometric correction, which
depends on surface temperature and mass, to the apparent
magnitude. In total, there are eight independent parameters.
In the case of the Sun, we know well six of the eight con-
straints directly, the mass, age, bolometric flux from the Sun
at the Earth, surface temperature, heavy-element abun-
dance, and distance. The theory of stellar evolution pro-
vides two additional constraints, L(M,a,Y,Z,«a) and
Ter(M,a,Y,Z,«), which are all that are required to
uniquely specify the system. Indeed, the most accurate
determination of the helium abundance in the interior of the
Sun comes from the solar model.

Returning to the general case of a field star, two of the
eight constraints come from stellar modeling, i.e., from
L(M,a,Y,Z,a) and Ter(M,a,Y,Z,«). The metallicity
can be determined from [Fe/H] measurements, the effective
temperature from atmosphere models, or simply from
B—V. The apparent magnitude of the star and its color can
be used to determine the apparent bolometric magnitude of
the star. If the parallax of the star is known, then two addi-
tional constraints are needed. Therefore, some assumptions
must be made about the star in order to specify it uniquely.
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Normally, the stellar modeler will assume values for o and
Y, for example, using the same values as obtained for the
standard solar model. For field stars, p-mode oscillation
data, even just the large and small spacings (defined later)
will be enough to fully constrain the system. Indeed, once
the system is fully constrained, the stellar model immedi-
ately gives the age, the radius, the helium abundance, and
the mixing-length parameter of the star.

For binary star systems, such as o Cen AB, the number of
constraints required to produce unique models of both stars
increases to only 12 because of the common origin of both
stars. The required constraints are the masses of the two
stars, the apparent bolometric magnitudes of the two stars
(which with the distance gives the luminosity of the two
stars), the surface temperatures of the two stars, the age of
the binary system, the helium and heavy-clement abund-
ance of the system, the distance to the system, and the
mixing-length parameter of each of the two stars. Stellar
evolution provides four constraints: La(Ma,a,Y,Z, an),
TA(MAa a, Ya Za OKA), LB(MBa a, Y7 Z7 OKB), and TB(MBa a,
Y,Z, ag). The composition of the system, the color of each
star, the apparent magnitude of each star, the orbit
ephemeris, and the parallax are enough to completely con-
strain the system. Therefore, for binary stellar systems of
known distance, oscillation data can be used to test the
models, in much the same way that they have been used to
test the solar model.

Real data used to constrain stellar models have associated
uncertainties that must be accounted for in any stellar mod-
eling analysis. In the case of o Cen AB, Guenther & Demar-
que (1997) describe in detail how current observations can
be used to constrain the system to a small range of uncer-
tainty in the physical variables. They argue that with the
addition of p-mode oscillation data, the range of uncer-
tainty in the models is further constrained and that some
internal features of the stars can be tested (e.g., the core
convective region).

Another aspect of stellar modeling should be noted. That
the solar model is a good fit to all observables means only
that the model physics works for the specific conditions in
the Sun. We currently have no way of testing whether or not
the detailed physics are applicable to all stars. We do not
know, for example, whether our opacity calculations are
accurate at lower temperatures. We do not know whether
our calibration of the rate at which helium diffuses out of
the convection zone base is correct for convection zones
with different depths. We do not know whether the rates of
nuclear burning are correct for more massive stars where
the CNO cycle dominates. We do not know to what degree
convective overshooting occurs. What is needed, and what
stellar p-mode oscillation data potentially offer, are new
constraints to test our basic models of stars of different
mass, age, and composition.

Several groups are modeling three-dimensional turbulent
convection in the solar regime (Nordlund & Stein 1996;
Kim & Chan 1998) and have stated plans to extend their
convection models to other stars. And Deupree (2001) is
now calculating full two-dimensional models of the effects
of rotation in the interior of star. Stellar oscillation data will
be especially critical in testing these new stellar model
physics.

The purpose of this paper is to explore in greater detail
the potential that asteroseismology holds in testing stellar
structure and evolution theory. In this paper we focus on
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stars with masses between 2 and 5 M. We begin with a
review of the basic results of stellar evolution for stars in this
mass range and then follow with a discussion of the p-mode
seismology of these stars. We identify basic features of the
oscillation spectrum and match them with features in the
interior of the stars. Finally, we show how the stellar oscilla-
tion spectrum of a star evolves as the star itself evolves.

2. STELLAR MODELS

All stellar model sequences were calculated using YREC
(Guenther et al. 1992), the Yale stellar evolution code. The
same code is in use by the original author of the code,
P. Demarque (Yale), and his collaborators (e.g., Demarque
et al. 2001). Modified versions of the code, adapted to
specific problems, are in use by M. Pinsonneault (Ohio) and
his collaborators (e.g., Bahcall, Pinsonneault, & Basu 2001),
B. Chaboyer (Dartmouth) and his collaborators (e.g.,
Chaboyer, Sarajedini, & Armandroff 2000), and A. Sills
(e.g., Sills et al. 2001).

The code solves the basic equations of stellar evolution
using the Henyey relaxation technique. The opacities are
obtained from the OPAL9S tables (Iglesias & Rogers 1996)
for temperatures above 6000 K and from the Alexander &
Ferguson (1994) “molecular ” opacity tables below 15,000
K. A weighted average, derived from a linear ramp function
in temperature, is used in the transition temperature range.
The composition of heavier than helium elements for all the
stellar models is determined by scaling the observed solar
mixture of elements as summarized by Grevesse, Noels, &
Sauval (1996). This is also the mixture on which the opacity
tables are based. The current equation-of-state tables from
Lawrence Livermore (Rogers 1986; Rogers, Swenson, &
Iglesias 1996) are used. The nuclear energy generation rou-
tines have been updated to include the latest cross sections
(Bahcall et al. 2001). The updated cross sections altered the
luminosity of our stellar models by less than one part in one
thousand.

The evolutionary sequences presented here begin on the
zero-age main sequence (ZAMS), defined as the point in the
evolution, following pre—main-sequence collapse, where the
nuclear luminosity becomes important, that is, rising above
1% of the total luminosity (gravitational collapse luminosity
dominates prior to the ZAMS). The ZAMS starting models
themselves were obtained by evolving Lane-Emden gas
spheres from the Hayashi track to the ZAMS using YREC.

In order to obtain oscillation frequencies that are numeri-
cally accurate to +0.1%, the models must be represented by
a relatively dense grid of shells (when compared to tradi-
tional stellar models), especially in the outer envelope and
atmosphere. The stellar models discussed in this paper all
have approximately 2000 shells, with one-third of the shells
covering the interior, one-third covering the outer envelope,
which encompasses less than 1% of the total mass, and one-
third covering the atmosphere. The atmosphere is a gray at-
mosphere in the Eddington approximation.

The mixing-length parameter, «, was obtained from a
calibrated solar model that was constructed using the same

I'Stars between 2 and 5 M., do not develop convective envelopes until
they approach the giant branch and hence are not expected to have observ-
able nonradial oscillations until then. Near the giant branch, though, one
expects, based on scaling arguments (Kjeldsen & Bedding 1995) that the
luminosity variations associated with p-mode oscillations may be 100-1000
times greater than in the Sun.
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physics, i.e., opacities, equation of state, and atmosphere, as
used in these stellar models. Convective overshoot, rotation,
and gravitational settling of helium and heavier elements
were not included in the models. It is possible, though, that
these additional physics will produce an observable effect on
the p-mode oscillation modes and hence are worth studying
in the future.

3. TRACKS

Evolutionary tracks were constructed for models at 2.0,
2.5, 3.0, 4.0, and 5.0 M. The evolutionary sequences were
terminated shortly after the stellar models began ascending
the giant branch. The helium abundance (mass fraction)
was set to Y = 0.24, and the heavy-element abundance was
set to Z = 0.01 for most of the models.

To study the effect of different values of Y and Z, addi-
tional tracks were calculated for the 3.0 M. models at
Y =0.25 and 0.26 and at Z = 0.005 and 0.02. Another set
of tracks was also calculated for the 3.0 M models with the
mixing-length parameter set slightly below and above its
solar model—calibrated value of o = 1.6, that is, with « at
l1.4and 1.8.

