
MATCHING STELLAR MODELS TO OSCILLATION DATA

D. B. Guenther and Kevin I. T. Brown

Department of Astronomy and Physics, Saint Mary’s University, Halifax, NS B3H 3C3, Canada; guenther@ap.stmarys.ca

Received 2003 March 16; accepted 2003 September 5

ABSTRACT

We describe a method to match stellar models to a set of low-l p-mode oscillation frequencies. The method
provides a quality of fit measure similar to that obtained from a �2 fit. With a sufficiently dense grid of stellar
models, the method can determine the best-fitting model to the oscillation data as constrained solely by the
oscillation data. That is to say, the method can be used to constrain the mass, age, composition, surface
temperature, and luminosity of a star from the oscillation data. We evaluate the method on solar data and apply
the method to the recently observed oscillation data for � Cen and � UMa.

Subject headings: stars: individual (� Centauri A)—stars: interiors— stars: oscillations—
Sun: helioseismology—Sun: interior—Sun: oscillations

1. INTRODUCTION

It is our expectation, based on the proven success of
helioseismology, that the stellar oscillation observations to be
obtained from the proposed satellite missions MOST
(Matthews et al. 2000), COROT (Baglin et al. 2002), and
Eddington (Favata, Roxburgh, & Christensen-Dalsgaard
2000) will enable stellar modelers to determine stellar radii
and ages, to test modern theories of convection, to study the
effects of magnetic cycles and close companion stars, and, in
general, to refine the physics of the stellar model. There are,
however, new challenges for both the observers and the stellar
modelers (Kjeldsen & Bedding 1995, 2001). Stellar oscillation
data are not as well resolved as those for the Sun; both the
Sun’s brightness and its resolved disk contribute to a high
signal-to-noise ratio and the ability to spatially resolve high
l-value modes. In addition, the mass, age, radius, composition,
and luminosity are not as well determined for stars as for the
Sun and indeed may have to be constrained by the oscillation
data before any significant tests of stellar physics can be
undertaken. It has been shown, however, that even at low
frequency resolutions, asteroseismic data can be used to
constrain the mass and age of single stars of known compo-
sition. For stars in binary systems, with known masses, stellar
oscillation data can be used to test the mass and distance
determinations, and with stellar oscillation data of higher
quality, i.e., with frequency resolutions on the order of 1 part
in 1000 or better, applied to well-determined stellar systems,
one can begin to study the structure of the star’s surface layers.
Some examples of detailed modeling include: for � Cen,
Edmonds et al. (1992), Guenther & Demarque (2000), Morel
et al. (2000), and Thévenin et al. (2002); for Procyon, Barban
et al. (1999) and Chaboyer, Demarque, & Guenther (1999);
for � Boo, Christensen-Dalsgaard, Bedding, & Kjeldsen
(1995), Guenther & Demarque (1996), and DiMauro &
Christensen-Dalsgaard (2001); for � UMa, Guenther et al.
(2000) and Dziembowski et al. (2001); and for intermediate-
mass stars in general, Guenther (2002).

To date, our efforts to analyze stellar oscillation data have not
been completely satisfactory. Our approach has been rather
conventional: (1) several stellar models are constructed that
bracket the known observational constraints (typically compo-
sition, mass, luminosity, and effective temperature); (2) p-mode

oscillation frequencies are calculated for the models; and (3) the
model spectra are compared with the observed spectrum.
Comparisons between the model and observed oscillation
spectra, for the most part, are done subjectively, with no
quantitative measure of how well the spectra are matched. This
method works well for the Sun because even our most basic
solar models already reproduce the observed p-mode spectrum
to within 1%. We believe a different approach is needed for
asteroseismology, one that quantifies how well the model
spectra match the observations and does not depend on having a
close stellar model from which to begin.

Christensen-Dalsgaard (1986) was one of the first astron-
omers to consider formally how stellar oscillation data might
be used to study stars. He proposed characterizing the stellar
p-mode oscillation spectrum by two parameters, the large and
small spacings. With only two parameters to match, the task of
comparing models and observed spectra is easier to quantify.
In Christensen-Dalsgaard’s approach, the distribution of
oscillation frequencies as a function of radial order n and
azimuthal degree l are assumed to closely fit the asymptotic
formula (Tassoul 1980):
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The constants �, �, and � depend primarily on the structure of
the star near the surface. The formulae reveal that modes
adjacent in n are separated in frequency by approximately ��:

�n;l � �n;l � �n�1;l / �� :
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Modes adjacent in l are separated by approximately��=2. If the
spacings were exactly linear, then the frequencies of modes of
higher degree, e.g., l ¼ 2 and 3, would coincide with the
frequencies of lower degree modes, e.g., l ¼ 0 and 1,
respectively. They do not, and the difference is called the
‘‘small spacing,’’ which is related to the asymptotic formula by

	n;l � �n;l � �n�1;lþ2 / ��

Z R

0

dc

dr

dr

r
:

The large spacings are sensitive to the sound speed in the outer
layers, and the small spacings are sensitive to the slope of the
sound speed in the interior.

By comparing the average large and small spacings of a
stellar oscillation spectrum with the same spacings determined
from models, one can constrain the radius and age of a star,
assuming the composition is already well determined. The
large and small spacings are especially useful when the
oscillation data are not well determined. For the higher quality
data expected from satellites, we desire a method that utilizes
all the diagnostic information contained in the data. Brown et
al. (1994) consider a more general method that utilizes all the
observational constraints of a star or binary system. Their
method, based on singular value decomposition, uses the
oscillation data to reduce the overall error of all the
observational uncertainties. Models are calculated for the star
being investigated. The parameters of the model are varied so
that derivatives of the parameters can be determined to first
order. With these variations quantified, they use a �2

minimization procedure to determine the optimum parameters
that fit the data. The method requires the reference models to
be close enough to the actual star that the perturbations to the
parameters required to fit the star are small.

As an aside, we note that inversion techniques have been
successful in probing the interior of the Sun, e.g., inversion
methods are responsible for determining the depth of the
convection zone (Christensen-Dalsgaard, Gough, & Thompson
1991; Basu 1997), the interior rotation rate (Schou et al.
2002), and the helium abundance in the convection zone
(Dziembowski, Pamiatnykh, & Sienkiewicz 1991). They will,
however, be more difficult to use on stellar oscillation data. The
number of modes available to form the kernels, used to span the
interior of the star, is limited to the low-lmodes, making it more
difficult to isolate distinct depths in the star. Perhaps more
significantly, the reference stellar model on which the
inversions are based is unlikely to be as close to the actual
star as our solar models are to the Sun, and therefore there is an
increased likelihood that the inversions will not converge to the
correct solution. Regardless, we do expect that inversion
techniques will be developed for stars that explore specific
features in the interior, such as convection zone depth. As we
propose in the conclusions section of this paper, inversion
techniques can be used in conjunction with the method
described in this paper.

