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Abstract

As the main pigment in photosynthesis, chlorophyll significantly affects grain filling and
grain weight of crop. Cytokinin (CTK) can effectively increase chlorophyll content and chlo-
roplast stability, but it is irreversibly inactivated by cytokinin oxidase (CKX). In this study,
therefore, twenty-four pairs of primers were designed to identify variations of wheat CKX
(Tackx) genes associated with flag leaf chlorophyll content after anthesis, as well as grain
weight in 169 recombinant inbred lines (RIL) derived from Triticum aestivum Jing 411 x
Hongmangchun 21. Results indicated variation of Tackx4, identified by primer pair T19-20,
was proven to significantly associate with chlorophyll content and grain weight in the RIL
population. Here, two Tackx4 patterns were identified: one with two co-segregated frag-
ments (Tackx4-1/Tackx4-2) containing 618 bp and 620 bp in size (as in Jing 411), and
another with no PCR product. The two genotypes were designated as genotype-A and
genotype-B, respectively. Grain weight and leaf chlorophyll content at 5~15 days after
anthesis (DAA) were significantly higher in genotype-A lines than those in genotype-B lines.
Mapping analysis indicated Tackx4 was closely linked to Xwmc 169 on chromosome 3AL,
as well as co-segregated with a major quantitative trait locus (QTL) for both grain weight
and chlorophyll content of flag leaf at 5~15 DAA. This QTL explained 8.9~22.3% phenotypic
variations of the two traits across four cropping seasons. Among 102 wheat varieties, a third
genotype of Tackx4 was found and designated as genotype-C, also having two co-segre-
gated fragments, Tackx4-2 and Tackx4-3 (615bp). The sequences of three fragments,
Tackx4-1, Tackx4-2, and Tackx4-3, showed high identity (>98%). Therefore, these frag-
ments could be considered as different copies at Tackx4 locus on chromosome 3AL. The
effect of copy number variation (CNV) of Tackx4 was further validated. In general, geno-
type-A contains both significantly higher grain weight and flag leaf chlorophyll content at
5~15 DAA than those in genotype-B and genotype-C, among 102 varieties under various
environments.
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Introduction

Photosynthesis, which provides raw material for plant products, is pivotal to food and fiber
production [1]. Under favorable conditions, approximately 70-90% final grain yield is derived
from photosynthates produced during the grain-filling period [2, 3]. In high plant leaves, chlo-
rophyll, including chlorophyll a and b, is the main photosynthetic pigment in chloroplasts, and
its amount directly affects plant photosynthetic efficiency [4-5]. Increased chlorophyll content
in crop-species leaves increases in both biomass production and grain yield [6]. As chlorophyll
is the main pigment in photosynthesis, its abundance and stability in the leaf significantly
affects grain filling and crops yield [6-10]. Therefore, understanding both chlorophyll metabo-
lism and genetic mechanism controlling chlorophyll content is important for improved crops
yield. Research suggested that cytokinin (CTK), a phytohormone, can greatly increase leaf
chlorophyll content, chloroplast stability, and net photosynthetic rate [11-21]. Transgenic
plants overexpressing the isopentenyl transferase gene (ipt) have generally shown a stay-green
phenotype because of a high level of CTK synthesized in vivo [22, 23]. As for the regulation of
CTK level in plants, CKX plays a key role in inactivating CTK levels irreversibly by cleaving the
N°®-side chain. Previous research confirmed that CKX is involved in chlorophyll level and pho-
tosynthesis regulation by controlling plant CTK content [24, 25]. Therefore, CKX gene can be
presumed to have a close relationship with chlorophyll level and stability.