The stellar evolution code automatically adjusts the time-
step size between models along an evolutionary track
according to various criteria associated with the magnitude
of the structural changes taking place. For example, during
main-sequence evolution, the code uses the rate at which the
abundance of hydrogen decreases in the core to control the
time step, and then during giant branch evolution, the code
uses the rate that the mass of the hydrogen-burning shell
decreases to control the time step. As a consequence, the
models are not regularly spaced along the track as seen in
the H-R diagram, nor are they regularly spaced in time.

Each track consists of a time sequence of approximately
2500 models. Because each model contains over 2000 shells,
it is not practical or necessary to examine the detailed struc-
ture and pulsation spectrum of every model calculated. To
reduce the number of models to a more manageable level,
approximately 300 models, equally spaced along the track
(as viewed in an H-R diagram) were selected for detailed
pulsation analysis. In addition, 12 models, positioned at key
points along the track, were selected for detailed interior
analysis. The 12 points along the track are identified in
tables and figures by the following nomenclature, listed in
order of increasing age: msl (the ZAMS model), ms2, tol
(just before core hydrogen exhaustion during the main-
sequence phase), to2 (turnoff), to3, sgl (isothermal core col-
lapses), sg2, sg3 (rapid evolution to subgiant phase), sg4,
sg5, gbl (beginning of giant branch evolution), and gb2. In
Figure 1 we show the evolutionary tracks of the models with
the 12 points identified along each track. Some physical
properties of the selected models are listed in Table 1.

In Figure 2b we show the 3 M, tracks for models with dif-
ferent metallicities Z (0.005, 0.010, and 0.020). Increasing Z
causes the opacities near the surface of the cooler models
(on the giant branch) to increase. This is because the metals
provide electrons, owing to their low ionization tempera-
ture, to form H™, which is the dominant opacity source at
low temperatures. An increase in the opacity near the sur-
face causes the giant branch to shift to the red, with the
envelope of the model being more distended. The effect of
the metals elsewhere is different. Increasing Z prior to reach-
ing the giant branch increases the abundance of C, N, and O
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in the nuclear-burning core. As a consequence, the point at
which CNO burning becomes a greater contributor to the
total luminosity than p-p burning takes place slightly earlier
in the evolution of the star. Hydrogen is exhausted in the
core earlier, and turnoff occurs at lower luminosities.

In Figure 2¢ we show the 3 M, tracks for models with
Y =0.24, 0.25, and 0.26. Increasing the helium abundance
increases the mean molecular weight, and as a consequence,
the luminosity of the star increases.’

In Figure 2d, we show the 3 M, tracks for models with
a = 1.4, 1.6 (calibrated solar value), and 1.8. The effect of
the mixing-length parameter on the models is minimal until
the stellar model develops a convective envelope, near
log Teff =3.8.

4. EVOLUTION OF STRUCTURE
4.1. Age Scale

Because the rate of evolution varies significantly from the
main-sequence to the giant branch, it is necessary to adopt a
nonlinear timescale. We use the total arc length, A, mea-
sured from the ZAMS, along the model’s evolutionary track
in the H-R diagram to stand in for the age scale of the mod-
els. During phases of evolution when the interior structure
is undergoing rapid changes, the position of the star, in the
H-R diagram, changes rapidly, and during more quiescent
phases of evolution, such as during main-sequence evolu-
tion, the H-R diagram position of the star does not change
very much. Figure 3, which is a plot of age versus A (the scale
of which is arbitrary) for the 2-5.0 M, evolutionary sequen-
ces, can be used to convert between the two age scales. The
12 specifically selected models along the evolutionary
sequence are identified.

4.2. Pressure, Temperature, Density, and Luminosity

The evolution of the interior structure of stars between 2
and 5.0 M., was well studied by stellar modelers in the
1960s. Iben’s (1967) review article provides detailed physical
explanations of the interior evolution of a 5.0 M, star and,
indeed, summarizes most of the results that remain valid
today. For comparison purposes and as a general reference,
we provide detailed plots of the interior structure of the 2
and 5.0 M., models at the 12 selected points along the evolu-
tion (Figs. 4-11).

Qualitatively, the circa 1960s through 1980s models are
very similar to present-day models. Differences lie in the
details. Present-day models used in pulsation studies are
constructed using approximately 10 times more shells and
include significantly more detailed and up-to-date atomic
and nuclear physics. These improvements have been tested
and calibrated in the solar model. Consider that the theoret-
ical oscillation spectrum of a circa 1970s standard solar
model (Iben & Mahaffy 1976) did not match the observed
solar oscillation spectrum to better than one part in one
hundred. Today, the oscillation spectrum of the standard
solar model matches the observations to better than one
part in one thousand, all without any ad hoc tweaking of
the physics.

2 Chandrasekhar (1957, pp. 273-274) shows that L oc > M>3R,
assuming conservation of mass, hydrostatic equilibrium, radiative energy
transport, and a Kramers’s opacity law.
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Fig. 1.—H-R diagram of stellar evolutionary tracks of stars of intermediate mass. Twelve labeled points along each track identify key phases of

evolution.

Figures 4 and 5 show the run of density, p, at the 12
selected phases of evolution for the 2 and 5 M models,
respectively. Figures 6 and 7 show the run of temperature,
T; Figures 8 and 9 show the run of pressure, P; and Figures
10 and 11 show the run (in the inner regions only) of lumi-
nosity, L (by convention L includes nuclear power and grav-
itational power but excludes neutrino power). All variables
are plotted in cgs units.

The plots reveal the basic flow of stellar evolution as the
core becomes more centrally concentrated and hotter and
the outer envelope becomes more distended. The changes
that occur in the structure of the 2 M. model, as the star
evolves, are very similar to the changes that occur in the 5
M, model. During main-sequence evolution, the source of
nuclear power is spread over a large region of the core (Fig-
ures 10 and 11), then as the star evolves off the main-
sequence, following core hydrogen exhaustion, nuclear
burning confines itself to an ever narrowing shell. With
regard to pulsation, we note that by the time a star becomes
a subgiant very little mass is contained within the envelope
of the star.

4.3. Convective Envelopes

One of the more interesting features of the interior that
does reveal itself in the p-mode oscillation spectrum is the

presence of convective regions. Fundamentally, since we
believe nonradial p-mode oscillations are driven by turbu-
lent convection, an envelope convective region must be
present in stars with observable p-mode oscillations. Need-
less to say, if we were to observe p-modes in stars which we
predict do not have convective envelopes, then we would be
forced to consider alternate driving mechanisms for the
p-mode oscillations in those stars.

By simply identifying the existence or nonexistence of
p-mode oscillations in a variety of stars in a cluster (i.e., a
common origin group of stars), one can determine the loca-
tion of the boundary between stars with and without con-
vective envelopes. By comparing this boundary with that
predicted by stellar models, we can test the basic stellar
structure physics (e.g., surface boundary conditions, opac-
ities, and equation of state) upon which the existence of a
convective envelope depends. Indeed, because the position
of the boundary depends on metallicity (see below), it may
be possible to use the p-mode-determined position to deter-
mine, or at least confirm, the metallicity of the star cluster.