We propose a direct method that, although computationally
laborious to set up, makes use of all of the p-mode oscillation
frequencies and provides a quantitative measure of how well
the oscillation data fit the model. The method, described in
this paper, relies on the computation of oscillation spectra for
a vast and dense grid of stellar models. The observed stellar
oscillation spectrum is compared one by one with the model
spectra, and the closest match (or matches) is tabulated. The
match itself is quantified by a single parameter, �2. Once the

models have been constrained by the oscillations, other
observational data can be easily folded in to further constrain
the models. By constraining the models first with only the
observed oscillation spectrum, we are able to quantify the
quality of fit between the observed and model spectra. Our
method, through brute force, allows the stellar modeler to
greatly reduce the parameter space of possible models to those
consistent with the oscillation data. The resulting models,
which are probably very close in parameter space to the target
star, can then be used as a starting point in the Brown et al.
(1994) approach. The Brown et al. approach would then be
used to extend the analysis to a wider variety of parameters.
In the following sections of this paper we describe the

mode-matching method in detail. We present results of tests
on low-l solar data, and we describe successful applications of
the mode-matching method to the recently observed p-mode
oscillation modes on � Cen A by Bouchy & Carrier (2002)
and on � UMa by Buzasi et al. (2000).

2. MODE-MATCHING METHOD

2.1. Overview

In this section we describe a procedure that allows us to
match stellar models to oscillation data. We are able to
determine the stellar model or range of models whose
oscillation spectra most closely match the given oscillation
spectrum, and we are able to quantify the match.
The method is relatively straightforward. We search through

an extensive grid of stellar models and find the model or
models whose oscillation spectra most closely match the
oscillation data. A �2 formulation is used to quantify how well
the given oscillation spectrum matches the model spectra.
Models in the grid are parameterized by mass, age, Z (metal
abundance), Y (helium abundance), and whether or not Y and Z
diffusion are included in the model physics. The number of
models, i.e., the density of the grid, is set by the need to be
able to follow small changes in frequencies of individual
modes as one moves from one model to the next along a single
parameter axis in the grid.

2.2. The Grid

All stellar model sequences are calculated using the Yale
stellar evolution code (YREC; Guenther et al. 1992). For
opacities, the OPAL98 tables (Iglesias & Rogers 1996) are
used for temperatures above 6000 K, and the Alexander &
Ferguson (1994) ‘‘molecular’’ opacity tables are used below
15,000 K; for the equation of state, the tables from Lawrence
Livermore National Laboratory (Rogers 1986; Rogers,
Swenson, & Iglesias 1996) are used. In the region of
temperature overlap, a linear ramp function is used to smooth
the transition between the two opacity tables. The nuclear
energy generation routines are based on the latest cross
sections (Bahcall, Pinsonneault, & Basu 2001).
All stellar evolutionary tracks begin on the zero-age main

sequence (ZAMS) and end near the base of the giant branch or
at 15 Gyr for the lower mass tracks. The ZAMS starting
models themselves were obtained by evolving Lane-Emden
gas spheres (Chandrasekhar 1957, pp. 273–274) from the
Hayashi track to the ZAMS using YREC. The stellar models
have approximately 2000 shells, with one-third of the shells
covering the interior, one-third covering the outer envelope,
which encompasses less than 1% of the total mass, and one-
third covering the atmosphere. The atmosphere is a gray
atmosphere in the Eddington approximation.
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The mixing-length parameter � was obtained from a
calibrated solar model constructed using the same physics,
i.e., opacities, equation of state, and atmosphere, as used in the
stellar models. Convective overshoot and rotation are not
included in the models. It would be desirable to extend the
parameter space of the grid to include � , but at this time the
computations would take too long to complete (over a year).
In the future we will isolate a small section of the grid and
extend it with a range of � to test whether the oscillation data
can constrain the four parameters, mixing length, composition,
age, and mass, without degeneracy.

Evolutionary tracks were constructed for masses within the
range 0.71–5.00 M�. A variety of helium and metal abun-
dances were considered, specifically, ðY ; ZÞ ¼ ð0:27; 0:01Þ,
(0.27, 0.02), (0.27, 0.04), (0.26, 0.02), and (0.25, 0.02). The
relative mixture of heavier than helium elements is solar, as
summarized by Grevesse, Noels, & Sauval (1996). We have
also calculated evolutionary tracks at ðY ; ZÞ ¼ ð0:27; 0:02Þ
and (0.27, 0.04), for which the effects of gravitational settling
(i.e., diffusion) of helium and metals are included in the
modeling physics. The diffusion formulation is identical to
that described by Bahcall, Pinsonneault, & Wasserburg
(1995). Table 1 summarizes the parameter range of the grid.
The grid’s resolution is high in mass and age but not in
composition. Over the next few years, both the mass range
and the composition resolution will be increased for future
applications.

Although we describe our parameterization of the grid in
terms of mass and age (and composition), the age dimension is
actually delineated by the arc length k, measured from the
ZAMS, that a model moves along its evolutionary track in an
H-R diagram. The correspondence between age and structural
change within the star is nonlinear. The rate of evolution, i.e.,
the rate at which the internal structure changes, varies
significantly with the phase of evolution, e.g., it is slow on
the main-sequence and fast on the giant branch. Furthermore,
the rate evolution varies significantly with the mass, being
proportional to approximately the fourth power of the mass (on
the main sequence). Equally spaced models along the track in k
more closely correspond to equal-sized changes in the
frequencies of the models. Therefore, along the age dimension
of the grid, we select approximately 150 models, for 1M�, that
are, in fact, equally spaced in k.

We found during initial experimentation that the grid
resolution in mass and age had to be relatively high in order to
follow smoothly the variations in �2 as a function of mass and
age. Our grid needs to have a mass resolution of 0.002 M�;
that is, adjacent models in our grid must be separated by no
more than 0.002 M�. Along the age axis, our grid needs to
have the models spaced closely enough in time that for a

1 M� model we produce approximately 2000 distinct models
along its evolutionary track from the ZAMS to the base of the
giant branch. If we were to adopt this grid density, then the
total number of models would exceed approximately
1 million in our Y ¼ 0:27, Z ¼ 0:02 diffusion portion of the
grid alone. With our current computational resources, it
would take over a year to compute the oscillation spectra.
Instead of directly computing all these models and their
oscillation spectra, we constructed a lower resolution grid in
mass and k and then linearly interpolated between the models.
The grid resolution requirements in mass and k are, as a
consequence, each almost an order of magnitude lower.
Specifically, the tracks are separated in mass by 0.01 M�
(0.02 M� for masses greater than 2.0 M�), and along each
track, equally spaced in k, we extract from 40 models at
0.71 M� to 170 models at 1.4 M�.

The interpolation procedure itself works by first identifying
the four models, (Mi, kj), (Miþ1, kj), (Mi, kjþ1), and (Miþ1,
kjþ1),that surround the (M, k) values that parameterize the
model spectra being sought. The p-modes in each of the four
surrounding models are then matched to each other. As long as
the grid resolution is high enough that the mode frequencies
have not changed by too much (���=4), the corresponding
modes in the adjacent models can be determined unambigu-
ously. Once the frequencies of the four models have been
matched up, two-dimensional interpolation is carried out to
produce an interpolated oscillation spectrum at (M, k).

The models were input into our nonradial, nonadiabatic
stellar pulsation code (Guenther 1994), and l ¼ 0, 1, 2, and 3
p-mode frequencies from n ¼ 3 to 35 were calculated. Both
adiabatic and nonadiabatic (radiative gains and losses)
frequencies were computed. In this study, we focus on the
l ¼ 0 to 2 nonadiabatic p-mode frequencies.

2.3. �2

We utilize a �2 formulation to quantify how well two
oscillation spectra match each other. When comparing an
observed oscillation spectrum with the spectra in our grid, we
expect the minima in �2 to occur in regions of the grid, as
parameterized by mass, age, and composition, where the
observed oscillation spectrum most closely matches the model
spectra. We define our �2 by

�2 � 1

N

XN
i¼1

�obs;i � �mod;i

� �2

2
obs;i þ 
2

mod;i

;

where �obs,i is the observed frequency for the ith mode, �mod,i

is the corresponding matched model frequency for the ith
mode, 
obs,i is the observational uncertainty for the ith mode,

mod,i is the model uncertainty for the ith mode, and N is the
total number of matched modes.