Most studies generally focus on associations between variations of CKX genes and grain
yield and related traits in cereal [26-29]. In wheat, seven Tackx genes have been isolated,
including Tackx1 on chromosome 3A [30]; Tackx2 on 7A or 7B [31]; Tackx2.1 and Tackx2.2
on 3DS [28]; and Tackx3 [32]; Tackx5 [33]; and Tackx6 [29] on 3DS. These Tackx genes are
usually associated with grain weight [28] or grain numbers per wheat spike [29]. However, little
is known about the association of Tackx gene with both wheat chlorophyll content and grain
weight. The objectives of this study were to: (1) identify variations in Tackx and their associa-
tion with grain weight and wheat chlorophyll level, and (2) validate the effect of target Tackx
gene on these two traits.

Materials and Methods
Plant Materials

One hundred and sixty-nine recombinant inbred lines (RIL) were obtained from a cross
between Jing 411 and Hongmangchun 21 using single-seed descent (F,.s generation) method.
Jing 411 is a winter-type variety with deep-green flag leaf, high yield, and large grains, with an
averaged thousand-grain weight (TGW) of 46.2 g, based on data from four cropping seasons
(2009-2010, 2010-2011, 2011-2012, and 2012-2013). Hongmangchun 21, a Chinese landrace,
is a spring-type variety with low TGW (20.9 g) (Table 1). The two parents showed significant
difference in both grain weight and flag leaf chlorophyll content (Table 1). To further examine
the effect of Tackx on grain weight and flag leaf chlorophyll content, 102 wheat cultivars with
significant difference in grain weight and flag leaf chlorophyll content were also analyzed.

Field Trials

Of the 102 wheat varieties, RIL and their parents were grown in randomized, complete blocks
with two replicates at the Experimental Station of Anhui Agricultural University (Hefei, 31°
58'N, 117°24'E) in cropping seasons 2009-2010, 2010-2011, 2011-2012, and 2012-2013. Each
plot contained three, 2.0 m rows spaced 25 cm apart, with 40 plants in each row. Common
field management practices for wheat production were followed. Average rainfall, temperature,
and sunlight were 950 mm, 15.5°C and 2,100 h per year across the four seasons, respectively.
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Table 1. Chlorophyll content and grain weight of the two parents and RIL population based on averaged values from four cropping seasons.

Trait® Parents RIL population (n = 169) Natural population (n = 102)
Jing411 Hongmangchun 21 Meanz SD C.V.% Meant SD C.V.%
C5 50.66 36.08 48.92+4.58 9.36 50.27+3.62 7.20
C10 50.44 32.13 48.49+4.90 10.11 47.09+3.51 7.46
C15 50.02 28.14 44.61+£7.99 17.93 42.35+5.54 13.09
C20 42.39 16.35 29.49+11.5 38.99 28.74+11.84 41.18
C25 1.38 9.80 7.21+4.33 60.12 0.74+0.31 42.03
TGW 46.2 20.9 36.15+7.65 21.16 36.72+4.81 13.11

a: C5, C10, C15, C20, and C25 represent flag leaf chlorophyll content (SPAD value) at 5, 10, 15, 20, 25 days after anthesis, respectively. TGW: thousand-
grain weight.

doi:10.1371/journal.pone.0145970.t001

Measurements of Grain Weight and Relative Chlorophyll Content in Flag
Leaf

TGW was measured by weighing two samples of 1000 kernels for each line. Chlorophyll con-
tent of the RILs and 102 wheat varieties across the four cropping seasons were measured using
methods reported in the previous studies [34, 35] with minor modification. Chlorophyll con-
tent was measured as the SPAD value using a chlorophyll meter (SPAD 502, Minolta, Osaka,
Japan). For each wheat lines, flag leaves from 10 randomly-chosen main tillers (fully extended
leaf without disease) were used for SPAD measurements. Five SPAD readings, randomly sam-
pled from flag leaf tip to base, were averaged to obtain a value for each individual plant. Chlo-
rophyll content was measured at 5, 10, 15, 20, and 25 days after anthesis (DAA), and
chlorophyll contents at the five stages were designated as C5, C10, C15, C20, and C25,
respectively.

