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ABSTRACT

We use numerical simulations of turbulent cluster-forming regions to study the nature of dense filamentary
structures in star formation. Using four hydrodynamic and magnetohydrodynamic simulations chosen to match
observations, we identify filaments in the resulting column density maps and analyze their properties. We calculate
the radial column density profiles of the filaments every 0.05Myr and fit the profiles with the modified isothermal
and pressure-confined isothermal cylinder models, finding reasonable fits for either model. The filaments formed in
the simulations have similar radial column density profiles to those observed. Magnetic fields provide additional
pressure support to the filaments, making “puffier” filaments less prone to fragmentation than in the pure
hydrodynamic case, which continue to condense at a slower rate. In the higher density simulations, the filaments
grow faster through the increased importance of gravity. Not all of the filaments identified in the simulations will
evolve to form stars: some expand and disperse. Given these different filament evolutionary paths, the trends in
bulk filament width as a function of time, magnetic field strength, or density are weak, and all cases are reasonably
consistent with the finding of a constant filament width in different star-forming regions. In the simulations, the
mean FWHM lies between 0.06 and 0.26 pc for all times and initial conditions, with most lying between 0.1 to
0.15 pc; the range in FWHMs is however, larger than seen in typical Herschel analyses. Finally, the filaments
display a wealth of substructure similar to the recent discovery of filament bundles in Taurus.
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1. INTRODUCTION

Filaments appear to be an important ingredient in the
formation of stars. While filaments have been known to be
associated with star-forming regions for decades (e.g.,
Schneider & Elmegreen 1979; Bally et al. 1987), observations
from the Herschel Space Telescope, particularly the Gould Belt
(André et al. 2010) and HOBYS (Motte et al. 2010) Legacy
Surveys have underlined the prevalence of filamentary
structures within star-forming regions. With Herschelʼs
unprecedented ability to sensitively map large areas of the
sky, several common properties of filaments have now been
identified. First, filaments appear to not be well represented by
the Ostriker (1964) equilibrium model of an isothermal
cylinder; the column density profile is shallower (e.g.,
Arzoumanian et al. 2011). This may indicate that magnetic
fields (e.g., Fiege & Pudritz 2000) contribute to supporting the
filament from collapse, although Smith et al. (2014) demon-
strate that filaments formed in purely turbulent environments
also have a similarly shallow slope. Rotation may also lead to a
shallower slope (Recchi et al. 2014). Second, the mass per unit
length of filaments appears to correlate with star formation
activity: filaments with mass per unit length less than the value
needed for collapse of an isothermal cylinder (Ostriker 1964)
tend to be associated with regions which are forming few if any
stars, while filaments with supercritical mass per unit length
values tend to be associated with active star-forming regions
(e.g., Arzoumanian et al. 2011; Hennemann et al. 2012). What
is still unclear, however, is what forces dominate the formation
and evolution of the filaments, and how the filaments contribute
to star formation. For example, are the filaments formed

primarily through turbulent shocks, or under the influence of
magnetic fields or gravity? Does turbulence control the ability of
filaments to fragment into star-forming cores? What forces set
the observed (column) density profiles? And do filaments
primarily provide a denser collection of gas to promote local star
formation (e.g., Hacar & Tafalla 2011), or do they play a
significant role in providing a conduit of mass for the formation
of larger stellar clusters, which appear to form preferentially at
the intersection of several filaments (see e.g., Myers 2009, 2011;
Hennemann et al. 2012; Schneider et al. 2012; Kirk et al. 2013)?
In this paper, we investigate the first of these issues, namely

the formation and evolution of filaments, through the analysis of
our numerical simulations. We compare the column density
properties of filaments formed within four different simulations:
higher and lower density, and with and without magnetic fields.
These analyses provide a complementary look at simulations to
those recently published in Smith et al. (2014), where the
influence of different types of turbulence on filament properties
was examined, but the effect of the inclusion of magnetic fields
or differing initial mean densities was not.
We find that while the largest-scale structures in the gas are set

by turbulent motions and appear similar in all four simulations,
magnetic fields and gravity do influence the properties of
individual filaments. In particular, magnetic fields cushion the
initial turbulent gas compressions, leading to filaments which
are initially less condensed, and subsequently evolve more
slowly (due to the weaker gravitational pull) than the
corresponding hydrodynamic case. We note that the simulations
we analyze were only able to be run for a few tenths of the global
free-fall time, limiting our sensitivity to later-time evolutionary
trends. The simulated filaments have properties that are
consistent with those measured in real filaments characterized
by Herschel, suggesting that the general insights gained with
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these simulations are applicable to real molecular clouds.
Finally, turbulence and magnetic fields, and not just the thermal
properties of molecular gas, appear to set the critical conditions
for gravitational instability leading to star formation.

In what follows, we first discuss our numerical methods and
simulations (Section 2), discuss the basic filament properties
resulting from the simulations (Section 3), compare various
models of filament structure (Section 4), and examine the
effects of spatial resolution in characterizing filaments (Section
5). We discuss our results and their implications, as well as the
limitations of our present analysis in Section 6.

2. NUMERICAL METHODS

2.1. Simulation Setup

We used the FLASH hydrodynamics code (Fryxell et al. 2000)
version 2.5 to perform numerical simulations of molecular
clumps, i.e., parsec-scale condensations of gas capable of
forming a cluster of stars. FLASH solves the fluid-dynamical
equations on an adaptive Eulerian grid, making use of the
PARAMESH library (Olson et al. 1999; MacNeice et al. 2000). It
includes self-gravity, Lagrangian sink particles to represent
gravitationally collapsing cores and (proto)stars (Banerjee et
al. 2009; Federrath et al. 2010), and gas cooling by dust and by
molecular lines (Banerjee et al. 2006). Stellar properties are
self-consistently evolved via a one-zone model (Offner et al.
2009; Klassen et al. 2012).

We initialize our simulation volume with a turbulent velocity
field. The turbulence is a mixture of compressive and solenoidal
turbulence (Federrath et al. 2008; Girichidis et al. 2011) with a
Burgers spectrum, i.e., µ -E kk

2 as in Girichidis et al. (2011),
and largest modes having a size scale roughly equal to the side
length of the simulation box. See also Larson (1981), Boldyrev
(2002), and Heyer & Brunt (2004). The turbulent velocity field
has a root-mean-square Mach number of 6.

We perform a grid of simulations in a cube-shaped volume
containing either approximately M500 or M2000 of
molecular gas with a power-law density profile scaling as
r r= -r r( ) c

3 2. The choice of density profile is motivated by
observations of dense gas associated with high-mass star
formation (Pirogov 2009); Kauffmann et al. (2010) similarly
analyze a suite of dust emission and extinction maps of
molecular clouds within the solar neighborhood, and find that
those that are not forming high-mass stars obey r µ -r r( ) 1.63.
The simulation volume has a side length of 2 pc, and the
molecular gas is at an initial temperature of 10 K.

These initial conditions were chosen to be representative of
nearby molecular clumps, with a focus on NGC 1333, a cluster-
forming region within the Perseus molecular cloud, located
roughly 250 pc away, and currently forming a young cluster of
low- and intermediate-mass stars (Walawender et al. 2008).
Using a large-scale column density map derived from 2MASS-
based extinction, Kirk et al. (2006) estimate that NGC 1333
contains ∼1000 M within a radius of ∼1 pc; the simulations
contain 500 and 2000 M within a 2 pc cube, thus bracketing
NGC 1333ʼs mean density. The free-fall time for these
simulations is ∼1 and 0.5 Myr, respectively. A Mach number
of 6 is consistent with the typical 13CO velocity dispersion
measured across NGC 1333 reported in Kirk et al. (2010), and
we note is also consistent with the standard linewidth-size
relationship (Larson 1981). Molecular clumps tend to have
temperatures of 10–20 K (Bergin & Tafalla 2007), and pointed

observations toward dense cores in Perseus (Rosolowsky et al.
2008) have a mean temperature of 11 K, although those found
in NGC 1333 and other clustered environments tend to have
slightly higher values (Schnee et al. 2009; Foster et al. 2009).
Similarly, the dust temperature is estimated to be slightly
elevated in areas near luminous young protostars (Hatchell et
al. 2013). None of these heating effects, however, would have
been present prior to the onset of star formation in the region,
suggesting that an initial temperature of 10 K is reasonable.
We used the same initial turbulent velocity field for each

simulation, but compared magnetohydrodynamic runs with
pure hydro simulations where the magnetic field strength was
set to zero. When including magnetic effects, we initialize a
magnetic field parallel to the z-axis with uniform field strength.
We select a field strength for our MHD simulation so our mass-
to-flux ratio is l ~ -1 2; this is slightly stronger than the
typical range estimated by Crutcher et al. (2010) of 2–3. The
mass-to-flux ratio is given by

l =
á ñ

M

πR B

G

0.13
(1)tot

2

where Mtot is the total cloud mass, R the cloud radius, and á ñB
the initial mean magnetic field strength. The factor of 0.13 is
required to normalize the flux ratio relative to the critical value
where the magnetic field just prevents gravitational collapse
(Mouschovias & Spitzer 1976; Seifried et al. 2011). High-mass
star-forming cores typically have valuesl  5 (Falgarone et al.
2008; Girart et al. 2009; Beuther et al. 2010).
Table 1 lists the parameters for the grid of simulations run.