We estimate our stellar model uncertainties (
mod) by
scaling the solar model uncertainties as determined by
comparing the low-l p-mode frequencies calculated from our
standard solar model with solar oscillation data. Figure 1
shows the relative frequency differences fn between our
standard solar model frequencies (�nonad) and the Sun’s
frequencies (��) plotted against radial order n. The solar data
are from GONG (Global Oscillation Network Group; Harvey
et al. 1996; see x 3.1). The frequency scale along the top x-axis
(taken from the l ¼ 1 p-modes) is an approximate match to n
for low-l solar p-modes. As seen in Figure 1, our standard
solar model p-mode frequencies (from l ¼ 0 to 3) match the

TABLE 1

Grid Parameters

Z Y

Mass Range

(M�) Diffusion Y and Z

0.01..... 0.27 0.71–1.30 No

0.02..... 0.25 0.91–1.10 No

0.02..... 0.26 0.91–1.10 No

0.02..... 0.27 0.51–5.00 No

0.02..... 0.27 0.81–1.30 Yes

0.04..... 0.27 0.80–1.30 No

0.04..... 0.27 0.81–1.30 Yes
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solar frequencies to better than 0.3%. The fit is best (�0.01%)
for the low-n modes. The systematic growth in error at higher
frequencies (higher n) is associated with the inherent
uncertainties in the modeling of the superadiabatic layer of
the Sun via the mixing-length theory. Li et al. (2002) have
shown that much of this discrepancy can be eliminated by
incorporating the results of numerical stellar convection in
both the model and the p-mode frequency calculation (see also
Rosenthal et al. 1999; Robinson et al. 2003).

We assume that the stellar model frequency uncertainties
are similar to the discrepancies found between our solar model
frequencies and the observed frequencies. We use the solar
frequency discrepancy fn � ð�nonad;n � ��;nÞ=��;n to compute
the stellar model frequency uncertainty; that is, we compute

mod,n using 
mod;n ¼ fn�n, where again n refers to the radial
order of the mode. Table 2 lists the values of fn that we use
here, as estimated from Figure 1. We do not correct our stellar
model frequency determinations for the systematic shift in
frequencies at higher n; hence, as a consequence, we expect a
systematic error in our results. If we were to correct for the
systematic shift in frequencies, for example, by fitting a
polynomial to the differences and then applying this fit as a
correction to the frequencies, we would be able to reduce the
model uncertainty 
mod,n at higher n. This, in some sense,
would be equivalent to correcting for the model errors in the
surface layers.

If the observational and model spectra lie within the
uncertainties of the observations and the uncertainties in the
model, then our weighted �2 will be less than or equal to 1.
Because the errors in the oscillation frequencies are not
independent, we cannot directly interpret a 1 
 variation in
�2 as a 1 
 uncertainty in our mass, age, and composition
parameter space. In order to determine the true 1 
 uncertainty
range in parameter space, we will have to carry out a Monte
Carlo simulation of the parameters within our grid.

2.4. Mode Matching

We are given a monotonically increasing list of frequencies,
the observed oscillation spectrum, and a table, in n and l, of
model frequencies and are asked to find the best match
between the two. In general, neither the n- nor the l-values of
the observed modes are known. The degree l of the observed
oscillations can be inferred by plotting the frequencies in an
echelle-style diagram (see, for example, Fig. 8 in Bouchy &
Carrier 2002), but ambiguities can arise around which modes
are of even degree and which modes are of odd degree.
Through trial and error we found the following direct
approach of matching an observed spectrum and a model
spectrum to work the best.
If we assume that the degree l of the mode is known, then

the list of observed frequencies are rearranged so that the list
begins first with l ¼ 0 modes, then l ¼ 1 modes, and then
l ¼ 2 modes. The modes for each degree l are listed in order of
increasing frequency. With this ordering, each mode in the
observed frequency list is compared one by one with the model
frequencies with the same l. We note that if the uncertainties in
the observed frequencies are less than the small spacing, as
will always be the case if the l-values can be identified, then it
does not matter if the observed frequencies are listed by
l-value and the search is restricted to matching l-values.
Indeed, we have confirmed that listing all the modes in order
of increasing frequency, regardless of l, and searching through
all l-values produces identical results.
The closest model frequency to the first observed frequency

is identified and marked as being selected. The closest model
frequency to the next observed frequency is then identified. The
search for the closest model frequency is restricted to model
frequencies that have not already been selected. The process
continues through all observed frequencies. Once all the
observed modes have been matched to unique model modes,
�2 is computed.
The matching method clearly gives the observed lower

frequencies priority. At first thought, one might suspect that
the method will fail to find the best match in all cases, since
we can imagine a case in which the first frequency (�obs,1) in

Fig. 1.—Uncertainties in the model spectra determined from a calibrated
solar model. The relative frequency differences, model minus Sun, as a
function of n for l ¼ 0, 1, 2, and 3 p-modes are shown. The values fn
(obtained from a fit to the average relative frequency differences for the Sun)
are used in the mode-matching software to calculate the model uncertainties.
Along the top x-axis, the frequency scale approximately matches the n-values.

TABLE 2

Model Uncertainties

n fn n fn

1....... 0.00008 21...... 0.0011

2....... 0.00008 22...... 0.0013

3....... 0.00008 23...... 0.0015

4....... 0.00008 24...... 0.0018

5....... 0.00008 25...... 0.0021

6....... 0.00008 26...... 0.0024

7....... 0.00008 27...... 0.0026

8....... 0.00008 28...... 0.0028

9....... 0.00008 29...... 0.0029

10..... 0.00008 30...... 0.0029

11..... 0.00008 31...... 0.003

12..... 0.00008 32...... 0.003

13..... 0.00008 33...... 0.003

14..... 0.0001 34...... 0.003

15..... 0.0002 35...... 0.003

16..... 0.0003 36...... 0.003

17..... 0.0004 37...... 0.003

18..... 0.0006 38...... 0.003

19..... 0.0008 39...... 0.003

20..... 0.0009 40...... 0.003
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the observed frequency list is matched to a model frequency
that, in fact, more closely matches an observed frequency
farther down the list (�obs,i). One is confronted with the
frightening thought that in order to ensure that the optimum
match is being used to calculate �2, the searching process
should be repeated for all possible permutations of ordering in
the observed frequencies. Fortunately, this is not necessary,
because the observed and model frequencies have small
uncertainties and are relatively evenly spaced. If, in the above
example, we allowed the closest matching frequency to go
first (�obs,i), we would still have to find a match to the first
frequency (�obs,1). In both cases, one mode is going to be
poorly matched. When the observed modes do not match well,
then the ordering does not matter, since a high �2 value will be
obtained regardless, and if the modes do match well, then each
mode will be correctly matched. If the l-values of the observed
modes are unknown and if the observational uncertainties are
comparable to the small spacing, then ambiguities in matching
the l ¼ 0 and l ¼ 2 modes will occur. However, this is a true
reflection of the quality of the observations, and one cannot
expect the mode-matching algorithm to find better matches
(outside random chance) than the uncertainties in the data
allow.

