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A new synthetic model for asymptotic giant branch stars

Robert G. Izzard,1� Christopher A. Tout,1 Amanda I. Karakas2,3 and Onno R. Pols4

1Institute of Astronomy, Madingley Road, Cambridge CB3 0HA
2School of Mathematical Sciences, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
3Institute for Computational Astrophysics, Department of Astronomy & Physics, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
4Astronomical Institute Utrecht, Postbus 80000, 3508 TA Utrecht, the Netherlands

Accepted 2003 November 21. Received 2003 November 21; in original form 2003 January 23

ABSTRACT
We present a synthetic model for thermally pulsing asymptotic giant branch (TPAGB) evolution
constructed by fitting expressions to full evolutionary models in the metallicity range 0.0001 �
Z � 0.02. Our model includes parametrizations of third dredge-up and hot-bottom burning with
mass and metallicity. The Large Magellanic Cloud and Small Magellanic Cloud carbon star
luminosity functions are used to calibrate third dredge-up. We calculate yields appropriate
for galactic chemical evolution models for 1H, 4He, 12C, 13C, 14N, 15N, 16O and 17O. The
initial–final mass relation is examined for our stars and found to fit to within 0.1 M� of the
observations. We also reproduce well the white dwarf mass function for masses above about
0.58 M�. The new model is to be implemented in a rapid binary star evolution code.
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1 I N T RO D U C T I O N

Full stellar evolution models of thermally pulsing asymptotic giant
branch (TPAGB) stars are difficult and extremely time-consuming
to make, and often suffer numerical failure. For this reason, syn-
thetic models based on full stellar evolution models but with the
complicated physics replaced by simple expressions are a useful
approximation. Such models are well suited to exploring regions of
large, multidimensional parameter spaces which would take years
to explore with full stellar evolution models. Here we build on the
models of Groenewegen & de Jong (1993) and Wagenhuber &
Groenewegen (1998) with accurate new parametrizations of third
dredge-up and hot-bottom burning (HBB), as well as new fits to
stellar structure from our full stellar evolution models. Stellar evo-
lution up to the TPAGB is handled by coupling the new code with
the rapid evolution code of Hurley, Pols & Tout (2000) and Hurley,
Tout & Pols (2002, H02) which is designed for single, binary and
star cluster evolution. The eventual aim of this work is to implement
TPAGB evolution and especially nucleosynthesis in the binary star
model and, while this is yet some way off, we have made significant
progress in constructing a capable single star model. The calculation
of binary star yields will result.

Table 1, mostly taken from the review of Henry (2004), sum-
marizes attempts at calculating AGB yields to date. It does not in-
clude important works on AGB evolution that do not specifically in-
volve yield calculation, such as the series of works by Boothroyd &
Sackmann (e.g. Boothroyd & Sackmann 1988) who investigate
Li, Be, B and 12C/13C ratios in particular, Straniero et al. (1997)

�E-mail: rgi@ast.cam.ac.uk

who tackle the carbon star formation problem in low-mass (1 �
M/M� � 3) solar-metallicity stars, Lattanzio and collaborators’
contribution to HBB (Lattanzio et al. 1997), carbon star forma-
tion (Lattanzio 1989) and degenerate pulses (Frost, Lattanzio &
Wood 1998), Mowlavi and collaborators’ works on 26Al (Mowlavi
& Meynet 2000), fluorine (Mowlavi, Jorissen & Arnould 1998) and
sodium (Mowlavi 1999), and models by Herwig (2000) detailing
convective overshooting and its consequences. There are also count-
less papers dealing specifically with the s-process in TPAGB stars
(e.g. Busso et al. 2001).

Synthetic models have been constructed in the past (e.g. Renzini
& Voli 1981; Iben & Renzini 1983) and are still very much in use
(Mouhcine & Lançon 2003). Hybrid models which combine aspects
of synthetic and full evolution have also been constructed (Marigo,
Bressan & Chiosi 1998; Marigo 1999, 2001). While we lean heavily
on the work of Groenewegen & de Jong (1993) and Wagenhuber &
Groenewegen (1998), our new model has some marked differences
in its treatment of dredge-up and HBB. Most previous models as-
sume a constant dredge-up parameter and minimum core mass for
dredge-up. We include expressions fitted to our full stellar evolution
models (Karakas, Lattanzio & Pols 2002) for these and the stellar
structure (luminosity, radius, core mass, etc.). HBB is included in a
similar way to Groenewegen & de Jong (1993) but with calibration
of the free parameters to our full evolution models.

While the use of a purely synthetic code is inferior in accuracy or
detail to full stellar modelling [or the envelope burning technique of
Marigo 1999a (M99)], it is the only way to explore a large param-
eter space such as a full study of binary stars. The single star space
could conceivably consist of the mass M, metallicity Z and a few
free parameters such as the minimum mass for dredge-up, dredge-up
efficiency and perhaps the mass-loss rate. For binaries the problem
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Table 1. Summary of existing TPAGB models. IT = Iben & Truran (1978); RV = Renzini & Voli (1981); HG = van den Hoek & Groenewegen (1997); FC =
Forestini & Charbonnel (1997); M01 = Marigo (2001); C01 = Chieffi et al. (2001); K02 = Karakas et al. (2002); D03 = Dray et al. (2003). ‘Syn’ indicates
a synthetic TPAGB code; ‘SynEnv’ denotes a synthetic TPAGB code with envelope integration; ‘Full’ are full stellar evolution models covering the TPAGB.
The HBB column contains ‘n’ = no, ‘a’ = analytic, and ‘net’ nuclear network (‘extrap’ is an extrapolation from full network calculations).

Authors Mass range (M�) Z range HBB Isotopes Model type Extras

IT 1–8 0.02 n 12,13C, 14N,22Ne Syn
RV 1–8 0.004–0.02 a 12,13C, 14N,16O Syn
HG 0.8–8 0.001–0.04 a 12,13C, 14N,16O Syn
FC 3–7 0.005-0.02 net/extrap many Syn/Full
M01 0.8–6 0.004–0.019 net 12,13C, 14,15N,16,17,18O SynEnv
C01 4–8 0 net many Full
K02/D03 1–6(.5) 0.004 − 0.02 net many Full
Our model 1–8 10−4–0.03 a 12,13C, 14,15N,16,17O,22Ne so far Syn Binaries

Table 2. List of variables.

Symbol Meaning

Z ZAMS metallicity (Z� = 0.02)
M i ZAMS mass
M Instantaneous mass
Mc Instantaneous core mass
Mc,bagb Core mass at the base of the (E)AGB
Mc,1TP Core mass at the start of the TPAGB
M1TP Mass at the start of the TPAGB
Menv Envelope mass, calculated from M − Mc

Menv,1TP Envelope mass at the start of the TPAGB
Xi Mass fraction of isotope i
Ṁ Stellar mass-loss rate
ζ log10(Z/0.02)

is worse, there are the two masses, separation and eccentricity,
and in addition free parameters associated with uncertain details
of common-envelope evolution, mass transfer and accretion and en-
hanced wind loss owing to the companion. A parameter space takes
a time δt × nN to explore, where δt is the average model time, n is
the number of grid-points per free parameter and N is the number of
free parameters, so a fast model is desired. Our model has an average
execution time (including features not described here, such as a com-
panion star and associated mass transfer, NeNa and MgAl cycles,
supernovae and novae) of 0.05 s on a 2.1-GHz AMD Athlon CPU1

(0.64 s on a Pentium Pro 200-MHz CPU2), so for a 106-point grid
we have a total execution time of nearly 14 h. An increase of δt to 1
min (which would be an extremely fast full stellar evolution model)
increases the total execution time to just less than 2 years.

The drawback of a fast code is a loss of accuracy and, while we try
to fit to our full evolution models as well as we can, it is impossible
to fit perfectly. We have to interpolate and sometimes extrapolate
into regions of parameter space where we cannot be sure that we
get the correct answer. Since we aim to investigate binary stars with
this code, we put up with these limitations and keep in mind that
detailed models of binary stars may differ. There are some things
that a synthetic model avoids, such as numerical breakdown which
can occur with a full evolution model. The synthetic model is no
worse than our detailed model for star-to-star analyses.

Table 2 lists some common variables used in this paper. Section 2
describes our full stellar evolution models. Section 3 contains the

1 Manufacturer: AMD, One AMD Place, PO Box 3453, Sunnyvale, CA
95070, USA
2 Manufacturer: Intel, 2000 Mission College Blvd., Santa Clara, CA 95052,
USA

(gory) details of our synthetic model. Detailed calibration and anal-
ysis of the variation in the free parameters introduced in the HBB
model are made in Section 4. Calibration of third dredge-up using
carbon star luminosity functions is described in Section 5.1. The
initial–final mass relation and white dwarf mass functions derived
from the model are compared with observations in Sections 5.4 and
5.5. Yields from single stars are calculated in Section 6 with compar-
ison to our full stellar evolution model yields and the yields of van
den Hoek & Groenewegen (1997) and Marigo (2001). The appendix
(in the online version of the article only3) contains the coefficients
for the fitting formulae, yield tables and synthetic-detailed model
composition comparisons.

2 F U L L E VO L U T I O NA RY M O D E L S

Our full stellar evolution models used are those described in Karakas
et al. (2002) (hereafter K02). They were constructed with the
Monash version of the Mt Stromlo Stellar Evolution Code (Wood &
Zarro 1981; Frost 1997) updated to use the OPAL opacity tables of
Iglesias & Rogers (1996). The thermally pulsing phase of the AGB
is covered by the models until mass loss makes convergence impos-
sible. Mass loss is parametrized on the red giant branch using the
Kudritzki & Reimers (1978) formula with η = 0.4 and on the AGB
using the prescription of (Vassiliadis & Wood 1993, VW93). The
mixing length parameter α is set to 1.75 and convective overshooting
is not included in the models.