We stress that in order to carry out this seismological
analysis of stellar convection, only the power envelope of
the p-mode spectrum needs to be observed. The individual
modes or frequency spacings do not need to be resolved.
Consider, for example, the ground-based observations of



TABLE 1
SELECTED MODEL STRUCTURE PROPERTIES

Mass Age
(Mu) Label A (Gyr) 10g Terr 10g L/LG IOg R/R@ IOgg Mee Meeny Keenv log P, 10g T, IOg Pc X

0] (@) 3 @ (&) (6) (@) ®) © (10) (an (12) 13) (14) (15)
2.0....... msl 0 0.019 3.991 1.259 0.171 4.40 0.28 0.00 1.00 17.339 7.334 1.864 0.73
2.0....... ms2 27 0.574 3.948 1.357 0.307 4.13 0.22 0.00 1.00 17.271 7.364 1.903 0.37
2.0....... tol 39 0.784 3.906 1.391 0.407 3.92 0.16 0.00 1.00 17.282 7.400 2.001 0.13
2.0....... to2 54 0.858 3915 1.445 0.415 391 0.10 0.00 1.00 17.504 7.472 2.231 0.01
2.0....... to3 78 0.868 3.926 1.505 0.425 3.89 0.00 0.00 1.00 18.046 7.395 2.847 0.00
2.0....... sgl 94 0.900 3.888 1.531 0.513 3.71 0.00 0.00 1.00 18.629 7.422 3.373 0.00
2.0....... sg2 109 0.909 3.844 1.515 0.594 3.55 0.00 0.00 1.00 19.038 7.485 3.689 0.00
2.0....... sg3 128 0914 3.797 1.474 0.666 3.41 0.00 0.00 1.00 19.352 7.549 3914 0.00
2.0....... sg4 154 0.918 3.765 1.386 0.687 3.37 0.00 0.01 0.79 19.635 7.611 4.112 0.00
2.0....... sg5 185 0.921 3.741 1.261 0.671 3.40 0.00 0.10 0.66 19.848 7.657 4.258 0.00
2.0...... gbl 208 0.924 3.719 1.184 0.677 3.38 0.00 0.52 0.52 20.054 7.697 4.400 0.00
2.0....... gb2 224 0.927 3.707 1.244 0.732 3.27 0.00 1.04 0.38 20.236 7.723 4.527 0.00
250 msl 0 0.011 4.061 1.633 0.219 4.40 0.45 0.00 1.00 17.263 7.367 1.755 0.73
2.5 ms2 31 0.298 4.018 1.733 0.355 4.13 0.33 0.00 1.00 17.167 7.387 1.761 0.41
250 tol 44 0.427 3.972 1.779 0.469 3.90 0.22 0.00 1.00 17.167 7.423 1.853 0.15
2.5 to2 60 0.471 3.981 1.837 0.480 3.87 0.13 0.00 1.00 17.407 7.502 2.103 0.01
250 to3 84 0.474 3.989 1.889 0.491 3.85 0.00 0.00 1.00 17.918 7.427 2.691 0.00
2.5 sgl 108 0.491 3.925 1.908 0.627 3.58 0.00 0.00 1.00 18.746 7.490 3.425 0.00
250 sg2 136 0.494 3.848 1.856 0.755 3.33 0.00 0.00 1.00 19.239 7.593 3.790 0.00
2.5 sg3 162 0.495 3.785 1.780 0.843 3.15 0.00 0.00 1.00 19.488 7.653 3.965 0.00
250 sg4 188 0.496 3.755 1.675 0.852 3.13 0.00 0.01 0.78 19.661 7.694 4.085 0.00
2.5 sg5 210 0.497 3.735 1.559 0.834 3.17 0.00 0.11 0.67 19.792 7.726 4.176 0.00
250 gbl 223 0.497 3.720 1.508 0.838 3.16 0.00 0.42 0.58 19.895 7.750 4.247 0.00
2.5 gb2 259 0.499 3.697 1.656 0.957 2.92 0.00 1.53 0.32 20.149 7.802 4.426 0.00
3.0....... msl 0 0.007 4.113 1.931 0.263 4.39 0.61 0.00 1.00 17.188 7.390 1.657 0.73
3.0....... ms2 30 0.182 4.073 2.035 0.396 4.12 0.44 0.00 1.00 17.082 7.406 1.649 0.42
3.0....... tol 46 0.264 4.028 2.091 0.512 3.89 0.29 0.00 1.00 17.073 7.440 1.732 0.16
3.0....... to2 63 0.294 4.035 2.152 0.530 3.86 0.16 0.00 1.00 17.325 7.524 1.998 0.01
3.0....... to3 86 0.295 4.042 2.197 0.538 3.84 0.00 0.00 1.00 17.800 7.456 2.547 0.00
3.0....... sgl 119 0.305 3.954 2.211 0.722 3.47 0.00 0.00 1.00 18.848 7.555 3.466 0.00
3.0....... sg2 156 0.307 3.855 2.132 0.880 3.16 0.00 0.00 1.00 19.341 7.672 3.823 0.00
3.0....... sg3 187 0.307 3.777 2.031 0.985 2.95 0.00 0.00 1.00 19.558 7.727 3.975 0.00
3.0....... sg4 210 0.308 3.747 1.929 0.994 2.93 0.00 0.01 0.79 19.676 7.757 4.058 0.00
3.0....... sgS 226 0.308 3.729 1.828 0.979 2.96 0.00 0.11 0.69 19.772 7.781 4.124 0.00
3.0....... gbl 236 0.308 3.716 1.787 0.985 2.94 0.00 0.38 0.60 19.845 7.800 4.175 0.00
3.0....... gb2 261 0.308 3.692 1.936 1.108 2.70 0.00 1.54 0.38 20.032 7.843 4.306 0.00
4.0....... msl 0 0.004 4.192 2.389 0.334 4.37 0.92 0.00 1.00 17.061 7.421 1.497 0.73
4.0....... ms2 28 0.085 4.157 2.496 0.458 4.12 0.65 0.00 1.00 16.950 7.434 1.474 0.45
4.0....... tol 53 0.133 4.106 2.577 0.600 3.84 0.38 0.00 1.00 16.944 7.478 1.578 0.13
4.0....... to2 65 0.144 4.115 2.626 0.608 3.82 0.24 0.00 1.00 17.167 7.550 1.807 0.01
4.0....... to3 90 0.145 4.122 2.673 0.616 3.81 0.00 0.00 1.00 17.684 7.494 2.393 0.00
4.0....... sgl 135 0.149 4.000 2.680 0.864 3.31 0.00 0.00 1.00 18.975 7.658 3.498 0.00
4.0....... sg2 186 0.149 3.860 2.558 1.082 2.88 0.00 0.00 1.00 19.475 7.788 3.854 0.00
4.0....... sg3 223 0.149 3.763 2.432 1.214 2.61 0.00 0.00 1.00 19.646 7.835 3.974 0.00
4.0....... sg4 238 0.149 3.734 2.350 1.231 2.58 0.00 0.01 0.79 19.715 7.853 4.022 0.00
4.0....... sg5 249 0.149 3.717 2.279 1.228 2.58 0.00 0.09 0.70 19.769 7.868 4.060 0.00
4.0....... gbl 257 0.149 3.705 2.246 1.237 2.57 0.00 0.33 0.63 19.818 7.880 4.094 0.00
4.0....... gb2 268 0.150 3.685 2.323 1.315 241 0.00 1.22 0.49 19.896 7.901 4.149 0.00
5.0....... msl 0 0.000 4.254 2.730 0.382 4.37 1.18 0.00 1.00 16.982 7.447 1.386 0.75
5.0....... ms2 26 0.049 4.219 2.840 0.505 4.13 0.90 0.00 1.00 16.852 7.454 1.344 0.47
5.0....... tol 55 0.079 4.170 2.935 0.651 3.84 0.53 0.00 1.00 16.842 7.499 1.444 0.14
5.0....... to2 68 0.086 4.179 2.988 0.660 3.82 0.33 0.00 1.00 17.090 7.578 1.696 0.01
5.0....... to3 92 0.087 4.181 3.030 0.677 3.78 0.00 0.00 1.00 17.624 7.526 2.301 0.00
5.0....... sgl 144 0.089 4.037 3.034 0.967 3.20 0.00 0.00 1.00 19.045 7.734 3.497 0.00
5.0....... sg2 203 0.089 3.867 2.890 1.235 2.67 0.00 0.00 1.00 19.539 7.869 3.847 0.00
5.0....... sg3 244 0.089 3.748 2.752 1.403 2.33 0.00 0.00 1.00 19.691 7911 3.954 0.00
5.0....... sg4 255 0.089 3.722 2.692 1.426 2.28 0.00 0.01 0.80 19.733 7.923 3.983 0.00
5.0....... sg5 262 0.089 3.710 2.649 1.429 2.28 0.00 0.06 0.73 19.761 7.930 4.002 0.00
5.0....... gbl 272 0.089 3.692 2.606 1.442 2.25 0.00 0.35 0.63 19.807 7.943 4.035 0.00
5.0....... gb2 281 0.089 3.675 2.658 1.503 2.13 0.00 1.20 0.51 19.855 7.956 4.069 0.00

Notes.—Col. (1): Mass. Col. (2): Label of the evolutionary phase of the model. Col. (3): A (arc length of track in H-R diagram). Col. (4): Age. Col. (5): The
log of the effective temperature. Col. (6): The log of the luminosity. Col. (7): The log of the radius. Col. (9): Mass of the convective core. Col. (10): Mass of the
convective envelope. Col. (11): Radius fraction location of the base of the convective envelope. Col. (12): The log of the central pressure. Col. (13): The log of
the central temperature. Col. (14): The log of the central density. Col. (15): Central mass fraction abundance of hydrogen.
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Procyon (Brown 1991), which do not resolve individual
p-modes but do reveal the power envelope of the p-mode
oscillations. The existence of the p-mode power spectrum
implies (assuming that p-modes are driven exclusively by
turbulent convection) that Procyon does have a convective
envelope. Models of Procyon (Guenther & Demarque 1993)
do have a convective envelope, a very shallow one.