To improve the efficiency of the mode-matching algorithm,
we restrict the search in model frequencies to modes that are
within ��mod/ NSPACE of the observed mode’s frequency. If
no mode is found, the observed mode is marked as
unmatched. If more than NREJECT modes are unmatched,
then the model is rejected and no �2 is calculated. NSPACE
and NREJECT are integers that can be adjusted by the user of
the software. Unless stated otherwise, the results reported here
use NSPACE ¼ 4 and NREJECT ¼ 5. The software outputs
the number of matched frequencies for each �2 determination,
so it is easy to identify �2 values computed with fewer than
the total number of input frequencies. In practice, we found
that the �2 curves have poorly defined minima when one or
more modes are off by more than 10% of ��mod.

We have assumed that the l-values of the observed modes
are known for our tests on the Sun and � UMa (radial modes)
and are unknown for our tests on � Cen A. The software has
been written so that the user can choose to use or not use the
l-values when searching the model modes.

2.5. Composition

The grid so far constructed does not encompass a large
range in helium or metal abundances, nor is the resolution in
the few compositions sampled high enough to enable us to
smoothly follow changes in �2 along the helium and metal
abundance dimensions of the grid. Regardless, we are able to
show that the weighted �2 is sensitive to composition.

2.6. Analysis Strategy

Because p-modes are regularly spaced, the code will either
match-up nearly all of the modes when the large spacing of
the model is close to the large spacing of the observed modes
or match-up few, if any, modes when the large spacing is not
close. The basic strategy when analyzing stellar oscillation
data for the first time involves some trial and error. We begin
by studying the �2 results. If they do not show well-defined
minima as a function of age, we then examine the mode
matches themselves, looking for isolated modes that are
consistently being poorly matched when the other modes are
well matched. If we think we have a ‘‘bad’’ mode, we can
either remove the bad mode from the data, setting it aside for

further scrutiny later, or increase NSPACE so that the
rejection tolerance is tight enough to reject the bad mode
automatically.

We have found in our own trials that a single bad frequency,
especially if it is a low frequency at which the model
uncertainties are low, can skew the mode matches so that other
modes in the frequency vicinity also appear to be poorly
matched. Needless to say, one should be conservative when
rejecting modes.

2.7. �2 Plots

�2 values are calculated for every model (a function of
mass, age, and composition) in the grid. When �2 values for a
single composition are plotted as a function of mass and
age, we find that the lowest values of �2 lie very close to a
curved two-dimensional surface. As an example, we show in
Figures 2a and 2b the �2 results for fits to � Cen A’s
observational data (to be discussed in x 4). Clearly, for �2 < 5
(the bifurcation of the surface above �2 ¼ 8 is discussed in
x 4), the corresponding models have oscillation spectra that
are close to the observed spectrum. When the models are
constrained to have oscillation spectra that closely match the
observed spectrum, the values of mass and age are constrained
such that mass and age are directly correlated. As a
consequence, we can simplify the presentation and analysis
of our results by showing projections of this two-dimensional
surface on the �2 versus mass plane and the �2 versus age
plane. The �2 versus mass plane and the �2 versus age plane
plots are not slices through the data. They show all of the �2

values calculated within the range of the axes. The minimum
value of �2 in a �2 versus mass plot corresponds to the same
model as the minimum value of �2 in a �2 versus age plot.
Figures 2a and 2b are discussed further in x 4 when we
interpret the �2 results for � Cen A.

3. TESTS

3.1. Solar Oscillations

We begin our testing with the Sun. Models of the Sun and
the observations are well established. The solar p-mode
frequencies are determined to better than 1 part in 10,000. The
Sun’s mass, luminosity, and radius are known to 0.1%, the age
to 1%, and the composition to 10% (Guenther & Demarque
1997). The frequencies of the p-mode spectrum of the
standard solar model, a model that is constrained by the
observed nonoscillation constraints of age, mass, luminosity,
radius, and composition, match the Sun’s p-mode frequencies
to within 0.3%.

To evaluate the mode-matching software, we use the first
month of GONG data (Harvey et al. 1996) for 2001,
specifically, the m ¼ 0 values from the mrv1f010104d000,
mrv1f010104d001, and mrv1f010104d002 data packages.1

We also use the BiSON data (Birmingham Solar Oscillation
Network; Chaplin et al. 1999), and the SOHO/VIRGO data
(Solar and Heliospheric Observatory/Variability of Irradiance
and Gravity Oscillations; Appourchaux et al. 1998). The
GONG and BiSON data are derived from ground-based
networked telescopes using spectral line Doppler shift
measurements, and the SOHO/VIRGO data are obtained from
the Luminosity Oscillations Imager, which measures intensity

1 With regard to the �2 curves shown here, the difference between using
m ¼ 0 values and using m-averaged values was found to be insignificant.
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variations, on board the SOHO satellite. We use only the
l ¼ 0, 1, and 2 p-mode frequencies. The range in frequency
and n for each data set is listed in Table 3.

First considering the BiSON data, Figure 3 shows the �2

values plotted against age for the models in the Y ¼ 0:27, Z ¼
0:02 diffusion portion of the grid, and Figure 4 shows the
same �2 values plotted against mass. Figures 3 and 4 are pro-
jections of �2 versus mass and age onto the �2 versus age and
�2 versus mass planes, respectively. In Figure 4 �2 values only
exist for masses greater than 0.85 M� and less than 1.13 M�
because the spectra of the models outside this mass range do
not meet the minimum criteria for a match (see x 2.4).

A well-defined minimum in �2 is visible in both Figures 3
and 4. The minimum in �2 as a function of age is near the
solar age, 4.55 Gyr (Guenther 1989), and the minimum in �2

as a function of mass is near 1 M�. In other words, there is a
single well-defined model from the models shown (Y ¼ 0:27,
Z ¼ 0:02, diffusion) that best matches the Sun’s l ¼ 0, 1, and
2 p-mode spectrum. The Sun’s mass and age have been
constrained exclusively by the modeling physics and the
oscillation data.

In Figure 5 we show a zoomed-in view from Figure 4, with
lines connecting �2 values of models with the same stellar
mass and evolving age. Each curve that dips downward
corresponds to a different mass. The masses, in units of M�, of
several of the curves are labeled. Points along each curve
correspond to evolving models for which �� values are
calculated. Along a given mass track, the p-mode spectra of
the models for the most part do not match the Sun’s spectrum.
At some point, however, the model spectrum comes close
enough to the observed spectrum that �� can be calculated.
Initially, the frequencies do not match well, and the �� values
are very high (>1000). As the model evolves and the
oscillation frequencies squeeze more closely together, there
is a point at which the model and observed spectrum match up
the best before growing apart again. In Figure 5 the point of
closest match between the model and observed spectra for a
given mass corresponds to the minimum on each mass track.
The minimum value of �2 for each mass varies with mass. In
Figure 3 the bottom edge of the �2 values, which corresponds
to the minimum �2 value for each mass track, defines a
relatively smooth curve. Because the minimum for each curve

Fig. 2.—�2 values calculated for � Cen A data using the Z ¼ 0:04, Y ¼ 0:27 diffusion portion of the model grid, plotted as a function of age and mass. Panels a
and b show different orientations of the same data to better reveal the curved two-dimensional surface within which most of the best-fitting models (�2 < 10) lie. A
general discussion of these figures appears in x 2.7. A detailed discussion within the context of interpreting � Cen A data appears in x 4.

