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Abstract

On the Theory of Ambipolar Diffusion, With Applications to

Astrophysical Jets

by Michael Thomas Power

submitted on June 27, 2018:

Numerically simulated magnetohydrodynamical jets are not at all morphologically
similar to most of those which are observed in nature. Jets in nature are actually
quite morphologically similar to pure hydrodynamical simulations. However, it is well
known that jets in nature are launched magnetically and likely transport dynamically
important magnetic fields. Therefore, a gap seems to exist in the model of jets based
upon a pure magnetohydrodynamical outflow. In this thesis, I show that the theory
of ambipolar diffusion may provide a plausible solution to the morphology problem
by running simulations which use the non-isothermal single fluid approximation of
ambipolar diffusion. However, using resolution studies on the numerical simulations,
I show that there exists a numerical instability caused by the single fluid approxima-
tion which produces unreliable results when applied to this problem. Accordingly, I
develop a full non-isothermal two-fluid model of ambipolar diffusion from first prin-
ciples and show that this reduces correctly to the single fluid model of ambipolar
diffusion widely used in the literature. Suggestions on how this may be incorporated
into a numerical model are then made.
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Chapter 1

Introduction

The problem of star formation is fundamental to our understanding of the uni-

verse. Stars are the nuclear engines that produce the heavier elements from which

the planets and all life is eventually made. Stars begin to form through the gravi-

tational collapse of molecular clouds, clumps, and cores in the interstellar medium

(ISM), into what is known as a protostar, which is an object of insufficient density

to ignite nuclear fusion in its core because of the high rate of angular spin acquired

through the formation process (Larson, 2003; McKee & Ostriker, 2007). At this stage

in stellar formation, the protostar has developed an accretion disk on its equatorial

plane, condensed from the ambient medium in which it resides. This was a theory

first developed by Hoyle & Lyttleton (1939) and furthered by Bondi (1952).

The angular momentum problem is one of two classical problems in star formation

and its solution eluded researchers for many years. Ultimately, the answer was found

to involve ‘jets’. Astrophysical jets are long, collimated, supersonic flows of plasma

emanating from compact celestial objects (Snell et al., 1980; Bridle & Perley, 1984).

Within the accretion disk of the protostar, the hot partially ionized material under-

goes rotational motion. At the same time, the magnetic field within the accretion

disk is being coiled around and strengthened, which ultimately launches the jet (Hen-
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riksen & Rayburn, 1971; Blandford & Payne, 1982). In fact, even a trace magnetic

field in the accretion disk will eventually build up enough strength to launch a jet

(e.g. Ramsey & Clarke, 2011). Blandford and Payne (1982) showed that a sufficiently

strong magnetic field threading the accretion disk can act like a wire, on which the

ionized material is magneto-centrifugally accelerated away like a bead because of the

fact that ionized particles can only gyrate around magnetic field lines without crossing

them. Thus, for any rotating, magnetized plasma collapsing under its own gravity,

jets are inevitable (e.g. Ustyugova et al., 1995).

The main focus of this thesis is to study and attempt to solve what I shall refer

to as the “morphology problem” between the jets observed in the universe and those

which are simulated numerically. To illustrate the nature of this problem, Figures

1.1 and 1.2 showcase the typical structure of astrophysical jets emanating from a

galactic nucleus and a protostar respectively. As can be seen particularly in Figure

1.1, the two large lobes of material associated with the jets, are emitted from the

comparatively small central objects Cygnus A and HH-34. Morphologically the lobes

of material span a very large volume and are quite oblate with blunt leading edges.

By comparison, Figure 1.3 shows a ZEUS-3D simulation of a two-dimensional, purely

hydrodynamical, axisymmetric jet which bears some key morphological similarities

to the observations. In particular, the “cocoon” (Norman et al., 1982)—which cor-

responds to the lobes in the extragalactic jets—fills a large volume, is quite oblate

and presents a blunt leading edge. By contrast, Figure 1.4 shows a two-dimensional,

axisymmetric, purely magnetohydrodynamical simulation of a jet, which has a dy-
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namically active toroidal magnetic field (e.g. Clarke et al., 1986).1 Here, the cocoon

of the magnetically dominated jet doesn’t fill as large of a volume and presents a

very pointed, almost needle-like leading edge and advances significantly faster than

the pure hydrodynamical counterpart. This makes the jet pierce through the ambient

medium. From this qualitative comparison, one might conclude that the majority of

jets appear to be purely hydrodynamical in nature, not exhibiting the confined, more

ordered appearance that many magnetically dominated jets exhibit.2 This however, is

contrary to the widely held view that a dynamically active magnetic field is required

to launch a jet (e.g. Blandford & Payne, 1982). As Ramsey and Clarke (2011) found,

the active magnetic field required to launch their jets is subsequently transported

by the material which forms the jet. Therefore, the observable jets should provide

morphological evidence of this dynamically active magnetic field. Thus, the hydro-

dynamical appearance of most jets presents a bit of a morphological conundrum, and

one this thesis attempts to address.

The question, then, is how can one make a magnetically dominated jet appear mor-

phologically hydrodynamical. Is there a mechanism by which fluid could dynamically

“cross” magnetically field lines, thereby escaping its confinement and inflating the

needle-like nosecones into the large cocoons (lobes) so often observed?

1The phrase ‘dynamically active magnetic field’ means that the magnetic energy density is greater
than the thermal energy density in the plasma. Specifically, the ‘plasma beta’ is defined as the ratio
of the thermal to magnetic pressure β = P/PB . Thus, for β < 1 the material entering the ambient
medium has PB > P and therefore is ‘magnetically active’.

2An exception to this is the jet from the object 3C273. However, jets such as these are very much
the exception, not the rule. For further details and a wealth of other information on jets see the
website: www.jb.man.ac.uk/atlas/, by J.P Leahy, A.H Bridle, and R. G. Strom.
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A possible solution may be found in the physical process known as “ambipolar dif-

fusion” (AD), which was first suggested in a seminal paper by Mestel and Spitzer

(1956) who posited a more realistic way to treat plasmas. They suggested that astro-

physical gases could be partially ionized as opposed to completely neutral—as a pure

HD treatment assumes—or full ionization, as assumed by a pure MHD treatment.

Indeed, many astrophysical gases are at temperatures where one would expect a sig-

nificant component of the gas to be composed of neutral particles. Since the neutral

component of the gas is not tied to the magnetic field lines via Larmour precession

as the ions are, this would suggest that the neutral particles—although impeded by

collisions with ionized particles—could escape into regions of even strong magnetiza-

tion and thus make the jets appear more “hydrodynamical”.

Related to the aforementioned collisions, Mestel and Spitzer (1956) postulated that

there should exist a friction-like coupling force between the neutral and ionized par-

ticles in the gas. In the decades that followed, a significant amount of progress was

made in the theory of ambipolar diffusion by Draine (1980), who determined the value

of the coupling constant between the neutral and ionized particles, which mediates

the strength of the friction-like coupling force. As it turns out, this coupling constant

was originally derived by none other than James Clerk Maxwell (1860a; 1860b) whilst

working on scattering theory, and the numerical value of this constant was determined

by Langevin (1905).3 After Draine, more progress was made by Shu et al. (1987), as

3See §2.3.1 for further details.
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well as two-dimensional advancements by Fiedler & Mouschovias (1993), and Basu &

Mouschovias (1994). Eventually, Mac Low et al. (1995) developed what has become

known as the ‘single fluid approximation’ for ambipolar diffusion, where the ioniza-

tion level is assumed to be low and thus only the neutral particles are needed to track

the dynamics, although some coupling terms remained to account for the mutual

coupling force. This theory is discussed further in §2.6. Subsequently, Mac Low &

Smith (1997) performed the first three dimensional simulations involving ambipolar

diffusion using the full two-fluid model, albeit isothermal and thus not accounting

for ionization or recombination, as discussed in §2.3.1. All subsequent applications of

AD to astrophysics then built upon the ideas of Mac Low & Smith (1997), by either

applying their two-fluid equations to specific astrophysical situations, or by further

developing the mathematics associated with the theory (Falle, 2003; Li et al., 2006;

Oshi & Mac Low, 2006; O’Sullivan & Downes, 2006, 2007). However, each of these

efforts assumed a completely isothermal fluid and didn’t account for ionization and

recombination of neutral and ionized particles in a physical manner.

Duffin & Pudritz (2008), were the first to develop a mathematically rigorous, non-

isothermal theory for ambipolar diffusion, and applied their model to the problem of

fragmentation of a gravitationally collapsing star formation region.4 Like Mac Low &

Smith, the idea of Duffin & Pudrtiz’ single fluid approximation is restricted to track

only the dynamics of the neutral particles, which greatly simplifies the computational

resources required. This can be justified physically by assuming a low ionization level

4See MacMackin (2015) for further details.
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for the overall gas, as first suggested by Mestel & Spitzer (1956) whose arguments

are based upon plasma recombination times. In the single fluid approximation, one

can neglect terms in the equations proportional to the ion density and pressure. For

mathematical details on the single fluid approximation see §2.6.

