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Abstract  
 

 

Scale-invariant Image Segmentation using Machine 

Learning 

by Rasheed Andrews 

 

 

The increased application of segmentation requires more robust machine learning 

algorithms that can handle variations of the input. The areas of robotics, self-driving cars, 

automated drone delivery systems, and Speed Enforcement Cameras (SEC) all rely on 

accurate predictions from machine learning algorithms. CNNs are the current state of the 

art in image recognition which has led to their increased application in areas of 

classification, object detection, and segmentation.  

However, scale invariance poses a significant issue for CNNs; fixed kernel size 

hinders the prediction accuracy of the network for objects of varying sizes. This research 

introduces a training methodology and image pre-processing techniques which makes 

these networks more robust or invariant to the changes in the size of the object. 
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Chapter 1 

Introduction 

Segmentation is the task of partitioning a digital image into several regions. Each 

pixel in the image is assigned a class label, thus allowing us to highlight or segment each 

region. An image can be segmented using simple thresholding or more complex machine 

learning algorithms such as clustering. The current state of the art for recognizing objects 

in images are Convolutional Neural Networks (CNNs). Several variations of CNNs have 

won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) which makes 

these networks a viable option for performing image recognition tasks such as 

segmentation. 

1.1 Applications of Image Segmentation 

The importance of performing accurate segmentation is a core computer vision 

problem, which is highlighted by the increasing number of applications (Garcia et al., 

2017). Applications include autonomous driving, robotics, augmented reality and 

agriculture. The areas aforementioned rely on improved segmentation to provide a more 

reliable and safer experience to the user. Segmentation is regarded as a high-level task 

since it generates predictions of semantic labels at the pixel level which provides more 

information and an increased understanding of the regions in the image.  
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Figure 0-1: Actual crowd count vs estimated crowd count. Retrieved from “CrowdNet: A 

Deep Convolutional Network for Dense Crowd Counting.” (Boominathan, Kruthiventi & 

Babu, 2016, p.1). 

From Figure 1-1, a CNN was used by Boominathan et al., to perform 

segmentation (Boominathan et al., 2016). The segmented image is used to determine the 

number of persons in the crowd, as well as the crowd density. The researchers mention 

that detecting persons at varying sizes posed a significant challenge; however, the issue 

can be effectively tackled by using data augmentation techniques.  

Although image segmentation can be performed using various types of machine 

learning algorithms, the advancement of CNNs in the areas of image classification and 

segmentation have led to the creation of more accurate computer vision systems. The 

prediction accuracy of CNNs is on par with that of a human, which explains why there is 

an increased usage of CNNs in areas requiring human-like accuracy such as self-driving 

cars. Companies such as Mobileye and NVIDIA are using such CNNs in their upcoming 

vision systems for self-driving cars (LeCun, Bengio, & Hinton, 2015). 
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Another area of application for image segmentation is agriculture. The presence 

of pest has been a significant issue in agriculture, in which late detection results in a 

significant loss in agricultural production and excessive use of pesticides. To facilitate the 

early detection of pest, different machine learning algorithms can be used to segment pest 

infested regions from digital images. Figure 2-1 shows segmentation of whiteflies 

utilizing a machine learning algorithm called clustering. 

Agriculture is one of several areas that can benefit from an improved 

segmentation architecture. An improved architecture will facilitate more accurate and 

faster detection of pest outbreaks, which allows for interventions to be made as soon as 

possible.The progression of CNNs in the area of image recognition make them a 

favourable option for providing improved image segmentation. 
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1.2 Thesis Objectives 

Computers have been used to automate tedious tasks, for (e.g., factory jobs). 

Generally, machines complete these tasks much faster than humans. Although machines 

excel in their speed, accuracy has been a major issue. Previously, knowledge and 

instructions for a computer would have to be programmed or prewritten, but due to the 

significant amount of variation in the world in terms of lighting, orientation or size of the 

object, this makes it impossible to program all possible scenarios.  

The rise of Machine Learning (ML) has made computers more accurate or 

“smarter” making them capable of handling more complex task. This has led to an 

increase of applications for ML algorithms, especially in areas that require human-like 

accuracy such as self-driving cars and robotics. However, the development of these areas 

is dependent on the improvement of existing ML algorithms.  

Convolutional Neural Networks have shown tremendous success in the area of 

image recognition; however, multi-scale recognition continues to be a challenge. There is 

an increased utilization of CNNs in the area of image recognition such as: classification 

and segmentation. Therefore, the improvement of segmentation will depend on the 

performance of these networks. In this study, an improved image segmentation technique 

will be suggested which allow these networks to be scale-invariant.  
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1.3 Organization of thesis 

The focus of this research is to develop an improved technique for image 

segmentation. Chapter 2 provides a review of the literature, showcasing different methods 

used by researchers for segmentation, these include Support Vector Machine (SVM), 

Clustering and Artificial Neural Networks. Chapter 3 contains the data set, the 

experimental design, and the evaluation metrics. Chapter 4 demonstrates a significant 

problem with the machine learning algorithm of choice that hinders segmentation 

accuracy; therefore, several methods were tested with the aim of alleviating the problem. 

These methods will be referred to as Zoom Augmentation (ZA) and the Waterfall Method 

(WM). Chapter 5 includes a quantitative comparison between ZA and WM. Each method 

was evaluated across several datasets using the Intersection-Over-Union (IOU) metric. 

Finally, Chapter 6 concludes that WM was the superior image scaling method compared 

to ZA. Also, including image processing techniques such as histogram equalization is 

essential for improving prediction accuracy. Future directions for this research are 

mentioned in Chapter 6.  
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Chapter 2 

Literature Review 

In computer vision, image segmentation is one of the oldest and most widely 

studied problems (Szeliski, 2010). Many applications arise from the need for more 

accurate segmentation algorithms. This rise coincides with the increase in deep learning; 

researchers are now using deep convolutional neural networks to achieve human-like 

accuracy for the task of segmentation. Before the upsurge in deep learning, machine 

learning algorithms such as clustering and Support Vector Machines (SVM) have been 

used to segment digital images. 

2.1 Segmentation using Machine Learning 

The field of Machine Learning (ML) is concerned with the question of how to 

construct computer programs that automatically improve with experience (Mitchell, 

1997). In recent years, several machine learning algorithms have been implemented 

including, but not limited to clustering, SVMs, and ANN.  

The goal of clustering is to divide (n) objects into (k) clusters such that each 

cluster has maximum similarity (homogeneity) among its members and maximizes the 

difference (heterogeneity) between clusters (Pratheba et al., 2014). Pixel values in an 

image that are similar to each other will form clusters, the center value (centroid) of these 

clusters can then be used to segment the image, highlighting the object of interest. 

Clustering has been used by researchers for recognition as well as counting of pest in 

agriculture.  
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Figure 2-1: Segmentation of whiteflies. Retrieved from “Performance analysis of pest 

detection for agricultural field using clustering techniques.” (Pratheba, Sivasangari & 

Saraswady, 2014, p.2). 

From Figure 2-1, a comparison between clustering algorithms k-means and fuzzy 

c-means was performed by Pratheba et al., for segmenting whiteflies (Pratheba et al., 

2014). The results showed that k-means has a faster execution time, but it is less accurate 

than fuzzy c-means. However, segmenting an image using clustering solely relies on 

color information; therefore objects of similar color will often be misclassified.  

SVMs are binary classifiers that separate data points into distinct groups or 

classes using a decision boundary. They also require the selection of special kernel 

functions for the extraction of features. Segmentation using SVMs was performed by 

Sakthivel (Sakthivel et al., 2015); However, they relied on an additional algorithm, fuzzy 

c-means (FCM) which extracts color and texture-based features that will be used to train 

the SVM. The researchers mentioned that a drawback of their proposed segmentation 

architecture is the lack of robustness towards noise – variations of the input data. In Rajan 

et al., research, SVMs were used to classify various agricultural pest (Rajan et al., 2016). 

The results indicated that automatic pest identification using SVM is inferior to manual 
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identification. This was due to the variation in lighting, which affected the color of the 

pest in the image. However, Rajan et al., stated that the accuracy of the model could be 

improved by applying image processing techniques (Rajan et al., 2016). A significant 

drawback to SVMs is that features relevant to the task at hand must be manually 

extracted from images before training, while more recent machine learning models such 

as Convolutional Neural Networks provide automatic feature extraction.  

Although Artificial Neural Networks (ANNs) have existed for decades, recent 

resurgence as refinements in existing techniques, newer hardware and the growth of big 

data has created a boom in the field of artificial intelligence that shows no sign of slowing 

down (Lemley et al., 2017). This had led to several advancements in computer vision 

such as classification, object detection and segmentation using ANN. 

2.2 Artificial Neural Network 

 

An artificial neural network (ANN) models the function of the biological neural 

network inside the human brain, regarding structure (interconnected neurons) and 

information flow. Neurons fire when they have exceeded a certain threshold based on a 

combination of inputs from previous neurons. The first type of ANN is called the 

perceptron which is a single layer neural network with a single output layer. 
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Figure 2-2: An illustration of a single layer neural network or perceptron. Retrieved from 

“Machine Learning.” (Mitchell & Tom, 1997, p. 87). 

From Figure 2-2, the network takes as input a vector of real values (x1…xn), 

calculates a linear combination of these inputs (∑𝑤 ⋅ 𝑥) by a single processing unit called 

a neuron, it then passes the result to an activation function, in this example sigmoid is 

used, which outputs a 1 if the result is greater than some threshold else -1 (Mitchell & 

Tom, 1997). The perceptron is a linear classifier as it can only achieve 100% accuracy on 

data that is linearly separable. 

 

 Figure 2-3: Linear and Non-Linear Decision Plane. Retrieved from “Machine Learning.” 

(Mitchell & Tom, 1997, p. 87). 
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The famous XOR problem shown in Figure 2-3, highlighted the perceptron’s 

inability to separate a nonlinear decision plane(b), this problem can be circumvented by 

introducing “hidden-layers” between the input layer and output layer – this type of ANN 

is called a Multi-Layer Perceptron (MLP).  

2.2.1 Multi-Layer Perceptron 

The perceptron can only form linear decision boundaries; however, MLPs can 

express a variety of non-linear decision boundaries (Mitchell & Tom, 1997). Instead of 

having a single layer which takes an input and produces an output, MLPs consists of 

stacks of layers called “hidden layers” which receives input from previous layers and 

produces an output, which will be the input to subsequent layers. Adding of hidden layers 

allows us to distort the input in a nonlinear way so that categories become linearly 

separable by the last layer in the network (LeCun, Bengio, & Hinton, 2015). 

A multilayer perceptron can contain a single hidden layer or multiple hidden layers. 

This presents a thin line when discriminating between a MLP and Deep neural network, 

since there is no written definition as to how many layers make a neural network a deep 

one, however an ANN with a single layer is referred to as a shallow net, so researchers 

loosely define deep nets as having two or more hidden layers. Furthermore, the 

quintessential example of a deep learning model is the multilayer perceptron 

(Goodfellow, Bengio, & Courville, 2016). Deep learning uses the classical MLP 

architecture, but also includes novel approaches to automate feature engineering. 
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2.3 Deep Learning 

Conventional machine learning algorithms were limited in their ability to process 

raw data and required a domain expert to carefully engineer feature extractors which 

would transform the structure of the input data into a suitable internal representation for 

the detection of patterns and classification of objects (LeCun, Bengio, & Hinton, 2015). 

 

Figure 2-4: Layers from a Deep Neural Network. Retrieved from “Deep Learning.” 

(Goodfellow, Bengio, & Courville, 2016, p. 6) 

A deep learning network consists of multiple layers of representations (an n-

dimensional feature vector describing an object) derived by nonlinear operations, where 

the preceding layers are used to construct a more higher-level abstraction which helps to 

distinguish and classify objects. In Figure 2-4, a hierarchical representation is learnt 

where the lowest level learns to detect edges, these combine to form corners and contours 

in the next layer, then parts of the objects called motifs, and finally, all these features or 

representations correlate to create a higher level of abstraction such as a car, person or 

animal. 
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A key point to note is that deep learning is not tied to neural networks, but it is 

instead demonstrated using neural networks. Neural networks and their training methods 

have existed for decades. However, since recently there has been a resurgence in the field 

due to factors such as refinements in machine learning algorithms and training methods, 

the arrival of GPUs (Graphics Processing Unit) which allows for faster training of the 

network, and access to large datasets (Lemley et al., 2017). Deep learning tools are no 

longer confined to researchers but are now integrated with consumer applications such as 

Google’s assistant and Amazon’s Alexa, which enables the technology to reach a wider 

audience. 