We note that while stars (sink cells) do form in all of our
simulations, as we would expect in reality, the resolution (50
AU) is insufficient to correctly predict the masses of the stars
that form; tests we ran with an increased resolution led to a
larger number of lower mass stars. This is not a problem for our
analysis, as the resolution is more than sufficient to characterize
the structure of the filamentary gas at observable scales.
Furthermore, the simulations are stopped at an early enough
time that stellar feedback would not have had time to influence
the evolution of the gas.

2.2. Filament Identification

The initial turbulent velocity field quickly results in a highly
filamentary structure, as illustrated in Figure 1. We run each of
our simulations until the filamentary structure is well-devel-
oped; the simulation is stopped at 0.2 to 0.3 free-fall times for
the 500 M simulations (for the MHD and HD simulations
respectively), and 0.13 free-fall times for the 2000 M
simulations. As FLASH is an adaptive mesh refinement (AMR)
code, we first take the output files and map them to a uniform
grid, downsampling somewhat to allow the entire grid to fit into
memory. Even with the downsampling, our resolution is
∼0.002 pc, much better than achievable with Herschel for
nearby star-forming regions. We then project the density along
each of the coordinate axes to create column density maps.
Figure 1 shows the column density in the X projection for

both the 500 M and 2000 M simulations at all time steps
analyzed. Note that the MHD simulation was run for 0.15Myr,
while the HD simulation was run for 0.2 Myr for the 500 M
simulations, giving one additional time step for our HD
analyses. In this figure, all the panels have the same dynamic
range shown for the grayscale column density, highlighting that

2

The Astrophysical Journal, 802:75 (17pp), 2015 April 1 Kirk et al.



material accumulates into filamentary structures quite quickly
(top and middle panel from left to right), and that having an
initially higher density more rapidly leads to dense filamentary
structures due to the increased importance of gravity (bottom
row, left and middle panels). Finally, the presence of a
magnetic field acts to slow the accumulation of material into
dense filaments, as can be seen comparing the top and middle
row panels, or the bottom row left and middle panels. We will
return to this point in more detail in Section 3 and beyond.

To extract the filamentary structure evident in Figure 1 , we
use the DISPERSE filament-finding algorithm6 described in
Sousbie (2011) and Sousbie et al. (2011). The DISPERSE
algorithm identifies persistent topological structures such as
peaks, voids, and filaments, and is effective even if the image is
noisy. It has been extensively used on Herschel observations
for filamentary structure identification, e.g., Arzoumanian et al.
(2011), Schneider et al. (2012), and Palmeirim et al. (2013). In
DISPERSE, there are several user-defined parameters to control
the resulting filamentary network: persistence and robustness
thresholds, smoothing, and a maximum angle. The two
thresholds can be thought of as very roughly corresponding

to criteria for a minimum absolute brightness (persistence
threshold) and a minimum relative brightness compared to
neighboring features (robustness threshold). Smoothing
removes small-scale “wiggles” from the initial filament spine,
while the angle is used to specify the minimum angular rotation
between two initial filament spine segments that can be joined
together and still be classified as the same filament. Filament
spine segments which meet at a right angle, for example, are
likely not part of the same filament.
We identify filaments using a persistence threshold of 0.025

g cm−2 and a robustness threshold of 0.05 g cm−2 in the 500 M

simulation (or 7 and 14´1021 cm−2) and thresholds of 0.1 g
cm−2 and 0.2 g cm−2 (or 2.8 and 5.6 × 1022 cm−2), respectively
for the 2000 M simulation, smoothing the resulting filaments
1000 times, and allowing the initially identified filament
segments to be connected for angles of less than 60°(relative to
a straight line). These parameters were chosen after testing a
range of values to determine which values produced a
filamentary structure that best matched visually apparent
structures. All of these thresholds for DISPERSE are above the
standard “threshold for star formation” found in nearby
molecular clouds of around ~ - ´5 7 1021 cm−2 (e.g.,
Johnstone et al. 2004; Könyves et al. 2013). Unlike the

Table 1
Simulation Parameters

Physical Simulation Parameters

Parameter 500HYD 500MHD 2000HYD 2000MHD

Cloud radius (pc) R0 0.99978 0.99978 0.99978 0.99978
Total cloud mass ( M ) Mtot 502.603 502.603 2152.11 2152.11

Mean mass density (g cm−3) rá ñ 4.256 × 10−21 4.256 × 10−21 1.822 × 10−20 1.822 × 10−20

Mean number density (cm−3) á ñn 1188.98 1188.98 5091.14 5091.14

Mean molecular weight μ 2.14 2.14 2.14 2.14
Temperature (K) T 10 10 10 10
Sound speed (km s−1) cs 0.196 0.196 0.196 0.196
rms Mach number  6.01 6.01 6.01 6.01
rms turbulent Alfvénic Mach Number A 2.1 2.1 2.2 2.2
Mean freefall time (Myr) tff 0.74 0.74 0.370 0.370
Sound crossing time (Myr) tsc 9.96 9.96 9.96 9.96
Turbulent crossing time (Myr) ttc 1.66 1.66 1.66 1.66
Jeans length (pc) λJ 0.413 0.413 0.199 0.199
Jeans volume (pc3) VJ 0.294 0.294 0.033 0.033
Jeans mass ( M ) MJ 4.42 4.42 2.13 2.13

Magnetic field (μG) B 0 56.7 0 120.5
Mass-to-flux ratio λ ¥ 1.17144 ¥ 2.35979
Rigid rotation angular frequency (rad s−1) Ωrot 1.114e-14 1.114e-14 1.114e-14 1.114e-14
Rotational energy fraction βrot 1.8 % 1.8 % 0.4% 0.4%

Numerical Simulation Parameters

Simulation box size (pc) Lbox 1.99956 1.99956 1.99956 1.99956
Simulation box volume (pc3) Vbox 7.99471 7.99471 7.99471 7.99471
Smallest cell size (AU) Δx 50.3465 50.3465 50.3465 50.3465

Simulation Outcomes

Final simulation time (kyr) tfinal 179.3 232.2 42.8 49.6
Number of sink particles formed nsinks 16 6 45 3
Max sink mass ( M ) L 2.01528 9.53198 19.4442 31.2937

Min sink mass ( M ) L 0.0264274 0.164572 0.00759937 8.42947

Mean sink mass ( M ) L 0.696485 2.84511 0.680372 19.8616

Median sink mass ( M ) L 0.525414 1.56426 0.0548092 19.8616

6 http://www2.iap.fr/users/sousbie/

3

The Astrophysical Journal, 802:75 (17pp), 2015 April 1 Kirk et al.

http://physics.wisc.edu/~craigm/idl/fitting.html


Herschel analyses, we applied DISPERSE directly on the
column density map. Since our column density maps include
only the gas from the simulated star-forming clump, with no
potential contribution from other dense structures within the
larger cloud, we have less need than with Herschel data to
apply filament-enhancing algorithms. Finally, we excluded
several very short filaments that DISPERSE initially identified—

in order to accurately determine the filament profile (below),
we set a minimum length of 0.1 pc.
Figure 2 shows the network of filaments identified in the X

projection of the 500 M and 2000 M HD simulations overlaid
on their column density maps.
One of the goals of our analysis is to track the time evolution

of and the effect of magnetic fields on individual filaments. In

Figure 1. A comparison of the column density distribution projected along the X axis for the simulations. The top two rows show the 500 M simulations at 0.05, 0.1,
and 0.15Myr after the start of the simulation (left to right) for the MHD (top) and HD (middle) runs. The bottom row shows the MHD and HD 2000 M simulations
at 0.05Myr (left and middle) and the HD 500 M simulation at 0.2 Myr (right). All simulations are shown cropped to the inner 1.5 pc to better show the smaller-scale
structure that forms. The grayscale range is the same in all panels, going from 0.01 to 10 g cm−2 (~ ´3 1021 to 3 × 1023 cm−2) from black to white, with a logarithmic
scaling applied. The overlaid contours show column densities of 0.02, 0.04, 0.075, and 0.2 g cm−2 (5.3, 1.1, 2.1, and 53´1021 cm−2) in gray, white, blue, and red,
respectively. If several assumptions are made, including that all pixels belong to cylindrical structures with a characteristic width of 0.1 pc, then the contours also
correspond to mass per unit length values 0.5, 1, 2, and 5 times the critical mass per unit length at a temperature of 10 K (18 M pc−2). Note that these assumptions are
poor for regions not associated with filamentary structure. See Section 3.4 for more detail.