In Figure 12, we plot the evolution of the convective core
and convective envelope mass for the 2.0-5.0 M, models.
Key points along the evolution are indicated by hatch marks
along the top of each panel that correspond to the 12
selected models along each track. As shown, a convective
envelope does not appear until the surface of the star is cool
enough for the outer opacities to increase, which occurs
near the subgiant phase for stars in the mass range consid-
ered here. The appearance and extent of the convective
envelope depends on the heavy-element abundance
(Fig. 13), which, through ionized electrons, contributes to
the H™ opacity at the surface. Increasing the metal abun-
dance increases the opacity and, in turn, forces the outer
envelope to become convective earlier in the star’s move
toward the giant branch. In summary, the precise location
on the H-R diagram of the appearance of a convective enve-
lope as revealed by the existence of p-mode oscillations tests
the surface physics of our stellar models.
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08 N
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T 25M,
& B e I S S o —
©
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s
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-+ > e |
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0.0- q
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F1G. 3.—Age vs. the evolutionary track arc length, A, as viewed in an
H-R diagram. The arc length provides a more useful timescale in which to
represent the structural changes that occur in stars during their evolution.
Twelve points along each curve identify key phases of evolution.
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4.4. Convective Cores

Stars in the mass range considered here are burning
hydrogen primarily by the CNO cycle. The steep tempera-
ture dependence of the CNO nuclear luminosity concen-
trates most of the energy production in the centralmost
regions. The energy from the core cannot escape by radia-
tion alone, and the region becomes convective. The oscilla-
tion spectrum of a star is affected by the presence of a
convective core since convection in the core alters the chemi-

cal composition of the core, when compared to a model
without a convective core, by mixing in fresh hydrogen and
by homogenizing the mixture of elements inside the mixed
region. Since the chemical composition of the core out to
the edge of the convective core is affected, the extent of the
core can be probed by p-mode seismology. As the star
evolves and the central regions become more concentrated,
with the nuclear burning confined to an ever more centrally
concentrated core, the convective core itself shrinks, leaving
behind it a discontinuity in composition at its initial outer-
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most extent. This has been noticed already in the interesting
case of the binary star system « Cen AB (Guenther &
Demarque 2000). The authors show that o Cen A is at a crit-
ical phase of evolution where models with very slight differ-
ences can have or not have convective cores. Whether o« Cen
A does have a convective core will be revealed when its oscil-
lation spectrum is observed. Of specific interest would be
whether or not the extent of the convective core matches
theoretical predictions or, more specifically, whether or not
convective overshoot is required in the model. Convective
core overshoot extends the main-sequence lifetime of a star.
For stars in the mass range considered here, the convective
core disappears before the convective envelope appears;
hence, the stars in this mass range are unlikely to have
observable p-modes at the same time that the stars are pre-
dicted to have convective cores.

4.5. Mean Molecular Weight, Adiabatic Exponent, and
Sound Speed

Although the variables p, P, T, and L describe the overall
structure and evolution of a star, other derived quantities
have a more direct connection to stellar pulsation, specifi-
cally, the mean molecular weight, u, the adiabatic exponent,
T'1, the sound speed, ¢, the Brunt-Viisild frequency, and the
Lamb frequency.

The mean molecular weight and the adiabatic exponent
undergo significant changes in the outer regions of the star
where p-mode oscillation modes are most sensitive. The
mean molecular weight is defined as the average mass of all
the atomic particles, including electrons, in units of the mass
of a hydrogen ion. Throughout most of the interior of a star,
where hydrogen and helium are complete ionized,
1= (2X +0.75Y)"" 2 0.6. Variations in the mean molecu-
lar weight in the envelope of a star can be traced to varia-
tions in the number fraction of electrons, especially near the

H and He ionization regions. The adiabatic exponent is
defined by I'y = (Olnp/dInp)lg, that is, the logarithmic
derivative of log pressure with respect to density at constant
entropy, S. The term I'; remains relatively constant in the
interior, at approximately 5/3, undergoing changes near the
surface, where it follows the changes in mean molecular
weight. The adiabatic sound speed depends on both the
mean molecular weight and the adiabatic constant
(¢2 =T1P/p). The sound speed decreases with increasing
radius in a star. The p-mode frequencies are inversely pro-
portional (to leading order; see § 5.1) to the inverse sound
speed integrated over the radius of the star. As the sound
speed decreases, its contribution to the integral increases;
hence, the greatest sensitivity of the p-mode frequencies
occurs in the outer layers where small perturbations to the
sound speed are most strongly felt.

In Figures 14, 15, and 16 we plot the mean molecular
weight versus radius fraction near the surface for the 2, 3,
and 5.0 M, models at the 12 selected phases of evolution.
As p runs outward through the H and He ionization zones,
it undergoes step increases as the number of electrons
decreases first through the helium ionization zones, then
through the hydrogen ionization zone. The surface tempera-
ture of the 3 and 5 M., models does not drop below 10,000
K (see Fig. 1), the ionization temperature of H, until after
turnoff; hence, i« does not show the last step increase (corre-
sponding to the H ionization region) for these models. Note
that convection does not smooth out the steps since ioniza-
tion occurs on a much shorter timescale than convection.

In Figures 17, 18, and 19 we show the adiabatic exponent
versus radius fraction for the 2, 3, and 5.0 M- models at the
12 selected phases of evolution. And in Figures 20, 21, and
22 we show the same quantities but on an expanded scale
near the surface. The structure of I'} is quite complicated.
Without modern computations of the atomic physics in the
form of opacity tables and equation-of-state tables (espe-
cially from Lawrence Livermore), from which we obtain u
and I';, it would not be possible to carry out the structural
inversions of p-mode data to any useful degree of accuracy.

The sound speed decreases from the center of a star out-
ward (see Figs. 23, 24, and 25). There is a sharp bump in the
sound speed near the inner boundary of the hydrogen-burn-
ing shell, noticeable in the post-main-sequence models (e.g.,
ms2). This is where there is an abrupt drop in mean molecu-
lar weight, as one moves outward from the isothermal
helium core to the surrounding regions. Because the convec-
tive core edge moves inward as the star evolves, it leaves
behind a discontinuity in composition where the convective
core reached its maximum extent. The location and size of
the bump depend on the rate of nuclear burning in the core
and the evolution of the convective core edge. Its effect on
the p-modes can be seen in the p-mode oscillation spectra
(especially through the small spacing discussed in § 5).

4.6. Brunt-Viisdld and Lamb Frequencies

Many basic characteristics of the oscillation properties of
a star can be understood through plots of the Brunt-Vaiisila,
N, and Lamb, L;, frequencies (see Unno et al. 1979). The
Brunt-Viisild frequency corresponds to the fundamental
buoyancy frequency at a given shell in the model; that is, it
is the frequency at which a displaced fluid element will oscil-
late adiabatically about its equilibrium position. In convec-
tive regions a displaced fluid element, by definition, does not
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Fic. 18.—Adiabatic exponent, I'}, vs. radius for the 3 M, models at 12 selected points along the evolutionary track of the star
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FiG. 22.—Adiabatic exponent, I'j, vs. radius near the surface for the 5 M, models at 12 selected points along the evolutionary track of the star
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the star.

return to its equilibrium position but continues to rise or fall
from its displaced position; that is, the perturbed displace-
ment grows exponentially. In convective regions the square
of the Brunt-Viisild frequency is negative; hence, the fre-
quency itself is imaginary. For plotting purposes we set the
Brunt-Viisila frequency to zero in these regions. The Lamb
frequency corresponds to the frequency of a horizontal
acoustic wave of wavelength 27r/l. Acoustic modes
(p-modes) propagate in regions where the oscillation fre-
quency is greater than both the Brunt-Viisdld and Lamb
frequencies. The p-modes are evanescent in other regions.
Gravity modes (g-modes) propagate in regions where the
oscillation frequency is less than both the Brunt-Viisdld and
Lamb frequencies.