The introduction of deep learning has resulted in a significant improvement in the 

areas of speech recognition and computer vision. Multiple layers of neurons stacked on 

top of each other allow the network to extract relevant features and build a layer by layer 

representation of the given input space.  
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2.4 Convolutional Neural Network 

Convolutional Neural Networks (CNNs) are analogous to traditional ANNs in that 

they are comprised of neurons that self-optimize through learning (O’Shea, & Nash, 

2015). Training of CNNs existed from the early 1990s, but due to the small size of 

labeled image datasets available at the time and long training times, they were not as 

powerful as they are today. It was not until 2012 when Alex Krizhevsky introduced deep 

convolutional networks which had more layers and more training data provided by 

ImageNet. The network utilized the GPU to decrease training time and included a 

regularization method to prevent overfitting, called dropout. This method achieved the 

new state of the art in image classification and from then, a significant amount of papers 

has been published on CNNs. The most notable difference between ANNs and CNNs is 

that CNNs are primarily used in the field of pattern recognition within images (O’Shea, & 

Nash, 2015). CNNs are a family of multi-layered neural networks and is generally 

composed of three main parts, convolution, pooling and fully connected layers (Amara et 

al., 2017).  

2.4.1 Convolution 

The first layer in a CNN is a convolutional layer which contains a set of learnable 

filters (also called kernel filters) that convolve (move) around different subregions in an 

image, searching for features. Each filter is applied to the raw pixel values in the image 

across all channels (red, green, blue) in a sliding window fashion, calculating the dot 

product between the filter values (W) and pixel values (x) (Amara et al., 2017).  
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Figure 2-5: An illustration of convolutional filters producing feature maps. Retrieved 

June 26, 2018, from https://brilliant.org/wiki/convolutional-neural-network. 

From Figure 2-5, each filter outputs an activation or feature map, which indicates 

what features are more pronounced at different spatial locations in the image. There are 

four hyperparameters to consider in the convolution layer of a CNN, these are: 1) number 

of filters, 2) size of filter – spatial extent, 3) stride and 4) padding. Each of these 

parameters determines the number of weights in the network. The size of the filter is 

known as the receptive field, which is a local patch in the image that the filter is applied 

to, while stride determines how many units of pixel the filter should be shifted across the 

image (Maggiori et al., 2016). A 3x3 filter with a stride of one will move one pixel across 

the input; a smaller stride outputs a larger feature map while a larger stride produces a 

smaller feature map. 
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2.4.2 Pooling 

After the convolutional process, each activation map is passed to a pooling 

operation which reduces the dimensionality of the image (width and height), also called 

downsampling. The role of pooling is to merge semantically similar features into one, 

because the relative position of features that form an object (called motifs) may vary 

(LeCun, Bengio, & Hinton, 2015) therefore, discarding the finer details allows the 

network to make a general assumption as to what features are present in that region.  

This helps to reduce overfitting and allows the network to be invariant to small shifts and 

distortions. Pooling also reduces the number of parameters, thereby increasing the 

computational efficiency.  

 

Figure 2-6: Feature map before and after max pooling 

There are different types of pooling operation such as max, average, and L2-

pooling, with the most common one being max pooling. Max pooling takes the largest 

value from each subregion after the convolutional operation as shown in Figure 2-6. The 

output from max pooling is then passed to an activation function such as Rectified Linear 

Unit (ReLU). CNNs are more than neural networks with convolution and pooling layers. 
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There are a few characteristics about CNNs that make them superior to the traditional 

neural networks, especially in the realm of image classification. 

2.4.3 Local Connectivity 

Neural networks are fully connected, that is, each neuron in a layer is connected 

to all neurons in the previous layer. The famous benchmark dataset of handwritten digits - 

MNIST, has a small image dimensionality of 28x28, which means the first hidden layer 

will contain 784 weight values (28x28x1). However, this is merely a black and white 

image. Considering a color image which is usually 64x64 with three additional channels 

for RGB (red, green and blue) then we would have 12,288 weights (O’Shea, & Nash, 

2015).  

Connecting to all neurons results in an exponential growth in weight values which 

would take a long time to update during the backpropagation algorithm. Using a filter 

size of 6x6 across three channels would give us a total of 108 weights compared to 

12,288 weights using an ANN that is fully connected. Connecting to local patches (a 

group of pixels) is not only more computationally efficient but allows the CNN to take 

into consideration the relationship between pixels in close proximity, as pixels close in 

space are more correlated than pixels far apart. 

2.4.4 Shared Parameters – Weight Sharing 

Neurons (filters) share the same weights, allowing the filter to detect the same 

pattern at different locations in the image – spatially invariant. Sharing the same weight 

values results in less learnable weight parameters.  
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A deep network named AlexNet was trained on ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) for 2012 in which it outperformed all other methods 

used for large scale image classification and rekindled interest in CNNs (Triantafyllidou 

& Tefas, 2016). The immense success in image classification has fueled breakthroughs in 

other areas of computer vision such as object recognition and segmentation. 

2.5 Convolutional Neural Network for Localization 

CNNs have performed exceptionally well in image classification – that is assigning 

a single label to the entire image after prediction. Another application of convolutional 

networks, which has seen a significant amount of progress in the last five years, is the 

task of localization; we should not only identify what is in the image, but also the 

positioning of the object within the image.  

 

Figure 2-7: Evolution from coarse-grained to fine-grained inference. Retrieved from “A 

Review on Deep Learning Techniques Applied to Semantic Segmentation.” (Garcia et al., 

2017, p. 1) 
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2.5.1 Classification 

Classification, also referred to as coarse-grain inference is assigning a single label 

based on the most pronounced object in the image (Sermanet et al., 2013). The state of 

the art networks such as AlexNet (Krizhevsky et al., 2012), VGG (Simonyan & 

Zisserman, 2014), GoogleNet (Zhong et al., 2015), and ResNet (He et al., 2016) were all 

in classification. The main issue with classification is that it requires the object of interest 

to be more pronounced (occupy a majority of the image) and centered to get an accurate 

classification but since objects can be at varying sizes, the relative location of the object 

in the image is required for higher classification accuracy.  

2.5.2 Object Localization 

Localization is defined as predicting a bounding box for the object in the image 

(Sermanet et al., 2013). The terms localization, detection, and recognition are used 

interchangeably, therefore, recognizing or detecting an object imply that a bounding box 

and class label is assigned to the object of interest.  

The first paper published on object detection using CNNs was from Sermanet et 

al., called OverFeat (Sermanet et al., 2013). The network is like Krizshevsky’s which 

won the ILSVRC 2012, but this network was solely based on classification. To achieve 

localization, a regression layer was added after the last convolution layer, whose purpose 

is to output the coordinates of the bounding box encapsulating the object. The network, 

therefore, makes two predictions, the classification head gives the class label while the 

regression head gives the bounding box coordinates. After OverFeat, a plethora of 

networks based on Object localization was released, these include Region-Based CNNs 

(RCNN) (Girshick et al., 2014), Fast RCNN (Girshick, 2015), Faster RCNN (Ren et al., 
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2016), Grid-based CNN (GCNN) (Najibi, Rastegari, & Davis, 2016), Single Shot 

Detectors (SSD) (Liu et al., 2016) and You Only Look Once (YOLO) (Redmon et al., 

2016). 

2.5.3 Segmentation 

At times, placing a bounding box around an object will not suffice as this 

produces a coarse representation of the object’s location in the image. To achieve more 

accurate localization, researchers have moved to fine-grain inferencing; that is pixel-wise 

prediction. According to Bhadane, segmentation is the process of partitioning a digital 

image into multiple regions - groupings of pixels (Bhadane, 2013). More precisely, for 

every pixel (x) in the input image, the model assigns a probability of each pixel being 

associated with a given class (y). Generating pixel level predictions allows for a polygon 

mask to be overlaid on top of the object of interest which provides more precise 

localization of the object compared to overlaying with a bounding box. 

The task of segmentation is divided into semantic and instance-based 

segmentation. Both tasks involve pixel-wise prediction, however, for instance-based 

segmentation, groups of pixels or instances of the same class can be differentiated and 

counted (Garcia et al., 2017), while information about how many instances of the same 

class being present in the image is not known for semantic segmentation. 

Similarly, object detection networks which take an existing CNN built for 

classification and fine-tune it for the task of object detection, Long et al., proposed Fully 

Convolutional Neural Networks (FCNNs) which is a classification CNN fine-tuned for 

segmentation (Long, Shelhamer, & Darrell, 2015). 
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2.6 Fully Convolutional Neural Network for Segmentation 

A fully convolutional network is a neural network that is composed of only 

convolutional layers – no fully connected layer. The last layer of CNNs used for 

classification is fully connected. However, this discards the spatial arrangement of the 

input, which is necessary for localization; it instead produces global information which 

only resolves what is in the image, but not local information, which determines where in 

the image (Long et al., 2015). 

 

Figure 2-8: Transforming classification networks into segmentation networks. Retrieved 

from “Fully Convolutional Networks for Semantic Segmentation.” (Long, Shelhamer, & 

Darrell, 2015, p.3) 

From Figure 2-8, using fully connected layers discards all the spatial information 

in the image, which is needed for localization. The fully connected layer will output an 

N-dimensional vector that contains a list of probability values of the input being 

associated with a given class. Replacing the last fully connected layer with a 

convolutional layer allows the network to output a heatmap, highlighting the activations 



   

21 

 

of the object and its location. There are a few new operations in CNN’s built for 

segmentation. 

2.6.1 Transposed Convolution (Deconvolution) 

During training, a series of pooling operations downsamples the image such that 

the output dimensions are smaller in comparison to the original image, resulting in coarse 

prediction. However, for fine-grained pixel-wise prediction to be performed at the 

original resolution of the image we need to upscale/upsample our small dimension 

representation, this upsampling is performed by Transposed Convolution.  

 

Figure 2-9: An illustration of upsampling feature maps using transposed convolution. 

From Figure 2-9, transposed convolution increases the dimension of a 2x2 feature 

map to a 4x4. Each value from the feature map is multiplied by the weights in the kernel; 

the result is then used to create a larger feature map. While pooling halves the dimension, 

transposed convolution doubles the dimension. Transposed convolution does not require 

a special type of kernel; it uses the same kernel employed in the convolution operation, 

the role of the kernel is merely to enlarge the dimensions of the image.  
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2.6.2 Skip Connections (Layer Fusing) 

 

 

Figure 2-10: Skip Connections between fine and coarse feature maps. Retrieved from 

“Fully Convolutional Networks for Semantic Segmentation.” (Long, Shelhamer, & 

Darrell, 2016, p.6) 

Another way to connect coarse feature maps to fine feature maps is with Skip & 

Fuse connections (Long et al., 2015). Skip connections connect deep coarse layers at the 

end of the network to earlier layers. This allows for finer details to be accessed from 

earlier layers before it has been lost due to downsampling. Fuse connections combine 

activations from earlier layers by summing or interpolation. Receptive fields are also 

smaller in earlier layers allowing for more sharper details to be captured, this results in a 

much smoother and defined prediction mask. Since the introduction of FCN, there have 

been various encoder-decoder variants for segmentation.  
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2.7 U-Net: Convolutional Networks for Biomedical Image 

Segmentation 

U-Net is a convolutional network architecture created by Ronneberger et al., which 

has won several competitions such as “Cell Tracking Challenge”, “Challenge for 

Computer-Automated Detection of Caries in Bitewing Radiography” and “Challenge for 

Segmentation of Neuronal Structures in Electron Microscopic Stacks.”  

Previously, successful training of deep networks required thousands of images but 

annotating thousands or millions of images for a segmentation problem is a challenging 

task. The advancement in the field of segmentation using CNNs has been performed on 

prepackaged datasets such as PASCAL VOC or Berkeley, which provides thousands of 

annotated images created by a community of computer vision experts and enthusiast. 

Researcher Ronneberger et al., showed that U-Net could be trained with a few annotated 

samples combined with data augmentation (Ronneberger, Fischer, & Brox, 2015). Data 

augmentation increases the size of the dataset and is used to simulate different states of 

the input thereby allowing the network to learn the desired invariance and robustness 

properties. Some examples of data augmentation with regards to images are zooming, 

rotating, cropping etc. 
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Figure 2-11: A diagram of U-Net. Retrieved from “U-Net: Convolutional Networks for 

Biomedical Image Segmentation.” (Ronneberger, Fischer, & Brox, 2015, p.2).  

