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Abstract

Investigating the three-nucleon force through 10C(p,p)10C

By Amit Kumar

Abstract: We present the first effort to understand the effect of the three-nucleon

force on the angular distribution of nucleus-proton scattering near the drip-line.

We successfully performed the elastic scattering of the unstable nucleus 10C with

a proton target using the ISAC Charged Particle Reaction Spectroscopy Station

(IRIS) facility stationed at TRIUMF, Canada. The facility utilizes a novel thin

windowless solid H2 target which made the reaction study possible with a beam in-

tensity of ∼ 2.5×103 pps. The angular distribution measurement was based on the

detection of the protons with the thin Si and CsI(Tl) detectors. We compared the

measured cross section with the predictions made by ab initio no core shell model

with continuum (NCSMC) based on the chiral NN (N3LO) and 3N (N2LO) forces.

The study shows that the measured angular distribution is in better agreement

with the theoretical prediction based on the chiral NN+3N forces.

August 4, 2015
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Chapter 1

Introduction

The study of the nuclear force has been an interesting subject since the discovery

of the atomic nucleus in 1909 by Rutherford through his famous gold foil exper-

iment. It has attracted both theory as well as experiment. As scientists have

probed deeper and deeper into the structure of the nucleus, it has shed light in

understanding the behaviour of the nuclear force, and how the nuclei have come

into existence. Nuclear physics encompasses the study of a diverse spectrum of

phenomena: from fundamental interaction between quarks inside nucleons to the

formation of chemical elements inside objects in our universe such as stars or

supernovae. Study of these physical phenomena have led to the production of ra-

dioactive beams and establishment of experimental facilities. These developments

have not only helped the scientific community to enhance its understanding about

the physical processes occurring in nature but have also impacted and revolu-

tionized other fields such as: medical science especially cancer treatment, nuclear

energy production, semiconductor manufacturing, material science, archaeology

and art.

Our current understanding dictates that the nuclear force, which is defined as a

force between nucleons inside a nucleus is a residual effect of the strong force, which

is an attractive force that bind particles known as quarks together, to form the

nucleon itself. The fundamental theory behind the strong interaction is quantum

1



chromodynamics (QCD), which shows a non-perturbative1 nature in the length

scale relevant to nuclear physics [1]. Hence it is extremely challenging to give a

complete description of the nuclear force from the fundamental constituent quarks

and gluons. In nuclear physics, the interest is in understanding the evolution of

structure in complex many-body nuclei from different observables such as bind-

ing energy (BE), charge distribution, nuclear spin, magnetic dipole moment and

differential cross section [2]. To compute these observables theoretically, we con-

struct an N-body problem in terms of the non-relativistic Schrödinger equation.

In a first approximation, for the light nuclei a two-nucleon potential is sufficient

to describe observables at low energies. Currently, a number of phenomenological

nucleon-nucleon (NN) models exist that provide an accurate description of the

NN-scattering data with a χ2 ∼1. Recent studies have shown that for a three or

more than three-nucleon system the existing NN-potential model either underes-

timates or overestimates the experimental value of the observables. One of the

simplest and most extensively studied three-nucleon system is the triton. Calcu-

lations based solely on two-nucleon force (2NF) are well known to underestimate

the binding energy2 of triton [3, 4]. Similar discrepancies have been found in other

light nuclei as well [5–7]. This can be seen in figure 1.1. Here the binding energies

of light nuclei calculated using the two-body force and the three-body force have

been compared with the experimental values. This clearly shows the importance

of the three-nucleon force (3NF) and indicates the need to go beyond the two-body

force.

Nowadays, understanding the effects and determining the properties of the 3NF

is one of the important issues in nuclear physics. The 3NF cannot be reduced to

pair-wise NN interaction and arises naturally in the meson-exchange theory and

effective field theory (EFT) based on the symmetries of quantum chromodynamics

(QCD). At present, various phenomenological 3NF models exist such as Tucson-

Melbourne (TM) and Urbana-IX, both of which are typically based on the two-pion

1Small approximation is not valid.
2Energy required to disassemble a nucleus into its constituents.
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exchange [8–10]. Despite their remarkable successes, there are various problems

still unresolved. For instance, phenomenological NN potentials roughly involve

40-50 parameters and the three-nucleon (3N) potential requires an additional 5

parameters. In addition, these phenomenological models lack the relation to the

fundamental underlying theory QCD. To resolve these issues, an alternate theory

known as chiral effective field theory has been developed which is linked to QCD

via its symmetries. This framework allows one to analyze the low-energy properties

of hadronic systems in a systematic way. It also offers a natural explanation for

the observed hierarchy of nuclear forces: V2N � V3N � V4N , where V2N , V3N , and

V4N are the two-nucleon, three-nucleon, and four-nucleon potentials, respectively.

Fig. 1.1. Binding energy of light nuclei. Experimental value (green) are compared
with Green’s function Monte Carlo calculations using only NN potential (AV18,
blue) and with the addition of a 3N potential (IL7, yellow) [5–7].

The ultimate aim of nuclear physics is to construct a model with a firm con-

nection to quantum chromodynamics that can explain all known properties of

existing nuclei. Such models fall under the category of ab initio theory of nuclear

physics. Green’s Function Monte Carlo Method (GFMC), No-core shell model

with similarity resonating group method (NCSM/SRG) and No-core full config-
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uration (NCFC) are few such methods. The NCSM has been applied to various

light nuclei (A ≤ 20) to probe the effects of three-nucleon force [11–13]. So far

it has been extremely successful in explaining the binding energy and excitation

spectra of light nuclei.

These calculations have shown that nuclei with mass number A = 10 possess

interesting properties. For instance, figure 1.2 shows the NCSM/SRG calculation

for energy levels in 10B using chiral NN and 3N forces. We observe that there is an

inversion of the Jπ = 1+ and Jπ = 3+ with the prediction using the three-nucleon

force being consistent with the experiment. So far the three-nucleon force using

the NCSM/SRG model has been investigated through the study of observables

that are intrinsic to nuclei, but its effects have not been studied extensively in

scattering observables such as differential cross section and analyzing power. Very

Fig. 1.2. Energy levels in 10B: NCSM/SRG calculations based on chiral NN and
3N forces [14].

recently it has been possible to calculate the elastic and inelastic scattering angular

distribution cross sections within the framework of chiral effective theory [15, 16].

The technique that has emerged is known as ab initio no core shell model with

4



continuum (NCSMC). The NCSMC model has been applied successfully to study

the effect of 3NF on differential cross section of 4He(d,d)4He, 4He(p,p)4He, and

4He(n,n)4He [16, 17]. The ab-initio reaction theory development is still in its

infancy and hence there is an ample amount of research going on in this frontier.

There have not been any investigations on the effect of three-nucleon force on

scattering observables for nuclei close to the proton or neutron drip-lines (the

lines beyond which nuclei are particle-unbound). This motivates our study of

10C + p elastic scattering since as discussed above a significant effect of 3NF has

been seen in the level ordering in the A = 10 nucleus 10B. In terms of computation

it is less challenging to perform ab initio calculations for 10C because it has a

smaller number of excitation states. The reaction of 10C with proton forms 11N, an

unstable compound nucleus as intermediate nucleus that also has fewer resonance

states. So, these features motivate our choice of 10C for studying the effect of the

three-nucleon force in the scattering process. The chart of light nuclei is shown in

figure 1.3. We have shown the proton-drip line, which is defined as point beyond

which addition of one- or more than one- proton causes the nucleus to become

unbound. The 10C has 6 protons and 4 neutrons and it is located at proton drip

line of the N = 4 isotones.

The scientific motivation of this thesis is to investigate the role of three-nucleon

force through 10C(p,p)10C elastic scattering reaction. Using an ab inito NC-

SMC method based on chiral forces, the calculation for differential cross section

of 10C(p,p)10C reaction has been done in collaboration with the TRIUMF the-

ory group. Our aim is to measure the differential elastic scattering cross-section

through 10C(p,p)10C for the first time using experimental facility IRIS located at

TRIUMF, Canada, which will help us in understanding the role of three-nucleon

force and hence shall provide guidance to ab initio reaction theory.

The subsequent chapters of this thesis are organized in the following manner:

• Chapter 2 presents brief theoretical background, which has lead us towards

the ab intio theory. I shall give an informal introduction to chiral perturba-
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Fig. 1.3. Nuclear Chart for light nuclei. The location of 10C at the proton drip-line
is marked by the blue circle. The blue line shows the proton drip-line. Data taken
from the National Nuclear Data Center at Brookhaven National Laboratory [18].

tion theory and explain qualitatively how NN and 3N forces are manifested

inside nuclei. I shall also provide a brief account to the ab initio no core

shell model with continuum to study observables related to nuclear reaction

and nuclei itself.

• Chapter 3 gives an account of the experimental setup necessary for studying

the 10C(p,p)10C elastic scattering. The end of this chapter focuses on the

electronics and data acquisition components required to acquire and store

the data for analysis of our reaction.

• Chapter 4 will discuss the techniques used in the analysis of the data ob-

tained from our experiment. It includes the calibration of our detectors,

monitoring solid H2 target thickness, particle identification event by event,

measuring the excitation energy of 10C, and counting the incident beam par-

ticles using an Ionization Chamber (IC) scaler, and counting the scattered

elastic protons to measure the differential cross section.

• Chapter 5 will discuss the results obtained from our experiment and com-
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pare them with the theoretical predictions of angular distributions of 10C+p

elastic scattering using the newly developed ab initio reaction theory. The

theoretical work is also a part of this project, developed by our theory col-

laborators with P. Navratil.
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Chapter 2

Theoretical Formalism

To understand the exact nature of the nuclear force and use it to provide a unified

description of properties of light and heavy nuclei is one of the primary goals of

nuclear physics. In this chapter we present a brief review of studies done to explore

the nuclear force.

2.1 General properties of the nuclear force

The basic properties of the nuclear force are the following [19]:

1. The nuclear force is a short range force (< 2 fm) in contrast to the electro-

magnetic force and gravitational forces. If it were a long range force, one

would expect the binding energy of nuclei to increase with mass number.

2. The nuclear force is attractive at intermediate ranges (1 < r < 2 fm), where

the attractive nature can be clearly seen from the nuclear binding energy.

3. The nuclear force shows repulsive nature at short distances (< 1 fm).

4. The nuclear force is independent of electric charge, i.e. nuclear force between

n-n, n-p or p-p pairs is same.

5. The nuclear force possesses tensor characteristics, which can be clearly seen

in the deuteron quadruple moment and the so-called D/S ratio (D-state to

S-state wavefunction ratio) of the deuteron [20].
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6. The nuclear force is spin dependent.

2.2 Nuclear shell model

Nuclear shell model was proposed by Maria Goeppert-Mayer and J. Jensen more

than 60 years ago [21, 22] in order to explain the “magic number” (number of

protons or neutrons) 2, 8, 20, 28, 50, 82, 126 appearing in a number of studies

such as the binding energies of nuclei, the number of stable isotones with respect

to neutron number, the first excited state energies of even-even nuclei, the neutron

separation energy with respect to neutron number and nucleon capture cross sec-

tion. The shell model considers each nucleon to be moving in an effective potential

created by all the other nucleons present inside nucleus. If this is the case, the

nuclear potential should be roughly proportional to the nuclear matter density.