4
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order to do so, DISPERSE was not used to identify a different
network of filaments at every time step and magnetic field
value, as this could potentially lead to different filaments being
identified at different snapshots. Instead, for each of the three
projections, we started with the network of filaments identified
with DISPERSE at 0.15Myr in the HD simulation, and then
searched for the corresponding structures at different times and
with magnetic fields present. For the 2000 M simulations, we
instead started with the single 0.05Myr time step. We started
with an automated procedure to identify equivalent filaments at
other time steps and/or with magnetic fields, by searching for
local column density maxima near the reference set of filament
spines. After this step, all filament spines were verified and
adjusted as necessary by hand, using a combination of visual
inspection of the current column density snapshot and a movie
of the time evolution of the column density map for the 500 M
simulations. The simulations, particularly without the

moderating presence of magnetic fields, form significant
substructure on all scales, making it difficult to impossible
for an automated procedure to correctly “follow” the filaments
in time and across initial conditions.
There are several cases where a filament could not be fully

traced to earlier times or in the corresponding simulation with
magnetic fields. Some, but not all, of these cases appear to be
attributable to structures which are only apparent as filaments
in 2D due to a coincidence of independent 3D structures; at
other time steps, the real 3D structures have moved by
different amounts and no longer appear connected. We
include these structures in our analysis where they do appear
as a single filamentary structure, as any real observation
which only has column density information is fallible to the
same line of sight coincidence confusion. We will address the
full 3D nature of filaments in these simulations in an
upcoming paper.

Figure 2. Examples of the filamentary structure identified in the simulations. The top panel shows the filaments identified using DISPERSE in the X projection of the
500 M HD (left) and MHD (right) simulations at 0.15Myr, while the bottom panel similarly shows the 2000 M HD (left) and MHD (right) simulations at 0.05Myr.
Each colored line indicates a unique filament spine identified in that projection. Note that the top and bottom panels zoom in to different extents to best illustrate the
central filamentary structure; similarly, each row has a different grayscale scaling applied—see the scalebar on the right hand side. In all panels, sink particles formed
at the specified time are shown by the white stars; in all cases, their formation is confined to the central clustered part of the simulation.

5
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A comparison of Figures 1 and 2 shows that the filamentary
network identified lies only in the very densest part of the
cloud, where the estimated mass per unit length value is
signficantly above the thermal critical value (white contours in
Figure 1). We will return to this point further in Sections 3.2
and 3.3.

2.3. Calculating Radial Column Density Profiles

Once the filaments are identified, we measure the radial
column density profiles along them. Since the filaments tend to
converge toward the simulation center, and sometimes even
intersect, care is needed to properly calculate the radial column
density profile. First, we assign every pixel to the filament to
which it is closest. Next, we exclude pixels which lie very close
(<0.01 pc) to two or more filaments—this value was chosen to
provide a balance between not including too many locations
which might provide non-representative measures of a given
filament profile, and not excluding too large a fraction of
material around the filaments. We then calculate the mean
column density of pixels in separation bins equal to the pixel
size (∼0.002 pc). Finally, to ensure that the filament profiles
are accurate, we exclude the measurement for any radial bin
where at least 25% of the total length of the filament, at that
separation, was not included in the profile calculation. This
final criterion ensures that all radial column density profile
measurements used in our analysis are reliable—there are no
cases where data from only a few pixels are used to infer the
filament’s properties. We note that the above restrictions limit
our analysis to a smaller range of radii than used in Smith et al.
(2014), although the range is closer to Arzoumanian et al.
(2011). Smith et al. (2014) analyze only the brightest one or
two filaments in any given simulation snapshot, which ensures
that the contamination in filament profiles will be minimal;
with our inclusion of fainter filaments, only smaller radial
separations from a given filament spine are free from material
from neighboring filaments. Figures 3 and 4 show several
example radial column density profiles which will be further
discussed in Section 4.

3. BASIC FILAMENT PROPERTIES

Visual inspection of the resulting radial column density
profiles (e.g., Figures 3 and 4) reveals a variety of
characteristics. We expect that after the first turbulent shocks
form a filamentary structure, gravity acts to continue to
concentrate mass onto these filaments, leading to higher and
narrower peaks with time. An initially higher mean density
should increase gravity’s pull and lead to a faster filament
evolution. The presence of a magnetic field should cushion the
initial turbulent compressions, reducing the amount of material
initially in the filament, and giving the appearance of “fluffier”
filaments. The subsequent evolution of MHD filaments should
then be slowed relative to the HD case by gravity’s weaker pull
on the the initial lower concentration of mass, and possibly also
further action by the magnetic field, depending on its
orientation.

Broadly, these behaviors do hold—the visual impression
from watching movies of each simulation suggest this
behavior; nevertheless, we find instances of filaments dissipat-
ing over time, suggesting gravity was insufficient to prevent the
initial turbulent compression from re-expansion. In some of
these cases, magnetic fields appear to help to slow or prevent

this re-expansion, causing the HD filament to have a higher and
narrower peaked profile than in the MHD case. In other
instances, data excluded for one or more of the reasons
mentioned above (difficulty in tracing the filament, or
exclusion due to unreliability) also prevents the full influence
of time or magnetic fields to be fully assessed.
Despite this more complex behavior, there are still several

simple measures that we can make to gain insight into the
behavior observed.

3.1. Filament Widths

The conceptually simplest measureable filament property is
its width. Although filament widths measured with Herschel
span at least a factor of five (e.g., Figure 7 in Arzoumanian et

Figure 3. Time evolution of the radial column density profile of a filament
identified in the Z projection of the 500 M simulations. Solid lines show the
reliable portion of the column density profile, while the dotted lines indicate
less reliable measurements (i.e., data over less than 75% of the length of the
filament was included). The error bars indicate the standard deviation of
column density values at that radial separation. The MHD error bars are slightly
shifted for better legibility. In this example, the filament continues to contract
in both the MHD and HD simulations, although at a faster rate in the HD case.
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al. 2011), it is often stated that filaments have a constant width
of ∼0.1 pc. Note, however, that Juvela et al. (2012a) find a
larger scatter in filament FWHM values in their analysis of
(different) Herschel data, although some of their filaments are
much more massive and/or more distant than the Arzoumanian
et al. (2011) sample. We measure the width of all of the
filaments tracked in our simulations in the simplest possible
method—the extent of the radial profile at half of the peak
value, i.e., the FWHM. Table 2 shows our results, separated by
time step, magnetic field, and mass. Included is the mean and
standard deviation of FWHM values measured, along with the
number of FWHM values considered. Some filaments did not
have reliable radial column density profiles out to sufficiently
large radial separations to allow the FWHM to be measured;
these were excluded from the values given in Table 2.

Although the dispersion is large, owing in part to the
disparate behaviors discussed earlier, it is clear that on average,
the filaments do behave as expected. Filaments generally get

narrower with time and in higher mean density environments,
and are wider when magnetic fields are present. Furthermore,
this trend is somewhat subtle: all of the simulation snapshots
give filaments that have widths within the range that observers
find. Heitsch (2013a, 2013b) notes that in accreting filament
models, the filament width can remain relatively constant
throughout much of a filament’s evolution, if either the ram
pressure from accreting material is small (Heitsch 2013a) or in
the case of a weakly magnetized accretion. Hennebelle &
André (2013) propose a model wherein ion-neutral friction
dominating the dissipation of turbulence accounts for a
relatively constant filament width of ∼0.1 pc while Gómez &
Vázquez-Semadeni (2014) suggest a constant width may be
caused by a balance between large-scale accretion onto
filaments and accretion from the filaments onto the dense
cores and stars forming within them. Our simulations do not
contain ambipolar diffusive effects for the magnetic field, so
that the substructure formed involves a balance between
accretion, gravity, and turbulence. Future work will measure
the accretion onto filaments versus the dense cores.
We also tried fitting Gaussians to the filament profiles, with a

constant background level set as a free parameter (fits not
shown), similar to other works (Arzoumanian et al. 2011;
Smith et al. 2014).7 Table 3 shows the equivalent FWHMs
derived from the Gaussian fits for the filaments. Although the
FWHM values tend to be smaller when using a Gaussian fit
with a non-zero background, especially at earlier times (where
the relative amplitude of the background is larger), the same
general trends hold true: the filament width decreases with time
and tends to be larger when magnetic fields are present. The
mean widths are still generally consistent with the observations,
although the range of widths is larger in the simulations, similar
to the findings of Smith et al. (2014).