From Figure 2-11, the network resembles an auto-encoder. It has a contracting 

path (left) or encoder which produces a low-resolution image representation or feature 

map from successive pooling (downsampling) operations. The extracting path (right) or 

decoder then takes this coarse representation and upsamples it back to the original 

resolution of the image. Like FCN, skip connections are also used to fuse activations 

from earlier layers such that predictions are smoother. 

After U-Net, there was deconvolution network which is another encoder-decoder 

variant that achieved the new state of the art with a mean IOU of 0.725 on the Pascal 

VOC dataset. It uses deconvolution and unpooling operations to upsample feature maps 

and removed skip connections as the researchers mention that improvement in 
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segmentation is minimal and it slows down training time. This research uses the U-Net 

architecture; creation of training data for segmentation is a lengthy task. However, 

Ronneberger et al., states that U-Net requires a few annotated images for successful 

training which made it a viable option for faster experimentation (Ronneberger, Fischer, 

& Brox, 2015). Finally, at the time of this thesis, U-Net is an established architecture 

hence, there is a significant amount of information and support in open-source APIs for 

the implementation of this network. 

Researchers highlighted a significant problem with fully convolutional networks 

however, this problem affects all convolutional networks. The problem is the network’s 

inability to handle objects at multiple scales. The term scale refers to the size of the 

object; varying sizes or scales of the object impact the performance of the network. 

According to Noh, the network can only handle single scale semantics within an image 

due to fixed size receptive field (Noh, Hong & Han, 2015).  

Furthermore, Garcia et al., states that the kernel size will have an impact on the 

number of pixels that correspond to a single pixel in the convolved feature map, thereby 

causing filters to implicitly learn to detect features at specific scales, making 

generalization at different scales difficult (Garcia et al., 2017).  

2.8 Techniques to overcome scale invariance with CNNs 

The task of representing objects should be invariant (never changing) to the 

transformation of the input data; The presence of light or orientation of the object should 

have minimal effect in distinguishing between objects. Three main sources of natural 

variations of the input are location, viewpoint, and size of the object or pattern (van Nord 

& Postma, 2017). Weight sharing, see section 2.4.4, allow CNNs to handle variations in 
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location and filters are created to recognize the object at varying viewpoints. However, 

size variations pose a challenge for CNNs (van Nord & Postma, 2017). Furthermore, it 

was determined in two separate publications, from (Noh et al., 2015) and (Garcia et al., 

2017) that CNNs inability to handle size variations of the pattern is due to the kernel 

sizes.  

  

 

 

 Figure 2-12: Scale-invariant CNN ensemble for classification. Retrieved from “Learning 

scale-variant and scale-invariant features for deep image classification.” (van Noord & 

Postma 2017, p.4) 

Researchers have implemented various algorithms to tackle the problem of scale 

invariance. From Figure 2-12, van Nord (van Nord & Postma, 2017) used an ensemble of 

CNNs for classification where each CNN is trained on a lower resolution version of the 

original image generated from a Gaussian pyramid, starting from 2048 by 2048 to 256 by 

256 pixels. Allowing each network to focus its learning and prediction at one scale 

eliminates the problem of scale invariance. However, the network is applied to the task of 
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classification and not segmentation which is two different yet similar problems. A 

convolutional network for classification cannot be used for the task of segmentation and 

vice versa. The task of localization or identifying the object’s position in an image cannot 

be performed by a CNN for classification. The last layer of CNNs used for classification 

are fully connected however, fully connected layers discards the spatial arrangement of 

the pixels which is necessary for localization (Long et al., 2015), this was discussed in 

section 2.6. 

Multi-scale CNNs were proposed by Raj et al., for semantic segmentation using the 

VGG architecture but relied on additional depth information to improve scale invariance 

(Raj et al., 2015). The multi-scale network used can accurately perform segmentation 

when an RGB image along with its recorded depth information is given as input. The 

researchers have appeared to develop their methodology independently, as no mention of 

each other’s work was made.  

 

Figure 2-13: Multi-Scale Image Pyramid. Retrieved from CrowdNet: “A Deep 

Convolutional Network for Dense Crowd Counting.” (Boominathan, Kruthiventi & Babu, 

2016, p.3). 
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Finally, researcher Boominathan et al., of CROWDNET states that the challenge of 

varying scales is a significant issue for segmenting faces in dense crowds (Boominathan 

et al., 2016); However, the scale issue can be effectively tackled by augmenting the 

training images. Patches of 225x225 were cropped from the original image and used for 

training which increased segmentation accuracy.  

2.9 Data from Remote Sensing 

Remote sensing is the use of instruments or sensors to acquire information about the 

earth’s surface. The introduction of the camera resulted in early forms of remote sensing 

such as capturing aerial images using a camera attached to a balloon or a bird (Salle, 

2010). Currently, the primary source of remotely sensed data is from aircraft and 

satellites, where it is used for analysis of different wavelengths of electromagnetic 

radiation. 

 

Figure 2-14: An illustration of reflection captured by aerial devices. Retrieved from 

“Remote Sensing System.” (Mohammad, 2015, p. 13) 
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From Figure 2-14, the energy emanating from the earth’s surface is recorded by a 

sensor mounted on a platform such as an aircraft or satellite (Richards, 1999). Reflection 

or transmission of energy from the earth’s surface in the form of waves is referred to as 

electromagnetic radiation. The sensor captures the percentage or intensity of energy 

reflectance with respect to each wavelength and used for the construction of images 

(Richards, 1999). The most crucial factor to consider when selecting or working with 

remotely sensed images is their resolution which can determine the outcome of your 

research. There are four imagery resolutions, Spatial, Spectral, Radiometric and 

Temporal resolution. 

2.9.1 Spatial Resolution 

Spatial resolution refers to the distance between the sensor and the target; the distance 

will determine the number of pixels that will be used to construct the object (National 

Resources Canada, 2015). A sensor that is further away from the target can cover a larger 

area but will have a low or coarse spatial resolution and cannot provide a high level of 

detail, while a sensor closer to the target can capture a higher degree of detail.  

 
 

 

 
 

20m(fine) 200m(coarse) 

Figure 2-15: Difference between fine and coarse spatial resolution. 



   

30 

 

From Figure 2-15, the object at 20m has more information or pixels, but as we move 

to a coarser spatial resolution, we start to lose information about the object. This loss in 

information is because neighboring pixels are aggregated as we move further away, 

resulting in a smaller pixel count for the object. Segmentation of objects in an image is 

done by grouping homogenous pixels. However as pixel size becomes larger (fewer 

pixels) for the object of interest, this grouping is difficult or impossible to achieve. 

2.10 Summary of Chapter 2 

Machine Learning methods such as clustering and SVM can be used to segment 

images. However, the advancement in the field of deep learning has resulted in a 

significant increase in image recognition accuracy by CNNs.  

Unfortunately, CNNs struggle with variations in the size of the object due to fixed 

kernel sizes. Spatial resolution determines the number of pixels used to construct the 

region; therefore, changes in spatial resolution will result in misclassification by the 

network. Researchers have tried different methods such as using an ensemble of neural 

networks or generating an image-scale pyramid to tackle the issues of varying scales. The 

scale problem was investigated in future chapters. 
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Chapter 3 

Study and experimental design 

CNNs are state of the art in image recognition; however, multi-scale recognition 

is a problem rooted into the engine that drives these networks, and that is filters or 

kernels. Filters are responsible for extracting and learning features during training, and 

then at prediction, features are extracted from the image which is used to recognize the 

object of interest. Features are learnt by grouping neighboring pixels, however, when at a 

different scale, the number of pixels used to construct the object changes, therefore, a 

different arrangement or groups of pixels will be used to construct the object. 

 Many areas such as self-driving cars, would benefit immensely from scale-

invariant CNNs. Cars would be able to identify smalls objects from further distances and 

can apply brake accordingly based on the speed of the vehicle, providing a safer 

experience. However, CNNs need to be scale invariant to achieve high levels of accuracy. 

The goal of this study is to identify and develop techniques which can be used to improve 

image segmentation or produce more accurate segmentations using CNNs, specifically U-

Net.  
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3.1 Overview of Dataset 

Three datasets were used in these experiments with different Regions Of Interest 

(ROI) identified. The pond dataset consists of aerial images captured from Google Earth 

with an oval-shaped pond being the ROI. The door dataset was captured using a camera 

at McNally main, a building on Saint Mary’s University. Three different regions of 

interest were used, these are door, window, and wall. The grass dataset was captured 

using a camera; the images were captured from a front lawn at a resident’s location in 

Jamaica. The region of interest is a disease or fungus (Brown patches) which was 

affecting the Zoysia grass.  

The datasets captured differ from each other in terms of the color, shape, and 

texture of each region. This allows for a general application of the proposed multi-scale 

segmentation technique. 
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ROI Image(Xij - RGB) Mask(Yij – Binary) 

Pond  

 

 

 
 

Door  

 
 

 

 

Window  
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Figure 3-1: Images from the highest spatial resolution for each ROI. 

In Figure 3-1, the shaded areas in the images represent the region of interest for 

each dataset, the corresponding label for each region can be found in column one. There 

are several scales associated with each region where the goal is to design a methodology 

that maximizes the prediction accuracy across several scales, specifically the coarsest 

scale. Images at coarser spatial resolutions can be found in Appendix 8.1. 

Wall 

 

 

 
 

 

 
 

Grass  
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Figure 3-2: A diagram showcasing the structure of the dataset.  

From Figure 3-2, each region has several spatial resolutions and multiple images 

(3-4) per spatial resolution. For example, Door has the range of spatial resolutions one to 

three, with one being the highest and three being the lowest. Each spatial resolution has 

four training points labeled a to d. The distances between scales will vary across dataset, 

but what is important is that the region is at different scales. 

3.1.1 Data Preparation 

The data used in this research consisted of input data (xij) and corresponding label 

(yij). Images (xij) were captured using a camera or screen capture device then an 

annotation software was used to manually draw polygons using a mouse guided by the 

researcher. Annotating the image creates a mask over the region of interest. Usually, deep 

nets would require thousands of images, however, creators of U-Net Ronneberger et al., 

showed that U-Net could be trained with a few annotated samples combined with data 

Datset 
Name

• Image Names

Pond

• 20m, 20m_2, 20m_3

• 50m, 50m_2, 50m_3

• 100m, 100m_2, 100m_3

• 200m, 200m_2, 200m_3

Door

• 1a, 1b, 1c, 1d

• 2a, 2b, 2c, 2d

• 3a, 3b, 3c, 3d

Window
• 2a, 2b, 2c, 2d

• 3a, 3b, 3c, 3d

Wall

• 1a, 1b, 1c, 1d

• 2a, 2b, 2c, 2d

• 3a, 3b, 3c, 3d

Grass
• 1a, 1b, 1c, 1d

• 4a, 4b, 4c, 4c

• 8a, 8b, 8c, 8d
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augmentation (Ronneberger et al., 2015). Data augmentation increases the size of the 

dataset, see Appendix 8.4 for the results of using different training sizes. The results show 

that the network can produce accurate predictions with a small dataset combined with 

data augmentation. The input image (xij) was stored as a jpg file and contained intensity 

values from 0-255 captured from the Red, Green, and Blue (RGB) channels. The 

associated label (yij) contains a mask that encapsulates the region of interest in the input 

image, this encapsulation of yij over xij is referred to as segmentation. The mask is stored 

in a .tiff file where Boolean values (True or False) indicate which pixels from the mask 

belong to the region. A mask containing Boolean values is called a binary mask. There is 

no justification for the use of a tiff file to store the mask, as a jpg image could be used; 

any image-based file format can be used, these include but are not limited to PNG, BMP, 

and GIF. 

Before training can commence, images must be preprocessed, this includes 

resizing and scaling pixel intensity values. Images are resized to a resolution of 512 by 

512, as training and inferencing on varying image resolutions produce poor results. The 

intensity values are then normalized from 0-255 to 0-1. According to Sola, normalizing 

the input data prior to network training results in faster convergence and lower estimation 

errors (Sola & Sevilla, 1997). Normalization ensures that each variable is assigned equal 

weight; the variable with the largest scale will dominate the outcome. Having intensity 

values too large or small will make the network overcompensate weight adjustment in 

one layer while under compensating in others leading to frequent and lengthy oscillations 

during training. 