Genomic DNA Extraction and Polymerase Chain Reaction
Amplifications

Genomic DNA was extracted from two kernels per line according to the previous publication
[36]. Polymerase chain reactions (PCR) were conducted on a TC412 Thermocycler (Barlo-
world Scientific Ltd, Staffordshire, United Kingdom; www.barloworld-scientific.com). The 24
primer pairs used (S1 Table) to characterize the allelic variation of CKX genes in wheat were
designed using DNAMAN software (v.6.0), based on the EST and mRNA sequences (refer to
the note for S1 Table) retrieved from the NCBI (www.ncbi.nlm.nih.gov) [37].

The PCR profile was as follows: denaturation at 94°C for 5 min; followed by 40 cycles of
denaturation at 95°C for 1 min; annealing at 50-60°C for 1 min 20 s; and extension at 72°C for
2 min, with a final extension for 8 min at 72°C. The annealing temperature varied according to
the primer pair (S1 Table). Each 15-pul PCR reaction mixture contained 40 ng genomic DNA,
10 pmol each primer, 200 mM dNTP in 1 x PCR buffer, and 1 U Taq DNA polymerase (Shang-
hai Sangon Biological Engineering Technology & Services Co., Ltd., Shanghai, China; www.
sangon.com). PCR products were separated on 7% PAGE containing 4 M urea.

Sequencing of PCR Fragments and Statistical Analyses

PCR product fragments with the expected size were recovered from two independent samples
per line. Target fragments were cloned into the pPGEM-T vector, and sequenced from both
strands by the Shanghai Sangon Biological Engineering Technology & Services Co. Ltd (http://
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www.sangon.com). Sequence alignments and characterizations were conducted using DNA-
MAN software. Analyses of chlorophyll content and grain weight data were conducted using
SPSS software (v.13.0) (www.spss.com).

Localization of CKX Gene on Chromosome

Chinese Spring nullisomic—tetrasomics were used to locate the Tackx gene. The PCR amplifica-
tion and separation of products were conducted as described above.

Quantitative Trait Loci Analysis for Grain Weight and Flag Leaf
Chlorophyll Content

SSR markers were used to screen the two parents and two bulks, each containing five high-phe-
notypic-value-lines and five low-value-lines, respectively. To confirm the polymorphism, can-
didate polymorphic markers were analyzed further in a subset of 40 RIL, comprising 20 lines
with high value in phenotype and 20 lines with low value in phenotype. The confirmed poly-
morphic markers were used to genotype the entire RIL. A linkage map was constructed using
Map Manager QTXb20 (v.3.0). Recombination fractions were converted into centiMorgans
(cM) using the Kosambi function [38]. Composite interval mapping (CIM) for quantitative
trait loci (QTL) was analyzed using Windows Cartographer 2.5 software, according to the
methods described by Zeng [39, 40]. An LOD score greater than 2.5 in at least two cropping
seasons, calculated from 2,000 permutations at a probability of 0.01, indicated QTL existence.

Correlation Analyses between Tackx Variation and Chlorophyll Content,
and Grain Weight

When analyzing the correlation between Tackx alleles and chlorophyll content, and grain
weight in the RILs, the Jing 411 allele was scored as “1” and the Hongmangchun 21 allele as
“0”. The presence or absence of the Tackx genotype in each variety was scored as “1” or “0”,
respectively. A Spearman’s correlation analysis and t-test were performed to test the signifi-
cance of the association between Tackx variation and traits, as described in our previous studies
[41, 42]. The effect of Tackx on phenotypic variation was estimated by R using the general lin-
ear model (GLM) [41, 42]. Significance was evaluated using the model at the 0.05, 0.01, and
0.001 levels of probability. Data analyses were conducted using SPSS software (v.13.0).

Results
Grain Weight and Chlorophyll Content

The averaged TGW of Jing 411 over four cropping seasons was 46.2 g, while the averaged
TGW of Hongmangchun 21 is 20.9 g. The two parents showed significant difference in grain
yield, flag leaf chlorophyll content, and grain weight (Table 1). The natural population covering
102 wheat cultivars also showed great difference in flag leaf chlorophyll content and grain
weight (Table 1).