Experimental data suggest that the nuclear potential (Vws(r)) has following form

[23]:

Vws(r) =
−V0

1 + e(
r−R
a

)
(2.1)

where V0 is the potential well depth (∼ 50 MeV), R = r0A
1
3 is the nuclear

radius, A is the mass number, r0 is a constant = 1.25 fm, and a is surface thickness

(∼ 0.5 fm). The nuclear potential Vws(r) given in equation 2.1 is also known as

Woods-Saxon potential. On adding a spin-orbit interaction term arising from the

interaction between orbital motion of nucleon and its intrinsic spin, the effective

potential becomes:

V (r) =
−V0

1 + e(
r−R
a

)
+W (r)~L · ~S (2.2)

where ~L and ~S are orbital angular momentum operator and intrinsic spin opera-

tor, respectively. The second term in equation 2.2 is the spin-orbit potential where

W (r) = 1
r
dVws(r)
dr

. Using this potential model (equation 2.2) the energy levels can

be found as shown in figure 2.1. The energy levels are labelled using quantum

number j,mj, l, s, where s is intrinsic spin quantum number, l is orbital angular

9



Fig. 2.1. Energy levels in a nucleus using nuclear potential with Woods-Saxon and
spin-orbit terms.

momentum quantum number, mj is magnetic quantum number that takes an inte-

ger values from −j to +j, and j is total angular momentum, which take values l+ 1
2

or l− 1
2
. The degeneracy of each level is given as 2(2j+ 1). The shell model was a

huge success; for the first time an explanation for particular stability at so called

“magic number” was found. The model successfully reproduced experimentally

measured excitation energies, spin/parities for the ground state and low-energy

excited states. Although the success of this single particle model was tremendous,

it suffered many shortcomings. For example, it was not able to explain the mag-

netic moment of the nuclide 17
9 F which is 4.72µN whereas value predicated from

above model is -0.26µN . New phenomena such as disappearance of magic num-

ber at N= 8 and 20 for drip-line nuclei and emergence of new shells at nucleon
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number = 14, 16, 32, were also not explained by the conventional shell model

[24, 25]. Since, the shell model does not account for collective motion of nucleons,

it was also not able to explain the rotational and vibrational levels in deformed

nuclei. As discussed above, the shell model uses an approximate potential and

hence is not able to explain many important features of nuclei mentioned above,

it is necessary to examine the nuclear interaction within nuclei at a fundamental

level.

2.3 Meson exchange theory

The nuclear force as an exchange force has a long history summarized in table 2.1.

The first attempt to provide a microscopic description of the nuclear force was

made by a Japanese physicist named Yukawa in 1935 [26]. Yukawa employed the

idea from the theory of electromagnetic force (a long-range interaction) in which

the force is manifested via the exchange of a massless photon. He hypothesized

that the nuclear force between the two nucleons is mediated via the exchange of

a massive particle, now known as π meson. Since the uncertainty principle allows

the massive virtual particle to move a short finite distance, the nuclear force acts

as a short range force. This particle was later discovered in cosmic rays (1947)

and also in the Lawrence Berkeley National Laboratory (1948). Yukawa derived

the following form of the nuclear potential known as the Yukawa potential

V (r) =
−g2e−mπr

r
(2.3)

where g is a coupling constant and m is the mass of the mediator (∼ 135 MeV/c2)

pion. The coupling constant can be determined by phase-shift analysis using the

experimental data. The massive nature of the mediator makes the nuclear force

a short range force. On adding spin and isospin effects, a more accurate one-pion
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exchange potential (OPEP) can be written as

V (r) =
f 2

4π

mπ

3
(τ1.τ2)

{
σ1.σ2 + S12

[
1 +

3

mπr
+

3

mπr2

]}
e−mπr

mπr
, (2.4)

where f 2 is a coupling constant, τ and σ are the isospin and spin of the nucleons,

respectively. The term S12 = 3(σ1.r̂)(σ2.r̂)− σ1.σ2 represents the tensor operator,

where σi are the Pauli matrices.

Table 2.1. History of Nuclear Force. Source: Adapted from Ref. [1].

Year Theory

1935 Meson theory by Yukawa

1950’s The “Pion Theories”

One-pion exchange: good; Multi-pion exchange: failure.

1960’s Many pions ≡ multi-pion resonances: σ, ρ, ω ,...

The One-boson exchange Model: success.

1970’s Two-pions exchange models:

Paris, Bonn, Stony Brook, Partovi-Lomon.

1980’s Discovered QCD: Quark Models

1990’s High-precision NN potentials:

Nijmegen I, II, ’93, Reid93, Argonne V18 and CD-Bonn.

Advances in effective field theory: Weinberg, van Kolck...

3rd millennium Effective Field theory: Back to Meson (Pion) theory!

But, Constrained by Chiral Symmetry.

In 1951 a more detailed picture of the nuclear potential was initiated by the

Japanese physicists Taketani, Nakamura and Sasaki [27, 28]. They proposed to

divide the range of the nuclear potential into three interaction regions: long-range

part, intermediate-range part, and hard-core part. The long-range part (r > 2

fm) is governed by exchange of one-pion. In intermediate-range, interaction is

governed by exchange of two-pions and heavier mesons. Finally in the hard-

core region (r < 1 fm) processes like multi-pion, heavier mesons play their role.

The pion exchange diagram which contribute to the one-pion exchange potential

(OPEP) and the two-pion exchange potential (TPEP) are shown in figure 2.2.
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Fig. 2.2. Nuclear force as exchange of pions between nucleons. (i) The one-pion
exchange diagram. (ii) The two-pion exchange diagram [29].

Although the one-pion exchange got well popularized for the long-range region

during 1950’s, a serious problem occurred when two-pion exchange contributions

were included. It was not able to give short-ranged spin-orbit force [30]. For

that reason, in 1960 it was suggested that multi-pion exchange can be well ac-

counted by including the exchange of multi-pion resonances which lead to the

one-boson-exchange (OBE) models [31–33]. The weak point of OBE model was

the contribution from the scalar-isoscalar σ or ε boson, for which empirical evi-

dence remains controversial and search for realistic 2π-exchange calculations was

taken up again.

In 70’s and 80’s various nucleon-nucleon (NN) potentials were constructed

based on meson-exchange theory. These were the Bonn [34], Nijmegen [35],

Argonne [36] and Paris [37–39] potentials. Around 1990, the Nijmegen group,

using phase-shift analysis developed high-quality potentials namely, Nijmegen-I,

Nijmegen-II and Reid93 [40]. Consequently, the Bonn and Argonne groups also

refined their potentials which are now known as Charge Dependent CD-Bonn

potential [41] and Argonne-V18(AV18) [42] potentials. All the NN potential mod-

els describe the long-range part using one-pion exchange whereas for short and

intermediate-range treatment varies from two-pion exchange potential to purely

phenomenological potentials. For example, the AV18 potential contains three

terms: the electromagnetic interactions term, the OPEP, the TPEP and a phe-
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nomenological term for the short-range interaction:

VNN = V γ
NN + V π

NN + V R
NN (2.5)

where V γ
NN represents the electromagnetic term, which include the contributions

from one- and two-photon exchange, vacuum polarization diagram with appropri-

ate electric and magnetic form factors of protons and neutrons. The quantity V π
NN

is the OPEP (equation 2.4). The term V R
NN includes the TPEP of the form e−2mπr

r2

to account for the attractive nature of the nuclear force at intermediate-length

scale, and the Woods-Saxon potential (equation 2.1) to represent the repulsive

hard-core effect. In addition to these, a cut-off function is used in V π
NN and V R

NN

so that the contribution from the OPEP and TPEP becomes zero at r = 0. The

NN potential models also rely on the fitting to the NN scattering data with the

χ2 per degree of freedom near one which requires them to have a large number

of parameters. The AV18 potential has 40 adjustable parameters and other NN

potentials also have a similar number of parameters.

To see how efficiently these models describe the properties of nuclei, let us

consider the simplest of all nuclei, the deuteron. The deuteron is a two nucleon

system (one proton and one neutron), and its properties have been tabulated

in table 2.2. We can observe that the phenomenological NN potential model

predictions agree with the experimental values.

Table 2.2. Properties of the deuteron in its ground state using phenomenological
NN potential models [43].

Observable Experiment AV18 Nijm II Reid 93 CD Bonn

Matter radius rd (fm) 1.971(5) 1.967 1.9675 1.9686 1.966

Magnetic moment (µN) 0.857406(1) 0.847

Quadrupole moment (e-fm2) 0.2859(3) 0.270 0.271 0.270 0.270

D/S state ratio 0.0256(4) 0.0250 0.0252 0.0251 0.0255

The two-nucleon potentials were able to accurately describe the properties of

the two nucleon system, but when applied to study the triton (a three-nucleon
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system), they failed to reproduce its experimental binding energy (see table 2.3).

The NN potential models also underestimated the binding energies of 3He and

4He by about 1 and 4 MeV in the case of the three- or four-nucleon system,

respectively. A similar underbinding was found for other nuclei as well [44]. The

inability of the NN potential model to explain the binding energies of three or more

than three-nucleon systems lies in the fact that nucleons were treated as point-

like particles disregarding their internal quark structure. The three-nucleon force

(3NF) emerges as a residual tidal force due to the excited states of the nucleon.

Table 2.3. Ground state triton’s binding energy using phenomenological NN po-
tential models [45].

Experiment (MeV) AV18 (MeV) Nijm II (MeV) Reid 93 (MeV)

8.48 7.62 7.62 7.63

The first attempt to show the existence of the many-body forces among nu-

cleons was made by Holstein and Primakoff in 1938 [46]. However, no definite

estimate to find the three-nucleon force was made until 1956 due to the work of

Fujita and Miyazawa [47]. They proposed that the 3NF among three-nucleons

can be visualized as an exchange of two pions between three nucleons with the

excitation of the nucleon at the centre to an isobar ∆ (the first excited state of the

nucleon, with spin 3/2 and mass 1232 MeV) as shown in figure 2.3(i). This inter-

action is attractive in nature, and provides more binding energy to the three-body

system. There are other processes shown in figure 2.3(ii-iv) that contribute to the

three-nucleon potential. So far various three-nucleon potentials have been devel-

oped, viz. Urbana [10], Illinois [6], Tucson-Melbourne (TM) [8, 9], and the Brazil

models [48]. The Urbana potential include the contribution from the two-pion

exchange diagram (Fujita-Miyazawa) as shown in figure 2.3(i) and a short-range

phenomenological term. The three-nucleon Urbana potential in addition to the

two nucleon potential (AV18), was found to improve the estimated binding energy

but it still underbinds for most of the nuclei. This problem led to the investiga-

tion of other possible processes that can contribute to the three nucleon potential.

15



Fig. 2.3. A few examples of the three-nucleon force. (i) The Fujita-Miyazawa
3NF involves the excitation of one of the nucleon to a ∆ particle accompanied
by exchange of two pions. (ii) The two-pion exchange through S-wave excitation.
(iii) The three-pion exchange with one ∆ excitation state. (iv) The three-pion
exchange with two ∆ excitation states [29].