   

37 

 

There are several normalization methods, where each method depends on the 

input data. Min-Max or Feature Scaling is one of the most common normalization 

methods used. 

 

𝑥𝑖𝑗 =
𝑥𝑖𝑗 −min⁡(𝑥)

max(𝑥) − min⁡(𝑥)
 

 

Figure 3-3: Formula for normalizing pixel values. 

In Figure 3-3, each pixel contained in the image is represented as xij. The 

parameter - max(x), represents the largest pixel value in the current matrix or channel, 

while min(x) represents the minimum pixel value. The formula is applied for each pixel 

xij across all channels in the image, these are red, green and blue. The normalized pixel 

value will range from 0 to 1. 

3.1.2 Training Procedure 

Training was performed per scale, where each scale consist of four images. Each 

image is preprocessed, and appropriate data augmentation applied which doubles or 

triples the size of the training set. After performing augmentation such as rotations the 

resulting training size consist of eight images. If additional augmentation is done, then the 

dataset would increase by four images. The validation set was a 20% split of the training 

set, which results in the training size consisting of six images and validation size would 

contain two images. At the end of training, the model is evaluated using the test data set, 

which is the region of interest at the next scale. The test set consist of four images. See 
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Appendix 8.4 for the training parameters used in these experiments. The number of 

images across all regions is not the same, e.g. Pond only consists of three images, 

therefore, the size of the training and validation set will differ. 

 Deep networks usually require thousands of images to learn an accurate 

representation of a given object. However, several researchers such as (Ronneberger, 

Fischer, & Brox, 2015) and (Boominathan, Kruthiventi & Babu, 2016) mentioned that a 

few annotated samples coupled with data augmentation enable segmentation network to 

learn to desired invariance and robustness properties. Prior experiments were conducted 

to determine if more data is required to improve prediction accuracy. See Appendix 8.4 

for the results of these experiments.  

The results show that the network can produce accurate predictions with a small 

dataset combined with data augmentation. Types of data augmentation methods used in 

this thesis include Zoom Augmentation, Rotation, Contrast Enhancement, and Sobel 

Filtering. Each method of augmentation produces four additional images, which allows 

for exponential growth in the size of the training set. However, each augmentation 

method may be used independently based on the problem.  
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3.1.3 Result Evaluation 

Predictions from segmentation networks are three-dimensional tensors with 

dimensions WxHxC, where W and H represent the width and height of the input image 

and C is the number of classes. If the input image is 512x512 and training is performed 

on one class, then the output tensor is 512x512x1. Each class matrix from the output 

tensor consists of probability values. A level of confidence of 0.99 was used to segment 

the image generating a binary mask, where true pixels belong to the region of interest and 

false do not. The IOU score does not differ drastically when different confidence levels 

are used, as the probability scores for true pixels are close to 0.99, see Appendix 8.8. 

  

0 0 0 0.98 

0.001 0.00 0.996 0.991 

0.3 0.00 0.00 0.998 

0.001 0.001 0.00 0.99 

 

Figure 3-4: Thresholding of probability values to produce a binary mask. 

 From Figure 3-4, probability values greater than or equal to the confidence level 

of 99% will be segmented as part of the region. Evaluation of segmentation mask is a 

measure of how well the predicted mask overlays the region of interest; it is a measure of 

similarity between pixels predicted as belonging to the region and the actual pixels that 

belong to the region. The two most common evaluation metrics for segmentation is pixel 

accuracy and intersection over union.  
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PA =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

Figure 3-5: Formula for calculating pixel accuracy for segmentation. 

Pixel accuracy is the ratio between correctly classified pixels and the total number 

of pixels in the image (Garcia et al., 2017). However, pixel accuracy is not the standard 

metric used to evaluate segmentation since it does not consider false positives – 

misclassified pixels. If the region of interest is fully segmented but other regions of the 

image are mis-segmented, this will result in high accuracy. 

3.1.3.1 IOU (Intersection-Over-Union) 

The intersection over union is the most used evaluation metric for segmentation. It 

computes a similarity score between zero and one based on the overlap between the 

predicted pixels and the actual pixels. Unlike pixel accuracy, the score is penalized for 

false positive; therefore a large portion of mis-segmented pixels will result in a low IOU 

score.  

𝐼𝑜𝑈 = ⁡
𝑇𝑃

𝐹𝑃 + 𝑇𝑃 + 𝐹𝑁
 

Figure 3-6: Formula for calculating Intersection-Over-Union (IOU). Retrieved from 

“Optimizing Intersection-Over-Union in Deep Neural Networks for Image 

Segmentation.” (Rahman & Wang, 2016, p. 5) 
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Figure 3-7: Comparison between examples of overlaps and corresponding IOU score. 

In Figure 3-7, the greater the overlap between the predicted region and the actual 

region, the higher the IOU score.  

 

3.2 Experiment applications and software 

3.2.1 Loss Function  

Cross-entropy has been used by (Ronneberger et al., 2015) and (Long et al., 2015) 

as their loss function for training U-Net and FCN respectively. However, Rahman stated 

that this loss function is suited for classification problems and not segmentation, instead 

the objective function to be minimized should be the Intersection Over Union (IOU) 

(Rahman & Wang, 2016). Researchers Rahman et al., also argue that optimizing the IOU 

score directly is superior to using a classification loss function such as cross-entropy.  

𝐿𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 

Figure 3-8: Loss or Cost function to be optimized. 
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3.2.2 Optimizer 

  Stochastic Gradient Descent (SGD) was used by (Ronneberger et al., 2015) and 

(Long et al., 2015) for the training of UNet and FCN respectively. However, selecting a 

learning rate can be a difficult task, if a low learning rate is selected convergence at the 

minima of the objective can be slow, but if a high learning rate is selected, then there is a 

possibility of overshooting the minima. Adaptive Learning algorithms such as Adagrad 

(Duchi, Hazan, & Singer, 2011), Adadelta (Zeiler, 2012) and Adam (Kingma, & Ba, 

2014) are variations of stochastic gradient descent that adapts the learning rate 

hyperparameter during training. Adadelta was used by Simo-Serra et al., for their 

experiments which converted sketch drawings into computerized vectors (images) using 

FCNs (Simo-Serra et al., 2016). Adadelta was also used by Wang for training a CNN to 

recognize pedestrians and vehicles (Wang & Xu, 2015). The Adam optimizer was used 

for this research as other optimizers did not perform as well. Adam proved to be the most 

stable and consistent across all datasets. See Appendix 8.6 for the results from several 

optimizers. 

3.2.3 Software and Tools 

Python was the programming language of choice; several frameworks or packages 

were installed for additional functionality. The main frameworks used were TensorFlow 

(Abadi et al., 2016) and Keras (Chollet, 2015), these provided the tools for building a 

CNN for Segmentation. Tensorflow is an open-source framework for Machine learning 

applications developed by Google and was released in 2015. Keras is a high-level API 

built on top of Tensorflow, it provides all the required layers and optimizers required for 

this research.  
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All experiments were performed on an NVIDIA GTX 1080 equipped with 8 GB of 

GDDR5 RAM, this allows for extremely fast training and inferencing time. The CUDA 

library provided by NVIDIA was installed to accelerate calculations. See Appendix 8.7 

for training times. 

3.3 Problem Scope 

According to van Nord, variations in the scale of an object or region have posed a 

problem for convolutional neural networks (van Nord & Postma, 2017). The source of the 

scale problem was highlighted by (Garcia et al., 2017) and (Noh et al., 2015), which 

states that the kernel size is the reason why CNNs struggle with variations in scale. CNNs 

learn by grouping neighboring pixels; pixels close in proximity are highly correlated.  

However, as the scale of the object changes so does the number of pixels used in its 

construction. Edges are low-level features and are defined by a set of points or pixels; 

therefore differences in pixel count, i.e., changes in scale will impact the construction of 

edges by the network. This explains why objects are mis-segmented at unlearned scales 

because the edges appear to be different. The edges also define the structure or shape of 

the region, therefore if the edges are undetectable then so will the region. 
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20m(fine) 200m(coarse) 

Figure 3-9: Difference between fine and coarse spatial resolution. 

From Figure 3-9, the region at 20m was constructed using more pixels therefore if 

a 2x2 kernel convolved over this image, groups of four pixels will correspond to a single 

pixel in the feature map. However, if the kernel was applied to the object at 200m a group 

of one or two pixels will be learnt. Features learnt from the object at 20m cannot be used 

to identify the object at 200m. 

The goal of this research is to develop a methodology that allows proven neural 

networks applied to segmentation to be more robust when handling objects at varying 

scales. There should be a limit on the number of scales since there can exist an infinite 

amount of scales. A reasonable limit for the number of scales is when the human eye can 

no longer detect the object. These networks are expected to complete a task usually 

performed by humans, therefore if CNNs are to achieve human-like performance, any 

object visible to a human must be visible to the network. The lowest scale for each region 

was determined based on visual inspection. 

The methodology was an experimental iterative approach. Several methods were 

tested based on insight from the literature and reasoning. After each iteration, based on 
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results from the experiments, the technique used to solve the problem of scale invariance 

was modified accordingly. Results from experiments are evaluated quantitatively using 

metrics such as IOU. 

3.3.1 Algorithm Use Case 

As mentioned in earlier chapters, there are several applications for the task of 

segmentation. A possible area that can benefit from improved image segmentation is 

agriculture. Early pest detection implies to constantly monitor crops; therefore, images 

should be captured frequently. Manually capturing images of crops on a farm occupying 

a few acres is impossible which means an automated method must be applied for early 

pest detection. Automated pest detection can be performed on-ground using remote 

control vehicles. However, farmers usually plant crops in close proximity in an attempt to 

maximize their yield thereby maximizing their profit. These densely packed farms make 

it impossible or difficult for a ground unit to navigate through rows of crops and acquire 

data. 

A more efficient approach for acquiring data for pest detection is aerial imagery. 

During routine inspections, farmers can capture high spatial resolution images that 

highlight the diseased region of the crop. This on-ground data can be used for training a 

neural network, then aerial images from a drone or satellite can be used for monitoring 

and detection of diseases. However, due to the scale issue with CNNs, detection of 

diseases cannot be performed at further altitudes (lower spatial resolution). Farmers 

would have to capture and highlight the diseased region from aerial images at different 

spatial resolutions.  
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The proposed method should improve the prediction accuracy for Convolutional 

Neural Networks at coarser scales, given that training data was provided at one scale (the 

highest). 

 

Figure 3-10: An illustration of a farmer capturing images on-ground and identification 

performed from an aerial device. 

 In Figure 3-10, a farmer is shown capturing high spatial resolution images on the 

ground using a cell phone. A drone is then used for detection of disease at higher 

altitudes.  
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Figure 3-11:  Difference between late and early detection. 

To highlight the importance of producing scale invariant CNNs for aerial disease 

detection, see Figure 3-11. Field 1 shows that the disease has spread to a large portion of 

the farm, this can be referred to as late detection. Field 2 indicates the detection of a small 

disease region - early detection. Scale-invariant CNNs is the difference between detecting 

a disease infestation early or late. The earlier the infestation is detected; the less money or 

crops will be lost.  

3.4 Approach to problem 

Simply, CNNs can only identify what they have been trained on; Classifying a 

region at 100 meters with a CNN trained at 10 meters, is like classifying a dog for a CNN 

trained on bananas. Data augmentation is used to generate new data by transforming data 

that already exist, it speeds up convergence, reduce overfitting and increase 

generalization capabilities (Garcia et al., 2017). According to Ronneberger et al., data 

Scale Field 1 Field 2 

100m  

 

 

 
 

Key       Diseased Crop       Healthy Crop 
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augmentation can be used to simulate different states of the input thereby allowing the 

network to learn the desired invariance and robustness properties (Ronneberger et al., 

2015). The augmentation method of choice depends on the problem being solved. 

Therefore it is essential to understand what happens to the region of interest as it moves 

across different scales. 

 

Figure 3-12: Process of up and downscaling an image. Retrieved from “Scaling of 

thermal images at different spatial resolution.” (Jones & Sirault, 2014, p. 2) 

From Figure 3-12, transitioning from a higher to a lower spatial resolution results 

in a reduction in the number of pixels. The reason for this is that neighboring pixels are 

grouped and combined into a scalar pixel when moving from a high spatial resolution to a 

low spatial resolution, this combining or aggregation of pixels is known as downscaling 

or downsampling, also called subsampling. Low resolution is associated with a small 
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number of pixels while high resolution is associated with a high number of pixels. The 

process of aggregating pixels (downscaling) is irreversible, as information is lost during 

the process, so one cannot create a high-resolution image from a lower resolution image 

without additional data (Jones et al., 2014). With that said, to simulate the region of 

interest at a coarser scale, the augmentation method must be able to reduce the number of 

pixels for the region of interest. 