We have high-resolution evolution (taken every 100 models from
the stellar structure code) and nucleosynthesis model data for Z =
0.02, M i = 3, 4, 5, 6, 6.5 M�, Z = 0.008, M i = 4, 5, 6 M�, Z =
0.004, M i = 4, 5, 6 M� and Z = 0.0001, M i = 1.25, 2, 2.25 M�, and
lower resolution data (every 1000 stellar structure models) for Z =
0.02, M i = 1, 1.25, 1.9, 2.5, 3.5 M�, Z = 0.008, M i = 1, 1.9, 2.5, 3,
3.5 M�, Z = 0.004, M i = 1, 2, 2.5, 3, 3.5 M� and Z = 0.0001, M i =
1.75 M�, where M i is the initial (zero-age main-sequence, ZAMS)
mass of the star. There are typically a few thousand evolutionary
models per interpulse period.

3 O U R S Y N T H E T I C M O D E L

Stellar evolution from the ZAMS up to the thermally pulsing AGB
is already dealt with in the rapid evolution code (Hurley, Pols & Tout
2000). The main sequence, giant branch evolution and early AGB
(EAGB) abundance changes can be represented by simple formulae
dealing with first and second dredge-up. All abundances are mass

3 http://www.blackwellpublishing.com/products/journals/suppmat/mnr/
mnr7446/mnr7446sm.htm
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Figure 1. Time evolution of our synthetic AGB model (λ > 0, not to scale).
During the interpulse period τ ip the hydrogen-free core Mc (Intershell +
CO Core) grows by �MH and the envelope loses mass Ṁτip. At the end of
the time-step (usually the end of the interpulse period) we burn the envelope
using the HBB algorithm and then a He-shell flash occurs causing �Mdredge

= λ�MH of material from the intershell region to mix with the convective
envelope. The new interpulse period τ ′

ip is calculated and the evolution con-
tinued. The CO core is shown here but we consider it to have the same mass
as the hydrogen-free core.

fractions. Coefficients for fits are in Appendix A4 unless otherwise
stated. The fits are made using a Levenberg–Marquardt gradient
descent iterative χ2-minimization code (Press et al. 1992).

The state of the star at the beginning of the TPAGB is known from
the fits given in Sections 3.2 and 3.3. The star is evolved forward
in time pulse by pulse (see Fig. 1). Between pulses the star loses
mass at a rate Ṁ from the envelope in a wind. The core grows ow-
ing to hydrogen burning and the envelope material may experience
HBB. At every time-step (usually coincident with a thermal pulse)
the HBB algorithm is activated and, if the time since the previ-
ous pulse exceeds the interpulse period, is immediately followed by
third dredge-up. The change in core mass due to nuclear burning and
dredge-up combined with the effect of wind loss (see Section 3.6)
determines the time evolution of the star.

The rapid stellar evolution code defines a time-step δt such that
certain variables (e.g. radius or angular momentum) may not change
by a large amount during that time-step. We add an additional con-
straint that the time-step must be at most the interpulse period. Be-
cause we expect the time-step to be the same as the interpulse period
most of the time (especially for detached binaries), luminosity varia-
tions owing to the pulse cycle are averaged out, although luminosity
changes owing to an increase in core mass are followed if the time-
step is small enough.

3.1 From the ZAMS to EAGB

Stellar evolution on the main sequence does not affect the surface
abundances, except in some rare cases not considered here (e.g.
when the lifetime of the star is long enough that diffusion becomes

4 http://www.blackwellpublishing.com/products/journals/suppmat/mnr/
mnr7446/mnr7446sm.htm

Table 3. ZAMS abundances (mass fractions) used in both the full stellar
evolution models and the synthetic models for Z =0.02, 0.008 and 0.004 (first
row of numbers for each species) and the equivalent solar-scaled abundance
(second row of numbers).

Z 0.02 0.008 0.004

1H 0.687 20 0.736 89 0.748 40
4He 0.292 80 0.255 10 0.247 60
12C 2.925 93 × 10−3 9.695 93 × 10−4 4.822 97 × 10−4

1.170 37 × 10−3 5.851 86 × 10−4

13C 4.108 00 × 10−5 2.882 81 × 10−5 1.499 27 × 10−5

1.6432 × 10−5 8.216 × 10−6

14N 8.978 64 × 10−4 1.424 08 × 10−4 5.108 03 × 10−5

3.591 46 × 10−4 1.795 73 × 10−4

15N 4.140 00 × 10−6 2.905 00 × 10−6 1.510 90 × 10−6

1.656 × 10−6 8.28 × 10−7

16O 8.150 85 × 10−3 2.639 54 × 10−3 1.283 08 × 10−3

3.260 34 × 10−3 1.630 17 × 10−3

17O 3.876 00 × 10−6 2.720 00 × 10−6 1.414 59 × 10−6

1.5504 × 10−6 7.752 × 10−7

22Ne 1.452 00 × 10−4 1.018 94 × 10−4 5.299 27 × 10−5

5.8088 × 10−5 2.904 × 10−5

an important transport mechanism). Only during hydrogen shell
burning, when the star is a red giant, does the convective envelope
reach down into burned material and mix the products of nuclear
processing. This mixing event changes the surface abundances and is
known as the first dredge-up. A similar process takes place during
the early AGB when second dredge-up follows the transition to
helium shell burning.

3.1.1 Initial abundances

ZAMS abundances are identical to our full stellar evolutionary
models [taken from Anders & Grevesse (1989) for Z = 0.02 and
Russell & Dopita (1992) for Z = 0.008 and 0.004] shown in Table 3.
Quadratic fits are used for 0.02 � Z � 0.004 such that each isotope
i has an abundance given by

Xi = (
ai,1 + bi,1 Z + ci,1 Z 2

)
, (1)

with the coefficients given in Appendix A. The fits are exact for the
metallicities of our full stellar evolution models. The Z = 0.0001
models use scaled solar abundances (Anders & Grevesse 1989) so
we do likewise. Table 3 also shows the solar-scaled abundances for
Z = 0.008 and 0.004 in order to highlight the differences between
the two sets.

To some extent the synthetic model is independent of the initial
abundances because HBB is dealt with by solution of the appropriate
differential equations. Abundance changes at first, second and third
dredge-up are independent of modest changes in the initial abun-
dances because, to first order, the stellar structure does not depend
on the abundance mix at a given Z.

3.1.2 First dredge-up

Stars that undergo first dredge-up during their first ascent of the
giant branch have their abundances modified by

�X =




−0.017M + 0.01125Z , M/M� < 2;

−0.004M+
0.0074Z (M/M� − 2), 2 � M/M� < 3.25;

0, otherwise.

(2)

Then X′
H1= XH1 − �X and X′

He4= XHe4 + �X (i.e. �XHe4 =
−�XH1). The CNO abundances are changed by
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Figure 2. Core mass at the first thermal pulse from our full stellar evolution models (K02) and the Padova group models (G00) for Z = 0.02, 0.008 and 0.004.
NOVS indicates models without convective overshooting; OVS indicates convective overshooting.

g = XC12 × min(0.36, 0.21 + 0.05M/M�) (3)

such that

X ′
C12 = XC12 − g, (4)

X ′
N14 = XN14 + 7

6
g (5)

and

X ′
O16 = 0.99XO16. (6)

The minority species are fitted to our full stellar evolution models:

X ′
C13 = XC13 + (

a7 + b7 M + c7 M2 + d7 M3
)

× (
1 + e7 Z + f7 Z 2 − g7/Z

)
, (7)

X ′
N15 = XN15 + max

[ − 0.5XN15,(
a8 + b8 M + c8 M2 + d8 M3

)
× (1 + e8 Z )

]/
( f8 + g8 Z ), (8)

X ′
O17 = XO17 + (

a9 + b9 M + c9 M2 + d9 M3
)

(1 + e9 Z ) (9)

and

X ′
Ne22 = XNe22 + max

[
0,

(
a10 + b10 M + c10 M2 + d10 M3

)
(

1 + e10 Z + f10 Z 2
)]

. (10)

Our treatment of first dredge-up is similar to that of Renzini & Voli
(1981) and (GdJ93 Groenewegen & de Jong 1993 GdJ93) but with
the numbers changed to fit our full stellar evolution models better
and with an extension to include the minority species. We do not
include any extra mixing process on the upper red giant branch.

3.1.3 Second dredge-up

Second dredge-up occurs in sufficiently massive stars [Mc,bagb �
0.8 M� where Mc,bagb is the core mass of the star at the start of
the (E)AGB: see Hurley et al. (2000)] at the end of the EAGB
when twin shell burning begins. The Hurley et al. (2000) value
for Mc,bagb was calculated using overshooting models while our
Mc,1TP was calculated using non-overshooting models, so there is
an inherent inconsistency. However, as shown in Fig. 2, the effect
of overshooting on Mc,1TP is small. Again following Renzini & Voli
(1981) and GdJ93, with alterations to fit our full stellar evolution
models better, we define

a = M − Mc,bagb

M − MA
c

(11)

and

b = Mc,bagb − MA
c

M − MA
c

, (12)

where MA
c is the core mass just after second dredge-up, which is

assumed to be equal to the core mass at the first thermal pulse (see
Section 3.2). Then

X ′
H1 = XH1 − �XH1, (13)

X ′
He4 = XHe4 + �XH1, (14)

X ′
C12 = a XC12, (15)

X ′
C13 = a XC13, (16)

X ′
N14 = a XN14 + 14b

(
XC12

12
+ XC13

13

+ XN14

14
+ XN15

15
+ XO16

16
+ XO17

17

)
, (17)

X ′
N15 = a XN15, (18)

X ′
O16 = a XO16, (19)

X ′
O17 = a XO17, (20)

X ′
Ne22 = XNe22 + (

a21 + b21 M + c21 M2 + d21 M3 + e21 M4
)

× (
1 + g21 Z + h21 Z 2 + i21 Z 3

)
, (21)

where

�XH1 = a22 + b22a + c22 Z . (22)

Equation (16) is different from GdJ93, who set X′
C13 = 0.