So far in the literature, it seems that no simulations involving ambipolar diffusion

have been performed upon astrophysical jets. Thus, the main thesis of the present

work is twofold. First, I develop the mathematics of AD, to include a non-isothermal

energy equation into the two-fluid model and to incorporate a realistic model of ion-

ization and recombination. Second, I investigate what effect, if any, AD in its one

fluid form has on the morphological nature of simulated MHD jets, and if it can help

address the “morphological problem”.
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Figure 1.1: 6cm observations of the extragalactic object Cygnus A, located nearly
600 million light-years away. At its core, Cygnus A hosts a super-massive
black hole whose accretion disk emits dual jets, expelling plasma into the
ambient medium at velocities near that of light. As can be seen, the lobes
of these jets have very large volumes and the leading edges are very blunt.
Image courtesy of NRAO/AUI (http://images.nrao.edu/110); R. Perley,
C. Carilli & J. Dreher.
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Figure 1.2: Three colour composite—B, H-α and S-II—of the object HH-34 located
in the constellation orion. HH-34 is a protostar which is seen to emit dual
jets, expelling plasma into the ambient medium at velocities approaching
250 km s−1. As can be seen, the leading edges of the jets which are marked
by bow shocks in the ambient medium, which are rather blunt. Image
courtesy of ESO (http://www.eso.org/public/images/eso9948b/).
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Figure 1.3: High resolution (40 × 100 scale-free grid with 400 × 1000 computational
zones) two-dimensional axisymmetric ZEUS-3D simulation of a pure hy-
drodynamical jet showing density contours, with white/red indicating a
high density and blue/green low. The density ratio of the incoming ma-
terial compared to the ambient medium is η = 0.01, and the speed of the
incoming material compared to the sound speed in the ambient medium
is M = 10. The highest density region forms shock front advancing into
the ambient medium, with a blunt leading edge, similar to those seen in
HH-34, Figure 1 for example.
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Figure 1.4: Same setup as Figure 1, except the jet transports a dynamically active
toroidal magnetic field of β = 0.1. Unlike the pure hydrodynamical case,
MHD jets are magnetically driven and form a piercing “nosecone” (Clarke
et al., 1986) which gives the jet a more pointed appearance, contrary to
observations such as Figures 1 and 1.
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Chapter 2

The Theory of Ambipolar
Diffusion

2.1 Generalized Magnetohydrodynamics

Normally, magnetohydrodynamics (MHD) can be encapsulated in four equations.

However, this is only the case under the conditions of ‘ideal MHD’, where most im-

portantly it is assumed that the plasma is fully ionized. Often, in reality, this of course

will not be the case and to have a more realistic model, one must account for the

possibility that neutral particles may also reside in the fluid, interacting with ionized

particles. Further, each ion or neutral particle may not stay in their original state

indefinitely, as they can recombine and ionize according to the local dynamics. Of

course, these generalizations greatly complicate the physics, but incorporating them

may help to uncover results which would normally be hidden by a strictly ideal study

of MHD.

The most general method by which one can derive equations associated with MHD

is through the species dependent, collisional Vlasov equation (e.g. Colonna, 2016),

namely,

∂tfs + ~v · ∇fs +
qs
ms

( ~E + ~v × ~B) · ∇~vfs = (∂tfs)coll, (2.1)
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where fs represents the distribution function for species s as a function of the phase-

space coordinates ~r, ~v and t. ~E and ~B represent the electric and magnetic fields

respectively, with qs and ms as the charge and mass of particles of each respective

species. Finally, the term on the right hand side of the equation, (∂tfs)coll is a term

representing the interactions among all the particles present.

2.1.1 Generalized Equations

Given a neutral species represented by subscript n, and an ionized species represented

by subscript i, it can be shown (e.g. Shu, 1992) that by assuming equations of state

and taking the zeroth, first and second moments of equation (2.1) for each species, as

well as assuming the electric and magnetic fields are ‘frozen into’ the fluid, one gets

the following set of generalized equations:

neutral and ion continuity,

∂tρn +∇ · (ρn~vn) = Sn,coll; (2.2)

∂tρi +∇ · (ρi~vi) = Si,coll; (2.3)

neutral and ion momentum,

∂t~sn +∇ · (~sn~vn) = −∇Pn − ρn∇φ+ ~Fn,coll; (2.4)

∂t~si +∇ · (~si~vi) = −∇Pi − ρi∇φ+
1

µ0

(∇× ~B)× ~B + ~Fi,coll; (2.5)



Chapter 2. The Theory of Ambipolar Diffusion 13

neutral and ion internal energy,

∂ten +∇ · (en~vn) = −Pn∇ · ~vn + Gn,coll; (2.6)

∂tei +∇ · (ei~vi) = −Pi∇ · ~vi + Gi,coll; (2.7)

neutral and ion equations of state,

Pn = (γn − 1)en; (2.8)

Pi = (γi − 1)ei; (2.9)

induction equation,

∂t ~B +∇× ~E = ~0; (2.10)

neutral and ion total energy equation,

∂teTn +∇ ·
[(
eTn + Pn

)
~vn

]
=

(
φ− 1

2
v2

n

)
Sn + ~vn · ~Fn,coll + Gn,coll; (2.11)

∂teTi
+∇·

[(
eTi

+Pi−
1

2µ0

B2

)
~vi+

1

µ0

~E× ~B
]
=

(
φ− 1

2
v2

i

)
Si+~vi · ~Fi,coll+Gi,coll, (2.12)

where ρi and ρn are the fluid densities, ~vn and ~vi are the fluid velocities, Sn,coll and

Si,coll are the generalized continuity source terms to be derived in 2.2, ~sn and ~si are

the fluid momenta, Pn and Pi are the fluid pressures, φ is the gravitational potential,

~Fn,coll and ~Fi,coll are the generalized momentum source terms to be derived in section

2.3, µ0 is the permeability of free space, ~B is the magnetic induction, ~E = −~vi× ~B is
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the induced electric field, en and ei are the fluid internal energies, and Gn,coll and Gi,coll

are the generalized internal energy source terms to be derived in section 2.4. Finally,

eTn = 1
2
ρnv

2
n + ρnφ+ en;

eTi
= 1

2
ρiv

2
i + ρiφ+ ei +

1

2µ0

B2,

are the fluid total energies.

Equations (2.2) to (2.12) represent a set of completely general MHD equations, al-

lowing for both a neutral and ionized fluid. The goal of the following sections in this

chapter is to derive all of the aforementioned ‘generalized source terms’, beginning

with those of the continuity equation.

2.2 Continuity Source Terms

For our model, it is desirable to allow the ion and neutral particles to recombine and

ionize in a realistic way. The way which I’ve chosen to model this is by utilizing the

Saha equation, which requires the assumption of thermodynamic equilibrium and, in

particular, that the co-spatial neutral and ion fluids are at the same well defined tem-

perature. This is tantamount to assuming that the timescale for the fluid to return

to thermodynamic equilibrium is much less than any other significant timescales of

the problem.
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Multiplying by the mass of each species and taking the zeroth moment of the right

hand side of the Vlasov equation (2.1) gives,

ms

∫
~v

d3v (∂tfs)coll =

(
∂t

∫
~v

msfs d
3v

)
coll

= (∂tρs)coll

Thus, for each species one may define the continuity source terms as:

Sn,coll ≡ (∂tρn)coll; (2.13)

Si,coll ≡ (∂tρi)coll. (2.14)

Since the overall system mass must be conserved,

S ≡ Si,coll = −Sn,coll. (2.15)

2.2.1 Considerations on the Saha Equation

A common form of the Saha equation is (e.g. MacDonald, 2015):

nj+1ne

nj
=

2gj+1

gj

(
2πmekBT

h2

)3/2

e−χj+1/kBT , (2.16)

where nj is the number density of the element in ionization stage j, ne is the number

density of electrons, gj is the degeneracy of the ionization stage j, me is the electron

mass, kB is the Boltzmann constant, h is Planck’s constant and χj is the energy re-

quired to remove the jth electron. Equation (2.16) must be written down for every
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ionization stage of each element under consideration. For the purposes of this thesis,

I wish to demonstrate the general method which can be used to solve for the conti-

nuity source terms by considering the simplest non-trivial case, namely hydrogen and

helium. Thus, take the number of free electrons to be ne = nH+ +nHe+ + 2nHe++ , and

to accompany this, the following three Saha equations are required:

nH+(nH+ + nHe+ + 2nHe++)

nH

= ΩH; (2.17)

nHe+(nH+ + nHe+ + 2nHe++)

nHe

= ΩHe; (2.18)

nHe++(nH+ + nHe+ + 2nHe++)

nHe+
= ΩHe+ , (2.19)

which need to be solved for nH+ , nHe+ and nHe++ , the ion number densities and where:

ΩH(T ) = 2
gH+

gH

(
2πmekBT

h2

)3/2

e−χH+/kBT ;

ΩHe(T ) = 2
gHe+

gHe

(
2πmekBT

h2

)3/2

e−χHe+/kBT ;

ΩHe+(T ) = 2
gHe++

gHe+

(
2πmekBT

h2

)3/2

e−χHe++/kBT .