3.4.1 Zoom Augmentation – Image Scaling 

 

To simulate the region of interest at a coarser scale, the pixel values must be 

rescaled. Scaling an image involves the use of interpolation to construct new data points 

based on the range of intensity values for the image. These data points will be used to 

upsample or downsample the image. For coarse representation of the region, we need to 

perform downsampling since we need to reduce the number of pixels for the region, this 

downsampling is sometimes called zoom augmentation since we are moving further away 

from the region of interest. Therefore, image scaling is the data augmentation method of 

choice used to step across the different spatial resolutions. 
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Figure 3-13: Pixel count for the region of interest at scale one and two. 

 In Figure 3-13, the only training data we have is at spatial resolution one and 

its region of interest contains 21624 pixels, and our target spatial resolution that we want 

to step to contains 5679 pixels for its region of interest. This can be done by 

downsampling/downscaling the image at spatial resolution one using a scaling factor.  A 

simple method to determine what scaling factor to use is the ratio between spatial 

resolutions. From Figure 3-13, 20m/50m = 0.4 = ~0.5. We can approximate and use 0.5 

as the scaling factor. The output resolution after downscaling a 512 x 512 by 0.5 is 512 * 

0.5 = 256 x 256. Since downscaling reduces the number of pixels for the region, the pixel 

dimensions or resolution of the image is also reduced. 

Spatial resolution 1 

(512 x 512) 

 
ROI PIXEL COUNT: 21624 

Spatial resolution 2 

(512 x 512)  

 
ROI PIXEL COUNT: 5679 
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Figure 3-14: Pixel count for the region of interest after downscaling the image. 

From Figure 3-14, The pixel count for the region of interest is now 5511, which is 

close to the next spatial resolution with 5679 pixels as seen in Figure 3-13. Before 

training can commence, the downscaled image should be padded with pixels such that the 

original image resolution is maintained. This is important since training and inferencing 

at different resolutions can produce results that differ drastically. 

Chapter 4 will consist of experiments demonstrating the scale problem of CNNs 

due to the kernel sizes, then the benefits and limitations of using image scaling to 

improve multi-scale segmentation. Finally, what alternative method can be used to 

circumvent the limitations of image scaling. 

 

 

 

 

 

Downscaled 

Spatial 
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(256 x 256) 

 

 
ROI PIXEL COUNT: 5511 
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3.5 Summary of Chapter 3 

Chapter 3 presents the dataset and training procedure used for the experiments. 

An object transitioning from a high to low spatial resolution will have a reduced pixel 

count due to pixel aggregation. Therefore, to improve prediction accuracy at lower spatial 

resolutions, the data augmentation of choice must perform pixel aggregation on the object 

of interest.   

The training procedure was explained, each image is normalized using min-max 

scaling, then augmentation techniques are applied which results in an exponential growth 

in the size of the dataset. Augmentation techniques include rotation, zooming, and 

cropping. The training parameters including the number of data points and image 

resolution are mentioned, for more details see Appendix 8.4. 
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Chapter 4 

Scale-Invariance 

Several experiments were conducted with the aim of developing a technique that 

enables U-Net to be invariant to changes in the objects scale. See section 2.7 for the 

reason for using U-Net; U-Net is made relatively available with resources to support the 

implementation of the architecture and it also requires a small dataset which speeds up 

experimentation time. The experiments performed will demonstrate the scale issue and 

show techniques to alleviate it. In this chapter some terms will be used interchangeably, 

these are spatial resolution and scale, highest and finest, coarsest and lowest.  

4.1 Training on One Spatial Resolution 

Invariance means that the object should still be recognizable even if its appearance 

varies – deformation. As humans, we can identify an object after presented with a few 

examples, despite the angle, orientation or lighting of the object. Convolutional Neural 

Networks are robust to certain deformations, for (e.g.) they are invariant to changes in 

viewpoint (angle) and rotation of the object. However, CNNs struggle to be scale-

invariant; generalization is poor at scales not trained on by the network. To demonstrate 

this scale problem, a network was trained on one scale and used to predict across several 

unseen scales. One scale for a region can contain 4-12 images, see section 3.1.2 for 

details about the training procedure and Appendix 8.4 for the training parameters used in 

these experiments.  
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4.1.1 Training on the Highest Spatial Resolution 

 

Table 4-1: Network was trained on the highest scale for the pond dataset. Images in the 

first column show the RGB image (x), the second column shows true mask (y) for the 

region of interest, and the third column shows the prediction from the classifier. 

From Table 4-1, an IOU score of 0.92 and 0.7 was predicted for the 20m and 50m 

scales respectively, while no predictions were made for the 100m and 200m scales.  

 

 

Scale Results 

20m 

 

50m 

 

100m 

 

200m 
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Table 4-2: Network was trained on the highest scale for the door dataset. 

 The predictions shown in Table 4-2 differs drastically across spatial resolutions. 

The scale that was trained on (Scale 1) gives an IOU score of 0.97 while the remaining 

two scales give 0.6 and 0.15 respectively.  

Scale Results 
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Table 4-3: Network was trained on the highest scale for the window dataset. 

The results remain the same for the window as seen in Table 4-3. The edge or 

outer regions of the windows were not segmented at scale 2, resulting in a lower IOU 

score of 0.53. 
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Table 4-4: Network was trained on the highest scale for the wall dataset. 

The same effect is also observed for the wall dataset as shown in Table 4-4. The 

IOU score at the highest scale is 0.86 while the lowest scale is 0.38. These experiments 

show that the scale issue affects all regions of interest, despite having different features in 

terms of shape, color, and texture. 

Scale Results 
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4.1.2 Training on the Lowest Spatial Resolution 

To demonstrate the inability of CNNs to generalize for new or unseen scales even 

further, another set of experiments were conducted using only the coarsest spatial 

resolution image for training.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-5: Network was trained on the lowest scale for the pond dataset. 

Scale Results 
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100m 

 

200m 
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In Table 4-5, the opposite effect is seen, where the network produces the highest 

IOU score at the scale it was trained on (200m) but fails to segment any pixels on scales 

not seen (higher scales). To contrast, Table 4-1 shows 0.92 at the highest spatial 

resolution while Table 4-5 shows 0.95 at the coarsest spatial resolution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-6: Network was trained on the lowest scale for the door dataset. 
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Table 4-6 shows that the network struggles to segment the door at the highest 

scale with an IOU score of 0 however, the IOU score on the lowest scale that the network 

was trained on is 0.95. 

Table 4-7: Network was trained on the lowest scale for the window dataset. 

From Table 4-7, the difference in IOU score across spatial resolutions is not as 

significant as seen for door and pond. This is due to the difference in the spatial gap, e.g., 

20m to 200m has a larger spatial gap than 50m to 100m; therefore the network should 

produce better predictions since the spatial features learned would be in close proximity 

of the spatial features being evaluated on (segmenting). Window only has data for scale 2 

and 3 hence training will be performed using 2 and segmentation done on the next spatial 

Scale Results 
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resolution, which is 3. The door has a larger spatial gap since training is performed using 

scale 1, then segmentation done on scale 3. This indicates that there is a cut-off or drop-

off point where the kernels are unable to detect features beyond a certain scale from what 

was trained on.  

Table 4-8: Network was trained on the lowest scale for the wall dataset. 

Scale Results 
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The results in Table 4-8 highlights the scale problem again. An interesting finding 

is that the IOU score for door and wall is the same across all three spatial resolutions. 

Scale 1 has 0, Scale 2 has 0.45 and Scale 3 has 0.9. Both regions are different in terms of 

features such as structure, color, texture and even the number of pixels. The number of 

pixels for the door will reduce as we move further away due to pixel aggregation; 

however, wall’s pixel count will increase since more regions of the wall become available 

the further away we are, yet the IOU score across all scales is the same.  

The experiments show that CNNs generalize poorly for spatial resolutions not 

trained on. Training on higher scales does not generalize well on lower scales, while 

training on lower scales does not generalize well on higher scales. Consider the scenario 

of the farmer, where training images are from one scale only (ground). Images captured 

on-ground will contain features at a higher spatial resolution. However, aerial images will 

contain features at a lower spatial resolution, therefore, segmenting the region of interest 

will be difficult resulting in poor predictions. If training data is available at the highest 

scale, then a method should be used to generate data at lower scales. 
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4.2 Training on Zoom Augmented (ZA) Image 

For this experiment, the highest resolution image will be selected as training data. 

The methods demonstrated in this research are only applicable to higher spatial resolution 

images. Transitioning from a lower resolution to a higher resolution will require 

additional data, see section 3.4. The window and wall dataset were not used for the 

upcoming set of experiments. The window dataset only consisted of two scales which is 

not applicable to the proposed contribution of this research. The purpose of the wall and 

window dataset was to demonstrate the scale issues as seen in early sections of Chapter 4. 

The Pond, Door, and Grass dataset were the focus of this research hence further 

experiments were conducted using them.  

Zoom Augmentation (ZA) will be used to downscale the image such that the 

region of interest of the augmented image would have similar structure or arrangement of 

pixels as the region of interest in the next spatial resolution. In short, ZA allows us to 

simulate or approximate the pixel arrangement used to construct the region of interest at 

the next spatial resolution. 
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Figure 4-1: Zoom Augmentation process. 

In Figure 4-1, the image at the highest scale is zoom augmented to the lower 

scales using a scaling factor. Recall section 3.4 which shows that downscaling (zoom 

augmentation) reduces the number of pixels in the image; therefore the image resolution 

will also be reduced. However, pre-runs prior to these experiments indicate that the same 

resolution should be used for training and predicting, else results will differ drastically 

across image resolutions.  
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Table 4-9: Zoom Augmented image with mean padding and corresponding mask. 

Several methods were used to pad the zoom augmented image with additional 

pixels such that the resolution would remain constant. Padding the image with zero 

values results in frequent failures during training and low IOU score for predictions. The 

method of choice to pad the image was mean padding which adds the mean of the row or 

column values calculated across all channels (Van der Walt et al., 2014). An important 

point to note is that the pixel count for the ROI remains the same after padding. See 

Appendix 8.3 for the results from each padding method. 
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4.2.1 Zoom Augmentation Experiment for Pond Dataset 

The experiments shown in this section is for the pond dataset which contains an 

oval-shaped pond as the region of interest.  

Spatial 

Resolution 

Original px Zoom Augment  Scaling factor Zoomed px 

20m 21624 - - - 

50m 5679 20m to 50m 0.5 5511 

100m 1571 20m to 100m 0.265 1547 

200m 431 20m to 200m 0.14 431 

Table 4-10: Pixel (px) count for ROI at each scale. 

Table 4-10 shows the pixel count for the region of interest at each spatial 

resolution, the scaling factor used for ZA and the corresponding pixel count for the zoom 

augmented image. For example, using the third row from Table 4-10, the ROI at 50m has 

a pixel count of 5679. Therefore a scaling factor of 0.5 was applied to the ROI at 20m 

such that the pixel count moves from 21624 to 5511.  

As mentioned previously, we want to simulate or approximate the region of 

interest at the different spatial resolutions. The number of pixels used in the construction 

of the object will reduce the further away you are from the object due to pixel 

aggregation. Although pixel count is used; spatial resolution is not measured by the 

number of pixels; however, the number of pixels influences how the kernels learn 

features. 
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Table 4-11: Predictions from three networks trained on ZA image. 

From Table 4-11, the highest spatial resolution image at 20m is zoom augmented 

to 50m, 100m, and 200m, and then each ZA image was used to train a neural network. 

The predictions produced by 20 to 50m improves by 0.2, recall from Table 4-1, the IOU 

score was 0.7 and 0 for scales 50m and 100m respectively. However, using ZA increase 

the IOU score to 0.88 and 0.26. It is not possible to train on an infinite amount of scales; 

ZA Training Image Prediction 

20m to 

50m 

 
 

20m to 

100m 

  

20m to 

200m 
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therefore, a discrete number of scales were selected based on visual inspection by the 

researcher, see section 3.3.  

Despite the increase, the 20m to 100m and 20m to 200m networks produce very 

low IOU scores which is due to multiple false positives being predicted. 

