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A Mechanochemical Approach for Organocatalysis 

And 

Improved Synthesis of Gemini Surfactants 

 

by Jacob William Campbell 

 

 

Abstract  
 

 Mechanochemistry and organocatalysis provide green synthetic methods for 

chemical reactions. Reported herein are Morita-Baylis-Hilman reactions co-catalyzed by 

1,4-diazabicyclo[2.2.2]octane, DABCO, and 1-(4-(3-(3,5-bis(trifluoromethyl)phenyl)-

thioureido)-benzyl)-1-methylpyrrolidin-1-ium hexafluorophosphate using a mechano-

chemical approach known as Liquid Assisted Grinding, LAG. These room temperature 

reactions used methanol as a liquid additive to achieve an 85.7 % conversion and 14.8 % 

isolated yields, which is a slight improvement over conventional methods. 

 

 Gemini cationic surfactants have a lower critical micelle concentration (CMC) 

when compared to conventional analogues. This led to many improvements in materials 

such as soaps, detergents, wetting agents and foaming agents. There is a particular interest 

from a physical and material chemistry standpoint on how gemini cationic surfactants will 

behave with other surfactants in mixed micellular systems. Previously reported syntheses 

of quaternary amine gemini surfactants in the literature noted long reaction times, poor 

yields and large solvent use, making large scale production troublesome. Reported herein 

is an improved synthesis of mcm type cationic gemini surfactants using microwave 

irradiation. 
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1.0.0 A Mechanochemical Approach for Organocatalysis 

1.1.0 Introduction 

1.1.1 Green Chemistry 

 Since the introduction of Green Chemistry in the early 1990s, there has been large 

adoption of this field on an international scale.1,2 The success of the Green Chemistry area 

of interest has been highlighted over the last 30 years, even sparking its own Royal Society 

of Chemistry journal in 19993 Many review articles have been published in Green 

Chemistry to highlight these successes, but perhaps the most comprehensive review is the 

one that outlined the principle and practices that many chemists follow today.  The book, 

“Green Chemistry, Theory and Practice” by Paul Anastas and John Warner outlines the 

purpose and meaning of Green Chemistry. Green Chemistry is defined therein using “The 

Twelve Principles of Green Chemistry”, which advises chemists on how they can better 

design their syntheses for the goal of sustainability.4 These principles help to guide the 

current research, and are as follows:  

1. Waste prevention, rather than cleaning or treating waste once created; 2. Atom 

economy, reducing the atoms used that are not incorporated in the final product; 3. 

Less hazardous chemical synthesis, in order to protect handlers and the 

environment; 4. Designing safer chemicals, considering the toxicity and volatility 

of products; 5. Safer solvents and auxiliaries, as solvents account for the most of 

total chemical waste and should be minimized; 6. Design for energy efficiency, 

avoiding wasteful processes such as heating and cooling; 7. Use of renewable 

feedstocks; 8. Reduce derivatives, where minimizing reaction steps inherently 
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reduces waste; 9. Catalysis, focusing on reducing reaction times and energy use; 10. 

Design for degradation, avoiding anything that can persist or bio accumulate; 11. 

Real-time analysis for pollution prevention, insuring that reactions are not 

producing pollutants; 12. Inherently safer chemistry for accident prevention. 

This work seeks to apply several of these principles: prevention of waste, atom economy, 

less hazardous synthesis, benign chemicals, safer solvents, energy efficiency, catalysis and 

inherently safer chemistry for accident prevention—with heavy focus on energy efficiency 

and catalysis. 

 

1.1.2 Ionic Liquids 

 Ionic liquids (ILs) are defined as any salts that melt below 100°C. ILs are relevant 

in the field of Green Chemistry because they have no measurable vapour pressure, so they 

are inherently non-volatile chemicals and are often non-toxic and generally non-

flammable.5 Ionic liquids are also praised for their tunable properties because both the 

cation and anion components can be varied. Ionic liquids have even been called “designer 

solvents” because they can be tuned for hydrophobicity, viscosity, melting point and 

density.6 Drawbacks of ionic liquids are that they are often 5-20 times more expensive than 

molecular solvents, often have very high viscosity, often very hygroscopic and, depending 

on design, can be toxic, non-biodegradable and non-sustainable.7,8 

 The most commonly used cations for ionic liquids are pyridinium, pyrrolidinium, 

imidazolium, sulfonium, ammonium and phosphonium ions, all of which are organic and 

can be readily functionalized. For instance, hydrocarbon chains can be added to tune for 
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hydrophobicity of the molecule. Most of the common anions are inorganic, such as 

tetrafluoroborate, hexafluorophosphate, various halides, bis(fluorosulfonyl)amide and 

bis((trifluoromethyl)sulfonyl)amide (Figure 1). If halide-free syntheses are desired, then 

organic anions such as methylsulfonate can be used. ILs commonly feature nitrogen or 

phosphorous based heteroatoms because they are easily quaternized to generate salts. As 

of 2008 over 1000 ionic liquids have been reported in the literature and over 300 are 

commercially available.9 

 

Figure 1: Common Components of Ionic Liquids 

 

1.1.3 Task Specific Ionic Liquids 

 Task specific ionic liquids (TSILs) are functionalized ionic liquids that are designed 

with a specific application in mind. The predominant use of TSILs is in catalysis as a way 

to facilitate the separation and subsequent reuse of catalysts, such as a two-phase or 

heterogeneous catalysis. 
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 TSILs have been used for extraction of metal ions from an aqueous phase by Rogers 

et al. in 2001.10,11 This work described a functionalized imidazolium-based cation with 

thioether, urea and thiourea moieties to coordinate to mercury (II) and cadmium (II) 

transition metals through the sulfur atom. This designer cation with a hexafluorophosphate 

anion resulted in a water immiscible ionic liquid. The aim of this work was to have a two-

phase system for ease of recycling the TSIL. Since the TSIL described by this report was 

so expensive, they used mostly 1-butyl-3-methylimidazolium hexafluorophosphate and 

doped with 10% TSIL.  

 Some of the above principles of Green Chemistry were employed in this thesis. For 

this thesis the TSIL and reagents are dissolved in a selected IL. When the reaction is 

complete the reagents and products are extracted with solvent, the IL will retain the TSIL 

for subsequent reactions. Butylmethypyrrolidinium bistriflimide [BMPyr][N(Tf)2] was 

selected as the IL because it is hydrophobic, has a low viscosity when compared to other 

ILs—allowing for ease of mixing and also dissolves most organic molecules, excluding 

alkanes and aromatics.5 The TSIL that was designed for this research (also known as an 

ionic liquid tag) has a  pyrrolidinium-based cation for preferential solubility in the chosen 

IL and a thiourea moiety for catalyzing the MBH reaction. The preferential solubility allows 

for the TSIL to be retained in the IL, whilst leaving behind the reactants and products in 

the organic phase, allowing for liquid-liquid extraction.5 This strategy for separation and 

recovery was reported by the Singer group with comparable yields after three consecutive 

reactions.12 An imidazolium-based cation was not selected for this work because of a 

known side reaction between imidazolium and aldehydes under mildly basic conditions.3 
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1.1.4 Catalysis 

 Catalysis is the focus of many chemists in the Green Chemistry field because 

catalytic systems allow for a better atom economy, have better energy efficiency due to 

shorter reaction times, and a large majority of pharmaceuticals are made using a catalyst at 

some stage of the reaction.14 Catalysts are reagents that are used but not consumed in 

reactions and lower the activation energy of a reaction by offering an alternative reaction 

pathway. Since catalysts are not consumed in reactions and can continue to react rapidly, 

they are often used in sub-stoichiometric amounts. 

 Commonly catalyzed reactions in the pharmaceutical industry are all carbon-carbon 

bond forming reactions such as the Diels-Alder reaction,15 Heck reaction,16 Wittig 

reaction,17 Michael reaction,18 Suzuki coupling reaction,19 and the Morita-Baylis-Hillman 

reaction (MBH).20,21 The Heck and Suzuki reactions are very unfavourable for green 

chemistry because they are catalyzed using palladium-based complexes that are both toxic 

and expensive. The other named reactions are not likely targets for retrofitting with new 

catalysts because they are already catalyzed using small organic molecules.22 

1.1.5 Organocatalysis 

 An organocatalyst shares the same definition as a catalyst except it is an organic 

compound that does not contain a metal atom.22 Organocatalysis is used by living 

organisms in cases such as amino acids L-alanine and L-isovaline catalyzing aldol-type 

reactions to make sugar derivatives.22 Using organic molecules as catalysts is as old as 

Chemistry itself, but it was not widely adopted until the 1990s when Jacobsen and Corey 

reported that organic Lewis acids can be used for hydrogen-bonding catalysis in Strecker 
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reactions to activate the imine; beginning the field of organocatalysis that is known today 

(Figure 2).14,23  

 

 

Figure 2. Corey’s Catalyst For Strecker Reactions 

 

1.1.6 Thioureas in Organocatalysis  

 The work by Jacobsen and Corey sparked many researchers to study hydrogen-

bonding catalysis in other famous reactions such as the Diels-Alder and Friedel-Crafts 

reactions. With such success demonstrated this showed that the same was possible in the 

Morita-Baylis-Hillman reactions. In 1996, Roos reported that alcohols such as phenols 

could significantly increase the rate of Morita-Baylis-Hillman reactions, which indicated 

that hydrogen-bond catalysis was taking place.24 Some years later, Schreiner developed a 

catalyst that was an electron deficient thiourea and it was used as a hydrogen bond donor 

to activate carbonyls, nitro olefins and imines. These reactions showed that electron 

deficient thiourea catalysts can act like Lewis acids such as aluminium (III) chloride while 

the hydrogen atoms in the ortho position of the aryl rings help to rigidify the molecule by 

coordinating to the sulfur atom. Thiourea was selected because it is a stronger acid than 

urea (pKa = 21.1 and 29.6 respectively) and ureas have a higher tendency to dimerize due 

to stronger intramolecular forces. 

