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ABSTRACT 

The Baade-Wesselink method has been reapplied to existing photometric and radial-velocity measures 
for the classical Cepheid Ô Cephei, but a different approach to the analysis was adopted in which 
spectrophotometric narrowband KHG observations were used to isolate phase pairs of identical atmo- 
spheric temperature. Corrections for variable spectral-line blocking and changing effective gravity in the 
observed V magnitudes and B — V colors were analyzed semiempirically, and a solution obtained by 
minimizing the relative error in the result. The mean radius found for Ô Cephei is 42.7Æ0 + 1.0i?o, 
which is quite close to other recently derived radius estimates for this Cepheid, including theoretical 
values obtained from the secondary bump on its light curve. 

I. INTRODUCTION 

The derivation of pulsational radii for Cepheids and RR 
Lyrae variables has become a popular area of research in 
recent years. The analytical techniques used have generally 
been developed from a scheme proposed years ago by Baade 
( 1926) and later developed for practical use by Wesselink 
(1946), namely the Baade-Wesselink method. Although 
several variations of the general method have appeared (see 
Gautschy 1987), the basic principle still consists of identify- 
ing phase pairs of identical surface brightness for a pulsating 
star. Such phase pairs invariably correspond to points of un- 
equal brightness on the star’s light curve, so magnitude dif- 
ferences between them can be numerically converted into 
ratios of the star’s radii at these phases. Integration of the 
star’s observed radial-velocity variations, suitably adjusted 
for projection effects to the star’s actual radial excursions, 
yields the actual differences in radii between these phases as 
well as the differences of each from the star’s mean radius. 
The mean radius itself is therefore easy to calculate, usually 
from an average of the results for several phase pairs or from 
an appropriately weighted mean of the values from the 
whole cycle. 

In Wesselink’s ( 1946) original study of Ô Cephei, phases 
of identical surface brightness were identified with phases of 
identical color index. This fundamental assumption that sur- 
face brightness is a single-valued function of color for pulsat- 
ing stars seems to be a matter deserving of further study. 
Evans (1976b) has noted that it is possible to test the as- 
sumption by plotting radius ratios versus radius differences 
for the various phase pairs. Enough information exists on 
Cepheid radius variations to predict that, when plotted for 
phases running from light maximum to light minimum, the 
data should trace out a closed loop which approximates a 
straight line passing through the point (0,1). The slope of 
this line should be close to the reciprocal of the minimum 
radius ( Abt 1959). The loop ( if one could properly refer to it 
as such) should be traced out in a clockwise sense owing to 
the fact that the smaller of each radius pair lies closer to 
mean radius at light minimum than at light maximum, while 
the “upper” series of points are produced near the initial 
decline from light maximum when the smaller of each radius 
pair is near minimum radius (each data point connects to 
(0,1 ) with slope l/(Rmin + A), where A is the deviation of 
the smaller radius from Rmin ). In fact, an open loop traced 
out in a counterclockwise sense is what is typically observed 
(Evans 1976b, 1980). Correction of the observed colors for 

varying contributions of microturbulence during the pulsa- 
tional cycle seems to improve the situation considerably 
(Evans 1980; Benz and Mayor 1982). However, this step 
relies upon transformations based upon model atmospheres 
or upon results from “normal” stars, and may not be strictly 
applicable to pulsating variables. 

This paper presents a new determination of the mean radi- 
us of Ô Cephei using existing observational data and a modi- 
fied version of the standard Baade-Wesselink type of analy- 
sis. The primary difference with respect to previous analyses 
lies in the use of a narrowband spectral-line photometric 
index to isolate phase pairs of identical surface brightness. 
The KHG index established by observers at Brigham Young 
University (McNamara and Potter 1969; McNamara et ah 
1970; Feltz 1972) has been used for this purpose since it has 
been found to be an excellent index of effective temperature 
for Cepheids (Turner et al. 1987). A semiempirical ap- 
proach has been adopted in analyzing the data in order to 
take into account the phase-dependent microturbulence and 
effective gravity variations (see Evans (1980); Benz and 
Mayor (1982)). This method of analysis has been found to 
produce results with quite small internal errors. The findings 
amply demonstrate the power of the method, and also yield a 
mean radius for 8 Cephei that appears from various tests to 
be a very close approximation to its true mean radius. 

