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Linear least-squares fits with errors in both coordinates. II: Comments

on parameter variances
B. Cameron Reed

Department of Physics, Saint Mary’s University, Halifax, Nova Scotia B3H 3C3, Canada
(Received 10 December 1990; accepted 18 April 1991)

Corrected expressions for parameter variances in linear (straight-line) least-squares fits given in
an earlier paper [B. C. Reed, Am. J. Phys. 57, 642-646 (1989)] are presented and discussed. In
addition, some simplifications to the solution given in that paper are presented, and some

comments made as to the role of weighting.

L. INTRODUCTION

In the July 1989 edition of this Journal, this author pub-
lished a paper concerning linear least-squares fits (that is,
straight-line fits) in cases where there are errors in both
coordinates' (hereafter Paper I). This paper drew atten-
tion to various numerical problems that can arise on at-
tempting to implement the iterative solution to this prob-
lem originally put forth by York,”> showed how one can
circumvent these problems in practice, and made available
a simple program for doing the computations on a PC. In
addition, it was shown that York’s solution is exact, and
immune from problems encountered in attempts to modify
conventional least-squares algorithms.*® Since publica-
tion of this paper, many interested parties have written to
the author with detailed accounts of their experiences with
a variety of algorithms claiming to address this problem.
These experiences are clearly converging on two conclu-
sions: (i) the various algorithms agree as to the correct
values of the slope m and intercept ¢, and (ii) there is con-
siderable disagreement as to the variances o,, and o, of the
slope and intercept that various methods report. Unfortu-
nately, the expressions quoted for o,, and o, in Paper I
have proven to be erroneous.

Given that users who have developed programs based on
Paper I may not be aware of this shortcoming, a discussion
giving a corrected treatment is needed. This is the main
purpose of the present paper. However, this paper is also
‘much more than an erratum, for a number of sundry issues
are also addressed. Specifically, a simplification of the
“least-squares cubic” is discussed, attention is drawn to
some relevant references the author was not aware of at the
time of writing Paper I, results for a commonly used exam-
ple are discussed in detail, and some remarks on the role of
weighting are made. Since the literature on this problem
goes back over a century, the present paper will surely not
be the last word on it; the purpose here is therefore not so
much to introduce new results as to clarify old ones and to
provide detailed examples against which others can check
their own algorithms.

The outline of this paper is as follows. In Sec. IT York’s
solution to the best-fit line is summarized and simplified. In
Sec. 111 the difficulty with York’s expression for o, is ex-
amined, and a corrected expression offered. Detailed re-
sults for a well-known example (*“Pearson’s data with
York’s weights”) are presented, along with revised results
for examples I and II in Paper 1. Section IV discusses some
sundry points. Explicit expressions for ¢,, and o, appear in
the Appendix.
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I1. YORK’S SOLUTION

Assume that one has a set of N data-point pairs (x;, y; );
each point has its own weighting factors in x and y, desig-
nated as W(x;) and W(y,), which are conventionally as-
signed as the inverses of the squares of the measurement
uncertainties (see Sec. IV). The problem is to find the val-
ues of the parameters m and c that yield the “best-fit” of the
model equation

Y=mX+c (1)

to the data, where X and Y are the predicted or calculated
values of the data points, that is, their values after adjust-
ment to the best-fit line. “Best-fit” is defined as minimizing
the sum of the weighted squared residuals, commonly de-
signated as S:

N
S= % [W&x)(x; - X))V + W —Y)]. (2)
i=1
[Note: In most textbook treatments, (X,Y) designates an
observed point, and (x,y) the predicted. We reverse this
notation to remain consistent with Paper I]. York? showed
that the best-fit slope is given by solving the equation

fim) =m’® —3am? + 3Bm — y =0, 3)
where
WUV,
—2y =) @381, 4
a(ZW(xn)() ®
w?iy?
= LS WUt 3s) ), 5
B (ZW(X,») > W ,>( ) (5)

7=(—z W;UfV,-)af‘, (6)

with
way?
5=y ——, 7
Z Wix;) 7

and where the “overall” or “effective” weight W, for a
given point is given by
Wx) )W)

W, =— . (8)
mW(y,) + W(x,)

In Eqgs. (4)-(7), U; and V,; are defined by
U =x, — (x), (9
Vi=y, —(», (10)
where (x) and (y) are given by
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=3 wx(sw)" an

and

=3 Wy, (2 W) | (12)

with all sums in Eqs. (4)~(12) running from 1 to N.