In 2001, the Illinois model was proposed, which included the contribution from

processes shown in figure 2.3. The Illinois potential can be written as

Vijk = V 2π,Pwave
ijk + V 2π,Swave

ijk + V 3π
ijk + V R

ijk (2.6)

where V 2π,Pwave
ijk and V 2π,Swave

ijk include the contribution from P -wave and S-wave

two-pion exchange diagrams, respectively (figure 2.3 (i,ii)), whereas the V 3π
ijk term

represents the three-pion exchange diagram shown in figure 2.3 (iii,iv).

Table 2.4. Binding energies of light nuclei in MeV using NN (AV18) and using
NN+3N potential. Inclusion of 3N potential provides a comparable result [6].

Potential 3H 4He 6He 7Li 8Be

AV18 7.61(1) 24.07(4) 23.9(1) 31.6(1) 45.6(3)

AV18+UIX 8.46(1) 28.33(2) 28.1(1) 37.8(1) 54.4(2)

AV18+IL2 8.43(1) 28.37(3) 29.4(1) 39.6(2) 56.6(4)

Experiment 8.48 28.3 29.27 39.24 56.50

We review the results for quantitative interest in table 2.4. We can infer from

the table that calculations using NN potential alone underestimate the binding

energies of light nuclei. On inclusion of the three-nucleon potential, the estimates

improve. Besides the 2NFs and 3NFs, there are also four-nucleon forces (4NFs),

and other many-body forces. However, the 2NF is much stronger than the 3NF,

16



which in turn is much stronger than the 4NF, and so on. The phenomenological

NN+3N potentials have been successfully applied to study the properties of light

nuclei and are still popular and frequently used. Despite their tremendous success,

due to the discovery of quantum chromodynamics in 1980’s, the meson exchange

formulation had to be viewed as a model for the nuclear force and hence the

search for deriving the nuclear force from the underlying fundamental theory of

QCD started again. The formulation of QCD provided a more detailed picture of

nucleons. For instance, a proton is made up of two up quarks and one down quark

whereas a neutron is made up of one up quark and two down quarks. Since QCD

shows the non-perturbative nature at the low energy regime relevant to nuclear

physics, it is extremely challenging to provide a converging solution to a nuclear

N-body problem.

2.4 Chiral perturbation theory

The nuclear force can be derived from the theory of the strong interaction if the

concept of EFT is applied to low-energy QCD [49–55]. The emergent theory is

now known as chiral perturbation theory (χPT). Using the EFT, the Lagrangian

is written as a function of relevant degrees of freedom (nucleons and pions) with

terms consistent with the broken chiral symmetry of QCD and general symmetries.

Massless particles follow the chiral symmetry, i.e. the spin and the projection of

momentum in the direction of spin is always parallel or anti-parallel and does

not change. Since quarks are almost massless, an approximate chiral symmetry is

employed in the construction of the Lagrangian. When one uses this Lagrangian

to calculate the nuclear potential, it generates an unlimited number of interaction

diagrams, which seems cumbersome to handle. However, Weinberg in 1990 [53]

showed a systematic way of expansion in terms of (Q/λχ)ν , where Q denotes a

pion mass/momentum, ν ≥ 0 is a power, and λχ ≈ 1 GeV is the chiral symmetry

breaking scale. In the expansion, for a given order ν the number of contributing

terms are finite and can be calculated. These terms are uniquely defined and the
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prediction at each order is model independent. By adding higher order terms, the

amplitude can be refined to a desired accuracy. This scheme is called χPT.

Fig. 2.4. The nuclear potential derived from chiral perturbation theory. The
solid lines and dashed lines represent the nucleon and the pion, respectively. To
differentiate the different vertex factors involved in interaction diagrams, small
dot, large dot, solid square and solid star have been used. Terms at leading order,
next-to-leading order, next-to-next-to-leading order, and next-to-next-to-next-to-
leading order are represented by LO, NLO, N2LO, and N3LO, respectively [1].

The Feynman diagrams for the nuclear potential are shown in figure 2.4. The

first diagram that contributes to the NN potential appears at the order of ν = 0

whereas for the three-nucleon force it appears at the order of ν = 3 which explains

why 3NFs are weak as compared to 2NFs. One can note that OPEP, TPEP

and the Fujita-Miyazawa interaction diagrams (see figures 2.2 and 2.3) based on

meson-exchange model also appear here. χPT is a promising theory of the nuclear

force at present. In the last decade, the chiral 2NFs have been used extensively to

study the nuclear structure and reactions of nuclei [56–63]. The chiral 2NF and

3NF together have also been used successfully for predicting the structure of light-

and medium-mass nuclei [14, 64–72].
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2.5 Towards ab initio theory

The central goal of nuclear physics is to establish a unified fundamental theory

that can be used to explain nuclei structure and nuclear reactions. Over the past

decade a significant amount of progress has been made through techniques such as

Green’s Function Monte Carlo [5, 7, 44, 73], no-core shell model [74, 75], no-core

shell model/resonating group method [76–78], no-core shell model with continuum

[13, 15, 79], coupled-cluster method (CCM) [62, 72] and nuclear lattice effective

field theory [80] in attempt to achieve the goal; such approaches are categorized

as ab initio theory of nuclear physics. In the ab initio technique we aim to solve

an A-body Schrödinger equation by constructing the Hamiltonian with two-, or

possibly more, nucleon interaction terms. The real problem in solving the A-

body Schrödinger equation is how to accommodate the possible interactions in

a sensible and tractable manner. Each model employs a different technique and

has its own features. For instance, the GFMC method uses a Variational Monte

Carlo technique (VMC) to obtain the trial wavefunction as input parameter and

propagate through the Hamiltonian with a realistic potential.

The approach closest to a traditional shell model is the no-core shell model

in which one treats each nucleon as active and interacting through realistic inter-

nucleon (NN or NN+3N) forces. The Hamiltonian for the A-nucleon system is

written as [81]:

HA = Trel + V =
1

A

A∑
i<j

(~pi − ~pj)
2

2m
+

A∑
i<j−1

V NN(~ri − ~rj) +
A∑

i<j<k

V NNN
ijk + .... (2.7)

where m is the nucleon mass, V NN(~ri − ~rj) is the NN-interaction potential in-

cluding both strong and electromagnetic components, V NNN
ijk is the three-nucleon

interaction, Trel is the kinetic energy of A-nucleon system, and ~pi is momentum of

ith nucleon. Calculations are performed using a harmonic oscillator (HO) basis.

At present the no-core shell model has been successfully used for determining the
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bound state properties of light nuclei (A ≤20) [11–13]. Using the NN+3N inter-

action, the NCSM is able to calculate 3H, 3He, 4He ground state energies that

are in good agreement with measurement. The ground state of 6Li has a very

small quadrupole moment, Q = -0.0818(17) e fm2 [82]. It has been a challenge

for nuclear models to explain its quadrupole moment value. Various techniques

have been used to attempt to explain this observable [82] and did not succeed.

However, when the NCSM model with the chiral N3LO NN potential was applied,

its predicted value of Q = -0.08(2) efm2 was found to be in excellent agreement

with experiment. Similar agreement was found when chiral 3NF was also included

in the NCSM calculation [83]. The NCSM calculations using the CD-Bonn NN

potential have been used extensively to predict the energy levels of light nuclei for

instance, as in 7Li. The energy levels for lowest 9 states of 7Li are in correct order

shown in figure 2.5. What is remarkable is that when it is applied to nuclei around

mass number A=10, and 10B in particular, it seems to be highly sensitive to the

detail of the nuclear interactions among the nucleons. For 10B, the NCSM model

with the CD-Bonn NN potential predicts the ground state spin to be J = 1+

which is in disagreement with the value of J = 3+ from experiment ( figure 2.5).

Similar disagreement has been found using other NN potentials such as: the AV8’

[84] and the chiral N3LO NN potential [14, 85]. The GFMC model calculation

with the AV18 (and V8’) potential also report a similar result [5]. This ambiguity

is resolved when the 3N interaction, such as the TM’ is included. Similarly, the

inclusion of the chiral N3LO NN with the chiral N2LO 3N interaction results in a

correct description of 10B energy levels [14]. I should point out here that the AV18

NN potential with Urbana IX 3N potential does not produce the correct ground

state spin of J = 3+ [5]. This fact shows that the fine details of the 3N potential

significantly to improve the theoretical prediction especially for the nuclei with

mass number A = 10.

The scope of the NCSM model is restricted in a sense that it is applicable

to study only the bound states of nuclei. To study the nuclear reactions and
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(a)

(b)

Fig. 2.5. NCSM calculations for light nuclei. (a) Energy levels in 7Li using
CD-Bonn potential (NN) [86]. Energy levels in 10B and 11B based on NN and
NN+NNN potentials [14]. (b) Energy levels in 12C and 13C based on NN and
NN+NNN potentials [14]. The excitation energies are in MeV. Note, the ordering
of energy levels in the 10B depends on the three-nucleon (3N) interaction.

scattering process, Navratil et al. [16, 78] have developed a method named no-core

shell model/resonating group method (NCSM/RGM). It supplements the NCSM

technique with a microscopic cluster technique (RGM) which assumes that nuclei

can be grouped in clusters. The NCSM/RGM has been successfully applied to

scattering reactions such as 3H(d, n)4He, 3He(d, p)4He, 4He(p, p)4He, 4He(d, d)4He,

and 7Be(p, γ)8B [11].

Recently due to the efforts by Navratil et al. [15], the ab initio NCSM and

NCSM/RGM approaches have been merged into a single unified model ab initio

no-core shell model with continumm (NCSMC), capable of calculating both the
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bound states and the scattering states in a nuclear system. In NCSMC, the set

of A-nucleon system is studied by including both A-body NCSM basis and binary

cluster ((A−a)-body and a-body systems) continuous basis. Thus, the many-body

wave function can be written as [15]:

∣∣ψJπTA

〉
=
∑
λ

cλ |AλJπT 〉+
∑
ν

∫
drr2

γν(r)

r
Âν
∣∣φJπTνr

〉
. (2.8)

where |AλJπT 〉 is an eigenstate with eigenvalue Eλ of A-body NCSM Hamilto-

nian HNCSM
A , and

∣∣φJπTνr

〉
are the binary-cluster (A−a, a) states, Âν is an operator

to take care of exchange of nucleons belonging to different clusters, and γν(r) is the

wave function of the relative motion. In equation 2.8, the first term represents the

NCSM basis states, which accommodates the short- and medium-range structure

of A-body system, where as the second term represents the NCSM/RGM cluster

states to include the scattering physics of the system. One of the attractive fea-

tures of this model is that its convergence properties are superior to either the

NCSM or the NCSM/RGM models. This newly developed model has been ap-

plied to study the resonances of 7He (an unbound nucleus) using a chiral NN+3N

potential, thereby settling the controversy of J = 1/2− resonance above the 6He

+ n threshold [79]. This could not be realized within the ab initio bound-state

approaches such as the Green’s function Monte Carlo method or the no-core shell

model. The NCSMC model appears to be a unified realistic ab initio technique

to study properties of nuclei and nuclear reactions. The NCSMC model has also

been successfully applied to study the d−4He, n−4He, and p−4He scattering using

a chiral NN+3N interaction [16, 17].