II. METHOD OF ANALYSIS 

The method of analysis followed here has many similari- 
ties to those used in other treatments, although no new ob- 
servations of 8 Cephei were obtained. Published observa- 
tional data were used exclusively, and proper phasing of 
these was effected using the well-defined long-term record of 
the Cepheid’s period variations described and summarized 
by Szabados (1980). This step should minimize any prob- 
lems arising from incorrect phase matching of the photomet- 
ric and radial-velocity observations (Fernie and Hube 
1967). 

The photoelectric B V data were taken from Mitchell et al. 
( 1964), Evans ( 1976a), Feltz and McNamara (1980, trans- 
formed to the Johnson system using the relations of Cousins 
(1987)), Szabados (1980), and Moffett and Barnes (1980), 
while the radial-velocity measures were those of Shane 
(1958), Evans (1976a), and Barnes ei a/. (1987). No differ- 
ences in velocity phasing, amplitude, or zero point were ap- 
parent between the older photographic velocities and the 
more recent radial-velocity spectrometer measures, al- 
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though a small amplitude difference might have been expect- 
ed according to the study by Hindsley and Bell ( 1986). The 
measuring errors in Shane’s velocities are smaller than those 
of Barnes et al, so a small amplitude effect in the latter veloc- 
ities could easily go undetected. Most previous determina- 
tions of the pulsational radius of ô Cephei have relied upon 
the velocity curve delineated by Shane’s observations, which 
have excellent phase coverage in addition to excellent quali- 
ty. The present study likewise relies quite heavily upon 
Shane’s radial-velocity observations. 

KHG data for this study were taken from Feltz and Mc- 
Namara ( 1980). The KHG index is defined by narrowband 
interference filters centered on Ca il À 3933, H<5 A 4101, and 
CH A 4305, respectively, and like the H/? index is an excellent 
diagnostic of temperature for Cepheid variables (Turner et 
aL 1987). The present analysis depends critically upon the 
KHG observations, so special care was taken to accurately 
identify the phase dependence of the index. Due to the sparse 
nature of the KHG dataset, Feltz and McNamara’s (1980) 
Hß observations of <5 Cephei were also included. The latter 
data were found to be linearly related to the KHG observa- 
tions, and helped to reduce the noise level in the KHG data 
when averaged with them. Running phase means were 
formed with all available observations (see Fig. 1), and 
smooth curves drawn through these values were used in the 
subsequent pulsational radius analysis. 

For illustrative purposes, a classical Baade-Wesselink 
analysis was performed using the BV data of Fig. 1. Phase 
pairing was made using steps of 0.03 mag \nB — Vcolor, and 
displacement values Di and D2 (uncorrected for projection 
effects) were taken from an integration of the radial-velocity 
curve. The results of this analysis are plotted in Fig. 2, and 
illustrate the problems typical of the classical approach (Ev- 
ans 1976b). The points define a moderately open loop, some- 
what more open than expected, which is traced out in a coun- 
terclockwise rather than clockwise sense. After elimination 

Fig. 1. Phase-averaged brightness and color variations of 8 Cephei de- 
rived from published data. The KHG values incorporate Hß photome- 
try transformed to the same system. 

Fig. 2. Classical Baade-Wesselink solution for the radius 
of 8 Cephei using phases of identical B—V, with dis- 
placement differences D2 — Dx uncorrected for projec- 
tion effects. Expansion-cycle points (dark circles) are 
distinguished from contraction-cycle points (light cir- 
cles), and the fitted line corresponds to a radius of 
52.8R0. 

of the anomalous point near light maximum, an average over 
the other data values yields an uncorrected radius for Ô Ce- 
phei of 40.3Ro + 1-2R0 s.e. (2.96% relative error). The 
value of the projection factor in this case (photographic ve- 
locities at a dispersion of 11 A mm-1) is p— 1.31 + 0.03 
(Parsons 1972; Karp 1975b). The resulting pulsational radi- 
us is 52.^Rq ± 2.6R0, a value on the high side of the range 
from 31 to 60 R0 (mean 45.3R0 + 1.6R0 ) derived in pre- 
vious classical Baade-Wesselink analyses of Ô Cephei (Fer- 
nie 1984). 