3.2 The start of the TPAGB

On the TPAGB a star consists of a hydrogen-rich convective en-
velope and a hydrogen-deficient core. The core is defined here as
the mass inside which the hydrogen abundance is less than half
the surface abundance [�35 per cent by mass, as in Wagenhuber
& Groenewegen (1998).5] The envelope is assumed to be fully con-
vective.6

5 This definition is not the same as some others in the literature, with the
exception of Wagenhuber & Groenewegen (1998), but because the difference
in mass coordinate between the He- and H-burning shells is very small, our
definition is almost coincidental with any other sensible definition.
6 This implies that our model is only good for isotopes with nuclear time-
scales longer than the convective turnover time. We cannot use our model to
study e.g. 7Be or 7Li.
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At the beginning of the TPAGB we calculate the core mass (Sec-
tion 3.2.1) as a function of initial TPAGB mass M1TP and metallic-
ity Z. The luminosity, radius and initial interpulse period are then
calculated.

3.2.1 Mass and core mass

The fit for the core mass at the first thermal pulse, Mc,1TP, valid for
the range 0.004 � Z � 0.02 and 1 � M1TP/M� � 6, is taken from
K02:

Mc,1TP/M� = f23

[−a23(M1TP/M� − b23)2 + c23

]
+ (1 − f23)(d23 M1TP/M� + e23), (23)

where

f23 = [
1 + e(M1TP/M�−g23)/h23

]
. (24)

The coefficients a23 to h23 are metallicity-dependent and are inter-
polated from the tables in K02. Upon extrapolation this function is
well-behaved for 0.02 < Z � 0.03. We have initial core masses for
Z = 0.0001 and M i � 2.25 which lead to a fit similar to that for Z =
0.004 with a slightly modified f 23 to take into account the higher
core mass at very low metallicity. We assume there is little mass
loss prior to the TPAGB, which is true for all but the lowest mass
stars which experience significant mass loss on the giant branch,
so M1TP ≈ M i. K02 find little change in Mc,1TP whether mass loss
is included or not because the Mc,1TP(M i) curve flattens off at low
mass so giant branch mass loss is not important.

Our initial core masses are compared with the models of the
Padova group (Girardi et al. 2000, hereafter G00, as used by Marigo
2001) in Fig. 2. The G00 convective overshooting models (which are
evolved without mass loss) all have a dip in Mc,1TP at around 2 M�
which is not so pronounced in any of the non-overshooting models.
The G00 models have a lower Mc,1TP by up to a few hundredths of
a solar mass for M1TP < 3 M�.

3.3 Evolution on the TPAGB as a function of M, Mc and Z

In order to evolve the star forward in time, the interpulse period,
luminosity and radius are required as functions of M, Mc and Z. We
avoid a direct fit to the time, t, so we can vary the mass-loss rate and
use the code for binary stars. For some of the fits we use Mc,nodup, the
core mass as it would be in the absence of third dredge-up, defined
by

Mc,nodup(t) = Mc,1TP +
∫ t

t1TP

max

(
0,

dMc

dt

)
dt, (25)

where t1TP is the time of the first thermal pulse. The use of Mc,nodup

allows us to account for effects due to an increase in degeneracy
in the core during core growth so that two stars with the same core
mass yet different age have (for example) a different luminosity.

We also define the change in core mass

�Mc = Mc − Mc,1TP, (26)

and the change in core mass without third dredge-up

�Mc,nodup = Mc,nodup − Mc,1TP. (27)

Other fits are to M1TP, Mc,1TP or N, the thermal pulse number.

3.3.1 Interpulse period

The interpulse period τ ip is based on the formula in Wagenhuber &
Groenewegen (1998), but modified to fit our full stellar evolution
models and include a dependence on the dredge-up parameter λ

(defined in Section 3.4):

log10(τip/yr) = a28(Mc/M� − b28) − 10c28 − 10d28 + 0.15λ2,
(28)

where c28 and d28 are taken directly from Wagenhuber & Groenewe-
gen (1998). The added coefficients a28 and b28 are interpolated from
the table in Appendix A.

3.3.2 Luminosity

For low-mass stars the peak luminosity at each pulse (after the first
few thermal pulses) follows a linear core-mass–luminosity rela-
tion (CMLR, Paczynski 1970). For intermediate-mass stars (M i �
3.5 M�) this relation fails because of HBB (Blöcker & Schönberner
1991; Marigo et al. 1999b). We fit the peak luminosity as a sum of
the core-mass–luminosity and a term due to HBB:

L = fd( ft LCMLR + Lenv) L�. (29)

The CMLR is given by a quadratic in Mc for high initial core masses;
otherwise a linear form is more suitable. If Mc,1TP > 0.58,

LCMLR = 3.7311 × 104

× max
[
(Mc/M� − 0.52629)(2.7812 − Mc/M�),

1.2(Mc/M� − 0.48)
]

; (30)

otherwise

LCMLR = max [4(18160 + 3980Z )(Mc − 0.4468) − 4000, 10] .
(31)

We have no fit for Mc < Mc,1TP, so the above expression is used
for Mc > 0.4468; otherwise the expression from H02 is used (stars
with such a low core mass can only form in binary systems).

The envelope luminosity is given by

Lenv = 1.50 × 104 M2
env

[
1 + 0.75

(
1 − Z

0.02

)]

× max

[(
Mc/M� + 1

2
�Mc,nodup/M� − 0.75

)2

, 0

]
,

(32)

with a turn-on factor for the first few pulses

ft = min

[(
�Mc,nodup

0.04

)0.2

, 1.0

]
. (33)

In our standard model we do not model the short-time-scale
changes in luminosity which occur during the thermal pulse cy-
cle, but it is necessary to correct for these to obtain an accurate
evolution algorithm. This is done with the factor f d given by

fd = 1 − 0.2180 exp[−11.613(Mc/M� − 0.56189)]. (34)

The luminosity is not allowed to fall below the luminosity of a zero-
age white dwarf (taken from H02) with the same mass as the core.
Fig. 3 shows our luminosity (full stellar evolution and synthetic
models) versus core mass.

3.3.3 Radius

The radius R is defined by L = 4πσR2T4
eff, where σ is the Stefan–

Boltzmann constant and T eff is the effective temperature of the star.
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Figure 3. Luminosity versus core mass during the TPAGB phase for Z = 0.02 (left), 0.008 (centre) and 0.004 (right). The grey points are our full stellar
evolution models, the black points our synthetic models with the same initial masses. Note that our full stellar evolution models include post-flash dips while
the synthetic models do not. Models with core masses above about 0.8 M� show HBB.

Figure 4. As Fig. 3 but for radius (prior to H02 small envelope corrections).

The fit takes the basic form log R ≈ A log L with corrections for
envelope mass loss, metallicity and a small quadratic dependence
on the core mass:
log10( fR R/R�) = a35 + 0.8l + b35 Mc,1TP/M�

+ c35 M2
c,1TP + d35 log10 Z + e35 Z , (35)

where l = log10(10−3L/L� ) and f R = (Menv/Menv,1TP)0.66 corrects
for envelope removal. The complicated expression for the fit reflects
the large changes in opacity in the stellar envelope over the evolution
of the stars. As Menv tends to zero the radius diverges, so is capped
at 103R�. Fig. 4 shows the radius versus core mass from our full
stellar evolution and synthetic models. Corrections are applied for
small envelope mass as in H02 to facilitate a smooth transition from
the AGB to the white dwarf cooling track.

3.3.4 Temperature at the base of the convective envelope

The temperature at the base of the convective envelope T bce is
the critical factor which governs the rate of HBB (see also Sec-
tion 4.3.1). If the temperature is sufficiently high (T bce > T HBBmin ≈
107.5 K) it is possible that hydrogen burning occurs in the con-
vective envelope of the star, altering the surface abundances. From
our full stellar evolution models we see that the temperature rises
quickly in these hot-bottom envelopes and then stays at a roughly
constant value until the envelope mass becomes small. In order to
model the HBB, a fit to the temperature in the burning zone is
needed.

The base of the convective envelope is defined as the inner-
most point in the envelope at which the Schwarzschild condi-
tion for stability is no longer satisfied. The rise at the begin-
ning of the AGB and the fall owing to envelope mass reduction

at the end of the AGB are extremely difficult to parametrize, so
we opt for simplicity and fit the maximum temperature over the
lifetime of the star and modulate it for the rise and fall. The
log of the temperature used in our nucleosynthesis code is then
given by

log10(Tbce/K) = log10(Tmax) fTrise fTdrop, (36)

where T max, f Trise and f Tdrop are defined below.
The logarithm of the temperature maximum is fitted to

log10(Tmax/K) = min(6.0379 + a37 Menv,0/M�
+ B(ζ, Mc,1TP), 7.95), (37)

where a37 is a constant and

B(ζ, Mc,1TP) = (
a38ζ

2 + b38ζ + c38

)
× [

1 + d38 Mc,1TP/M� + e38(Mc,1TP/M�)2
]
, (38)

where a38. . . e38 are constants. The maximum value of 7.95 is more
a limitation of the HBB code (see Section 3.7) than an actual phys-
ical effect, but temperatures higher than this are only likely to be
encountered in the most massive (M = 6 M�) and lowest metallic-
ity (Z � 0.004) stars so the limit of 7.95 should not greatly affect
the CNO yields.