 Later, Sohtome et al. showed great results in the Morita-Baylis-Hillman reactions 

between benzaldehyde and many electrophiles.25 Schreiner’s diarylthiourea showed great 



7 
 

importance of electron-withdrawing groups that are designed to increase the relative acidity 

of the protons, which was achieved by having bis trifluoromethyl groups in the meta 

position of the arene substituents (Figure 3a).25,26  

 Unfortunately, these reactions are homogenous due to the fact that the thiourea, 

tertiary amine and reagents all exist in the same phase. A catalyst in a homogenous reaction 

cannot easily be extracted and is thus not readily recyclable. Recyclability of thiourea 

organocatalysts can be found in the literature, including thiourea dioxides (TUD) which 

can be extracted with pyran derivatives27, thioureas that contain a large hydrophobic chain 

for preferential solubility28 and thioureas that can be immobilized using ionic liquids.12  For 

this work, bis trifluoromethyl functionality will be used in conjunction with the previously 

mentioned thiourea and pyrrolidinium moieties (Figure 3b). 

 

 

 

 

 

Figure 3. Thioureas With Bis Trifluoromethyl Moiety For Organocatalysis 
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1.1.7 Morita-Baylis-Hillman Reaction 

 The Morita-Baylis-Hillman (MBH) reaction is an addition reaction between the α-

position of an activated double bond and an sp2 electrophilic carbon. 20 This carbon-carbon 

bond forming reaction creates an allylic alcohol product that is considered a very useful 

functional group for syntheses. The limitation of MBH reactions is that they are slow, but 

the rate can be increased through the use of catalysis (Scheme 1). 

 

 

Scheme 1. General Scheme of Morita-Baylis-Hillman Reactions 

 

 Nucleophilic Lewis bases such as tertiary amines and phosphines are known to 

catalyze the MBH reaction by forming a covalent bond that activates the otherwise electron 

deficient alkene towards addition.21 The main catalysts used in MBH reactions are 1,4-

diazabicyclo[2.2.2]octane (DABCO) , quinuclidine, 4-Dimethylaminopyridine (DMAP), 

imidazole and triethylamine (Figure 4). Based on reactivity studies, DABCO and DMAP 

had the best catalytic activity and DABCO slightly outperformed DMAP with less reactive 

electrophiles because DABCO is a better nucleophile.29 DABCO was the selected catalyst 

for this work.  
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Figure 4. Common Catalysts for MBH Reactions  

 

The first mechanism for the MBH reaction was proposed by Hoffmann in the 

1980s.30 Kinetic studies led them to believe that the first step was the addition of the tertiary 

amine to the activated alkene to generate a zwitterionic intermediate, followed by a second 

step in which the aldehyde adds to the C2 position of the zwitterion. The third step was an 

intramolecular proton shift, while the final step was an E2 or E1cb elimination to release 

the catalyst and form the MBH product (Scheme 2). A low isotope effect of 1.03±0.1 was 

observed for the second step, which led them to believe this was the rate determining step.31 

The justification was due to an increase of charge separation. The issues with this 

mechanism and the reason it went out of favour was that it did not explain some 

stereocontrol issues, and the dioxanone by-product from the MBH reaction between 

aldehydes with acrylates could not be accounted for.32 
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Scheme 2. Hoffmann Proposed MBH Reaction Mechanism 

 

 McQuade et al. and Affarwal et al. have addressed these issues with particular 

interest in a proton transfer in a newer, more advanced mechanism that was postulated in 

2005.33,34 These new mechanistic studies showed that the MBH reaction is second order 

with respect to the aldehyde and shows a primary kinetic isotope effect greater than two in 

polar protic and polar aprotic solvents, meaning that the proton abstraction is relevant 

regardless of solvent. Evidence of a second addition of aldehyde was found, this formed a 

hemiacetal species. The hemiacetal species, if an ester is present, is the source of dioxanone 

side product. It was also noted that initially the proton transfer will be limiting but later, as 

the conversion percentage increased, the rate determining step will be the first addition of 

aldehyde. McQuade and Affarwal proposed that the proton transfer mechanism could 

proceed one of two ways; the first being a non-alcohol-catalyzed pathway that is similar to 

Hoffmann’s proposed mechanism, except for the formation of the hemiacetal species, and 

the second is an alcohol-catalyzed, general acid catalysis, pathway which suggests any 
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present alcohol will perform the proton transfer, herein reported as a proton-shuttle 

(Scheme 3). Evidence for some of these intermediates have been found using electrospray 

ionization mass spectrometry, demonstrating evidence for the co-catalysts’ role in the 

mechanism.35 
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Scheme 3. McQuade/Aggarwal Improved MBH Reaction Mechanism 

 

 In 2015 it was reported by Singleton and Plata that the mechanism for the alcohol-

catalyzed MBH reaction is more mundane than what McQuade and Affarwal had 

postulated in the previous decade.36 The evidence that was found supported that the 

deprotonation/elimination of the α-CH bond simply followed acid-base chemistry and not 

the proton-shuttle process previous reported. There was a contention surrounding the 

proton-shuttle process and many articles, both supportive and unsupportive, were published 

on this topic. Singleton and Plata believed that the downfall of researchers before them was 
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a heavy reliance on solely computational studies, whereas they had experimental results in 

conjunction with a wide breadth of computational studies. They synthesized intermediates 

to obtain the rate law of the elimination step and most notably showed the rate of 

elimination remained the same when the hydroxyl group was substituted for a methoxy 

group (Figure 5). Further support was an observed solvent kinetic isotope effect if 0.96 H/D 

methanol. 

 

 

 

 

Figure 5. Synthesized Intermediates For Studying The α-CH Elimination Step 

 

1.1.8 Liquid Assisted Grinding and Dry Grinding 

 Liquid assisted grinding (LAG) and dry grinding both fall under the broad term of 

mechanochemistry, which simply refers to reactions induced by mechanical energy (i.e., 

grinding). This type of chemistry is appealing because it can be used to react solid phase 

reagents and thus avoid solvents entirely.37 With no solvent present this would be 

considered dry or neat grinding; however, mechanochemistry is not confined to be strictly 

solvent or rather liquid-free. This is the case with the LAG approach, which is when a small 

quantity (<1μL/mg) of solvent is added to facilitate the reaction.38 The distinction between 

mechanochemical approaches is based on a ratio of total reaction volume of liquids to total 

mass of solid materials. This value is denoted by the Greek letter eta (η) and is measured 

in units of micro liters of total liquid materials per milligrams of total solid materials 
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(μL/mg).38 A solution phase reaction is considered any η > 20, while slurry has an η value 

between 1 and 20, and LAG has η < 1 while dry grinding must be 0. When in the LAG 

regime, solvents are referred to as liquid additives. 

 

1.1.9 Objective 

Sustainable Chemistry, also known as Green Chemistry, is an area of research that 

puts emphasis on principles that are used as a guide to minimize harm to human health and 

the environment. The impetus for this work comes from the environmental and economic 

impact of using transition metals for catalysis, more specifically metals with low natural 

abundance and high toxicity. The use of organocatalysis becomes important in this area of 

interest. Organocatalysis refers to using catalysts that do not contain a metal atom and are 

predominantly made of C, H, O, S and P. As has been demonstrated by many previous 

researchers, organocatalysts can be, and have been, used to retrofit problematic transition 

metals in synthesis. Unfortunately, many organocatalysts lack recyclability as they are used 

in the same phase as the organic reactants (homogenous catalysts) and cannot be easily 

separated. Recyclability is a key component of Green Chemistry, which will also be 

addressed within this work by using ionic liquids. Ionic liquids will be used for preferential 

partitioning or immobilization of organocatalysts from crude reaction mixtures by 

designing the organocatalyst to have similar physical properties (i.e., solubility). 

