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An Introduction to Integrated Domination Using K1’s and K2’s 

 

by Jennie J. Newman 

 

Abstract  

 

In Mathematics, graph theory is the study of graphs, which consist of a set of points, called 

vertices, and the connections between them, called edges. Domination is a subfield of this 

study, which looks at subsets of vertices in a graph that are adjacent to every other vertex 

in the graph. These subsets are called dominating sets. A vertex u is said to dominate a 

vertex v, if u is adjacent to v.  

The principal problem of domination is to find the smallest dominating set for a 

graph. Variations of domination exist, with the two standard types using K1’s (single 

vertices), or K2’s (paired vertices) as guards.  

To the best of our knowledge, we introduce the idea of integrating two different 

types of guards in one dominating set. Here, we look at the idea of dominating a graph 

using a combination of guards in the forms of K1’s and K2’s, and the problem of finding a 

minimum dominating set for this style of domination, which we call integrated domination. 

We look at a number of well-known variations of domination, and then characterize 

graphs and subgraphs where a minimum integrated dominating set can efficiently be found. 

As well, we present a bound for this style of domination, and then discuss further directions 

for this problem. 
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Introduction 
 

Mathematical work regarding domination in graphs is believed to have began in the 1950’s, 

coming from mathematicians such as Kõnig (1950) [23], and Ore (1962) [28]. The topic 

itself, however, dates back to the 1800’s, when a European man named de Jaenisch thought 

about the number of queen pieces required to cover, or dominate, an n x n chessboard [9].  

Since that time, the topic has increased significantly in popularity, which many 

believe to be due to its relation to real-world and theoretical locating and covering problems, 

the diversity in the parameters that can be used for domination, and due to the general 

domination problem being determined as NP-complete [20]. 

The problem of domination deals with the idea of finding subsets of vertices in a 

graph, that are adjacent to all other vertices in the graph. In many works, the vertices in the 

dominating set D, can be called guards, and each guard can dominate itself plus its adjacent 

vertices. The main problem looked at with domination, regardless of the variation, is that 

one wants to find the minimum number of guards necessary in order to protect the entire 

graph.  
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In regards to real world application, this problem can be related to protecting a 

computer network from intruders, guarding corridors in a building, ensuring towns have 

enough resources, and more. Figure 0.1 illustrates a few of these ideas.  

 

Figure 0.1: An illustration of real world applications. 

 

As of today, there are many variations and styles of domination where restrictions 

are placed on the types of guards used, the number of vertices allowed to be dominated by 

a guard, the positioning of the guards, and others. We discuss a number of these styles of 

domination in the following section, and some of their results.  

In this work we introduce, to the best of our knowledge, a new form of dominating 

a graph where we use a combination of two different guard types. We look at dominating 

a graph using guards in the forms of K1’s and K2’s, which we define later, and the problem 

of finding a minimum dominating set for this style of domination, which we call integrated 

domination. Topics such as graphs and subgraphs where a minimum integrated dominating 

set can efficiently be found will be examined, as well as bounds for this style of domination. 

  Guarding a Building                           Protecting a Computer         Resources for  

        Network   Towns 
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Definitions 
 

A vertex, or node, is a single point, and an edge is a connection between two vertices, often 

labeled as an unordered pair of two vertices. A graph G = (V, E) is a set of vertices and 

edges, with V representing the set of vertices, and E representing the set of edges. The 

degree of a vertex v is the number of edges connected to v, and is usually denoted as deg(v). 

Two vertices are said to be adjacent if they share an edge. A vertex u is said to be a 

neighbour of a vertex v, if u is adjacent to v.  

The neighbourhood of a vertex v is the set of vertices adjacent to v, and is denoted 

N(v). A closed neighbourhood includes v in this set, and an open neighbourhood excludes 

v. A partition of a graph G, is a collection of disjoint subsets whose union equals G. A set 

of vertices is said to be independent if no two vertices in the set are adjacent. 

The cardinality of a set is the number of items in the set, and is denoted |S|. For 

example, the set {v1, v2, v3,  v4} has a cardinality of 4. A set in a graph is said to be minimal 

if the removal of an element in the set destroys the given property of the set. A set is said 

to be minimum if it is the smallest of all the minimal sets. We can say that minimum is 

always minimal, however minimal is not always minimum. Figure 0.2 illustrates this 

concept, where the property of the set is that it is dominating. 
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Figure 0.2: Minimal and minimum sets. 

 

A leaf, or endvertex, is a vertex of degree 1. A stem is a vertex with at least one leaf 

neighbour. A path is a string of adjacent vertices {v1, v2, …, vn} such that v1 and vn are 

leaves, and every other vertex is of degree 2. A cycle is a path such that v1 = vn. In this work 

we denote a high degree vertex to be a vertex of degree ≥ 3, unless otherwise stated. 

A path of vertices connected to a high degree vertex, such that each vertex in the 

path, other than the endvertex, is of degree 2, will be called a k-arm, with k being the 

number of vertices in the path excluding the high degree vertex. A path of k degree 2 

vertices joining two stems will be called a k-path. Given a cut-vertex x in a graph G, each 

component of G\{x] is called a branch at x. A complete graph or a clique is a graph in 

which each vertex has an edge between itself and every other vertex in the graph. It’s 

usually denoted as Kn, with n being the number of vertices in the graph. The length of a 

path or k-arm refers to the number of distinct vertices in the path, or on the k-arm excluding 

the high degree vertex. 

A corona of two graphs G ◦ H, is the graph formed from one copy of G and k copies 

of H, where k is the number of vertices in G. The copies are connected so that the ith vertex 

of G is adjacent to all vertices in the ith copy of H. A graph G is chordal if every cycle of 

             Minimal                       Minimal            Minimum 
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length ≥ 3 in G has an edge between two non-consecutive vertices in the cycle. G is strongly 

chordal if it is chordal and every cycle of even length ≥ 6 has an edge connecting two non-

consecutive vertices whose distance on the cycle is of odd length.  

A set S of vertices in G is a dominating set if every vertex in G is either in S or 

adjacent to a vertex in S. A vertex which dominates another vertex may be called a 

dominating vertex, or a guard. If S is a dominating set with T being a K1 or K2 in S, and if 

v is a vertex that T lies on, then we say that v hosts the guard T. The domination number 

γ(G), is the cardinality of a minimum dominating set of a graph G. Such a set in a graph is 

said to have overlap if there exists a vertex which is dominated by more than one 

dominating vertex.  

When determining a specific value, a lower bound gives an estimate such that the 

value will be no smaller than the estimate. Similarly, an upper bound gives an estimate 

such that the value will be no larger than the estimate.  

 

Definitions Regarding the Computational Complexity of Problems 

An algorithm is a set of steps followed in order to solve a problem.  

The standard way of expressing the speed or computational complexity of an 

algorithm is in the form of a function f(n), with n being the size of the input, and the value 

of f(n) being the number of steps required to perform the algorithm. For example, n could 

represent the number of vertices of a graph, or the number of items needing to be sorted. 

An efficient algorithm is an algorithm with the speed represented as a linear, polynomial, 
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or logarithmic function. Exponential functions such as 2n and n! are not considered efficient, 

as they use more steps as n becomes larger. 

Regarding the computational complexity of algorithms, a problem of interest 

among computer scientists deals with NP-completeness, and asks whether P=NP (we will 

understand these terms soon). NP-completeness deals with sets of problems classified by 

their computational complexity. To define NP-completeness, we first must look at a few 

other defintions. 

A decision problem is a problem or question whose answer is a yes or no (accepted 

or rejected) depending on the input. A deterministic algorithm is an algorithm in which the 

same number of steps is taken each time the algorithm is performed, and each time the same 

result is given for the same set of data. A nondeterministic algorithm is an algorithm which 

“guesses” the next step to take, and thus it can vary the way it performs, i.e., it may use a 

different number of steps and return different results even for the same set of data, or it may 

never finish.  

P refers to the set of problems that can be solved using a deterministic algorithm in 

polynomial time. NP refers to the set of problems where a solution can be generated from 

a nondeterminisitic algorithm, and where this solution can be verified or rejected in 

polynomial time.  

A set is polynomial-time reducible to another set if there exists a polynomial 

function f(x) that maps every element in the first set to the second set, and vice versa, 

formally: for all x, x is in the first set if and only if f(x) is in the second set.  
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In terms of problems, a problem is said to be polynomial-time reducible to another 

problem if its inputs can be transformed to the inputs of the second problem. Generally, 

showing that a problem A is polynomial time reducible to problem B means problem B is 

at least as hard as problem A, since if problem B can be solved, then problem A can also 

be solved.  

Now, a decision problem is said to be NP-complete if the problem falls into the NP 

set, and if any problem in the NP set can be polynomial-time reduced to this decision 

problem. A decision problem is said to be NP-hard if it satisifies the second condition 

mentioned above.  

Applied Combinatorics, 5th Edition; Computational Complexity: A Conceptual 

Perspective; Fundamentals of Domination in Graphs; and Review: Michael R. Garey and 

David S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, 

were used as references for this information, and can be referenced for further information 

on this topic [35, 15, 17, 1]. 

In this work we will see that many problems regarding domination have been 

determined to be NP-complete.  
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1 Related Works 
 

 

1.1    Variations of Domination 

 

As domination is a topic of interest to many mathematicians, we present some background 

information into the original form of domination, as well as some variations of the problem. 

 

1.1.1    Domination   

 

The standard and original type of domination uses K1’s, or single vertices, to dominate a 

graph, where a K1 guard can dominate the vertex it is on, plus all adjacent nodes. Again, 

the problem of interest is to dominate as many nodes as possible, using the fewest number 

of guards, with the intent of guarding the entire graph. This problem not only involves 

finding the minimum number of guards needed, but also largely deals with where to place 

these guards. Finding a minimum dominating set for general graphs is quite hard, and was 

determined to be NP-complete. Many mathematicians have worked on this problem, 

however as of yet there is no known efficient solution for an arbitrary graph [20].  
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In regards to trees however, a simple linear algorithm for finding the domination 

number exists, and was created in 1975 by E. Cockayne, S. Goodman and S. Hedetniemi 

[5]. The algorithm involves rooting a tree and giving each vertex a label, as either Bound, 

Free or Required, where Bound are the vertices that need to be dominated, Free are those 

that need not be dominated, and Required are the ones that must be in the dominating set.  