Fig. 2a
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is selected from three to four points that span the region of the
minimum, the minimum value of �2 for each mass track may
be slightly above the true minimum. This introduces some
fluctuations in the �2 curves that would be smoothed out if the
true minimum for each mass track were determined.

In order to more clearly represent the behavior of the
weighted �2, we have selected the minimum values of �2 for
each mass and plotted only those values (i.e., we trace the
bottom edge of the �2 values plotted in Figs. 3 and 4). In
Figure 6 we show the minimum �2 values (hereafter we refer
to this ordinate as just �2) for all of the models in our grid
plotted against age, and in Figure 7 against mass. Lines

connect �2 values of similar composition and diffusion
characteristics, as indicated in the legend. The model that
best matches the BiSON l ¼ 0, 1, and 2 p-mode spectrum
corresponds to the model with the lowest �2.

The Z ¼ 0:02, Y ¼ 0:27 diffusion subgroup of the grid of
models has the lowest values of �2, although the subgroup of
models at the same composition but calculated without
diffusion have only slightly higher �2 values. This is the
result expected, since the best standard solar models have
nearly this composition and do include the effects of Y and Z
diffusion. The Z ¼ 0:01 and the 0.04 models all have higher
�2 values. The models with different helium abundances, the

Fig. 2b

TABLE 3

Solar Oscillation Data Range

l = 0 l = 1 l = 2

Observations

�

(�Hz) n

�

(�Hz) n

�

(�Hz) n

BiSON................. 1548–3984 10–28 1472–3914 9–27 1394–3977 8–27

VIRGO................ 2093–4669 14–26 2157–3914 14–27 2218–3977 14–27

GONG 2001.1..... 1957–4669 13–33 2157–4592 14–32 1945–4378 12–30
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Y ¼ 0:25, 0.26, and 0.27 at Z ¼ 0:02 (no diffusion) subgroup
of models, do not show distinctly lower or higher values of
�2.

Without resorting to prior knowledge of the star being
studied, one would conclude from the mass and age versus �2

plots that the best model in the grid corresponds to Z ¼ 0:02,
Y ¼ 0:27 with diffusion at a mass of 0.99 M� and an age of
4.7 Gyr. The age is overestimated by 0.15 Gyr (3%), and the

mass underestimated by 0.01 M� (1%). These discrepancies
approximately quantify the error in the mode-matching
method associated with the models themselves and their
frequency calculation.
The systematic error in the model frequencies (frequencies

of the standard solar model become higher than the Sun’s
frequencies as n increases) leads to an overestimate of the age
and a corresponding underestimate of the mass. For the
standard solar model, the model is constrained by the solar
mass, radius, and age, and this predicts higher values for the
large spacing than observed. In our �2 determination, the
process is reversed; our model is constrained by the pulsation
modes, and this predicts higher values for the age and lower
values for the mass. We also note that our standard solar
model includes an accurate model atmosphere, the Krishna
Swamy empirical fit to the Sun’s atmosphere. Our model grid
is based on the less accurate, but more general, gray
atmosphere in the Eddington approximation. This too adds
uncertainty to the mass and age predictions when using only
the models and oscillation frequencies as constraints.
The mode-matching method yields results that are sensitive

to the effects of diffusion. The effect is minimal in mass; as we
see in Figure 7 for Z ¼ 0:02, Y ¼ 0:27, the mass at which the
nondiffusion �2 curve is a minimum is very near the mass at
which the (nearly overlapping) diffusion �2 curve is a
minimum. At Z ¼ 0:04, although the diffusion and non-
diffusion �2 curves do not overlap, their minima occur at
nearly the same mass. The effect of diffusion is, however,
visible in age, as shown in Figure 6. For the Z ¼ 0:02, Y ¼
0:27 models, Y and Z diffusion lowers the age, as implied by
the minimum in �2, by approximately 1 Gyr. The effect is the
same for the Z ¼ 0:04 models. The age of nondiffusion
Z ¼ 0:02, Y ¼ 0:27 models are much more discrepant with
the Sun’s age than the diffusion models.
The effect of diffusion on age is understandable, given that

when helium and heavy-element diffusion are included in the

Fig. 3.—�2 values calculated for BiSON data and the Z ¼ 0:02, Y ¼ 0:27
diffusion portion of the model grid, plotted as a function of age.

Fig. 4.—�2 values calculated for BiSON data and the Z ¼ 0:02, Y ¼ 0:27
diffusion portion of the model grid, plotted as a function of mass. As in Fig. 3,
only values of �2 < 1000 are plotted. The �2 values for masses less than
�0.85 M� and greater than � 1.13 M� are not computed because the spectra
of the models do not match solar spectra well enough.

Fig. 5.—Zoomed-in portion of Fig. 3. Lines connect �2 values of similar
mass and changing age. Four of the curves are annotated with their
corresponding model masses, in units of M�.

GUENTHER & BROWN426 Vol. 600



standard solar model, the primordial abundance of helium and
metals must be increased slightly above the observed surface
abundance (as implied by [Z=X ]). By the time the model
has evolved to the age of the Sun, some of the metals and
helium have drained out of the surface convection zone,
thereby lowering their surface abundances compared to their
abundances in the deep interior. The rate of nuclear burning is
controlled by the mean molecular weight in the central regions
of the Sun. Increasing the mean molecular weight in this

region, which happens when Y and Z are increased, increases
the rate of nuclear burning. The models with diffusion evolve
more quickly and reach the Sun’s observed position in the H-R
diagram sooner, i.e., at a younger age, because they require
higher abundances of Y and Z in the core (in order to match the
observed surface abundances at the Sun’s age) than non-
diffusion models.

Figures 6 and 7 show that the abundance of helium has only
a small effect on the mass location of the minimum in �2 and a
negligible effect on the age location of the minimum in �2.
Furthermore, the minimum value of �2 itself appears
unaffected by the abundance of helium in the models.

Unlike helium, the low-l p-mode frequencies, as revealed
by �2 curves, are sensitive to the metal abundance. Both the
minimum values of �2 and their mass and age location are
affected. Of the �2 curves for Z ¼ 0:01, 0.02, and 0.04, the
lowest minimum in �2 occurs for Z ¼ 0:02. We expect that
adding more models to the grid at different Z in this metallicity
range would yield a well-defined minimum in �2 as a function
of Z.

In Figure 8 we show the �2 versus mass curves for BiSON,
GONG 2001.1, and VIRGO data, and in Figure 9 we show the
�2 versus age curves. Fitting quadratics to the GONG and
VIRGO �2 versus mass curves and then locating their minima
gives masses equal to 0.973 and 0.978 M�, respectively. The
widths of the �2 curves, i.e., how sharply they dip to
minimum, is a direct function of the uncertainty in their
corresponding p-mode frequency determinations: the larger
the uncertainty, the shallower the curves. The different
locations of the �2 minima provide a rough estimate of the
uncertainties. The systematic shift to lower masses is caused
by the errors in our models themselves (gray atmosphere and
mixing-length theory), which have been slightly underesti-
mated with 
mod. We can see from Table 3 that the BiSON
data set extends to lower frequencies than the GONG and

Fig. 6.—Bottom edge of the weighted �2 values shown in Figs. 3 and 4,
corresponding to the minimum value of �2 for each model mass. These
minimum �2 values (hereafter referred to as �2 values) are plotted as a
function of age. Distinct line styles connect �2 values from similar
composition portions of the model grid. The oscillation data used are the
l ¼ 0, 1, and 2 p-mode frequencies from BiSON.

