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On Selberg’s beta integrals
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Abstract— Askey and Richards (1989) evaluate Selberg’s first and second beta integrals using Ao-
moto’s (1987) formidable methodology of setting and solving a first order difference equation. Using
this methodology they evaluate certain other beta and gamma type integrals. However, Selberg’s first
and second beta and gamma type integrals very elegantly fit within the framework of hypercomplex
multivariate normal distribution theory developed by Kabe (1984), and hence can be evaluated using

the known multivariate normal distribution theory integrals.
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1. INTRODUCTION

Let A be a p x p diagonal matrix, then Selberg’s first beta integral states that

/|A| =P EA )t = H g+h+(p+z—2)k)I‘(1+k) - (D)

Selberg’s second beta integral states that

/ AP = tr AP T T = Ay)*dA
i<j

(2)

_ D(h)rzkee-1) ﬁ I'(g —i)k)L(1 + ik)

- I'(h+pg+ (p—1)pk) Pl 1+k)

The integrals (1) and (2) fit very elegantly within the framework of hypercomplex
(HC) multivariate normal distribution theory. Thus we evaluate these integrals using
this theory.

The next section records some useful results, and section 3 evaluates the integral (1).
In section 4 we evaluate the integral (2).
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2. SOME USEFUL RESULTS

Kabe (1984) develops the HC normal multivariate distribution theory as follows. Let
X1, X0,y Xyg, t= %, %, 1,2 be 4t (p x n) real random matrices having the 4pnt variate
normal density

(4t) =277 5|~ 2 exp{ —tr S5 L X X' /4t}, (3)

where X = (X1, X3,...,X4,), and Xg (4t x 4t) is

r Y —do —X3 =Xy X5 —XXg —X7 —2g]
S % -N,; N -% N5 Ng X,
Sy N, % Y, -3, N5 X N
g =33 2o g —Xg Xy —Xg X3 (4)
S N N Ns N %, —% - |’

S -Ns Ns -%r N, 0% S, S,
S, - % N By -% %, %,
_%s N % % N, Ny -3, 5y

where now t = 2, and we use Hamilton’s octonioins, Halberstam and Ingram (1967, p.
654, equatin (1)).

In the octonion case X1 is a p X p real positive definite symmetric matrix; and
Yo,...,2g are real p X p skew symmetric matrices. Now we set

Y = X1 —|—’LX2 —|—]X3 +kX4 —|—lX5 —|—mX6 +TLX7+TX8,

where the octonions 1, j, k, [, m,n, r satisfy the multiplication rule

2 2 2 2

==k =12 =m?=n?=r? = -1 =ijk = iln = irn = jln = jmr = kir = knm,

(5)

i
and we observe that
Y =X, —iXo—jX35— kX4 —1X5 —mXe —nX; —rXg
is the octonion conjugate of Y, and
dY =dXdX,...dXs.

After some formidable matrix algebra, Kabe (1984) writes the pn variate HC multi-
variate normal density of Y to be

9(Y) = || T exp{~tr2 YY"}, (6)

where
Y= 21 +i22 —f-ng+k24+l25+m26+n27+7”28. (7)

Next setting YY’ = S, the HC Hermitian p x p matrix, Kabe (1984, p. 67, equation
(14)) shows the HC Wishart density of S to be

g(S) = {I‘,,(Qnt)}_l|E|_2”t|S|2t(”_p+1)_1exp{—trE_ls}, (8)
where (Gupta and Nagar, 2000; p. 19)

Ty(a) = @D [[ T(a - 2t(p - ). ©)
i=1
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If S and R are two p x p HC Hermitian matrix and H is a p X p HC matrix, then
the Jacobian of the transformation of the relation S = HRH' is

J(S:R) = |HA#P- 1)+, (10)
Finally, if the joint density of two p X p HC Hermitian matrices is given by
9(A, B) = K exp{—tr (A + B)}|B|?(n—pH1—1| 42a—p+ =1 (11)

where K denotes the corresponding constant, then the density of the pxp HC Hermitian
matrix R defined by relation

R=G 2AG™?, A+B=0G, (12)
is easily found by using (10) to be
9(R) = {By(2nt,2qt)} 7' I — R -PHDY RPHa—pHD, (13)
where (Gupta and Nagar, 2000, p. 20)
Bp(a,b) = T'p(a)lp(b)/T'p(a+b). (14)

If now A is the diagonal matrix of the roots of R of (13), then Kabe (1984, p. 68,
equation (21)) shows the Jacobian of the transformation from R to A, for all distribution

theory purposes, is
P

JR:A) = [ =" (15)

i<j=1
Thus the density of A is
P
9(A) = {By(2nt,2qt)} T |I — APFPED T APHPED L TT (3 — A% (16)
i<j=1

Now setting 2t = k, we note that (16) is the same, although not exactly the same,
integral as (1). Thus the integral (1) can be evaluated by using (16).