As described above, there have been various studies on the effects of the nuclear

forces on the energy levels and the static properties such as nuclear moments in

the nuclei. However, investigation of the effect of the three-nucleon force on the

reaction observables is very limited. In fact, so far there is no such study on the

neutron or proton-rich rare isotopes.

In this thesis we report the first investigation of the effects of the three-nucleon
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force on the differential cross section of 10C + p elastic scattering. The newly

developed ab initio reaction theory [87] with the framework of the NCSMC has

been to used to calculate the angular distribution of 10C + p scattering reaction.

The predictions for the differential cross sections using NN only and NN+3N forces

are found to show substantial differences as will be discussed in Chapter 5.
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Chapter 3

Experiment and Methodology

In this chapter we will discuss the experimental facility used to perform the ex-

periment.

3.1 Radioactive Ion Beam production at TRIUMF

The understanding of nuclear phenomena has been greatly enhanced since the

advent of the radioactive ion beams (RIB). The production of such radioactive

ion beams requires an experimental facility equipped with a primary production

beam, a target or ion-source, a mass separator, and a beam transport system.

For our experiment the 10C RIB was produced at TRIUMF, one of the world’s

largest particle and nuclear physics experimental facilities, located in Vancouver,

Canada. At TRIUMF, RIBs are produced using a method called the isotope

separation on-line (ISOL) method. The ISOL technique requires a primary beam,

a target/ion-source, a mass separator, and a beam transport system. TRIUMF

also houses a 500 MeV cyclotron (the world’s largest cyclotron), which is used to

produce the primary proton beams. The primary proton beam interacts with a

NiO target producing rare isotopes, which then effuse into an ion source. A mass

separator is used for selecting the 10C beam. The 10C beam is then reaccelerated

using superconducting linear accelerator to 6A MeV, and then used for reaction

studies at the IRIS spectroscopy facility.
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3.2 IRIS

The ISAC Charged Particle Spectroscopy station (IRIS) is a facility stationed in

the ISAC-II experimental area at TRIUMF. The scientific purpose of the facility

is to study the transfer reactions, elastic and inelastic scattering of neutron- and

proton-rich nuclei. The reactions studied with IRIS involve the isotopes of hydro-

gen (e.g. p, d) as the target. The energy and scattering angle of the target-like

particles emitted after the reaction are measured to obtain the excitation spec-

trum of 10C. To reduce background from other reactions the heavy particles are

also detected. The detectors and target involved are placed inside the vacuum

chamber to avoid energy losses in air.

Fig. 3.1. IRIS setup.

A schematic view of the experimental setup is shown in figure 3.1. The IRIS

facility consists of four major components:

• Ionization Chamber (IC)

• Solid H2 Target

• Detectors for reaction products

• Scintillator and SSB detectors

These components will be discussed in the following subsections.

3.2.1 Ionization Chamber

The IRIS facility uses a low-pressure ionization chamber (with ∼ 5-20 Torr, isobu-

tane gas) placed inside a vacuum box. It is placed upstream of the target and
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hence enables us to identify the elements present in the incoming beam by identi-

fying its atomic number (Z) through energy loss in the ionization chamber. The

beam enters and exits the ionization chamber through the mylar windows that are

typically ∼ 0.9 µm thick. We have shown the schematic design of the IC in figure

3.2.

Fig. 3.2. Design of the IRIS Ionization Chamber.

The anode has been segmented into 16 sections and is used for the charge col-

lection. The electrical signal produced in the anode is read out using the pream-

plifiers located outside the vacuum chamber. The anodes can be coupled together

as well. For the 10C(p,p)10C experiment, the anodes were coupled to be equivalent

to a single anode read out. The next component in the IRIS facility is a scattering

chamber which houses the target and the detectors.

3.2.2 Solid H2 Target

The novel feature of IRIS is the development of a thin windowless solid hydrogen

target (SHT) which has been used for studying the desired reaction. Since we are

working with an RIB of weak intensity, the use of SHT as a target is paramount

26



and greatly desired rather than utilizing the other conventional targets such as a

liquid or gas H2 target, or polyethylene target. The SHT enhances the scope of

attaining a higher luminosity of scattered particles, thereby making the reaction

study possible even with a weak beam intensity of ∼ 2500 pps for 10C (a drip-line

nucleus). The target assembly is depicted in figure 3.3. On the copper cell, a hole

of 5 mm was bored at its centre, and its surface is affixed by a silver foil of ∼

5 µm thickness. A cryocooler with a helium compressor is used to cool the target

cell to a temperature of ∼ 4 K. We use a diffuser that sprays the H2 gas on the

surface of the silver foil used as a backing material to form the SHT target. The

diffuser is retracted down after the formation of the SHT. The incoming beam

of 10C passes through the hole on the copper cell, and then through silver foil,

and finally interacting with the SHT to produce scattered particles. Since the

SHT is windowless at the exit channel, the scattered target-like particles only

have to pass through the remaining part of the SHT, and hence do not undergo

any significant energy straggling1 and multiple scattering. This feature suppresses

the broadening of the scattering angle and energy of the scattered protons, and

hence improves the energy and angular resolution. Since SHT involves Ag-foil,

we could get the background protons from fusion evaporation reaction of beam

particles with Ag, but these background protons are far less in comparison to the

case with the liquid hydrogen (produces background events from window material)

or polyethylene targets (CH2)n (background events originate due to the scattering

from carbon nuclei in the target). The target cell is surrounded by a copper heat

shield; it restricts the evaporation rate of solid H2 due to the radiative heating

from the ambient temperature and keeps the target temperature stable during the

experiment. The heat shield has a vertical opening angle of ±40◦ and horizontal

opening angle ±60◦ which allows the reaction products to reach the detectors.

1Phenomenon of spread in energy loss by incident particles due to random set of collisions.
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Fig. 3.3. Solid H2 target assembly. (a) Silver foil on copper cell. (b) View of
copper cell. (c) Copper cell placed inside the cylindrical heat shield [88].

3.2.3 Charged particle detectors

One of the goals of IRIS facility is to detect the charged particle reaction products

produced in the reactions with isotopes of hydrogen as target. Therefore, the

detection system is designed in such a way that it enables us to detect both the

light target-like products as well as the heavy beam-like reaction residues. IRIS

uses two pairs of thin and thick detectors for different purposes. To measure the

energy loss and the scattering angle for target-like (e.g. p, d, t) light nuclei, we use

a thin silicon detector [89] (∼ 100 µm ) represented as YY1, placed downstream

of the target (figure 3.4a). It is segmented in 8 azimuthal sectors, and each sector

is segmented in 16 rings. Each of these 8x16 segments act as an independent

detector. To measure the remaining energy of target-like particles that passed

through the YY1 detector, we place a 12 mm thick CsI(Tl) detector behind the

YY1 detector downstream of the target. The CsI(Tl) array consists of 16 crystals

arranged in the same azimuthal fashion as the YY1 array (figure 3.4b). The YY1

and CsI(Tl) arrays are placed in such a fashion that they can detect target-like

particles in coincidence and allow the beam-like particles to pass through the hole

in these detectors.
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(a) (b)

Fig. 3.4. Detectors for target-like nuclei. (a) YY1 detector. (b) CsI(Tl) detector.

To detect the beam-like particles we require both a thin and a thick silicon S3

detector [89]. We represent the first as S3d1 and second as S3d2 (figure 3.5). The

S3d1 detector is a thin (∼ 60 µm) silicon detector used to measure energy loss and

the scattering angle of the beam-like heavy particles. It is segmented in 24 rings on

the one side where as the other side is segmented in 32 sectors. The S3d2 is a thick

silicon (∼ 500 µm) detector used to measure the remaining energy and scattering

angle of beam-like heavy particles. The S3d2 detector is segmented in same way

as the S3d1 detector. Both the S3d1 and the S3d2 are placed downstream of the

target.

The energy and angle measurements of the reaction products allows us to

reconstruct the missing mass spectrum, which is necessary for the identification

of elastic reaction.

3.2.4 Scintillator and SSB detectors

The IRIS facility has a zero degree silicon surface barrier (SSB) detector, which is

intermittently placed in the beamline to measure the remaining energy of unscat-

tered beam particle after passing through the target. This is used to determine the

thickness of silver foil in target cell. The facility also employs a scintillator placed
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Fig. 3.5. S3d1 and S3d2 detector.

at zero degrees at the end of the beamline to count the number of beam parti-

cles. The ratio of the scintillator to ionization chamber counts helps in monitoring

the overall beam transmission through the chamber during the entire experiment.

These detectors are placed in the last separate vacuum chamber. The unreacted

beam is eventually stopped and counted using a radiation hard inorganic scintil-

lator (YAP:Ce) read out by a photomultiplier tube (PMT).

3.3 Signal Processing and Trigger Logic

In this section we provide a brief overview of schematics of electronics used in

the data acquisition for the 10C(p,p)10C experiment. We know that when an

incident charged particle interacts with the detector, it produces electric charge

carriers (electron-ion pair in case of ionization chamber, and electron-hole pair in

semiconductor detectors) which carry the information about the energy deposited

in the detector by the particle. To construct an electrical signal for further analysis,

the electric charges produced are collected by applying an electric field on the

detector volume.

The initial elements in signal processing are the preamplifier and shaping am-

plifier shown in figure 3.6(a). The main purpose of the preamplifier is to extract
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a voltage pulse from the detector while adding as little noise as possible. The

preamplifiers are thus located close to the detectors, minimizing the length of the

cable connecting them to the detector. The preamplifers used in the experiment

were of charge-sensitive type. The output pulse from a preamplifiers is shown in

figure 3.6(a). Once the energy signal passes through the preamplifier, it is sent

into a shaping amplifier unit for further amplification and processing. The pulse

is shaped in a manner that does not affect its maximum amplitude and reduce its

pulse width drastically. In general, the shaping amplifier unit involves a capacitor-

resistor (CR) network followed by few successive resistor-capacitor (RC) networks.

The purpose of the CR network is to improve the signal-to-noise ratio (SNR) by

blocking the low-frequency components which contain a lot of noise. On the other

hand, the RC network attenuates the high-frequency components, which also con-

tains a lot of noise, thereby enhancing the SNR. We have used model MSCF-16,

a 16-channel shaper and timing amplifier with leading edge discriminator (LED)

unit [90]. The MSCF-16 contains CR-RC5 network which amplifies and transforms

the preamplifier signal into a Gaussian pulse. The pulse pile-up (overlap between

successive pulses) is greatly reduced on changing the preamplifier pulse waveform

into the Gaussian waveform. The MSCF-16 unit also incorporates the baseline

restorer that ensures that the baseline between pulses is at the ground potential.

The purpose of the discriminator in the MSCF-16 unit is to respond only to the

input signals with a pulse height greater than a specified threshold value. We set

the threshold value to reject the pulses coming from the electronic noise. The

discriminator (in the MSCF-16 unit) used in this experiment was a leading edge

discriminator, whose purpose was to generate a trigger pulse at the moment the

pulse crosses the threshold voltage level. The schematics of generating the shaped

pulse and trigger signal (a logic signal which represents the presence and absence

of an event in the detector) are shown in figure 3.6(b).

