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mation, R;, = 26 m. This means that an archer shooting
upward on the slope at a range of 45 m should aim as if the
target were at his or her own level at a range of 26 m, since
both circumstances require an angle of departure of 2.5
deg. On the other hand, a similar calculation for a shot
downward, with the base line still at 60 deg to the horizon-
tal, gives a range of 58 m for the same angle of departure of
2.5 deg. The range is extended more for downhill than for
uphill shots because of the significant changes of speed due
to gravity.

IV. SUMMARY

The relationships (3) to (6) enable the determination of
the shape of a trajectory in air relative to a plane inclined to
the horizontal, provided that the angle of departure to the
plane is small. Experimental information required is a plot
of times of flight (or remaining velocities) against distance
traveled for a horizontal range.

For a supersonic bullet, it is a reasonable approximation
to neglect the effect of gravity on the speed and to neglect
the effect of air resistance on the component of the accel-
eration normal to the inclined plane. This means that the

times of flight of the bullet for a given range are approxi-
mately the same for planes of different slopes. On the other
hand, the times of flight for a bullet are not the same for
different slopes when the angles of departure are the same.
This is because the ranges become longer for steeper slopes.

For an arrow, it is unsatisfactory to neglect completely
the effect of gravity on the speed but it is still reasonable to
neglect the effect of air resistance on the component of the
acceleration normal to the slope.

This treatment applies to ranges of up to about 500 m for
supersonic bullets and to about 50 m for arrows.
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The one-dimensional finite rectangular potential well is
a standard example via which students are introduced to
the concept of even- and odd-parity solutions of the Schro-
dinger equation. If the well is defined by

0, —L<x<[L,
Vix) = {VO, |x|>L, (D
the Schrédinger equation yields
CeP~ (x< — L),
Y (x) = {4 sin(ax) + B cos(ax) (— L<xgl),
De~", (x>L),
(2)
where
a’ =2mE /# (3)
and
B*= Qm/#)(V,— E). (4)

The continuity of W and its first derivative yields four con-
straints:

—Asingé +Beosé=Ce™ 7, (5)
adcos & +aBsin £ =HCe ", (6)
Asiné + Bcosé=De™ ", (7
adcosé —aBsiné= —fDe” ", (8)

where £ = aL and 7 = BL. In most textbook treatments
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these equations are manipulated to give transcendental
equations for the bound-state energy eigenvalues as fol-
lows. If the sum of Egs. (5) and (7) is divided by the differ-
ence of Eqs. (6) and (8), one finds

ftan &= 9
On the other hand, if the difference between Eqgs. (5) and
(7) is divided by the sum of Egs. (6) and (8), we have

—&coté =1 (10)

From the definitions of £ and 7 there is one further condi-
tion:

£+ P =2mV,L*/# =const =K, (11)

The intersections of Egs. (9) and (11) give the even-parity
solutions (4 =0, C = D), whereas the intersections of
Egs. (10) and (11) give the odd-parity solutions (B =0,
C = — D). The solutions are usually found graphically, as
demonstrated, for example, in Schiff.! The literature
abounds with a variety of innovative modifications on
Schiff ’s method,*? including finding the intersections of
semicircles with an Archimedes spiral!* The problem with
this approach, however, is that most students find the
above series of manipulations to be far from intuitively ob-
vious. Also, in many of the graphical methods, one faces
the task of constructing independent graphs for the even
and odd solutions. A simpler approach leading to a single
equation incorporating all possible solutions is clearly de-
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sirable. Indeed, Eqgs. (5)—(8) appear at first glance to be
four equations in four unknowns, and most students’ first
intuition is to solve them as such.

The purpose of this note is to show that such an ap-
proach does produce a single equation, the roots of which
yield all of the energy eigenvalues. The parities of the corre-
sponding wavefunctions can be shown to follow as a conse-
quence.

The solution proceeds as follows. First, use Egs. (5) and

(6) to express A and B in terms of C and D. With these
results, eliminate 4 and B in Egs. (7) and (8) to give

D = C[sin(2£) (5/€ 4 cot &) — 1], (12)
and
D= — C[cos(28) — (£ /7)sin(28) ], (13)

respectively. Equating these results gives an identity in &:
sin(28) (/6§ —&/m +cot§) +cos(28) =1.  (14)

Using Eq. (11) to eliminate 7 gives, after some manipula-
tion and use of trigonometric identities, a condition on &:

SEK) = (K? —2£7)sin(2€)
+ 26 JK? 2 E% cos(2£) = 0. (15)

The roots of this equation give the bound-state energy
eigenvalues. This result incorporates all possible solutions
and, as expressed, possesses the advantage of utilizing no
discontinuous trigonometric functions.

The roots of Eq. (15) are most easily found as follows.
First, plot the equation and establish values of £ that
bracket the roots. Using these bracketing values as input to
a bisection-method program will quickly yield conver-
gence as f(&,K) is continuous and possesses no extrema
where f(£,K) = 0. Press et al.’ discuss root-finding tech-
niques.in a very readable way, and give a variety of algor-
ithms and useful practical tips.

As regards the parities of the corresponding wavefunc-
tions, it is easy to show that if either Eq. (12) or (13) is
squared and Eq. (15) is used to eliminate sin (2£) or cos
(2£), anidentity results, namely, D> = C%,orD= + C.If
D= — C (odd parity), Eq. (7), on elimination of 4 via
Eq. (5), yields B = 0. Similarly, if D = C (even parity),
Eq. (5), on elimination of B via Eq. (7), gives 4 =0.

An example of the use of Eq. (15) is given in Fig. 1,
where f(£,K) is plotted for the case of an electron in a well
of depth 100 eV and width 2 A(L =1 A). There are four
bound-state solutions, at & = 1.3118, 2.6076, 3.8593, and
4.9630, corresponding to energies of 6.56, 25.91, 56.75, and
93.85 eV, respectively. The vertical dashed line corre-
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Fig. 1. Equation (15) plotted for the case of an electron in a finite rectan-
gular potential well of depth 100 eV and width 2A. The zeros of the curve
correspond to the permissible energy eigenvalues. The dashed line indi-
cates the top of the well.

sponds to the top of the well. It is straightforward to verify
numerically that the lowest energy solution is of even par-
ity and that the solutions alternate parity.

The author’s experience is that students find it easier to
digest the present method than that usually presented (and
often only vaguely explained) in the standard texts. The
generality and relative simplicity of Eq. (15), in combina-
tion with the capabilities of programmable calculators and
personal computers, make it possible to discuss meaningful
numerical examples.®
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