This chapter will focus on adapting the Morita-Baylis-Hillman (MBH) reaction to 

enhance its green attributes. The MBH reaction can be catalyzed by a tertiary amine and 

can be cocatalyzed by intermolecular hydrogen bond donation as demonstrated by 
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Schreiner’s work using electron deficient thiourea derivatives. The thiourea moiety was 

selected for this work because of the Lewis acidic pair of hydrogens that can be tuned by 

varying substituents on the molecule, making it an excellent choice for a co-catalyst. With 

this work, the thiourea co-catalyst will be further functionalized by installing an ionic liquid 

functionality, also known as an ionic liquid tag, which will make it preferentially soluble 

in ionic liquids. The ionic liquid tag chosen was an N-methylpyrrolidium moiety and the 

selected ionic liquid was butylmethylpyrrolidinium bistriflimide, [BMPyr][N(Tf)2]. This 

ionic liquid was chosen because it is immiscible in selected organic solvents, and the 

pyrrolidiuium cation moiety would avert some side reactions that have been reported in the 

literature observed with other cationic cores such as imidazolium. 

Previous Singer group members have studied the MBH reaction using thiourea co-

catalysts. McGrath, Watson and Parsons have laid the majority of the ground work for this 

study, including optimization of stoichiometry, catalyst recycling, catalyst loading, scope 

of reagents, and even varied the functionality of the thiourea co-catalyst. 39, 40, 41 The 

objective of this work is to further increase the relative greenness of the MBH reaction by 

lowering the amount of solvent used and increasing the relative energy efficiency of the 

reaction. Mechanochemistry was the approach selected to achieve this goal, using methods 

such as liquid assisted grinding, which uses microliter quantities of solvent, and dry 

grinding, which is solvent free. 
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1.2.0 Results and Discussion 

The synthesis of the pyrrolidinium based thiourea co-catalyst was carried out over 

four optimized steps to give an improved overall percent yield of 68% over the previous 

syntheses (Scheme 4).39 The first step follows a previously reported microwave assisted 

SN2 reaction between 4-nitrobenzaldehyde and N-methylpyrrolidine to give the 4-

nitrobenzylpyrrolidinium bromide salt in an 82% yield in only 15 minutes.39 This product 

is easily characterized by 1H NMR spectroscopy by observing a shift in aromatic peaks as 

the reaction proceeds to product. 

 

 

 

 

Scheme 4. Synthesis of 1-methyl-1-(4-nitrobenzyl)pyrrolidin-1-ium bromide 

  

 In previous syntheses, the 4-nitrobenzylpyrrolidinium bromide salt was 

metathesized (i.e., exchange of ions) to an amine using hexafluorophosphoric acid in the 

next step of this synthetic pathway; however, this results in a water insoluble salt that is 

more difficult to reduce to the required amine. The optimized synthetic route is to perform 

the reduction first and then phase-separate the desired product out of water by performing 

the metathesis in situ with potassium hexafluorophosphate. This order of reactions leads to 

a higher yield after the reduction in less time because the compound and reducing agents 

are in the same phase, unlike previously reported methods. This approach also aids as a 
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cleanup method, as the resulting hexafluorophosphate salt crashes out of solution and 

leaves all water-soluble impurities behind in the aqueous phase. This reaction uses sodium 

borohydride to reduce iron(II) sulfate heptahydrate to iron(0) which will then be used to 

reduce the nitro group to the desired amine (Scheme 5). This method also uses sodium 

citrate as an reducing agent to preserve iron(0) over the long reaction time, and can be 

performed under an argon atmosphere for the same effect. Yields were not obtained after 

the reduction because the product remains in aqueous solution; however, the percent 

conversion can be determined by taking an aliquot of sample and running 1H NMR 

spectroscopy. The aromatic peaks once again shifted, but the better indication came from 

the broad singlet around 4.30 ppm from the newly formed amine protons in the para 

position on the aromatic ring. In order to confirm these were the amine N-H peaks, one 

drop of heavy water was added to the NMR sample and as expected the peaks disappeared 

because of the protons exchanged with deuterium atoms. The amine peaks are missing in 

this spectrum because the hydrogen atoms of the amine are rapidly exchanging with the 

deuterium atoms from heavy water. 

 

 

 

 

 

 

Scheme 5. Synthesis of 1-(4-aminobenzyl)-1-methylpyrrolidin-1-ium bromide 
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Before the metathesis step, the iron(0) nanoparticles had to be removed. This was 

accomplished by filtering the reaction mixture through a bed of Celite. Excess potassium 

hexafluorophosphate was then added and precipitate instantaneously began to form 

(Scheme 6). After 12 hours of stirring, the reaction mixture was filtered and the solids were 

collected to yield 95% of the desired hexafluorophosphate salt. A spectroscopic handle for 

this product is the hexafluorophosphate anion which was confirmed using 19F and 31P NMR 

spectroscopy which showed the desired doublet and septet respectively. To confirm that no 

halides are present a silver nitrate test can be performed. 

 

 

 

 

Scheme 6. Synthesis of 1-(4-aminobenzyl)-1-methylpyrrolidin-1-ium 

hexafluorophosphate 

 

 Finally, the isolated amine was dissolved in acetonitrile and reacted with 3,5-

bis(trifluoromethyl)phenyl isothiocyanate in a microwave reactor at 50°C for 120 minutes 

to afford the desired thiourea at 87% yield (Scheme 7). This was a previously reported 

experimental result where the only variation was in reaction time. It is worth noting that 

some polymerized isothiocyante could form here; however, given that yields were high for 

this step of the reaction, no precautions were taken to avoid this undesirable reaction. The 

best diagnostic peak in the 1H NMR spectrum was the broad singlets above 10 ppm that 

integrated to two protons, which correlate to the two secondary amine peaks on the thiourea. 
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These peaks both disappeared when the 1H NMR spectra was rerun with one drop of heavy 

water due to the previously mentioned exchange with deuterium. 

 

Scheme 7. Synthesis of 1-(4-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)benzyl)-1-

methylpyrrolidin-1-ium hexafluorophosphate 

 

 Two ionic liquids were used as solvents for the Morita-Baylis-Hillman reaction in 

this work. The first, 1-Butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), 

was previously made by past researchers, and 1H NMR spectroscopy was used to confirm 

both the structure and purity before use. The second ionic liquid, 1-Butyl-1-

methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMPyr][N(Tf)2]), had to be 

made using a previously reported method designed by Cheng. et al (Scheme 8). 42 When 

comparing 1H NMR spectral data it showed agreement with previous reports in the 

literature. 42 

 

Scheme 8. Synthesis of 1-Butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide 
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 The remaining compounds required for this work could all be purchased from the 

Millipore Sigma chemical supply company. The selected α,β-unsaturated aldehydes, more 

commonly referred to as enones, were cyclohexenone (2-Cyclohexen-1-one), chromone (1-

Benzopyran-4-one) and coumarin (1,2-Benzopyrone). Cyclohexenone was selected due to 

its prevalence in the MBH literature and use in previous studies in the Singer group. 

Chromone and coumarin were selected because they are solid enones, which were required 

to properly examine the MBH reaction in the LAG regime.  

 Aldehydes selected for this work were benzaldehyde, 4-chlorobenzaldehyde and 4-

nitrobenzaldehyde. The para-chloro and para-nitro derivatives were selected not only 

because they are solids, but also because they are activated towards nucleophilic attack by 

since the carbonyl carbon in these compounds are more electrophilic. The para-chloro 

substituent removes electron density both inductively and mesomerically, but is less 

pronounced than the electron withdrawing capability of para-nitro substituents. 

 Many nucleophilic amines have been used as tertiary amine catalysts in MBH 

reactions. One of the most frequently used, 1,4-diazabicyclo[2.2.2]octane (DABCO), has 

alkyl groups that are tied back via covalent bonds, reducing the steric bulk and increasing 

nucleophilicity and thus reactivity. 

 The first of the MBH reactions performed in this work was a repeat of previous 

research as a control to ensure familiarity with the system: the reaction between 

cyclohexenone and benzaldehyde using a conventional stirring method.39 Both of these 

reagents are liquids, so the reaction was under neat conditions. The stoichiometry of this 

MBH reaction was determined by previous researchers, who showed that the best reactivity 

is one equivalent of aldehyde, five equivalents of enone, 10 mol% DABCO and 10 mol% 



21 
 

thiourea co-catalyst. This optimized stoichiometry was used throughout this research. This 

reaction was performed parallel under two catalytic conditions; condition (A) is just 10% 

DABCO and (B) is 10% DABCO and 10% thiourea. After three hours of stirring, aliquots 

of the crude reaction mixture were taken and studied using 1H NMR spectroscopy. The 

spectra were integrated to determine percent conversion to MBH product, where the best 

spectroscopic handles were the acyl proton of the aldehyde starting material and the 

methine proton of the final product. Under catalytic conditions (A), the reaction went to 

75.9% conversion, whereas under conditions (B), the reaction went to 85.2% conversion 

with reaction times being identical. This showed an increase in rate for the thiourea co-

catalyzed reaction. The conventional stirring MBH reactions are summarized below in 

Table 1. 