It may be evident from the data of Fig. 1 that phases of 
identical KHG index do not correspond to phases of identi- 
cal R — V color. The observed color differences for Ô Cephei 
range from —0.04 to —0.08 in i? — V. One reason for this 
lies in the phase-dependent microturbulence variations of 8 
Cephei and other Cepheids (see Evans 1980; Benz and May- 
or 1982), which can be understood in terms of a phase de- 
pendence of the velocity gradient in their atmospheres 
(Karp 1973). The effect is to produce phase-dependent 
linewidth variations (in addition to those arising from pro- 
jection effects) which alter the amount of line blocking in the 
stellar continuum in a systematic sense. As a greater number 
of spectral lines lie in the blue continuum band than in the 
visual continuum band, B magnitudes are affected more 
than V magnitudes, and color differences in B — V are ex- 
pected. A similar effect can also be produced by variations in 
the effective surface gravity of Cepheids during their cycles 
(cf. Karp 1975a, Pel 1978 ). This complicates the pulsational 
analysis since any color differences A(B — V) arising from 
variations in line broadening or gravity must be tied to corre- 
sponding magnitude shifts, which we designate here by the 
simple relation AV= KA(B — V). Such corrections must 
be subtracted from the observed magnitude differences to 
allow proper radius ratios to be calculated between phases of 
matching KHG. 

The KHG spectral-line index is itself subject to effects aris- 
ing from microturbulence and gravity variations, but appar- 
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ently to a lesser degree than the B — V index. Feltz ( 1972), 
for example, was unable to detect a surface-gravity depend- 
ence of KHG in his study of B, A, and F type dwarfs and 
giants, while Turner et al. ( 1987) were unable to detect a 
significant surface gravity or microturbulence dependence 
of KHG for their calibrating Cepheids. The loop opening for 
Ô Cephei evident in a plot of KHG versus B — V {or b — y) 
can apparently be explained by the effects of variable micro- 
turbulence on the continuum index ( see Turner et al. 1987). 
KHG can be quite noticeably affected by the presence of 
companions to Cepheids, but for single Cepheids it seems to 
be a more ideal temperature index than B — V (or any other 
continuum index). 

Simple line blocking (as compared to line blanketing) 
should produce a positive value of K according to the argu- 
ments presented earlier. This is confirmed by an inspection 
of the data of Fig. 1. Negative values of K (as might arise 
from backwarming) serve only to generate unrealistic radius 
estimates for ô Cephei. Published model atmospheres rarely 
take into account line-blocking effects on the continuum due 
to microturbulence differences. The model atmospheres of 
Kurucz (1979), for example, incorporate line absorption 
into the derived continua values, but not variations in line 
blocking, as would arise from variations in microturbulence. 
From an inspection of the various Kurucz stellar atmo- 
sphere predictions of brightness and color for stars with tem- 
peratures and gravities typical of Cepheids, we estimated 
that pure line-blocking effects on Cepheid continua should 
be described by values of K lying between 0 and 3. Conse- 
quently, K was left as a free parameter lying in this range to 
be solved for in a semiempirical type of analysis. It appears to 
have some similarities to the color term b employed by 
Ivanov ( 1984) in his inverted version of the Baade-Wesse- 
link method. Upon consideration of arguments presented by 
Scarfe ( 1976) and Evans ( 1976b), we decided that minimi- 
zation of the percentage error in the radius would probably 
generate an optimum value for the parameter K required in 
the solution. 

An initial solution for K is illustrated in Fig. 3. Phase 
pairing was made with the data of Fig. 1 using steps of 0.05 
mag in KHG, and the initial solution incorporated data from 

K 
Fig. 3. Solution for the line-blocking factor A" by minimization of the 
relative error in radius. Minimum occurs at A = 1.335. 

the entire pulsational cycle. The smallest relative error in 
radius (2.75%) occurs for TT = 1.335, and a general solution 
over all phase pairs which makes use of this value is illustrat- 
ed in Fig. 4. The uncorrected radius in this case is 
3O.4Æ0 + 0.8Äo s.e., which becomes 39.82?0 ± 1.42?0 

after adjustment for projection effects. 
Although the relative error in this solution is slightly 

smaller than in the classical case, it is evident from Fig. 4 that 
the data exhibit the same type of problem as illustrated in 
Fig. 2, namely a moderately open loop traced out in the re- 
verse sense from that expected. That a dichotomy exists in K 
is demonstrated by the displacement of points (light circles) 
in Fig. 4 arising from phase pairs on the contraction cycle of 
Ô Cephei. All other phase pairs (dark circles) arise from at 
least one point on the expansion cycle of the Cepheid. Such a 
dichotomy also appears to exist in the data of Fig. 2. 