Since the amplitude of the voltage signal from shaping amplifier contains the

information on the energy deposited in that detector, we need to translate the
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analog voltage signal into something more useful: an equivalent digital signal.

The amplified energy signal received from the shaper unit goes into the analog-

to-digital converter (ADC). The purpose of the ADC is to convert the amplitude

of an analog voltage signal into a proportional digital number. The ADCs (model

number MADC32) employed in the experiment were of peak-sensing type. The

ADCs have a resolution of 12 bits, thereby covering a range from 1 to 4096 chan-

nels. Since we were interested in analysing the scattered particles detected via

the YY1/S3 detectors, we performed a Logic-OR operation on the trigger signals

obtained from the MSCF-16 unit of the YY1/S3 detectors. The obtained Logic-

OR signal is called “free trigger”. We know that for the data acquisition system

(DAQ), it takes a finite amount of time to process an event, hence, the DAQ can

not store all the events occurred in the detectors. The free trigger is then fed into

the Quad Gate generator unit (M794) to acquire the data in coincidence, which

essentially generates a gate pulse with a user-defined time window (usually 2 µs).

The generated gate signal is then fed into the ADCs which enabled the ADC to

know when to start taking the data and for how long. We have shown the fur-

ther electronics in detail, required to digitize the analog data and store it in the

computer in figure 3.8. The electronic modules together with the data acquisition

system provide the necessary signal processing.
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Fig. 3.6. Pulse processing. (a) Output from a preamplifier unit and a shaping
amplifier for a general detector. (b) Output from the shaping amplifier for CsI(Tl),
SSB, IC, Pulser, and scintillator.
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Fig. 3.7. Output from the shaping amplifier for S3d1, S3d2 and YY1 detector.
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Fig. 3.8. Formation of trigger logic and analog to digital conversion to record the
data.
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Chapter 4

Analysis of elastic scattering 10C(p,p)10C

In this chapter the analysis of the data to extract the physics information will be

described. To do that, the first step was to calibrate the detectors employed in

the experiment. This essentially maps these digitized analog-to-digital converter

(ADC) channels to a physical quantity, namely the energy. Next, we will discuss

methods to identify the particles detected in the experiment. We will also show

how the solid H2 target thickness has been measured throughout the experiment.

We will also discuss the missing mass spectrum technique which enables us to

identify the 10C(p,p)10C elastic reaction channel. Finally, we will present the

measurement of the differential cross section.

4.1 Identification of beam particles

The ionization chamber (IC) is placed upstream of the target to provide us with

the information about the atomic number of the particles present in the beam.

In the experiment, the beam contains 10B particles as contamination. Two ADC

spectra of the IC detector are shown. Figure 4.1a is for IC operated at 8 Torr

pressure, and figure 4.1b is for the IC detector operated at 19.5 Torr. We can see

that there are two peaks present in these spectra that correspond to 10B and 10C

particles.

Since the 10C particle has a higher atomic number than the 10B particle, the

energy loss for the 10C is more than the 10B particle. So the 10C peak should
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(a) (b)

Fig. 4.1. ADC spectrum of IC. (a) For 8 Torr pressure. (b) For 19.5 Torr pressure.

appear at a higher channel number than the 10B peak. It can be understood from

the equation of the stopping power (dE/dx) of a charged particle passing through

the matter, which is defined as energy loss per unit length given as:

−dE
dx
∝ Z2

v2
(4.1)

where Z and v are atomic number and velocity of the charged particle, respectively.

From these ADC spectra of the IC, we have selected the events corresponding to

the 10C peak. The selection of the region is shown by the vertical lines in figure

4.1 and has been used for further analysis of the 10C(p,p)10C reaction.

4.2 Detector Calibration

In this section we describe the energy calibration of the detectors that provides

the basic foundation for the data analysis. We know that when a charged particle

passes through a detector, it deposits a certain amount of energy and we get a

voltage pulse from the detector which is digitized in the form of a channel number
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using a peak sensing ADC. The meaning of the calibration is to convert the channel

number into the energy deposited in the detector. We employ the following linear

equation for the calibration of the detectors:

E= gain ∗ (ChannelNumber− Pedestal) (4.2)

where E is the energy deposited by an incident charged particle in the detec-

tor, “ChannelNumber” is the peak position of the incident particle in the ADC

spectrum, “Pedestal” is a zero-energy point in the ADC spectrum, and gain is

a channel to energy conversion factor for a particular ADC. The unit of gain is

MeV/channel if E is in MeV. The equation 4.2 describes the linear relation be-

tween the ADC channel number and the physical quantity energy. Once we have

found the gain and pedestal for a detector, the detector is said to be calibrated. In

this section we will discuss the calibration of S3d1, S3d2, YY1 and CsI(Tl) charged

particle detectors using the calibration equation 4.2. But, before we explain that,

we need to determine the silver foil thickness, without which we will not be able

to perform the required energy loss calculation.

4.2.1 Silver foil thickness determination

The thickness of silver foil, which is the backing of the solid H2 target, is one of

the unknown quantities that needs to be determined. We have used the energy in-

formation from the silicon surface barrier (SSB) detector (in absence of H2 target)

to measure the thickness of silver foil.

We have shown the material layers which have been taken into account in the

energy loss calculation of the beam particles (figure 4.2). As explained above the

beam has the 10C as well as the 10B particles, which after passing through the IC

and the silver foil, deposit their remaining energy into the SSB detector. The 10C

peak in the SSB ADC spectrum should appear at lower channel number than the

10B peak since the former has lower energy at the exit end of the silver foil. For

various thicknesses of the silver foil we performed the energy loss calculation and
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Fig. 4.2. Layout of material layers for the energy loss calculation in the SSB
detector.

computed the gain g1 and g2 of SSB ADC given as

g1 =
EC

PeakC − Pedestal
(4.3)

g2 =
EB

PeakB − Pedestal
(4.4)

where EC and EB are energies deposited by the 10C and the 10B particles in the

SSB detector after passing through the silver foil, respectively; PeakC and PeakB

are the respective peak positions of the 10C and the 10B particles in the ADC

spectrum of the SSB detector. Pedestal is a zero-point of the SSB ADC. The gain

should be independent of the particle type and is a fixed quantity for a specific

amplifier setting of that ADC. Therefore, for the actual thickness of the silver foil

the gain g1 and g2 would be same.

We choose the silver foil thickness for which the ratio
∣∣∣g1−g2g1

∣∣∣ was minimal (

figure 4.4). We found the thickness of Ag-foil to be 5.44 ± 0.27 µm which also

agreed with the thickness determined from a measurement of the weight of the

foil. With this, we can move onto the discussion of the calibration of S3d1 and

S3d2 detectors.

4.2.2 S3d1 and S3d2 detectors

In this subsection, we will discuss the calibration of S3d1 and S3d2 detectors. To

calibrate these detectors we have used the experimental data taken in the absence
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Fig. 4.3. ADC spectrum of the SSB detector with SSB trigger. (a) The peak of
10C particles using the IC 10C events gate. (b) The peak of 10B particles using the
IC 10B events gate.

Fig. 4.4. Relative gain difference found using equation 4.3 and 4.4 versus thickness
of Ag foil thickness.

of the solid H2 target. For this scenario we have shown the material layers through

which the beam particles pass (figure 4.5). From the energy loss calculation based

on the stopping power table one can see that 10B passes through the S3d1 detector

for both 19.5 Torr and 8 Torr IC pressure settings (figure 4.6.b), whereas the 10C

particle only passes through S3d1 for 8 Torr IC pressure and deposits energy

around ∼ 3.5 MeV in the active silicon region of the S3d2 detector (figure 4.6.a).
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Fig. 4.5. Layout of material layers for energy loss calculation in the S3d1 and S3d2
detectors in the absence of solid H2 target.

Fig. 4.6. Energy loss calculation in the S3d1 and S3d2 detector. (a) For 10C
particle. (b) For 10B particle.

In the S3d1 detector, one side is segmented into 24 rings and each of these

rings serves as an independent detector. Its opposite side is segmented into 32

sectors and each of these sectors also serves as an independent detector. Our aim

is to find the gain and the pedestal for these rings and sectors. To accomplish
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this, we have used the 10C events from the experimental data (without solid H2

target) taken at 19.5 Torr IC pressure. In order to calculate energy loss by the

10C beam particle for a ring, we accounted for the energy loss of the incident

beam in the IC. The elastic scattering 10C(109Ag,109Ag)10C at the middle of the

Ag-target was used for the calibration. Energy losses in the dead layers of the

S3d1 detector were also taken into account. We have used the stopping power

tables [91] for the energy loss calculations. The pedestal for each ring is found

using the experimental data obtained in the absence of the beam. In figure 4.7a,

we have shown the pedestal data for the first ring of S3d1 detector. We have used

Gaussian fitting for finding the peak position of the 10C events. The mean value of

the Gaussian curve (PeakC) will be the peak of 10C events and should correspond

to the actual energy loss (EC) by the 10C scattered particle in the first ring of the

S3d1 detector (figure 4.7b). Thus, the gain (g) for the first ring can be calculated

as

g =
EC

(PeakC − Pedestal)
(4.5)

The obtained gain is the quantity of our interest. Using a similar procedure

we have found the gain and the pedestal for other rings of the S3d1 detector.

Once we have calibrated the detector it is advisable to check the validity of the

found parameters: gain and pedestal. We can perform this check by converting

the channel number of the 10C events into energy using the found gain and the

pedestal, and compare it with the expected energy obtained from the stopping

power calculation. We have depicted the result of this verification in figure 4.8. We

see discrepancies between energies obtained from the stopping power calculation

and the calibrated data at higher laboratory angles. The reason for this is that

the statistics are very low at higher laboratory angles (figure 4.7c). To calibrate

each sector of the S3d1 detector we have used the energy deposited by the 10C

particle in the active silicon of the S3d1 by averaging over all the rings (difference

between the energy deposition by the 10C particle in the first ring and the last ring
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(a)

(b) (c)

Fig. 4.7. Calibration of the S3d1 detector. (a) Pedestal data for the first ring. (b)
Gaussian fitting of 10C peak in ADC spectrum for first ring. (c) ADC spectrum
for 10C events in the outermost ring of S3d1 detector at 19.5 Torr IC pressure
(without SHT target).

Fig. 4.8. The parameter check for the S3d1 detector calibration.
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(a) (b)

Fig. 4.9. Calibration of the S3d2 detector. (a) Pedestal data for first ring of the
S3d2 detector. (b) ADC spectrum for the first ring of the S3d2 detector at 19.5
Torr IC pressure setting.

of the S3d1 is ∼ 100 keV) and its measured peak position in the ADC spectrum.

Next, we move onto the calibration of the S3d2 detector. The S3d2

detector’s ring side and sector side dead layers are the same as the S3d1 detec-

tor, but its orientation is opposite to the S3d1 detector. Its sector side is facing

upstream and ring side faces downstream with respect to the direction of the in-

coming beam. Since the S3d2 is a thick detector (∼ 500 µm), the beam particles

after passing through the S3d1, deposit all the remaining energy in the active sili-

con of the S3d2 detector. The procedure for the calibration of the S3d2 detector is

same as the S3d1 detector. Since, the 10C particles are not able to reach the S3d2

detector, so we have used the 10B beam events to calibrate the S3d2 detector. For

each ring, we have found the energy deposited in the active silicon of the S3d2

detector for elastic scattering 10C(109Ag,109Ag)10C at the middle of the silver foil.