3. SELBERG’S FIRST BETA INTEGRAL

‘We note that

p
Iy (nk) = 72*@=D T T (nk + ki — kp), (17)
=1
. D
Ty (kq) = m2** @~ T] T'(kq + ki — kp), (18)
=1

and setting
kq=g+kp—k, nk=h+kp—k, (19)
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we have the result from (16) that

) [IT(i - DR [[ T+ G - 1)Ek)
/|I—A|h‘1|A|9_1 II Qi —x)%*ar = =— L . (20)
i<i=1 [T +g+ @+i-2)k)

Note that (20) is not the result (1). To derive (1) from (20), we note from (8) that
P P

/exp{—trA}|A|g_1 TT (= A)2*da = [[Tio + G — 1)k). (21)
i<j=1 i=1

In the integral (2) and (21) the roots are ordered, but the variables of integration in
(1) are unordered. Thus, e.g., the unordered variable integral (21) must be written as

/exp{—trA}|A|g_1 I O —Ap)%da = [T+ G- DRFGR).  (22)

i<j=1 i=1

However Stirling’s integral states that

/ exp{—tr AHAP" T (i —A)%aa =] Lly + (ir_(llfg(l +ik) ()

i<j=1 i=1
Obviously (1) follows from (20) and (23), because f(ik) is the same for (20) and (21).

4. SELBERG’S SECOND BETA INTEGRAL

For a p x p diagonal matrix A, 0 < A < I, Selberg’s second beta integral is defined by
the identity

14
/ AT = tr AT TN = Ap)*RdA

i<j

ek DD(h) B T(g+ (6 — DD + ik)
T T((gt+kp—R)p+h) L T(1 + k) '

i=1

Askey and Richards (1989) establish (24) by using Aomoto’s (1987) formidable
methodology of solving a certain first order difference equation. We simply and elegantly
evaluate (24) using HC multivariate normal distribution theory results due to Kabe
(1984).

If S is a p x p HC Hermitian matrix having the HC octonion Wishart density

g(8) = [[(2pnt)]~* |S|2t("_p+1)_1exp{—tr St (25)

then evaluating (24) reduces to the evaluation of the integral

/ |SPHr =PI — 1 §)"1dS, (26)
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To evaluate (26) we use the following integral repeatedly. If z is an n component HC
column vector, and A a p x p HC Hermitian matrix, then Kabe (1984, p. 67, equation
(15)) shows that

2tn
A __T A2ty 2nt—1 )
Next setting
g |1 S1 Saa(p—1) x (p—1) (28)
=18 Swl 22(pP V4 )
and writing (26) as
/(311 — 8185L81) 2t =PHD=1(1 _ 1 §Y"1 g1 dS; dSan (29)

and using (27), we reduce (29) to

m2t(P=1) 2t(n—p+1)—1, 2t(p—1)—1 2t(n—p+2)—1
m /(811 —u) P u”P |:Sa2| b

x (1 —tr8)" 1 dsy; dudSa
_ 7T2t(1’—1)I‘(2t(n—p+1))/ 2nt—1) g 2t(n—p+2)=1
I'(2nt)
x (1 —trS)""1ds;y dSa (30)

tp(p b L 2nt—1
WH (2t(n — p+z))/(s11322 . Spp)

(1 — (311 +...+ Spp)) d811 A dspp
xtP®=DI(R)

_ h—|-2pnt H (2t(n —p+1)).

If p x p diagonal matrix A is the matrix of roots of S, then (26) reduces to the integral

P
/ AP (1 — e AP TT (N = A)*dA
i<j=1

tp(p—1) P (31
T
= _T[r@tn—p+i).
T'(h + 2pnt) 131 (2t(n —p+1))
Setting k = 2¢, nk = g + kp — k, we write (31) as
P
/|A|g-1(1—tm>h—1 TT O — A% dA
i<j=1 (32)

rako(p—1)

= o+ i P il;[lr(g + (i — 1)k).

Note the roots X’s in (32) are odered as 0 < A, < ... < A1 < 1. If this order is discarded
then by Stirling’s integral (32) yields (24).
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