The central problem in finding the best-fit slope is then
to find that root of Eq. (3) that minimizes S. York derived
Eq. (3) by applying the method of undetermined multipli-
ers to Eq. (1) and demanding that S be minimized; he
termed Eq. (3) the “least-squares cubic” because it appears
to have the form of a cubic equation in m. However, this is
illusory as the “coefficients” a, B, and 7, are in fact all
functions of m through the U,, ¥;, W,, and 8. As discussed
in Paper I, the simplest approach is to plot f{m) vs m and
examine the zeros.

Once m is known, the intercept ¢ is given by

c={(y) —mix), (13)

and the value of S can be expressed as
S=SW,(y,—c—mx)>=3 W,(V, —mU)%. (14)

York gives (erroneously) the variances in the slope and
intercept as

S

a=S—(swu)
72 (15)

and

z=[swx(zw) | (16)

Before examining the difficulties with these last two
equations, we give a simpler formulation’ of Eq. (3). Can-
celling factors of 3 and clearing the factor of § in the de-
nominator of Eq. (3) yields, after some slight rearrange-
ment

wWiy? W?aU.V, w?y?

3 i i ) 2 iMily iV
" (2 W(x,-)) m (Z Wx) )+m(z W(x,->>
=m(2 W,-U%)—(Z W,-U,-K)- (17)

Now, Eq. (8) can be expressed as

m? 1
+ Wo—=1. (18)
(W(x,-) W(yf))

If Eq. (18) is inserted within the sums of the two terms on
the right side of Eq. (17) (equivalent to muitiplying
through by 1), one finds after a little algebra that the “least-
squares cubic” can be expressed, with no loss of generality,
as a “‘least-squares quadratic™”:

w2y, V) U? y?
2 I i i + m W;" < i _ 1 )
" (Z Wix) 2 \won ~ wo

WU V.
—_ (Z __’_.;) =0, ( 19)
W)
which we write for convenience as
gim) =Am?>+ Bm — C=0. (20)

Do not confuse the coefficient C defined in Egs. (19) and
(20) with the best-fit intercept ¢. Williamson,® who also
investigated (and corrected) problems with York’s param-
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eter-variance expressions, has shown that the equation for
the best-fit slope can actually be cast into a pseudo-linear
form. In the present paper, however, I will stick to the form
of Eq. (20) to effect a completely independent analysis
from that of Williamson.

I1I. PARAMETER VARIANCES

A proper treatment of error propagation®'® shows that

the variance in the slope of the best-fit line should be com-

puted via
S 1 Im\? 1 om\?
=572 | (5) Fw (oe) |
N-2 EJ: W(y) \dy, Wi(x;) \9x,
(21)

with a similar expression holding for o> but with deriva-
tives of ¢ instead of m. In writing Eq. (21), we have as-
sumed that weights are assigned in the usual inverse-square
fashion: W(x,) = 1/0%(x;) and W(y;) = 1/0*(y;).

The factor of S /(N — 2) (the “external standard devi-
ation”) appearing in Eq. (21) deserves some comment.
Some authors (Williamson) do not include this factor, al-
though the majority of statistical authorities do so. An in-
tuitive justification for its inclusion can be given as follows.
Suppose that one optimistically assigns each of the W(x,)
and W(y,) to be ten times greater than their true values.
The derived slope, intercept, residuals, and values of
(dm/0x;) and (dm/dy;) will all be unchanged, but the
sum over jin Eq. (21) would come out ten times too small.
On the intuitive belief that o,, should remain invariant
under such a scaling (after all, the relative weights of each
point are unchanged), it becomes necessary to multiply by
afactor (such as S) directly proportional to the weights. A
further aspect of Eq. (21) is that inasmuch as it incorpo-
rates only the lowest-order terms in a Taylor-series expan-
sion, it cannot be said to yield “exact” values of the param-
eter variances, contrary to what Williamson claims in his
paper. [The values of m and c derived from Egs. (3) or
(20) are, however, exact in that no approximations have
been made in their derivations].