4.2.2 Zoom Augmentation Experiment for Door Dataset 

Spatial 

Resolution 

Original px Zoom Augment  Scaling factor Zoomed px 

1 29741 - - - 

2 4687 1 to 2 0.395 4705 

3 1739 2 to 3 0.265 1766 

Table 4-12: Pixel (px) count for ROI at each scale. 

Table 4-12 shows the pixel count for the door from the original image and the 

zoom augmented image. The scaling factors were selected such that the pixel count of the 

zoom augmented image is similar to that of the ROI at the next scale. However, there is 

no perfect scaling factor as identical results can be produced using a scaling factor of 0.5 

and 0.3. A conservative scaling factor of 0.5 can be used based on observations made 

during these experiments. Typically, a scaling factor less than 0.5 will result in frequent 

failures during training and low IOU scores; this is as a result of the significant loss in 

information from using a small scaling factor.  

In a real-world application, the aerial device used such as a drone should be able 

to record its altitude. The change or difference between altitudes can be used to determine 

the scaling factor. Scaling factors are used to approximate the ROI at the next scale; an 

approximation cannot be precise.  
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Table 4-13: Predictions from two networks trained on ZA image. 

From Table 4-13, the IOU scores are higher compared to the ROI from the pond 

dataset shown in Table 4-11, the lowest scales have IOU scores of 0.06 and 0.56. This is 

due to the pond dataset having a larger spatial gap which means that the loss in 

information when zoom augmenting from the highest to the lowest scale will be greater; 

the more information we lose, the harder learning becomes – frequent failures during 

training and the lower the IOU score. To contrast, Table 4-2 does not use ZA and 

produces IOU scores 0.66 and 0.15 for scales 2 and 3, however, using ZA, Table 4-13 

shows that the IOU score increases to 0.8 and 0.56 respectively.  

ZA Training Image Prediction 

1 to 2 

 
 

1 to 3 
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4.3 Issues with Zoom Augmentation 

It is evident that ZA or downscaling provides improvement for predictions at 

coarser scales, however, if there is a significant difference in terms of scale between the 

finest and coarsest image resolution - referred to as a large spatial gap, then ZA performs 

poorly. The further we zoom augment; the more contextual information is lost during this 

process.  

Context refers to the background portion of the image – everything excluding the 

region of interest. In the U-Net architecture, Ronneberger et al., stated that the contracting 

path of the network captures context information while the expanding path propagates the 

contextual information to higher resolution layers (Ronneberger et al., 2015). This 

contextual information is needed for the network to produce accurate predictions.  

 

Scale Original Image ZA to 200m 

20m 

 

 

 

100m 

  

Table 4-14: An illustration of the loss in contextual information when using ZA. 
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From Table 4-14, the loss in contextual information is significant when zoom 

augmenting from 20m to 200m versus 100m zoom augmented to 200m; this results in a 

reduction in the IOU score. Instead of performing large steps using ZA, we should 

incrementally step across spatial resolutions in an effort to preserve as much contextual 

information as possible. The training times for each dataset and final epoch can be seen in 

Appendix 8.7. The time for data preparation was not recorded as it was minuscule and 

was completed in a few seconds.  

4.4 Waterfall Method 

To preserve as much contextual information from the highest spatial resolution, 

we will take small steps towards the coarsest spatial resolution. The step size can be 

determined based on the difference or change in scale between the region of interest. 

Starting from the initial layer, the highest resolution image is zoom augmented to the 

second spatial resolution, and then a network is trained on the zoom augmented image.  

Predictions are then performed at the second spatial resolution where the results 

will be used as training data for the third spatial resolution, and so on; all succeeding 

layers will receive training images from the predictions of preceding layers – called layer 

feeding, this hierarchy resembles a waterfall. 
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Figure 4-2: An illustration of the Waterfall Method. 
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From Figure 4-2, instead of performing ZA from the highest to the lowest scale, 

ZA is performed from scale i to scale i + 1, that is the current scale is only zoom 

augmented to the next scale. This ensures that less contextual information is lost during 

zoom augmentation; rather than zooming from scale 1 to 4, ZA is performed from s1 to 

s2, s2 to s3, then s3 to s4. 

4.4.1 Waterfall Experiments 

The experiments from this section will show predictions from each layer in the 

Waterfall Method, where a layer represents a spatial resolution for the region of interest. 

Frequent comparisons will be made between Zoom Augmentation (ZA) only and 

Waterfall Method (WM). It is worth mentioning that the WM uses zoom augmentation to 

step from one resolution to the next.   
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 Table 4-15: Predictions from each scale in WM. 

In Table 4-15, the predictions from the lowest scales are shown, recall that the 

training data used was from the highest scale (20m). For comparison, using ZA and WM, 

Scale Results 
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the IOU score remains the same at 0.89 for the 50m scale; however, the 100m and 200m 

scales differ drastically. The IOU score for ZA is 0.26 and 0.06 respectively while it is 

0.63 and 0.37 for WM as seen in Table 4-15. 

Scale Results 

2 

 

3 

 

Table 4-16: Predictions from each scale in WM. 

Like Table 4-15, the IOU score for the highest spatial resolution is the same. It is 

0.8 for scale 2 using ZA and WM. An increase of 0.1 in IOU score is seen for 

scale 3 using WM. ZA produces 0.54 while WM produces 0.64. 
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The spatial gap is smaller for the door dataset versus the pond dataset; therefore, 

the loss in contextual information will not be as significant, resulting in higher IOU 

scores at coarser scales. WM does give an improvement in IOU score when compared to 

ZA. It can range from 0.1 to 0.4; however, this depends on the problem. The difference in 

IOU score using WM versus ZA is noticeable for coarser spatial resolutions. This is 

because, at coarser scales, WM preserves context while ZA discards majority or all of the 

contextual information.  

The two benefits of using WM are: 

• Layer Feeding - layer feeding allows us to pass along the information about the 

region of interest to lower scales, thereby allowing us to retain as much contextual 

information about the region of interest. 

• Each model trains and predict at one scale, which is ideal for fixed size kernel 

since they work best with single scale semantics 

Although other researchers such as (Raj et.al, 2015) and (van Nord & Postma, 2017) 

have used multi-scale networks to tackle scale invariance their application or use case is 

different. Van Nord’s task was classification which is assigning a label to an image based 

on global information while segmentation assigns a label to each pixel based on local 

information. There is no layer feeding in their ensemble, but this is because fine detail 

contextual information is not as important for the task of classification compared to 

segmentation. Classification operates on coarse information while segmentation requires 

fine detail information that allows for accurate predictions to be made at a pixel-wise 

level and not coarse or image-wise. The method proposed by (Raj et.al, 2015) requires 



   

77 

 

additional depth information such that a close approximation can be made, but this 

requires special equipment which may not be available to the user. 

4.4.2 Ensemble Learning - Bootstrap Aggregation (Bagging) 

The Waterfall Method (WM) has few similarities and differences between 

ensemble learning methods. Ensemble methods use multiple learning algorithms to 

improve the prediction score. There are several ensembles learning methods but the most 

similar method to WM is Bootstrap Aggregation, also called bagging. 

 

Figure 4-3: An ensemble of SVMs. Retrieved from “Using Support Vector Machine 

Ensembles for Target Audience Classification on Twitter.” (Lo, Chiong, & Cornforth, 

2015, p. 9) 

Figure 4-3 gives an overview of the bootstrap aggregation methodology, in this 

case, SVMs were used. Bootstrap aggregation involves training several models by using a 

subset of the training data, the predictions from each model is averaged into a final score. 

There are a few similarities and differences between bagging and WM. The methods are 
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similar in that they both train several models and each bag in the bagging method is 

equivalent to a scale in WM; however there are several differences. 

The complete training data is not available initially (data from all scales) therefore 

subsets cannot be created to train different models. Instead, each model provides training 

data for the next model. This connection between models is not present in bagging 

however in WM, each model except the first relies on the previous model to provide its 

training data. 

Finally, bagging aggregates or averages the predictions across all models, 

however, thou result can be averaged from WM, more importance is placed on the IOU 

score for the coarsest scale since that is the weak point of CNNs.  

4.5 Summary of Chapter 4 

The results from chapter 4 indicate that CNNs struggle with handling objects at 

varying scales. To improve the network’s robustness to variations in scale, ZA can be 

used to simulate the region at a lower scale. Although ZA, provides an improvement in 

prediction accuracy, the performance of the network reduces significantly at lower scales. 

A Waterfall Method (WM) was suggested which yields more accurate results compared 

to ZA. 
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Chapter 5  

Results 

The experiments in this chapter will be a comparison between ZA and WM. 

Results are quantitative where IOU was used as the metric to compare both methods. The 

aim is to identify which method provides the most accurate predictions at the coarsest 

scale and highlight issues or weaknesses of using WM.  

5.1 Waterfall Method vs Zoom Augmentation 

Zoom Augmentation (ZA) can be used to circumvent the scale issue experienced by 

CNNs. However, zoom augmenting directly from the highest to the lowest scale is 

“naïve” as the loss is contextual information is significant which results in low IOU 

scores and difficulties during training. WM allows us to move from the highest to lowest 

scale by retaining as much contextual information as possible. This chapter will asses 

which method produces the most accurate and consistent IOU scores. 

5.1.1 ZA vs WM Experiment for Pond Dataset.  

Due to the stochastic nature of neural networks, five runs were performed and the 

IOU score was averaged across all runs for the respective scales. The tables contain five 

IOU scores for each scale except the scale trained on, i.e., the IOU score for scale one 

across all datasets will be ignored.  
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ZA Pond Dataset 

Run Scale 2 Scale 3 Scale 4 

1 0.671888 0.298976958381 0.0 

2 0.795376 0.256107045301 0.0 

3 0.77811 0.372314150521 0.0111827351035 

4 0.791835 0.372607861443 0.128241664819 

5 0.77091 0.172828927757 0.0455051160734 

AVERAGE 0.7616238 0.294567 0.036986 

Table 5-1: Network was trained on only the highest spatial resolution for the pond dataset 

using ZA. 

 The predictions for each scale using ZA on the pond dataset is shown in Table 5-

1. There is a 60% decrease in the IOU score at scale 3 with 0.29, versus scale 2 at 0.76 

which highlights the significant loss in contextual information. There were no predictions 

made for scale 4, the IOU score was 0.03  

WM Pond Dataset 

Run Scale 2 Scale 3 Scale 4 

1 0.806615097199 0.436562838212 0.389409579147 

2 0.570166713548 0.502918415152 0.261629749784 

3 0.802865072335 0.527063030362 0.332860934666 

4 0.803789139207 0.497134642537 0.439680070691 

5 0.823985379601 0.319441976938 0.310481786915 

AVERAGE 0.76148428 0.456624 0.346812 

Table 5-2: Network was trained on the highest spatial resolution for the pond dataset 

using WM. 

Table 5-2 illustrates the improvement in the preservation of contextual 

information as we step across spatial resolutions. There is a 40% decrease in IOU when 
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moving from scale 2 to scale 3, compared to the 60% using ZA. Even at the coarsest scale 

(scale 4), the IOU score increased to 0.34 from 0.03 using WM. 

 

Figure 5-1: Comparison of the IOU across all scales (2, 3, 4) between ZA and WM. 

From Figure 5-1, WM outperforms ZA at scales 3 and 4. The IOU score does not 

drop below 0.4 with WM, however using ZA the IOU score falls below 0.4 at scale 3.  
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5.1.2 ZA vs WM Experiment for Door Dataset. 

The region of interest in this experiment was the door. 

Zoom Augment Door Dataset 

Run Scale 2 Scale 3 

1 0.755377986192 0.523978725137 

2 0.785577779653 0.610888620163 

3 0.716548674317 0.533183327087 

4 0.768932974832 0.612936494778 

5 0.784905106288 0.597264107258 

AVERAGE 0.762269 0.57565 

Table 5-3: Network was trained on only the highest spatial resolution for door using ZA. 

The reduction in IOU score for the door dataset is less in comparison to the pond 

dataset. This is because the spatial gap or difference in spatial resolution for the region of 

interest is smaller; therefore less information will be lost when moving from the highest 

to the lowest scale. 

WM Door Dataset 

Run Scale 2 Scale 3 

1 0.753696785647 0.535421992341 

2 0.811700857853 0.418043224287 

3 0.832152141446 0.378368088879 

4 0.810602905292 0.441032139817 

5 0.856163909258 0.511807573824 

AVERAGE 0.812863 0.456935 

Table 5-4: Network was trained on only the highest spatial resolution for door using WM.  