The algorithm starts with rooting the tree at an arbitrary point and numerically 

labelling the vertices, working towards the outside of the tree in any manner (e.g., a breadth-

first search method would work). Each vertex is then given a label as either Bound, Free or 

Required. We note that the parent of a vertex i, is its neighbour with the smallest number 

label. Working through the graph in descending numerical order, each vertex’s label is 

compared to its parent’s and is possibly relabelled, according to Table 1.1. After checking, 

if a vertex is labelled as Required, a K1 is placed on it. When the final vertex (the root, [1]) 

is reached, if it is labelled as Bound or Required, a K1 is placed on it as well, and the 

minimum dominating set is complete. 

Figure 1.1 illustrates the process of guarding an arbitrary tree using this algorithm, 

where every vertex starts with a Bound label.  
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Table 1.1: Relationship between parent and child vertices for a domination algorithm. 

 

 

 

 

 

 

 

 

 

Figure 1.1: An example of the domination algorithm. 
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Having each vertex start with a Bound label is quite practical, especially for 

situations where a new graph is given and a dominating set needs to be found. This is the 

case for our problem as well. However, for situations where some guards are already 

installed in a graph, but more guards are needed, this algorithm has the ability to help here 

as well. For these, one would label the vertices with guards as Required, and all others as 

Bound or Free, depending on if they needed to be guarded.  

In terms of real world application, this could relate to having facilities (fire stations, 

police stations, etc.) already established in a town, yet needing more to accommodate a 

growing population or town size, and so one would want to find the optimal location for 

these. It can also relate to guarding a building, with some rooms empty and not needing 

guarding, and some with items of importance in them and so requiring a guard in them at 

all times. 

This algorithm is very useful for trees and now is very well-known. Although, as of 

yet, there is no efficient algorithm to find the minimum dominating set for graphs in general, 

theorems have been discovered to give more insight into the general characteristics of 

dominating sets in graphs. 

To start, from one of the first mathematicians to look at domination in graphs, Ore, 

we have the following theorem: If a graph G, has no isolated vertices then γ(G) ≤ n/2, where 

n is the number of vertices in the graph [28]. 

Another well-known theorem is: Every non-trivial connected graph G has a 

dominating set D, whose complement V\D is also a dominating set [25].  
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Going further in this way: If G is a graph without isolated vertices, for any minimal 

dominating set D, its complement V\D is also a dominating set [25]. 

These theorems have nice proofs, with the third of such proceeding as follows: Say 

D is a minimal dominating set in an arbitrary such graph, G. By way of contradiction, one 

assumes the set V\D is not a dominating set. This means that there exists a vertex u in G, 

such that u is not adjacent to any of the vertices in V\D. It also means that u must be 

dominated by at least one vertex in D\{u}, as there are no isolated vertices in the graph. 

Because of this, the set D\{u} must also be a dominating set. However, this contradicts the 

fact that D is a minimal dominating set, and thus shows that V\D must also be a dominating 

set.  

As a corollary to this statement, it is also noted that the domination number of a 

graph without isolated vertices is less than or equal to half of the number of vertices in the 

graph, stated formally as γ(G) ≤ ½|V|. The proof follows from the previous theorem, where 

if D is a minimal dominating set, and V\D is a dominating set, the vertices in D and those 

in V\D must together equal the total number of vertices in G. Thus, if one of these sets 

contains more than half of the vertices of V, then the other set will contain less than half.   

The original form of domination has some nice and convenient theorems, which 

form a basis for further study of domination. Next we look at the second standard type of 

domination; paired-domination. 

 

 

 



6 

 

 
 

1.1.2    Paired-Domination 

 

The idea of paired-domination was first introduced by T. Haynes and P. Slater in 1995 [18]. 

Closely related to the standard domination mentioned previously, paired-domination uses 

two adjacent K1’s as a guard, rather than one single K1. Here, both K1’s guard the vertices 

they are on, plus any adjacent vertices. The idea behind paired-domination was that if a 

situation happens where one guard becomes unavailable, another guard is right there for 

backup.  

Another way to think of this problem is to use K2’s as guards, rather than two K1’s. 

This can relate to the idea of one guard moving back and forth between two fixed points. 

In this dynamic style, the guard protects the two nodes it visits plus any adjacent nodes to 

those two.  

Similar to the issue with standard domination, the problem of finding a minimum 

paired-dominating set for a general graph is quite difficult and was determined to be NP-

complete by Haynes and Slater themselves. Although no efficient solution exists in general 

as of yet, the two presented some bounds for the problem, stating: If a graph G has no 

isolated vertices, then the paired-domination number, γpr(G) will be at least 2, and at most 

n, where n is equal to the number of vertices in G, and these bounds are sharp [18].  

More specifically, they showed that if a graph G has no isolated vertices, then the 

paired-domination number of G will be at most two times the domination number of G i.e., 

γpr(G) ≤ 2 γ (G). This stems from the idea that for a dominating set S in a graph G, if one 

pairs each vertex in S with one of its private neighbours to achieve paired-domination, then 
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the result will be double the domination number. The bound is in fact tight, as illustrated 

by P6, a path on 6 nodes, as shown in Figure 1.2 [18].  

 

Figure 1.2: Dominating and paired-dominating sets for a P6. 

 

Nevertheless, an efficient algorithm exists for solving this problem for trees, and 

was recently discovered by H. Qiao, L. Kang, M. Cardei, and D. Du in 2003 [31].  

Interestingly, the problem of paired-domination is also closely related to total 

domination, which we look at next. Figure 1.3 shows two examples of paired-domination 

in graphs.  

 

 

 

Figure 1.3: Examples of paired-domination. 

 

1.1.3    Total Domination 

 

In paired-domination, the guards are found in pairs and so dominate each other, resulting 

in every vertex being dominated by a guard other than itself. This is precisely the idea 

behind total domination, where a vertex can only dominate its open neighbourhood, and 



8 

 

 
 

not itself. The difference between these two though, is that for total domination the guards 

are not required to be paired. 

Total domination was inspired by a solution to a well-known problem from Europe 

in the 1850’s; the Five Queens Problem, as mentioned earlier. The problem, chess-related, 

deals with an 8 x 8 square chess board and the Queen piece. The problem asks the minimum 

number of queens needed in order to ensure that every square on the board can be attacked 

or occupied by a queen, where a queen can move any number of squares in any one 

direction. The solution, determined to be five, not only showed that every square was 

dominated by a queen at one time, but also showed that each queen was being dominated 

by another. It was this observation that led to the start of total domination. 

Mathematicians Cockayne, Dawes, and Hedetniemi formally introduced this 

concept in 1980 [3]. Real-world applications of the problem can relate to computer 

networks, where a main group of computers can, as a whole, connect with every other 

computer in the network, but also where each main computer is connected to another main, 

for backup purposes. Similarly, it can relate to committee selection, where everyone outside 

the committee knows someone on the committee, and each committee member knows 

another member on the committee [3]. 

In terms of finding a total dominating set for an arbitrary graph, this was shown to 

be NP-complete by mathematician J. Pfaff, in 1984 [29]. 

However, finding a total dominating set for an arbitrary tree can be done in 

polynomial time, thanks to a linear algorithm created by R. Laskar, J. Pfaff, S. Hedetniemi, 

and S. Hedetniemi in 1984 [26]. 
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Moreover, there exist theorems to characterize and give bounds for the total 

domination number in a general graph, γt(G). For example, a total dominating set S, is 

minimal if and only if the set OB(S) = {v | |N(v)∩S| = 1} dominates S, where OB(S) is the 

set of vertices such that the intersection of the neighbourhood with these vertices and S 

contain only one vertex [19]. Further, if a graph is connected and has at least 3 vertices, 

then γt(G) ≤ 2n/3 [3]. 

Figure 1.4 shows an example of a solution to the Five Queens problem [17]. 

 

 

 

 

 

 

Figure 1.4: A total dominating set solution to the Five Queens problem. 

 

1.1.4    Dominating Cliques 

 

Moving on to another form of domination, in 1990 M. Cozzens and L. Kelleher introduced 

the idea of dominating cliques, in which the vertices of the dominating set must induce a 

complete graph [8]. In relation to the real world, this problem can relate to guarding 

computer networks, with each node representing a computer, and each edge representing 
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the connection between two computers. The clique represents a group of principal 

computers where each computer in the group can communicate with each other, and as a 

whole, communicate with every other computer in the network. Similarly, Cozzens and 

Kelleher also worked on this idea in social networks where a person is represented by a 

vertex, and the connection between two people is represented by an edge [22]. 

Resulting from their work, Cozzens and Kelleher found a condition for graphs with 

dominating cliques, stating that if G is a connected graph with no induced P5 or C5, then G 

has a dominating clique. They also established an upper bound for the clique domination 

number γcl(G), which says if G is a connected graph with no induced P5, C5, or corona 

 Kk+1 ◦ K1, then γcl(G) ≤ k.  

For connected graphs with no induced P5 or C5, Cozzens and Kelleher also created 

an efficient, polynomial time, algorithm to find a dominating clique. D. Kratsch also 

presented a polynomial time algorithm to solve the problem for certain types of graphs, 

including strongly chordal graphs. However, the decision problem regarding finding a 

dominating clique for general graphs is NP-complete [24].  

Figure 1.5 gives two examples, where a K5 and a K4 are used as dominating cliques.  