Correlations between Chlorophyll Content and Grain Weight

In the RIL population, the flag leaf chlorophyll content and grain weight showed high varia-
tions (Table 1). A correlation analysis was conducted between chlorophyll content at different
stages after anthesis and grain weight, based on the mean value across four cropping seasons.
The result indicated that flag leaf chlorophyll content had a significantly positive correlation
with grain weight (p < 0.001) at 5 (0.523***), 10 (0.518"**), and 15 (0.366***) DAA; however,

PLOS ONE | DOI:10.1371/journal.pone.0145970 December 29, 2015 4/15


http://www.sangon.com/
http://www.spss.com/

" ®
@ ’ PLOS ‘ ONE Copy Number Variation of Cytokinin Oxidase Gene Tackx4

Table 2. Statistical analysis of chlorophyll content and grain weight between two genotypes, and Spearman’s correlation analyses between allelic
variation in Tackx4 and related traits in RILs.

Trait C5 c10 Ci15 Cc20 C25 TGW
Tackx4® 0.347*** 0.301*** 0.288** 0.161 0.090 0.398***
t-test® 4.615%** 5.137*** 4.314%* 2.018 1.561 6.383***

a: Significance at levels of 0.05, 0.01, and 0.001 is indicated with *, ** and ***, respectively.
b: t-test of averaged grain traits between two genotypes (genotype-A and genotype-B) of Tackx4.

doi:10.1371/journal.pone.0145970.1002

no significant relationship between flag leaf chlorophyll content and grain weight was detected
from 20 to 25 DAA (S2 Table). Therefore, when chlorophyll content was compared during
early- and late-stage grain filling, early grain-filling stage chlorophyll content had a stronger
effect on grain weight. Additionally, a significantly positive correlation occurred between chlo-
rophyll contents of the two adjacent stages, e.g., C5 (5 DAA) and C10 (10 DAA), as shown in
S2 Table, suggesting that grain weight can be improved via increase of chlorophyll content in
flag leaf at early-stage of grain filling in wheat.

Association of Tackx Genes with Chlorophyll Content and Grain Weight

Through the analysis of spearman rank correlation and t-test, Tackx4, amplified by T19-20
primer pair, was identified to have a significant association with chlorophyll content of flag leaf
and grain weight among these Tackx genes (Table 2). In the RIL population, two patterns of
Tackx4 were detected and designated as genotype-A as in Jing 411 and genotype-B as in Hon-
gmangchun 21, respectively (Fig 1). Genotype-A carried two fragments approximately 600bp
in size, but genotype-B had no products amplified (Fig 1). Furthermore, the two fragments of
Tackx4 showed co-segregation, and no single fragment was found in the RIL. Spearman’s cor-
relation analyses revealed that the fragment number variation of Tackx4 was significantly cor-
related with both chlorophyll content of flag leaf from 5~15 DAA (p<0.01) and grain weight
(p<0.001) (Table 2). A t-test analysis showed that the chlorophyll contents at 5~15 DAA and
grain weight were significantly higher in the RIL individuals carrying genotype-A than those in
genotype-B (Table 2). These results indicated that genotype-A is associated with higher chloro-
phyll content and grain weight.

Chromosome Location of Tackx4

Previous studies have indicated that wheat CKX genes belong to a large gene family whose
members are distributed on 3A, 3B, 3D, 7A, and 7B. In order to locate Tackx4 before conduct-
ing a genetic linkage analysis in the RILs, Chinese Spring nullisomic-tetrasomics were used to
locate Tackx4 onto chromosome. Two fragments amplified with T19-20 primer pair, Tackx4-2
and Tackx4-3, were detected in Chinese Spring (Fig 2), and this genotype was designated as
genotype-C. Tackx4 products were not amplified from N3AT3B, N3AT3D, and Aegilops
tauschii (DD genome), but were amplified from the other nullisomic—tetrasomics (Fig 2),
indicating that Tackx4 is on chromosome 3A of common wheat. These results also revealed
that at least three fragments could be amplified by the primer pair T19-20 designed from
Tackx4 in common wheat.