The rise in temperature during the first few thermal pulses is
modelled by a factor

fTrise = 1.0 − exp

(
− N

Nrise

)
, (39)

where N is the thermal pulse number and N rise is a rather arbitrary
constant, of the order of 1 for M i ≈ 6 M�, a few for M i ≈ 5 M�,
about 20 for M i ≈ 4 M� and possibly infinite for M i < 3.5 M�
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(because no HBB occurs in these stars, at least for Z � 0.004,
although the T max < T HBB,min condition will also prevent HBB).
We use it as a free parameter in our nucleosynthesis model. It is
important that HBB switches on quite suddenly, so even if N rise

≈ 6, HBB is not fully active for about 15 pulses by which time
f Trise ≈ 0.9.

The drop in temperature owing to the decrease in envelope mass
is taken care of by

fTdrop =
(

Menv

Menv,1TP

)β40

, (40)

where β 40 is another free parameter which is quite uncertain. For-
tunately Menv falls quickly during the superwind phase near the end
of the AGB, so the uncertainty does not matter too much. We use a
constant value β 40 = 0.02 and this works well for most stars.

3.3.5 Density at the base of the convective envelope

The density ρ at the base of the convective envelope is not as impor-
tant for nucleosynthesis as the temperature, but a reasonable value
is required. We fit the maximum density over the TPAGB evolution
of the star as a function of M0 and Z:

log10 ρmax = a41 + b41

(
Mc41

1TP/M�
) + d41ζ. (41)

This function is modulated by f Trise and Menv/Menv,0 to give

ρ = ρmax fTrise
Menv

Menv,1TP
g cm−3. (42)

This is a reasonable fit for M1TP > 3 M� and models with M1TP <

3 M� do not experience HBB.

3.4 Third dredge-up

The efficiency of third dredge-up is parametrized by

λ = �Mdredge

�MH
, (43)

where �Mdredge is the mass dredged up from the intershell region and
�MH is the core mass increase owing to hydrogen burning during
the previous interpulse period, so that over a whole interpulse period
the core grows by �Mc = �MH − �Mdredge = (1 − λ)�MH. We
calculate λ as function of mass and metallicity. The possibility of
burning dredged-up material is also considered. Note that the fitting
of λ to M is an approximation to the true, and unknown, form which
would depend on Mc and Menv.

The dredged-up material is instantaneously mixed with the con-
vective envelope of the star. We note that there is a possibility of
a degenerate thermal pulse in some stars (Frost et al. 1998); how-
ever, the effect is to increase the amount of 12C dredged up by a
factor of 4, making one degenerate pulse equivalent to four nor-
mal pulses. Frost et al. (1998) report degenerate thermal pulses in
a M = 5 M�, Z = 0.004 star which would also undergo many
dozens of non-degenerate third dredge-up events, so the effect of
one or two degenerate pulses is small compared with the effect of
non-degenerate pulses. We neglect the phenomenon.

3.4.1 Lambda parametrization and minimum mass for dredge-up

K02 find third dredge-up for stars above a certain core mass Mmin
c ,

a function of M i, Z and M sdu, where M sdu is the mass above which
second dredge-up occurs (M sdu ≈ 4 M� for Z = 0.02 and M sdu ≈

3.5 M� for Z = 0.004). For M < M sdu the minimum core mass is
given by K02:

Mmin∗
c /M� = a44 + b44 M/M�

+c44(M/M�)2 + d44(M/M�)3. (44)

We use the instantaneous mass M rather than M i (as K02 do) to
allow for effects of reduced envelope mass on λ, although without
full stellar evolution models at this late stage of the TPAGB it is
impossible to know whether this is entirely correct. For M � M sdu −
0.5 M�, K02 found Mmin

c > 0.7 M�, so we set Mmin
c = Mc,1TP as they

do. Equation (44) diverges as M increases so is capped at 0.7 M�.
A correction is subtracted for Z < 0.004 to force dredge-up in the
low-metallicity models:

�MLZ = −205.1Z + 0.8205. (45)

Finally we combine the above prescriptions, so for any M we set
Mmin

c to

Mmin
c = max

[
Mc,1TP, min

(
0.7 M�, Mmin∗

c − �MLZ

)]
. (46)

Below Mmin
c , λ = 0. For Mc > Mmin

c , λ reaches an asymptotic value
λmax after N r thermal pulses. λmax is fitted with

λmax = a47 + b47 M/M� + c47(M/M�)3

1 + d47(M/M�)3
, (47)

with a47. . . d47 functions of metallicity (K02). For M � 3.0 M�,
λ reaches a value of 0.8–0.9 with a slight metallicity dependence.
At low metallicity dredge-up is efficient in lower mass stars, so for
Z � 0.004 we use equation (47) with M artificially increased by an
amount 60 × (0.004 − Z).

We approximate the dependence on pulse number N by

λ(N ) = λmax(1 − e−N/Nr ). (48)

Table 5 of K02 lists appropriate values for N r but there is no sys-
tematic variation that is easily fitted with a simple function. We
use

Nr = 4 + 3[1 − exp(−M1TP/M�)]

× [1 − a49 exp(−Q49)], (49)

where

Q49 = [
(4 − M1TP/M� + b49 Z )(4 − M1TP/M� + c49 Z )

]
(50)

which fits the dip in N r around M1TP ≈ 4 M� (with slight metallicity
dependence taken care of by b49 and c49). This is well-behaved over
the entire parameter space, and the difference between M1TP and
M is irrelevant because this turn-on is only active for the first few
pulses.

In Fig. 5 (left-hand panel) we show the temperature at the base
of the convective envelope from our full stellar evolution models.
Note that use of the Marigo, Girardi & Bressan (1999a) prescription
for dredge-up above log10T bce = 6.4 would lead to dredge-up in all
our stars. Also in Fig. 5 is a comparison of our Mmin

c with Marigo
et al. (1999a)’s prescription (with log10T bce = 6.4) for solar metal-
licity. Even after calibration of our synthetic model by comparison
to carbon star luminosity functions (see Section 5.1), which leads to
a reduction in Mmin

c , our synthetic models still have a slightly higher
Mmin

c than Marigo et al. (1999a).

3.4.2 Intershell abundances

The abundances in the intershell region Xi are fitted to data taken
from the final thermal pulse of the Z = 0.02 models and include a
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Figure 5. Left-hand panel: temperature at the base of the convective envelope at the first thermal pulse from our full stellar evolution models at various
metallicities. Right-hand panel: Mmin

c from our full stellar evolution models (K02) and the model of Marigo et al. (1999a, M99). The solid line shows the core
mass at the first thermal pulse (from K02).

dependence on M1TP. The Z = 0.02 values work well for all metal-
licities.

X i
He4 =




0.636 M1TP < 1.76 M�,

a51 + b51 M1TP

+c51 M2
1TP + d51 M3

1TP M1TP � 1.76 M�,

(51)

X i
O16 =




f i
O(a52 + b52 M1TP) M < 1.76 M�,

f i
O(c52 + d52 M1TP

+ e52 M2
1TP + f52 M3

1TP) M1TP � 1.76 M�,

(52)

where f i
O = 1.5 − 1.3 × 10−4Z and

X i
C12 = max

(
1, f i

O

) × (
a53 + b53 X i

He4

)
. (53)

We calculate 22Ne from the CNO abundance in the stellar envelope
(envelope abundances given by Xi) just prior to dredge-up. All CNO
is burned to 14N which in turn is burned to 22Ne:

X i
Ne22 = 22

(
XC12

12
+ XC13

13
+ XN14

14
+ XN15

15

+ XO16

16
+ XO17

17

)
+ XNe22.

(54)

All other isotopes are set to zero in the intershell region and the
abundances are renormalized such that their sum is 1.0. The above
fits give typical intershell abundances (for a solar metallicity, 5-M�
model) of 74 per cent 4He, 23 per cent 12C, 0.5 per cent 16O and
2 per cent 22Ne.

Our full stellar evolution models do not obtain high values of
intershell 16O such as the 2 per cent reported by Boothroyd &
Sackmann (1988). There is some debate on the exact composition in
the intershell region. The inclusion of diffusive overshooting (Her-
wig 2000) increases the abundance of 12C and 16O at the expense of
4He.

3.4.3 Dredge-up of the hydrogen-burning shell

Others (notably GdJ93, equation 35) include nuclear burning of third
dredge-up material as well as envelope burning (Section 3.7 below).
The reason for this is that material brought up by third dredge-up
is preferentially exposed to high temperatures at the base of the
convective envelope. Our full stellar evolution models do not show
this phenomenon although, in our low-metallicity models, there is

dredge-up of 13C and 14N that leads to a similar effect which cannot
possibly result from helium burning. These isotopes are enhanced in
the envelope by dredge-up of material previously in the hydrogen-
burning shell (burnt during the interpulse period) but not mixed into
the intershell convective zone.

We account for this by burning a fraction f DUP of �Mdredge for a
fraction of the interpulse period f burn,DUP and at the temperature and
density at the base of the envelope (extrapolated from equations 37
and 41). The hydrogen abundance of the material to be burned is set
to the envelope hydrogen abundance (even though it may be some-
what lower due to interpulse hydrogen shell burning). Because f DUP

and f burn,DUP are fitted to the full evolution models, any problems
are circumvented by the calibration. The burning algorithm is de-
scribed in Section 3.7.1 and is the same algorithm as used for HBB.
The hydrogen-burned material is immediately mixed with both the
helium-burned intershell material and the whole convective enve-
lope to give the post-third dredge-up envelope abundances.

Note that when normal HBB occurs it is the dominant burning
mechanism. At metallicity greater than 0.004 the change of 13C and
14N in the envelope due to the dredge-up of the H-burning shell
is negligible compared with the abundance of 13C and 14N already
in the envelope. The model used here is only approximate (and
does not reflect the actual hydrogen-burning process), and we hope
to improve upon it soon when more low-Z full evolution models
become available.