 

 

 

 

Figure 1.5: Examples of dominating cliques 
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1.1.5    Multiple Domination 

 

Of course, other variations of domination in graphs exist, with the altered conditions being 

on the types of guards used, the requirements and positions of the guards, and more. One 

example that focuses on the positioning of the guards is multiple domination, which says 

that each vertex in V\D must be dominated by a specific number k, of vertices. This idea 

was introduced by J. Fink and M. Jacobson in 1985 [13]. These two discovered certain 

bounds for this type of domination, such as  γk(G)  kn/((G) + k) which states that for a 

graph G, the k-domination number γk(G), will be greater than or equal to k times n, divided 

by the sum of the maximum degree of a vertex in G (G), plus k, with n being the number 

of vertices in the graph. 

On the opposite side, they found that if a graph has k ≤ δ(G), then γk(G) ≤ kn/(k+1), 

which again says that if the k value is less than the minimum degree of any vertex in G 

δ(G), then the k-domination number is less than or equal to k times n, divided by the sum 

of k and 1. This upper bound was discovered by E. Cockayne, B. Gamble, and B. Sheppard, 

in 1985 [4]. 

In Figure 1.6 we see an example of a 2-dominated graph and a 3-dominated graph. 

 

 

 

Figure 1.6: Examples of multiple domination. 
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1.1.6    Distance Domination 

 

Distance domination is another variation, with the restriction being that every vertex in V\D 

must be within a certain distance of the vertices in D. So, a distance-k dominating set S, 

must have every vertex in V\S within a distance of k nodes of at least one vertex in S. Two 

simple examples are shown in Figure 1.7, where each vertex in G is within a distance of 2 

nodes from any guard.  

 

 

Figure 1.7: Examples of distance-2 domination. 

 

A real world application came from the problem of placing a minimum number of 

objects or institutions within a reasonable distance of a certain population. Such objects or 

institutions could be fire stations, post offices, schools, etc. Oppositely, the problem could 

be in regards to placing unwanted objects as far away from a population as possible, 

referring to objects such as nuclear reactors, garbage plants, airports, etc.  

The idea that the distance k, could vary from vertex to vertex was looked at by P. 

Slater in 1976 [32], and some characterizations for distance-k domination of graphs were 

given by M. Henning, O. Oellermann, and H. Swart in 1991 [21].  
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1.1.7    Others 

 

There are a few other variations of domination that we briefly mention without going into 

much detail.  

Parity restrictions restricts the vertices in V to being dominated by an odd number 

of vertices, or by a specific number of vertices only. Finding the minimum cardinality of 

an all-odd parity set was determined to be NP-hard by K. Sutner, in 1989 [34]. 

Locating domination has the restriction that for each vertex in V\D, there is a unique 

set of vertices that can dominate each of them. The idea stems from a nautical point of view, 

where if a ship runs into problems while at sea, having a system of buoys set up, if a crew 

member could call back to shore and communicate which buoys he saw, then the folks back 

on shore would be able to pinpoint his location and send help. C. Colbourn, P. Slater, and 

L. Stewart determined this problem to be NP-hard in 1987 [7]. 

Strong domination, and similarly weak domination, require that each vertex in V\D 

must be dominated by at least one vertex whose degree is greater than (or less than, for 

weak domination) the degree of itself. According to Fundamentals of Domination in 

Graphs [17], it is known but unpublished that the strong and weak domination problems 

are NP-complete, and that linear algorithms exist for finding the strong and weak 

domination numbers for arbitrary trees.  

Of course there are many other forms of domination in graphs, however these few 

mentioned should give an idea of how domination works and why it is a problem of interest.  
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1.2    Domination and Other Parameters 
 

 

1.2.1    Dominating, Independent, and Irredundant      

-           Sets 

 

Another important theorem, concerning the bounds for domination in graphs, is related to 

independent sets and irredundant sets in graphs.  

First, we note that for a dominating set, the lower bound is commonly denoted γ(G), 

and refers to the minimum cardinality of all dominating sets of G.  The upper bound for the 

set is denoted Γ(G), and describes the largest cardinality for a minimal dominating set.  

Recall that in a graph G, a set of vertices such that no vertex is adjacent to another 

is called an independent set, with two vertices being called independent if they are not 

adjacent.  

A set S of vertices in a graph, such that for every vertex v in S, the neighbourhood 

of v contains a vertex w, where w belongs to no other neighbourhood of an element in S, 

is called an irredundant set of vertices. This means that for every vertex v in S, v has a 

private neighbour; a vertex that belongs only to its neighbourhood, and no one else’s. If a 

vertex satisfies this condition, it’s called an irredundant vertex.  

Figure 1.8 illustrates these ideas.  
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Figure 1.8: Independent, irredundant and dominating sets. 

 

The three ideas of domination, independence and irredundance in graphs fit together 

nicely, with proven statements such as: 

A set of vertices in a graph is an independent dominating set if and only if S is 

maximal independent [2]. 

In a graph, every maximal independent set of vertices is a minimal dominating set 

[2]. 

Every minimal dominating set of vertices is an irredundant set [2].  

 

           Independent Set                                        Irredundant Set 

Dominating Set 
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1.2.2    Parameters 

 

The independent domination number is the cardinality of the minimum independent 

dominating set of a graph, and is denoted i(G).  

The independence number of a graph is denoted (G), and refers to the cardinality 

of the maximum independent set of G.   

The irredundance number of a graph ir(G), is the smallest cardinality of all maximal 

irredundant sets of G.  

The upper irredundance number, conversely, is the largest cardinality of all 

irredundant sets of a graph, and is denoted IR(G) [2]. 

These six parameters interlace quite nicely with the following theorem, which was 

first discovered by Cockayne and Hedetniemi  in 1977: 

For every graph G, ir(G) ≤ γ(G) ≤ i(G) ≤ (G) ≤ Γ(G) ≤ IR(G) [6]. 

 

1.3    Some Techniques for Hard Problems 

 

As is the case with some of the previous types of domination looked at, finding a method 

or algorithm for guarding a general graph may be quite difficult or NP-complete. Rather 

than looking for a direct solution to these problems, another approach is to ask questions 

such as, “For which graphs is it easy to solve?’ and “Are there approximations to the 

problem?” 
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An example of such a strategy is used in the problem of well-covered graphs. The 

problem, as we will discuss briefly, is relatively hard, and so what some mathematicians 

worked on, was finding properties of the problem that can relate to other well-known 

problems, and to characterize graphs which can be well-covered. 

Approaching a problem in this way does not only give more information on the 

problem itself, but it may give insight into other problems as well. Such is the case with the 

well-covered problem and a problem known as well paired-domination, which we will look 

at soon. This will be the case for us as well, where we will see that characterizations from 

similar problems can also suit our problem. 

 

1.3.1    Well-Covered 

 

A vertex cover in a graph is a set of vertices that meets every edge in the graph. A vertex 

cover is said to be minimal if the removal of any vertex in the graph destroys the covering 

property. A well-covered graph is one in which every minimal vertex cover has the same 

cardinality as every other minimal vertex cover, and thus every minimal cover is also 

minimum.   

It was M. Plummer who introduced the idea of a well-covered graph in 1970, and 

noted that since the complement of a vertex cover is an independent set, every maximal 

independent set is also maximum [30]. Since then, other mathematicians have expanded on 

the idea. One such is J. Staples, who looked at the idea of very well-covered graphs, where 

every maximal independent set must contain exactly half of all the vertices of a graph [33]. 
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M. Lewin is another, who looked at characterizing well-covered line graphs, where the 

vertices of a line graph L(G) represent the edges of G [27]. 

A. Finbow and B. Hartnell worked on characterizing well-covered graphs [11], and 

came up with the following result: If a graph G is of girth eight or greater, G is well-covered 

if and only if its pendant edges make up a perfect matching.  

To demonstrate this idea, Figure 1.9 shows three examples of vertex covers, with 

the first two graphs being well-covered, and the last, not.  

 

 

 

 

Figure 1.9: Examples of well-covered and not well-covered graphs. 

 

1.3.2    Well Paired-Dominated Graphs 

 

A well-dominated graph, G, is one in which a minimal dominating set of G is always 

minimum. Mathematician S. Fitzpatrick worked on the concept of well paired-dominated 

graphs in her doctoral thesis in 1997 [14], and with B. Hartnell in a paper published in 2010 

[16]. Their goal was to find a collection of graphs where a minimal paired-dominating set 

could be found using a greedy algorithm, and such that the minimal set was always 

minimum. 

Non well-covered 
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The approach they use is to place K2’s until all nodes are guarded, calling this set 

G0. A K2, say g, is then removed from the set if G’ = G - {g} is still a dominating set. This 

procedure is continued until no more K2’s can be removed, resulting with a minimum 

paired-dominating set of a fixed size, regardless of the K2’s removed.  

As a result, Hartnell and Fitzpatrick found that a connected graph G, with girth at 

least eight, is a well paired-dominated graph if and only if the stems of G form an 

independent dominating set in G, or G is a 9 cycle. 

Figure 1.10 illustrates the idea of well paired-dominated graphs.  

 

 

Figure 1.10: Illustrating the idea of well paired-dominated graphs. 

 

1.3.3    Maximum Matchings 

 

A matching in a graph is a set of edges which are all independent from each other. A 

maximal matching is one such that no more edges can be added to the set, and if an edge is 

removed, it is no longer maximal. Similarly, a maximum matching is a maximal matching 

of largest cardinality. An M-alternating path is a path in G, such that the edges are 
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alternatively in and out of the matching, and an M-augmenting path is an M-alternating 

path such that neither of the end edges of the path are in M. 

Figure 1.11 shows the difference between maximal and maximum matchings.  

 

 

 

  

  

Figure 1.11: Maximal and maximum matchings. 

 

The topic of matchings is very well-known, and is one of the basic concepts to study 

in graph theory. There are many theorems regarding matchings, and associated problems. 