The derivatives appearing in Eq. (21) are straightfor-
ward if tedious to compute. One proceeds by differentiating
Eq. (20) with respect to x;:

am dA dB ac
2mA + B) { — = —|—-(=]=0,
(2md + )(8xj)+m <8xj>+m(axj) <8xj)
(22)

and solving for (dm/dx;). Since 4, B, and C are also all
functions of m the result is a tedious calculation involving
extensive application of the chain rule. The results are giv-
en explicitly in Appendix A, where it can be seen that they
are considerably more complex than York’s approximate
expression, Eq. (15).

York appears to have derived Eq. (15) from Deming’s
treatment of this problem.’ While it is difficult to say pre-
cisely from where York’s expression derives, an informed
speculation can be made from the form of his result. Com-
paring Egs. (15) and (21) indicates that York has taken

2 1 2 -1
Z[ 1 (ﬂ"_) + (@)]z(z W,.U}) .
7 W(yj ) 3yj W(.xj ) 3xj 7
(23)
The sum on the right side of this result turn up in York’s

work in the case where the x; are not subject to error. In
this case W, = W(y,) [Eq. (8) with W(x;)— «; the
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(Om/dx;) term in Eq. (21) vanishes], and his least-
squares cubic reduces to

m (3 woout) - (3 woouy)=o

York’s expression for o2, then follows if one adopts the
approximation W(y;)/ZW(y,;) =~0. Whatever the detail of
its derivation, York’s result appears to involve some inap-
propriate approximations, and discontinuance of its use in
favor in Eq. (21) is urged forthwith.

A. Observed versus calculated points

Another aspect to this problem not often discussed is
that some statistical authorities prefer to evaluate the de-
rivatives in Eq. (21) at the calculated (as opposed to ob-
served) values of the data points.'' This is because the Tay-
lor-series used to calculate o, is actually expanded about
the calculated points; see, in particular, Sec. 53 of Dem-
ing.® In practical circumstances this difference is a small
one for well-correlated data, as the examples below indi-
cate. In terms of the observed points (x;,y; ) the calculated
points (X;,Y;) were shown by York to be given by

X =x, —Am/W(x;) (24)
and

Y=y, + A/ W), (25)
where the Lagrangian multipliers A; are given by

A=W (c+mx, —p,). ‘ (26)

It is worthwhile to point out that if one takes this approach,
then all of 4, B, C, U,, V,, etc., must be reevaluated at the
calculated points after the best-fit slope has been deter-
mined, before proceeding with the computation of ¢,, and
o,.

B. Examples

As a guide for readers debugging their own programs, I
give here some examples. The first is a case commonly seen
in the literature>'>'* —“Pearson’s data with York’s
weights.” The original data traces back to a paper by Karl
Pearsonin 1901;'* the weights are from York’s 1966 paper.
The data are given in Table 1. The best-fit slope and inter-
cept are found to be (m,c) = ( — 0.4805, 5.4799); the sum
of weighted squared residuals is S = 11.866. These figures
are in agreement with those quoted in Refs. 5, 12, and 13.
Equation (21), and its counterpart for o, with derivatives
evaluated at the observed points,'> gives (o,,,0.)

Table 1. Pearson’s data with York’s weights.

{ X Vi Wi(x,) W)
1 0.0 5.9 1000 1
2 0.9 5.4 1000 1.8
3 1.8 44 500 4
4 2.6 4.6 800 8
5 33 3.5 200 20
6 4.4 3.7 80 20
7 5.2 2.8 60 70
8 6.1 2.8 20 ) 70
9 6.5 2.4 1.8 100
10 7.4 1.5 1 500
61 Am. J. Phys., Vol. 60, No. 1, January 1992

= (0.0702,0.3555). Evaluating at the calculated points
gives only very slightly different  results:
(0,,,0.) = (0.0706,0.3592).