Linkage Analysis of Tackx4 and Gene-Specific Marker Development

To analyze the genetic linkage of Tackx4 on 3A and further evaluate its effect on phenotypic
variations in chlorophyll content and grain weight, 49 SSR markers on chromosome 3A were
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Fig 1. Allelic variation of Tackx4 in the RILs population derived from Jing 411 x Hongmangchun 21. Lanes 1-17: 1, Jing 411; 2, Hongmangchun 21; 3,
JH2; 4, JH17; 5, JH3; 6, JH11; 7, JH7; 8, JH15; 9, JH12; 10, JH13; 11, JH14; 12, JH20; 13, JH21; 14, JH19; 15, JH25; 16, JH26; 17, JH27. The genotype of
Jing 411 (genotype-A) and Hongmangchun 21 (genotype-B) was marked “A” and “B” genotype, respectively. JH2, JH13, JH11, JH12, etc., represented
individual names of the RILs.

doi:10.1371/journal.pone.0145970.g001

used to screen the two parents (Jing 411 and Hongmangchun 21) and two bulks. Of the 49
markers, 13 SSR markers and T19-20 showed polymorphisms and were located on the same
linkage group, spanning a genetic distance of 42.1 cM (Fig 3).

QTL analysis identified a locus controlling both chlorophyll content of the flag leaf from
5~15 DAA and grain weight. This QTL was located at the interval between marker T19-20 and
wmcl69 on chromosome 3A, with a genetic distance of 3 cM (Fig 3). LOD values ranged from
4.5 to 8.3 across four cropping seasons. No QTL underlying chlorophyll content at 20 (C20)
and 25 DAA (C25) was detected in this RIL population. QTL mapped at Tackx4 locus was
detected in all four cropping seasons, and explained 8.9%-22.3% of the phenotypic variation in
chlorophyll content and grain weight (Table 3).

Association Analysis between Variation of Tackx4 and Chlorophyll
Content of Flag Leaf and Grain Weight

To further confirm the effects of Tackx4 variations on the chlorophyll content after anthesis
and grain weight, 102 different wheat varieties were genotyped and the relationship between
their genotypes and grain weight were analyzed. Of the 102 varieties, 49 varieties carried geno-
type-A, 15 carried genotype-B, and 38 carried genotype-C (Fig 4).

Fig 2. Amplified patterns of Tackx4 from Chinese Spring nullisomic—tetrasomics using T19-20 primer pair. Lanes 1-14: 1, Jing411; 2, Yumai 8679;
3, Yongchuanbaikemai (Chinese landrace); 4, Chinese spring; 5, Yongchuanbaimaizi (Chinese landrace); 6, Wanxianbaizi (Chinese landrace); 7,
Heshangmai; 8, N3BT3A; 9, N3DT3A; 10, N3BT3D; 11, N3AT3D; 12, N3AT3B; 13,Yangmai 158; 14, Y6 (Aegilops tauschii, DD). The genotype-A (Tackx4-1
and Tackx4-2) and genotype-C (Tackx4-2 and Tackx4-3) are marked with A and C, respectively.

doi:10.1371/journal.pone.0145970.9002
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Fig 3. Linkage map of Tackx4 on chromosome 3A of wheat. The four shaded boxes represented the four traits (C5, C10, C15 and TGW, respectively).

doi:10.1371/journal.pone.0145970.g003

Table 3. Summary of QTL for grain weight across four cropping seasons in RILs derived from Jing 411 x Hongmangchun 21.