The ultimate cause of this dichotomy appears to originate 
with the variations in effective gravity of Ô Cephei during its 
cycle. Its existence implies that separate solutions for AT must 
be obtained for the different sets of phase pairs. Figure 5 
illustrates the effect of solving separately for K using phase 
pairs from the expansion and contraction cycles of the Ce- 
pheid. Expansion-cycle points yield K — 1.36 and an uncor- 
rected radius of 32.5R0 + 0.3^0 (relative error 0.87%), 
while contraction-cycle points yield AT = 1.89 and an uncor- 
rected radius of 32.8R0 + 0.3^0 (relative error 0.92%). 
Finer subdivision of the data does not appear to be warrant- 
ed. Note that both radius estimates agree within their error 
despite markedly different solutions for K. A final solution, 
illustrated in Fig. 6, is based upon a combination of all of the 
data. The result is an uncorrected radius of 
32.6A0 +0.2^0 (relative error 0.68%), which becomes 
42.7A0 + l.OR0 when adjusted for projection effects. The 
tightness and clockwise sense of delineation for the “loop” in 
Fig. 6 are precisely the characteristics expected in a valid 
Baade-Wesselink analysis. 

III. DISCUSSION 

Changes in effective gravity during Cepheid pulsational 
cycles affect their colors in addition to line-blocking varia- 

0 1 2 3 4 5 

DfD, 
Fig. 4. Baade-Wesselink solution for ô Cephei using 
phases of identical KHG, with symbols as in Fig. 2. The 
fitted line corresponds to a radius of 39.8A0. 
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Fig. 5. Separate solutions for the line-blocking factor^ for expansion- 
cycle points (dark circles, minimum aX K= 1.36) and contraction- 
cycle points (light circles, minimum at K= 1.89). 

tions, and to first order our separation of phase pairs from 
the expansion cycle relative to those from the contraction 
cycle takes such gravity changes into account quite effective- 
ly. Expansion-cycle phase pairs correspond to slightly high- 
er effective gravities than do contraction-cycle phase pairs 
(Karp 1975a; see also Evans 1980). The model atmospheres 
of Kurucz (1979) indicate that increasing the gravity for 
giants and supergiants with effective temperatures similar to 
those of classical Cepheids tends to produce a negative shift 
of the K factor defined here. This qualitatively matches the 
separation of K values seen in Fig. 5, although explicit mod- 
eling of this effect (and variable line blocking) would be 
quite useful. The generation of virtually identical radius esti- 
mates from quite distinct solutions for K using separate 
groups of phase pairs seems to be a reasonably effective test 
of the validity of this type of approach. The test works ex- 

Fig. 6. Final Baade-Wesselink solution for ô Cephei using 
phases of identical KHG, with symbols as in Figs. 2,4, and 
5. The fitted line corresponds to a radius of 42.7JRQ. 

tremely well for Ô Cephei, although the excellent quality of 
the observational data for this star makes it somewhat of a 
special case. 

Additional tests with other Cepheids are in progress, and 
it appears that the constancy of K for phase pairs on the 
contraction cycle may not be true for all Cepheids. However, 
K does seem to be constant during expansion-cycle phase 
pairs, and varies slightly from one Cepheid to another in a 
manner consistent with the decrease of mean gravity with 
increasing pulsational period. 

Table I summarizes the results of the present study, and 
compares the newly derived radius estimate for Ö Cephei 
with other recent determinations taken from the literature, 
with theoretical predictions based upon the secondary bump 
at phase 0.7 in its light curve (Carson and Stothers 1988), 
and with the photometrically derived radius for a cluster 
Cepheid (CV Mon) of nearly identical period. The most 
recent application of the surface-brightness technique by 
Moffett and Barnes ( 1987) and the inverted Baade-Wesse- 
link method of Ivanov ( 1984) yield radius estimates for Ô 
Cephei that agree remarkably well with the value obtained 
here. It is not clear why techniques that assume that surface 
brightness is related to color should give valid pulsational 
radii, although it may relate to the manner in which V and 
B — V (or V — R) vary during Cepheid cycles. The use of 
color indices in the red part of the spectrum may reduce the 
problem, since continuum magnitudes in the infrared should 
be less affected by microturbulence and gravity variations. 
However, nearly all magnitude estimates would appear to be 
affected to some degree, so the problem of obtaining valid 
radius ratios remains. 

Predictions for the “bump” radius of Ô Cephei obtained 
from nonlinear pulsation models depend upon the model 
opacities used, as described by Carson and Stothers ( 1988). 
The radius determined for ô Cephei in this paper agrees al- 
most exactly with the bump radius predicted using the Car- 
son opacities, and perhaps provides some support for the 
continued use of Carson opacities in such models. In any 
case, it is significant that there is excellent agreement in this 
instance between observational and theoretical results (see 
Carson and Stothers 1988). The values obtained in Table I 
provide excellent support for the radius estimate obtained in 
this paper, despite the very different assumptions upon 
which the derivations of these values are based. 