For the data of example I in Paper I, (m,c)
= (1.1668, — 0.3652), S = 578.05, (O30 ) obs
= (0.1704,0.1561), and (0,,,0. ) = (0.1470,0.1348).
For the data example II in Paper I
(m,c) = (4.5437, — 17.484), (010, )ops = (14.476,
72.898), (0,,,0. )carc = (7.0432,35.551), and S = 13.956.
In this latter case a significant difference appears between
the parameter variances computed using the observed ver-
sus calculated points; this is because the data were pro-
duced by a random number generator and are poorly corre-
lated. The author’s experience is that o, is generally less
than o -

For all three of these examples, Chong'® has verified
independently that these results (with derivatives evaluat-
ed at the observed points) are in exact agreement with
those predicted by Williamson’s expressions, and Jef-
ferys'” has confirmed that the results obtained for example
I are in agreement with his own software, which utilizes the
calculated values of the data points.

IV. SUNDRY REMARKS

The most important lesson from these results is that
when one quotes parameter variances for a least-squares
fit, define exactly how the variances were obtained.

A revised FORTRAN program to find the best-fit m via the
roots of the “least-squares quadratic,” and generate corre-
sponding estimates for 0, and o, based on Eq. (21) using
both observed and calculated coordinates is available from
the author. Including extensive comments, the program
runs to about 315 lines. A challenging project for anyone
with a lot of patience or a good symbolic manipulator
would be to compute the second-order contributions to g,
and o,.

To close, it seems worthwhile to make a few remarks on
the role of weighting. Standard practice is to assign weights
as the inverse squares of the measurement uncertainties;
this is based fundamentally on the assumption of normally
distributed measurement errors;”'° in fact, Deming de-
fines weights in this way in his Sec. 11. A more intuitively
appealing argument for this approach can be given as fol-
lows. Imagine a situation where the data are such that
0<x<1, 010, o(x,) =0.1, and o(y;) =1. In both di-
mensions the (uncertainty/data) ratio is typically 0.1, but
if weights are assigned in the usual way, then we would
have W(x,;) =100 vs W(y;) =1, which appears to “unfair-
ly” favor the x direction. To preserve the sense that x and y
should contribute equally to the solution, one might be
tempted to divide all of the y; and o(y;) by 10 to produce
equal weights in each dimension. But if one changes the
weights, will not the best-fit slope change? The answer to
this can be obtained by working through the effect of such a
scaling in the least-squares quadratic: only when weights
are assigned as inverse-squares of the errors will the scaled
best-fit slope come out to be exactly one-tenth of the unscaled
slope. Thus if weights are assigned as the inverse squares of
the errors, one need never invoke any scaling; x and p will
contribute to the solution ‘““as they should.”
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APPENDIX: EXPRESSIONS FOR PARAMETER
DERIVATIVES

Here, we give explicit expressions for the derivatives ap-
pearing in Eq. (21) and its counterpart for o2. After many
hours of algebra, one finds

am _ (m*DD; + mEE,; — FF,) (A1)
dx; (2m4 + B — AAm* + BBm — CC)’
dm _  (m*GG, — 2mDD, — EE,/2) (A2)
A, (2mA + B — Adm* + BBm — CC)

A4 and B are defined in Egs. (19) and (20). The other fac-
tors are defined by

WUV,  W(HH)J)
AA = 4m dAE R , A3
Z Wz(xi) m ( )
2 2
BB:-—ZW?[4m W, ( vi " )
Wix) \WWu,) Wix;)
_2Vi(HH) | 2U,(JJ) ] (A4)
Wi(x,) wiy) |
2
cC=-3% Wi [am 28,
Wy;) Wix,)
V.00 + U CHBD | (AS)
w2y, 4
DD =2 iy (5-2). (46)
wW?ay. ( W)
EE =2y |6, — L}, A7
f z Wi\ W (A7)
w2y ( W.)
FF =Y — (5, ——L], A8
=2 wooy\"' W (A%
and
w2u, 4
6= 2wy (5-2). (49)
where
W= Ww, (A10)
2m o WV,
HH= - 22%v "L All
w 2 W(x;) (ALD
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2
=2y Wil
w Wi(x,)
and where §; is the usual Kronecker delta. All sums are
over i = 1to V. Expressions for the derivatives of the inter-
cept ¢ with respect to x; and y, follow from the above and
Egs. (11)~(13):

(A12)

dc om mW,

—=[(HH) — JJ) — —) - —L

o= LD —m() <"”(ax,) L
(A13)

dc dm W,

9 _ [(HH) — m(JT) — ()] (q) + 2L (Al14)

ay, %y, w
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