 4-chlorobenzaldehyde was then used under the same conditions as above to show 

reactivity differences. This reaction was also performed under two catalytic conditions, neat 

and with conventional stirring. Again, after three hours aliquots were taken. The percent 

conversions were based on 1H NMR spectroscopy showed 89.7% conversion under 

catalytic conditions (A) and 93.0% conversion under conditions (B), demonstrating the 

increased reactivity mentioned previously. 

 The MBH reaction was then attempted under conventional stirring with chromone, 

4-chlorobenzaldehyde and 10 mL of acetonitrile. This reaction now had the desired solid 

starting materials, albeit in solution. Unfortunately, after a three-hour reaction under the 

same conditions as the other MBH reactions, no conversion was found for either catalyst 

condition (A) or (B). The reaction was repeated but instead with methanol as the solvent. 

The MBH reaction is known to proceed via two reaction mechanisms, the alcohol-catalyzed 
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and non-alcohol-catalyzed. The substitution from polar aprotic to a polar protic solvent was 

intended to follow the alcohol-catalyzed mechanism and push the reaction forward. Sadly, 

the reaction did not proceed. 

  To further probe reactivity, the reaction was conducted with 4-nitrobenzaldehyde. 

This time, the methine proton could be observed in the crude 1H NMR spectrum taken from 

an aliquot. Under catalyst condition (A) the reaction went to 52.0% conversion and under 

condition (B) to 21.2% conversion. This shows that the addition of 10% thiourea co-catalyst 

is inhibiting this reaction, which is opposite to what was found for previous reactions. There 

is no current explanation for this phenomenon and the mechanistic details of which are 

beyond the scope and limitations of this work.   

 The substituted chromone was then isolated for the intention of unequivocally 

assigning the methine proton that was used to calculate the percent conversion. At this stage 

of the workup the crude reaction mixture had the desired substituted chromone along with 

unreacted 4-nitrobenzaldehyde and chromone. A trituration method using a one-to-one 

methanol to acetonitrile ratio (by volume) was designed that selectively crashed the product 

out of solution that was then simply collected by filtration. The isolated product yields for 

the chromone and 4-nitrobenzaldehyde reaction was 25.9% under catalyst condition (A) 

and 3.1% under condition (B). The percent recovery for this method was low, but perhaps 

re-concentration of the solvent system could lead to further crops of precipitate. This 

solvent system was time consuming to design, but it avoided the use of column 

chromatography, which is also time consuming and requires lots of solvent.  

 Structural assignment of the substituted chromone derivative lead to some 

interesting nuances in the NMR spectra which were unexpected (Figure 6). 1H, 13C, 
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Distortionless Enhancement by Polarization Transfer (DEPT), Correlated SpectrocopY 

(COSY), Heteronuclear Single Quantum Coherence (HSQC) and D2O NMR spectroscopy 

experiments were all essential for structural assignment.  

 

 Figure 6. Structure Assignment of Substituted Chromone Derivative 

 COSY is a commonly used 2D NMR experiment to determine which spin systems 

in a given molecule are coupled to one another. This tool was helpful to assign the spin 

system containing protons labeled 3,4,6 and 7 (Figure 7). The spin system containing the 

protons labeled 1, 8 and 9 is perhaps much more interesting. Disregarding chemical shift, 

it may be difficult to determine which peak belongs to which proton because the 

multiplicity of peak labeled 8 and 9. The two options for this coupling are 4J coupling 

between protons labeled 1 and 9 or 3J coupling between protons labeled 8 and 9. The issue 
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with the first option is that the 4.4 Hz coupling constant is just above what is expected for 

4J coupling, while the issue with the latter option is the proton on the alcohol is 

exchangeable. The answer, which was determined by COSY NMR spectroscopy, was that 

the proton with the peak labeled 9 is coupled to both. The coupling constant between the 

methine proton and the alcohol proton is the 3J 4.4 Hz mentioned above. To determine the 

coupling constant of the 4J allylic coupling, a drop of D2O was pipetted into the NMR tube 

(Figure 8). This resulted in the exchangeable proton labeled 8 disappearing in the spectrum 

and the proton label 9 is now split by 0.94 Hz. 

 Figure 7. COSY NMR Spectroscopy of Substituted Chromone Derivative 
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Figure 8. D2O Drop NMR Spectroscopy Experiment of Substituted Chromone Derivative 

 The DEPT experiment (Figure 9) is a double resonance pulse program that is used 

to distinguish between methyl, methylene, methine and quaternary carbons. This 

information, along with data from HSQC NMR spectroscopy (Figure 10), helped to 

unequivocally assign the 13C NMR spectrum. HSQC NMR spectroscopy is a two 

dimensional (2D) experiment that shows coupling between hydrogen and a heteroatom. 

This is helpful when assigning carbon atoms in a molecule, as the protons have previously 

been assigned. 

 The DEPT experiments show that the final product only contains quaternary and 

methine carbon environments as expected. Quaternary peaks are found because they only 

seen as positive peak in conventional 13C NMR spectra but disappear in DEPT45, DEPT90 

and DEPT 135 experiments. Methine protons persist throughout all for spectra. 
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Figure 9. DEPT NMR Experiments For Carbon Assignment 

Figure 10. HSQC NMR Experiment For Carbon Assignment 
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To test the scope of the MBH reaction the enone was then switched to coumarin, a 

structural isomer of chromone, to test for reactivity difference. The reaction with coumarin 

did not proceed under identical reaction conditions. The reactivity difference could be due 

to multiple of reasons, the first being that α,β-unsaturation of coumarin can delocalize into 

the aromatic ring and make it more stable. Secondly, the addition of DABCO to the β-

position would be more sterically hindered for coumarin because of interaction with the 

aromatic ring. Lastly, after the addition of DABCO and formation of the zwitterionic 

intermediate compound, the alpha carbon was less nucleophilic for coumarin because of 

the electron withdrawing inductive effect of the additional oxygen atom (Figure 11).  

 

 

 

Figure 11. Zwitterionic Coumarin and Chromone Intermediates 

 

Table 1. Summary of MBH Reactions Using Conventional Stirring 

Enone Aldehyde Catalyst(s) Solvent or 

Liquid additive 

Amount of 

Solvent 

Conv.α  Yieldβ 

cyclohexenone benzaldehyde A neat / 75.9% / 

cyclohexenone benzaldehyde B neat / 85.2% / 

cyclohexenone 4-chlorobenzaldehyde A neat / 89.7% / 

cyclohexenone 4-chlorobenzaldehyde B neat / 93.0% / 

chromone 4-chlorobenzaldehyde A MeCN 10 mL / / 

chromone 4-chlorobenzaldehyde B MeCN 10 mL / / 

chromone 4-chlorobenzaldehyde A MeOH 10 mL / / 

chromone 4-chlorobenzaldehyde B MeOH 10 mL / / 

coumarin 4-nitrobenzaldehyde A MeOH 10 mL / / 

coumarin 4-nitrobenzaldehyde B MeOH 10 mL / / 

chromone 4-nitrobenzaldehyde A MeOH 10 mL 52.0% 25.9% 

chromone 4-nitrobenzaldehyde B MeOH 10 mL 21.2% 3.1% 

A) DABCO; B) DABCO & thiourea; α) Conversion percentage based on 1H NMR spectroscopy;   

β) Isolated yield 
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 With the success in the MBH reaction using the selected starting materials and with 

authentic samples of products in hand, the same reactions were attempted in the liquid 

assisted grinding (LAG) regime. The reaction conditions for LAG are similar to 

conventional stirring—one equivalent of aldehyde, two equivalents of enone, two catalyst 

conditions (i.e 10% DABCO with or without 10% thiourea co-catalyst) and a reaction time 

of three hours. The difference is the addition of two steel milling balls and up to two 

microliters of a liquid additive. The amount of liquid additive had to be calculated for each 

reaction based on milligrams of material in the reaction using the previously described η 

value. An implication of this is less liquid additive is for catalyst condition (A) because 

there is less total mass. LAG MBH reactions are summarized in Table 2 below. 

 The first MBH reaction using the ball mill used cyclohexenone and 4-

chlorobenzaldehyde under neat conditions. The 1H NMR spectrum of the crude aliquot 

showed a low percent conversion when compared to the same reaction under conventional 

stirring. This was not a promising result; however, this reaction was not in the LAG regime 

and therefore not crucial to the objective of this study. 

 The remaining MBH reactions discussed herein are all within the LAG regime (i.e. 

≤ 1) and use chromone and 4-nitrobenzaldehyde as the solid reagents. This reaction, 

which showed previous success under conventional stirring, was first performed with η = 

1 for the liquid additive. When methanol was used as a liquid additive an increase in percent 

conversion was observed - 85.7% conversion for catalyst condition (A) and 36.9% 

conversion for condition (B). Unfortunately, isolated yields were still low at 14.8% and 

11.3% respectively. These results showed LAG outperformed conventional stirring 

methods. 
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 Next, ethanol was selected to test the scope of this reaction with other polar protic 

liquid additives. The conversions were considerably lower than those for methanol at 

12.5% conversion for catalyst condition (A) and 2.1% for condition (B). With such low 

percent conversions, isolated yields were not worth pursuing. 