One such theorem states that a matching M, in a graph is maximum if and only if there 

exists no M-augmenting path in G. Another such is Hall’s Marriage Theorem, which is 

based on the idea of matching a set of girls with a set of boys, and looking at when it is 

possible for each girl to get paired with a boy she knows. The theorem, giving an answer 

to this, says that a solution exists if and only if every subset of k girls collectively know at 

least k boys [2]. As it so happens this theorem will be used later on to help with the proof 

of some bounds for our problem in the next section.  

In regards to well-known matching problems, one of the most famous was on 

finding a maximum matching for a general graph. Edmonds was the first to present a 

Maximal Matching   Maximum Matching 
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polynomial algorithm for finding a maximum matching of a graph, in 1965 [10]. We will 

come to see in Section 4, that Edmond’s polynomial algorithm can be used to help 

characterize graphs for our problem.  
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2 The Problem 

 

 

We now move on to the main problem of this work. As mentioned earlier, the problem of 

integrated domination deals with the idea of combining two different types of domination; 

standard domination with paired-domination. Here, we look at the idea of guarding a graph 

using a combination of K1’s and K2’s as guards, with the main problem being to determine 

a minimum dominating set where one has access to both types of guards. If there are ties 

for the minimum number of guards, the set with the fewest number of K2 guards is chosen. 

First, we give a bit of background information into why one would want to choose 

the least number of K2’s, and why it matters. To start, we bring up the notion of the “cost”. 

The cost of a dominating set refers to how much energy, resources, etc., the set requires in 

order to fully dominate a graph. Perhaps a company wants to hire 10 guards to patrol its 

building, and so the cost would be the price or salary of the 10 guards, as an example. 

Generally, the cost, in terms of graphs, would be the number of guards in the dominating 

set or the domination number of the graph, however this is not the case in this particular 

problem. 

In this problem there are two different types of guards, with each representing a 

certain style of domination. As a general rule in this problem, it is noted that one K1 guard 
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is cheaper, or more cost-efficient, to use than one K2 guard, which is then cheaper to use 

than two K1 guards. The idea behind this is that if one chooses to look at a K2 as two K1’s, 

then the amount of resources it would use would be twice that of one K1. Conversely, if a 

K2 is considered as one K1 moving back and forth between two vertices, then it is still using 

more energy than a K1, which stays on one vertex only, but is still cheaper than two K1’s. 

A common sense issue arises when one chooses an integrated dominating set of 99 

K2’s rather than an integrated dominating set of 100 K1’s, however we chose our rules in 

order to keep the problem more manageable. Future work could further refine the cost issue.  

 

2.1    Further on the Problem 

 

In spite of the fact that for integrated domination one can use both K1’s and K2’s to 

dominate a graph, which may be an advantage over the original or paired-domination, there 

are situations where using solely K1’s or solely K2’s yields an optimal result. 

For example, it is best to dominate a P6 with only K1’s. If one were to use K2’s, or 

a mix of K1’s and K2’s, overlap would be created and the set would not be minimum. 

Similarly, a P8 graph is best dominated using only K2’s, rather than K1’s or a mix of the 

two. Generally speaking however, most graphs require a combination of K1’s and K2’s to 

find their minimum integrated dominating set. Figure 2.1 illustrates guarding a P6 and a P8 

using a variety of guard types.  
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Figure 2.1: Guarding a P6 and a P8 with different variations of guards. 

 

Expanding on the idea mentioned above, one of the issues that comes up when 

looking at this problem is that it is possible to have multiple minimal integrated dominating 

sets with the same cardinality, yet with different numbers of K1’s and K2’s. Figure 2.2 

illustrates this issue.  

 

 

 

 

Figure 2.2: Two different minimal integrated dominating sets with the same cardinality. 

 

For the graph in Figure 2.2, if we were to start at either the right or left branches, 

possibly by starting at the end of a longest path, a minimal integrated dominating set could 

result with two K1’s and only one K2. However, if one were to start on the shortest branch, 

they could end up with one K1 and two K2’s. Both sets contain three guards whose closed 

neighbourhoods partition the graph, however clearly the option with only one K2 is the 
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minimum integrated dominating set. Thus, this not only is a problem of knowing how many 

guards to have in the integrated dominating set, but also of knowing which guard to place 

where. 

 

2.2    The Goal of This Work 

 

Finding an algorithm for obtaining a minimum integrated dominating set appears to be 

quite difficult. The goal of this work is to give some insight into the problem, and to give a 

collection of graphs where a minimum integrated dominating set can efficiently be found. 

This work also gives a set of subgraphs, which if found in a graph, one knows exactly how 

to guard them; and gives a bound on the cardinality of a minimum integrated dominating 

set, which we look at next.  

 

2.3    Bounds 

 

Theorem 2.1 In a graph with no isolates, the cardinality of a minimum integrated 

dominating is equal to the cardinality of a minimum paired-dominating set. 

 

Proof: Assume a minimum integrated dominating set say D, consists of R1 ∪ R2 where R1 

is a set of K1’s and R2 is a set of K2’s. If R1 = 0, then D is a paired-dominating set and we 

are done.  
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If R1 ≠ 0, let T be all the neighbours of vertices in R1 that are not in the integrated 

dominating set D. Note that each vertex in R1 has such a neighbour, as if no such neighbour 

existed for a vertex v in R1, then v would not need to be in D.  

If any subset, say R, of R1 had the property that |N(R)| < |R|, then (D\R) ∪ (N(R)) would be 

a smaller integrated dominating set than D, which contradicts D being a minimum 

integrated dominating set. Now, if every subset R of R1 is such that |N(R)| ≥ |R|, then Hall’s 

theorem guarantees that there is a matching of vertices in T that saturate the vertices in R1. 

Although Hall’s theorem considers bipartite graphs, our situation here can be represented 

as a bipartite graph when we consider the vertices of R1 with their neighbours in T. 

Now if we use K2’s on this matching, we have a minimum paired-dominating set of the 

same cardinality as D and hence the proof is complete. ▄ 

 

 

 

 

 



27 

 

 
 

 

 

 

3    Subgraphs 

 

 

To begin, we look at a variety of subgraphs which can efficiently be guarded minimally, 

regardless of their location in a graph. In some of these examples, the concept of removing 

a vertex from a graph is discussed, and simply refers to the fact that if a vertex is guarded, 

with no ‘more efficient’ solution existing, then it can be removed from the graph. This is 

to make the remainder of the graph smaller and hopefully easier to work with.  

 

Note: As a reminder, in a graph, a stem is a vertex which has at least one neighbour 

of degree one. This particular neighbour is called a leaf, or an endvertex, and is 

characterized by having only one edge incident with it, or in other words, having only one 

neighbour.  

 

Lemma 3.1 In a graph G, there is a minimum integrated dominating set D such that every 

stem hosts a guard from D. 

 

Proof:  In order to dominate a graph G, every vertex in G must be dominated by at least 

one vertex in the integrated dominating set D. Let u be an endvertex, and v be the stem 
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adjacent to u. In order to dominate u, either u or v must be in D (See Figure 3.1). If u is in 

D as a K1, it will dominate only itself plus v. If v is in D as a K1, it will dominate itself, u, 

and all of its other neighbours. Thus, one does at least as well, if not better, to have a guard 

on a stem. We note that such a guard may be a K1 or part of a K2. ▄ 

 

Figure 3.1: Options for guarding a stem. 

 

Lemma 3.2 Let G be a graph with a minimum integrated dominating set D. If there exists 

a stem x, whose only non-leaf neighbour, say y, is of degree 2, and y’s only other neighbour 

is a stem, z, then x will host a K1 guard. 

 

Proof: As both x and z are stems, they will both require a guard. There are two options for 

possible integrated dominating sets; either a K1 is placed on x, or a K2 is placed between x 

and y (See Figure 3.2). The only advantage to having a K2 between x and y would be that 

it guards z, however since z is a stem it requires its own guard, to guard its leaves. Therefore, 

the K2 does no more guarding than a K1 in this spot, and so a K1 is the cheaper option and 

a minimum solution. ▄ 

 

Corollary 3.2 A minimum integrated dominating set for a graph G described in Lemma 

3.2 will be a minimum integrated dominating set for G\N[x], along with the vertex x hosting 

a K1. 

u u 

v v 

u 

v 
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Proof: After removing x and its leaves, vertex y then becomes a leaf of z, and since it is 

being dominated by z, it can safely be removed from the graph.  

 

 

Figure 3.2: Options for guarding the subgraphs described in Lemma 3.2. 

 

Lemma 3.3 If adjacent to the end of a longest path in a tree T, there exists a stem x, whose 

only non-leaf neighbour y, is not a stem and is of degree ≥ 3, then any minimum integrated 

dominating set can be transformed in polynomial time to one in which x hosts a K1 guard. 

 

Proof: As y is near the end of a longest path, is of degree ≥ 3 and is not a stem, it must have 

a stem neighbour other than x, say z.   

To dominate the graph, a K1 could be placed on x, or a K2 between x and y (See 

Figure 3.3). The advantage to placing a K2 between x and y is that it would not only guard 

y, but y’s neighbours as well. However, since z, a neighbour of y, is a stem, it will need its 

own guard, which would also guard y.  

In a case where another neighbour of y needs to be guarded, one can place a K2 

between z and y to cover that neighbour. Thus, one would do no better to place a K2 between 

x and y, and so a K1 on x gives an optimal solution. ▄ 

 

y

 

x z x

  

y z 
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Corollary 3.3 A minimum integrated dominating set for a graph G described in Lemma 

3.3 will be a minimum integrated dominating set for the graph of G without x and its leaves, 

along with vertex x hosting a K1. 

 

Proof: Vertex x and its leaves can be removed from G, as x will only host a K1. Since y is 

of degree ≥ 3 and does not become a leaf of z, it’s possible that y may need to host a guard 

later on in order to guard its neighbours, and so only x and its neighbours are removed. ▄ 

 

 

 

Figure 3.3: Options for guarding the subgraphs described in Lemma 3.3. 