Add. (%)

Trait® QTL

C5 QC5.ahau-3A
Cc10 QC10.ahau-3A
C15 QC15.ahau-3A
TGW QTGW.ahau-3A

Wide variations existed in chlorophyll content and grain weight among the 102 wheat varie-
ties (Table 1). The mean values of these traits were significantly different (p<0.01) between
genotype-A and genotype-B or genotype-C (Table 4). Association analysis between genotypes
of Tackx4 and chlorophyll content and grain weight found that C5, C10, C15, and grain weight

Marker interval Closest marker LOD R? (%)
T19-20~Xwmc169 T19-20 7.9 20.1
T19-20~Xwmc169 T19-20 6.8 13.2
T19-20~Xwmc169 T19-20 45 8.9
T19-20~Xwmc169 T19-20 8.3 22.3

a: The mean value from all seasons was used for analysis.

doi:10.1371/journal.pone.0145970.t003

-2.63
-2.76
1.21

-0.48

Environments observed/total

4/4
4/4
4/4
4/4
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Fig 4. Amplification patterns of Tackx4 gene for 12 of the 102 wheat varieties using T19-20 primer pair. Lanes 1-12: 1, Jing411; 2, Yumai 8679; 3,
Jimai 20; 4, Zhongmai 9; 5, Zheng 9023; 6, Hongmangchun 21; 7, Wanxianbaimaizi; 8, Wangshuibai; 9, Shan 225; 10, Shan 160; 11, Yumai 8679; 12,
Xiaobingmai 33.

doi:10.1371/journal.pone.0145970.g004

were significantly positive correlated with genotype-A (p<0.01 or 0.001), but negatively corre-

lated with genotype-B and genotype-C (Table 4). Compared with genotype-B and genotype-C,

genotype-A could significantly help to improve chlorophyll content and grain weight. The phe-
notypic variations explained by each genotype ranged from 3.6% to 20.7% across the four crop-
ping seasons.

Sequence Analysis of Three Copies of Tackx4

Three fragments, Tackx4-1, Tackx4-2, and Tackx4-3, were sequenced and analyzed. These frag-
ments showed high identity (>99%) with a wheat EST of Tackx4 (BM138354), which was used
to design the primers in this research. In addition, a high identity (>98%) among the sequences
from these fragments themselves was also observed (Figs 5 and 6). The sequence analysis con-
firms that the Tackx4 gene (BM138354) reported by Galuszka et al. [38] was one of the three

Table 4. Spearman’s correlation between Tackx4 genotypes and chlorophyll content, and grain weight

Trait® Tackx4 genotypes No. of varieties Mean of phenotype® R/correlation ¢ Effect ¢ (%)
C5 A (Tackx4-1/Tackx4-2) 49 56.82+3.01C 0.412%** 17.4
B (null) 15 47.23+2.98B -0.214* 5.1
C (Tackx4-2/Tackx4-3) 38 43.641+3.77A -0.335%* 11.33
C10 A (Tackx4-1/Tackx4-2) 49 53.16+3.82C 0.397*** 16.01
B (null) 15 45.27+3.64B -0.189* 3.60
C (Tackx4-2/Tackx4-3) 38 40.561+2.77A -0.287%* 8.24
C15 A (Tackx4-1/Tackx4-2) 49 46.29+4.01B 0.312%* 9.73
B (null) 15 40.361+3.54A -0.097 ns
C (Tackx4-2/Tackx4-3) 38 38.43+3.12A -0.261%* 6.78
TGW A (Tackx4-1/Tackx4-2) 49 41.07+3.24B 0.461%** 20.7
B (null) 15 33.831+2.79A -0.198* 3.90
C (Tackx4-2/Tackx4-3) 38 32.95+3.01A -0.368** 12.4

a: Mean values were used for analysis.

b: Different letters in this column indicated significant differences (P<0.01; Fisher's protected LSD) among different alleles
c: Significance at the levels of 0.05, 0.01 and 0.001 is indicated with *, ** and ***, respectively.

d: Effect of genotype of Tackx4 on variance of phenotype; "ns", not significant.