3.1.1. Biases

Smith et al. (2014) provide a detailed consideration of
factors which can impact the measured filament width. For
example, they find that when performing a Gaussian fit, the
best-fit FWHM strongly depends on the radial extent of the
profile: including measurements from larger separations from
the filament spine tends to increase the FWHM. Presumably
this is at least partly caused by a lower background column
density being fit for profiles that extend further from the
filament spine. Our analysis tends to use a smaller radial extent
than in Arzoumanian et al. (2011) and especially Smith et al.
(2014) due to potential contamination from other nearby
filaments, which may explain why we tend to measure
narrower filament widths in our Gaussian fits.8 Measuring the
FWHM directly from the profile will be robust to radial range
variations, but has its own bias. Unresolved central filament
peaks become lower with poorer resolution, which would
change the peak column density used to estimate the FWHM
(R. Smith 2015, private communication). Both the biases in the
FWHM and Gaussian-fitted width measurements are primarily
systematic, affecting absolute rather than relative values. (We
emphasize that this statement does not imply that the range in

Figure 4. Time evolution of the radial column denstiy profile identified in the Z
projection of the 500 M simulations. See Figure 3 for details on the plotting
conventions used. In this example, the filament contracts and then expands in
both the HD and MHD simulations.

7 All of our fits (including those in Section 4) make use of the IDL mpfit
routine by Markwardt (2009), available at http://physics.wisc.edu/~craigm/idl/
fitting.html.
8 Smith et al. (2014) focus their analysis on the brightest one or two filaments
in each of their simulations, which ensures that the contamination from other
filamentary structures will be more minimal, even with a larger radial extent.
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widths is invariant, but that the relative rankings likely are, i.e.,
the widest filaments appear to be the widest with any measure.)
We expect then that our conclusions about the weak trends in
width are therefore robust, a point supported by the similarity
in behavior using either width measurement.

Finally, we note that the timescale over which we are able to
analyze the filaments is relatively short: 0.2 to 0.3 times the
global free-fall time for the 500 M simulations, and 0.13 times
the global free-fall time for the 2000 M simulations. Since the
filaments form in the denser parts of the simulation, a larger
number of local free-fall times would have elapsed. None-
theless, analysis over a longer timescale could reveal stronger
signs of filament evolution than we are able to probe here.

3.2. Mass per Unit Length

The simplest equilibrium model for a filament is that of the
isothermal cylinder, presented in Ostriker (1964), where
gravity is balanced by thermal pressure along an infinite
cylinder. In this model, the stability of the cylinder is controlled
by the mass per unit length, Mline. The critical mass per unit
length, in turn, depends only on the temperature:

= ºM
k T

μm G

c

G

2 2
, (2)B

H

s
line
crit

2

where cs is the sound speed and G the gravitational constant
(Ostriker 1964). Furthermore, Inutsuka & Miyama (1997)
showed that isothermal filaments are unstable to axisymmetric
perturbations of wavelength greater than about 2 times the
filament diameter if the mass per unit length is close to this
critical value.

In our simulations, the temperature is set at a constant 10 K,
which implies =M 18line

crit
M pc−1. Turbulent motions can also

provide additional support through raising the typical velocity
dispersion of the gas above the thermal value; Heitsch (2013a)
points out that non-thermal motions can be driven by the
accretion of material onto the filament itself (see also Peretto &
Fuller 2014). Fiege & Pudritz (2000) show that a more
appropriate critical mass per unit length value is given by

s
=M

G

2
, (3)line

crit
2

where sá ñ2 is the velocity dispersion including both thermal
and non-thermal components. A careful analysis of the velocity
fields would be required to determine precisely how much
nonthermal support is provided on the scales of interest; the
approximation often assumed is

s = ´ + ( )c 1 3 (4)s
2 2 2

(e.g., Klessen et al. 2000). With ~ 6 in our simulations, that
would lead to raising Mline

crit by a factor of roughly 37, giving 670
M pc−1.
In the case of a magnetized turbulent cloud, there is a

magnetic correction that must be made to Equation 3. In the
case where there is only a poloidal magnetic field and no
toroidal (wrapped field) component, the magnetic pressure
helps support the filament against gravity. Taking Equation
(27) of Fiege & Pudritz (2000) with G =f 0 (no toroidal field),
and using Fiege & Pudritzʼs (2000) Equation (23) to convert
between the vertical magnetic field flux and magnetic field

Table 2
Filament FWHM Values

Mass Time HD—FWHM Statsa MHD—FWHM Statsa HD—FWHM Statsb MHD—FWHM Statsb

( M ) (Myr) mean(pc) stddev(pc) mean(pc) stddev(pc) mean(pc) stddev(pc) mean(pc) stddev(pc)

500 0.05 0.212 0.132 0.262 0.164 0.211 0.127 0.268 0.175
500 0.10 0.105 0.086 0.176 0.130 0.066 0.051 0.116 0.087
500 0.15 0.079 0.073 0.130 0.090 0.050 0.028 0.104 0.051
500 0.20 0.058 0.047 N/A N/A 0.044 0.025 N/A N/A
2000 0.05 0.119 0.113 0.168 0.147 0.132 0.137 0.170 0.142

Notes.
a All measureable filaments included.
b Only filaments where the FWHM could be measured at all times in HD and MHD were included. Note that the 500 M and 2000 M filaments are different samples.

Table 3
Filament Gaussian-fit FWHM Values

Mass Time HD—FWHM Statsa MHD—FWHM Statsa HD—FWHM Statsb MHD—FWHM Statsb

( M ) (Myr) mean(pc) stddev(pc) mean(pc) stddev(pc) mean(pc) stddev(pc) mean(pc) stddev(pc)

500 0.05 0.08 0.07 0.10 0.07 0.11 0.10 0.12 0.09
500 0.10 0.05 0.03 0.09 0.05 0.06 0.03 0.12 0.06
500 0.15 0.04 0.02 0.06 0.03 0.05 0.02 0.07 0.03
500 0.20 0.05 0.02 N/A N/A 0.05 0.02 N/A N/A
2000 0.05 0.04 0.03 0.10 0.11 0.05 0.03 0.15 0.15

Notes.
a All measureable filaments included.
b Only filaments where a Gaussian could be fit at all times in HD and MHD were included. Note that the 500 M and 2000 M filaments are different samples.
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strength, the critical mass per unit length becomes

= ´ + ( )M M 1 2 (5)B
Aline

(crit, )
line
crit 2

where s= vA A is the turbulent Alfvén Mach number
whose Alfvén speed, vA, is rB π4 . For super-Alfvénic
turbulence, < 1A , this correction is slight. In our simulation,
however, A is 2.1–2.2 (see Table 1). Thus, our MHD
turbulence is somewhat sub-Alfvénic, i.e., the magnetic field
strength dominates the turbulence, and this implies that the
critical line mass for our models is somewhat greater than the
purely hydrodynamic turbulent case; ~M M3B

line
(crit, )

line
crit. This

result predicts that our MHD case should be considerably less
susceptible to fragmentation than the hydro case. We note that
as the turbulence is damped and the line width reduces to the
thermal value, the relative magnetic contribution to the
(thermal) line mass can become significantly more important
depending on the orientation of the field across the filament.

There has been little time in these simulations for the
turbulence to decay, but some of the power of the turbulence is
on larger scales than our filaments, so the turbulent critical
mass per unit length of 670 M pc−1 is an upper limit to the true
effective critical mass per unit length of the simulated
filaments. Indeed, the observed velocity dispersion in filamen-
tary gas tends to be only of order twice the sound speed in
nearby filaments that have peak column densities similar to
those formed in our simulations (e.g., Hacar & Tafalla 2011;
Arzoumanian et al. 2013; Hacar et al. 2013; Kirk et al. 2013).
Arzoumanian et al. (2013) furthermore find that for filaments
with masses per unit length much higher than the critical
thermal mass per unit length, the velocity dispersion increases
with increasing mass per unit length, a trait they attribute to
infall of material onto the filaments. In our simulations, most if
not all of the turbulent motion is likely due to the remnants of
the initial turbulence, given there has been little time for that to
decay, or for infall to generate additional turbulent motions.
Assuming the total filament velocity dispersion is twice the
thermal value would increase Mline

crit by a factor of four. The
estimated mass per unit length contours shown on Figure 1
illustrate that most of the dense filamentary structure is found in
areas with Mcrit

line above 4–5 for the 500 M simulations, and
even higher in the 2000 M simulations. Peretto & Fuller
(2014) estimated that non-thermal support in SDC13 would
contribute to lowering the mass per unit length values in the
filaments to 1–2 times the critical value from 4–8 times the
critical value if non-thermal motions were not accounted for.
Note that depending on the orientation, magnetic fields could
either aid or hinder gravitational collapse.

The degree of gravitational fragmentation of the filaments
can, to some degree, be ascertained by the number of sink
particles that form in the simulations. It is notable that the sinks
are typically found in or near the filaments. It is also clear that
the number of sinks that form in MHD simulations is smaller,
sometimes notably so, in comparison with their hydrodynamic
counterparts. Thus, using the data in Table 1, we see that in the
500 M simulation, while 16 sinks particles appear in the HD
run, only 6 are apparent in the MHD case. The suppression is
even greater in the 2000 M simulation (although in that case
the runtime was shorter) where 45 formed in the HD case as
compared to 3 in the MHD case. Clearly, magnetic support is
significantly reducing fragmentation.