 The reaction was then tested with polar aprotic liquid additives such as acetonitrile, 

1-Butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imid, [BMPyr][N(Tf)2] and 

1-Butyl-3-methylimidazolium hexafluorophosphate [BMIM][PF6], which unsurprisingly 

all had no conversion to products. 

 Ionic liquids were chosen for this reaction because they could potentially facilitate 

the recycle of the thiourea co-catalyst. The ionic thiourea co-catalyst used is preferentially 

soluble in ionic liquids, whereas the reagents and products of the MBH reaction are 

preferentially soluble in ether. This allowed for products and unreacted reagents to be 

extracted, and the thiourea dissolved in the ionic liquid could be reused in subsequent 

reactions. The thiourea co-catalyst was inhibiting this MBH reaction, meaning that this 

approach proved to be ineffective. One possible reason for this inhibition could be due to a 

competition between the two mechanistic pathways (i.e., non-alcohol-catalyzed versus 

alcohol-catalyzed mechanism (Scheme 3)).  Past researchers have shown success with these 

means, but with more reactive starting materials such as cyclohexenone. 39 
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Table 2. Summary of MBH Reactions Using LAG 

Enone Aldehyde Catalyst(s) Liquid additive μL/mg Conv.α Yieldβ 

cyclohexenone 4-chlorobenzaldehyde A neat / 15.0% / 

cyclohexenone 4-chlorobenzaldehyde B neat / 64.2% / 

chromone 4-nitrobenzaldehyde A MeOH 1  85.7% 14.8% 

chromone 4-nitrobenzaldehyde B MeOH 1  36.9% 11.3% 

chromone 4-nitrobenzaldehyde A EtOH 1  12.5% / 

chromone 4-nitrobenzaldehyde B EtOH 1  2.1% / 

chromone 4-nitrobenzaldehyde A MeCN 1  / / 

chromone 4-nitrobenzaldehyde B MeCN 1  / / 

chromone 4-nitrobenzaldehyde A BMPyrN(Tf)2 1  / / 

chromone 4-nitrobenzaldehyde B BMPyrN(Tf)2 1  / / 

chromone 4-nitrobenzaldehyde A BMIMPF6 1   / / 

chromone 4-nitrobenzaldehyde B BMIMPF6 1   / / 

A) DABCO; B) DABCO & thiourea; α) Conversion percentage based on 1H NMR spectroscopy; 

β) Isolated yield  

 

 The final study in this chapter investigated the effect of varying the η-value for the 

liquid assisted grinding MBH reaction of chromone and 4-nitrobenzaldhyde under the two 

catalyst conditions (i.e 10% DABCO with or without 10% thiourea co-catalyst). As 

expected, the percent conversions decreased as η decreased (i.e. as the amount of liquid 

additive was decreased) (Table 3). The ideal case is to have no liquid additive at all and 

move into the dry grinding regime. Unfortunately, the dry grinding reactions did not 

proceed to products but this strengthened the understanding that these reactions are 

proceeding through the alcohol-catalyzed mechanism. 
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Table 3. Summary of MBH Reactions Varying η - Value 

Catalyst(s) η - value Conversion 

Percentageα 

Yieldβ 

A 0 / / 

B 0 / / 

A 0.5 60.9% 16.4% 

B 0.5 43.0% 6.6% 

A 0.75 68.1% 12.9% 

B 0.75 45.1% 9.1% 

A 1 85.7% 14.8% 

B 1 36.9% 11.3% 

A) DABCO; B) DABCO & thiourea; α) Conversion percentage based on 1H NMR spectroscopy; 

β) Isolated yield  

 

1.3.0 Conclusion 

 A thiourea co-catalyst was synthesized using an optimized method that led to a 

relatively higher overall yield of 68.0 percent. The purity of this compound, >95%, was 

determined using nuclear magnetic resonance spectroscopy. The co-catalyst had a rate 

inhibiting effect on the MBH reaction under methanolic conditions. 

 The Morita-Baylis-Hillman was successfully performed in the liquid assisted 

grinding regime using chromone, 4-nitrobenzaldehyde and DABCO under alcohol-

catalyzed conditions at 85.7 percent conversion to the desired substituted chromone 

derivative. Methanol was found to be the best liquid additive for this reaction, with the 

highest conversion percentage of 85.7 achieved when η = 1. Liquid assisted grinding 

outperformed conventional stirring in this study. The desired product was isolated by a 

simple trituration process and fully characterized by nuclear magnetic resonance 

spectroscopy, electrospray ionization mass spectrometry, electrospray ionization high 

resolution mass spectrometry, melting point and attenuated total reflectance infrared 

spectroscopy.  
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1.4.0 Future Work 

 The future work for this project should include broadening the scope of the MBH 

reaction under LAG conditions. This would include varying the solid aldehyde and enone 

substrates along as well as the liquid additive. Phenol is a great choice for a liquid additive 

because it is about 106 times more acidic than methanol. Perhaps phenol will catalyze the 

MBH well enough to switch the enone to coumarin, the structural isomer of chromone. 

1.5.0 Experimental 

1.5.1 Synthesis of butylmethylpyrolidinum (trifluoromethylsulfonyl)imide 

[BMPyr][N(Tf)2] 

 

  

 

 

  

 The synthesis of butylmethylpyrrolidinum (trifluoromethylsulfonyl)imide was 

adapted from Cheng. et al, who described a one-pot microwave synthesis of this ionic 

liquid.42 0.52 mL (5 mmol) N-methylpyrrolidine, 0.67 mL (6.25 mmol) 1-bromobutane and 

10 mL MeCN was added to a 35 mL CEM microwave reaction tube. The reaction tube was 

placed in a CEM microwave reactor at 40 W power at 80 °C for 60 minutes. The crude 

reaction mixture was poured into a beaker and acetonitrile was added until the solid 

precipitate was fully dissolved. Then enough ethyl acetate was added until a 1:1 acetonitrile 
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to ethyl acetate solution was obtained, which crashes the product back out of solution. The 

solid was isolated via gravity filtration and fully dried under vacuum. The solid was 

dissolved in minimal water and 1.43 g (5 mmol) of bis(trifluoromethane)sulfonamide 

lithium salt was first dissolved in water and then added to the reaction. The solution was 

stirred for 48 hours. The ionic liquid separates from the aqueous fraction and aggregates on 

the bottom. Wash the ionic liquid with water in a separatory funnel until it passes the silver 

nitrate test. The resulting halide-free product weighed 1.94 g (92% yield) and the structure 

was confirmed using 1H NMR (300 MHz, CDCl3) δ 3.53-3.35 (m, 4H), 3.34-3.20 (m, 2H), 

2.98 (s, 3H), 2.01 (m, 4H), 1.69 (m, 2H), 1.32 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H). 

 

1.5.2 Synthesis of N-Methylpyrrolidinium Tagged Thiourea 

1-methyl-1-(4-nitrobenzyl)pyrrolidin-1-ium bromide 

 

 

 

 Then 2.16 g (10 mmol) of 4-nitrobenzyl bromide, 1.14 mL (11 mmol) of 1-

methylpyrrolidine and 10 mL of acetonitrile was added to a 35 mL CEM microwave 

reaction tube. The reaction tube was placed in a CEM microwave reactor at 40 W power at 

80 °C for 15 minutes. Take off the acetonitrile with a rotary evaporator to receive 2.47 g 

(8.2 mmol, 82 % yield) of solid material. 1H NMR (300 MHz, DMSO-D6) δ 7.16 (d, J = 

9.36 Hz, 2H), 6.61 (d, J = 9.36 Hz, 2H), 5.50 (s, 2H), 3.54-3.41 (m, 2H), 3.40-3.22 (m, 2H), 

2.84 (s, 3H), 2.22-2.01 (m, 4H). 
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1-(4-aminobenzyl)-1-methylpyrrolidin-1-ium bromide 

 

 

 

  5.75 g (20.69 mmol) of iron(II) sulfate heptahydrate and 0.44 g (1.72 mmol) sodium 

citrate were added to a tall-form beaker along with 100 mL of water. 1.30 g (34.49 mmol) 

of sodium borohydride was then added slowly to reduce the iron(II) sulfate to iron (0) 

nanoscale particles. The 50 mL of water was added and decanted off in triplicate. 1-methyl-

1-(4-nitrobenzyl)pyrrolidin-1-ium bromide was added to the decanted iron nanoparticles 

and stirred at room temperature for 24 hours. With an effort to use minimal water, the crude 

reaction mixture was passed through 2 cm celite bed on a 150 mL frit. The product was left 

in water for the subsequent reaction. 1H NMR (300 MHz, DMSO-D6) δ 7.16 (d, J = 9.42 

Hz, 2H), 6.58 (d, J = 9.42 Hz, 2H), 5.48 (s, 2H), 4.30 (s, 2H), 3.52-3.39 (m, 2H), 3.40-3.22 

(m, 2H), 2.84 (s, 3H), 2.22-2.01 (m, 4H). 