doi:10.1371/journal.pone.0145970.t004
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Forward primer

BM138354.8eq [ssyer-Tor-yyor-Yyclerydordele 2 GG TIGGTGIGCIGCTIGTICICGGCTGAGATACATACAGT! 60
Tackx4-1l.seq N A GGTIGGIGIGCIGCIGICICGGCIGAGATACATACAGICAA 42
Tackx4-3.88Q ...ccessvsnsnassas IAGETIGGTIGIGCIGCTGTICICGGCTGAGATACATACAGT 42
Tackx4-2.seq N A GGTTGGTGTGCTGCTIGICICGGCTGAGATACATACAGTCAA L¥4
Consensus aggrTggTgTtgctgcTtgtetcggctgagatacatacagrcaa

BM138354.3eq C CA( Qe ATGTCACGTACCICGAGITCCIGGACAGGGIGCACTICCICCGAGC 120
Tackx4-1.seq C. «}ATGICACGTACCTEGAGTTCCTGERCRGGGTGCRCTCCTCCGRGC 102
Tackx4-3.3eq Ca }RIGICRCGTQCCTCGRGTTCCTGGRCBGGGTGCECTCCTCCGEGC 102
Tackx4-2.s3eq A L-EQTEICRCETRCCTCERETTCCTEGRCRGGGTGCRCTCCTCCGAEC 102

Consensus

BM138354.seq ig0
Tackx4-1l.seqg 162
Tackx4-3.3eq 162
Tackx4-2.seq 162
Consensus
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Reverse primer

Fig 5. Sequence alignment of Tackx4-1, Tackx4-2, Tackx4-3, and Tackx4b (BM138354). Primer pair
sequences and intron regions were marked. The primer pair was marked with arrows and the intron
sequence was boxed.

doi:10.1371/journal.pone.0145970.g005
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Fig 6. Homology analysis of Tackx4 from wheat (Tackx4-1, Tackx4-2 and Tackx4-3), Hvckx4a from barley, and Osckx4 from rice. The percentages
indicated the sequence identity among them.

doi:10.1371/journal.pone.0145970.9006

fragments. Variations among sequences of three copies were detected in the intron at positions
from 262bp to 378bp, which have the typical extron-intron boundary sequence “GT/AG”. Two
8-bp length InDels and an “AAA-TTT” variation were also found in this intron (Fig 5). Several
SNPs in the exon region among the three sequences were observed.

CKX orthologous often exists in cereal plants. In this research, we obtained sequences of
homologous genes of CKX from barley (Hvckx4a/BJ479455) and rice (Osckx4/
XM_006645247) by BLAST searches in NCBI (www.ncbi.nlm.nih.gov), using the three
sequences of Tackx4 as the search query. Sequence analysis indicated that Tackx4 had higher
homology with barley Hvckx4a (>96%) than with rice Osckx4 (>83%) (Fig 6). These results
were generally consistent with previous report [37].

Discussion
Multiple Copies of Tackx4 in Common Wheat

In previous studies, multiple copies of CKX genes have been identified on chromosome 3DS of
wheat, including Tackx2.1 and Tackx2.2 [28], and Tackx6 [29]. In the present study, at least
three fragments of Tackx4 with high sequence identity were identified on chromosome 3A
using linkage and Chinese Spring nullisomic-tetrasomics analysis. The two fragments
(Tackx4-1 and Tackx4-2), showed co-segregation in the RIL population, and no single gene
(Tackx4-1 or Tackx4-2) was found. Additionally, these fragments always occurred in couples
in the natural population. Therefore, our results suggested that it is copy number variation in
Tackx4, but not allelic variation. The allelic variations in CKX gene are often observed in wheat
(Tackx2 and Tackx6) and rice (Osckx2) [26, 28, 29]; however, copy number variation of CKX is
rarely reported.
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Previous studies have shown that gene clusters, that is, multiple copies of genes with the
same or similar functions, often occur in higher plants. The variations in copy numbers or the
copy itself will affect gene cluster function [43-47]. In this study, copy number variations
(CNV) in Tackx4 could significantly influence wheat chlorophyll content and grain weight.
The genotype-A generally corresponded to higher wheat chlorophyll content and grain yield,
compared with genotype-B and genotype-C. As for genotype-B, no product was amplified
around 600bp size, but it does not mean Tackx4 was null because only partial length was ana-
lyzed in this study. Therefore, full length of Tackx4 should be further studied. Some variations
were also identified among the three copies of Tackx4, which is in consistent with previous
report [45-47].

