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aperture of a single slit and the visibility of the interference
pattern in Young’s experiment. Furthermore, it is worth
noting that an image-processing package can be used to get
quantitative results in other optics and spectroscopy. ex-
periments like, for instance, “study of the theory of diffrac-
tion,”* “Fourier optics and spatial filter and correlation,””
“Isotope effect,” and *“Zeeman effect.”®

ACKNOWLEDGMENTS

This project has been one of many in a long-term effort to
modernize the advanced laboratory in our department.
Many students and technical staffs have contributed to this
effort in the past. We express our deep gratitude to every-
one who has been involved in this effort. Many thanks are
due to Professor G. J. Jan and K. T. Hsu for their advice.

Work supported by the National Science Council of the
Republic of China, NSC 76-011-S002-10.

'See, for instance, Eugene Hecht, Optics (Addison-Wesley, Reading, MA,
1975), 2nd ed., Chap. 10.

*The lab experiment was originally set up (photographic method) by J. C.
Hung and the detailed lab manual (in Chinese) was written by him and
has been used for more than 3 years.

*Model VID-512 Frame Grabber, product of Vision Inc., 34 East 4th
Industrial Rd. Science-based Industrial Park, Hsinchu, Taiwan, R. O. C.

*F.T. Yuand E. Y. Wang, “‘Undergraduate coherent optics laboratory,”
Am.J. Phys. 41, 1160-1169 (1973).

*D. Bloor, “Coherence and correlation—Two advanced experiments in
optics,” Am. J. Phys. 32, 936-1941 (1964 ).

‘S. George, “‘Hyperfine structure in Bismuth—An experiment,” Am. J.
Phys. 36, 27-29 (1968).

Variational treatment of the linear potential

B. Cameron Reed

Department of Physics, Saint Mary’s University, Halifax, Nova Scotia B3H 3C3, Canada

(Received 9 November 1988; accepted for publication 10 April 1989)

In a recent note, Lee' presented two examples of the use
of the variational method: to a harmonic oscillator poten-
tial and to a screened Yukawa potential. The first of these is
somewhat of a null problem in that a judicious choice of the
trial wavefunction leads to the exact solution, obscuring
the point of showing how the technique is used to give lim-
its on the ground-state energy. The second example is com-
plicated by uncertain knowledge of the screening param-
eter, and can, in fact, be found as an example in a
well-known text.? The purpose of this note is to describe an
example of the variational method I have found useful in a
junior level introductory quantum physics course, that of a
one-dimensional linear potential, ¥(x) = ax. This prob-
lem is easy to postulate a trial wavefunction for, and is
tractable analytically. In addition, as it is easily addressed
with the WKB method, students have an opportunity to
compare the merits of various approximation schemes.

The essence of the variational method is as follows. If
#(x) is a normalized trial wavefunction for the ground
state of a system, then the ground-state energy E,, satisfies’

E+VD-E’>E,>E-—\D—_E7, (1)

where
E=f¢*¢ dsx, )
D= f (H$)* (Hp)dx, 3)
with
d2
H=—ed iy, (4)

where € = #°/2m. Any arbitrary chosen trial wavefunction
is acceptable as long as it is normalized and satisfies the
boundary conditions of the problem. In practice, one sets
up some trial wavefunction with one or more adjustable
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parameters and varies the parameters to minimize
(D—E?).

Figure 1 illustrates the situation for the linear potential.
From the usual rules for sketching wavefunctions,* we can
assume that a plausible ground-state wavefunction must
have one maximum followed by the exponential decay
characteristic of tunneling phenomena. A simple function
that meets these requirements and satisfies the boundary
conditions is

é(x) = Ax exp( — Bx). (5)
Normalizing between x = 0 and x = o gives

A= ﬁs/z. (6)
From Eqs. (2)—(4) we find, after some algebra,

E=¢B?+3a/2B (7N
and

D=5B*+ aef + 3a%/82. (8)
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Fig. 1. Plausible ground-state wavefunction for the linear potential. See
discussion following Eq. (23). The ¥(x) curve is schematic only.
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Fig. 2. Upper and lower limits on the ground-state wavefunction of Eq.
(13) as a function of n. The dashed line gives the exact solution.

Mlnlmlzlng D — E? with respect to 3 yields a quadratic
equation in 37,

16623 — 2eaff — 3a/2 =0,
which has roots
B?=3a/8¢ or —a/de. (9)

The second root in Eq. (9) implies a complex (hence, un-
physical) energy, which we reject. The real root gives

(D — E?) e =2(3/8)* a2
= 1.040a?"3€'? (10)
and

E . :5(3/8)2/3a2/3 1/3 __

Hence, we find
3.640> (E,/a*%€'/?) »1.560. (12)

This result brackets almost perfectly the exact solution,
(Ey/a?3€'?) =2.338. A WKB analysis gives (E,/
a*Pe'?y ~2.811.

A more challenging problem is given by modifying Eq.
(5) to the case of a generalized exponential decay,

é(x) — Bx"). (13)

The exponent n is presumed fixed; £ will be varied. The
normalization constant is given by

A*=n(2B)"/T(3/n). (14)

It is straightforward, if tedious, to show that minimizing
(D — E?) withrespect to leads to a quadratic equation in
B*" with one positive root:

= 2.600a%" 3¢, (11

= Ax exp(

B n \IK —32LJ] — K a a
min 8L (?) - 77(?) 13

where J, K, and L are given by

J=F—B?
K=G - 2BC, (16)
L=H—-C?
where B, C, F, G, and H are given by
B=T(4/n)/2""T'(3/n), (17)
2/n ;
2 [in(n 1)F(n+1)
F(3/ ) n
___nZF(2n+ 1)] ’ (18)
4 n
F=T(5/n)/2*"T(3/n), (19)
2/n [ n+2
= nin+1 F( )
I'(3/n) ( ) n
- i,nzr(zn * 2)] : (20)
2 n

2~4/n
_1 n2 [(1+n)21‘(——2n_1)
n

4 T(3/n)
1)+in21‘(4n_ 1)]
4 n

—n(l +n)F<3n

(21)
With these results we find
(D= EN o =0~ NI+ Ky + L (a*€')
(22)
and
CE. =1 3B+ Cyp)(a? 3. (23)

Upper and lower limits for E, as a function of # are shown
in Fig. 2. The most stringent limit obtains when n~1.773,
where 2.378> (E,/a*'3€'/3) »2.298, which brackets the ex-
act result to better than 29%. The wavefunction plotted in
Fig. 1 corresponds to this value of » for an electron in a
potential with @ = 1 eV/A.
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The maximum range of a projectile shot from a given
height over a horizontal plane, or from a point of an in-
clined plane, as well as the maximum height attained on a
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vertical wall, have all received ample discussion in this
Journal, the emphasis having been placed mostly on ele-
mentary solutions requiring no calculus (see, for example,
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