3.5 Core growth during the interpulse period

Between pulses the hydrogen-deficient core grows owing to (radia-
tive) hydrogen burning. The luminosity is due mainly to H burning
and so can be used to calculate the change in core mass during any
time-step:

�Mc = min(L, Lmax)Qδt, (55)

where L is the luminosity, δt is the time-step, and Q is the effective
nuclear burning efficiency. L is capped at Lmax = 3.0 × 104 L�
because an increase in core size beyond this rate is not seen in
our full stellar evolution models. Q is set to 1.585 × 10−11 M�
L−1� yr−1 as fitted to our full stellar evolution models (this value
takes into account both hydrogen burning and helium burning, as
well as gravitational effects and compositional effects such as a
non-uniform hydrogen mass fraction in the shell) which compares
reasonably to the values 1.27 × 10−11 M� L−1� yr−1 in Hurley
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et al. (2000) and 1.02 × 10−11 M� L−1� yr−1 in Wagenhuber &
Groenewegen (1998). No XH1 dependence is evident in our full
stellar evolution models.

3.6 Wind loss prescription

To compare our synthetic model with our full stellar evolution mod-
els, the same wind loss prescription is used (section 2 of K02). Before
the giant branch the mass-loss rate Ṁ is negligible (we set Ṁ = 0
in both our synthetic model and full stellar evolution models). On
the giant branch the formula of Kudritzki & Reimers (1978) with
η = 0.4 is used. On the EAGB and TPAGB the mass-loss rate is ac-
cording to VW93, without the correction for masses above 2.5 M�,
where

log10(Ṁ/M� yr−1) = −11.4 + 0.0125(P/d), (56)

where P is the Mira pulsation period given by

log10(P/d) = −2.07 − 0.9 log10(M/M�) + 1.94 log10(R/R�).
(57)

A typical mass-loss rate is then about 10−9 M� yr−1 for a 1.9 −
M�, Z = 0.008 star (a typical carbon star mass, with L ≈ 5 ×
103L� , R ≈ 200 R� and P ≈ 200 d) prior to superwind. This is
a little low compared with observations (e.g. Wallerstein & Knapp
1998), although higher mass stars have significantly higher rates
(e.g. Ṁ ≈ 4 × 10−7 M� yr−1 for M = 6 M�, Z = 0.02) and as
Wallerstein & Knapp (1998) point out it is more difficult to observe
AGB stars with low mass-loss rates so there is some observational
bias.

On the TPAGB and for P � Pmax the rate in equation (56) is
truncated (if necessary) to a superwind given by

Ṁ = L

cvexp
, (58)

where c is the speed of light and vexp is the expansion velocity of
the wind (VW93) given by

vexp = min [(−13.5 + 0.056Pmax/d), 15] kms−1. (59)

Our full stellar evolution models have Pmax = 500 d and we use
this in our standard synthetic model. The superwind mass-loss rate
is much greater than the rate given in equation (56), and leads to a
very quick end for the star and probably results in a planetary nebula.
For the 1.9-M�, Z = 0.008 star a typical superwind mass-loss rate
is about 10−5M� yr−1; this is typical for all our TPAGB stars and
agrees reasonably with observations (Wallerstein & Knapp 1998).

Note that the radius used in the above prescription is that of
equation (35) without the small-envelope correction of H02. This is
because the corrected radius drops as the envelope mass becomes
small, leading to a small wind-loss rate – the use of the fitted radius
(which diverges as the envelope becomes small) ensures that the
envelope is lost rapidly at the end of the AGB phase.

Table 4. Reactions used in the rapid CNO bi-cycle. The
left-hand column gives the reaction number used in the text,
i, and the right-hand column shows the corresponding nuclear
reaction.

i Reaction

12 12C + 1H → 13N + γ

13 13C + 1H → 14N + γ

14 14N + 1H → 15O + γ

16 16O + 1H → 17F + γ

17 17O + 1H → 14N + 4He

3.7 Hot-bottom burning

If the hydrogen envelope of an AGB star is sufficiently massive,
the hydrogen-burning shell can extend into the convective region,
a process known as hot-bottom burning (HBB). We deal with HBB
by burning a fraction of the convective envelope f HBB for a fraction
of the time-step period f burn at the temperature and density as fitted
in Sections 3.3.4 and 3.3.5. The burned fraction is mixed with the
rest of the convective envelope at the end of the time-step (usually
coincident with the end of the interpulse period). The validity of
this approach is discussed in Section 3.7.2. We burn only CNO,
but HBB affects other elements via the NeNa and MgAl chains (see
Karakas & Lattanzio 2003) as well as lithium via pp-burning. These
are difficult problems which are being worked on but are outside
the scope of this paper. HBB also depends on the mixing-length
parameter because the base of the convective envelope is linked to
superadiabatic layers near the surface by an adiabat; however, we
ignore this and use a fixed value α = 1.75.

3.7.1 Clayton’s CNO cycle

We burn the CNO elements according to Clayton’s CNO bi-cycle
(Clayton 1983). He claims this is accurate to 1 per cent for the
temperature range we are considering (log10T/K < 8), and this was
confirmed by GdJ93 who used a similar approach. We calibrate
out any errors (see Section 4). It is much faster than solving the
differential equations of a complete nuclear reaction network.

The CNO cycle can be simplified from the full set of differential
equations if 13N, 15N, 15O and 17F are in equilibrium. The cycle then
splits into two, the CN cycle and the ON cycle, with branching ratios
αCN = 1 − γ and γ � 7 × 10−4 respectively (Angulo et al. 1999).
The small value of γ reflects the fact that the time-scales in the ON
cycle are many thousands of times those required to bring the CN
cycle into equilibrium so we can treat the cycles separately.

The CN cycle equations, with αCN = 1, become

d

dt

[ 12C
13C
14N

]
=

[−1/τ12 0 1/τ14

1/τ12 −1/τ13 0
0 1/τ13 −1/τ14

][ 12C
13C
14N

]
(60)

which is of the form d
dt U = �U . Eigenvalues λi are given by

�U i = λi U i (no sum over i) and U is a linear combination of the
eigenvectors U i, so

U (t) = Aeλ1tU 1 + Beλ2tU 2 + Ceλ3tU 3. (61)

The time-scales τ i are defined by

τi = (〈σv〉i XH1)−1 , (62)

where 〈σv〉i is the velocity-averaged cross-section for the appro-
priate reaction i (see Table 4). The rate of change of each isotope
(equation 60) is proportional to the cross-section, the hydrogen den-
sity and the isotope density.

The method of solution for equation (60) is found in Clayton
(1983) (but beware the typographical error!). The time-step δt is
substituted for t in equation (61) to calculate the abundances at the
end of the current time-step.

The ON cycle equations are identical to the CN cycle, with 12C,
13C and 14N replaced by 14N, 16O and 17O and with appropriate τ i

(see Table 4 and Clayton 1983). The minor species 15N and 17O
are assumed to be in equilibrium. Any 17F produced is assumed to
decay immediately to 17O (τ 1/2 ≈ 65 s).

For short burning times (δt < τ 12) only the CN part of the cycle is
necessary. For longer times, the CN cycle is burned to equilibrium
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before the ON cycle is activated. Even in the most massive AGB
stars undergoing vigorous HBB, XO16 does not change much so
the ON cycle never approaches equilibrium. Nuclear reaction rates
are taken from the formulae in the NACRE compilation (Angulo
et al. 1999) except the beta decay constants which are taken from
the compilation of Tuli (2000). The rates compare well to table 5.3
(p. 393) of Clayton (1983).

3.7.2 Thin shell burning versus whole envelope
burning approximation

Between pulses the convective envelope of an AGB star turns over
many thousands of times. It is impossible to model this using little
CPU time because the burn → mix → burn → mix . . . process is
computationally expensive, especially if the code is to be extended
to more isotopes than just 1H, 4He and CNO. Given the uncertainties
involved in convective mixing and local mixing at the base of the
envelope, it is simpler and preferable to approximate the burning
(many times) of a thin HBB layer at the base of the convective
envelope with a single burning of a larger portion of the envelope.

This can be justified by considering the size of the HBB region.
For a 5-M� star d log10(T/K)/dm at the base of the envelope is
typically 3 × 103M−1� . HBB ceases at log10(T/K) ≈ 7.6 and the
temperature at the base of the envelope is typically log10(T/K) ≈
8 for most of the TPAGB. So �MHBB ≈ 10−4M�. This is much
smaller than the size of the convective envelope (about 4 M� for a
5-M� star), so the HBB shell can be considered as thin.

When the thin HBB shell is burned and then mixed into the enve-
lope the abundances in the envelope are essentially unchanged. Only
once a significant number of mixings (of the order Menv/�MHBB)
have occurred will the envelope abundances change noticeably, so
in our approximation we burn a fraction of the envelope, f HBB, for
a fraction of the interpulse period time f burn and fit f HBB and f burn to
our full stellar evolution models. In reality, some parts of the enve-
lope burn more than once but this is absorbed into the calibration of
f HBB. The burned shell and the rest of the envelope are mixed at the
end of the time-step.

To calibrate the model we allow mixing 10 times per interpulse
period so the shape of the abundances versus time profiles between
pulses can be observed. The code is designed so that the result is
identical to that obtained if there is only one mixing per interpulse in
the way that the code is expected to be used in population synthesis
runs.

Note that this technique differs from that of GdJ93 where the
average abundance rather than the final abundance between time 0
and f burnτ ip is mixed into the envelope.

4 H B B C A L I B R AT I O N A N D C O M PA R I S O N
O F S Y N T H E T I C M O D E L S W I T H F U L L
E VO L U T I O NA RY M O D E L S

The free parameters,

(i) f HBB – the fraction of the envelope of the star that is burned in
the HBB shell,

(ii) f burn – the fraction of the interpulse period for which the HBB
shell burns,

(iii) f DUP – the fraction of the dredged-up material that is
hydrogen-burned before being mixed into the envelope to simulate
dredge-up of the hydrogen shell in low-Z stars,

(iv) f DUP,burn – the fraction of the interpulse period for which the
dredged-up material is burned, and

Table 5. Burning time 106f burn as a fraction of the interpulse period for
different masses and metallicities. The first row of numbers for each Z are
the ranges narrowed down by the MC runs. The second row of numbers are
used to fit a relation to M1TP and Z. f burn = 0 for M1TP < 3.5 M�.