 

1-(4-aminobenzyl)-1-methylpyrrolidin-1-ium hexafluorophosphate 

 

 

 

 2.30 g (12.5 mmol) of potassium hexafluorophosphate was dissolved in minimal 

water and then added to the previously made aqueous reaction mixture. The product 
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immediately began to precipitate, after 3 hours the reaction mixture could be cooled and 

then vacuum filtered to yield 2.11 g (7.79 mmol, 95 % yield). 1H NMR spectra data match 

the previously made bromine salt. 31P NMR (121.5 MHz, DMSO-D6) δ -126.6, -132.5, -

138.3, -144.2, -150.0, -155.9, -161.7. 19F NMR (282.5 MHz, DMSO-D6) δ -68.9, -71.4. 

 

1-(4-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)benzyl)-1-methylpyrrolidin-1-ium 

hexafluorophosphate 

  

 2.11 g (7.79 mmol) of the previously made  1-(4-aminobenzyl)-1-methylpyrrolidin-

1-ium hexafluorophosphate was placed in a 35 mL CEM microwave reaction tube along 

with 5 mL of acetonitrile and 1.42 mL (7.79 mmol) 3,5-bis(trifluoromethyl)phenyl 

isothiocyanate and heated to 50°C for 120 minutes. Solvent was removed with a rotary 

evaporator and the solid yellow product was dried under vacuum to yield 4.12 g (87% yield, 

68% overall reaction yield). 1H NMR (300 MHz, DMSO-D6) δ 10.46 (bs, 1H), 10.35 (bs, 

1H), 8.25 (bs, 2H), 7.83 (bs, 1H), 7.66 (d, J = 8.74 Hz, 2H), 7.56 (d, J = 8.74 Hz, 2H), 4.53 

(s, 2H), 3.65-3.47 (m, 2H), 3.46-3.33 (m, 2H), 2.91 (s, 3H), 2.24-2.08 (m, 4H). 
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1.5.3 Morita-Baylis-Hillman Reactions 

Solution Phase Morita-Baylis-Hillman Reaction with Chromone 

 

 0.7306 g (5 mmol) of 1,4-benzopyrone (chromone), 1 mmol of the desired aldehyde 

and 0.0568 g (0.1 mmol) of 1,4-diazabicyclo[2.2.2]octane were added to a 25 mL round 

bottom flask and dissolved in 10 mL of the desired solvent. After 3 hours a crude 1H NMR 

spectroscopy sample in DMSO-D6 was taken to give a % conversion of the desired 

substituted chromone. If product could not be observed in the crude 1H NMR spectroscopy 

then no further workup was required. 

 

Solution Phase Morita-Baylis-Hillman Reaction with Chromone (Co-catalyzed) 

 

 0.7306 g (5 mmol) of 1,4-benzopyrone (chromone), 1 mmol of the desired 

aldehyde, 0.0568 g (0.1 mmol) of 1,4-diazabicyclo[2.2.2]octane and 0.3038 g (0.1 mmol) 

of 1-(4-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)benzyl)-1-methylpyrrolidin-1-ium 

hexafluorophosphate co-catalyst were added to a 25 mL round bottom flask and dissolved 

in 10 mL of the desired solvent. After 3 hours a crude 1H NMR spectroscopy sample in 
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DMSO-D6 was taken to give a yield of the desired substituted chromone. If product could 

not be observed in the crude 1H NMR spectroscopy then no further workup was required. 

 

Solution Phase Morita-Baylis-Hillman Reaction with Coumarin 

 0.7306 g (5 mmol) of 1,2-benzopyrone (coumarin), 1 mmol of the desired aldehyde 

and 0.0568 g (0.1 mmol) of 1,4-diazabicyclo[2.2.2]octane were added to a 25 mL round 

bottom flask and dissolved in 10 mL of the desired solvent. After 3 hours a crude 1H NMR 

spectroscopy sample in DMSO-D6 was taken to give a yield of the desired substituted 

coumarin. If product could not be observed in the crude 1H NMR spectroscopy then no 

further workup was required. 

Solution Phase Morita-Baylis-Hillman Reaction with Coumarin (Cocatalyzed) 

 0.7306 g (5 mmol) of 1,2-benzopyrone (coumarin), 1 mmol of the desired aldehyde, 

0.0568 g (0.1 mmol) of 1,4-diazabicyclo[2.2.2]octane and 0.3038 g (0.1 mmol) of 1-(4-(3-

(3,5-bis(trifluoromethyl)phenyl)thioureido)benzyl)-1-methylpyrrolidin-1-ium 

hexafluorophosphate co-catalyst were added to a 25 mL round bottom flask and dissolved 

in 10 mL of the desired solvent. After 3 hours a crude 1H NMR spectroscopy sample in 
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DMSO-D6 was taken to give a yield of the desired substituted coumarin. If product could 

not be observed in the crude 1H NMR spectroscopy then no further workup was required. 

 

Solution Phase Workup for Morita-Baylis-Hillman Reactions  

 The reaction between 1,4-benzopyrone (chromone) and 4-nitrobenzaldehyde was 

the only reaction that proceeded and the desired substituted chromone was observed via 1H 

NMR spectroscopy. In order to isolate this product, the solvent was first taken off on a 

rotary evaporator. The solids are then dissolved in 5 mL of chloroform (thiourea co-catalyst 

is insoluble) and gravity filtered to leave behind the thiourea. Next, the solvent is once again 

removed on a rotary evaporator and then dissolved in 5 mL of 1:1 by volume 

methanol/acetonitrile solution and left in the freezer overnight. The next morning the 

yellow/white solids were gravity filtered and washed with chilled 1:1 by volume 

methanol/acetonitrile solution. The solids were dried and weighed, melting point 198.5-

200.6°C. 1H NMR (300 MHz, DMSO-D6) δ 8.47 (s, 1H), 8.18 (d, J = 9.32 Hz, 2H), 8.01 

(dd, J = 7.86 & 1.60 Hz, 1H), 7.82 (tt, J = 7.96 & 1.60 Hz, 1H), 7.73 (d, J = 8.51 Hz, 2H), 

7.68 (d, J = 8.51 Hz, 1H), 7.49 (tt, J = 7.86, 1.13 Hz, 1H), 6.27 (d, J = 4.22 Hz, 1H), 5.90 

(d, J = 4.22 Hz, 1H). 13C NMR (75.5, CDCl3) δ 175.6, 156.3, 155.0, 152.0, 147.0, 134.8, 

128.3, 126.7, 126.0, 125.4, 123.7, 123.7, 119.0, 67.2. ESI-HRMS m/z: [M+Na]+ Calcd for 

C16H11NO5 320.0535; Found 320.0527. [2M+Na]+ Calcd for C16H11NO5 617.1172; Found 

617.1151. 
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Liquid Assisted Grinding Morita-Baylis-Hillman Reaction for Chromone Derivatives  

 

 0.7306 g (5 mmol) of 1,4-benzopyrone (chromone), 1 mmol of the desired 

aldehyde, 0.0568 g (0.1 mmol) of 1,4-diazabicyclo[2.2.2]octane, two steel milling balls, 

and 939 μL of liquid additive (1η) were added to a PTFE milling jar and shook at 25 Hz 

for 3 hours in a MM400 Retsch ball mill. After the milling the contents of the billing jars 

were transferred to a 1 dram scintillation vial and the liquid additive was taken off with a 

rotary evaporator. The dried crude product was dissolved in chloroform. The cloudy 

solution was filtered through a 2 cm celite plug in a 25 mL syringe, leaving behind the 

milling balls and suspended paramagnetic iron. An aliquot of the clear solution was taken 

for a crude 1H NMR yield in DMSO-D6. If there was substituted chromone product in the 

crude 1H NMR then the rest of the clear solution was rotary evaporated to dryness, then 

redissolved in 5 mL of 1:1 by volume methanol/acetonitrile solution and left overnight in 

a freezer to precipitate. The yellow/white solids were gravity filtered and washed with 

chilled 1:1 by volume methanol/acetonitrile solution. The solids were dried and weighed, 

melting point 199-200.8°C. 1H NMR (300 MHz, DMSO-D6) δ 8.46 (s, 1H), 8.19 (d, J = 

9.32 Hz, 2H), 8.01 (dd, J = 7.86 & 1.60 Hz, 1H), 7.81 (tt, J = 7.96 & 1.60 Hz, 1H), 7.73 (d, 

J = 8.51 Hz, 2H), 7.69 (d, J = 8.50 Hz, 1H), 7.50 (tt, J = 7.86, 1.13 Hz, 1H), 6.27 (d, J = 

4.22 Hz, 1H), 5.91 (d, J = 4.22 Hz, 1H). 13C NMR (75.5, CDCl3) δ 175.5, 156.3, 154.9, 

152.1, 147.0, 134.8, 128.3, 126.7, 126.0, 125.4, 123.7, 123.7, 119.0, 67.2. ESI-HRMS m/z: 
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[M+Na]+ Calcd for C16H11NO5 320.0535; Found 320.0510. [2M+Na]+ Calcd for 

C16H11NO5 617.1172; Found 617.1158. 