Figures 26, 27, and 28 show N and L;—_;, in units of micro-
hertz, versus radius fraction at the 12 selected phases of evo-
lution for the 2, 3, and 5 M., models, respectively. As the
star evolves off of the main-sequence, helium is built up in
the core. This produces a bump in the Brunt-Viisila fre-
quency in the core. Since the bump lies below the Lamb fre-
quency in this region, g-modes can exist in this region.
Indeed, the frequencies of the g-modes in this region overlap
the frequencies of the p-modes outside this region. The pres-
ence of g-modes at frequencies near the p-modes perturbs
the p-mode frequencies. The effect is visible in the oscillation
spectrum of a star as unequal large spacings for the low-n-
value p-modes. The surface convection zone is also revealed
in the propagation diagrams. The Brunt-Viisild frequency
drops quickly to zero (becomes imaginary) in the convective
regions. As the star evolves to the right in the H-R diagram

toward cooler surface temperatures, models sgl-sg5, a con-
vective envelope develops and deepens. In these models, the
Brunt-Viisild frequency is seen to abruptly drop to zero at
the base of the convective envelope.

5. OSCILLATION PROPERTIES
5.1. Introduction

Tassoul (1980) has derived a useful asymptotic formula
for the p-mode frequencies, commonly written as

I 1 Av?
ol 2 -t = Av — (AL* —
Vi (n+2+4+ﬂ) v—( €) e

"R -1
Av = (2/ dr) ,
o C
1 Rde dr
A= 472 Av <l9 B ./0 drr> '

The constants 3, €, and x depend on the structure of the sur-
face layers. The variable n is the radial order of the mode, /
is the azimuthal order of the mode, c¢ is the speed of sound,
R is the radius of the star, and L = / + 1/2. The asymptotic
formula clearly shows that the oscillation frequencies
depend on the run of sound speed.

where
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It is easy to isolate the first- and second-order terms in the
asymptotic expression by forming specific differences of the
frequencies. The large frequency spacing, defined as

Ay =vy — vy X Av

is to leading order (assuming n3> /) proportional to Av,
which depends on the sound speed predominately in the sur-
face layers. The small frequency spacing, defined as

“dedr

On = Upl — Vp—1,042 X Av
o drr

)

isolates the second-order term, which depends predomi-
nately on the sound speed (its derivative) in the interior.

When oscillation spectra of stars are observed, it is
expected that the spectra will initially reveal the large
and small spacings, from a Fourier transform of the
power spectrum. The large and small spacings character-
ize the regular spacing of the p-modes. The utility of the
large and small spacings decreases for stars that have
evolved beyond the main sequence. Here, mode bumping
of p-modes by g-modes perturbs the frequencies to such
an extent that the regular spacing of the modes disap-
pears. Indeed, by the time the star arrives at the base of
the giant branch, only radial (/= 0) p-modes hold any
semblance of regular spacings (Guenther & Demarque
2000).

Even though we do not expect that stars with masses
between 2 and 5 M., to have visible p-mode spectra until
they develop convective envelopes during their approach to
the giant branch, it is instructive to study the theoretical
p-mode oscillation spectra of these stars during all phases of
their evolution. Furthermore, because the internal dynami-
cal properties of intermediate and massive stars are still not
fully understood, it is possible that mechanisms, other than
turbulent convection at the surface, exist to drive the acous-
tic oscillations in these stars.

Along each stellar evolutionary track, consisting of a
sequence of ~2500 models, several hundred equally spaced
(in the H-R diagram) models were selected for pulsation
analysis. The models were input into Guenther’s nonadia-
batic, nonradial stellar pulsation code (Guenther 1994). The
code solves the linearized pulsation equations by relaxation.
The nonadiabatic terms describe radiative gains and losses
in the Eddington approximation and hence are valid in
regions of low optical depth. Perturbations to the convec-
tive flux are neglected. All / =0, 1, and 2 p-modes with n
ranging from 0 to 35 were calculated.

Table 2 lists some of the pulsation properties of the 12
selected models along each track.

5.2. Large Spacing

The large spacing A,; is primarily an indicator of stellar
radius. What is remarkable is how insensitive it is to other
parameters of the stellar model, including mass. In
Figure 29 we plot (A,;),_, versus stellar radius R for all the
models that have been pulsed. Here (A, ;),_, is the average
large spacing for n = 10-20 and / = 0. With an observed
A, suitably averaged, one can read off an approximate
measure of the radius of the star from Figure 29. The term
(A7) does depend slightly on mass, increasing for increas-
ing mass at a given radius. In Figure 30 we plot (A,,/),_, ver-
sus stellar radius for 3 M stars of varying metallicity to
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show that (A, ;),_, is insensitive to Z. Similar plots (not
shown) for varying Y and « reveal even less sensitivity to
these parameters for stars between 2 and 5 My,. In other
words, (A,;) makes an excellent measure of stellar radius
regardless of stellar evolutionary phase, mass, or composi-
tion.

The term (A, ;) is approximately inversely proportional
to radius, and this relationship is maintained without much
variation for all the models considered here. The propor-
tionality constant, though, does vary through different
phases of evolution as shown in Figure 31, which plots
R(A,1),_, versus age.

The large spacing can be obtained from a Fourier trans-
form of the power oscillation spectrum of a star. The domi-
nant peak in the transform corresponds to one-half the
large spacing for stars near the main sequence (the odd and
even [ p-mode frequencies are displaced by one-half the
large spacing) and corresponds to the large spacing itself for
stars in more advanced phases of evolution, where only the
radial modes remain regularly spaced. Of course, when
high-quality oscillation spectra are obtained from stars that
permit individual modes to be identified, (A,;) can be
calculated directly.

We have calculated the large spacing by averaging the
large spacings over a range in n. The average value of (A, )
does depend on the range of n chosen. Interestingly, this
dependence on # itself depends on mass. We define A(A, )
as the difference between (A, ;) averaged over n = 10-20
and (A, ;) averaged over n = 5-10. Figure 32 shows a plot of
A(A,;) versus H-R diagram arc length, A, for all of the
pulsed models. The large dots along each curve identify the
12 selected phases of evolution. The plot shows that A(A, )
depends on the mass of the star and that it is especially sensi-
tive, at the 2% level, for masses between 2 and 3 M. Not
shown here, models of stars with lower mass, which we have
calculated, also show a dependence of A(A, /), on mass. We
suggest that A(A, /), may be useful as a mass indicator for
stars with masses less than 3 M. Note, though, as we show
in Figure 33, that for a 3 M model, A(A,;) is also sensitive
to Z. Further analysis is required to establish the true utility
of this parameter.