Conversion of the present radius estimate for <5 Cephei 
into an estimate of its luminosity requires information on its 

Table I. Radius estimates for Ô Cephei. 

Radius 
(«©) Method Source 

45.3 + 1.6 Classical B-W methods 
(summary) 

40 + 3 Inverted B-W method 
41.4 + 2.4 Surface-brightness method 
42.7 + 1.0 ATT/G-based B-W method 
37.2 Secondary bump (C-S 

opacities) 
42.4 Secondary bump (Carson 

opacities) 
43.0 + 3.0 Cluster fitting for CV Mon 

Femie (1984) 
Ivanov (1984) 
Moffett and Barnes ( 1987) 
This paper 

Carson and Stothers ( 1988) 

Carson and Stothers (1988) 
Turner ( 1978); this paper 
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mean effective temperature. This step is somewhat uncertain 
since it requires information on the space reddening of the 
Cepheid and the adoption of an appropriate effective-tem- 
perature scale (see Pel 1985). With the space reddening 
found for ô Cep by Turner et al (1987), the unreddened 
mean color of the Cepheid is ((B) — ( F) )0 = 0.57. This 
corresponds to ( ) = 5874 + 26 K (our estimated uncer- 
tainty ) using the recently derived temperature scale of Teays 
and Schmidt ( 1987). With Tq = 5770 K and 4/bol0 = 4.75, 
we obtain (MboX) = — 3.48 + 0.06 and (Mv) = — 3.45 
+ 0.06 for Ô Cephei. Nearly identical values would be pre- 

dicted for the Cepheid from its pulsational period according 
to recently published calibrations of the Cepheid period- 
luminosity (PL) relation (for example, the relations of Cald- 
well and Coulson (1987) yield (Mv) — —3.24 and 
(My) = — 3.33 from their PL and PLC relations, respec- 
tively). 

An independent check on the present radius estimate is 
possible using the cluster Cepheid calibration of the PL rela- 
tion. Published calibrations tend to incorporate the results of 
cluster studies of varying quality, often with slightly differ- 
ent assumptions about reddening corrections and the zero 
point of the main-sequence calibration. The present com- 
parison has therefore been restricted to one specific object, 
namely CV Mon, a cluster Cepheid with a period that differs 
from that of 8 Cephei by only + 0.24%. 

Photometrically derived distances and reddenings for the 
CV Mon cluster have been published by Turner (1978) and 
Schmidt (1983). The results of both studies are in reasona- 
bly good agreement, but we have chosen to adopt the former 
for reasons described elsewhere (Turner 1986). The intrin- 
sic color and luminosity for CV Mon are therefore 
((B) — (V))0 = 0.61 and (Mv) = - 3.35 ± 0.05. An un- 
certainty of + 0.15 is probably more realistic for the abso- 
lute magnitude, given the uncertainty in the Hyades distance 
modulus, which is 3.2 + 0.1 for this particular comparison 

(see Turner 1986). Adoption of these values with the Teays 
and Schmidt (1987) temperature scale, a bolometric correc- 
tion of — 0.05, and the largest likely uncertainties in bolo- 
metric magnitude and mean temperature results in an esti- 
mated radius of 43.0Äq + 3.0Äo for CV Mon. A number of 
new studies of the CV Mon cluster are currently in progress, 
but it seems unlikely that they will significantly alter the 
excellent agreement between the derived photometric radius 
of CV Mon and the pulsational radius of Ô Cephei found 
here. It seems reasonable to conclude that CV Mon and ô 
Cephei are of virtually identical dimension to well within the 
uncertainties of the estimates. 

All of the tests that can be applied to the present estimate 
for the mean radius of ô Cephei confirm its general validity 
within the context of currently available information on the 
dimensions of classical Cepheids. The method by which this 
radius was obtained appears to be quite powerful, and very 
closely satisfies the basic conditions of the Baade-Wesselink 
technique. The internal error of the result obtained here is 
quite small (less than 1%). In fact, the relative uncertainty 
of the correction factor for the radial velocities is larger than 
the internal uncertainty in radius, and ultimately dominates 
the quoted uncertainty in the final estimate. However, the 
small size of the internal errors may be partly illusory since 
they quite likely relate to the excellent quality of the observa- 
tional data for S Cephei. Tests are currently in progress to 
extend the technique to a larger sample of Cepheids, where 
observational uncertainties are much more important. 
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