 

Liquid Assisted Grinding Morita-Baylis-Hillman Reaction for Chromone Derivatives 

(Cocatlyzed) 

  

0.7306 g (5 mmol) of 1,4-benzopyrone (chromone), 1 mmol of the desired 

aldehyde, 0.0568 g (0.1 mmol) of 1,4-diazabicyclo[2.2.2]octane, 0.3038 g (0.1 mmol) of 

1-(4-(3-(3,5-bis(trifluoromethyl)phenyl)thioureido)benzyl)-1-methylpyrrolidin-1-ium 

hexafluorophosphate co-catalyst, two steel milling balls, and 1242 μL of liquid additive 

(1η) were added to a PTFE milling jar and shook at 25 Hz for 3 hours in a MM400 Retsch 

ball mill. After the milling the contents of the billing jars were transferred to a 1 dram 

scintillation vial and the liquid additive was taken off with a rotary evaporator. The dried 

crude product was dissolved in chloroform. The cloudy solution was filtered through a 2 

cm celite plug in a 25 mL syringe, leaving behind the insoluble thiourea, the milling balls 

and suspended paramagnetic iron. An aliquot of the clear solution was taken for a crude  1H 

NMR yield in DMSO-D6. If there was substituted chromone product in the crude 1H NMR 

then the rest of the clear solution was rotary evaporated to dryness then redissolved in 5 

mL of 1:1 by volume methanol/acetonitrile solution and left overnight in a freezer to 

precipitate. The yellow/white solids were gravity filtered and washed with chilled 1:1 by 
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volume methanol/acetonitrile solution. The solids were dried and weighed, melting point 

198.7-201.1°C.  1H NMR (300 MHz, DMSO-D6) δ 8.46 (s, 1H), 8.19 (d, J = 9.32 Hz, 2H), 

8.01 (dd, J = 7.86 & 1.60 Hz, 1H), 7.81 (tt, J = 7.96 & 1.60 Hz, 1H), 7.73 (d, J = 8.51 Hz, 

2H), 7.69 (d, J = 8.50 Hz, 1H), 7.50 (tt, J = 7.86, 1.13 Hz, 1H), 6.27 (d, J = 4.22 Hz, 1H), 

5.91 (d, J = 4.22 Hz, 1H). 13C NMR (75.5, CDCl3) δ 175.5, 156.3, 154.9, 152.1, 147.0, 

134.8, 128.3, 126.7, 126.0, 125.4, 123.7, 123.7, 119.0, 67.2. ESI-HRMS m/z: [M+Na]+ 

Calcd for C16H11NO5 320.0535; Found 320.0522. [2M+Na]+ Calcd for C16H11NO5 

617.1172; Found 617.1155. 
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2.0.0 Improved Synthesis of Gemini Surfactants 

2.1.0 Introduction 

2.1.1 Surfactants 

 The focus of this project is to improve the synthesis of a class of surfactants called 

gemini surfactants. Surfactants, or surface-active agents, are any compound that lowers the 

surface tension or interfacial tension of an aqueous system. Surfactants have applications 

in detergency, lubrication, wetting agents, emulsifiers, foaming agents and dispersants. 

Generally, surfactants are organic compounds that contain both hydrophobic and 

hydrophilic groups, also known as amphiphilic in nature. Surfactants are further classified 

as anionic (e.g., alkyl sulfates such as sodium dodecylsulfate, SDS),43 cationic (e.g., 

quaternary ammonium salts such as dodecyltrimethylammonium bromide, DTAB),44 non-

ionic (e.g., polyoxyethylene surfactants such as C10E8)
45 and zwitterionic (e.g., ammonium 

alkylsulfonates such as ammoniopropanesulfonate, Zw3-12)46 (Figure 12). 

 

 

 

 

 

Figure 12. Common Surfactants 
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 When surfactants are added to an aqueous solution they aggregate at the air-water 

or oil-water interface, lowering the surface tension or the interfacial tension. Once a certain 

monomer concentration is achieved, known as the critical micelle concentration, the 

interface is fully saturated with monomers and surfactant molecules to form supramolecular 

structures known as micelles.47 In general, micelles are spherical in shape; however, 

ellipsoids, cylinders and bilayers are also possible (Figure 13).48 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Cross-section View Of Common Micelle Shapes 
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2.1.2 Mixed Micellular Systems 

 It is well known in the literature that surfactants of differing types (e.g., cationic 

and non-ionic) have synergistic effects and often outperform individual surfactants. Mixed 

micellular systems are simply when a mixture of two (or more) surfactants reach their 

critical micelle concentrations and form micelles that have monomer units of both 

surfactants within the same micelle. It is also possible to have a system of two or more 

surfactants that form micelles but have no mixture of monomers, these too have synergistic 

effects but not to the same extent.46 

 The interactions of mixed micellular systems can be seen using a two-dimensional 

nuclear magnetic resonance technique called Nuclear Overhauser Effect, spectroscopy 

(NOESY). The cross peaks in a NOESY NMR spectrum show resonances from nuclei that 

are spatially close (within five angstroms), but not necessarily coupled to one another. 

When a micelle consists of only one type of monomer the cross peaks will be very minimal, 

but when there is two different types of monomers within the micelle the interactions are 

directly observed by the abundance of cross-peaks.  This technique can be used to find 

concentrations that optimize these mixed micellular interactions.46 

2.1.3 Gemini Surfactants 

 Gemini surfactants, unlike the general structure of surfactants, have two matching 

head groups, a linking chain and either two hydrophobic tails the same length (symmetric 

gemini surfactants) or different in length (nonsymmetric gemini surfactants). Gemini 

surfactants require a lower concentration of surfactant in order to reach CMC when 

compared to conventional surfactants (0.0055 wt% and 0.5 wt% respectively). 46 This is 
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important because the desired effect of a micellar system is obtained with less compound. 

This substantial decrease in CMC can be attributed to the relative increase of hydrophobic 

effects thanks to the second alkyl chain.49 This chapter focuses on the syntheses of cationic 

quaternary ammonium salts as cationic gemini surfactants, in particular nonsymmetric or 

unsymmetric gemini surfactants, that will later be used in conjunction with the zwitterionic 

surfactants to form a mixed micellar system. 

2.1.4 Measuring Critical Micelle Concentration 

 There are many ways in which critical micelle concentration (CMC) can be studied, 

including drop-shape analysis,50 fluorescence using pyrene,51 surface tension 

measurements,52  NMR spectroscopy,53 dynamic light scattering (DLS) and calorimetry 

measurements.46 The latter two will be the methods used to determine the CMC of these 

compounds in the future. 

 DLS is a relatively new method used to obtain particle size in colloidal systems. 

When light, usually a monochromatic light source (e.g., a laser) is scattered on a 

suspension, there is a certain intensity and fluctuations at which light is scattered. These 

fluctuations are due to the motion of a local concentration of particles. When the critical 

micelle concentration is reached there is a great increase in intensity due to the formation 

of micelles.54 

 The second method that will be used is a relatively simple calorimetry experiment. 

The thermodynamics of micellular formation is fairly well understood and it is well known 

that the CMC plays a factor in the Gibbs free energy of micellization. When the surfactant 

is precipitated out in the form micelles the free energy of the system is decreased, this 
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means that the aggregation process is thermodynamically favoured and spontaneous. 

Calorimetry is a process that measures the heat released (exothermic) or absorbed 

(endothermic) during a reaction. Using highly sensitive calorimetry the Gibbs energy 

change, entropy change and the heat capacity can be calculated. The heats of micelle 

formation can be plotted against concentration to determine the CMC.55 

 

2.1.5 Microwave Heating 

 The improved synthesis of these gemini surfactants employs the use of a microwave 

reactor. Many books and other reviews have been written on the usefulness of microwave 

heating in synthesis, with many of them highlighting short reaction times, increased product 

yield and even reduced impurities by avoiding side reactions.56, 57, 58 It is important to study 

how microwave radiation can be used to induce chemical reactions to understand how it is 

beneficial over conventional heating methods.  