5.3. Small Spacing

The small spacing is sensitive to the structure of the core,
and, for this reason, it is sensitive to the state of evolution of
the star. In Figure 34a we plot the small spacing (6,),_
averaged over n = 10-20, / = 0, for all of the pulsed models.
Dots along the curves correspond to the 12 selected phases
of evolution beginning with ms1 at the top left and continu-
ing in sequence along each curve. The small spacing
decreases as the model evolves and the core density
increases. Because mode bumping destroys the regular spac-
ing between nonradial modes, the small spacing is not well
defined beyond turnoff. In order to use the small spacing as
an age indicator, one must know the composition of the star
because the small spacing is also sensitive to Y and Z. In
Figures 34b and 34c¢, we plot the small spacing for the 3 M,
models at different metallicities and helium abundances,
respectively. Figures 34b and 34c¢ show that at a given age,
the small spacing depends on composition. We note again
that because stars in the mass range 2-5 M, do not have
convective envelopes prior to turnoff, they are not predicted
to have observable p-mode oscillation spectra; hence, the



TABLE 2
SELECTED MODEL PULSATION PROPERTIES

Mass

M Label Ao (5—-10) Ap(10-20) A (5-10) A1 (10-20) 8p(5—10) 80(10-20)

M @ 6) @ ®) ©) @) ®)
2.0....... msl 91.76 93.56 91.54 93.36 8.83 11.19
2.0....... ms2 56.55 59.23 57.28 59.33 4.94 5.26
2.0....... tol 40.29 43.05 40.27 42.97 5.19 3.62
2.0....... to2 39.13 41.73 47.24 41.74 4.54 4.75
2.0....... to3 37.90 40.48 38.62 36.73 3.79
2.0....... sgl 28.44 30.58 44.47 30.15
2.0....... sg2 22.28 23.94 19.34
2.0....... sg3 18.59 19.30 34.86 36.83
2.0....... sg4 17.81 18.54 34.50 36.67
2.0....... sg5 18.98 19.45 38.90
2.0....... gbl 18.54 18.80 8.46
2.0....... gb2 15.11 15.47
2.5 msl 87.32 87.94 86.83 87.67 8.73 10.92
2.5...... ms2 54.05 54.86 54.24 54.97 4.69 4.96
2.5 tol 36.34 37.76 36.36 37.75 4.76 3.31
2.5 to2 34.89 36.27 35.05 36.20 391 3.82
2.5 to3 33.61 35.04 27.38 31.82 3.38
2.5...... sgl 21.42 22.70 17.80 18.59
2.5 sg2 14.46 15.41 18.94 9.40
2.5 sg3 11.44 11.87 10.61
2.5...... sg4 11.34 11.80 12.72
2.5 sg5 12.08 12.51
2.5 gbl 11.85 12.21
2.5 gb2 7.68 8.02
3.0....... msl 82.55 83.03 81.98 82.84 8.57 10.57
3.0....... ms2 51.42 51.76 51.53 51.87 4.68 4.84
30....... tol 34.32 34.83 34.56 34.98 4.44 2.89
30....... to2 32.25 32.82 32.38 32.77 3.28 7.21
30....... to3 31.29 32.10 22.67 30.21 5.03
3.0....... sgl 16.87 17.64 13.22 25.33
3.0....... sg2 10.35 10.99 6.56
30....... sg3 7.79 8.05 6.53
30....... sgd 7.68 7.97 11.89
3.0....... sg5 8.01 8.34
30....... gbl 7.79 8.12
30....... gb2 5.01 5.20
4.0....... msl 74.56 74.70 74.02 74.62 8.22 9.73
4.0....... ms2 48.25 48.39 48.04 48.52 4.30 4.34
4.0....... tol 29.31 29.55 29.35 29.71 3.73 2.35
4.0....... to2 28.43 29.00 28.00 28.80 3.09 2.45
4.0....... to3 27.63 28.31 20.05 27.54 2.69
4.0....... sgl 11.85 12.17 9.58 9.12
4.0....... sg2 5.96 6.33 5.99
4.0....... sg3 4.16 4.21 8.08
4.0....... sg4 3.98 4.01 3.44
4.0....... sg5 3.97 4.06 3.87
4.0....... gbl 3.81 3.93 3.62
4.0....... gb2 2.90 291
5.0....... msl 70.61 70.47 70.13 70.42 8.24 9.35
5.0....... ms2 45.75 45.58 45.49 45.70 4.17 4.09
5.0....... tol 27.35 27.52 27.27 27.68 3.34 2.06
5.0...... to2 26.50 26.76 25.96 26.69 4.05 2.10
5.0....... to3 24.98 25.40 18.16 24.73 2.49
5.0....... sgl 9.22 9.50 14.68 19.50
5.0....... sg2 3.93 4.20 5.94 0.00
5.0, sg3 2.47 2.44 3.92 4.55
5.0....... sg4 2.31 2.27
5.0....... sgs 2.27 2.24
5.0....... gbl 2.14 2.13
5.0, gb2 1.73 1.70

NotEes.—Col. (1): Mass. Col. (2): Label identifying the phase of evolution. Col. (3): The / = 0 large spac-
ing averaged over n = 5—10. Col. (4): The / = 0 large spacing averaged over n = 10—20. Col. (5): The / = 1
large spacing averaged over n = 5—10. Col. (6): The / = 1 large spacing averaged over n = 10—20. Col. (7):
The /=0 small spacing averaged over n = 5—10. Col. (8): The / =0 small spacing averaged over
n = 10—20. The spacings are in units of zHz.
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Fic. 29.—Large spacing (see text for definition) averaged over
n = 10—20 for / = 0 p-modes vs. total stellar radius is shown for all of the
intermediate-mass stellar models. Curves connect models along their evolu-
tionary track, starting on the ZAMS in the top-left corner and evolving to
the base of the giant branch in the bottom-right corner.

small spacing will not be useful for these stars during any
phase of their evolution.

5.4. Individual Frequencies

The frequencies of the / = 0 and / = 1 oscillation modes
from n = 1-20 for all of the models pulsed are shown in Fig-
ures 35 and 36. The figures show the real component of the
frequency versus A along the left column of plots and the

-
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FiG. 30.—Large spacing averaged over n = 10—20 for / = 0 p-modes vs.
total stellar radius is shown for the 3 M, stellar models with different metal-
licities. The plot shows that the averaged large spacing does not depend sig-
nificantly on Z.
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FiGg. 31.—Large spacing averaged over n = 10—20 for / =0 p-modes
times the total stellar radius vs. age is shown for all of the intermediate-mass
stellar models.

imaginary component of the frequency versus A along
the right column of plots. The time dependence of the oscil-
lation mode goes as exp(i wt), where v = w/27. A negative
imaginary component in the frequency corresponds to a
mode that is driven; that is, under the assumptions of the
model it is expected to be excited. The modes were calcu-
lated taking into account nonadiabatic effects associated
with radiation, i.e., the kappa mechanism, but do not
include the effects of mode coupling to turbulent convective

A<Anpio [1H2]

Fic. 32.—Difference between the large spacing averaged over n = 10—20
and the large spacing averaged over n = 5—10 for / = 0 p-modes vs. A is
shown for all the intermediate-mass models. For stars less than 3 M, this
difference depends on mass.
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Fic. 33.—Difference between the large spacing averaged over n = 10—20 and the large spacing averaged over n = 5—10 for / = 0 p-modes vs. A is shown for

the 3 M model at different metallicities.

motions. The predictions of mode excitation should, there-
fore, be taken only within the context of excitation by
radiation.

The general trend of the p-mode frequencies (real compo-
nent) as the models evolve mimics the changing radii of the
models. As the model evolves, its radius, in general,
increases; hence, the p-mode frequencies decrease (for a
given n) and so does the frequency spacing between the
modes. More massive stars evolve to larger radii and hence
have a more compressed frequency spectrum.

The gap in the evolution of the modes is a numerical arti-
fact. The code first solves the adiabatic equations, then uses
the adiabatic solution as an initial guess to solve the nona-
diabatic equations. To control convergence, the code forces
the nonadiabatic mode frequency to be near the adiabatic
frequency. If the nonadiabatic frequency is significantly dif-
ferent from the adiabatic frequency, for example, by more
than one-half the frequency spacing, then the code assumes
the convergence has failed. This is what is occurring for all

the modes in the gaps. In these situations one has to tweak
the code for each mode calculated. Owing to the large num-
ber of modes calculated, this was not realistically possible.
Based on hand-tweaked calculations of a random sample of
modes within the gap, it appears that all of the modes in the
gap are radiatively excited. This, though, needs to be
explored further.