There is a small increase in the IOU score for scale 2, but what should be 

highlighted is that the IOU score has decreased for scale 3 when using WM. The IOU 

score for scale 3 using ZA is 0.57 while it is 0.45 for WM, a 0.1 decrease.   
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Figure 5-2: Comparison of the IOU across all scales (2, 3) between ZA and WM. 

From Figure 5-2, the line graph illustrates that WM performs worst than ZA at the 

lowest scale. Further investigations were done to find the source of the problem. 

Although there is a marginal difference in IOU score, WM is still expected to outperform 

ZA. This issue will be further investigated in section 5.2. 
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5.2 Issues with the Waterfall Method 

The experiments highlight a problem with WM which results in lower IOU scores 

than the naïve approach – ZA.  

 
Figure 5-3: Training image used to train scale 3 of WM. 

Figure 5-3 contains the prediction from scale 2 that will be used to train scale 3. 

The massive false positive in this image causes training at scale 3 to be difficult; it’s 

almost confusing the network. This results in poor IOU scores when predicting at scale 3 

since the network has learned the false positives from the previous layer and is 

propagating that incorrect information along the pipeline to other scales. 
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Table 5-5: Network was trained on predictions from scale 2 using WM. 

From the Table 5-5, the IOU scores are low for all training points at the 3rd scale. 

A large portion of predictions is false positives which are because of that misinformation 

from the previous layer. The network appears to be overfitting to the color of the door as 

the false pixels have similar color values to the door.  

To reduce the overfitting to color, images that emphasize the structural features 

(edges) of the region must be introduced. This ensures that the network learns other 

Scale Results 
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features, separate from color, for predicting the region of interest such as the structural 

arrangement of pixels (shape). Different image preprocessing techniques can be used to 

highlight features in an image.  

5.2.1 Sobel Filter for all Scales 

According to Rhinelander, Sobel filtering (SB) can be used to enhance the edges 

of images (Rhinelander, 2016). The research showed that the accuracy of his SVM 

classifier for side-scan sonar images increased most significantly when a Sobel filter is 

used.  

 

WM Door Dataset 

Run Scale 2 Scale 3 

1 0.918325476 0.690978554311 

2 0.912171217 0.702808515524 

3 0.903284112935 0.829222724282 

4 0.908378909672 0.537623400318 

5 0.913874752 0.481855278049 

AVERAGE 0.911206894 0.648497694 

Table 5-6: Network was trained on the highest spatial resolution for door using WM with 

Sobel Filter applied. 

From Table 5-6, there is an increase in the IOU score for both scales. It increases 

to 0.91 from 0.81 at scale 2, and 0.64 from 0.45 at scale 3. There is a definite 

improvement in the IOU score when a Sobel image is used, however including a Sobel 

filtered image at coarser scales may affect the IOU score.  

The IOU scores differ drastically across all five runs at scale 3, with the lowest 

being 0.48 and the highest 0.82. The inconsistent scores indicate that extracting and 
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learning features from the Sobel image at that scale is difficult for the network. This 

results in noisy training (Large Oscillations) and frequent failures. 

 

Table 5-7: Sobel filtered door for scale 2 and 3. 

The visibility and clarity of the region of interest are low at scale 3. This results in 

high oscillations during training, in other words, the network cannot extract the necessary 

features for the identification of the ROI. 
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5.2.2 No Sobel Filter for Coarsest scale 

WM Door Dataset 

Run Scale 2 Scale 3 

1 0.89109862 0.733816022346 

2 0.900329057 0.715015361411 

3 0.913265374 0.731744250391 

4 0.920293525926 0.690411824337 

5 0.88667578863 0.554593685666 

AVERAGE 0.902332473 0.717747 

Table 5-8: Network was trained on the highest spatial resolution for door using WM, no 

Sobel filter was used at scale 3. 

From Table 5-8, the IOU score increases for the 3rd scale, from 0.64 to 0.71. This 

illustrates that including the Sobel filtered image at the 3rd scale reduces the IOU score. 

Furthermore, the IOU scores are more consistent with the lowest being 0.55 and highest 

is 0.73. No further experimentation was done using Sobel filtering on the remaining 

datasets as this was not the focus of the research. 

5.2.3 Contrast Enhancement using Histogram Equalization  

To combat the false positive issue that plagued door, regions can be made more 

defined using contrast enhancement. The contrast of an image refers to the difference in 

luminance of regions in the image. By making regions more distinguishable from 

adjusting luminance (pixel intensities), features can be learnt easier to discriminate 

between objects. According to Bora, the advantage of contrast enhancement is that it 

removes ambiguity or uncertainty between different regions in the image (Bora & Gupta, 
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2016). Histogram Equalization (HE) enhances the contrast of an image by adjusting the 

pixel intensity values. 

 

Figure 5-4: Histogram equalized image used to train scale 2. 

In Figure 5-4, the door appears to be more defined and separated from the 

different regions such as the wall, and the ground which the networking was mis-

segmenting.  

WM Door Dataset 

Run Scale 2 Scale 3 

1 0.902338099 0.762798307992 

2 0.902661542 0.799544890362 

3 0.921064694 0.817921326584 

4 0.93043777 0.726590352478 

5 0.92677762 0.769605002381 

AVERAGE 0.916656 0.775292 

Table 5-9: Network was trained on the highest spatial resolution for door using WM with 

HE. 

From Table 5-9, the IOU score for scale 2 remains the same when using a Sobel 

filtered image. However, including the HE images at the coarsest scale increases the IOU 
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score from 0.71 to 0.77. Although the increase is not significant, the consistency of the 

scores has improved, the lowest is 0.72 and the highest is 0.81. Furthermore, there is a 

significant improvement in IOU score for scale 3 between ZA and WM with HE. Using 

ZA, it is 0.57 while HE produces 0.77. 

 

Figure 5-5: Histogram equalized image used to train scale 3. 

These experiments highlighted an issue with WM, which is that false positives in 

early stages will be propagated to later stages resulting in low IOU scores. This can be 

counteracted by including a Sobel filtered or histogram equalized image at the highest 

scale which allows for structural features to be learned, thereby reducing false positives 

made from overfitting to color information.  

However, including Sobel filtered images for coarser scales might be detrimental 

to IOU score; instead a histogram equalized image should be used for all scales. 
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Figure 5-6: Comparison of the IOU across all scales (2, 3) between ZA and WM. 

From Figure 5-6, after resolving the false positive problem for the door, WM 

continues to outperform ZA. At the coarsest scale, ZA produces 0.57 while WM gives 

0.77. Despite WM performing poorly when false positives are present in the training data, 

image filtering or preprocessing techniques such as Sobel filtering and histogram 

equalization can be used to combat this issue. 

 

 

 

 

 



   

92 

 

5.3 ZA vs WM Experiment for Grass Dataset 

This dataset contains images of grass with unhealthy regions highlighted. To test 

the agriculture use case mentioned in section 3.3.1, experiments were conducted to 

identify fungus regions in zoysia grass at different elevation using ZA and WM. 

Zoom Augment Grass Dataset 

Run Scale 4 Scale 8 

1 0.629594278 0.479933 

2 0.626482495 0.429818 

3 0.615708043 0.404324 

4 0.585047077 0.321353 

5 0.590333073 0.232538 

AVERAGE 0.609432993 0.373593 

Table 5-10: Network was trained on the highest spatial resolution for the grass dataset 

using ZA. 

WM Grass Dataset 

Run Scale 4 Scale 8 

1 0.629594278 0.577266 

2 0.626482495 0.57497 

3 0.615708043 0.563166 

4 0.585047077 0.543248 

5 0.590333073 0.482413 

AVERAGE 0.609432993 0.548213 

Table 5-11: Network was trained on the highest spatial resolution for the grass dataset 

using WM. 

Contrasting the results from Table 5-10 and Table 5-11, WM improves the IOU 

score for the coarsest scale from 0.37 to 0.54. The IOU scores are low in comparison to 

the previous datasets; this is because dry patches do not have a defined shape – edges. 
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This makes it difficult to create training labels as the regions are not clearly defined, i.e., 

edges of dry patches are mixed with healthy grass. During inferencing, this results in 

edges being ignored as the network will segment the central region of the dry patches. 

This, therefore, results in a lower IOU score.  

 

Figure 5-7: Comparison of the IOU across all scales (4, 8) between ZA and WM. 

In Figure 5-7, WM and ZA produce the same IOU at scale 4; however, there is a 

significant difference between scale 8. Histogram equalization did not provide an 

improvement in IOU for this dataset, see Appendix 8.5. 
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Method Results 

ZA 

 

WM 

 

Figure 5-8: Predictions from using ZA versus WM. 

It is evident that WM produces more accurate predictions than ZA. From Figure 5-

8, using WM, the network can identify dry grass regions which are not detectable when 

using ZA. The experiments conducted in this chapter proves that WM is the superior 

scaling method to the naïve approach of ZA, more results on the different datasets and 

techniques used can be seen in Appendix 8.5.  
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5.4 Summary of Chapter 5 

Pond Dataset 

 Scale 2 Scale 3 Scale 4 

Original 0.800775949767  0.001394335512  0 

ZA 0.7616238  0.294567  0.036986  

WM 0.76148428  0.456624  0.346812  

WM wt HE 0 0 0 

Door Dataset 

Original 0.709833356  0.563161601  - 

ZA 0.762269  0.57565  - 

WM 0.812863  0.456935  - 

WM wt HE 0.916656  0.775292  - 

Grass Dataset 

Original 0.501264691  0.233507182  - 

ZA 0.609432993  0.373593  - 

WM 0.609432993  0.548213  - 

WM wt HE 0.556790449  0.54668215  - 

Table 5-12: Summary table showing average IOU score for each method across all 

datasets. 

The results from Chapter 5 consisted of a quantitative comparison between the 

Zoom Augmentation (ZA) and Waterfall Method (WM). From Table 5-12, an 

improvement is seen with the Pond and Grass dataset using WM; however, there is no 

improvement for the door dataset. The reduction in IOU score for door using WM is due 

to misclassified pixels being propagated along the pipeline.  

Several image processing techniques such as: Sobel filtering and contrast 

enhancement using histogram equalization (HE) were used before applying WM. 

Histogram equalization provided a significant improvement in the door dataset by 
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reducing the number of misclassified pixels. However, no improvement was seen for the 

Pond and Grass dataset using HE as highlighted in Table 5-12. The experiments 

conducted in this chapter show that image processing techniques such as image scaling 

(ZA or WM) and histogram equalization are essential for improving prediction accuracy.  
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Chapter 6  

Conclusion 

6.1 Summary and Conclusion 

The increased application of segmentation requires more robust Machine 

Learning (ML) algorithms that can handle variations of the input. Areas such as 

autonomous driving and robotics depend on consistent and reliable results from ML 

algorithms for them to perform optimally. Convolutional Neural Networks are the current 

state of the art in image recognition, they have excelled in the areas of classification, 

object detection, and segmentation.  

However, objects at varying sizes pose a significant problem to convolutional 

neural networks; this is referred to as the scale issue. Researchers (van Nord & Postma, 

2017) and (Boominathan, et al., 2016) mention that using images of varying scales or 

resolutions can make the network more robust to changes in scale. However, although 

image scaling methods can be used to circumvent this scale issue, it is not practical if the 

distance between the highest and lowest scale is significant as too much contextual 

information will be lost in this process.  

This research has shown that incrementally stepping across scales using a 

waterfall approach provides more accurate predictions at lower scales. Despite a few 

issues, WM is the superior method in comparison to ZA for producing scale-invariant 

convolutional neural networks. Scale-invariant CNNs can be beneficial in areas such as 

segmenting agricultural images, automated search and rescue missions, and an improved 

drone-based delivery system.  
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 The results from section 8.5 of the appendix show that WM provides an 

improved IOU score for the pond and grass dataset, but not the for the door dataset. 

Although, WM did not improve the IOU score for the door dataset, combining WM with 

image processing algorithms such as histogram equalization generated better results. 

Image processing techniques such as: Waterfall Method, Zoom Augmentation and 

Histogram Equalization are all essential for providing more accurate segmentation using 

CNNs. 

The contributions of this research include the proposed Waterfall Method (WM), 

as well as the benefits of using image processing techniques such as Contrast 

Enhancement using Histogram Equalization to improve prediction accuracy.   