 

Lemma 3.4 If adjacent to the end of a longest path in a tree T, there is a stem x, whose only 

non-leaf neighbour is a vertex, say y, of degree 2, where y’s other neighbour z, is not a stem 

and is of degree ≥ 3, then a minimum integrated dominating set can be transformed in 

polynomial time where x hosts a K1 guard.  

 

Proof: To dominate the graph, a K1 could be placed on x or a K2 could be placed between 

x and y. The advantage to placing a K2 between x and y is that it would guard z. However, 

since z is near the end of a longest path, is not a stem and is of degree ≥ 3, z must contain 

at least one other branch, of length two or three. 
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If the branch is of length 2, it will require a guard on its stem, which is adjacent to 

z, and so z would be guarded. If the branch is of length 3, it will require a guard on its stem, 

which can easily change to a K2, and so will again guard z. 

Therefore, to have a K2 between x and y in order to guard z would be unnecessary, 

as z is just as easily dominated by one of its adjacent vertices on its other branch, and so 

having x host a K1 guard is an optimal solution (See Figure 3.4). ▄ 

 

Corollary 3.4 A minimum integrated dominating set for a graph G described in Lemma 

3.4 will be a minimum integrated dominating set for G\N[x], along with the vertex x hosting 

a K1. 

 

Proof: Vertex x and its leaves can be removed from the graph, and since y would then 

become a leaf of z and would be guarded by x, it can also be removed. ▄ 

 

 

 

 

 

Figure 3.4: Options for guarding the subgraphs described in Lemma 3.4. 

 

Lemma 3.5 Let G be a graph with a stem x, whose only other neighbour besides its leaves 

is another stem y, and y is adjacent to only leaves and one other vertex, say z. Then if D is 
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a minimum integrated dominating set, then D can be transformed in polynomial time to a 

dominating set in which x and y will host a K2 guard between them.  

 

Proof: Either z is in the minimum integrated dominating set D, or z is in V\D. As both x 

and y are stems, they will both require a guard. If z hosts a guard in D, then a K1 could be 

placed on x and a K2 between y and z, or a K2 could be placed between x and y, and z would 

have either a K1 or a K2 between itself and another node if needed. Thus, a K1 on x and a 

K2 between y and z would do no better than a K2 between x and y. 

If z is not in D, then x and y will both still require guards, and a K2 between these 

nodes would be more efficient than two K1’s. Therefore, an optimal solution will have a K2 

between x and y. ▄  

(See Figure 3.5). 

 

Figure 3.5: Options for guarding the subgraphs described in Lemma 3.5. 

 

Lemma 3.6 Let T be a tree with a stem x, adjacent to the end of a longest path in T. Assume 

that x’s only non-leaf neighbour is a vertex y, of degree 2, where y has only z, a degree 2 

vertex, as its other neighbour, and z’s only other neighbour w, is not a stem and is of degree 

≥ 3. Further assume that vertex w is adjacent to one stem, say v, and v is only adjacent to 

one non-leaf vertex. If D is a minimum integrated dominating set, then D can be 

yx z yx z yx z 
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transformed in polynomial time to a dominating set in which x hosts a K1, and v and w host 

a K2 between them.  

 

Proof: Vertices x and v are both stems, and so both require a guard. If a K1 is placed on x, 

it guards x’s leaves, x and y. This means z is still unguarded, and so a K2 should be placed 

between v and w in order to guard z, which in turn guards all of w’s other neighbours. If a 

K1 is placed on v instead, it only guards v’s leaves plus w, and z becomes stuck between 

two already guarded vertices. 

If a K2 is placed between x and y, it will guard x’s leaves, x, y and z, leaving it so 

that a K1 can be placed on v, in order to guard w. However, here w’s neighbours aren’t yet 

guarded. Alternatively, a K2 could be placed between v and w to guard w’s other neighbours, 

however this would use more K2’s and does no better than having a K1 on x (See Figure 

3.6). 

Therefore, there is an optimal solution with x hosting a K1 and v and w hosting a 

K2. ▄ 

 

Corollary 3.6 A minimum integrated dominating set for a graph G described in Lemma 

3.6 will be a minimum integrated dominating set for G\N[x], along with the vertex x hosting 

a K1. 

 

Proof: Vertex x, its leaves and y can be removed from the graph as they are all guarded and 

are only adjacent to vertices that are already guarded. ▄ 
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Figure 3.6: Options for guarding the subgraphs described in Lemma 3.6. 

 

Lemma 3.7 If in a graph G there exists a vertex x, which is part of an induced Kn, such that 

the removal of x disconnects the remaining vertices of the Kn from the rest of G, then a 

minimum integrated dominating set D can be found with x hosting a guard in D. 

 

Proof: Let K be the set of vertices in the Kn subgraph. Let x be the vertex in K such that x 

is the only vertex connecting G[K] with the remainder of G.  

Let S denote the other neighbours of x, not in K. If x is in the minimum integrated 

dominating set D as a K1, then x guards itself plus all of S and K, since all vertices in a 

complete graph are adjacent. On the other hand, if a vertex v, in K\{x}, is in D as a K1, it 

will guard only x and the remaining vertices in K, with none of the vertices in S being 

guarded. Thus, there is a minimum integrated dominating set containing x. ▄ 

(See Figure 3.7). 
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Figure 3.7: Options for guarding a clique. 

 

Lemma 3.8 In a graph G, suppose there exists a stem x, whose non-leaf neighbours are all 

of degree 2. If these neighbours are also adjacent to vertices of degree 2 and their other 

neighbours are all stems, then in a minimum integrated dominating set x will host a K1. 

 

Proof: Let {a1, a2, …, ai} be the non-leaf neighbours of x. Let {b1, b2, …, bi} be the other 

neighbours of {a1, a2, …, ai}. Let {s1, s2, …, si} be the remaining neighbours, and thus 

stems, adjacent to {b1, b2, …, bi}.  

As x is a stem, it will require a guard, which can be either a K1 or a K2. If it is a K1 

then it will guard x, its leaves, plus all {a1, a2, …, ai}. As {s1, s2, …, si} are stems, they will 

each require a guard, which will guard themselves and all their neighbours, including each 

of the adjacent {b1, b2, …, bi}.  

If x is in as a K2, it will go between x and one of the {a1, a2, …, ai}, say an. Let an 

be adjacent to bn from {b1, b2, …, bi}. Then the K2 will guard x, x’s leaves, all of the  

{a1, a2, …, ai} plus bn. However, bn is adjacent to a stem, which will have a guard, and so 

having a guard between x and an is not necessary. Therefore, a K1 on x is more efficient, 

and so gives an optimal solution. ▄ 

(See Figure 3.8). 
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Figure 3.8: Guarding an isolated stem. 

 

Lemma 3.9 In a graph G, suppose there exist two adjacent stems x and y, whose other non-

leaf neighbours are all of degree 2. If these neighbours are also adjacent to vertices of 

degree 2 and their other neighbours are all stems, then in a minimum integrated dominating 

set x and y will host a K2 between themselves. 

 

Proof: As in Lemma 3.8, it is shown that to put a K2 between either x or y, and one of their 

adjacent neighbours, would be redundant. Thus, two K1’s could be placed on x and y, 

however a K2 between these vertices is more efficient, and therefore is found in a minimum 

integrated dominating set for this type of graph. ▄  

(See Figure 3.9). 

 

 

 

Figure 3.9: Guarding a pair of isolated stems. 
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Lemma 3.10 If in a graph G, there exist two adjacent non-stem vertices x and y, with their 

only other neighbours being stems, then the vertices x and y can be removed from the graph. 

 

Proof: Since each of the neighbours of x and y are stems they will each require a guard, 

and so x and y will be guarded. As x and y are not stems, and have no other neighbours 

besides themselves and stems, they need not be in the integrated dominating set, as having 

them in the integrated dominating set gives no advantage. ▄ 

Thus, the removal of the vertices x and y does no harm to the dominating set, and 

potentially breaks the graph into two smaller graphs. This would hopefully make the graphs 

easier to handle (See Figure 3.10). 

 

 

 

Figure 3.10: Guarding a stem covered edge. 

 

Note: Here we will talk about how many guards are needed for certain path lengths. Lemma 

4.1 in Section 4 explains how to find the number of K1’s and K2’s to guard different path 

lengths, and goes into further detail on this topic.  

The basis of these results is formed from the idea that a path of length 5 cannot be 

guarded efficiently using any combination of K1’s and K2’s. One K1 is not sufficient to 

completely dominate a P5, nor is one K2. Two K1’s create overlap, and the same is true for 

x y 
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two K2’s, or one K1 plus one K2. Thus, part of the strategy for these paths was to avoid 

“creating” paths of length 5 when not necessary. 

It is also noted that using as many K2’s as possible to guard long paths is more 

efficient than using K1’s, as K2’s can guard four vertices on a path in total, whereas K1’s 

can only guard three.  

Therefore, the aim was to use as many K2’s as possible, without forcing w into a 

situation where it would be left with a path of 5 unguarded nodes.  

 

Lemma 3.11 If in a graph G, there exists a vertex w, such that deg(w) ≥ 3, and w has a k-

arm with k ≥ 7, then the following statements hold for a minimum integrated dominating 

set: 

a) For k being a 4t-arm, with t a variable, K2’s should be placed starting at the tail-end of 

the arm, and working in towards w, stopping when there are 8 unguarded nodes left between 

the K2’s and w.   

b) For k being a 4t+1-arm, K2’s should be placed starting at the tail end of the arm and 

stopping when there are 9 unguarded nodes left between the K2’s and w.  

c) For k being a 4t+2-arm, K2’s should be placed starting at the tail end of the arm, and 

stopping when there are 10 unguarded nodes left between the K2’s and w.  

d) For k being a 4t+3-arm, K2’s should be placed starting at the tail end of the arm, and 

stopping when there are 7 unguarded nodes left between the K2’s and w.  
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Proof: Here it is assumed that the rest of G, without w and the k-arm, has not yet been 

guarded, and so the status of w is unknown.  