Fig. 7.—Similar to Fig. 6, except that �2, i.e., minimum �2, is plotted as a
function of mass.

Fig. 8.—�2 curves for the Z ¼ 0:02, Y ¼ 0:27 diffusion portion of the
model grid, plotted as a function of mass for BiSON, GONG, and SOHO/
VIRGO data. The BiSON curve is the narrowest because its data contain
lower frequency modes, i.e., deeper penetrating modes, than the GONG and
VIRGO data. The minima in the �2 curves occur at masses slightly below
1 M�, suggesting that there exist systematic uncertainties in the models.
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VIRGO data sets. Lower frequency p-modes are less affected
by the outer layers than the higher frequency modes. The
model uncertainties are much less for the lower frequency
modes, with greater weight assigned to these lower frequen-
cies. The �2 values for BiSON data are, as a consequence, not
contaminated as much by the more poorly modeled high-
frequency modes as they are for the GONG and VIRGO data
sets.

3.2. Effects of Observational Uncertainty

To study the effect of increasing observational uncertainty
on the �2 curves, we artificially add known values of Gaussian
noise to the GONG 2001.1 frequencies. The l ¼ 0, 1, and
2 GONG 2001.1 data have uncertainties of less than 0.2 �Hz
from 2000 to 3500 �Hz, with the error then increasing to
2 �Hz by 4500 �Hz. We perturbed the GONG frequencies by
adding random Gaussian-distributed perturbations of �1, �2,
and �5 �Hz (identified as Gauss � 1, Gauss � 2, and
Gauss � 5). Regardless of the random noise added, in all
but the original data set, we kept 
obs ¼ 1 �Hz. In the case of
the Sun, in which the model uncertainties are very low for the
lowest frequency modes, increasing or decreasing 
obs shifts
the �2 curves up and down without affecting the shape of the
curve. In general, however, the shape of the curve can be
affected. Because we want to show how the �2 curves
respond to observational uncertainties, regardless of the values
of 
obs quoted, we have kept the observational error parameter
fixed.

In Figures 10 and 11 we show the mass and age �2 curves
for these data sets, along with the original GONG 2001.1 data
set. As the noise in the data is increased, the width of the �2

curves also increases. For frequencies accurate to � 1 �Hz, the
best mass and age are well defined, but for the Gauss � 2 and
the Gauss � 5 data sets, the minimum in �2 is more poorly
defined. All curves span only the range 0.84–1.12 M�, since
the spectra of all models beyond this mass range do not match
the observational data set (for which, as previously defined, a

match requires all but five frequencies in the observed spectra
to lie within ��=4 of the model frequencies).
Although poorer quality data can constrain the models, they

do so at a level below that of conventional observational
constraints. To help further constrain the models, the

Fig. 9.—Similar to Fig. 8, except that �2 curves are plotted as a function of
age. Fig. 10.—To study the effects of noise in the frequency data, Gaussian-

distributed random noise was added to the GONG frequency data. Three data
sets were generated: Gauss � 1 with � 1 �Hz of random Gaussian-distributed
noise added, Gauss � 2 with � 2 �Hz of random Gaussian-distributed noise
added, and Gauss � 5 with � 5 �Hz of random Gaussian-distributed noise
added. The �2 curves for the Z ¼ 0:02, Y ¼ 0:27 diffusion portion of the
model grid are plotted as a function of mass for these three data sets along
with the original GONG data set, whose frequencies have uncertainties 
obs of
less than � 0.1 �Hz.

Fig. 11.—Similar to Fig. 10, except that �2 curves are plotted as a function
of age.
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oscillation mode frequencies need to be observed with an
accuracy of at least �1 �Hz.

3.3. Using l = 0 and 1 Data Only

In all the tests carried out so far, we have used the l ¼ 0, 1,
and 2 modes. One might guess that restricting the data set to
just l ¼ 0 (radial only), or l ¼ 0 and 1 modes will severely
limit the utility of the data to resolve mass and age. This is not
the case. To show this, we took the Gauss � 1 data set and
removed the l ¼ 2 modes, then also the l ¼ 1 modes, from the
data set and applied the mode-matching routines to these two
data sets. Although the curves are shallower, both the radial
only and the l ¼ 0 and 1 data sets have clearly defined
minima, as shown in Figures 12 and 13. This result is
important, since stars on the subgiant branch are expected to
have only observable radial modes (Guenther et al. 2000).

3.4. High Correlation between Parameters

When the �2 values are plotted as a function of mass and
age together, the lowest values of �2 (e.g., < 10) lie within a
very narrow line in mass and age (so narrow that we are
unable to produce a visually useful contour plot). Similarly,
the lowest values of �2 define a very narrow line in effective
temperature and luminosity. That is to say, when the models in
the grid are constrained optimally by the oscillation spectra, a
unique relation between mass and age, or effective temper-
ature and luminosity, is defined. At low �2 the mass and age
are very highly correlated, and so are the effective temperature
and luminosity. In Figure 14 we show the correlation between
mass and age for low values of �2 (taken at the minimum
value in �2 at each age) for BiSON data. In Figure 15 we show
the correlation between effective temperature and luminosity.

The two curves in each figure correspond to Z ¼ 0:02, Y ¼
0:27 (diff ) and Z ¼ 0:04, Y ¼ 0:27 (diff ).

4. � CEN A

To provide a more interesting test, we apply the mode-
matching method to recent ground-based observations of
p-mode oscillations on � Cen A. Bouchy & Carrier (2002)
made Doppler shift observations of � Cen A over 13 nights
and identified 28 individual l ¼ 0, 1, and 2 p-modes. They
compared the large and small spacings with existing models
by Morel et al. (2000) and Guenther & Demarque (2000) and

Fig. 12.—Because stars are observed as points of light, asteroseismic
observations will only resolve the lowest l-valued p-modes. To study the effect
of only using l ¼ 0 modes and l ¼ 0, 1 modes, we take the Gauss � 1 data
set and generate two restricted sets, one containing only the l ¼ 0 modes and
the other containing only the l ¼ 0, 1 modes. The �2 curves for the Z ¼ 0:02,
Y ¼ 0:27 diffusion portion of the model grid are plotted as a function of mass
for these two data sets along with the original Gauss � 1 data set.

Fig. 13.—Similar to Fig. 12, except that �2 curves are plotted as a function
of age.

Fig. 14.—Correlation between the mass and the age of the models that have
low �2 values. BiSON data are used.
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found the observations to be in general agreement with these
models, falling somewhat in the middle of the two with regard
to mass and age. Thévenin et al. (2002) carried out a
traditional modeling analysis of � Cen A and B, similar to that
of Guenther & Demarque (2000) but utilizing slightly different
nonoscillation constraints and using the Canuto & Mazzitelli
(1991, 1992) prescription for the mixing-length theory. They
compared the oscillation spectra of their models with the
observed large and small spacings of Bouchy & Carrier
(2002). They were unable to completely reconcile the two.