Z ↓ M1TP/M� → 3.5 4.0 5.0 6.0 6.5

0.02 – – 0.1–0.5 0.5–0.6 0.4–1.0
0.3 0.55 0.7

0.008 0 <0.2 0.6–1.0 0.8–1.0
0 0.1 0.8 0.9

0.004 0 0.15–0.5 0.5–1.0 0.8–10
0 0.3 0.75 0.9

(v) N rise – the factor used to define how quickly the HBB tem-
perature reaches T max,

are to be calibrated to our full stellar evolution models.
Previous authors (e.g. GdJ93) have used constant values for f HBB,

f burn, f DUP and f DUP,burn, with a different prescription for the tem-
perature (not requiring N rise). Here we assume that these values
differ for each star, so we attempt to parameterize them in terms
of M1TP and Z. Often we quote 106f burn instead of f burn because
f burn � 10−6.

4.1 Calibration method

A Monte Carlo (MC) method is used to test the above free parameters
with ranges 0.0 < f HBB < 1.0, 0.0 < 106f burn < 10.0 and 0 < N Trise <

20. f DUP and f DUP,burn are chosen to be zero and are only increased
when necessary.

A weighted sum of squares is constructed from our full stellar
evolution model nucleosynthesis data versus the corresponding syn-
thetic model nucleosynthesis results to enable comparison between
MC model runs. A score = (

∑
i wi si )−1 is defined such that higher

numbers mean a better fit where the weights are wi = (wC12, wC13,
wN14, wO16, wC/O, wC12/C13) = (1, 10, 1, 1, 5, 5) and si is the sum of
squares difference between our full stellar evolution and synthetic
models for the isotope (or ratio) i. The ratios XC12/XC13 and XC/XO

are weighted preferentially because these are important observed
nucleosynthetic constraints on AGB stars. 13C is also boosted be-
cause its abundance is small. 1D slices and 2D projections of the
resulting parameter space are then examined and compared with
the best fit obtained by this method. Human intervention comes last
but proves invaluable when trying to fit the details. Appendix B7

contains the details of the calibration results.

4.2 Free parameter Heaven or Hell

The results of the MC runs for each star are shown in Tables 5, 6
and 7. Ranges are given when the MC technique cannot distinguish
a unique solution. In such cases we choose a value that aids the fit
of the free parameter to M1TP and Z or such that 106f burn ≈ f HBB.
The chosen value is shown under the range. If the value is ‘–’ then
there is no HBB so f DUP = f burn = 0.0. Where no value is given
there is no full stellar evolution model with which to compare. It is
not possible to use the best MC values for every star because there
is too much non-systematic scatter.

7 http://www.blackwellpublishing.com/products/journals/suppmat/mnr/
mnr7446/mnr7446sm.htm
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Table 6. Envelope mass fraction exposed to HBB, f HBB, for different
masses and metallicities. The first row of numbers for each Z are the ranges
narrowed down by the MC runs. The second row of numbers are used to fit
a relation to M1TP and Z. f HBB = 0 for M1TP < 3.5 M�.

Z ↓ M1TP/M� → 3.5 4.0 5.0 6.0 6.5

0.02 – – 0.1–0.4 0.65 0.3–1.0
0.25 0.65 0.7

0.008 0 0.1–0.2 0.4–1.0 0.7–1.0
0 0.15 0.7 0.85

0.004 <0.1 0.1–0.5 0.8–1.0 0.75–1.0
0.1 0.3 0.9 0.85

Table 7. Temperature rise factor N rise for different masses and metallicities.
The first row of numbers for each Z are the ranges narrowed down by the
MC runs. The second row of numbers are used to fit a relation to M1TP and
Z. N rise is undefined for M1TP < 3.5 M� (because f burn = f HBB = 0).

Z ↓ M1TP/M� → 3.5 4.0 5.0 6.0 6.5

0.02 – – ∼3 <1 1–2
3 0.5 1.5

0.008 �6 ∼6 ∼2.5 ∼2
6 6 2.5 2

0.004 ∼6 ∼3 <2 <1
6 3 2 1

The values for f HBB and f burn are zero for M1TP < 3.5 M� with
a step up to about 0.9 at M1TP ≈ 4.5 M� and a slight metallicity
dependence. These can be reasonably well fitted to a function f 63

similar to a Fermi function:

f63 = (a63 Z + b63)

1 + (c63 Z + d63)(e63 Z+g63−M1TP/M�)
. (63)

The f 63 parameter for f HBB or 106f burn is then given by max(f 63,
0.0).

N rise is fitted to a quadratic in M1TP and z = min(Z, 0.02):

Nrise = max[a64(M1TP/M�)2 + b64(M1TP/M�)

+ c64z + d64z2 + e64, 0]. (64)

The maximum value for Z is necessary to maintain the behaviour of
the function at higher metallicity. Equation (64) reaches a minimum
value at around M1TP = 6 M� and is assumed to be valid for masses
higher than this.

For Z < 0.004 we include some immediate burning of dredge-up
material.

4.3 Sensitivity to f HBB, f burn and Nrise

With the model described above and an appropriate choice of f HBB,
f burn and N rise, it is possible to match our full stellar evolution models
to our synthetic models quite accurately. Problems occur with the
fitted values of f HBB, f burn and N rise because minor deviations in
the fit of the free parameters produce very different output (the
sensitivity does not help us to pin down unique values for f burn and
f HBB because of their inherent degeneracy). For example, if N rise

is too small then 13C rises and falls too early in the M i = 6 M�
stars. If f burn is even slightly too small then the ON cycle does
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Figure 6. 12C abundance versus time for M i = 5 M�, Z = 0.02 with varying
f HBB = f fit

HBB + �f , with −0.13 < �f < 0.13. The fitted value of f HBB is
slightly wrong, but this only gives a maximum error of 0.15. The solid line
is the full stellar evolution model; the other three lines are �f = −0.13, 0
and +0.13 denoted with pluses, crosses and open squares respectively.

not get switched on.8 If f burn is slightly too large then more 14N
is produced at the expense of 12C and 13C. A slight rise in f HBB

causes a large rise in HBB products, especially 14N. The sensitivity
to f HBB and f burn is compounded when both are erroneous in the same
direction.

A change to f HBB affects the 12C surface abundance evolution for
M i = 5 M�, Z = 0.02 (see Fig. 6). An increased f HBB better fits
the drop in 12C which occurs when HBB sets in, but by the end
of the evolution the surface abundances are not very different. At
most XC12 is wrong by a factor of 1.4 at any point over the entire
evolution, while overall it changes by a factor of 5. Final 13C and
14N have a similar scatter in log10X of about 0.15. These effects
are hardly visible in the case of the M i = 6 M�, Z = 0.02 star
and, because no burning occurs at all at M i/M� = 4, it is only in
the M i/M� ≈ 4.5–5 transition zone that we have to worry about
this.

Alteration of the burning time, f burn, has essentially the same
effect as a similar change in f HBB with the exception of oxygen
which is burned in the ON cycle when f burn is long enough. The
amount of 16O burned for M i = 6 M�, Z = 0.02 is very small
in our full stellar evolution models (� log10XO16 = −0.04). This is
about twice the size of the spread with �f burn = ±0.13 so we should
not read too much into this. Significant oxygen burning occurs for
M i = 6 M�, Z = 0.004 but the standard model deals quite well with
this (see Fig. 7). The carbon and nitrogen abundances are weakly
affected at M i = 6 M� but at the transition mass (M i = 5 M� for
Z = 0.02, M i = 4 M� for Z = 0.004) the surface abundance is
sensitive to f burn.

In summary, stars in the zone of transition between non-HBB and
HBB (M i = 4 M� for Z = 0.004, M i = 5 M� for Z = 0.02) are
the most troublesome when it comes to errors in the fit to f HBB and
f burn. However, this transition is quite sharp, so not too many stars
in a population would have the wrong surface abundances.

8 This is not a huge problem (except for M i > 6 M�) because most stars do
not change their surface oxygen abundance significantly over their lifetime.
For M i > 6 M� and low Z this could be a source of worry.
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Figure 7. 16O abundance versus time for the M i = 6 M�, Z = 0.004
models, with f burn set to f fit

burn +�f , where −0.13 <�f < 0.13. Our standard
synthetic model (�f = 0) does a reasonable job of reproducing the full stellar
evolution model. The solid line is the full stellar evolution model; the others
from top to bottom are �f = −0.13, 0 and +0.13 denoted with pluses,
crosses and open squares respectively.

4.3.1 Temperature sensitivity

If the fit to the temperature of the HBB layer (Section 3.3.4) is
allowed to vary even by a tiny amount, while the other free parame-
ters are kept constant, CNO element production varies significantly.

Figure 8. 12C, 13C, 14N and 16O surface abundances versus time for M i = 6 M�, Z = 0.02 with varying temperature factor 0.98 < fT < 1.02. The solid line
is our full stellar evolution model. The dashed lines represent fT = 0.98 to 1.02 in 0.01 increments, from top to bottom (pluses, crosses, open squares, filled
squares and open circles respectively). See text for details.

To show this, log10T max is allowed to vary from the fitted value
by a factor of 0.98 < fT < 1.02, just 2 per cent variations (5 per
cent in T max), and the abundance versus time profiles are compared
for the case M i = 6 M�, Z = 0.02 which would ordinarily un-
dergo large amounts of HBB (see Fig. 8). We do not always ex-
pect fT = 1.00 to be the best fit because in reality the HBB layer
has a temperature profile while in our synthetic model it does not.
Note that the log10T max limit of 7.95 has been disabled for these
tests, leading to numerical problems due to imaginary eigenvalues
at fT = 1.02.