Next, divide equation (2.17) by (2.19), and (2.18) by (2.19) to get:

nH+ =
nHΩH

nHe+ΩHe+
nHe++ ; (2.20)

nHe+ =
nHeΩHe

nHe+ΩHe+
nHe++ . (2.21)
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Substitution of equations (2.20) and (2.21) into any one of equations (2.17)-(2.19)

gives an expression for nHe++ :

nHe++ = nHe+ΩHe+

(
nHΩH + nHeΩHe + 2nHe+ΩHe+

)−1/2

. (2.22)

Our analysis is still incomplete, as nHe+ has not been properly isolated. Acting

both as an ion number density to be solved for and a parent density to nHe++ , it

appears explicitly on both sides of equation (2.21). However, it can be shown that

by combining equations (2.21) with (2.22), one can find a cubic equation for nHe+ :

(2ΩHe+)n3
He+ + (nHΩH + nHeΩHe)n

2
He+ − n

2
HeΩ

2
He = 0. (2.23)

By taking the first derivative of (2.23), one can also show (since α, β and ΩC are pos-

itive definite quantities) that there exists a local maximum at nHe+ = − (nHΩH+nHeΩHe)
3ΩHe+

and a local minimum at nHe+ = 0. Thus, equation (2.23) admits only one real, pos-

itive, and thus physically admissible solution, which can be determined by Cardano

formula or by a root finding method in which one searches for the unique real, positive

root.

In practice, it is unlikely that the number densities of each individual neutral particle

will be available and thus equation (2.23) may still not be solvable. If instead, the

total number densities of the neutral nn and ion fluids ni are known, one must carry
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out an additional analysis to find nH and nHe. To this end, one can write:

nHe = nn − nH, (2.24)

and the fractional abundance of hydrogen gas within the overall fluid:

ξH =
nH + nH+

nn + ni

,

which can be used to give:

nH = ξH(nn + ni)− nH+ . (2.25)

Now, combining equations (2.24) and (2.25) to eliminate nH, one finds:

nHe = nn − ξH(nn + ni) + nH+ . (2.26)

Here, one must assume the values of the neutral and ion densities, nn and ni are

known. Computationally, one may think of these as the fluid number densities at the

current time-step t of the problem, which will have a specific temperature T (t). Thus,

the following equations take the current time-step’s number densities, and outputs

the number densities of the individual ions which make up the ionized fluid at the

new time-step t+ δt, which heralds a new temperature T (t+δt). Combining equations

(2.23), (2.25) and (2.26) to eliminate the unknown individual neutral particle number
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densities, one finds the cubic equation:

(2ΩHe+)n3
He+ + {[ξH(nn + ni)− nH+ ]ΩH + [nn − ξH(nn + ni) + nH+ ]ΩHe}n2

He+

− [nn − ξH(nn + ni) + nH+ ]2Ω2
He = 0.

(2.27)

This cubic equation contains the two unknowns nH+ and nHe+ , which must be solved

for and to accomplish this, one more equation relating these variables is required.

Combining equations (2.20) and (2.21), one finds the relationship:

nH+ =
nHΩH

nHeΩHe

nHe+ ,

which, when used with equations (2.25) and (2.26) to eliminate the unknown individ-

ual neutral number densities, becomes:

nHe+ =
[nn − ξH(nn + ni) + nH+ ]ΩHe

[ξH(nn + ni)− nH+ ]ΩH

nH+ . (2.28)

Thus, there are now two non-linear, coupled equations (2.27) and (2.28), which must

be solved simultaneously for the unknown individual ion densities nH+ and nHe+ .

With these ion individual densities known, one may simply use equations (2.21) and

(2.26) (or equivalently equations (2.20) and (2.25)) to get:

nHe++ = {[nn − ξH(nn + ni) + nH+ ]ΩHe}−1ΩHe+n
2
He+ . (2.29)
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Now that all of the individual particle number densities are known, it is a simple task

to determine the ion fluid density at the next time-step, namely:

ρ
(t+δt)
i =

∑
ζ

mζnζ . (2.30)

Here, ζ = H+,He+,He++; mζ is the mass of ion species ζ and nζ is the number density

of species ζ calculated by virtue of equations (2.27), (2.28) and (2.29). Finally, with

the ion fluid density at the next time-step, one may take a finite-difference of equation

(2.14) and use equation (2.15) to find the continuity source term to be:

S =
ρ

(t+δt)
i − ρ(t)

i

δt
. (2.31)

2.3 Momentum Source Terms

The term ambipolar diffusion is actually a reference to the form of the momentum

source terms, since it is what allows neutrals and ions to interact and diffuse through

each other. During this diffusive process, there exists an interaction potential between

the neutral particles and the ions, which in turn defines a scattering cross section and

thus a rate at which momentum is transferred between the ensemble of particles on

average. In addition, in §2.2 a mass transfer rate between the neutral and ion fluids

was defined. Because the ions and neutrals move at their own velocities, ~vn and ~vi

respectively, those ions which are converted to neutrals, or vice-versa, must be ac-

celerated to the frame of reference of the other, thereby introducing another force
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density into the momentum equations.

Consider the total impulse density imparted to the neutral fluid ~jn, caused by neutral

particles becoming ionized:

~jn = δρ(n→i)∆~v(n→i). (2.32)

Here, δρ(n→i) represents the mass density of the neutral fluid which is becoming ion-

ized, and ∆~v(n→i) is the change in velocity which these particles feel as they move

from the neutral fluid to the ion fluid. Since these particles end in the ionized fluid

with velocity ~vi, and start in the neutral fluid with velocity ~vn, equation (2.32) can

be written as:

~jn = (~vi − ~vn)δρ(n→i). (2.33)

By definition:

~j = ~f δt, (2.34)

where ~f is the average force density caused by the momentum change. Thus, com-

bining equations (2.33) and (2.34), one finds that the force density imparted to the

neutral fluid during ionization processes is:

~fn = (~vi − ~vn)

(
δρ

δt

)
(n→i)

, (2.35)
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and invoking Newton’s Third Law, the force density imparted to the ionized fluid

during ionization processes is then:

~fi = (~vn − ~vi)

(
δρ

δt

)
(n→i)

. (2.36)

Here, if the ionized fluid is faster than the neutral fluid, and the neutral particles

are turning into ions, according to equation (2.36), the ions will feel a force density

which acts to decrease their momentum. Conversely, if neutral particles are faster

than the ions and neutrals are turning into ions, equation (2.36) indicates the force

on the ions feel will act to increase their momentum, precisely what one would expect

intuitively. Now, examining this impulse density from another perspective, namely,

that of recombination; consider the total impulse density imparted to the ionized fluid

~ji, caused by ionized particles recombining:

~ji = δρ(i→n)∆~v(i→n). (2.37)

Similar to equation (2.32), δρ(i→n) represents the mass density of the ionized fluid

which is recombining to form neutrals, and ∆~v(i→n) is the change in velocity which

these particles feel as they move from the ionized fluid to the neutral fluid. Since

these particles end in the neutral fluid with velocity ~vn, and start in the ionized fluid

with velocity ~vi, equation (2.37) can be written as:

~ji = (~vn − ~vi)δρ(i→n). (2.38)
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Once again, using equation (2.34) and combining it with equation (2.38), one finds

that the force density imparted to the ionized fluid during recombination processes

is:

~fi = (~vn − ~vi)

(
δρ

δt

)
(i→n)

, (2.39)

and invoking Newton’s Third Law, the force density imparted to the neutral fluid

during recombination processes is then:

~fn = (~vi − ~vn)

(
δρ

δt

)
(i→n)

. (2.40)

Here, if the ionized fluid is faster than the neutral fluid, and the ionized particles

are recombining into neutrals, according to equation (2.40), the neutral fluid will

feel a force density which acts to increase its momentum. Conversely, if the neutral

particles are faster than the ions and ions are recombining into neutrals, equation

(2.40) indicates the force on the neutrals will act to decrease their momentum. Once

again, this is what one would expect intuitively, because if one adds slow particles to

a fast moving fluid, one would expect the fast moving fluid to slow down accordingly.

At the present time, there exists two separate equations for both the neutral and ion

fluid densities. Equations (2.35) and (2.40) for the neutrals, and equations (2.36)

and (2.39) for the ions. Examining these equations carefully, one notices that they

are identical, save for the term representing the density rate of change ( δρ
δt

)(n→i) for

ionization, or ( δρ
δt

)(i→n) for recombination. Recalling that for both cases, ionization and

recombination, these density rates of change were assumed to be explicitly positive,
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one may use equations (2.13), (2.14) and (2.15) to relate the density rates of change to

the continuity equation source terms, giving the neutral force density during ionization

processes, equation (2.35) to be:

~fn = (~vi − ~vn)(S), (2.41)

and the neutral force density during recombination processes, equation (2.40) to be:

~fn = (~vi − ~vn)(−S). (2.42)

Since the continuity source term S, as defined by equation (2.31), is positive for ioniza-

tion processes and negative for recombination processes, one may examine equations

(2.41) and (2.42) to find that the requirement of the density rate of change to be pos-

itive, is satisfied in both cases. Thus, equations (2.41) and (2.42) may be combined

to give:

~fn = (~vi − ~vn)|S|, (2.43)

and similarly for the ions:

~fi = (~vn − ~vi)|S|. (2.44)

Equations (2.43) and (2.44) are now valid for both ionization and recombination

processes.
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2.3.1 Generalized Ambipolar Diffusion

The ambipolar diffusion force caused by the interaction of the ions and neutrals is

derived by considering the fact that neutral particles are made of a positively charged

nucleus, as well as a negatively charged electron cloud. When a positively charged ion

comes into close proximity with a neutral atom, the electron cloud feels an attractive

force toward the ion, while the nucleus feels a repulsive force away from the ion

creating an electric dipole. This phenomena is known as polarization. One can find

from e.g. Ramazanov et al. (2006), that the potential energy of this interaction is:

V (r) = −αs1Zs2 ẽ
2

2r4
, (2.45)

where αs1 is the polarizability of the neutral atom, Zs2 is the integer charge of the

ion, ẽ is the elementary charge, and r is the distance between the particles. It was

Ludwig Boltzmann (1896) who showed that when the first moment of equation (2.1)

is taken, the right hand side becomes the ‘collisional integral’:

~ff,s1s2 = ms1

∫
bfs1fs2(~v

′
s1
− ~vs1)[(~vs2 − ~vs1) · (~vs2 − ~vs1)]

1/2 dφ db d~vs2 d~vs1 . (2.46)

Here, ~ff,s1s2 represents the net body force on ion species s2 caused by the collision

(interaction) with neutral species s1, φ is the azimuthal angle in the scattering plane

and b is known as the impact parameter which is used in scattering theory.1 As orig-

inally shown by Langevin (1905), in “Annales de Chimie et de Physique”, which was

1See Goldstein (1984) for further details.
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subsequently translated and modernized by MacDaniel in Appendix II of “Collision

Phenomena in Ionized Gases” (McDaniel, 1964), the solution is:

~ff,s1s2 =
〈σν〉s1s2

ρs1ρs2

ms1 +ms2

(~vs1 − ~vs2), (2.47)

where the ‘Langevin Rate’, 〈σν〉s1s2
between neutral species s1 and ion species s2 is

defined by:

〈σν〉s1s2
= πl̃0

(
αs1Zs2 ẽ

2

µs1s2

)1/2

, (2.48)

where µs1s2 is the reduced mass between the neutral and ion species in question and

l̃0 is a numerical constant, originally derived to be 2.21, but corrected by Osterbrock

(1961) to be 2.41, to account for electron shielding of the nucleus during scattering.

Equations (2.47) and (2.48) are completely species dependent. Thus, for a neutral

fluid composed of multiple species all traveling at velocity ~vn and an ion fluid com-

posed of multiple species traveling at velocity ~vi, one may perform a sum over each

species of neutral atom where β = 1, 2, 3 represents (H, He, Li, . . . ), as well as each

ion where ζ = 1, 2, 3 represents (H+, He+, He++, . . . ) upon ~ff,s1s2 which will give the

total body force exerted on the ions by the neutrals. This summation gives:

~ff,i =
Nn∑
β=1

Ni∑
ζ=1

ρβρζΓβζ(~vβ − ~vζ), (2.49)
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where Nn and Ni are the total number of neutrals and ions respectively, and where:

Γβζ ≡
〈σν〉βζ
mβ +mζ

=
πl̃0

mβ +mζ

(
αβZζ ẽ

2

µβζ

)1/2

. (2.50)

To make this force more compatible with the equations of MHD, define:

ξβ =
nβ
nn

; (2.51)

ξζ =
nζ
ni

, (2.52)

as the fractional abundance of neutral species β and ion species ζ respectively. Note

that they are defined in terms of the total number density of neutrals and ions such

that:
Nβ∑
β=1

ξβ = 1 =

Nζ∑
ζ=1

ξζ . (2.53)

From equations (2.51) and (2.52), it should be clear that the total neutral and ion

densities are:

ρn = nn

Nn∑
β=1

ξβmβ; (2.54)

ρi = ni

Ni∑
ζ=1

ξζmζ . (2.55)

If we assume that every neutral particle in the ensemble travels at the same average

velocity ~vn (so too does every ion in the ensemble travel at ~vi), one may exclude the

velocities from the double sum by setting ~vβ = ~vn and ~vζ = ~vi. Now, expanding
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equation (2.49) one finds:

~ff,i = (~vn − ~vi)
Nn∑
β=1

Ni∑
ζ=1

nβmβnζmζΓβζ .

Using equations (2.51) and (2.52), one can extract the neutral and ion number den-

sities from the double sum, which gives:

~ff,i = nnni(~vn − ~vi)
Nn∑
β=1

Ni∑
ζ=1

ξβmβξζmζΓβζ ,

and, upon substitution of equations (2.54) and (2.55), this becomes:

~ff,i = ρnρi(~vn − ~vi)

Nn∑
β=1

Ni∑
ζ=1

ξβmβξζmζΓβζ(
Nn∑
β=1

ξβmβ

)(
Ni∑
ζ=1

ξζmζ

) .

Defining the ambipolar diffusion coefficient:

γAD =

Nn∑
β=1

Ni∑
ζ=1

ξβmβξζmζΓβζ(
Nn∑
β=1

ξβmβ

)(
Ni∑
ζ=1

ξζmζ

) , (2.56)

the net body force delivered to the ions by the neutrals is:

~ff,i = γADρnρi(~vn − ~vi) ≡ ~ff. (2.57)
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Finally, invoking Newton’s third law, the net body force delivered to the neutrals by

the ions is:

~ff,n = γADρnρi(~vi − ~vn) ≡ −~ff. (2.58)

Thus, in summary, combining equations (2.43) with (2.58), as well as (2.44) with

(2.57), the generalized momentum source terms for our model of ambipolar diffusion

become:

~Fn,coll = (~vi − ~vn)|S| − ~ff; (2.59)

~Fi,coll = (~vn − ~vi)|S|+ ~ff. (2.60)

2.4 Internal Energy Source Terms

Physically, the internal energy source terms represent the dissipative power losses or

gains to the internal energy. To begin, the source term that always appears in ideal

HD or MHD is −P∇ · ~v, which represents an adiabatic compression or expansion of

the fluid. When the fluid undergoes expansion, the divergence of the velocity field is

a positive quantity and with the pressure being positive definite, this implies that the

source term is negative, decreasing the internal energy of the system. The opposite

is true for adiabatic compression.

For two-fluid ambipolar diffusion, there are two methods by which energy in the

system is dissipated. Similar to the momentum source terms, equations (2.59) and

(2.60), one is associated with the Saha term, and the other is associated with the
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ambipolar diffusion term. Thus, one can write the total collisional source terms as:

Gi,coll = Gi,AD + Gi,Saha, (2.61)

Gn,coll = Gn,AD + Gn,Saha. (2.62)

2.4.1 Ambipolar Internal Energy Source Term

Just like a drag or friction force, ambipolar diffusion essentially describes the forces

associated with molecules ‘rubbing against each other’. With this, let us consider the

power term associated with a drag force:

GDrag = ~vRel,Drag · ~FDrag. (2.63)

Drag forces always need to be considered from the frame of reference of the particles

feeling the drag. Consider two surfaces sliding relative to each other, one may think

of this as ‘rubbing their hands together’, which is analogous to the ion and neutral

fluids interacting in this thought experiment. Thus, take two surfaces moving with

velocities ~vn and ~vi, representing the neutral and ionized fluid respectively. They also

exert forces on each other ~fn on i = ~ff and ~fi on n = −~ff, representing the ambipolar

force density, equation (2.57). In general, the relative velocity of a frame A with

respect to B is:

~vA/B = ~vA − ~vB. (2.64)
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Now, let us determine the drag source term given by equation (2.63). Surface i feels

the drag force ~fn on i = ~ff applied in the frame of the drag, at relative velocity ~vn/i.

The exact opposite is true for surface n. It feels the drag force ~fi on n = −~ff applied

in the frame of the drag, at relative velocity ~vi/n. This thought experiment with

equations (2.63) and (2.64) yields:

GDrag,i = (~vn − ~vi) · ~ff = GDrag; (2.65)

GDrag,n = (~vi − ~vn) · (−~ff) = GDrag. (2.66)

Therefore, the internal energy source terms associated with ambipolar diffusion are:

GAD ≡ GDrag = (~vn − ~vi) · ~ff. (2.67)

Relating to the discussion at the beginning of §2.4, one can combine equations (2.57)

and (2.67) to give

GAD = ρiρnγAD(~vn − ~vi) · (~vn − ~vi), (2.68)

which is a positive definite quantity. Therefore, similar to any frictional energy dis-

sipation such as viscosity or ‘rubbing your hands together’, ambipolar diffusion may

only take kinetic energy from the bulk system and increase the internal energy of

both the ion and neutral fluids. Thus, this term represents a one-way conversion of

kinetic energy to thermal energy, meaning mechanical energy is not conserved.
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2.4.2 Saha Internal Energy Source Terms

As mentioned in §2.2, assuming a Saha ionization equation requires the definition of

an overall temperature, which in turn means that there exists a thermal equilibrium

between the neutral and ion fluids. Thus for, Tn = Ti = T the ideal gas law requires:

miPiρn = mnPnρi =⇒ mi(γi − 1)eiρn = mn(γn − 1)enρi. (2.69)

Just like the continuity and momentum source terms associated with the Saha equa-

tion, the corresponding internal energy source terms are conservative in that:

G ≡ GSaha = Gi,Saha = −Gn,Saha. (2.70)

This statement of conservation simply means that whatever energy is lost by the neu-

tral fluid due to ionizations is gained by the ion fluid and vice-versa for recombinations.