In Figures 37 and 38 we plot all of the models pulsed in an
H-R diagram, using large dots to denote those models that
are radiatively excited. There is a clear band of models that
are radiatively excited that appears on the subgiant branch.
The excited models are located redward (to the right) of the
red edge of the instability strip, within which one finds the
classical Cepheids and 6 Scuti stars. Note that the models in
the gap (where the nonadiabatic calculation failed), which
divides the first string of unstable models from the second
string of unstable models, are not shown with large dots
even though it is likely that they too are all radiatively
excited. Examining the work integral associated with the
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FI1G. 34.—(a) Small spacing (see text for definition) averaged over n = 10—20 for / = 0 p-modes vs. age is shown for all of the intermediate-mass stellar
models. (b) The small spacing averaged over n = 10—20 for / = 0 p-modes vs. age is shown for the 3 M., models with different helium abundances.
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nonadiabatic modes shows that the largest positive contri-
bution to the work integral occurs just below the surface of
the star near the edge of the hydrogen ionization region. In
concert, as the star evolves, the surface temperature drops
below the ionization temperature of hydrogen, a convective
envelope develops, and the star becomes radiatively driven
to pulsation. We note that « UMa, for which p-mode oscil-
lations (radial modes only) have been tentatively identified,
isa ~4 M, star near the base of the giant branch (Buzasi et
al. 2000).

Since g-mode contamination of the p-mode spectrum
occurs near the base of the giant branch, / = 1 p-mode fre-
quencies are not readily identified in the oscillation spec-
trum (Guenther et al. 2000) and our calculation of / =1
p-mode frequencies stops short of the giant branch.

5.5. Mode Bumping

For more evolved stellar models, when the frequency
range of the g-mode spectrum enters the frequency range of
the p-mode spectrum, some of the p-modes pick up g-mode—
like behavior in the deep interior. First the lower frequency,
i.e., lower n-value, p-modes become mixed modes, then as
the g-mode spectrum spreads to higher frequencies, so does
the presence of mixed modes among the p-modes
(Aizenman et al. 1977, Shibahashi & Osaki 1976;
Christensen-Dalsgaard 1981; Osaki 1975; Gabriel 1980).

We use the Scuflaire (1974) nomenclature for mode iden-
tification that defines the radial order of the mode by
n = n, — ny, where n, is the number of p-nodes and n, is the
number of g-nodes in the mode. In Table 3 we list the indi-
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FiG. 36.—Similar to Fig. 35, except / = 1 p-mode frequencies are plotted

vidual adiabatic frequencies and mode identifications for
the 3 M. model at several stages in the evolution of the
model. From the table we can see that the number of
g-nodes and the mixing of g-mode-like and p-mode-like
behaviors increases as the star evolves.

When the contamination is confined to low-n-value
modes, the p-mode frequencies are slightly perturbed. In
Figure 39 we plot a small section of Figure 36 to show how
the p-mode frequencies are shifted (the wavelike structure)
as their frequencies approach and nearly bump into the fre-
quencies of g-modes. Mode bumping, as seen by the ripple
in frequencies in Figure 39, moves toward higher frequen-
cies as the model evolves. For a given model, i.c., age, one
observes irregular large spacings below the frequency range
contaminated by the g-mode spectrum. If this irregular
spacing were observed, it would not only confirm the exis-

tence of g-modes but also would enable a very precise deter-
mination of the evolutionary phase of the star. By the time
the star nears the giant branch (see Table 3, model 200,
[ = 1), the contamination by g-modes is such that the nonra-
dial p-mode spectrum is lost in the forest of g-modes.

In Figure 40, we plot the evolution of the adiabatic fre-
quencies for several selected / = 0 and / = 1 p-modes for the
3 M, models. Each n-value is given a distinct plot symbol.
Following the evolution of the n =11, [ =1 p-mode fre-
quency, one sees the frequency decrease as the star evolves
off of the main sequence (A = 0-53), then the mode disap-
pears from A = 54 to 64 before reappearing again at A = 65.
This artifact is a consequence of the radial order nomencla-
ture and mode bumping. In Table 4 we illustrate the effect of
mode bumping on the radial order identification. In the first
three columns, for models immediately preceding A = 53,
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FiG. 37.—H-R diagram of stellar evolutionary tracks of stars of inter-
mediate mass with the models that have radiatively excited / = 0 p-modes
indicated by large dots.

we see that modes up to n = 11 are mixed with one g-mode—
like node. At the transition to unmixed modes, one n-value
is skipped. This is, in part, an artifact of the radial order
nomenclature. As the mode mixing advances to higher fre-
quencies and hence higher n-values, the skipped n-value also
advances. The situation is even more complicated when the
p-mode is mixed with several g-mode-like nodes (see
A =100 p-modes in Table 3). Returning to Figure 40, the
n=11, =1 p-mode reappears when, at \ =65, the
skipped n-value advances beyond this mode. For lower
n-value / = 1 p-modes, the mixing of g-modes affects not
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Fic. 38.—H-R diagram of stellar evolutionary tracks of stars of inter-
mediate mass with the models that have radiatively excited / = 1 p-modes
indicated by large dots.
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FiG. 39.—Enlarged portion of the 3 M, panel, real component of
frequency, in Fig. 35, showing the rippling impression of mode bumping
(see discussion in text). The effects of mode bumping propagate to higher
frequencies and n-values as the star evolves.

2000 -

I3IIIID
Wnunuu

FiG. 40.—Similar to the 3 M., panels, real component of frequency, in
Fig. 35 (I = 0) and Fig. 36 (/ = 1), for selected n-values (identified in the
legend).



p-MODES OF SELECTED 3 M. MODELS

TABLE 3

A=0 A =100 A =200
/ n 1y, Ty v / n mp, 1y v ! n ny, ny v

0... 0 0 0 2445 0 0 0 0 74.0 0 0 0 0 16.5
0... 1 1 0 3108 0 1 1 0 950 0 1 1 0 23.7
0... 3 2 0 376.7 0 2 2 0 118.3 0 2 2 0 31.0
0... 4 3 0 4527 0 3 3 0 1420 0 3 3 0 38.2
0... 5 4 0 5333 0 4 4 0 165.7 0 4 4 0 45.5
0... 6 5 0 6156 0 5 5 0 188.8 0 5 5 0 53.0
0... 7 6 0 699.4 0 6 6 0 211.9 0 6 6 0 60.7
0... 8 7 0 783.1 0 7 7 0 2359 0 7 7 0 68.3
0... 9 8 0 866.1 0 8 8 0 260.4 0 8 8 0 75.5
0... 10 9 0 9480 0 9 9 0 2854 0 9 9 0 83.0
0... 11 10 0 1029.9 0 10 10 0 310.6 0 10 10 0 90.9
0... 12 11 0 1112.1 0 11 11 0 3355 0 11 11 0 98.9
0... 13 12 0 1195.1 0 12 12 0 359.8 0 12 12 0 106.8
0... 14 13 0 12786 0 13 13 0 3833 0 13 13 0 114.6
0... 15 14 0 1362.7 0 14 14 0 406.8 0 14 14 0 122.4
0... 16 15 0 1447.0 0 15 15 0 431.2 0 15 15 0 130.3
0... 17 16 0 1531.3 0 16 16 0 456.5 0 16 16 0 138.3
0... 18 17 0 1615.2 0 17 17 0 482.2 0 17 17 0 146.3
0... 19 18 0 1698.1 0 18 18 0 508.0 0 18 18 0 154.4
0... 20 19 0 17794 0 19 19 0 5336 0 19 19 0 162.2
0... 21 20 0 1858.9 0 20 20 0 558.7 0 20 20 0 169.9
0... 22 21 0 1937.3 0 21 21 0 583.7 0 21 21 0 177.1
0... 23 22 0 2016.3 0 22 22 0 608.8 0 22 22 0 183.9
0... 2423 0 2097.1 0 23 23 0 6342 0 23 23 0 190.4
0... 25 24 0 2179.5 0 24 24 0 660.0 1 —127 17 144 7.9
I... -2 0 2 69.8 1 —66 2 68 23.9 1 -85 12 98 10.5
I... -1 0 1 103.2 1 —53 0 53 329 1 —68 5 74 13.1
l... 1 1 0 255.1 1 —43 0 43 41.2 1 -39 1 4] 15.8
I... 2 2 0 337.9 1 =35 0 35 50.8 1 —43 2 46 18.5
I... 3 3 0 4154 1 -30 0 30 59.8 1 -30 2 33 21.0
I... 4 4 0 494.1 1 —25 0 25 70.9 1 —24 1 25 23.6
I... 5 5 0 575.1 1 =21 1 22 80.2 1 —33 3 36 26.4
I... 6 6 0 657.1 1 —19 1 20 88.1 1 —23 5 28 29.1
I... 7 7 0 740.1 1 —17 1 18 97.4 1 —13 3 16 31.4
I... 8 8 0 822.8 1 —15 2 17 103.7 1 —20 5 25 343
I... 9 9 0 904.7 1 —13 2 15 117.1 1 —15 3 18 36.9
I... 10 10 0 986.0 1 —4 2 6 121.5 1 -19 5 24 39.4
I... 11 11 0 1067.7 1 -10 3 13 134.3 1 —23 5 28 41.9
I... 12 12 0 1150.0 1 -9 3 12 143.7 1 -17 5 22 45.0
I... 13 13 0 1233.1 1 -8 3 11 146.8 1 —13 4 17 47.1
I... 14 14 0 1316.8 1 =7 4 11 157.0 1 —28 7 35 49.9
I... 15 15 0 1401.1 1 0 4 4 167.8 1 —14 5 19 52.6
I... 16 16 0 1485.4 1 -5 4 9 173.1 1 =7 5 12 54.5
I... 17 17 0 1569.6 1 0 5 5 185.7 1 —25 9 34 57.3
I... 18 18 0 1653.2 1 -3 5 8 194.5 1 -3 6 9 60.6
I... 19 19 0 1735.5 1 2 6 4 205.5 1 -5 8 13 62.1
1. 20 20 0 1815.9 1 -1 6 7 218.0 1 -7 10 17 65.7
I... 21 21 0 1894.8 1 2 7 5 228.4 1 0 7 7 68.5
I... 22 22 0 1973.4 1 1 7 6 243.9 1 —56 8 64 70.4
I... 23 23 0 2053.2 1 4 8 4 2559 1 -1 8 9 73.6
I... 24 24 0 2134.8 1 3 9 6 271.0 1 -1 9 10 75.7