We have shown the pedestal and the 10B peak for the first ring of the detector

in figures 4.9a and 4.9b. A similar procedure has been applied to calibrate the

sectors of the S3d2 detector.
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4.2.3 YY1 detector

In this section we describe how to calibrate the YY1 detector. We use a standard

triple alpha source for this calibration. In this approach one places a radioactive

source emitting alpha particles of known energies in front of the detector. The

alpha source used in the experiment contained the radioactive isotopes of 239Pu,

241Am and 244Cm, details of which are given in the table 4.1.

Table 4.1. Standard triple alpha source energies.

Isotope Energy (MeV) Branching Ratio (%)
239Pu 5.155 73.3

5.143 15.1

5.105 11.5
241Am 5.546 0.25

5.513 0.12
5.486 86.0
5.443 12.7

5.389 1.3
244Cm 5.805 73.3

5.763 23.6

The YY1 silicon detector is segmented in 8x16 parts (8 sectors, each having

16 rings), each of which part acts like an independent detector. We have used the

triple alpha source energies corresponding to the highest branching ratio namely

(5.155 MeV, 5.486 MeV, 5.805 MeV) for this calibration. For each of these incident

energies of the alpha particles, we calculated energy losses in the dead layers of

0.1 µm Al and 0.05 µm Boron (equivalent 0.2 µm silicon) taking the incident angle

into account. Using the stopping power calculation [91], we found that the alpha

particle losses all its energy in the active silicon (∼ 100 µm).

The three peaks in ADC histogram correspond (see figure 4.10) to three differ-

ent energies deposited by the three different alpha particles present in the triple

alpha source. We performed the least square fit to our standard calibration equa-

tion 4.2 and found the gain. We have shown the fitting of the three alpha peaks

for the data obtained from the triple alpha source run (see figure 4.10).
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Fig. 4.10. Calibration of the YY1 detector. The top panel shows the ADC spec-
trum and Gaussian fitting to the peak. The bottom panel shows the least square
fit to the standard calibration equation 4.2 where three data points correspond to
three alpha peaks.
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Fig. 4.11. Plot of ∆E-E for protons from 10C+p elastic scattering (for incident 10C
energy 48.6 MeV and 100 µm SHT). ∆E and E represent the energy deposited by
proton in silicon and CsI(Tl) detectors, respectively.

A similar procedure may be employed to calibrate the CsI(Tl) detector using

standard energy triple alpha source and is known to be not the best way to perform

the CsI(Tl) calibration for few reasons I’m going to discuss next. The CsI(Tl) is a

position-sensitive detector based on the light collection through the photodiodes

[92]. The light output in CsI(Tl) detector depends not only on the atomic number

(Z), but also on the mass number (A) of the incident particle [93, 94]. It has

also been known to show the strong dependence on the energy of the incident

particle. Since our goal is to identify the light target-like particles, especially

protons, which are expected to deposit energy in range of 2-12 MeV in the CsI(Tl)

detector (figure 4.11), one should not use the triple-alpha source (table 4.1) for

the CsI(Tl) calibration because the triple-alpha source particles deposit energy

around ∼ 4 MeV in CsI(Tl) after passing through the mylar layer (∼ 6 µm) in

front of the CsI(Tl) detector, and their nature (Z, A) is very different from the

protons whose identification is crucial for our experiment. However, if we use the

proton particles from the experimental data ejected from the solid H2 target due

to the elastic scattering with the 10C for the calibration of the CsI(Tl) detector,

we can overcome our problems in following manner:
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• For the protons reaching the CsI(Tl) detector we can obtain incident angle

using the ring information from the YY1 detector since the detection system

is designed in a coincidence manner. Hence, we can account for the position

dependence in the light collection for a crystal of the CsI(Tl).

• In our experiment we are going work with the protons from the 10C(p,p)10C

reaction. So, it is advantageous to calibrate the detector using the same

particle as it automatically accounts for dependencies in Z, A and energy of

incident radiation on the light production in the CsI(Tl) detector.

For these reasons we should calibrate our CsI(Tl) detector using the protons pro-

duced from the scattering of the 10C with the solid H2 target. To find the energy

deposited by protons (ejected from the scattering of 10C with the solid H2) and

thus use it for the calibration, the thickness of the solid H2 target is needed. The

target thickness is expected to vary with time (due to H2 evaporation). We have

therefore discussed below in Subsection 4.2.4 the procedure to measure the solid

H2 target thickness.

4.2.4 Monitoring the solid H2 target thickness

In section 3.2.2 we discussed the formation of the solid H2 target. Throughout

the experiment we need to monitor the solid H2 target thickness, which is of

paramount importance because the yield of protons at our detectors is going to

depend on it. Since we have calibrated both the thin and thick silicon detectors,

we can proceed to calculate the SHT thickness.

For 19.5 Torr IC pressure, we performed the energy loss calculation in relevant

material layers and found that the 10C particle deposits all its energy in the S3d1

detector (figure 4.6.a), and hence the 10C events in the S3d1 detector alone can

be used to find the SHT thickness. Since the 10C particles detected by the S3d1

detector are coming mostly from the elastic scattering with the silver foil backing

of the target cell, we are going to assume the 10C(109Ag,109Ag)10C elastic reaction

taking place at the middle of Ag foil while calculating the energy of the scattered
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Fig. 4.12. Illustration of different region where energy losses must be taken into
account to find SHT thickness. Note that the 10C particles stop in the S3d1
detector for the 19.5 Torr IC pressure condition.

10C. The SHT thickness can be found using stopping power calculation if the 10C

particle energy before and after the SHT are known. The energy of 10C beam

particle at the entrance of the SHT can be found if we account for the energy

loss in the IC including mylar windows, and energy loss of the beam in the first

half-thickness of Ag-foil and the energy of scattered 10C by the remaining half

thickness of the Ag-foil (figure 4.12). Thus, energy at the entrance (Ei) of the

SHT target can be written as

Ei = Eaccelerator − (dE1 + dEIC + dE2 + dE3 + dEscattering + dE4) (4.6)

where Eaccelerator is the energy of the beam particle delivered by the accelerator;

dE1, dEIC and dE2 are the energy loss by the beam particle on passing through

the mylar window at the entrance of the IC, the gas inside the IC, the mylar

window at exit channel of the IC, respectively; dE3 is the energy loss by beam
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particle on passing through the first half-thickness of Ag-foil, dEscattering is energy

change in the beam particle due to scattering at the centre of Ag-foil and dE4 is

energy loss by the beam particle on passing through the remaining half-thickness

of the Ag foil.

Once we found the 10C particle’s energy at the entrance of the SHT, next we

aim to find out the 10C particle’s energy after passing through SHT. From figure

4.12, it is clear that it should be the sum of the 10C’s energy loss in the ring side

dead layer of S3d1 and the 10C’s energy deposited in the active silicon of the S3d1.

So, the energy after passing (Ef ) through the SHT can be written as

Ef = dEdl1 + dE (4.7)

where dEdl1 is the energy loss by scattered beam particle on passing through the

dead layer at the entrance of S3d1 detector and dE is the energy deposited by

beam particle in the active silicon of S3d1 detector. Now, the SHT thickness can

be written as

thickness =

∫ Ef

Ei

1

S(E)
dE (4.8)

where S(E) is the stopping power of beam particle passing through solid H2 target

given by −dE/dx.

The SHT thickness variation over the time duration of the experiment is shown

in figure 4.13. To find the SHT thickness for 8 Torr data run, we have used the 10B

beam particles. The reason for this is that the 10C beam particles deposit a small

amount of energy (∼ 5 MeV) in the S3d2 detector, and hence its peak appears

near the pedestal region in the ADC spectrum of S3d2 detector (figure 4.6). So, we

planned to use the 10B events to find the SHT thickness. The procedure was same

as for the case of 19.5 Torr IC pressure data. We have shown the material layers

in figure 4.12 where energy losses must be taken into account to find the SHT

thickness.The SHT thickness for data runs at 19.5 Torr and 8 Torr IC pressure is

shown in figure 4.13. The first 85 hours in the plot corresponds to the data at 19.5
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Fig. 4.13. The solid H2 target thickness determined throughout the experiment.

Torr IC pressure and the remainder corresponds to the data at 8 Torr IC pressure

.

4.2.5 CsI(Tl) detector

In previous subsections we discussed the calibration of the S3d1, S3d2 and YY1

detectors. In this section we discuss the calibration of the CsI(Tl) detector. As it

was mentioned in section 3.2.3, the CsI(Tl) detector array has 16 crystals forming

an annular disk. It is positioned behind the YY1 detector in such a way that the

two-crystals of the CsI(Tl) detector cover one sector of the YY1 detector. For

calibration of this detector, we have used the protons detected by the CsI(Tl)

detector, produced from the 10C(p,p)10C elastic scattering. We have fitted our

standard calibration equation 4.2 with the expected energy deposited by the pro-

ton in the CsI(Tl) detector, and the ADC channel number for these proton events.

For each experimental data run (∼ 1 hour long), the proton statistics from the

10C(p,p)10C reaction were very poor, and hence we decided to combine few consec-

utive data runs together over which the SHT thickness did not vary significantly.

We identified thirteen consecutive data runs to get good statistics. For these data
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(a) (b)

Fig. 4.14. Selection of the proton events generated from the scattering of the 10C
particle with protons in the solid H2 target. (a) Proton event selection from 10C
beam particle using silicon and CsI(Tl) detector. (b) Selection of elastic proton
events from 10C + p scattering using CsI(Tl) detector.

runs SHT thickness varied from 97.8 µm to 106 µm . Below, we outline the steps

used for calibrating the CsI(Tl) detector.

1. Identification of protons

To identify the target-like particles after reaction in the target we can use

the energy loss (∆E in YY1) information and the remaining total energy

deposited (E in CsI(Tl)) by particles, as these quantities depend on the

atomic number (Z) number and the mass number (A) of the incident particle,

respectively. Figure 4.14a shows the energy deposited (∆E) in the YY1

detector and the CsI(Tl) ADC’s channel number with 10C events selected

by the ionization chamber. The events inside the polygon are the selected

scattered proton events. To identify the elastic proton events we constructed

the kinematic plot of protons energy (in form of ADC channel number) versus

the measured scattering angle. We have inscribed the locus of elastic proton

in the figure 4.14b.

2. Determining the proton energy at the entrance of the CsI(Tl) de-

tector

In our next step, we performed the stopping power calculations to find the

energy of the proton at the entrance of the CsI(Tl) detector. We assumed
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10C + p elastic scattering at the centre of the SHT (∼ 101.9 µm). We have

shown a layout of the material layers in figure 4.15 through which energy

losses have been taken into account. We have shown the proton energy

deposited in the active region of the CsI(Tl) detector for different laboratory

angles in figure 4.16.