In each of the four cases in Lemma 3.11, in an optimal arrangement of guards for 

the entire graph G, w can be in one of three positions (See Figure 3.11): 

Case 1: Vertex w can host a guard, in which case w plus one neighbour from the 

adjacent arm are guarded. 

Case 2: Vertex w is adjacent to a guard not on the k-arm and so is guarded. 

Case 3: Vertex w is two or more vertices away from any guard not on the k-arm and 

so still needs to be guarded. 

Using this, we now look at each of the possible lengths separately. 

 

a) Let G be a graph with a 4t-arm adjacent to a vertex w, of degree ≥ 3. If 8 nodes are left 

unguarded, the guarded section of the arm becomes of length 4t – 8, and thus would use  

t-2 K2’s. 

In Case 1, where w hosts a guard and so one vertex of the arm is guarded, the 

unguarded length of the arm becomes 8 – 1 = 7, which can be guarded using one K1 and 

one K2. In Case 2, w is guarded and so the length of the unguarded section stays 8, and can 

be guarded using two K2’s. For the final Case 3, the length of the unguarded section 

becomes 8 + 1 = 9, as w will need to be guarded, and so can easily be guarded using three 

K1’s.  

Adding an extra K2 to the arm, and so leaving 4 vertices unguarded, would create 

overlap. In the first case the unguarded length becomes 3, and can be guarded with one K1. 
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In Case 2, the length stays at 4 and can be guarded with one K2. However, in the third case 

the unguarded length becomes 5, and as we have shown, can not be efficiently guarded and 

creates overlap. Therefore, leaving 8 vertices unguarded after placing the K2’s, is an 

optimal solution (See Example A). 

 

b) Similarly, for a 4t+1-arm, leaving 9 vertices unguarded before w results in a guarded 

section of length 4t+1 – 9, using t-2 K2’s. For Case 1, the unguarded length becomes  

9 - 1 = 8, guarded with two K2’s, Case 2 leaves the unguarded length at 9, which can be 

guarded by three K1’s, and Case 3 leaves 9 + 1 = 10 vertices unguarded, which can use one 

K2 and two K1’s.  

Adding an extra K2 at the start would leave 5 vertices unguarded, which would 

create overlap in Case 2.  

 

c) For 4t+2-arms, leaving 10 vertices unguarded between the K2’s and w would result in 

the length of the guarded section being 4t+2 – 10 and would use t-2 K2’s. Using the same 

procedure as before, Case 1 would see 9 vertices unguarded, Case 2 would have 10 vertices 

unguarded, and Case 3 would have 11 vertices unguarded. 

Again, adding an extra K2 at the start would leave 6 vertices unguarded, which 

would create overlap in the first case.  

 

 d) Finally, for 4t+3-arms, placing K2’s up until there are 7 nodes unguarded before w forces 

4t+3 – 7 vertices, guarded by t-1 K2’s. For Case 1, the unguarded length would be 6, Case 

2 would give an unguarded length of 7, and Case 3 would leave 8 vertices unguarded. 
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Adding an extra K2 at the start would leave 3 vertices unguarded, and would create 

overlap in Case 1. ▄ 

 

Table 3.1 gives the lengths of the unguarded sections for each of the 4t, 4t+1, 4t+2 

and 4t+3-arms in each of the three cases, and shows where the overlap would be in each 

situation.  

 

 

 

 

 

 

Figure 3.11: Positions of a high degree vertex. 
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Table 3.1: Case results for each length of k-arms. 

 

 

 

 Unguarded Length Where the 

overlap is 

4t Case 1 Case 2 Case 3  

Leaving 8 unguarded (before 

w) 

(Using t-2 K2’s) 

7 8 9  

Leaving 4 unguarded 

(Using t-1 K2’s) 

3 4 5 Case 3 

4t+1     

Leaving 9 unguarded 

(Using t-2 K2’s) 

8 9 10  

Leaving 5 unguarded 

(Using t-1 K2’s) 

4 5 6 Case 2 

4t+2     

Leaving 10 unguarded 

(Using t-2 K2’s) 

9 10 11  

Leaving 6 unguarded 

(Using t-1 K2’s) 

5 6 7 Case 1 

4t+3     

Leaving 7 unguarded 

(Using t-2 K2’s) 

6 7 8  

Leaving 3 unguarded 

(Using t-1 K2’s) 

2 3 4 Case 1 
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Example A: Figure 3.12 illustrates a 12-arm being guarded for each of the three cases, with 

the first part showing what would happen when 8 vertices are left unguarded, and the 

second part showing when 4 vertices are left unguarded. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Guarding a 12-arm where 8 and 4 vertices are initially left unguarded. 
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4 Graphs 
 

 

We now move on to specific graphs where a minimum integrated dominating set can 

efficiently be found. 

 

Note: Two types of graphs that can be guarded easily using K1’s and K2’s are paths, 

Pn, and cycles, Cn. Paths, as mentioned earlier, are strings of adjacent degree 2 vertices, 

with only the two end vertices being of degree 1, and each vertex in the path being distinct. 

A path with 6 vertices would be denoted as P6. Cycles have a similar characteristic, but are 

without end vertices, and every vertex is of degree 2. A cycle with 6 vertices would be 

called a 6-cycle, or a C6. 

 

Lemma 4.1 For paths and cycles a minimum integrated dominating set can be found 

efficiently.  

 

Proof: As each K1 can guard 3 vertices, and each K2 can guard 4 vertices, the length of the 

path or cycle can be divided into sections of multiples of 3 and 4, and a counting formula 
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can be used to find the number of guards needed and of which type. The formulas are shown 

in Table 4.1, with t as a variable. 

 

Table 4.1: Path length formulas. 

Length Number of K2’s Number of K1’s 

4(t) + 0 t 0 

4(t) + 1 t-2 3 

4(t) + 2 t-1 2 

4(t) + 3 t 1 

 

 

Let R = {r1, r2, …, rn} be the guards found using the appropriate formula above. For 

paths, one starts at a leaf and places one of the guards, say r1, on the node adjacent to the 

leaf. For every vertex r1 dominates, that vertex is removed from the graph. Then, the process 

is repeated, using a guard from R\{r1, …, rk} where {r1,…, rk} are the guards already chosen.  

For cycles, the same procedure is followed, however as there are no stems, and each 

vertex in Cn has the same properties, one starts by choosing an arbitrary vertex to place the 

first guard.  

Of course for the smaller path or cycle lengths, 1, 2 and 5, the formulas don’t hold. 

In the cases where the path or cycle length is 1 or 2 nodes, a single K1 will suffice. When 

the length is 5, overlap is unavoidable, and so using two K1’s is optimal. ▄ 

Figure 4.1 illustrates guarding different path lengths according to the formulas 

given above. 
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Figure 4.1: Guarding paths of different lengths. 

 

Lemma 4.2 If G is a graph such that its stems form an independent dominating set, then a 

minimum integrated dominating set can efficiently be found.  

 

Proof: Let S be the set of stems in G. Since S forms a dominating set, the stems must, as a 

whole, be adjacent to every vertex in G\S, and so having a guard on each stem will dominate 

every vertex in G. Since S is an independent set, no two stems are adjacent, and so there is 

no advantage to using K2’s. Therefore, an optimal solution can be obtained by placing a K1 

on each stem in G. ▄ 

 

Notice that this characterization also applies to well paired-dominated graphs, as we 

discussed in Section 1. 

 

Corollary 4.2 If in a graph G, the closed neighbourhoods of every stem form a partition of 

V(G), then a minimum integrated dominating set can efficiently be found with a K1 on 

every stem.  

 

(4t)   0 K1’s  t K2’s 

(4t+1)  3 K1’s  t-2 K2’s 

(4t+2)  2 K1’s  t-1 K2’s 

(4t+3)  1 K1  t K2’s 
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Proof: Let G be a graph with the closed neighbourhoods of all stems in G partitioning the 

graph. Let s1 be an arbitrary stem in G with neighbours {v1, v2, …, vm}. For each vi, its only 

neighbours other than s1, are vertices that are adjacent to other stems, say {r1, r2, …, rm}. If 

a K1 is placed on s1, then {v1, v2, …, vm} are guarded. A K1 on each of {r1, r2, …, rm} will 

then guard all the other neighbours of {v1, v2, …, vm}. 

The only advantage to placing a K2 between s1 and one of its neighbours, say v1, is 

that v1’s neighbours will then also be guarded. However, since v1’s neighbours are all 

adjacent to stems, they will be guarded by their adjacent stem, and thus it does no better to 

place a K2 on s1 rather than a K1. ▄ 

(See Figure 4.2). 

 

 

 

 

Figure 4.2: Example of a partition of stems 

 

Lemma 4.3 If in a graph G, all stems are found in adjacent pairs, the closed neighbourhoods 

of each adjacent pair of stems is disjoint from all others, and the closed neighbourhoods 

form a partition of V(G), then every pair of stems will host a K2 between them in a 

minimum integrated dominating set. 
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Proof: From the results of Corollary 4.2, it is shown that in these types of graphs where the 

closed neighbourhoods of the stems form a partition of the graph, to place a guard between 

one of the stems and a non-stem neighbour is redundant. Further, when two stems are 

adjacent and their neighbourhoods form a partition, the two optimal solutions are to either 

place two K1’s on the stems, or a K2 between them. However, as shown before, one K2 is a 

more optimal solution than two K1’s, and thus a K2 is placed between all adjacent pairs of 

stems. ▄ 

 

Lemma 4.4 If in a graph G, the subgraphs induced by the set of stems are K1’s and K2’s, 

and the closed neighbourhoods of these induced subgraphs are disjoint from all other closed 

neighbourhoods of the induced subgraphs, and these neighbourhoods form a partition of 

V(G), then a minimum integrated dominating set has a K1 on each K1 subgraph of stems, 

and a K2 on each K2 subgraph of stems.  