To uncover the source term, I argue that consistency is required between the neutral

internal energy equation (2.6), ion internal energy equation (2.7) and the equilibrium

temperature condition defined by the ideal gas law (2.69). This is because, when

solving the full set of generalized MHD equations, there is the choice to use both in-

ternal energy equations, or one of the internal energy equations with the equilibrium

temperature condition. No matter which of the three combinations chosen, they all

give the same results. Thus, I shall proceed by substituting the pressure and inter-

nal energy conditions given by equations (2.69) into the internal energy equation for
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the neutrals (2.6) and demand for consistency, that the end result is the ion internal

energy equation (2.7). Following this logic,

∂t

[(
mi

mn

)(
γi − 1

γn − 1

)
ρn

ρi

ei

]
+∇ ·

[(
mi

mn

)(
γi − 1

γn − 1

)
ρn

ρi

ei~vn

]
= −

(
mi

mn

)
ρn

ρi

Pi∇ · ~vn + (~vn − ~vi) · ~ff − G;

⇒
(
ρn

ρi

)
∂tei + ei∂t

(
ρn

ρi

)
+
ρn

ρi

∇ · (ei~vn) + ei~vn · ∇
(
ρn

ρi

)
= −

(
γn − 1

γi − 1

)
ρn

ρi

Pi∇ · ~vn +

(
mn

mi

)(
γn − 1

γi − 1

)
(~vn − ~vi) · ~ff −

(
mn

mi

)(
γn − 1

γi − 1

)
G.

Defining:

~vd = ~vi − ~vn; (2.71)

mr =
mn

mi

; (2.72)

γ̃ =
γn − 1

γi − 1
, (2.73)

where ~vd is the relative velocity of the ions with respect to the neutrals, and both mr

and γ̃ are convenient constants, one may continue by writing:

ρn

ρi

∂tei +
ρn

ρi

∇ · (ei~vi) = −γ̃ ρn

ρi

Pi∇ · ~vi − γ̃mr~vd · ~ff − ei∂t

(
ρn

ρi

)
−ei~vn · ∇

(
ρn

ρi

)
+
ρn

ρi

∇ · (ei~vd) + γ̃
ρn

ρi

Pi∇ · ~vd − γ̃mrG;

= −γ̃Pi∇ · ~vi − γ̃mr
ρi

ρn

~vd · ~ff − ei
ρi

ρn

∂t

(
ρn

ρi

)
−ei

ρi

ρn

~vn · ∇
(
ρn

ρi

)
+∇ · (ei~vd) + γ̃Pi∇ · ~vd − γ̃mr

ρi

ρn

G.
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Comparing this with the ion internal energy equation (2.7), gives:

−Pi∇ · ~vi − ~vd · ~ff + G =− γ̃Pi∇ · ~vi − γ̃mr
ρi

ρn

~vd · ~ff − ei
ρi

ρn

∂t

(
ρn

ρi

)
−ei

ρi

ρn

~vn · ∇
(
ρn

ρi

)
+∇ · (ei~vd) + γ̃Pi∇ · ~vd − γ̃mr

ρi

ρn

G;

⇒ G =
ρn

ρn + γ̃mrρi

[
− (γ̃ − 1)Pi∇ · ~vi −

(
γ̃mr

ρi

ρn

− 1

)
~vd · ~ff − ei

(
1

ρn

∂tρn −
1

ρi

∂tρi

)
− ei~vn ·

(
1

ρn

∇ρn −
1

ρi

∇ρi

)
+∇ · (ei~vd) + γ̃Pi∇ · ~vd

]
.

(2.74)

Using the continuity equation for each fluid, (2.2) and (2.3), as well as the associated

source term (2.2), equation (2.74) becomes:

G =
ρn

ρn + γ̃mrρi

[
− (γ̃ − 1)Pi∇ · ~vi −

(
γ̃mr

ρi

ρn

− 1

)
~vd · ~ff + ei

(
1

ρn

+
1

ρi

)
S

+
ei

ρn

∇ · (ρn~vn)− ei

ρi

∇ · (ρi~vi)− ei~vn ·
(

1

ρn

∇ρn −
1

ρi

∇ρi

)
+∇ · (ei~vd) + γ̃Pi∇ · ~vd

]
;

=
ρn

ρn + γ̃mrρi

[
− (γ̃ − 1)Pi∇ · ~vi −

(
γ̃mr

ρi

ρn

− 1

)
~vd · ~ff + ei

(
1

ρn

+
1

ρi

)
S

+ ei∇ · ~vn +
ei

ρn

~vn · ∇ρn − ei∇ · ~vi −
ei

ρi

~vi · ∇ρi +∇ · (ei~vd)

− ei~vn ·
(

1

ρn

∇ρn −
1

ρi

∇ρi

)
+γ̃Pi∇ · (~vi − ~vn)

]
;

⇒ G =
ρn

ρn + γ̃mrρi

[
Pi∇ · ~vi − γ̃Pi∇ · ~vn −

(
γ̃mr

ρi

ρn

− 1

)
~vd · ~ff

+ ei

(
1

ρn

+
1

ρi

)
S − ei~vd · ∇

(
ln

(
ρn

ρi

))]
.

(2.75)
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For practical purposes, the adiabatic index of both the ion and neutral fluid should

be the same. Thus equation (2.73) gives γ̃ = 1, which simplifies equation (2.75) to:

G =
ρn

ρn +mrρi

[
Pi∇ · ~vd −

(
mr

ρi

ρn

− 1

)
~vd · ~ff

+ ei

(
1

ρn

+
1

ρi

)
S − ei~vd · ∇

(
ln

(
ρn

ρi

))]
.

(2.76)

2.5 Summary of the Two-Fluid Equations

With all source terms now accounted for, I rewrite all equations from §2.1.1 with each

of the source terms given explicitly. The neutral and ion continuity equations are:

∂tρn +∇ · (ρn~vn) = −S =
ρ

(t)
i − ρ

(t+δt)
i

δt
; (2.77)

∂tρi +∇ · (ρi~vi) = S =
ρ

(t+δt)
i − ρ(t)

i

δt
. (2.78)

The neutral and ion momentum equations:

∂t~sn +∇ · (~sn~vn) = −∇Pn − ρn∇φ− ~vdS − ~ff; (2.79)

∂t~si +∇ · (~si~vi) = −∇Pi − ρi∇φ+
1

µ0

(∇× ~B)× ~B + ~vdS + ~ff. (2.80)



Chapter 2. The Theory of Ambipolar Diffusion 36

The neutral and ion internal energy equations are:

∂ten +∇ · (en~vn) = −Pn∇ · ~vn +
ρn

ρn +mrρi

[
−Pi∇ · ~vd − 2~vd · ~ff − ei

(
1

ρn

+
1

ρi

)
S

+ ei~vd · ∇
(

ln

(
ρn

ρi

))]
;

(2.81)

∂tei +∇ · (ei~vi) = −Pi∇ · ~vi +
ρn

ρn +mrρi

[
Pi∇ · ~vd −

2mrρi

ρn

~vd · ~ff + ei

(
1

ρn

+
1

ρi

)
S

− ei~vd · ∇
(

ln

(
ρn

ρi

))]
;

(2.82)

mieiρn = mnenρi, (2.83)

with only two of equations (2.81), (2.82) and (2.83) being chosen. The neutral and

ion equations of state:

Pn = (γ − 1)en; (2.84)

Pi = (γ − 1)ei. (2.85)

The induction equation:

∂t ~B +∇× ~E = ~0. (2.86)
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For the sake of completeness, the neutral and ion total energy equations are:

∂teTn +∇ ·
[(
eTn + Pn

)
~vn

]
= (1

2
S − |S|)v2

n − φS + ~vn · ~vi|S| − ~vn · ~ff

+
ρn

ρn +mrρi

[
−Pi∇ · ~vd − 2~vd · ~ff − ei

(
1

ρn

+
1

ρi

)
S + ei~vd · ∇

(
ln

(
ρn

ρi

))]
;

(2.87)

∂teTi
+∇ ·

[(
eTi

+ Pi −
1

2µ0

B2

)
~vi +

1

µ0

~E × ~B

]
= −(1

2
S + |S|)v2

i + φS + ~vn · ~vi|S|

+ ~vi · ~ff +
ρn

ρn +mrρi

[
Pi∇ · ~vd −

2mrρi

ρn

~vd · ~ff + ei

(
1

ρn

+
1

ρi

)
S − ei~vd · ∇

(
ln

(
ρn

ρi

))]
.

(2.88)

Computationally, the two-fluid model has twice as many variables as an ordinary,

single-fluid MHD solver like ZEUS-3D, meaning it would also double the number of

computations per cycle. Although the two-fluid model with appropriate chemistry

would be completely general, it comes at a very high computational cost. Thus, as

mentioned in §1, if one can make the assumption that the ionization level of the fluid

is low ρi � ρn, then a single-fluid approximation can be developed. Also of note,

during the derivation of the two-fluid equations, I found that one of the expressions

in Duffin & Pudritz (2008) had an unfortunate switch in subscripts. Specifically, if

one assumes like Duffin & Pudritz (2008) that there exists no source terms in the

two-fluid continuity equations, then one can take S = 0 and GSaha = 0, allowing us

to re-write the neutral and ion total energy equations (2.87) and (2.88) as:

∂teTn +∇ ·
[(
eTn + Pn

)
~vn

]
= −~vn · ~ff − ~vd · ~ff = −~vi · ~ff; (2.89)
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∂teTi
+∇ ·

[(
eTi

+ Pi −
1

2µ0

B2

)
~vi +

1

µ0

~E × ~B

]
= −~vi · ~ff − ~vd · ~ff = ~vn · ~ff. (2.90)

Comparing these to equations (8) and (9) from Duffin & Pudritz (2008) shows that

where they have a neutral subscript in the neutral total energy equation, there should

in fact be an ion subscript vice versa in the ion total energy equation. This subscript

switch actually causes one not to be able to derive much of what follows in their

paper—results which are in agreement with our independent derivations summarized

in §2.7.