Fig. 4.15. Material layers to account for energy loss for the purpose of calibration
of CsI(Tl) detector.

3. Proton peak determination in CsI(Tl) ADC spectrum

Although each CsI(Tl) crystal uses a single shaper amplification unit we

need to find the shaper’s gain for each angular bin to take into account any

dependence on light collection efficiency. We grouped the 16 YY1 rings into

4 groups for the purpose of this calibration (based on statistics). Next, we

construct the ADC spectrum of CsI(Tl) for each of these groups with events

that are inside the proton polygon and the elastic proton polygon generated

in step 1, and fall inside the 10C ionization chamber gate (figure 4.1b).
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Fig. 4.16. Kinematics of the proton from elastic scattering of 10C (Elab=48.6 MeV)
with the solid H2 target. The quantity E on Y-axis represents the energy at the
entrance of the CsI(Tl) detector after energy loss in the target and detector dead
layers.

Fig. 4.17. CsI(Tl) ADC spectrum for one of the 16 crystals in CsI(Tl) array to
find the proton’s peak. 10C IC gate (figure 4.1b) and proton events inside the
polygon (figure 4.14a and 4.14b) as condition have been used to select the protons
from 10C+p elastic scattering. (a) For YY1 rings 1-4. (b) For YY1 rings 5-8. (c)
For YY1 rings 9-12. (d) For YY1 rings 13-16.

54



We have shown such a plot for one of the 16 crystals of the CsI(Tl) detector

in figure 4.17. For each of the spectra we found the peak position using

Gaussian fitting.

4. Finding gain for amplifier of CsI(Tl)

We define four groups of the YY1 rings, each of which consists of four con-

secutive rings. For each such group, we calculated the average proton energy

deposited in the CsI(Tl) detector. We used the peak position found in the

step 3 and the calculated average proton energy, to fit the linear equation

4.2, and thus we found the gain for that group of rings in a CsI(Tl) crystal.

Similarly we found the gain for other 3 group of rings in a CsI(Tl) crystal.

Fig. 4.18. The measured energy (E in CsI(Tl)) and scattering angle of the scattered
protons from the 10C+p elastic scattering. The black curve shows the calculated
values.

We have shown the calibrated energy (E in CsI(Tl)) in figure 4.18 for the

different laboratory angles. The calculated energy curve obtained from stopping

power calculation is also overlaid for comparison.
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4.3 Particle identification using ∆E-E analysis

The calibrated energies allow us to define the final identification condition for

the scattered particles. The target-like particles ejected from the solid H2 target

were detected using the thin silicon detector (YY1) followed by the thick CsI(Tl)

detector. Since the YY1 detector is thin, all the ejectiles pass through it, losing

energy ∆E, and stop in the thick CsI(Tl). We know that the energy loss (∆E)

depends on the atomic number of the impinging particle and the energy deposited

(E) depends on the mass number of impinging particle. Hence the two signals:

the energy signal from the YY1 detector and the CsI(Tl) detector, can be used to

identify the target-like particles, and thus serves as a ∆E-E telescope. The particle

identification spectrum is shown in (figure 4.19). The protons identified by this

technique include both elastic and inelastic scattering channels. We observed only

protons in our experiment because the beam particles do not have enough energy

to produce the deuterons and tritons. The required energies (in laboratory frame)

are listed in table 4.2 for different combinations of reactions that could happen

hypothetically.

Fig. 4.19. Particle identification plot for the light target-like particles. Events
inside the polygon are protons. ∆E and E represent the energy deposited in
silicon (YY1) and CsI(Tl) detectors, respectively.

In a similar manner, we have used the energy signal from the thin S3d1 detector

and the thick S3d2 detector, which also form a ∆E-E telescope, and enables us to

56



Table 4.2. Kinematic calculations for nuclear reactions. The KElab
min is the energy

(in laboratory frame) required to initiate the given reaction with proton as target
at rest. Expression for Q-value is given in equation 4.9.

Reaction Q-value (in MeV) KElab
min (in MeV)

10C(p,p)10C 0. 0.
10C(p,d)9C -19 208.1
10C(p,t)8C -27 295.4

identify the beam-like particles (see figure 4.20). We observe two clusters in the

∆E-E spectrum of the beam-like particles.

Fig. 4.20. Particle Identification plot for heavy particles in the experiment.

The cluster of events peaked with higher energy in the S3d1 detector cor-

responds to the 10C particles whereas the other cluster corresponds to the 10B

particles present in the beam as contamination.

4.4 Kinematics of protons

To find the kinematic locus of the protons we have used the energy information

from the YY1 and the CsI(Tl) detector. The measured energy overlaid with the

calculated curve is shown in figure 4.21, clearly identifying the locus of the elastic

protons.
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Fig. 4.21. Plot of proton energy deposited in the detectors versus laboratory angle.

4.5 Excitation energy spectrum for 10C

In section 4.3 we discussed the identification of protons from the 10C+p scattering,

and it was not clear whether the events inside the proton selection condition

(see figure 4.19) belong to the elastic or inelastic 10C + p reaction channel. To

identify this, we reconstructed the Q-value spectrum from the measured energy

and scattering angle.

The Q-value of a reaction is defined as the change in the total kinetic energy of

particles in initial state to the final state. It can also be written as a difference in

the total mass energy of particles in the initial state to the final state. In general,

for a reaction: a+ b→ c+ d, the Q-value can be written as

Q = ma +mb −mc −md (4.9)

where ma,mb,mc, and md are the masses of the species a, b, c, and d, respectively;

the equation is written in natural units (speed of light is taken as unity).
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If the species c or d is in an excited state, its mass will be different from the rest

mass and hence, the Q-value becomes an unknown quantity. It can be measured

from the experiment if we can convert the right-hand-side (RHS) of the equation

4.9 into quantities that can be measured in the experiment. By performing a

little bit of algebra we can write the RHS of equation 4.9 in terms of the kinetic

energy and the scattering angle of the final state ground state species. Consider

the species d is in the excited state, then we can write equation 4.9 as

Q =ma +mb −mc

−

√√√√√√m2
a +m2

c −m2
b + 2mb(KEa +ma)

− 2(KEa +ma +mb)(KEc +mc) + 2PaPc cos(θc)

(4.10)

where KEa and KEc are the kinetic energy of the species a and c, respectively.

Pa and Pc are the relativistic momenta of the species a and c, respectively. θc is

the laboratory angle of species c. The relativistic momentum can be found using

energy-momentum relation given as

Pa =
√

(KEa +ma)2 +m2
a, (4.11)

and

Pc =
√

(KEc +mc)2 +m2
c . (4.12)

We used equation 4.10 to determine the Q-value of the reaction 10C(p,p)10C

with a being 10C, b being the protons, c is the scattered protons detected by

YY1/CsI(Tl) detector. This technique to measure the Q-value of a nuclear reac-

tion is also called the missing mass technique.

We have shown the obtained Q-value spectra for the 10C(p,p)10C reaction in

figure 4.22. We observed two peaks in each spectrum. The peak with Q-value

around zero MeV should correspond to the ground state of 10C (elastic channel)

whereas the peak with Q-value around 3 MeV corresponds to the first excited
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(a) (b)

Fig. 4.22. Q-value spectrum of 10C(p,p)10C reaction. (a) Data at 19.5 Torr IC
pressure setting. We have used proton events inside polygon (see figure 4.19) and
10C IC events (see figure 4.1b) as gate. (b) Data at 8 Torr IC pressure setting. We
have used proton events inside polygon (see figure 4.19) and 10C IC events (see
figure 4.1a) as gate.

state of 10C (inelastic channel).

Fig. 4.23. Full-width at half-maxima (FWHM) for the ground state of 10C.

We have made a few simplifications while constructing the Q-value spectrum.

We have assumed that the scattering of 10C with a proton has occurred at the
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centre of the solid H2 target. We have also assumed that the ejected protons

passed through the centre of the angular bin of the detector. These assumptions

affect the calculated energy of proton at the scattering centre, and hence, give rise

to an additional energy spread in the Q-value spectrum. For each angular bin, we

have shown the Full-Width-at-Half-maxima (FWHM) for the ground state of 10C

in figure 4.23. The higher value of FWHM for lower scattering angle is due to the

fact that the size of angular bin for the lower scattering angle is large as compared

to the size of angular bin at larger scattering angle. Overall, the Q-value peak for

the elastic channel has FWHM = 833± 2 keV.

4.6 Measurement of differential cross section

The final goal of this study was to measure the differential cross section (dσ/dΩ)

of the 10C(p,p)10C elastic reaction for each scattering angle. The differential cross

section is given as:

dσ

dΩ
=

[
N s

N in

]
×
[
Mt

NA

∗ 1

ρT
∗ 1

dΩ

]
(4.13)

where N s and N in are the number of scattered and incident particles, respectively.

dΩ is the differential solid angle, Mt and ρ are the molar mass and density of the

solid H2 target, respectively, NA is the Avogadro’s number, and T is the thickness

of the solid H2 target.

4.6.1 Counting scattering flux

To find the differential cross section for each scattering angular bin, we need to first

measure the scattering flux, i.e. the number of elastic protons produced from the

10C+p reaction for each ring (angular bin) of the YY1 detector. Note our charged

particle detector (YY1) is segmented in 16 concentric rings so we can measure the

differential cross section for 16 different scattering angular bins. In section 4.5,

we discussed how the excitation spectra (Q-value spectra) can be used to identify

the elastic protons. We used this method and constructed the Q-value spectra for
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each ring of the YY1 detector. To count the number of particles produced from

elastic scattering, we fitted the peak in the excitation spectra corresponding to

the ground state of 10C using a Gaussian and a linear function together (figure

4.24). Note here we have assumed that the background under the peak is linear

throughout. The fitting function can be written as

f(x) =

[
H ∗ e

(
−0.5∗[x−µσ ]

2
)]

+ [c0 + c1 ∗ x] (4.14)

where µ, σ and H are the peak position, standard deviation width and amplitude

of the Gaussian peak, respectively. c0 and c1 are constant parameters of the linear

background function.

In the spectrum (figure 4.24), the two vertical lines show the 3σ region around

the mean position. The 3σ region around the mean in the Gaussian function

covers 99.7% of the area under the peak. We also measured the signal-to-noise

ratio (SNR) defined as

SNR =
Number of particles inside the 3σ range in the histogram

Number of background events inside the 3σ region
. (4.15)

For the given angular bin (YY1 ring) based on the fitting (figure 4.24) , the

total number scattered protons for the entire data runs can be written as

Nproton
scattered = N total −N background (4.16)

where, N total is the number of particles in the histogram within the 3σ range,

N background
i is the number of particles under the estimated linear background func-

tion within the 3σ range.

The quantity Nproton
scattered has been used as N s in equation 4.13 to evaluate the

differential cross section.
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Fig. 4.24. Q-value spectrum for 10C(p,p)10C reaction at IC pressure of 19.5 Torr
for the first ring of the YY1. The two vertical dashed lines show the 3σ range
around the peak position.

4.6.2 Counting incident flux

To count the incident 10C particles we used the information from IC scaler mea-

surements. We know from the IC ADC spectrum (see figure 4.1) that the 10C as

well as the 10B particles are present in the beam, thus IC scaler measurements

include the counting of both 10C and 10B particles. We can scale the total IC

scaler counts to estimate the incident 10C particles using the IC ADC spectrum.