6.2 Future Directions 

Several optimizers were tested prior to the experiments, see appendix 8.6. Adam 

was selected as the optimizer of choice. However, the results from the appendix indicate 

that RMSPROP may provide an improvement in the IOU score. Further testing of 

optimizers will be done.  

Although WM produces more accurate predictions, it is not without fault. False 

positives in training images causes noisy or high variance training which sometimes 

result in failures during training or inaccurate predictions. Future work will be done into 

techniques to reduce the effects of false positives on WM. 

Testing of the proposed methods Zoom Augmentation, Waterfall Method and 

Histogram Equalization on different CNN architectures for segmentation. The 

experiments for this research was performed using the U-Net architecture, see section 2.7.  
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Finally, a more accurate method for selecting a scaling factor will be researched. 

Scaling factors are approximations in the change of spatial resolution; therefore there is 

no perfect scaling factor. However, the more accurate the approximation, the more 

accurate the predictions will be. Drone images of various land cover were captured at the 

end of this research. Therefore, they were not included as part of the experiments. Future 

experiments and testing will be performed on these images. 
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Appendix 

8.1 Appendix A – Experiment Images 
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Figure 8-1: Training data for all scales from the pond dataset. 
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Figure 8-2: Training data for all scales from the door dataset. 
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Figure 8-3: Training data for all scales from the grass dataset. 
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8.2 Appendix B - Future work with drone images 
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Figure 8-4: Images from the first drone footage. 
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Figure 8-5: Images from the second drone footage. 
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Figure 8-6: Images from the third drone footage. 
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8.3 Appendix C – Padding Methods 

Zero 

(Constant) 

 

Edge 

 

Wrap 

 



   

113 

 

Mean 

 

Figure 8-7: Shows four padding methods used after ZA. 

Padding 

Methods 

Pond Dataset 

Run Zero Edge Wrap Mean 

1 0 0.618731 0.370771 0.804365 

2 0 0.627839 0.533084 0.700548 

3 0.021222 0.500443 0.346805 0.805383 

4 0 0.633169 0.571436 0.640916 

5 0 0.706453 0.204927 0.801603 

6 0 0.497565 0.456299 0.710036 

7 0 0.53384 0.576473 0.794956 

8 0 0.021222 0.573096 0.735756 

9 0 0.65653 0.495529 0.818502 

10 0 0.560507 0.556784 0.788429 

AVERAGE 0.021222 0.53563 0.46852 0.760049 

Table 8-1: IOU scores from four padding methods used after ZA 

The image at scale 1 for the pond dataset was zoom augmented to scale 2, and 

several padding methods were tested. Table 8-1 shows that mean padding is the most 

consistent and produces accurate IOU scores. 
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8.4 Appendix D – Overview of Training Procedure 

Training Parameters 

Image Height 512 

Image Width 512 

Training size before augmentation 3-4 

Training size after augmentation 8-12 

Validation size 2-4 

Test size 4 

Batch size 2 

Learning Rate 1e-4 

Epochs 500 

Table 8-2: Shows the training parameters used for experiments. 

 

Training Size Door Dataset 

Run 4 Original + 4 Rotation Augmented 10 Original 

1 0.870978 0.879754 

2 0.884398 0.865318 

3 0.886643 0.893627 

4 0.866125 0.864448 

5 0.876918 0.886131 

AVERAGE 0.877012 0.877856 

Table 8-3: Results from increasing training size using data augmentation. 

From Table 8-3, a CNN was trained on ten original images of the door data from 

scale 1, while another CNN was trained on four original images combined with four 

rotation augmented image. The results show that similar IOU scores can be attained using 

a smaller dataset combined with data augmentation.  
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8.5 Appendix E – Image Processing Results 

8.5.1 Pond Dataset 

Original Pond Dataset 

Run Scale 2 Scale 3 Scale 4 

1 0.810359852652 0.006971678 0 

2 0.839199884210 0 0 

3 0.758837727831 0 0 

4 0.848522024814 0 0 

5 0.746960259329 0 0 

AVERAGE 0.800775949767 0.001394335512 0 

Table 8-4: Results from using no data augmentation on the Pond Dataset.  

Zoom Augment Pond Dataset 

Run Scale 2 Scale 3 Scale 4 

1 0.671888 0.298976958381 0.0 

2 0.795376 0.256107045301 0.0 

3 0.77811 0.372314150521 0.0111827351035 

4 0.791835 0.372607861443 0.128241664819 

5 0.77091 0.172828927757 0.0455051160734 

AVERAGE 0.7616238 0.294567 0.036986 

Table 8-5: Results from using ZA on the Pond Dataset. 
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Table 8-6: Results from using WM on the Pond Dataset. 

WM wt HE Pond Dataset 

Run Scale 2 Scale 3 Scale 4 

1 0 0 0 

2 0 0 0 

3 0 0 0 

4 0 0 0 

5 0 0 0 

AVERAGE 0 0 0 

Table 8-7: Results from using WM with HE on the Pond Dataset. 

 

 

 

 

 

 

 

 

 

 

 

WM Pond Dataset 

Run Scale 2 Scale 3 Scale 4 

1 0.806615097199 0.436562838212 0.389409579147 

2 0.570166713548 0.502918415152 0.261629749784 

3 0.802865072335 0.527063030362 0.332860934666 

4 0.803789139207 0.497134642537 0.439680070691 

5 0.823985379601 0.319441976938 0.310481786915 

AVERAGE 0.76148428 0.456624 0.346812 
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8.5.2 Door Dataset 

 

Original Door Dataset 

Run Scale 2 Scale 3 

1 0.761571 0.579931 

2 0.682769 0.441041 

3 0.734601 0.645998 

4 0.655317 0.564791 

5 0.714909 0.584047 

AVERAGE 0.709833356 0.563161601 

Table 8-8: Results from using no data augmentation on the Door Dataset. 

Zoom 

Augment 

Door Dataset 

Run Scale 2 Scale 3 

1 0.755377986192 0.523978725137 

2 0.785577779653 0.610888620163 

3 0.716548674317 0.533183327087 

4 0.768932974832 0.612936494778 

5 0.784905106288 0.597264107258 

AVERAGE 0.762269 0.57565 

Table 8-9: Results from using ZA on the Door Dataset. 
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WM Door Dataset 

Run Scale 2 Scale 3 

1 0.753696785647 0.535421992341 

2 0.811700857853 0.418043224287 

3 0.832152141446 0.378368088879 

4 0.810602905292 0.441032139817 

5 0.856163909258 0.511807573824 

AVERAGE 0.812863 0.456935 

Table 8-10: Results from using WM on the Door Dataset. 

WM wt HE Door Dataset 

Run Scale 2 Scale 3 

1 0.902338099 0.762798307992 

2 0.902661542 0.799544890362 

3 0.921064694 0.817921326584 

4 0.93043777 0.726590352478 

5 0.92677762 0.769605002381 

AVERAGE 0.916656 0.775292 

Table 8-11: Results from using WM with HE on the Door Dataset. 
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8.5.3 Grass Dataset 

 

Original Grass Dataset 

Run Scale 4 Scale 8 

1 0.535388019 0.33788581 

2 0.532847447 0.279958012 

3 0.511806852 0.209943247 

4 0.470944908 0.208243042 

5 0.455336227 0.131505798 

AVERAGE 0.501264691 0.233507182 

Table 8-12: Results from using no data augmentation on the Grass Dataset. 

Zoom Augment Grass Dataset 

Run Scale 4 Scale 8 

1 0.629594278 0.479933 

2 0.626482495 0.429818 

3 0.615708043 0.404324 

4 0.585047077 0.321353 

5 0.590333073 0.232538 

AVERAGE 0.609432993 0.373593 

Table 8-13: Results from using ZA on the Grass Dataset. 
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WM Grass Dataset 

Run Scale 4 Scale 8 

1 0.629594278 0.577266 

2 0.626482495 0.57497 

3 0.615708043 0.563166 

4 0.585047077 0.543248 

5 0.590333073 0.482413 

AVERAGE 0.609432993 0.548213 

Table 8-14: Results from using WM on the Grass Dataset. 

WM wt HE Grass Dataset 

Run Scale 4 Scale 8 

1 0.578595947 0.582058581 

2 0.545683067 0.558873205 

3 0.565429621 0.548106107 

4 0.555230695 0.53414636 

5 0.539012912 0.510226498 

AVERAGE 0.556790449 0.54668215 

Table 8-15: Results from using WM with HE on the Grass Dataset. 

The results from this section of the appendix show the IOU score from several 

methods mentioned in this research across all datasets. Table 8-7 shows that combining 

several augmentation methods for a given dataset produces erroneous results. This was 

not observed for the other datasets. 
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8.6 Appendix F – Optimizer Results 

 

 

Door Dataset 

Run ADADELTA ADAGRAD ADAMAX ADAM RMSPROP 

1 0.872221 0.741377 0.916406 0.912428 0.90055 

2 0.87326 0.760499 0.906377 0.933782 0.867157 

3 0 0.727241 0.882737 0.923811 0.783758 

4 0.76478 0.777296 0.906693 0.892835 0.718127 

5 0.927521 0.786313 0.878107 0.897167 0.876897 

6 0.933112 0.801827 0.913926 0.933088 0.860732 

7 0.02341 0.860883 0.933602 0.926129 0.937059 

8 0.927267 0.780936 0.904363 0.903392 0.700712 

9 0 0.748698 0.019588 0 0.831588 

10 0.897261 0.829661 0 0.922527 0.930679 

AVERAGE 0.621883 0.781473 0.72618 0.824516 0.840726 

Table 8-16: Results from scale 2 of the Door Dataset using several optimizers. 
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8.7 Appendix G – Training time Results 

Pond Dataset 

Run Elapsed Time  Final Epoch 

1 4m:7s 80 

2 3m:54s 75 

3 3m:42s 72 

4 4m:6s 79 

5 3m:47s 73 

Table 8-17: Running Time and Final epoch from the Pond Dataset. 

 

Door Dataset 

Run Elapsed Time  Final Epoch 

1 4m:14s 130 

2 3m:56s 118 

3 3m:38s 106 

4 3m:39s 109 

5 4m:11s 124 

Table 8-18: Running Time and Final epoch from the Door Dataset. 

 

Grass Dataset 

Run Elapsed Time  Final Epoch 

1 3m:32s 185 

2 2m:3s 105 

3 1m:46s 92 

4 2m:31s 132 

5 2m:13s 116 

Table 8-19: Running Time and Final epoch from the Grass Dataset. 
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8.8 Appendix H – Confidence Level Results for Segmentation 

Pond Dataset 

Run 0.99 0.95 0.9 0.8 0.5 

1 0.83482 0.83164 0.83108 0.83145 0.83037 

2 0.86753 0.86987 0.86987 0.86893 0.86734 

3 0.81153 0.80208 0.79633 0.79100 0.78137 

4 0.84971 0.85268 0.85237 0.85131 0.84998 

5 0.80735 0.78979 0.78375 0.77794 0.76875 

AVERAGE 0.83419 0.82921 0.82668 0.82412 0.81956 

Table 8-20: Results from different Confidence levels on the Pond Dataset. 

Door Dataset 

Run 0.99 0.95 0.9 0.8 0.5 

1 0.79022 0.77600 0.76748 0.75492 0.73315 

2 0.68540 0.65534 0.64740 0.63971 0.62931 

3 0.68929 0.68385 0.68097 0.67799 0.67200 

4 0.64823 0.63349 0.62734 0.62046 0.60778 

5 0.79389 0.76578 0.75815 0.74987 0.73797 

AVERAGE 0.72141 0.70289 0.69627 0.68859 0.67604 

Table 8-21: Results from different Confidence levels on the Door Dataset. 
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Grass Dataset 

Run 0.99 0.95 0.9 0.8 0.5 

1 0.38349 0.39365 0.39675 0.40027 0.40577 

2 0.45765 0.46330 0.46582 0.46858 0.47250 

3 0.36099 0.36882 0.37161 0.37525 0.38063 

4 0.36163 0.36767 0.37026 0.37252 0.37674 

5 0.34373 0.36623 0.37490 0.38288 0.39517 

AVERAGE 0.38150 0.39193 0.39587 0.39990 0.40616 

Table 8-22: Results from different Confidence levels on the Grass Dataset. 

The results from these experiments indicate that there is a marginal difference in 

IOU score when using a different level of confidence. An image segmented using a 

confidence level of 0.99 and 0.5 can produce similar IOU scores. 