Non-isothermal equilibrium cylinder models have also been
investigated (see Recchi et al. 2013 and the discussion therein).

In the case of a thermally supported equilibrium cylinder,
where the temperature gradually increases outward, similar to
observations, Recchi et al. (2013) find that the mass per unit
length that can be supported is only about 20–30% larger than
in the isothermal case. Since the simulations we analyze are
strictly isothermal, we do not consider this class of models
further here.

3.3. Individual Filament M/L Measurements

Measuring the total mass of each filament is difficult as can
be seen in Figures 1 and 2; the filaments do not tend to have
clearly defined outer boundaries. This challenge is exacerbated
by the fact that many of the filaments lie close to one another—
the total mass cannot be derived by including material
arbitrarily far away from the filament’s spine. We determined
that the best way to estimate each filament’s mass was to
include only material within the FWHM of the filament spine.
While this will necessarily provide a lower limit to the true
filament mass, lower and wider thresholds, such as the full
width at quarter maximum, cannot be determined for too large
a fraction of the total filament population (see discussion
above). Using a constant width for the mass determination
would bias the estimates toward relatively lower values for the
wider/fluffier filaments. We note that instead of adopting a
filament width based on the Gaussian fits discussed in Section 3
yields a similar behavior to that discussed below.
Using the estimated filament mass per unit lengths, we can

test whether this metric is a useful predictor of filament
stability. A very simple proxy for the evolutionary path of a
filament is to compare the peak column density (in the radial
column density profile) at two neighboring time steps. If the
filament is contracting or accreting, the second peak should be
higher than the first, while the reverse would be true for an
expanding filament.9 We would therefore expect that higher
mass per unit length values (above the critical value) would
correspond to a ratio in peak column densities of greater than
one (for the later time divided by the earlier time).
Figure 5 shows the mass per unit length of each filament

compared to the ratio of the peak column density at the
subsequent and current time steps. The thermal critical mass
per unit length for a temperature of 10 K is ∼18 M pc−1, below
nearly all of our measurements. Non-thermal motions likely
contribute some amount of support (Section 3.2). In Figure 5
we show the critical mass per unit length assuming the total
velocity dispersion is twice the thermal value, which gives a
value of ∼72 M pc−1. While this is a rough approximation, it
appears to denote the level above which no filaments are found
to be expanding. Regardless of precisely where the effective
critical mass per unit length is drawn, we note a surprising
result: many points occupy the bottom right quadrant,
contracting filaments whose current mass per unit length
implies gravitational stability. Similarly, there are several
filaments whose mass per unit length ratio suggests graviational
instability that are instead expanding. Although some of the
presently contracting, low mass per unit length filaments
(bottom right) may expand at time steps beyond what we can

9 We verified this assumption by comparing the ratio of filament FWHM
values at subsequent times and found very good correlation: over 86% of
filaments interpreted as contracting or expanding based on their peak column
density ratio at neighboring time steps show the same signature in their FWHM
ratio. Allowing for slight measurement uncertainties (5% error in the ratios)
gives an agreement between the two ratio measurements of just over 95%.
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trace, the figure highlights the fact that predictions about
the future evolution of filaments are incomplete when only
column density information is available. This is also apparent
in Figure 6, where the filament with the initially higher peak
column density is the one which later re-expands. Although the
individual mass per unit length values are not a good predictor
of future evolution, the fact that there is a weak correlation
between mass per unit length and peak column density ratio
suggests that some (limited) insight into the bulk behavior of
filaments can be gained from the simple isothermal-with-
turbulence model.

3.4. Region-wide Mass Per Unit Length

Finally, we can also get a rough idea of the stability of all the
material in the simulation. The Herschel Gould Belt team has
provided an estimate of the mass per unit length at every pixel,
for material in their curvelet map, i.e., that associated with
structures having long axis ratios (e.g., André et al. 2010).
These mass per unit length estimates are made under the
assumption that each pixel is part of a filament or cylindrical
structure with a typical width of 0.1 pc. The contours in Figure
1 can be interpreted under a similar set of assumptions,
although we emphasize that since our calculation includes the
entire mass in the simulation, the equivalent mass per unit
length values should not be over-interpreted in regions not
associated with filamentary structure. The thermal critical value

assumed for the contours in Figure 1 is that for a 10 K medium,
i.e., Mline

crit = 18 M pc−1. Most of the mass in filaments in the
simulation lies above the critical mass per unit length value; if
thermal pressure was the only source of support preventing
gravitational collapse, we would expect to find sink particles
forming throughout the simulation. Instead, all of the sink
particles form at mass per unit length values of at least 5 (red
contour in Figure 1). Including nonthermal motions, as
discussed earlier, raises the critical mass per unit length,
therefore decreasing the ratio of the mass per unit length to the
critical value. The mass per unit length of individual filaments
above which only contracting filaments are found, as discussed
in Section 3.3, was a similar factor (4) above the thermal
critical value. It therefore appears that only the densest parts of
the simulation, where filaments are present, are likely to be
sufficiently dense for gravitational collapse to occur.

4. MODEL COMPARISONS

We next compare the radial column density profiles obtained
to several cylindrical equilibrium models: the isothermal
cylinder, modified isothermal cylinder, and pressure-confined
isothermal cylinder, described in detail below. In the simplest
model, the isothermal cylinder, thermal pressure balances
gravity along an infinite cylinder, leading to a 3D density

Figure 6. The radial column density profile for the filament in Figure 3 at 0.1
Myr, including the best-fit models with a background column density term. The
top panel shows the profile and fits for the HD simulation, as well as the
residuals between the models and simulation, while the bottom panel shows the
same for the MHD simulation. The solid black line indicates the mean column
density at each radial separation, while the error bars denote the standard
deviation in values at various radial separations. The model lines shown are the
purely isothermal cylinder (darkest, dotted line), the modified isothermal
cylinder (less dark, dashed line), and the pressure-confined cylinder (lightest,
dashed–dotted line).

Figure 5. The mass per unit length measured for a filament at a given time step
vs. the ratio in peak column densities for the subsequent vs. current time step.
Filaments which are contracting would be expected to have a ratio in peaks
greater than one (right of the vertical dotted line), whereas filaments which are
re-expanding would have a ratio in peaks of less than one (left of the vertical
line). The thick horizontal dashed line indicates the estimated effective mass
per unit length (assuming equal thermal and non-thermal contributions);
filaments with values above this line would be expected to be contracting due
to gravity, whereas those with lower values are stable against gravitational
collapse. The thin horizontal dotted line indicates the critical mass per unit
length assuming just thermal support; nearly all of the filaments have estimated
mass per unit length values well in excess of the thermal critical value. Note
that the estimated mass per unit length values are all lower limits (see text for
details).
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profile decreasing as -r 4 at large radii, or the column density
varying as -r 3 (Ostriker 1964). Herschel teams have found that
the observed column density profiles are shallower than the
isothermal cylinder model and and instead use a modified
profile, also referred to as a “Plummer-like” profile (Plummer
1911; Nutter et al. 2008; Smith et al. 2014), where the power
law exponent is an additional fitted parameter:

r
S =

+
-

( )( )
r A

R

r R

( )

1

. (6)p
c fl

fl
2

p 1
2

Here, Σ is the column density, rc is the central density, Rfl

represents the scale of the inner flat portion of the profile, p is
the power law index (with a value of 4 for the original Ostriker
model), and Ap is a geometrical factor given by:
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where i is the (unknown) inclination of the filament on the
plane of the sky, assumed to be 0 (Arzoumanian et al. 2011).
The best-fitting value of p often tends to range between 1.5 and
2.5, a much shallower drop-off than in the p = 4 Ostriker
(1964) model (e.g., Alves et al. 1998; Lada et al. 1999;
Arzoumanian et al. 2011; Hill et al. 2012; Juvela et al. 2012b;
Malinen et al. 2012; Palmeirim et al. 2013). Some filaments,
however, have been observed with column density profiles that
are consistent with a p = 4 isothermal model, (e.g., Nutter et al.
2008; Hacar & Tafalla 2011; Pineda et al. 2011; Bourke et al.
2012), while Contreras et al. (2013) find p = 4 provides a good
fit around star-forming clumps and p = 2 is better in the inter-
clump areas. Theoretically, shallow radial column density
profiles are consistent with equilibrium isothermal cylinder
models that include helical magnetic fields (Fiege & Pudritz
2000). Smith et al. (2014) show that ~p 2 profiles are the
norm for prominent filaments in hydrodynamic simulations
without magnetic fields, regardless of the type of turbulence
considered.