The oscillation data as published in Bouchy & Carrier
(2002) without their l-identifications were processed by the
mode-matching program using the same grid as described in
previous sections of this paper. We begin by considering the
three-dimensional plot of �2 versus mass and age shown in
Figures 2a and 2b for the Z ¼ 0:04, Y ¼ 0:27 diffusion
portion of the grid. As discussed in x 2.7, this plot shows that
the mass and age of the best-fitting models (models with
�2 < 5) lie on a curved surface that defines a direct correlation
between mass and age. We further note that there is a well-
defined minimum �2. Curiously, a second surface appears for
�2 > 8. Examination of the models themselves reveals that the
smaller surface corresponds to models that have a convective
core or had a convective core during their evolution, and the
larger surface corresponds to models that never develop
convective cores during their evolution. As discussed by
Guenther & Demarque (2000), models of � Cen A are
precariously balanced between developing a convective core
or not during their evolution depending on initial conditions.
Models that do have a convective core at some time during
their evolution take longer to evolve to a given position in the
H-R diagram than models that do not. Because the existence
or nonexistence of the convective core is very sensitive to
composition and mass, the age of the model can change
abruptly as a function of mass and composition in this region
of the H-R diagram. The best-fitting models for � Cen A
correspond to models that do not have a convective core. That

is, the oscillation data unambiguously rule out models that
develop convective cores during their evolution.
Figures 16 (entire grid) and 17 (Z ¼ 0:01, 0.02 [diff ], and

0.04 [diff ]) show the �2 curves for mass and age, respectively.
The Z ¼ 0:04 �2 curves have well-defined minima. The Z ¼
0:02 �2 curves show spikes and step-function jumps. The Z ¼
0:01 �2 curves are not as nicely defined as for the Sun. For the
Z ¼ 0:04 curves, which correspond most closely to the ob-
served metallicity of � Cen A (Z=X ¼ 0:041 � 0:002), the �2

minima are near 1.15 M� and 6 Gyr. For comparison, with
Teff ¼ 5770 � 50 K, log ðL=L�Þ ¼ 0:1969 � 0:017, Z=X ¼
0:041 � 0:002, and M ¼ 1:1015 � 0:008 M�, Guenther &
Demarque (2000) derive an age for the system of 7 � 1 Gyr.
The �2 curves do appear to be consistent with conventional
observations and models. The Z ¼ 0:02 curves show minima
at lower masses and higher ages. Needless to say, the grid
resolution in metallicity needs to be greater in order to infer
the mass and age of � Cen A from �2 curves that are near the
observed metallicity (Z ’ 0:034) of � Cen A.
The spikes and step-function jumps in the Z ¼ 0:02 �2

curves occur because the models that had convective cores
have different oscillation frequencies from models that do not,
even though the models themselves may be very close to each
other in the model grid. They do not appear in the Z ¼ 0:04 �2

curves simply because the convective core models do not
overlap the nonconvective core models at low values of �2.
We note that the diffusion and nondiffusion models do not

show significantly distinct �2 curves; hence, the current
oscillation data by themselves cannot be used to support the
case for the existence of Y and Z diffusion. With other
observational constraints and a denser grid along the
Z-dimension, it may be possible to distinguish the non-
diffusion case from the diffusion case.
In Figure 18 we plot in an H-R diagram the location of the

�2 minima along each mass track. Recall (see x 3.4) that near

Fig. 15.—Correlation between the luminosity and the effective temperature
of the models that have low �2 values. BiSON data are used.

Fig. 16.—�2 curves plotted as a function of mass for the Bouchy & Carrier
(2002) � Cen A oscillation data (see text). The Z ¼ 0:04 portion of the model
grid produces the best-fitting oscillation spectra (as indicated by the low
values of �2) for masses around 1.15 M�.
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the �2 minima, the luminosity is highly correlated with the
effective temperature. For each composition, a single curve is
defined in the H-R diagram. The location of � Cen A as
implied by conventional observations is also indicated in the
diagram. The Z ¼ 0:04 curve passes through � Cen A’s
position, while the Z ¼ 0:02 curve does not. As noted above,
Guenther & Demarque (2000) find that when diffusion of Y
and Z are included in the models, the ZAMS metallicity of
� Cen A is � 0.034, which is consistent with the results of the
�2 curves.

In Figure 19 we show an echelle diagram of the
observational data along with one of the lower �2 model
matches (mass ¼ 1:148 M�, age ¼ 6:99316 Gyr, �2 ¼
1:7202). The model oscillation frequencies fit the observed
frequencies to better than 1%–2%. The fit is best at lower
frequencies, with a systematic shift to greater differences at
higher frequencies. The higher frequencies are more poorly
fitted because the model uncertainties are larger at higher
frequencies. The shift is most likely caused by uncertainties in
the outer layers of the model. The oscillation data for � Cen A,
in particular the frequency shift, similar to that seen for the
Sun, will provide much needed information about the general
behavior of convection in stars.

The oscillation spectrum of the model used in Figure 19 is
a significantly better match to the observed spectrum of
� Cen A than any of the oscillation spectra of models found
from conventional methods (e.g., Guenther & Demarque
2000; Thévenin et al. 2002). Here we are showing how the
oscillations by themselves can be used to infer the mass
and age of � Cen A. Needless to say, a comprehensive
analysis of � Cen A would demand folding together all
observational constraints.

5. � UMa A

We have, so far, only considered solar-type stars. Tentative
p-mode oscillations have been identified on � UMa A by
Buzasi et al. (2000) using the star camera on the failed Wide

Field Infrared Explorer satellite. � UMa A is the primary star,
of spectral type K0 III, in a visual binary system. The
secondary is classified as an F7 V star with a mass estimated
between 1 and 2 M�. The total mass of the binary system is
approximately 6 M� (Söderhjelm 1999); hence, the mass
� UMa A is estimated to be between 4 and 5 M�. Guenther
et al. (2000) constructed several models constrained by
nonoscillation observations and compared the oscillation

Fig. 18.—Along each stellar model mass track �2 reaches a minimum. The
loci of all the H-R diagram positions of the models for which the �2 reach a
minimum for the � Cen A oscillation data are shown here for the Z ¼ 0:02,
Y ¼ 0:27 diffusion portion of the model grid and the Z ¼ 0:04, Y ¼ 0:27
diffusion portion of the model grid. The position of � Cen A in the H-R
diagram is also plotted.

Fig. 19.—Echelle diagram of the observed p-mode frequencies for � Cen A
(Bouchy & Carrier 2002) and the frequencies of a matching model with low
�2 (mass = 1.14800 M�, age = 6.99316 Gyr, �2 ¼ 1:7202).

Fig. 17.—Similar to Fig. 16, except that �2 curves are plotted as a function
of age for the (Z ¼ 0:02, Y ¼ 0:27), (Z ¼ 0:02, Y ¼ 0:27, diffusion), and
(Z ¼ 0:04, Y ¼ 0:27, diffusion) compositions.
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spectra of the models with the observed spectrum. The spectra
of their models were in general agreement with the
observations, but no definitive match could be made between
the modes, and only weak conclusions could be drawn to
support the validity of the observations.

We have run the observed frequencies for � UMa A through
our mode-matching software to see if a more precisely
matched model spectrum could be identified. We only
considered the Z ¼ 0:02, Y ¼ 0:27 no diffusion portion of the
grid because it is the only part of the grid that extends to the
predicted mass of � UMa A. We also only looked at the radial
modes, since the nonradial mode frequencies are not regularly
spaced (see the discussion in Guenther et al. 2000). Following
a trial run, we decided to decrease the mode-matching
parameter NREJECT to 1, since there are only 10 modes
identified by Buzasi et al. (2000) to begin with.