(i) The final 12C is not greatly affected by temperature changes
but fT = 0.98 effectively switches off HBB. Paradoxically fT = 1.02
burns less 12C than fT = 1.01 during most of the evolution. This
is because fT = 1.02 puts the temperature above the log10(T/K) =
7.95 limit of applicability of the burning code. The best fit is for
fT = 1.0.

(ii) 13C is affected in a more subtle way. At low temperature
more 13C is produced by incomplete CNO cycling. At the higher
temperatures this 13C is converted to 14N. The final abundances for
fT > 1.0 are all similar because CN equilibrium is achieved, while
for fT < 1.00 there has not been enough conversion of 13C to 14N.
Again fT = 1.00 is the best fit.

(iii) The log of the final surface abundance of nitrogen varies
from −2.55 at fT = 0.98 (the same as the abundance at the
start of the TPAGB) to −1.85 at fT = 1.02. The best fit
is fT = 1.01 although fT = 1.00 is not too bad. For fT �
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1.01 nitrogen abundances are high because of excessive ON
cycling.

(iv) Out of all the CNO elements the surface oxygen abundance
varies the most with temperature. For fT � 1.00 there is little change
in oxygen abundance, just as in our full stellar evolution models. An
increase in the value of fT to just 1.02 causes the surface oxygen
abundance to drop by a factor of 10. This is not seen in our full stellar
evolution models, so a value of fT = 1.00 is certainly justified while
fT = 1.01 also gives too large a drop.

4.3.2 Dangerous interpolations and extrapolations

The TPAGB code is designed to be inserted into the rapid stellar
evolution code, which deals with both single and binary stars for
0.1 � M i/M� � 100.0 and 0.0001 � Z � 0.03. This means that
the expressions in the TPAGB code, developed here for 1 � M i/M�
� 6.5 and 0.004 � Z � 0.02, or M i � 2.25 M�, Z = 0.0001, must
be interpolated over a factor of 40 in Z, or extrapolated beyond
Z = 0.004 for M � 2.5 M�, into regimes where they have not been
fitted to full stellar evolution models. Our expressions are designed
to give sensible results when extrapolated or interpolated to low
metallicity, but we have no way to tell if the results are correct.

5 D R E D G E - U P C A L I B R AT I O N A N D
C O M PA R I S O N W I T H O B S E RVAT I O N S

5.1 Carbon stars

The carbon star luminosity function (CSLF) is defined as the number
of carbon stars per unit bolometric magnitude for a particular popu-
lation, i.e. it is a probability density function. We model a population
of stars in the mass range 0.5 � M i/M� � 8.0 where the probabil-
ity for each star is taken from the initial mass function of Kroupa,
Tout & Gilmore (1993) (KTG93, see also Appendix A7) and we as-
sume a constant star formation rate. Results are compared with the
Large Magellanic Cloud (LMC) (Z = 0.008) and Small Magellanic
Cloud (SMC) (Z = 0.004) data taken from Groenewegen (2002)
(2002; see also Groenewegen 1999). The theoretical distributions
are binned identically to the observed data in 0.25-mag bins. All
distributions are normalized such that the integrated probability is
1.0 (so are independent of the star formation rate if we assume it is
constant). Because the bin widths are fixed, the probability density
is directly proportional to the probability per bin (i.e. the number of
stars per bin) so is directly compared to the (suitably normalized)
observations.

It turns out that to fit the dim carbon stars with bolometric magni-
tude less than −3 we have to introduce a correction to the luminosity
to deal with post-flash minima. This is a factor of the form

fL = 1 − 0.5 × min

[
1, exp

(
−3

τ

τip

)]
, (65)

which is activated for the first 10 pulses to mimic the full evolution
models. After about 10 pulses the luminosity dip lasts for a short
time and is not of large enough magnitude to contribute to the dim
CSLF tail (the maximum dip seen in the full evolution models is
a factor of 0.5L equivalent to 0.75 mag). Extending the dip to all
pulses does not significantly change the model CSLF of either the
SMC or the LMC. The dimmest of carbon stars with magnitude
about −3 cannot be fitted at all because they are probably extrinsic
carbon stars in binary systems (Izzard & Tout 2004). Note that in
order to resolve the dips the time-step is reduced to at most one-tenth
of the interpulse period.

5.2 Modification of dredge-up parameters

The problem with the CSLF is that detailed models predict a distri-
bution of stars that is too bright. Despite the addition of luminosity
dips or changes in the wind-loss prescription, it proves impossible
(with this model) to reproduce such low-luminosity carbon stars.
The accepted interpretation, which we are forced to use here in the
absence of another explanation, is that dredge-up does not begin
early enough on the TPAGB or at a low enough (core) mass in full
stellar evolution models. This inability of stellar models to match
the observed CSLFs in the Magellanic Clouds leads us to introduce
two free parameters, �Mmin

c and λmin, which are used to calibrate our
theoretical luminosity function. The minimum core mass for third
dredge-up is shifted by �Mmin

c (<0) such that dredge-up occurs at
lower core masses than predicted by K02 (Fig. 9, left-hand panel).
The dredge-up efficiency λ reaches the asymptotic value λmax after
a few pulses. We adjust it so that

λmax = max
(
λmin, λ

fit
max

)
, (66)

where λfit
max is the value from K02 (see Fig. 9, right-hand panel).

The efficiency of dredge-up in low-mass stars is increased with
to the fit of K02 but remains suppressed for the first few pulses
(equation 48). Our synthetic model is used to calibrate values of
�Mmin

c and λmin appropriate for the LMC (Z = 0.008) and SMC
(Z = 0.004) by a least-squares minimization. The shifting of the
dredge-up parameters in this way is motivated by simplicity in the
face of ignorance of the physical process responsible for dredge-up
in low-mass stars – a more complicated expression is not justified.

Our best-fitting single-star models have �Mmin
c = −0.07 and

λmin = 0.5 for the LMC and �Mmin
c = −0.07 and λmin = 0.65

for the SMC with the VW93 wind with a superwind at a Mira pe-
riod of 500 d. These values are similar to those of Marigo (2001),
noting that �Mmin

c = −0.07 gives Mmin
c ≈ 0.59 M� at M i ≈ 1.5

M� (a typical mass for C-stars: Wallerstein & Knapp 1998).
A simple linear fit to the above dredge-up parameters gives

�Mmin
c = −0.07 (67)

and

λmin = 0.8 − 37.5Z (68)

which equates to 0.05 at Z = Z�. Fig. 10 shows our resulting CSLFs.
Comparison with Fig. 5 shows that a value of �Mmin

c nearer to
−0.09 M� is necessary to match Marigo’s prescription although
the functional form of the prescription is otherwise similar.

5.3 Number ratios

We briefly consider the C/late-M number counts using the observa-
tions compiled by Groenewegen (2002) and the spectral type table
of Jaschek & Jaschek (1995). We assume the CSLF dredge-up cal-
ibration above as our standard model and a constant star formation
rate. It turns out to be very difficult to match the number ratios with
our models unless we again change our free parameters. A good
LMC fit (�Mmin

c = −0.09, λmin = 0.7, see Table 8) is obtained by
increasing the amount of dredge-up, but then the CSLF peak is too
dim. The SMC behaves in the opposite direction, with a decrease in
the amount of dredge-up (�Mmin

c = −0.06, λmin = 0.4, see Table 9)
which leads to a good fit but then the CSLF peak is too bright. We also
show the effect of choosing a different wind prescription, with an
η = 3 Reimers rate (Kudritzki & Reimers 1978) giving an even
poorer fit than the VW93 wind (and too many bright stars in the
CSLF). There are, however, many caveats to this simple approach.
First, we have neglected the effect of a varying star formation
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c , both from Karakas et al. (2002) for Z = 0.02.
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Figure 10. Our best-fitting carbon star luminosity functions for the LMC (Z = 0.008, left-hand panel) and the SMC (Z = 0.004, right-hand panel). Observations
are from Groenewegen (2002).

rate which can be important when comparing number ratios (see
Mouhcine & Lançon 2003). Secondly, the ratios are highly depen-
dent on the spectral type which in turn depends on the stellar radius.
It proved to be very difficult to fit the radius so any slight error on
the fit leads to a resulting error in C/M. Thirdly, we neglect binary
stars which produce giant branch and EAGB carbon stars (Izzard &
Tout 2004). Fourthly, we do not take into account any observational
selection effect, which is effectively the same as the assumption that
the M-star surveys of the LMC and SMC are complete. This is un-
likely to be true, while the C-star surveys (and resulting luminosity
functions) are thought to be complete, although this helps us with
the LMC and not the SMC. To simulate a magnitude-limited survey
is beyond the scope of this paper. Since there is no systematic effect
we will continue, in our ignorance, to use the dredge-up prescription
calibrated by the CSLF.

5.4 Initial–final mass relation

The initial–final mass (M i–M f) relation is another check on the
consistency of our models. Our synthetic results, including the
dredge-up calibration, are plotted against the relation derived by
Weidemann (2000) in Fig. 11. Weidemann 2000’s results are partly
based on evolution models and partly on observation, so it is difficult

to draw any firm constraints from this comparison. The agreement
is excellent for our Z = 0.02 models while the Z = 0.004 models
are systematically high but always within 0.1 M�. The effect of the
choice of mass-loss prescription at intermediate metallicity (Z =
0.008) is shown in Fig. 12, where we use the rates of Kudritzki &

Table 8. LMC number counts (see text for details).

LMC Obs Model �Mmin
c = −0.09 Model with

λmin = 0.7 Reimers η = 3

log10N C/N M3+ −0.0 −0.0 −0.0 −0.0
log10N C/N M5+ −0.0 −0.0 −0.0 −0.0
log10N C/N M6+ 0.0 −0.0 0.0 −0.0

Table 9. SMC number counts (see text for details).