We must use the same 10C IC ADC spectrum gate window defined in section 4.1

(see figure 4.1) since we analysed the scattered protons for that selection window

in the data analysis. We have measured the 10C particles for each data run sep-

arately. For this we have found the ratio of the integral of 10C particles (using

defined gate window) to the total integral in IC ADC spectrum, together with the

data acquisition live-time (DAQ) correction. The data acquisition live-time (τ)

is an important feature that must be included while counting the incident flux.

The data acquisition system can not process all the events incident on the YY1 or

S3d1 (YY1 and S3d1 was in trigger) detectors because it requires a finite time to

process and store these events. The events from our charged particle detectors are
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stored only when there is an accepted trigger, thus we need to correct the incident

10C beam particle by the same ratio. The DAQ live-time is given as:

τ =
Total accepted trigger

Total free trigger
. (4.17)

Thus, the effective number of the incident 10C particles (N10C
i ) in an ith run

can be written as

N10C
i = (IC scaler counts in the ith run) ∗ τi ∗

NADC 10C
i

NADC total
i

(4.18)

where τi is DAQ live-time for the ith data run, NADC 10C is the number of 10C

particles in the IC ADC spectrum for the ith data run, and NADC total
i is the total

number of particles in the IC ADC spectrum for the ith data run. The quantity

N in in equation 4.13 can be expressed as

N in =
∑
i

N10C
i (4.19)

As we have seen that there is a term for solid H2 target thickness in the formula

of the differential cross section (equation 4.13), which is not constant in time, and

we have already measured its variation for each data run in section 3.2.2. To

calculate the differential cross section systematically, we have to modify the term

“N in ∗ T” in equation 4.13 in following manner

N in ∗ T = N10C
1 ∗ t1 +N10C

2 ∗ t2 + ........... (4.20)

where ti is the solid H2 target thickness for ith data run.

The DAQ live-time for each data run is shown in figure 4.25.

4.6.3 Solid angle

The solid angle for each angular bin (one ring of the YY1 detector) is given as
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Fig. 4.25. DAQ live-time for data runs at 8 Torr IC pressure setting.

dΩ = 8dφ ∗ sin(θlab) ∗ dθlab, (4.21)

where

θlab =
θoutlab + θinlab

2
,

dθlab = θoutlab − θinlab,
(4.22)

with θoutlab and θinlab are angle subtended by the outer circumference and the

inner circumference of a given ring of the YY1 detector at the scattering centre,

respectively, and θlab is an average of angles subtended by the outer radius and

the inner radius of the given ring of the YY1 detector at the scattering center,

and dφ represents the azimuthal angle corresponding to one of the 8 sectors of the

YY1 detector. The factor of 8dφ in equation 4.21 comes from the integration over

the azimuthal angle.

4.6.4 Geometric efficiency correction

The geometric efficiency of a detector for a given angle is defined as a ratio of

total number of particles incident at the detector to the total number of particles

detected by the detector at that angle. We used the Monte Carlo (MC) technique
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to estimate the geometric efficiency of the YY1/CsI(Tl) detector. We have shown

its variation over laboratory angles in figure 4.26.

Fig. 4.26. Simulated geometric efficiency of YY1/CsI(Tl) detector.

We know that the efficiency of the detector also depends on the exposure time

to radiation which has not been accounted for in the calculations.

4.6.5 Uncertainty in the measurement of differential cross section

The final expression used to measure the differential cross section is

dσ

dΩ
=

 Nproton
scattered∑

i

N10C
i ∗ ti

 ∗ [Mt

NA

∗ 1

ρ
∗ 1

dΩeff

]
∗ 1031 mb/sr (4.23)

with

dΩeff = 8dφ ∗ Efficiency ∗ sin(θlab) ∗ dθlab (4.24)

where

Mt = 2 ∗ 1.008 g/mol (Molar mass of H2 ),

ρ = 0.086 ∗ 106 g/m3 (Density of the solid H2 target ),

NA = 2 ∗ 6.023 ∗ 1023 (Avogadro’s number),

Efficiency = Geometric efficiency of the YY1 detector.

To measure the uncertainty, we found the uncertainty in the number of scat-
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tered particles, solid H2 target thickness and the solid angle detection efficiency of

the detector. We have taken the uncertainty in the SHT thickness as 5% (due to

the uncertainty in stopping power tables) and detection efficiency as 5% (due to

uncertainty from the detector geometry and Monte Carlo simulation). Note that

there is no uncertainty in the number of incident particle. Hence, we can write

the uncertainty in the measurement of the differential cross section as:

∆

(
dσ

dΩ

)
=
dσ

dΩ
∗

√√√√√
 σ2

Nproton
scattered

(Nproton
scattered)

2
+

∑
i

σ2
ti ∗ (N10C

i )2

(
∑
i

N10C
i ∗ ti)2

+
σ2
Eff

(Efficiency)2

 (4.25)

with

σ2
Nproton
scattered

= N total
i +N background

i ,

Nproton
scattered = N total

i −N background
i ,

σ2
ti

=
25

10000
∗ (ti)

2,

σ2
Eff =

25

10000
∗ (Efficiency)2.

(4.26)

The differential cross sections measured in the laboratory frame for 10C incident

energy Elab = 45.45 MeV and 48.21 MeV, are displayed in the figure 4.27.

The differential cross section measured in laboratory frame can be converted

into the centre-of-mass (CM) frame by finding the Jacobian of the transformation

(Jlab→cm) from the laboratory frame to the CM frame. Thus, the differential cross

section in the CM frame can be written as:

dσ

dΩcm

=
dσ

dΩlab

∗ Jlab→cm (4.27)

where

Jlab→cm =
dΩlab

dΩcm

=

[
sin(θlab) ∗ dθlab
sin(θcm) ∗ dθcm

]
. (4.28)
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(a)

(b)

Fig. 4.27. Differential cross section in laboratory frame for 10C(p,p)10C elastic
reaction. (a) For incident 10C energy Elab = 48.21 MeV (8 Torr IC pressure
setting). (b) For incident 10C energy Elab = 45.45 MeV (19.5 Torr IC pressure
setting).

The laboratory angle and the CM angle are connected via the formula:

tan(θlab) =
sin(θcm)

γ
(
vE

cm
c

P cmc
− cos(θcm)

) (4.29)

where

v =

√
(KEa+ma)2−m2

a

KEa+ma+mb
(Velocity of the CM frame relative to the laboratory frame)

γ = 1√
1−v2 (Lorentz factor)
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Ecm
c =

E2
cm−m2

d+m
2
c

2Ecm
(Scattered proton’s energy in the CM frame)

Ecm =
√
m2
a +m2

b + 2Eamb (CM energy of the 10C + p system)

P cm
c =

√
(Ecm

c )2 −m2
c (Relativistic momentum of the scattered proton in the CM

frame).

The equation 4.29 is written in natural units (speed of light is taken as unity).

We have displayed the graph of the CM angle and the laboratory angle for the

10C(p,p)10C elastic reaction in figure 4.28.

Fig. 4.28. (a) The plot of centre-of-mass scattering angle versus scattering angle
in the laboratory frame. Detector coverage is shown by two vertical dashed lines.
(b) The Jacobian of the transformation from the laboratory frame to the centre-
of-mass frame.

69



Chapter 5

Results and Discussion

In this section we summarize and discuss the results obtained from our study.

5.1 Differential cross section

This study is the first attempt to explore the effects of the three-nucleon (3N)

force on the angular distribution of the nucleus-proton scattering for an unsta-

ble nucleus. The no-core shell model with continuum (NCSMC) based ab initio

calculations (with chiral forces as input) were performed to predict the angular

distribution of 10C+p elastic scattering by our theory group collaborators Navratil

et al. [87]. Here, we present the comparison of the experimental results and the

preliminary theoretical predictions on the angular distribution of 10C + p elastic

scattering. The nuclear potential used in the NCSMC calculations contained chi-

ral NN-N3LO and 3N-N2LO terms (see the nuclear potential diagram in figure

2.4).
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(a)

(b)

Fig. 5.1. The differential cross section of 10C(p,p)10C elastic reaction. The solid
curves (blue and black) represent the NCSMC calculations: The black solid curve
shows the calculation based on the chiral NN force (N3LO), and the blue curve
shows the calculation based on the chiral NN + 3N force (NN-N3LO + 3N-N2LO).
The red dots represent the data points from the experiment.
(a) For Ecm = 4.4 MeV. (b) For Ecm = 4.16 MeV.

Using the IRIS facility, we performed the reaction 10C(p,p)10C with beam

energy 6A MeV for two different ionization chamber (IC) pressure settings (8

and 19.5 Torr). The two different IC pressure settings result in two different
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energies of 10C at the entrance of the solid H2 target. At the entrance of the

solid H2 target, the 10C nuclei have energies Elab = 45.45 MeV (or Ecm= 4.16

MeV) for 19.5 Torr IC pressure setting, and Elab = 48.21 MeV (or Ecm = 4.4

MeV) for 8 Torr IC pressure setting. We have shown the differential cross sections

for 10C(p,p)10C elastic reaction in figure 5.1. The theoretical calculation predicts

that the differential cross section found using NN+3N chiral forces has a higher

value than the one found solely based on the chiral NN forces. Therefore, the

calculations also show a very strong effects of the 3N force in the elastic scattering

angular distribution.

The experimentally measured cross section for Ecm = 4.4 MeV is well described

by NN+3N force based calculation but for the energy Ecm = 4.16 MeV there are

discrepancies between the theory and experiment for several data points. Our

study claims that the experimentally observed differential cross section for both

the incident 10C energies can be well described by ab initio NCSMC model with

chiral NN+3N force (see figure 5.1a and 5.1b). We observed that the effects of

the 3NF are extremely significant for the lower centre-of-mass angle. For future

perspective the NCSMC calculations should be extended to include the higher

order terms (N3LO and N4LO) in the 3N forces to better understand the missing

physics. However, overall the NCSMC appears to be a promising unified ab initio

model to predict both the bound state properties as well scattering state properties

of nuclei.
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[78] S. Quaglioni and P. Navrátil, “Ab initio many-body calculations of nucleon-

nucleus scattering,” Phys. Rev. C, vol. 79, p. 044606, Apr 2009.
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R. Laforest, J. Pouliot, R. Roy, M. Samri, and C. St-Pierre, “Energy-light

relation for csi(t1) scintillators in heavy ion experiments at intermediate en-

ergies,” Nuclear Instruments and Methods in Physics Research Section A:

Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 348,

no. 1, pp. 167 – 172, 1994.

[94] A. Wagner, W. Tan, K. Chalut, R. Charity, B. Davin, Y. Larochelle,

M. Lennek, T. Liu, X. Liu, W. Lynch, A. Ramos, R. Shomin, L. Sobotka,

R. de Souza, M. Tsang, G. Verde, and H. Xu, “Energy resolution and en-

ergy–light response of csi(tl) scintillators for charged particle detection,” Nu-

clear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, vol. 456, no. 3, pp. 290

– 299, 2001.

83