2.6 The Single Fluid Approximation

Following both (Spitzer & Mestel, 1956), as well as (Duffin & Pudritz, 2008) who

provide justification based upon plasma recombination times when ρi � ρn, one may

neglect inertial terms involving the ions when compared to magnetic and frictional

forces, ion pressures when compared to total pressures, ion gravitational terms, and

ion energies when compared to magnetic energies.

Following Duffin & Pudritz (2008) and MacMackin (2015), I take S = 0 and keep

track of the neutral particles only, and use an expression for the corresponding ion

density:

ni = K

(
nn

105cm−3

)k
+K ′

(
nn

103cm−3

)−2

, (2.91)

where K = 3×10−3cm−3, K ′ = 4.64×10−4cm−3 and k = 1/2 (Fiedler & Mouschovias,

1993).
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Starting with the two-fluid ion momentum equation (2.80),

∂t~si +∇ · (~si~vi) = −∇Pi − ρi∇φ+
1

µ0

(∇× ~B)× ~B + ~ff, (2.92)

assuming that the ion inertia, ion pressure gradient and ion gravitation are negligible,

this collapses immediately to:

~ff = ρnρiγAD~vd = − ~J × ~B, (2.93)

with the current density J defined as:

J =
1

µ0

(∇× ~B). (2.94)

Solving for the velocity of the ions, one can find that:

~vi = ~vn + µ0βAD
~J × ~B, (2.95)

where,

µ0βAD ≡
1

ρnρiγAD

. (2.96)

Since the single fluid approximation is associated with only the neutral particles,

the induction equation (2.86), must be transformed such that it only contains terms
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pertaining to the neutrals. Thus, substitution of equation (2.95) into (2.86) gives:

∂t ~B = ∇×
[(
~vn + µ0βAD

~J × ~B

)
× ~B
]
;

=⇒ ∂t ~B = ∇× (~vn × ~B) +∇×
[
µ0βAD

(
~J × ~B

)
× ~B
]
. (2.97)

Equation (2.97) represents the coupling of the neutrals to the magnetic field under

via the low population of ions, under the single fluid approximation.

2.6.1 Single Fluid Internal Energy Equation

Addition of equations (2.81) and (2.82) gives:

∂t(en + ei) +∇ · (en~vn + ei~vi) = −Pn∇ · ~vn − Pi∇ · ~vi − 2~vd · ~ff.

Using equation (2.95) to eliminate the ion velocity with equation (2.93), one can find

that:

∂t(en + ei) +∇ · [en~vn + ei(~vn + µ0βAD
~J × ~B)] =− Pi∇ · (~vn + µ0βAD

~J × ~B)

− Pn∇ · ~vn + 2µ0βAD|| ~J × ~B||2.

Taking en + ei ≈ en and Pn + Pi ≈ Pn quickly results in the single fluid internal energy

equation:

∂ten +∇ · (en~vn) = −Pn∇ · ~vn + 2µ0βAD|| ~J × ~B||2. (2.98)
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2.6.2 Single Fluid Total Energy Equation

Defining the total energy of the overall system to be:

eT = 1
2
ρiv

2
i + 1

2
ρnv

2
n + ei + en + ρiφ+ ρnφ+

B2

2µ0

. (2.99)

Differentiation with respect to time gives:

∂teT = 1
2
v2

i ∂tρi + ρi~vi · ∂t~vi + 1
2
v2

n∂tρn + ρn~vn · ∂t~vn + φ∂tρi + φ∂tρn

+ ∂t(en + ei) +
1

µ0

~B · ∂t ~B.

Substituting the continuity equations (2.2) and (2.3), as well as the Euler equations

gives:

∂teT = ρi~vi ·
[
−~vi
Si

ρi

−∇(1
2
v2

i ) + ~vi × (∇× ~vi)−
1

ρi

∇Pi +
1

ρi

~J × ~B +
1

ρi

~ff −∇φ
]

+ ρn~vn ·
[
−~vn
Sn

ρn

−∇(1
2
v2

n) + ~vn × (∇× ~vn)− 1

ρn

∇Pn −
1

ρn

~ff −∇φ
]

+ φ[Si −∇ · (ρi~vi)] + φ[Sn −∇ · (ρn~vn)] + 1
2
v2

i [Si −∇ · (ρi~vi)]

+ 1
2
v2

n[Sn −∇ · (ρn~vn)] + ∂t(en + ei) +
1

µ0

~B · ∂t ~B;

= −1
2
v2

i∇ · (ρi~vi)− ρi~vi · ∇(1
2
v2

i )− 1
2
v2

n∇ · (ρn~vn)− ρn~vn · ∇(1
2
v2

n)

−ρi~vi · ∇φ− φ∇ · (ρi~vi)− ρn~vn · ∇φ− φ∇ · (ρn~vn)

+ρi~vi · [~vi × (∇× ~vi)] + ρn~vn · [~vn × (∇× ~vn)] + (~vi · ~ff − ~vn · ~ff)

+ (φ− 1
2
v2

i )Si + (φ− 1
2
v2

n)Sn + ~vi · ( ~J × ~B)− ~vi · ∇Pi − ~vn · ∇Pn

+ ∂t(en + ei) +
1

µ0

~B · ∂t ~B.
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Due to orthogonality, ρi~vi · [~vi × (∇× ~vi)] = 0 = ρn~vn · [~vn × (∇× ~vn)]. Thus:

∂teT =−∇ · [1
2
ρiv

2
i ~vi + 1

2
ρnv

2
n~vn + ρiφ~vi + ρnφ~vn] + ~vd · ~ff + ~vi · ( ~J × ~B)

+ (φ− 1
2
v2

i )Si + (φ− 1
2
v2

n)Sn−~vi · ∇Pi − ~vn · ∇Pn

+ ∂t(en + ei) +
1

µ0

~B · ∂t ~B.

(2.100)

Invoking the single fluid approximation, Si = 0 = Sn and −~vi · ∇Pi − ~vn · ∇Pn ≈

−~vn · ∇Pn. Then, using equation (A.1) from Appendix A, one gets:

∂teT =−∇ · [1
2
ρiv

2
i ~vi + 1

2
ρnv

2
n~vn + ρiφ~vi + ρnφ~vn] + ~vi · ( ~J × ~B)− ~vn · ∇Pn

−∇ · (en~vn)− Pn∇ · ~vn + 2µ0βAD|| ~J × ~B||2−~vn · ( ~J × ~B)−∇ · ( ~E ×B)

−∇ · [βADB
2( ~J × ~B)]− µ0βAD|| ~J × ~B||2−µ0βAD|| ~J × ~B||2;

∂teT =−∇ · [(1
2
ρiv

2
i + ρiφ)~vi + (1

2
ρnv

2
n + ρnφ+ en + Pn)~vn + ~E × ~B + βADB

2( ~J × ~B)]

+ ~vi · ( ~J × ~B)− ~vn · ( ~J × ~B).

Eliminating the ion velocity with equation (2.95), one gets:

∂teT =−∇ · [(1
2
ρiv

2
i + ρiφ)(~vn + µ0βAD

~J × ~B) + (1
2
ρnv

2
n + ρnφ+ en + ei + Pn)~vn

+ ~E × ~B + βADB
2( ~J × ~B)] + (~vn + µ0βAD

~J × ~B) · ( ~J × ~B)− ~vn · ( ~J × ~B);

= −∇ · {(1
2
ρiv

2
i + ρiφ+ 1

2
ρnv

2
n + ρnφ+ ei + en + Pn)~vn

+ µ0βAD[(1
2
ρiv

2
i + ρiφ+

1

µ0

B2)( ~J × ~B)] + ~E × ~B}+ µ0βAD|| ~J × ~B||2.

Using equation (2.99), as well as noting that the ion gravitational and kinetic terms are

negligible when compared to twice the magnetic pressure, the total energy equation
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finally becomes:

∂teT +∇· [(eT +Pn−
1

2µ0

B2)~vn+ ~E× ~B+βADB
2( ~J× ~B)] = µ0βAD|| ~J× ~B||2. (2.101)

Note that one can’t simply combine the two-fluid neutral and ion total energy equa-

tions (2.87) and (2.88) to give the result, since the ion total energy equation (2.88) is

derived assuming the ideal induction equation (2.86), as opposed to the AD induction

equation (2.97).