SMC Obs Model �Mmin
c = −0.06 Model with

λmin = 0.4 Reimers η = 3

log10N C/N M3+ −0.0 −0.0 −0.0 −0.0
log10N C/N M5+ 0.0 0.0 0.0 0.0
log10N C/N M6+ 1.19 1.65 1.36 0.0
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as calculated with the synthetic model (including dredge-up calibration).
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Figure 12. Final mass versus initial mass for Z = 0.008 with varying
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Reimers (1978) and Blöcker (1995). No single mass-loss relation
gives the best agreement, but a Reimers η = 1 rate is discrepant by
more than 0.1 M� for M i � 3 M�, perhaps ruling this out.

5.5 White dwarf mass distribution

The observed white dwarf mass distribution provides an additional
constraint on our models. The inherent uncertainty in the initial–final
mass relation, which is due to the use of evolutionary models to cal-
culate an initial mass, is removed. The comparison of our synthetic
white dwarf mass distribution with observations is shown in Fig. 13.
The observations are compiled from Bergeron, Saffer & Liebert
(1992), Bergeron, Liebert & Fulbright (1995), Bragaglia, Renzini
& Bergeron (1995), Dreizler & Werner (1996), Bergeron, Ruiz &
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Figure 13. The white dwarf mass distribution. The boxed histogram shows
the observations; the lines show our synthetic results for Z = 0.02 (squares),
0.008 (circles) and 0.004 (triangles).

Leggett (1997), Finley, Koester & Basri (1997), Marsh et al. (1997),
Vennes et al. (1997), Napiwotzki, Green & Saffer (1999), Vennes
(1999), Bergeron, Leggett & Ruiz (2001), Claver et al. (2001) and
Silvestri et al. (2001), with no attempt to take into account any ob-
servational selection effects such as dimming of old white dwarfs or
systematic biases such as the effect of a binary companion, metal-
licity or errors inherent in different white dwarf mass determination
techniques (although for duplicate stars the newer data are believed
over the old). The data are plotted as a histogram in 10 bins, with an
equal number of stars in each bin. Our synthetic model curves for
Z = 0.02, 0.008 and 0.004 are calculated with 105stars for each
metallicity between 0.1 and 8.0 M� and are binned in an identical
way. Our dredge-up calibration of Section 5.1 is used. The initial
mass function of KTG93 is used to calculate the contribution of
each star to the histogram, and no attempt is made to mimic selec-
tion effects. The peak of the observations and theoretical curves are
normalized to 1.0.

The peak position of the mass distribution is matched well by our
synthetic models. We have a dearth of white dwarfs above 0.7 M�
and below about 0.55 M�. These are probably due to the omission
of binary stars from our analysis. Binary-induced mass loss leads to
low-mass helium white dwarfs and mergers to high mass (possibly
oxygen–neon) white dwarfs.

6 S I N G L E S TA R Y I E L D S

In this section we calculate stellar yields appropriate for use in galac-
tic chemical evolution models. We compare these yields with our
full stellar evolution model yields and previously published yields
of van den Hoek & Groenewegen (1997) and Marigo (2001).

6.1 Calculation of yields

The yield of isotope j from a star can be represented simply as the
mass expelled into the interstellar medium in time t:

�M j =
∫ t

0

Ṁ j dt, (69)

or as a function of the initial mass and abundance:

p( j, Mi) = 1

Mi

∫ t

0

Ṁ�X j dt, (70)
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where M i is the initial mass of the star and �Xj = Xj(t) − Xj(0) is
the change in surface abundance of species j between its birth and
time t. The latter aids comparison with the models of van den Hoek
& Groenewegen (1997) and Marigo (2001). Note that both these
yields are independent of the initial mass function. A more useful
definition of the yield is

y j = dY j

dM
= ξ (Mi)

∫ t

0

Ṁ�X j dt = ξ (Mi)Mi p( j, Mi), (71)

where ξ (M i) is the initial mass function [e.g. KTG93; ξ (M i) has
units M−1� so yj is dimensionless].

The integral

Y j =
∫ M2

M1

y j dM (72)

is the total enrichment (in M�) of species j by a population of stars
between masses M1 and M2.

The yield in equations (70) and (71) can be negative if an isotope
is consumed (e.g. the hydrogen yield is always negative).
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Figure 15. As Fig. 14, but for 15N, 16O, 17O and 22Ne.

The contributions to the yields are calculated from equation (71)
at each time-step. The initial mass is in the range 0.1 � M i/M�
� 8.0. The stars are evolved for 16 Gyr and the yields (without
supernova yields) shown are for the entire stellar lifetime. Full tables
of yields are in Appendix D.9 We show the yields from our full stellar
evolution models without attempting to compensate for mass loss
that would occur after model breakdown (see Karakas & Lattanzio
2003).

6.2 Results

Most of the mass from each star that is expelled in the stellar wind
is hydrogen or helium, and most of this is expelled in the TPAGB
stage of the evolution of the star. Stars with M i � 7–8 M� do not
have a TPAGB stage, but explode as supernovae first, so the stellar
wind yield from these stars is negligible. Stars with M i � 0.8 M�
do not evolve to the TPAGB in 16 Gyr so also have negligible

9 http://www.blackwellpublishing.com/products/journals/suppmat/mnr/
mnr7446/mnr7446sm.htm

yield. Comparison with the yields from (van den Hoek & Groe-
newegen 1997, (HG97), Marigo (2001) M01) and our full stellar
evolution models is made. The yields of HG97 were calculated us-
ing a Kudritzki & Reimers (1978) mass-loss relation, with η = 4 (and
η = 2 for Z = 0.004). The yields from M01 were calculated using
the wind of VW93 (presumably with the M i > 2.5 M� correction)
for Z = 0.019 (but we compare them with our Z = 0.02 models)
and mixing length parameter αMLT = 1.68 rather than 1.75.

6.2.1 Comparison with our full stellar evolution models

Figs 14 and 15 compare our synthetic model yields (equation 71)
with our full stellar evolution model yields using the HBB calibra-
tion of Section 4, without the dredge-up calibration of Section 5.1
and with the KTG93 initial mass function weighting. Our synthetic
model does an excellent job of reproducing our full stellar evolution
models for all isotopes considered except 22Ne. Slight overproduc-
tion of 12C, 13C and 14N for M i � 5 M� is due to small differences
between our synthetic and full evolution models. The spike in pro-
duction of 13C at around M i ≈ 4–5 M� is not an anomaly – rather it
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Figure 16. Our synthetic HBB- and dredge-up-calibrated model yields yj (solid lines) versus other models (circles from M01, squares from HG97, filled
symbols for η = 2, open symbols for η = 4) for 1H, 4He, 12C, 13C and 14N and Z = 0.02, 0.008 and 0.004. An initial mass function weighting is included.

is not resolved on our full stellar evolution model mass grid unless
it happens to lie on an integer multiple of M� (as is the case for Z =
0.02). We do not include 22Ne destruction reactions so our synthetic
yields are overestimates for M i � 4 M�.

6.2.2 Comparison with other models

We use the HBB and dredge-up calibrations made above (Sections 4
and 5.1) to compare our synthetic model yields with those of M01
and HG97. The yields are weighted with the KTG93 initial mass
function – see Figs 16 and 17 and Appendix A7.

For most isotopes our yields lie between the values given by
M01 and HG97. Our synthetic models experience less dredge-up
than M01’s in the range 1 � M i/M� � 3, leading to a relative
underproduction of carbon and oxygen, though slightly more than
HG97. The 13C spike position differs between our synthetic models
and M01’s by 0.5 M� at Z = 0.004, suggesting that we invoke
HBB at a slightly higher mass, and also by a factor of about 2.5
(perhaps due to excess 12C seed). At lower metallicities (Z � 0.008)
we overproduce nitrogen compared with the other yield sets, but
M01 does not have AGB stars above 5 M� and our results are
not dissimilar to HG97’s Z = 0.004, η = 2 case (they publish no
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Figure 17. As Fig. 16 but for 15N, 16O, 17O and 22Ne.

η = 2 yields for Z = 0.008). Our 15N agrees well with M01. The huge
16O production at low mass in HG97’s data set for Z = 0.02 cannot
be reproduced, although otherwise our yields agree well except for
the lack of oxygen from dredge-up compared with M01 (also our
intershell abundance is on average about 1 per cent compared with
Marigo’s 2 per cent). We produce negligible 17O compared with M01
although the amount is still rather small. The initial mass function-
weighted 22Ne yields show that the region of HBB (M i � 4–5 M�)
is a relatively unimportant contributor to the total yield. It is also
possible that the lower initial core masses from the Padova models
have an effect on the evolution of M01’s models, with lower core
mass leading to lower luminosity and so a longer TPAGB phase
with more dredge-up and enhanced CO yields.

7 C O N C L U S I O N S

We have presented a fast yet accurate synthetic model for TPAGB
evolution based on state-of-the-art full evolution models. Yields cal-
culated by the synthetic model and the full evolution model agree
closely, with continuation of the synthetic model beyond the break-

down point of the detailed model for high-mass AGB stars. Cal-
ibration of third dredge-up to the Magellanic Cloud carbon star
luminosity functions forces us to reduce our theoretically derived
minimum mass for core mass by −0.07 M� and enforce a value
of at least 0.8 − 37.5Z on the maximum dredge-up efficiency λmax.
The calibrated yields in general lie between the previously published
yields of van den Hoek & Groenewegen (1997) and Marigo (2001),
although our models produce more nitrogen and less carbon at low
metallicity. Our synthetic model fits the initial–final mass relation to
within 0.1 M� and reasonably fits the observed white dwarf mass
distribution (we require binary stars to fit it properly). The next step
is to include this synthetic model in the Hurley et al. (2002) binary
code, and much progress has already been made in this direction
(Izzard & Tout 2004,2003).
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