1 6 10 4 288.7 1 —14 11 25 79.3

1 5 10 5 3009 1 0 9 9 81.7

1 6 10 4 320.4 1 —10 12 22 84.4

1 7 11 4 336.8 1 —6 12 18 87.2

1 10 12 2 351.3 1 0 11 11 89.8

1 9 13 4 371.6 1 -3 12 15 91.4

1 10 13 3 391.7 1 -19 12 31 94.7

1 11 14 3 405.0 1 -1 11 12 97.6

1 12 15 3 421.3 1 -8 12 20 99.5

1 13 16 3 444.1 1 —4 12 16 103.1

1 14 17 3 468.5 1 1 12 11 104.6

1 15 17 2 49238 1 —4 12 16 106.6
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TABLE 3—Continued

A=0 A =100 A =200
/ n n, ny v [ n n, ny v / n ny, ny v

1 16 18 2 511.0 1 -6 15 21 110.7

1 17 19 2 523.9 1 3 14 11 112.2

1 18 20 2 546.4 1 -2 14 16 114.5

1 19 21 2 570.6 1 2 15 13 118.8

1 20 22 2 595.1 1 5 17 12 120.7

1 21 23 2 620.0 1 —6 16 22 123.5

1 22 24 2 645.1 1 =23 15 38 125.9

1 4 15 11 127.6

1 =3 15 18 130.5

1 5 16 11 135.2

1 0 16 16 138.2

1 6 17 11 143.3

1 -1 17 18 146.6

1 —14 18 32 149.9

1 7 18 11 152.0

1 —4 19 23 155.9

1 5 19 14 158.5

1 4 19 15 161.6

1 -9 20 29 165.5

1 8 20 12 167.8

1 10 21 11 174.4

1 =5 21 26 178.8

1 12 22 10 181.2

1 14 24 10 187.9

1 -1 23 24 192.6

1 14 24 10 195.0

TABLE 4
SELECTED EVOLUTION OF RADIAL ORDERS FOR 3 M, [ = 1 p-MODES
A=...53 A=54...56 A=57...64 A=065...

n..... n, ny n n, ny n n, ny n n, ny
8..... 9 1 8 9 1 8 9 1 8 9 1
9..... 10 1 9 10 1 9 10 1 9 10 1
11... 12 1 10 11 1 10 11 1 10 11 1
12... 12 0 12 12 0 12 13 1 11 12 1
13... 13 0 13 13 0 13 13 0 13 13 0

only the frequencies (see » = 1 and 2, / = 0 p-modes in Fig.
40) but also the radial order identification.

The nonradial / = 1 p-modes disappear as the star evolves
toward the giant branch. The mode frequencies are bumped
to frequencies above the acoustic cutoff frequency.

6. SUMMARY

We have reviewed the evolution of the structure and pul-
sation properties of stars between 2 and 5 M, and have pro-
vided extensive plots that show both the evolution of the
interior structure and the evolution of the p-mode frequen-
cies. We have also highlighted several physical characteris-
tics of the stellar models that can be readily tested with
oscillation data.

We have shown how the large frequency spacing can be
used to determine the radius of a star, with little sensitivity
to composition. This is important not only because it pro-
vides a robust way of determining stellar radii but also
because it provides a severe test of the stellar convection

model upon which the model-predicted stellar radius
depends.

We find that the large spacing varies with n differently for
stars of different mass. And as a consequence, it may be pos-
sible to use the average of the large spacings in different fre-
quency intervals to determine the masses of stars. The
method is sensitive to composition and only works for stars
less than 3 M.

The stars considered here do not develop convective enve-
lopes until they are on their approach to the giant branch.
We, therefore, do not expect to see Sun-like nonradial p-
mode oscillations, that is, oscillations driven by turbulent
convection, until the stars develop convective envelopes.
This makes stars in the 2-5 M, mass range ideal asteroseis-
mology candidates because detecting the existence of the
power envelope associated with p-mode oscillations (there is
no need to be able to resolve the oscillation spectrum into
modes) indirectly confirms the existence of a convective
envelope. By identifying the boundary between those stars
that have convective envelopes and those that do not, using
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asteroseismology, one tests the stellar model physics associ-
ated with convection. It is possible, though, that nonradial
p-mode oscillations can be driven by the kappa mechanism.

Our solutions to the nonadiabatic, nonradial oscillation
equations, which follow radiative gains and losses, reveal
specific regions in the H-R diagram, redward of the instabil-
ity strip, where the p-mode oscillations are driven by radia-
tion. In particular, we find that the p-modes of subgiants
with masses greater than 3 M, are radiatively driven when
the surface temperature of the star drops below 10,000 K
and the star develops a convective envelope. In these stars
the kappa mechanism operates in the hydrogen ionization
region to drive the oscillations. We note, though, that nona-
diabatic effects due to turbulent convection are not included
in the oscillation calculation and the degree to which this
might affect the prediction of oscillation excitation is
unknown.

When intermediate-mass stars do develop a convective
envelope, their evolution is advanced to the point where the
g-mode spectrum overlaps the low-n-value p-mode spec-
trum. When a g-mode frequency nears the frequency of a
p-mode, the p-mode frequency is perturbed or bumped. The
p-mode itself becomes dual flavored, taking on g-mode-like
oscillatory behavior in the interior and maintaining p-

mode-like oscillatory behavior near the surface. The con-
tamination is such that by the time the star reaches the sub-
giant phase of evolution, the regular spacing between
nonradial p-modes is completely destroyed. Radial modes
are not effected since radial g-modes are undefined.

The degree to which the low-frequency p-modes are per-
turbed by mode bumping, that is, how far to higher frequen-
cies the irregular spacing associated with mode bumping
has extended, can be used to determine the precise evolu-
tionary phase of a star.

It is a fortuitous coincidence that as stellar structure
theory advances with the development of physically realistic
models of stellar convection, nonradial p-mode oscillation
observations will soon become available to test these mod-
els. Although it is difficult to predict exactly how far-reach-
ing asteroseismology’s impact will be on astrophysics, it is
clear, as we have tried to show here for a small population
of stars, that asteroseismology will change the way we
model stars, even if only to add to the observable
constraints.

This work was supported in part by an NSERC grant to
the author.
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