We also applied the equilibrium model of Fischera & Martin
(2012), in which pressure from the medium surrounding the
filament is also included in the force balance. In this analytic
formulation, the two quantities of interest are P, the pressure
from the external medium, and f, the ratio of the mass per unit
length to the critically stable value for the Ostriker cylinder.
The full profile is given by:
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where NH is the column density in number units, x is a scaled
radial coordinate, G is the gravitational constant, μ is the mean
molecular weight, and mH is the mass of a hydrogen atom
(Fischera & Martin 2012). The main effect of the pressure, P is
on the height of the central column density peak, while f

controls the shape of the profile (Fischera & Martin 2012).
(The temperature of the gas is also fit as part of the scale factor
converting the radial coordinate x into a physical radial
separation.) In their re-analysis of the Herschel filaments in
Polaris, IC 5146, and Aquila, Fischera & Martin (2012) find
that their pressure equilibrium model also provides a good fit to
the filaments, with external pressures consistent with the range
expected in the ISM.
In all of the models, a non-zero background column density

can be included as a free parameter, i.e.,

S = S + Sr r( ) ( ) (9)model 0

where S0 is a constant.
Most if not all of the filament analyses include a background

column density term (e.g., Arzoumanian et al. 2011; Fischera
& Martin 2012; Juvela et al. 2012b; Palmeirim et al. 2013;
Smith et al. 2014); Herschel analyses in fact allow the
background to be fit by a linearly varying background column
density: S = S + S + Sr r r( ) ( ) ( )model 0 1 (see Appendix B of
Palmeirim et al. 2013), although the fits are generally similar
when just a constant background column density is adopted (D.
Arzoumanian 2015, private communication). We tried fitting
the profiles with and without a background column density and
found that including the background generally produced
superior fits. In the case of the modified isothermal cylinder
model (Equation (5)), including a background term decreased
the central density, and allowed for a narrower peak to be fit,
better matching the filament profiles. The difference was most
pronounced for the case of the pure isothermal cylinder model
(Equation (5) with p = 4), where few cases produced good fits
without a background column density. The pressure-confined
model (Equation (7)) almost never converged to a satisfactory
fit without a background column density term. The Appendix
shows the results of fits with no background column density
included.
Figure 6 shows the best fit models for one example filament

at 0.1 Myr. Following the general behavior seen in the
simulations, the filament in the MHD simulation is “fluffier”
(wider and lower peak column density) than in the HD
simulation. This is a consequence of the significant amount of
magnetic pressure support of the filaments as noted earlier.

4.1. Modified Isothermal Cylinder Model Fits

As can be seen in Figure 6, the isothermal and modified
isothermal cylinder model provide near-identical fits, when a
background column density term is included. In both the HD
and MHD profiles shown, the models have peak values within
the errors of the simulated radial profile. As shown in the
Appendix, the models differ by a greater amount when the
background column density is fixed to zero, with the pure
isothermal model then generally providing a very poor fit.
Table 4 gives the median model fit parameters for filaments

where a fit was possible at every time step in both the HD and
MHD simulations, to allow for any trends in the time evolution
to be followed. The typical powerlaw slopes found
( ~ -p 1.3 2) are similar to the best-fit values in Arzouma-
nian et al. (2011). The typical dispersion (standard deviation)
in the model fit parameters is of the same size as the median
values given in the table; in all cases, there is no clear trend in
the best fit parameters evolving as a function of time. Juvela et
al. (2012a) and Smith et al. (2014) point out that the modified
isothermal fit is partially degenerate between the fit parameters,
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which could hide evolutionary trends. Smith et al. (2014)
demonstrated that while no time evolution was seen in their
best-fit parameters when all were free to vary, fixing Rfl gave
best-fit central densities that clearly increased with time. We
performed the same test and found a similar result, as shown in
Table 5, although the combination of expanding and contract-
ing filaments at later time steps diminishes the strength of the
evolutionary trends.

Although the variation between filaments in a single
simulation snapshot is larger than any general change in
filament behavior as a function of time or initial conditions, the
model fits are consistent with the general behaviors noted
earlier. Magnetic fields produce puffier (lower rc and higher
Rfl) filaments, and an initially higher density tends to lead to
more peaky filaments (higher rc and lower Rfl); all of these
differences are smaller than the scatter in best fit values for a
given simulation snapshot, and would require tracking over a
longer time period to better measure time evolution.

As Arzoumanian et al. (2011) found, we also find that the
isothermal cylinder model tends to provide a worse fit to the
radial column density profile than the modified isothermal
model, although this is much more noticeable in the case of a
zero background column density (see the Appendix). Typi-
cally, the best fit power law index, p, is between 1.3 and 2.0,
within the range found by Arzoumanian et al. (2011) and
others, and much less than p = 4 for the pure isothermal model.
We also find rc is around 104–107 cm−3, and Rfl ranges between
roughly 0.001 to 0.1 pc, consistent with Juvela et al. (2012b).
The relationship between Rfl and the FWHM is dependent on
the power law of the profile, and a smaller value of Rfl is
expected based on the values of p fitted. Explicitly,

= ´ -- RFWHM 2 2 1p2 ( 1)
fl, or R3.46 fl when p = 2.

4.2. Pressure-confined Isothermal Cylinder Model Fits

The pressure-confined isothermal cylinder model also
generally provides a good fit to the filament profiles, although

the HD example shown in Figure 6 does a poor job of capturing
the peak column density. In most cases, the best-fit model is
very similar to the best-fit modified isothermal cylinder model.
The mean and standard deviation temperature of all fits are 15
± 14 K, with a small tail in the temperature distribution
extending out to 100 K; only 20% of the temperatures fit were
above 20 K; the median temperature fit is 11 K. The typical
external pressure fit was =  ´P k 4 3 10Bext

5 cm3 K−1 ,
with the tail in the distribution extending up to 106 cm3 K−1.
The typical shape parameters fit were = f 0.76 0.18
(keeping in mind f must be between 0 and 1). The fitted
temperature and external pressure values are physically
reasonable—the temperatures are generally similar to the
simulation’s constant 10 K, and the typical external pressure
is is the same range as those fitted and estimated to be
reasonable in nearby molecular clouds such as Perseus (Kirk et
al. 2006).
We searched for evolutionary trends within the fitted model

parameters, but did not find any over the time period analyzed.
The only discernible trend was that the external pressures
fit tended to be higher in the 2000 M simulations than the
500 M simulations, with typical values of 6 65 cm3 K−1 and

 ´1 2 105 cm3 K−1 respectively. Since the initial density of
the 2000 M simulation was higher, the external pressure
caused by the weight of overlying material within the region
would be expected to be higher.
Finally, we made a general comparison of the goodness-of-

fit of the various models, by comparing the typical (mean and
standard deviation) chi-squared values of all fits. The standard
deviation in chi-squared values is several times larger than the
mean for any of the model fits, making a distinction in the
overall goodness-of-fit between the models tenuous. Never-
theless, including a background column density term for the
isothermal cylinder model made a substantial difference: the
mean chi-squared value for fits with a background included is

Table 4
Best Fit Parameters for Modified Isothermal Cylinder, with Background

Mass Time HDa MHDa

( M ) (Myr) rc Rfl p S0 rc Rfl p S0

500 0.05 0.9 3.0 2.3 5.4 1.4 3.0 2.4 7.7
500 0.10 14.3 0.6 1.5 3.2 5.5 2.0 1.8 3.5
500 0.15 8.8 0.8 1.8 8.7 1.7 3.6 3.1 4.5
500 0.20 4.5 2.3 4.2 9.7 N/A N/A N/A N/A
2000 0.05 8.4 1.0 1.8 29 6.7 1.1 1.4 23
500 allb 4.6 1.7 2.0 4.6 1.7 2.7 2.0 4.3
2000 allb 8.4 1.0 1.8 29 6.7 1.2 1.4 23

Notes.
a Mean of the best fit values for filaments fit at all times, with a non-zero
background allowed for the fit: the central density, rc (in units of 10

5 cm−3), the
central flat radius, Rfl (in units of 0.01 pc), the exponent, p, and S0, the
background column density term (in units of 1021 cm−2); the standard deviation
is often comparable in magnitude to the mean, with values of 0.6–18, 0.4–2.4,
and 0.2–3.5 for rc, Rfl and p respectively, in the same units. The background
column density tends to have standard deviations larger than the mean value,
and the mean is usually significantly larger than the median.
b Values of all profiles where a fit was possible are included here, i.e., relaxing
the requirement of a fit for both HD and MHD, and for the 500 M simulations,
a fit at all time steps.