2.7 Summary of the Single Fluid Equations

Continuity equation:

∂tρn +∇ · (ρn~vn) = 0; (2.102)

momentum equation:

∂t~sn +∇ ·
[
~sn~vn +

(
Pn +

B2

2µ0

)
I − 1

µ0

~B ~B

]
= −ρn∇φ; (2.103)

internal energy equation:

∂ten +∇ · (en~vn) = −Pn∇ · ~vn + 2µ0βAD|| ~J × ~B||2; (2.104)

induction equation:

∂t ~B = ∇× (~vn × ~B) +∇×
[
µ0βAD

(
~J × ~B

)
× ~B
]
; (2.105)
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total energy equation:

∂teT+∇·
[(
eT+Pn−

1

2µ0

B2

)
~vn+ ~E× ~B+βADB

2( ~J× ~B)

]
= µ0βAD|| ~J× ~B||2; (2.106)

constitutive density equation:

ni = (3× 10−3cm−3)

(
nn

105cm−3

)1/2

+(4.64× 10−4cm−3)

(
nn

103cm−3

)−2

. (2.107)
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Chapter 3

Numerical Simulations of
Astrophysical Jets

To perform the numerical simulations which follow, I used ZEUS-3D, which is a multi-

physics computational fluid dynamics code capable of solving the equations of single

fluid MHD. Once again, I follow MacMackin (2015), who augmented the ZEUS-3D

code to include the equations of single fluid ambipolar diffusion. As discussed by

MacMackin (2015), there were issues with the single fluid internal energy equation

for AD, namely, that the source term could not be determined analytically. How-

ever, as shown in §2.6, when the single fluid approximation is derived from the full

two-fluid equations, there is no issue in determining the source term for either the

total, or internal energy equation. Thus, it was a simple task to correct the existing

in ZEUS-3D, by including the term 2µ0βAD|| ~J × ~B||2 in the internal and total en-

ergy equations, allowing ZEUS-3D to solve the full suite of single fluid AD equations

(2.102)-(2.107).

As shown by Clarke (2010), choosing ZEUS-3D to solve the total energy equation

ensures that the total energy is conserved, but the pressure is not positive definite.

Conversely, choosing the internal energy equation ensures positive definite pressures,

but does not conserve total energy to machine roundoff error. The choice between the
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State ρ P vx vy By

Left 1.000 0.010 5.000 0.000 2.507
Right 7.976 0.500 0.627 0.830 23.313

Table 3.1: All values are taken to be in ‘cgs’ units. This table represents the initial
conditions used in ZEUS-3D as it solves the Riemann problem using the
single fluid AD equations. Here, ambipolar diffusion coefficient is taken
to be γAD = 1.0 cm3 g−1 s−1, the sound speed is cs = 0.1 cm s−1, the
pre-shock magnitude of the magnetic field is B0 =

√
4π G and finally, the

ion density was taken to be a constant ρi = 10−5 g cm−3.

possibility of non-conservative total energies or negative pressures comes down to the

problem with which one is working, as extensively discussed in Clarke (2010). Thus,

it is important to have a working algorithm for both the total and internal energy

equations.

Following MacMackin (2015) and Duffin & Pudritz (2008), one can proceed by per-

forming the standard test for AD algorithms, known as the C-shock, a term widely

used in the literature as an abbreviation for “continuous shock”. Unlike pure HD

or MHD shocks which form discontinuities in the flow variables (e.g. Brio & Wu,

1988), shocks with AD form continuous transitions in all flow variables between the

upwind and downwind states. Table 3.1 shows the initial left and right states for

the C-shock test which was performed by ZEUS-3D, and Figure 3.1 shows the semi-

analytic solution detailed by MacMackin (2015) and Duffin & Pudritz (2008), plotted

against the ZEUS-3D solution when the single fluid internal energy equation (2.98)

is used. As one can see, the ZEUS-3D code resolves the C-shock problem almost

exactly according to the semi-analytic solution.
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Figure 3.1: Various plots of the C-shock variables. Here, the thin solid line represents
the semi-analytic solution discussed by both Duffin & Pudritz (2008) and
MacMackin (2015). The small circles represent the ZEUS-3D solution
of the C-shock problem, making use of the internal energy equation. If
one wishes to see the ZEUS-3D simulation of the C-shock problem using
the total energy equation, I refer the reader to MacMackin (2015), who
performed that exact test. As can be seen, the agreement of the ZEUS-
3D simulation using the internal energy equation, to the semi-analytic
C-shock solution is excellent.
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3.1 AD Simulations of Astrophysical Jets with

an Active Toroidal Field

To simulate all of the following astrophysical jets, the density ratio of the ambient

medium to the incoming jet material was assumed to be η = 0.05, and the Mach num-

ber of the incoming material with respect to the ambient medium was assumed to be

MA = 10. For the rest of this discussion, all values are assumed to be dimensionless,

unless explicitly stated, because the ZEUS-3D MHD code operates using a set of

dimensionless variables, discussed further in Appendix B. Each of the following jet

simulations were conducted for the same scaled time, t = 2, in order to comparatively

study the morphology of each situation. In general, the important aspects of a jet’s

structure are the cocoon, Mach stem, nose cone and leading bow shock, which are

illustrated in Figure 3.2. For the purposes of this thesis and the ‘morphology problem’

which it attempts to address, the most important aspect of a jet is the volume of its

cocoon, and how far its leading bow shock has progressed during the problem time t.

To model AD within ZEUS-3D, it is necessary to specify a ‘fiducial value’ for the

density D, length L and speed V , quantities which are supposed to be representative

of “real jets”. For all simulations which follow, I assume the values D = 1×1011 u m−3

(u represents atomic mass units), L = 5.496 × 1016 m and V = 3 × 104 m s−1 in or-

der to maintain the ‘ambipolar Reynold’s number’, as defined in Appendix B, near

unity, which ensures that the effect of AD is comparable to other terms in the MHD

equations.
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When performing numerical simulations, one should always attempt a ‘resolution

study’, meaning each time a simulation is performed, the number of computational

zones is increased, and the results from each simulation are compared to ensure that

as the number of computational zones increases, the simulation begins to converge to

a set of values which represents the solution to the problem. If a simulation fails to

converge during a resolution study, it is usually a sign of some numerical instability,

bug in the code, or problem with the algorithm.

The first simulations performed were those of astrophysical jets with an active,

toroidal field of plasma-β = 0.2. Here, I performed three simulations in which the jet

radius was resolved with four, six, and eight zones (Figures 3.3, 3.4 and 3.5 respec-

tively). Comparison of these AD simulations with corresponding ideal MHD (no AD)

simulations (Figures 3.6, 3.7 and 3.8 respectively) show some interesting non-physical

behavior. In particular, while the non-AD jets all advance roughly the same distance

in the alloted problem time (showing a resolution-independent result), the AD jets

clearly advance further for higher resolution. This indicates a resolution-dependent

behavior which implies a deficiency in the algorithm, and most likely a problem with

the physical assumptions of single-fluid AD. One can also notice that with higher grid

resolution, the core of the jet near the central axis tends to become more rarefied.

In particular, I believe the lack of numerical convergence comes from the nature

of how the toroidal field works under the single fluid approximation. To elaborate, I
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postulate that the toroidal magnetic field causes a high ‘hoop stress’ along the axis

of the jet which tends to ‘squeeze out’ the neutral particles and compresses the ion-

ized particles into the computational zones nearest the axis of the jet. This occurs

because without any thermal pressure remaining near the jet axis, the toroidal field

can squeeze as close to the axis as possible, which is then only limited by numerical

resolution. Thus, for high numerical resolution, the magnetic field can squeeze down

closer to the jet axis, thereby developing an ever finer jet tip. Further, it seems that

the higher the numerical resolution, the more rarefied the neutral density becomes in

places which have high magnetic field strength, and thus the more ionized these zones

become by virtue of the constitutive density, equation (2.107), at such low neutral

densities. I note that equation (2.107) is only valid for densities within a certain

threshold (Fiedler & Mouschovias, 1993), which these simulations violate in the most

rarefied region. Thus, this causes its own problems in the solution that I have not yet

been able to address.

3.2 AD Simulations of Astrophysical Jets with

an Active Poloidal Field

A poloidal magnetic field is one entirely confined to the r-z plane. Unlike the toroidal

field (αφ̂), it lacks any compressive hoop stress, which may help to avoid the lack of

numerical convergence discussed in the previous section.
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Figure 3.2: Cartoon drawing of an astrophysical jet, which showcases the location of
some morphological features.

Figure 3.3: Simulation of an astrophysical jet with an active toroidal magnetic field
with a plasma beta of β = 0.2 including AD. The grid for this simulation
is 50rj× 100rj, resolved with four computational zones per jet radius (rj),
and simulated for problem time t = 2. Note that after this time has
elapsed, the jet has progressed to x1 ≈ 27rj.
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Figure 3.4: Same as Figure 3.3, except the grid is resolved with six computational
zones per jet radius. Here, by increasing the resolution by a factor of 3

2
,

the jet has advanced to x1 ≈ 35rj, in the same amount of time as Figure
3.3.

Figure 3.5: Same as Figures 3.3 & 3.4, except the grid is resolved with eight com-
putational zones per jet radius. Here, by increasing the resolution by a
factor of 3

2
, the jet has advanced to x1 ≈ 41rj, in the same amount of time

as Figures 3.3 & 3.4.
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Figure 3.6: Ideal MHD (no AD) simulation of an astrophysical jet with an active
toroidal magnetic field with β = 0.2. Other than the lack of AD, this
simulation is identical to Figure 3.3, including resolution.

Figure 3.7: Same as Figure 3.4, but with no AD.
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Figure 3.8: Same as Figure 3.5, but with no AD. Note that in Figures 3.6, 3.7 and
here, the jet has advanced to x1 ≈ 30rj, regardless of resolution. Note
further the lack of the highly rarefied regions present in the simulations
with AD.