Sequence Analyses of Three Tackx4 Copies

Mutations in the coding regions of genes can affect gene function as a result of changes in its
amino acid sequence. However, mutations in the 5' UTR [48, 49], the 3' UTR [50-52], or
introns [29, 53-55] can also affect gene function as a result of changes in mRNA structure, sta-
bility, and accumulation during translation. Zhang et al. [29] showed that an 18-bp InDel in
the second intron of Tackx6 significantly affected its transcript level at 8 days after pollination.
In the present study, two 8-bp indels and an "AAA" mutation were also detected in the intron
of Tackx4. Hence it should be further investigated whether variations of these copies them-
selves have effect on their transcription and translation. In addition, whether the CNV of
Tackx4 affects the chlorophyll content of the flag leaf and grain weight through directly regulat-
ing the level of endogenous cytokinin is also worthy of exploration in the future. Several SNPs
in the coding region of Tackx4 may affect its function.

As previous reports [29, 37], CKXs orthologous widely exist in cereals, e.g., wheat, barley,
rice, and maize. Tackx4 on 3A of wheat had high identity in sequence with Osckx4 on chromo-
some 1 of rice, which is in consistence with genome synteny between them. However, the func-
tion of Osckx4 is still unknown.

Tackx4 Locus for Chlorophyll Content and Grain Weight

In previous studies, several QTLs for yield and yield related traits have been detected on wheat
chromosome 3A. These QTLs were able to explain 4.1~14.27% of phenotypic variations in dif-
ferent environments [56-60]. In this study, Tackx4 locus was mapped on chromosome 3A, and
closely linked to wmc169, which located at different linkage intervals from those of the QTLs
reported previously. As for chlorophyll content and photosynthesis, many QTLs have been
found on chromosomes 1A, 1D, 2A, 2D, 3B, 4A, 5A, 5B, 5D, 6A, 6D, 7A, and 7D [61-65]. In
our study, the QTL co-segregating with Tackx4 on 3A was different from the previous reports
and could be considered as a novel locus for chlorophyll content of the flag leaf and grain
weight. The novel locus Tackx4 can be used as a molecular marker for genetic improvement of
grain weight in wheat breeding program.

In high plant, photosynthetic efficiency of leaf is directly influenced by the content and sta-
bility of chlorophyll [4-5]. Therefore, increased chlorophyll content in leaves can improve
grain filling and yield [6-10]. In this study, the chlorophyll contents of flag leaf at 5~15 DAA
had a close relationship with grain weight, which is generally consistent with previous studies.
Here, Tackx4 was confirmed to be significantly associated with these traits simultaneously.
According to these analyses, Tackx4 could be presumed to involve in controlling grain weight
through regulating leaf chlorophyll and photosynthesis, which is stabilized by CTK. Therefore,
identification of Tackx4 function will deepen our understanding molecular mechanisms of
chlorophyll content and grain weight. Furthermore, the locus linked to Tackx4 showed good

PLOS ONE | DOI:10.1371/journal.pone.0145970 December 29, 2015 11/15



@'PLOS ‘ ONE

Copy Number Variation of Cytokinin Oxidase Gene Tackx4

stability and reliability in varied environments and genetic backgrounds. These attributes will
be useful for improving the accuracy and effectiveness of marker assisted selection (MAS) for
chlorophyll level and grain weight in wheat breeding.
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