Table 5
Best Fit Parameters for Modified Isothermal Cylinder,

with Background, Rfl Fixed at 0.01 pc

Mass Time HDa MHDa

( M ) (Myr) rc p S0 rc p S0

500 0.05 1.6 1.6 3.2 1.6 1.4 2.5
500 0.10 2.7 1.8 7.0 1.9 1.5 2.6
500 0.15 3.3 2.1 8.6 2.2 1.6 4.2
500 0.20 3.6 2.0 7.3 N/A N/A N/A
2000 0.05 6.4 1.9 56 6.1 2.5 55
500 allb 1.6 1.6 6.7 1.6 1.5 2.8
2000 allb 7.3 2.3 68 8.8 2.1 58

Notes.
a Mean of the best fit values for filaments fit at all times, with a non-zero
background allowed for the fit and the central flat radius, Rfl fixed at 0.01 pc:
the central density, rc (in units of 105 cm−3), the exponent, p, and S0, the
background column density term (in units of 1021 cm−2); the standard deviation
is usually slightly less than the mean, with values of 0.9–2.3, and 0.2–0.7 for rc
and p respectively, in the same units. The background column density tends to
have higher standard deviations than the mean values, and the mean is often
much higher than the median value.
b Values of all profiles where a fit was possible are included here, i.e., relaxing
the requirement of a fit for both HD and MHD, and for the 500 M simulations,
a fit at all time steps.

12

The Astrophysical Journal, 802:75 (17pp), 2015 April 1 Kirk et al.



more than 3.5 times smaller than when the background is zero.
The difference is much less pronounced for the modified
isothermal model where including a background column
density decreases the mean chi-squared value by 40%.
Allowing the power law to vary (purely isothermal model
versus modified isothermal model) yields a 30% improvement
in the mean chi-squared value, while the pressure-confined
model has a mean chi-squared value 8% lower than the
modified isothermal model.

5. EFFECT OF RESOLUTION

Finally, we examine the effect of resolution on our results.
Real observations of filamentary structures are complicated by
both instrumental effects (including resolution and system
noise) and physical effects (how the flux emitted at a specific
wavelength relates to the intrinsic column density of material),
which make direct comparisons between simulations and
observations difficult (e.g., Goodman et al. 2009). Here, we
consider only the simplest factor, spatial resolution, to represent
what “perfect” observations would be able to reveal. For the
analysis presented here, we assume that the observed system is
located 140 pc away, representing the very nearest molecular
clouds and therefore also a best-case scenario. While we tested
a variety of resolutions, we show results from three cases which
are representative of the present single-dish facilities able to
map large areas of the sky in a reasonable amount of time. The
first case we consider is a resolution of 8″. This corresponds to
the resolution of the James Clerk Maxwell telescope (JCMT) at
450 μm (Holland et al. 2013), and is also similar to the 7″
resolution of the recent CLASSY survey (e.g., Fernández-
López et al. 2014) which studies in detail three nearby

molecular clouds in unprecedented detail with the CARMA
interferometer. The second case we consider is a resolution of
18″.2 corresponding to the resolution of Herschel column
density maps using the group’s latest standard method (e.g.,
Palmeirim et al. 2013), with the resolution corresponding to
that of their 250 μm observations. The third and final case we
consider is a resolution of 36″.9 corresponding to the resolution
of Herschel at 500 μm, and earlier Herschel column density
maps (e.g., Könyves et al. 2010; Arzoumanian et al. 2011).
Figure 7 shows an example of the effect of a resolution on

the column density in the simulation. As is clearly illustrated by
this comparison, at the longest wavelength Herschel resolu-
tions, much of the fine filamentary structure is lost, while
SCUBA2 at 450 μm/CLASSY does a better job.
We also examined the quantitative effect of the resolution on

our results. To do this, we applied the same filament definitions
and re-ran our analysis. We attempted to correct for the
resolution in a similar manner to real observational analyses:
for the direct filament FWHM measurements, we deconvolved
the values with the resolution. For the column density profile
models, we convolved the model with the “beam profile”/
resolution before fitting. We find that despite attempting to
correct for the resolution during analysis using the standard
observational techniques, the poorest resolution still gives
biased results. A full comparison of the effect of resolution on
all of our measured quantities is given in Table 6: we calculated
the mean and standard deviation of the ratio in values between
the decreased resolution and original results. In summary,
while there is a significant amount of scatter, typically the
resolution only produces a somewhat noticeable effect for the
36″.9 or Herschel500 μm case. The effects tend to be in the
direction expected: poorer resolution leads to higher widths and

Figure 7. A comparison of the column density in the original simulation and ideal observations at 8″.0, 18″.2, and 36″.9 at 140 pc, corresponding to SCUBA2 at 450 μm
(or CLASSY) and Herschel at 250 and 500 μm respectively (left to right). The top panel shows the full 2 pc simulation box for the pure HD simulation with 500 M
viewed along the x axis at 0.15Myr. The bottom panel shows a zoomed in view to the box indicated in the top panel. The blue circles indicate the beamsize/resolution
for each panel.
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lower central densities. We emphasize that these tests
correspond to the best possible case for these instruments.
Very few star-forming clouds are as close as 140 pc; even
Perseus is nearly twice as far away at ∼250 pc, and many other
Gould Belt Survey clouds are at a similar or larger distance.
Filaments surveyed in the Herschel Hi-Gal Survey are several
times more distant still. We ran additional tests (not shown)
with even poorer spatial resolution, corresponding to filaments
at these further distances, and found that the biases in observed
quantities becomes much more noticeable in those cases.

Smith et al. (2014) tested the effect of resolution on
measured filament widths and find relatively little effect. Their
test used a degraded resolution of 0.0086 pc (R. Smith 2015,
private communication), corresponding to a resolution of ∼13″
at 140 pc. Juvela et al. (2012b) also examined the effect of
resolution on simulated filaments, using an angular resolution
of 40″ at 93, 186, and 371 pc. They found that at the larger
distances, the filament central densities were the most biased,
while the width, mass per unit length, and power law slope
changed by less. Both of these results are consistent with our
findings at similar resolutions.

Beyond the implications to the measured filament properties
presented here is the presence and characterization of
substructure within the filaments. Averaging a radial column
density profile along a filament hides much of the information
on smaller-scale structure within the filaments in the simula-
tions—see, for example, the comparison of 2D and 3D column
density versus density profiles of simulated filaments in Gómez
& Vázquez-Semadeni (2014) and Smith et al. (2014). Both

observations (Hacar et al. 2013; Fernández-López et al. 2014;
Henshaw et al. 2014) and simulations (Moeckel & Burkert
2014; Smith et al. 2014) suggest that filaments may in fact be
composed of multiple strands of dense gas, perhaps woven
together, which are often difficult to identify separately with the
present observational capabilities; higher spatial resolution and/
or inclusion of the line of sight velocity are essential.
In our hydrodynamic simulations too (see Figure 7), we see

evidence of more complex structure on smaller scales, although
a full 3D consideration of this is beyond the scope of the
present paper. Nonetheless, our results coupled with new
results emerging from observations such as Fernández-López et
al. (2014) suggest that the key to a deeper understanding of
filamentary structure requires high (spatial and velocity)
resolution as well as more sophisticated tools by which to
model the structure.

6. DISCUSSION AND CONCLUSIONS

We simulate the formation of filaments within a clump-scale
volume, investigating the role of magnetic fields on the
evolution of filaments column density. Starting with 500 M
(or 2000 M ) of gas within a 2 pc cube, we track the evolution
of filamentary structures over 0.15Myr with and without the
presence of a magnetic field. Turbulence remains strong
throughout the simulations as there has been been insufficient
time for it to damp significantly.
These analyses provide an important complement to the

recent filamentary analysis in simulations by Smith et al.
(2014). Those authors investigated the effect of different initial
modes of turbulence (e.g., solenoidal versus compressive),
whereas our analysis examines the effect of magnetic fields and
gravity (through varying the initial mean density). Other more
subtle differences are also important to note as well. Smith et
al. (2014) assumed a uniform density initial sphere, surrounded
by a warm diffuse medium, whereas we assume a sphere with a
radially decreasing density surrounded by a vacuum. Girichidis
et al. (2011) demonstrate that the initial density distribution can
have a marked effect on the large-scale structure which forms
later in the simulation. Our simulations do not include the
effect of radiation or simple chemistry, while Smith et al.
(2014) does include both; we expect these effects to become
more important at later times (once massive YSOs begin
ionizing their natal environments) and when making synthetic
observations of molecular line emission (where the presence or
absence of various molecular species has a large effect). The
base numerical codes used are also different—Smith et al.
(2014) use AREPO, a hybrid code, while we use FLASH, which
is an AMR-based code. Despite these significant differences,
both Smith et al. (2014) and our analyses do identify filaments
that have properties broadly similar to observed filaments,
which appears to speak to the universality of filament formation
under a variety of conditions.
We also note one major difference from Smith et al. (2014)

in the analysis stage: Smith et al. (2014) focus their analysis on
the brightest one or two filaments in each simulation whereas
we also include fainter/less dense filaments in our analysis. In
this respect, our analysis gives a better direct comparison with
observational surveys, where many filaments are identified in
any given star-forming region. Our approach limits our analysis
of the filament column density profiles to a smaller radial
separation from the filament spine, since the fainter filaments
are more liable to have their profiles contaminated by nearby