 

Proof: Combining the results from Corollary 4.2 and Lemma 4.3, it’s shown that this is a 

optimal solution. ▄ 

 

Lemma 4.5 If G is a graph in which each vertex is either a stem or a leaf, then a minimum 

integrated dominating set can efficiently be found. 

 

Proof: As each vertex is either a stem or a leaf, to place a guard on each stem will dominate 

every vertex in the graph. Wanting to use the fewest number of guards possible, we want 

to pair up as many stems as possible to use K2’s. This now, in a sense, becomes a problem 
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of finding a maximum matching. As mentioned in Section 1, a polynomial time algorithm 

exists to solve this problem, due to J. Edmonds’ results [10], and so we can use this 

algorithm to find where the K2’s should be placed, and then place K1’s on the remaining 

stems. ▄ 

 

The next few graphs we characterize are ones where each high degree vertex is a stem. 

These graphs therefore consist only of stems, leaves and k-paths. For these k-paths, we note 

that each stem can be guarded according to its length.  

As each stem requires a guard, a K1 is placed on all stems in the graph as a 

placeholder. These K1’s may be changed later to K2’s. Now, between each set of stems, 

there is a path that needs to be guarded. For each of these paths, there are three possibilities 

for guarding it, shown in Table 4.2. 

 

Table 4.2: Options for boundary stems. 

 

 

 

Option Action 

Option 1 Both of the K1’s on the two boundary stems are left as K1’s. 

Option 2 One of the K1’s on the boundary stems is changed to a K2, 

going between the stem and an adjacent vertex on the path. 

Option 3 Both of the K1’s on the boundary stems are changed to K2’s, 

going between the stems and adjacent vertices on the path 
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In the first case, each of the K1’s would guard one vertex on the path, leaving an 

unguarded section of two vertices less than the original length. In the second case, the K1 

would guard one vertex on the path, and the change to a K2 for the other stem would guard 

two vertices on the path, leaving an unguarded section of three vertices less than the original 

length. For the third case, the change to K2’s for both stems leaves an unguarded section of 

four vertices less than the original length.  

For smaller k-paths, of lengths 1, 2, 3, 4 and 5, slight exceptions are made, and these 

results are shown in Table 4.3, which shows whether the boundary stems should have K1’s, 

K2’s, or both. Note that for a path of length 5, an extra K1 is required on the path as well.  

 

Table 4.3: Optimal options for shorter k-paths. 

 

 

 

 

  

 

 

In the more general cases however, we have general guidelines as to how to guard 

each length. First, note guarding as many vertices as possible using K2’s is best, as this 

guards the most vertices using the fewest number of guards, and so paths of length 4t are 

Length of 

the Path 

Optimal Option for 

Boundary Stems 

1 2 K1’s 

2 2 K1’s 

3 1 K1 & 1 K2 

4 2 K2’s 

5 2 K1’s 
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considered optimal here as they can be guarded in this way. This is similar to the idea in 

Lemma 3.11. 

For the k-paths of length 4t, choosing Option 3 and changing both of the boundary 

K1’s to K2’s still leaves the unguarded path at a length of 4t, and so is optimal. Here, one 

would use t-1 K2’s for the path, as its length would be 4t – 4, plus 2 K2’s for the boundary 

stems, using t+1 K2’s total. 

If one were to choose Option 1, the unguarded length would become 

4t – 2, and so would use t-2 K2’s and 2 K1’s for the length, plus 2 K1’s as a boundary guards, 

giving a total of t+2 guards. Similarly for choosing Option 2, the unguarded length becomes 

4t – 3, and would use t-3 K2’s and 3 K1’s, plus 1 K1 and 1 K2 as boundary guards, and thus 

use a total of t+2 guards. 

Clearly, as each option will use two boundary guards regardless, forcing an 

unguarded length of 4t is optimal. Figure 4.3 shows the different options for guarding a k-

path of length 4t. For the other three lengths, Table 4.4 gives the results for each option. 

 

 

 

 

 

Figure 4.3: Options for guarding a k-path of length 4t. 
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Table 4.4: Case results for each k-path length. 

 

 Option 1:  two K1’s Option 2: one K1, one K2 Option 3: two K2’s 

4t Unguarded Length:  

4t-2 

Guards Needed: 

t-2 K2’s 

4    K1’s 

Unguarded Length:  

4t-3 

Guards Needed: 

t-2 K2’s 

4    K1’s 

Unguarded length: 

4t-4 

Guards Needed:  

t+1 K2’s 

0     K1’s 

4t+1 Unguarded Length:  

4t-1 

Guards Needed:  

t-1 K2’s 

3    K1’s 

Unguarded Length:  

4t-2 

Guards Needed: 

t-1 K2’s 

3    K1’s 

Unguarded Length:  

4t-3 

Guards Needed: 

t-1 K2’s 

3    K1’s 

4t+2 Unguarded Length:  

4t 

Guards Needed: 

t    K2’s 

2    K1’s 

Unguarded Length:  

4t-1 

Guards Needed: 

t    K2’s 

2    K1’s 

Unguarded Length:  

4t-2 

Guards Needed: 

t    K2’s 

2    K1’s 

4t+3 Unguarded Length:  

4t+1 

Guards Needed: 

t-2 K2’s 

5    K1’s 

Unguarded Length:  

4t 

Guards Needed: 

t+1 K2’s 

1     K1’s 

Unguarded Length:  

4t-1 

Guards Needed: 

t+1 K2’s 

1     K1’s 

 

 

Notice that for lengths 4t and 4t+3, there is an option which results in fewer guards, 

or a cheaper set of guards needed, and in both cases it is required to change at least one of 

the boundary K1’s to a K2. With this, a problem arises when two k-paths of lengths 4t or 

4t+3 are adjacent to each other, as both require a stem to be changed, however there is only 

one stem between the two paths. Figure 4.4 illustrates the issue when multiple 4t+3 and 4t 

paths are adjacent.  
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Following on this idea, for the cases with lengths 4t+1 and 4t+2, the number and 

type of guards needed are the same for each of the three options. However, if a path of 

length 4t+1 or 4t+2 is adjacent to one of length 4t or 4t+3, then clearly choosing an option 

that doesn’t require the changing of a boundary guard is best, as it allows the 4t or 4t+3 

path to use that guard instead. Table 4.5 gives the optimal guarding solutions for each k-

path length.  

 

 

Figure 4.4: Illustrating the issue with multiple k-paths of length 4t. 

 

Table 4.5: Optimal guarding solutions for each k-path length. 

 

 

 

 

 

Length Best Option 

4t Change BOTH 

-both K1’s are changed to K2’s 

4t+1 Change NONE 

-K1’s are kept as K1’s 

4t+2 Change NONE 

-K1’s are kept as K1’s 

4t+3 Change ONE 

-one K1 is changed to a K2 

5 = 4t+1        4 = 4t 

4          3   3         4 
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This being said, we now move on to some characterizations of graphs of this type. 

 

Lemma 4.6 If G is a graph such that each high degree vertex is a stem, and the only k-paths 

are of lengths 4t+1 and 4t+2, then a minimum integrated dominating set can be found in 

polynomial time.  

 

Proof: If our graph consists of only k-paths of lengths 4t+1 and 4t+2, then we can simply 

place K1’s on all the boundary stems, and the remaining unguarded path lengths can be 

guarded based on their lengths. ▄ 

 

Lemma 4.7 For trees with the restriction that each high degree vertex is a stem and every 

k-path is of length 4t+1, 4t+2 or 4t+3, a minimum integrated dominating set can efficiently 

be found. 

 

Proof: Let T be a tree satisfying the conditions of the lemma. Each stem requires a guard, 

so to start, K1’s are placed on all stems in the graph. As shown before, k-paths of length 

4t+3 are optimally dominated when one of their boundary K1’s are changed to a K2. 

If no 4t+3 k-path exists in T, then only 4t+1 and 4t+2 k-paths exist, and so each k-

path can be guarded in whichever order, using Option 1 (see Table 4.2), and the 

corresponding path length formula. 

Otherwise, there exists at least one k-path of length 4t+3, located at the end of a 

branch, or adjacent to a string of consecutive 4t+1 or 4t+2 paths which reach the outer end 
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of a branch. Like this, the 4t+3 k-path has a stem that is on the outside of the tree (adjacent 

to only leaves), or adjacent to a k-path that doesn’t need its boundary stems changed. 

Starting at the outside end of a k-path, the tree is guarded by moving up the path 

towards the centre of the tree, guarding the 4t+1 and 4t+2 k-paths according to Table 4.5 

and the corresponding path length formulas, and guarding the 4t+3 k-paths by changing the 

first, outer, boundary stem to a K2, and then guarding the rest of the path according to its 

length. The 4t+3 k-path’s other boundary stem is temporarily left as a K1 in the case that it 

is part of an adjacent 4t+3 k-path, and thus may need to change to a K2. This is done until 

a vertex with ≥ 2 branches attached is reached. When such a vertex is reached, one stops 

and restarts the procedure at the end of a different branch of T. When no new branches 

remain, the guarded vertices, minus the vertices with ≥ 2 branches and their neighbours, 

can be removed from T. This creates new branches for the tree, and the procedure is 

continued. When only one k-path remains, it can be guarded according to Table 4.5 and the 

corresponding path length formula, and a free boundary stem remains. ▄ 

 

Working from the outside in, in this order, avoids creating situations where a 

boundary K1 is changed to a K2, when it should have been left available for an adjacent k-

path. Figure 4.5 shows an example of a minimum dominating set for a tree with only k-

paths of lengths 4t+1, 4t+2 and 4t+3.  
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Figure 4.5: Example of a dominated tree of only k-paths of lengths 4t+1, 4t+2 and 4t+3. 

 

Lemma 4.8 Let T be a tree where each high degree vertex is a stem, and such that whenever 

there are two k-paths of length 4t, there must be at least one k-path of length 4t+1 or 4t+2 

between them. Then a minimum integrated dominating set can efficiently be found. 