Similar to the toroidal field simulations, the same plasma-β of 0.2 is assumed. Com-

parison of the resolution study for AD simulations (Figures 3.9, 3.10 and 3.11 respec-

tively), to the ideal MHD (no AD) simulations (Figures 3.12, 3.13 and 3.14 respec-

tively), show that a poloidal field with AD does converge, meaning the immediate

problems of the toroidal field seem to be absent, and the volume of the cocoon is in-

creased in the AD simulations (Figures 3.9, 3.10 and 3.11) compared to those without

AD (Figures 3.12, 3.13 and 3.14). Thus, from the poloidal simulations, it seems plau-

sible that the equations of single fluid AD allowed jet material to slip past magnetic

field lines and inflate the cocoon to be more morphologically hydrodynamic in nature.

However, it should also be noted that the leading edge of the jet has advanced far

beyond what the ideal MHD jet has for the same problem time. Therefore, although
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it seems like there is convergence, and it is plausible that AD can help solve the mor-

phology problem, the lack of neutral density remaining in the cocoon is a concern.

Contrary to MHD, where one can see fine structure within the cocoon, the AD jet

appears to be almost completely void of neutral fluid. In fact, at its lowest, the sim-

ulations seem to suggest that there are only about 0.6 particles per cubic centimeter.

This is an unimaginably low number of particles and one may wonder if the single

fluid approximation holds considering that the constitutive density equation (2.107),

provided by Fiedler and Mouschovais (1993), implies that if the number density of

neutral particles is around 0.6 particles per cubic centimeter, then the number density

of ionized particles is around 2.0×104 particles per cubic centimeter. This is far from

low ionization.

There are two things here to consider. First, the ZEUS-3D simulations, which give

highly rarefied regions of neutral density, implies that the neutral particles have been

‘squeezed’ out of this region and almost all that remains is a sea of magnetically

confined ionized particles. Second, one must remember that the single fluid approxi-

mation only applies to cases for which there is a low ionization level, less than roughly

10%. Therefore, this highly rarefied region of neutral density, which actually gives us

a highly dense region of ionized particles, is in violation of the single fluid approxima-

tion by many orders of magnitude. Regardless, neutral particles seem to be slipping

through the field lines with the aim of inflating the cocoon, so it is plausible that

single fluid AD with a more general prescription for ni, or even two fluid AD with

self-consistent neutral and ion densities, may help solve the morphology problem.
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Figure 3.9: Simulation of an astrophysical jet with an active poloidal magnetic field
with a plasma beta of β = 0.2 including AD. The grid for this simulation
is 50rj × 100rj, resolved with four computational zones per jet radius.

Figure 3.10: Same as Figure 3.9, except the grid is resolved with six computational
zones per jet radius.
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Figure 3.11: Same setup as Figure 3.9 & 3.10, except the grid is resolved with eight
computational zones per jet radius. Note that in Figures 3.9, 3.10 and
here, the jet has advanced to x1 ≈ 37rj, regardless of resolution.

Figure 3.12: Ideal MHD (no AD) simulation of an astrophysical jet with an active
poloidal magnetic field with β = 0.2. Other than the lack of AD, this
simulation is identical to Figure 3.9, including resolution.
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Figure 3.13: Same as Figure 3.10, but with no AD.

Figure 3.14: Same as Figure 3.11, but with no AD. Note that in Figures 3.12, 3.13 and
here, the jet has advanced to x1 ≈ 15rj, regardless of resolution. Note
further the lack of the highly rarefied regions present in the simulations
with AD.
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Chapter 4

Conclusions

In §2.3.1 a fully, non-isothermal two-fluid model of AD with realistic chemistry gov-

erned by the Saha equation was developed. The only assumption made when deriving

the two-fluid equations, was a thermodynamic equilibrium between the neutral and

ionized fluids. Indeed this assumption is already implicit in finding the Langevin rate

coefficient used in determining the strength of the AD force, and thus thermodynamic

equilibrium is an underlying assumption of AD. Therefore, I argue that our two-fluid

model is completely general and, as shown in §2.6, reduces to the single fluid equa-

tions widely used in the literature.

Because of the poloidal field jet simulation substantially increases the volume of the

jet’s cocoon, I believe it is plausible that AD could help solve the jet morphology

problem. Between the poloidal and toroidal simulations, many non-physical situa-

tions manifested, namely, the lack of neutral particles anywhere there exists a strong

magnetic field—which violates the underpinning of the single fluid model—as well as

the numerical convergence problems found in the toroidal field simulations. Given the

success of the C-shock tests, it is unlikely that these issues are caused by a problem

with how AD is implemented. Rather, it is more likely a result of using the single

fluid model, and its requirement that the ionization remains low.
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Future work for this project should focus on resolving the inconsistency with the

constitutive ion density equation (2.107), and in particular, finding a way to cap the

ionization density realistically. Next, the full set of two-fluid equations derived in

§2.3.1 should be added to ZEUS-3D, and once operational, C-shock tests should be

made with a temperature consistent with a low ionization level, thus being compa-

rable to the single fluid C-shock test already performed. Unfortunately, it is highly

unlikely that there will ever exist an analytic or semi-analytic solution to the two-fluid

equations due to their complexity.

Next, work should then focus on attempting to re-run the same resolution studies

described in §3.1 and §3.2 for both the toroidal and poloidal fields. If I am cor-

rect, the results of the two-fluid equations working on these jets should address the

non-physical artifacts caused by the single fluid model, while still allowing neutral

particles to slip past magnetic field lines. Finally, if the toroidal and poloidal field

jets work when subjected to the two fluid model, a more realistic helical field with a

strong toroidal component should be attempted.
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Appendix A

Magnetic Field Derivative

An important part of deriving the single fluid approximation in §2.6, is the identity

1
µ0
~B · ∂t ~B, calculated using various vector identities. Starting with equation (2.97)

and multiplying through by 1
µ0
~B, one gets:

1

µ0

~B · ∂t ~B =
1

µ0

~B · [∇× (~vn × ~B) +∇× (µ0βAD( ~J × ~B)× ~B)]

=
1

µ0

~B · ∇ × (~vn × ~B) +
1

µ0

~B · ∇ × [µ0βAD( ~J × ~B)× ~B]

=
1

µ0

[∇ · [(~vn × ~B)× ~B] + (~vn × ~B) · (∇× ~B)]

+∇ · [(βAD( ~J × ~B)× ~B)× ~B] + βAD[( ~J × ~B)× ~B] · (∇× ~B)

=
1

µ0

∇ · [(~vn × ~B)× ~B] + ~J · (~vn × ~B) +∇ · [ ~B × (βAD
~B × ( ~J × ~B))]

+ µ0βAD[( ~J × ~B)× ~B] · ~J

=
1

µ0

∇ · [(~vn × ~B)× ~B] + ~J · (~vn × ~B) +∇ · [βAD
~B × (B2 ~J − ( ~B · ~J) ~B)]

− µ0βAD[( ~B · ~B) ~J − ( ~B · ~J) ~B] · ~J

=
1

µ0

∇ · [(~vn × ~B)× ~B] + ~J · (~vn × ~B)

− µ0βAD[( ~B · ~B)( ~J · ~J)− ( ~B · ~J)( ~B · ~J)]

+∇ · [βADB
2( ~B × ~J)− ( ~B · ~J)( ~B × ~B)].
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Which results in:

1

µ0

~B · ∂t ~B = −~vn · ( ~J × ~B)−∇ · ( ~E × ~B)− µ0βAD|| ~J × ~B||2 −∇ · [βADB
2( ~J × ~B)],

(A.1)

used in equation (2.100), §2.6.2.
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Appendix B

ZEUS-3D Units and Scaling the
Single Fluid Equations

When simulating any equations in ZEUS-3D, one must be aware of the fact that the

units which ZEUS-3D operates in are scale free. In other words, they are of the form,

ΛZeus =
ΛPhysical

Λ0

; (B.1)

~ΩZeus =
~ΩPhysical

ω0

, (B.2)

where ΛZeus represents some dimensionless scalar in ZEUS-3D, ΛPhysical is a physi-

cal scalar with dimensions and Λ0 is a ‘fiducial value’ of the scalar. Similarly, ~ΩZeus

represents some dimensionless vector in ZEUS-3D, ~ΩPhysical is a physical vector with

dimensions and Ω0 is a ‘fiducial value’ of the vector.

Next, it is important to note that in ZEUS-3D, the convention of µ0 = 1 is cho-

sen so that the square magnitude of the magnetic field B2 has units of pressure.

Lastly, the single fluid ambipolar internal energy equation, induction equation and

total energy equation can be rendered scale free to comply with the requirements of
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ZEUS-3D. One must simply set,

~vn,Zeus =
~vn

V
; (B.3)

~rn,Zeus =
~rn

L
; (B.4)

ρn,Zeus =
ρn

D
, (B.5)

where ~vn,Zeus, ~rn,Zeus and ρn,Zeus are the now dimensionless ZEUS-3D variables, ~vn, ~rn,

and ρn are the physical variables, and V , D and L are the three fiducial values needed

to render the equations scale free. It is a simple exercise to show, that when equations

B.3, B.4 and B.5 are inserted into the single fluid approximation—equations defined

in §2.7—all occurrences of µ0βAD are replaced by the ‘ambipolar Reynold’s number’:

µ0βAD →
1

RAD

≡ V

LDρnρiγAD

. (B.6)

Here, ‘Zeus’ subscripts have been dropped for convenience, and when this ‘ambipolar

Reynold’s number’ is used in place of µ0βAD all variables are then assumed to be

dimensionless except for constants and fiducial values—exactly analogous to the way

this is accomplished when viscosity is included in HD and MHD, except γAD takes

the place of the dynamic viscosity.
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