Table 6
Effect of Resolution on Fit Parametersa

Resolution FWHMb
sb M b

line

JCMT-450 μm 1.2 ± 0.4 1.1 ± 0.2 1.1 ± 0.2
Herschel-250 μm 1.3 ± 0.5 1.1 ± 0.2 1.2 ± 0.3
Herschel-500 μm 1.6 ± 1.2 1.3 ± 0.4 1.4 ± 0.6

Resolution rc
c R c

fl pc

JCMT-450 μm 0.8 ± 0.3 1.8 ± 1.3 1.2 ± 0.4
Herschel-250 μm 1.1 ± 1.1 1.5 ± 1.1 1.1 ± 0.5
Herschel-500 μm 0.5 ± 0.3 3.4 ± 2.6 1.6 ± 0.7

Resolution rc
d R d

fl pd

JCMT-450 μm 1.1 ± 0.6 1.1 ± 0.3 L
Herschel-250 μm 1.1 ± 0.6 1.1 ± 0.3 L
Herschel-500 μm 0.8 ± 0.4 1.5 ± 0.7 L

Resolution T e Pe
ext fcyl

e

JCMT-450 μm 1.1 ± 0.2 1.2 ± 0.5 1.0 ± 0.2
Herschel-250 μm 1.2 ± 0.6 1.3 ± 0.6 1.0 ± 0.2
Herschel-500 μm 1.4 ± 0.7 1.4 ± 0.8 1.0 ± 0.3

Notes.
a Mean and standard deviation in the ratio between decreased resolution fits
and original values (all quantities).
b Filament FWHM widths, Gaussian-fitted widths, and mass per unit length
ratio.
c Parameters from the modified isothermal cylinder model.
d Parameters from the isothermal cylinder model (power law exponent fixed).
e Parameters from the pressure-confined isothermal cylinder model.
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non-related substructure than brighter filaments are (the filling
factor is much larger for all faint plus bright filaments than it is
for just bright filaments). On the other hand, inclusion of fainter
filaments allows us greater sensitivity to less gravitationally
bound filaments, which may be more liable to re-expand with
time; such behavior was not noted in Smith et al. (2014),
presumably because the dominant filament in each simulation
will continue to contract and accrete new material throughout
time. Our main findings are as follows:

1. Magnetic fields have a strong influence on filamentary
structure. Even with a mass to magnetic flux ratio which
is supercritical by a factor of ∼2, there are notable
differences from the purely hydrodynamic simulation.
Filaments formed in the magnetic case tend to be wider,
less centrally peaked, and evolve more slowly than
filaments seen in the purely hydrodynamic case. These
differences are most apparent through a visual compar-
ison (e.g., Figures 2–4), and are less discernible in
quantitative measures due to the large variation in
filament properties at any given snapshot.

2. The magnetic field can have a strong effect on the
fragmentation of filaments. In our simulations, magnetic
fields are able to significantly suppress the formation
of cores, since its energy density exceeds that of
the turbulence. The turbulence is sub-Alfvénic
( s= ~ - v 2.1 2.2A A ) and so the magnetic field
increases the critical turbulent line mass by a factor of
3.2–3.3. This accounts for the less condensed structure of
the magnetized filaments, and their notably less
fragmentation.

3. The simulated filaments have properties consistent with
observations. The radial column density profiles of the
filaments are well-described by a Plummer-like or
modified isothermal cylinder profile. The power-law
slope tends to be around 1.3–2, similar to the range of
1.5–2.5 found in Herschel data byArzoumanian et al.
(2011). The central density tends to be of order 105 cm−3

for the 500 M simulations and closer to 106 cm−3 for the
2000 M simulations; the inner flat radius is a few
hundredths of a parsec in both cases. The 500 M typical
central densities, as well as the inner flat radii and power
law slopes, are consistent with those in Juvela et al.
(2012a), also based on Herschel observations. The
pressure-confined cylinder model of Fischera & Martin
(2012) also provides a reasonable fit to the radial column
density profiles, with typical temperatures, external
pressures, and shape parameters fit of 15 K, 4 × 105

cm3 K−1, and 0.76 for T, P kBext , and f respectively.
4. Filaments have diverse evolutionary paths. At any given

snapshot in time, the simulation reveals a variety of
filaments. Some continue to radially contract and accrete
material throughout the simulation and will presumably
continue on to form stars along their length. Other
filaments halt in their contraction and expand into the
ambient medium before the end of the simulation. Given
the relatively short time duration of our simulations, we
expect that even more diverse evolutionary paths could
be possible throughout the lifetime of a molecular cloud.

5. The mass per unit length of a filament in a given snapshot
provides only a weak discriminant between the contract-
ing and expanding filaments. Over most of the range of
mass per unit length values, filaments can be either

contracting or expanding. Above roughly 72 M pc−1, the
critical value for filaments supported equally by thermal
and non-thermal support, nearly all filaments are
contracting. Velocity and magnetic field information are
clearly required to determine the evolutionary state of a
filament unambiguously.

6. Turbulence plays an important role in the mass per unit
length of filaments. The filaments in which stars appear in
our simulations have critical mass per unit lengths that are
dominated by turbulent velocity dispersion and not just
thermal values. This arises in these simulations since they
are much less than a free-fall time old, so that turbulence
has not had the opportunity to damp significantly.
Herschel results indicate that the thermal critical value
of Mcrit

line is a good diagnostic of star-forming ability
therefore suggests that turbulence is much weaker within
these filaments, perhaps because their natal clouds are
more evolved.

7. Filament widths are mildly influenced by environment.
Filaments tend to be narrower at later times, when formed
in higher density environments, or without the presence
of magnetic fields, but these trends are all weak, given the
mixture of contracting and expanding filaments at every
snapshot in the simulations. Stronger trends in the
evolution in filament properties as a function of time
might become apparent with a longer timescale for
analysis, especially if the filaments which re-expand
become sufficiently diffuse to become undetectable at
later times. We find the mean filament FWHM ranges
from 0.06 to 0.26 pc across our simulations at varying
times, with most being around 0.1–0.15 pc.10 The range
in filament FWHM values for any given simulation
snapshot is, however, larger than the range seen in the
analyses of Arzoumanian et al. (2011). For filaments
which are contracting, a combination of the decaying
turbulence and gravity is likely responsible for the
evolution. This may in part explain the relative constant
filament widths discussed in Arzoumanian et al. (2011),
although resolution may also be an important factor
(Fernández-López et al. 2014), and observational biases
and measurement methods could be playing a role
(Heitsch 2013a; Smith et al. 2014).

8. Filaments have complex structures. The radial column
density profiles of the filaments reveal a wealth of sub-
structure, particularly in the pure hydrodynamic simula-
tion where features tend to be sharper. Some of these
substructures appear suggestively like the intertwined
filament bundles found by Hacar et al. (2013; see, for
example, the bottom left panel in Figure 7); high-
resolution observations of a suite of filaments will be
necessary to show how commonplace this phenomenon
is. Other simulations, including Smith et al. (2014) and
Moeckel & Burkert (2014) also find complex 3D
filamentary substructure.

Future work will include a 3D analysis of the filaments
formed in these simulations, including their velocity structure
and accretion rates, and the relationship with the magnetic field
geometry.

10 See Section 3.1 for a discussion on the biases and uncertainties in absolute
filament widths in our analyses.
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APPENDIX

Here, we examine the results of fits to the radial column
density profiles of the filaments when the background column
density is forced to be zero (see discussion in Section 4).

Figure 8 shows the best fit models for the isothermal and
modified isothermal model, for a filament identified in both the
HD (top panel) and MHD (bottom panel) 500 M simulations,
to be contrasted with Figure 6 for the same fits where
background column density is allowed to be non-zero. Note
that the best-fit pressure-confined model plotted in Figure 8
does include a background column density term, and is
identical to the fit shown in Figure 6. Contrary to the case
(Section 4) when the background column density is fixed to
zero, the three models differ from each other by a greater
amount, and the pure isothermal model is generally a poor fit to
the profile.
Table 7 gives the median model fit parameters for the

isothermal and modified isothermal profiles for all filaments
fitted at every time step in both the HD and MHD simulations.
Comparison of these fit values with those given in Table 4
shows that the best fit profiles tend to have narrower peaks
(better matching the filament profiles) when a background
column density included, most of this increased narrowness is
accounted for by the steeper power law, p, rather than a
decrease in the central flat radius, Rfl. As discussed in Section
4.2, there is relatively little difference in the quality of fit
(comparing typical c2 values) for the modified isothermal
model when a background column density is or is not included,
however, the inclusion of a background column density terms
makes a substantial difference in the quality of fits for the
purely isothermal model.
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