 

Proof: As shown earlier, the 4t k-paths need both boundary K1’s to be available to change 

to K2’s. If a tree T, has no 4t k-path, then Lemmas 4.6 and 4.7 apply. If not, there exists at 

least one 4t k-path in T. 

Either the 4t k-path is at the outside end of a branch, in which case one of it’s 

boundary K1’s is free, or it is adjacent to a string of 4t+1, 4t+2 or 4t+3 k-paths, which as 

shown earlier, can still allow for the joining K1 to be free to change. 
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If two 4t k-paths are connected, with no 4t+1 or 4t+2 k-path between them, then an 

issue will arise as more K1’s will be needed to change to K2’s, than are available. However, 

if a 4t+1 or 4t+2 k-path is between them, it opens up one of the boundary K1’s for the 4t k-

path, since they don’t need their boundary K1’s changed. 

For a minimum integrated dominating set for these trees, as with the trees in Lemma 

4.7, K1’s are first placed on all stems, and since the 4t k-paths are top priority, all boundary 

K1’s of 4t k-paths are changed to K2’s appropriately. Next, starting at a path adjacent to a 

4t k-path, the opposite K1 is changed if necessary and guarding the k-paths follows a similar 

procedure as in Lemma 4.7 only here we are working backwards towards the outside of the 

tree. ▄ 

 

Figure 4.6 shows two examples; one with no 4t+1 or 4t+2 k-path between pairs of 

4t k-paths, and one with. It shows how without the 4t+1 or 4t+2 k-path, the second 4t k-

path will not be able to use its boundary K1 and so will not be able to be optimally guarded. 

In the second half of the figure, we can see how the 4t+1 or 4t+2 k-path helps with this 

situation. 
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Figure 4.6: Examples of trees with and without a 4t+1 or 4t+2 k-path between pairs of 4t 

k-paths. 

 

Lemma 4.9 Consider trees that can be constructed in the following manner: 

First take a 4t-path and label the vertices in order from {1, …, n}. Attach 4t and 4t+1-arms 

to vertices in positions 0 and 1 mod 4, and 2 and 3 mod 4, respectively. Find a new 4t-path 

in the resulting tree and repeat the process by labelling the vertices in the new 4t path as  

= stem 

= 4t+3 k-path 

= 4t+1 or 4t+2 k-path 

= 4t k-path 

= K1 being changed to K2 
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{1, …, m}, and attaching 4t and 4t+1-arms to vertices in positions 0 and 1 mod 4, and 2 

and 3 mod 4, as before. This procedure can be continued until a desired tree is reached. 

For trees satisfying this condition, a minimum integrated dominating set can efficiently be 

found. 

 

Proof: Let Pa be a path of length 4t in T. Then Pa will be best dominated using t K2’s. Let 

{b1, b2, …, bm} be the branches of length 4t+1 attached to Pa. As they are attached in 

positions 2 and 3 mod 4, this means that after K2’s are placed on Pa they will be attached to 

vertices that have guards on them. Thus, these guards will guard one vertex along each of 

the {b1, b2, …, bm} branches, which will reduce their length to 4t, and thus they can also be 

guarded using t K2’s. 

Let {c1, c2, …, cn} be the 4t branches extending from Pa. As they are in positions 0 

and 1 mod 4, after Pa is guarded with K2’s, they will be attached to vertices that are adjacent 

to guards. Thus, their unguarded length stays 4t, and they will use t K2’s.  

Therefore, these trees are optimally guarded in this way, as the tree can be 

partitioned into the neighbourhoods of the K2 guards. ▄ 

 

Figure 4.7 illustrates an example of an integrated dominated tree with these 

conditions, showing two possibilities for the initial 4t-path. 
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Figure 4.7: Example of a dominated tree with only 4t and 4t+1 branches. 

 

Lemma 4.10 If a tree T consists of some high degree vertices such that each high degree 

vertex has a possibly empty set of 4t-arms and at least one 4t+3-arm attached, and each 

path between high degree vertices is of length 4t, then a minimum integrated dominating 

set can efficiently be found.  

 

Proof: Let M = {m1, m2, …, mn} represent the high degree vertices of T, satisfying the 

conditions given above.  

Consider the subgraph consisting of {m1} and its k-arms only (paths leading to other 

sections of the graph are not considered). Looking at this subgraph by parts, it consists of 

4t-paths, 4t+3 paths, plus the one vertex in the “middle”, m1. 

Claim: For subgraphs like these, with at least one 4t+3 arm and all other arms of lengths 4t 

or 4t+3, a minimum dominating set involves placing a K2 on a 4t+3-arm, adjacent to, but 

not on m1.  
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Placing a K2 on a vertex adjacent to, but not on m1, on a selected 4t+3-arm guards m1, and 

leaves the other arms of the subgraph with their original length unguarded. This allows the 

4t-arms to be guarded optimally by K2’s and the selected 4t+3 arms to be guarded using t 

K2’s and one K1 each. As for the selected arm, it is also maximally guarded as picking up 

m1 creates an arm of length 4t+3 + 1, for which we would use t+1 K2’s. 

If we were to place a K2 adjacent to m1 on a 4t-arm, the remaining 4t and 4t+3-arms 

follow the same result, but the selected 4t arm used, including m1, would become of length  

4t + 1 and would use t-2 K2’s and 3 K1’s, or t+1 guards in total. This would use one more 

guard used than when the K2 was placed on the 4t+3-arm. 

Note that placing a K1 or K2 directly on m1 would increase the total number of 

guards used. 

For 4t+3 lengths, increasing or decreasing the length of the arm by one does not 

change the number of guards used, it only changes the cost. This is because lengths 4t+3 

and 4t+3 – 1 = 4t+2 use the same number of guards for the same value of t, specifically t+1 

guards. Increasing 4t+3 by one gives us 4t+, and so would again use t+1 guards. 

As an example, a length of 7 uses two guards. Decreasing it by one, we’re left with 

6 which also uses two guards, and increasing 7 by one gives us 8, which again uses two 

guards. Similarly, decreasing a 4t length by one changes the cost of the guards and not the 

quantity.  

Therefore, having a K1 on m1, and so decreasing the lengths of all arms by one, 

doesn’t affect the number of guards used for each arm. In fact, the subgraph in total, 
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guarded in this way, would use one more guard as all arms are using the same number of 

guards as before, but we’re placing an extra guard on m1. 

In a similar way, having a K2 on m1 decreases one branch length by two, and all 

others by one. As we saw, decreasing these lengths by one doesn’t affect the number of 

guards needed. The same is true for decreasing 4t and 4t+3 lengths by two vertices. Thus, 

they will still use the same number of guards, and so having an extra guard on m1 increases 

the total number of guards used 

Therefore, having a guard directly on m1 is not the best option. In addition, having 

a K2 adjacent to m1 on a 4t branch is not optimal. Thus, having a K2 adjacent to m1 on a 

4t+3-arm, and guarding the remaining arms based on the path length formulas from before 

gives an optimal solution. 

At this point, we have dealt with the high degree vertices of our tree. Now, we see 

that between each of these high degree vertices is a path of length 4t that is not yet guarded. 

This can optimally be guarded using K2’s. ▄ 

 

Figure 4.8 shows an example of the type of tree described here, minimally 

dominated using K1’s and K2’s. 
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Figure 4.8: Example of an integrated dominated tree where each high degree vertex has 4t 

and 4t+3-arms, and each path between high degree vertices is of length 4t. 
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5    Conclusion 
 

 

With this work, we hope to have given a good introduction to the notion of integrating 

different types of guards to minimally dominate a graph, focusing specifically on using 

K1’s and K2’s together.  

Originally we had thought this problem, in regards to trees, might have been 

relatively easy since an algorithm for minimally dominating trees exists for both K1 and K2 

guards, however it does not appear to be so simple.  

Our first goal with this problem was to characterize subgraphs that we can show 

how to best dominate using K1’s and K2’s, such that given any graph, one could break it 

into sections and then guard each section separately, and in doing so dominate the entire 

graph. Section 3 discusses the subgraphs for which we were able to reduce and efficiently 

find a minimum integrated dominating set. However, there are still some cases that we have 

as yet been unable to solve. One such is similar to the graph in Lemma 4.11, but where the 

k-arms and paths between high degree vertices are of arbitrary lengths.  

After attempting this, the next question that was asked was, “If we can’t find a 

polynomial solution for an arbitrary graph, for which graphs can we find a solution?” 
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(relating back to Section 1.3: Some Techniques of Hard Problems). This question in turn 

led to a few results, with our characterized integrated dominated graphs found in Section 4. 

Although we have given a few types, it is anticipated more graphs can be dominated 

efficiently in this way. This is one aspect of the problem that is open for further research. 

 Another aspect of this problem that would be interesting to look at further, is if a 

solution to the problem could be performed in polynomial time. As dominating using K1’s 

and K2’s separately can be accomplished in this way, one would think that using both styles 

together could also be done in polynomial time. However, the answer to this might first 

require a solution to the problem, which of course would be ideal to find.  

 Another expansion to our problem would be to look at weighting the guards, in 

terms of cost, more efficiently. This stems back to the issue mentioned at the start, where 

although we want to find the solution with the fewest number of guards, choosing 99 K2’s 

over 100 K1’s does not seem to be so efficient. Finding a way to make the costs of the 

guards more practical and efficient would again be a useful extension to the problem. 

 One final idea, might be to look at which other forms of guards can be combined in 

dominating sets. From Section 1 we have seen that there are many different forms of 

domination, with many variations on the rules of the dominating set. Here we only use the 

two standard forms of guards, however many combinations could be possible, and might 

even lead to an efficient algorithm. 

 With this being said, there are many roads one could take when looking to expand 

on the problem. Here we give a few suggestions, however one could find new ways to 

develop or improve our results given here. We hope this introduction to integrated 
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domination using K1’s and K2’s has been an interesting read, and inspires future research 

into this topic.  
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