With this mode-matching criteria, models between 3.9 and
4.6 M� possess spectra that match 9 of the 10 oscillation fre-
quencies. The �2 versus mass and age plots for � UMa A are
shown in Figures 20 and 21. The mass and age of � UMa A
implied by the oscillation data, and assuming Z ¼ 0:02,
Y ¼ 0:27 (no diffusion), are 4.55 M� and 0.11 Gyr. Table 4
lists the observed frequencies and the model frequencies
(l ¼ 0) for the best-matched model (M ¼ 4:552 M�, age ¼
0:1104 Gyr). The observed lowest frequency mode was not
matched in any of the minimum �2 models. The abrupt
change in �2 at the end of the mass range (and beginning of
the age range) is a consequence of the increasing rate of
evolution (relative differences between models increases) as
the mass increases. Based on Taylor’s (1999) spectroscopic
determination of [Fe/ H] and an assumed Galactic helium
enrichment ratio of �Y=�Z ¼ 2:5, Guenther et al. (2000)
calculate that themetallicity of� UMa A isZ ¼ 0:0124 and that
the helium abundance is Y ¼ 0:261. We believe a lower mass
would be determined if the Z of our grid used here were closer to
the derived Z for � UMa A.

The well-defined minima in the �2 curves, the closeness of
the best-fit model spectra to the observed spectrum (less the

lowest frequency mode), and the reasonableness of the derived
mass and age provide theoretical support for the p-mode
observations by Buzasi et al. (2000) of � UMa A. Furthermore,
the success of the method confirms the robustness of the mode-
matching method at higher masses.

6. SUMMARY AND CONCLUSIONS

We have introduced a method to study stellar oscillation data
that utilizes an extensive grid of models parameterized by mass,
age, and composition. The method quantifies how well an
observed p-mode spectrum matches the spectra of the models
using a �2 measure. The �2 values permit a range of best-
matching models, and the uncertainties in their parameters, to
be identified. The best-matched models, as determined by the
mode-matching method, are constrained exclusively by the
oscillation data. As a consequence, the predictive abilities of
the oscillation data are isolated from other observational
constraints such as mass, radius, and luminosity.
The grid of models is necessarily very dense, and hence a

significant number of stellar models need to be computed in
order to cover a large mass, age, and composition range. Here
we have presented initial test results on a limited grid centered
around solar-type stars.

Fig. 20.—�2 curve as a function of mass for the � UMa oscillation data of
Buzasi et al. (2000). The curve is based on the Z ¼ 0:02, Y ¼ 0:27 (no
diffusion) portion of the grid.

Fig. 21.—�2 curve as a function of age for the � UMa oscillation data of
Buzasi et al. (2000). The curve is based on the Z ¼ 0:02, Y ¼ 0:27 (no
diffusion) portion of the grid.

TABLE 4

� UMa A Frequencies

�obs �model n

2.030....... . . . . . .

5.170....... 5.114 0

7.950....... 8.464 1

11.410..... 11.400 2

14.970..... 14.276 3

18.150..... 17.442 4

20.740..... 20.328 5

22.390..... 23.064 6

34.920..... 35.050 10
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We have tested the mode-matching method on solar data for
which we know the observational data to be of high quality,
and we know the mass and age of the Sun well enough to
evaluate how well the mode-matching method works. The �2

curves have well-defined minima. The accuracy of the values
of mass and age predicted by the mode-matching method
appears to be limited by the accuracy of our models
themselves. The well-known weakness in the mixing-length
theory used to describe the outermost layers of the convective
envelope (the superadiabatic layer), the fact that our
oscillation code cannot calculate nonadiabatic effects associ-
ated with turbulence, and the use of a gray atmosphere means
that there is a systematic error in all our models and their
spectra that increases with frequency. The most accurate
results are obtained with BiSON data that extend to 1500 �Hz.
GONG and VIRGO data do not extend as low in frequency,
and hence are more affected by this inherent weakness in our
grid of model spectra. Regardless, we find that the oscillation
data alone with uncertainties of the order of �1 �Hz can be
used to constrain the age and mass to a few percent, even
when the data are restricted to radial-only modes.

Although our grid has only a few distinct compositions, the
results suggest that the metallicity of a star can also be
determined by looking for the minimum in �2 along this
dimension of the grid. Our initial tests of trying to isolate the
abundance of helium are not as promising. The abundance of
helium does affect the location of the �2 minima in mass and
age, but the absolute value of the �2 is unaffected; hence, we
cannot pick out the minimum in �2 along this dimension of the
grid.

The sensitivity of the mode-matching method is especially
revealed in its ability to distinguish between models with and
without Y and Z diffusion. Models with diffusion have lower
�2 values, and their �2 predictions of mass and age are closer
to the Sun’s true values.

If the systematic uncertainties in the model frequencies
caused by the poor modeling of both convection and the
atmospheres could be accounted for, then lower model
uncertainties could be used that would yield narrower �2

curves. On the other hand, the existence of this discrepancy
makes it clear that stellar seismology is going to be extremely
useful in fine-tuning the physics of the outer layers of our
stellar models.

When applied to the observed oscillation data for � Cen A
(Bouchy & Carrier 2002), the mode-matching method
produces an unambiguous range of matched models from
the grid. The stellar models of � Cen A constrained entirely
by the oscillation data are within the uncertainties of stellar
models of � Cen A constrained by conventional observations,
and the results indicate that the metal abundance can also be
constrained when the grid resolution in Z is increased. A more
detailed analysis of the system will require folding in
conventional observational constraints and their uncertainties,
a task that is made easier by the ability of the mode-matching
method to isolate the effect of the uncertainties in the
oscillation data and the models.

The mode-matching method when applied to the oscillation
data for the subgiant � UMa (Buzasi et al. 2000) was able to
determine unambiguously the star’s mass and age. Previous

analysis of the oscillation data by Guenther et al. (2000) using
conventional modeling methods were not as successful in
validating the observations.

The mode-matching method cannot perform better than the
models themselves. As shown in the tests using solar
oscillation data, and noted in our discussion on the calibration
of the model frequency uncertainties, the model uncertainties
increase from less than �0.01% to �0.3% as n ranges from
10 to 30. We know from oscillation studies of our solar
models that the superadiabatic layers are not accurately
modeled using mixing-length theory. We also know that a
good atmosphere model is required to obtain accurate p-mode
frequencies at higher n. Since all p-mode frequencies are
affected by the outer layers of the models, with the effect
increasing with n, it may be possible to correct for the
systematic shift in frequencies, thereby decreasing the
effective uncertainties in the mode-matching method. We
believe that up to an order of magnitude reduction in the
uncertainties may be possible.

In the immediate future, along with extending the grid, we
propose to modify the mode-matching software to search for
the best matches of weighted combinations of p-mode
frequencies. The weighted combinations would be similar to
the weightings used to generate inversion kernels that pick out
specific depths in a star. In this manner, we would use the
mode-matching algorithms not only to find the best-fitting
models but also to identify the regions in the interior of the
model where the fit is poor.

Because the mode-matching routines identify models whose
spectra most closely match the observed spectrum, the
matched models are ideal starting models for carrying out
inversions or more refined analyses. The method does require
the computation of a large number of models; hence, it may
not be the optimum method to use when studying a more
extensive parameter set. Here the Brown et al. (1994) method
could be used to complement the mode-matching method.
Once the mode-matching method narrows down the possible
set of model parameters in mass, age, and composition, the
Brown et al. method could be used to expand the set of
parameters.

The mode-matching method can immediately show whether
or not the oscillation data are consistent with conventional stel-
lar models, and it can show how well the oscillation
data constrain the age, mass, and composition of conventional
models. When a more extensive grid of models is completed,
the mode-matching software can be used by anyone as a first
line of investigation into interpreting their stellar oscillation
data.
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