 Microwave electromagnetic radiation is not powerful enough to break bonds by 

direct absorption (i.e., photochemistry) because the photon energy from a microwave 

source is not high enough.58 It is instead dielectric heating, as molecules absorb the energy 

and convert it to heat. In dielectric heating the diploe moment of the molecules will tend to 

orient and reorient under the influence of the microwaves electric field. This method does 

not rely on the convection of a system like conventional heating, which is very energy 

inefficient due to the temperature of the reaction vessel being higher than the reaction 

mixture and temperature gradients through the reaction vessel.58 This phenomenon allows 

for an entire solution to be heated simultaneously and more efficiently because the reaction 
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vessel will not be heated first. One issue, and the reason domestic microwave ovens are not 

used, is inhomogeneity of the microwave field, commonly referred to as hot spots and cold 

spots, which can lead to irreproducibility.57 

 The ability for a molecule to be heated by microwave irradiation relies heavily on 

its dielectric constant. The dielectric constant, Ɛ’, is the polarizability of the solvent in an 

applied electric field and the storage of that energy. In other words dielectric constant 

simply refers to the macroscopic properties of a solvent, whereas dipole moment refers to 

a given molecule. Similarly the dielectric loss factor, Ɛ”, is the ability that a molecule can 

release that stored energy as heat. Together these terms are known as the dissipation factor, 

tan δ (Figure 14), which is the ability of molecules to turn microwaves to heat and changes 

with frequency. High values of tan δ are molecules that absorb microwaves very well which 

should only be used for reagents or solvents and low values of  tan δ should be used for the 

reaction vessel. 

tan 𝛿 = 휀′′
휀′
⁄  

Figure 14. Dissipation Factor Relationship 

 

2.2.0 Results and Discussion 

 This chapter focused on six homologues as target cationic gemini surfactants for an 

improved synthesis. These targets all follow the general IUPAC configuration N-alkyl-1-

N’-alkyl-2-N,N,N’,N’-tetramethyldiammonium dibromide and vary in chain length of the 

alkyl groups and physical properties (Scheme 9). The six target surfactants are further 

classified as symmetrical (mcm type), which have two equally long alkyl chains, or as non-
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symmetrical (or asymmetrical) (mcn type), which have two alkyl chains of different 

lengths. These gemini surfactants are summarized below (Table 4). All products were 

characterized by 1H NMR spectroscopy, 13C NMR spectroscopy, ESI-MS and ESI-HRMS. 

 

Scheme 9. Symmetric and Asymmetric N-alkyl-1-N’-alkyl-2-N,N,N’,N’-

tetramethyldiammonium Dibromide 

 

 

Tables 4. Summary of Reactions for the Improved Synthesis of Gemini Surfactants 

Surfactant 

Number 

Length of Chain 1 Length of Chain 2 Abbreviation Yield (%) 

1 tetradecyl (C14H29) tetradecyl (C14H29) 14-4-14 92.0 

2 dodecyl (C12H25) dodecyl (C12H25) 12-4-12 87.6 

3 octyl (C8H17) octyl (C8H17) 8-4-8 84.1 

4 dodecyl (C12H25) octyl (C8H17) 12-4-8 27.0 

5 tetradecyl(C14H29) dodecyl (C12H25) 14-4-12 30.5 

6 tetradecyl (C14H29) octyl (C8H17) 14-4-8 24.9 

 



49 
 

 The percent yields of the symmetrical gemini surfactants reported are comparable 

to previous methods. The significant improvement of the improved method comes from the 

use of a CEM microwave reactor, which greatly decreased reaction times. Unfortunately, 

the previously reported syntheses suffered from the requirement of long reaction times of 

24-48 hours, high energy requirement to maintain reflux temperature and a lot of 

chlorinated solvent. 59 In the reported improved synthesis the reaction is complete in 30 

minutes and used a more energy efficient heat source and only required a fraction of the 

solvent (<5%) used in previous methods. The workup and isolation of compounds in these 

reported syntheses is comparable to previously reported reactions. It is worth taking into 

consideration that previously reported method was performed in dichloromethane at reflux 

(40°C) and the reported improved syntheses were performed at 60°C. In the original 

syntheses, dichloromethane was used because it solubilizes the starting materials but not 

the tertiary amine intermediate, this could be the source of the improved reaction times but 

likely not. It is more reasonable that the improvements are result of the efficiency in which 

the solvent and reagents are being heated. 

Yields for the reported asymmetric gemini surfactants did not improve over those 

previously reported; however, the reported yields were achieved in under 90 minutes and a 

higher purity (based on NMR), which is much more efficient than the previously reported 

multiday syntheses. The high purities of this method suggest that this method can be further 

optimized to outperform previous methods. NMR spectroscopy of crude reaction mixtures 

after each step of the reported synthesis could provide insight as to how these reactions can 

be improved.  
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 There are four areas of focus when optimizing these reactions. The first issue is that 

when dibromobutane is left in situ after the first reaction, the addition of the shorter alkyl 

chain dimethylamine will lead to more monosubstituted product. This can be addressed by 

exploiting the low boiling point of dibromobutane and removing it in vacuo. The second 

optimization is promoting the monosubstituted isolable intermediate and reduce the 

formation of disubstitution after the first step, which is directly addressed by performing 

the reaction in excess dibromobutane. The third optimization regards solvent and 

temperature effects of the system. Solvents can behave differently when subjected to 

microwave irradiation because of their diverse ranges of polar and ionic properties. 

Dichloromethane (tan δ 0.042) was the selected solvent for previously reported methods 

but for the improved synthesis acetonitrile (tan δ 0.062) was selected because it has the 

highest heating rate of 2.36°Cs-1 at 50W power, and would thus be the most energy efficient 

way of heating this system. Acetonitrile also has higher dielectric constant compared to 

dichloromethane, 37 and 9.1 respectively. The more polar solvent can better free the 

nucleophile in SN1 chemistry and thus increases the rate of reaction. Optimization of 

temperature and reaction times were not performed due to time constraints; caution must 

be taken during the first step of this reaction to ensure conversion to monosubstitution and 

but not disubstitution. This final optimization is derived from high hygroscopicity of these 

materials, which causes issues when trying to obtain an accurate mass of the final materials 

rewrite. This issue is very apparent when characterizing the materials via 1H NMR 

spectroscopy because due to large water peaks in the spectra. To combat this issue, the 

materials were placed in a vacuum desiccator for 24 hours, but despite these efforts the 

materials still contained some water. This method has not been optimized further; however, 



51 
 

the azeotropic removal of water using a Dean-Stark apparatus and toluene may prove 

effective. 

 This work also demonstrated an increase in relative greenness when switching from 

conventional to microwave heating. Not only did this method improve energy efficiency, 

but it also used a small fraction of solvent (<5%), had much higher purity (based on NMR) 

and performed in a fraction of the time when compared to previously reported methods.  

 The proton and carbon NMR spectra were the essential characterization techniques 

used to determine full conversion to products. The spectra for the symmetric gemini 

surfactants were relatively simple (Figure 15 and 16). The proton NMR spectra showed the 

correct proton count as well as the correct multiplicity for the given compounds. The 

spectra for the asymmetric gemini surfactants were no more complex than the symmetric 

and mostly just used for purity and proton count of the integrations (Figure 17 and 18). 

 

 

 

 

 

 

 

 

 

 

 

 



52 
 

Figure 15. Example Proton Spectra For Symmetric Gemini Surfactant 14-4-14 

Figure 16. Example Carbon Spectra For Symmetric Gemini Surfactant 14-4-14 
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Figure 17. Example Proton Spectra For Asymmetric Gemini Surfactant 14-4-12 

Figure 18. Example Carbon Spectra For Asymmetric Gemini Surfactant 14-4-12 
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2.3.0 Conclusion 

 The syntheses of three symmetric and three asymmetric gemini surfactants were 

improved by designing a highly optimized method that employs a CEM microwave reactor. 

The characterization of all six desired surfactants was completed using NMR, ESI-MS and 

ESI-HRMS. The compounds have been sent to Dr. Gerrard Marangoni at St. Francis Xavier 

University, who will study these compounds critical micelle concentrations and various 

other physical properties in mixed micellular systems. 

 

2.4.0 Future Work 

 Future directions of this project include optimization of conditions by closely 

monitoring the reaction, azeotropically drying the final products—utilizing a Dean-Stark 

apparatus, and although the main focus of this project was to demonstrate the improved 

synthesis of these surfactants the physical properties will also be studied. The CMC will be 

studied by both dynamic light scattering and calorimetry measurements.  

2.5.0 Experimental 

2.5.1 General Procedures 

 Syntheses of surfactants were performed in 35 mL CEM microwave reaction tubes 

with Teflon lids. All glassware was clean in a highly concentrated isopropanol and 

potassium hydroxide bath, then rinsed with tap water and left to air dry. 

 1,4-dibromobutane, N,N-dimethyltetradecylamine, N,N-dimethyldodecylamine and 

N,N-dimethyloctylamine were purchased from MilliporeSigma chemical supply company 
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and used without purification. Solvents, such as acetonitrile, ethyl acetate and acetone were 

purchased from Fisher Scientific chemical supply company and used without purification. 

 Electrospray ionization mass spectrometry was performed at DalChem Mass 

Spectrometry Laboratories by Xiao Feng, instrumentation unknown. Samples of 1mg were 

dissolved in 1mL of ACS grade acetonitrile.  

 Nuclear Magnetic Resonance Spectroscopy was performed at Saint Mary’s 

University of a Bruker 300 MHz Ultrashield spectrometer and processed using Bruker 

TopSpin 4.0.6 software. Samples were made up of 10mg of compound dissolvent in 

deuterated chloroform purchased from Cambridge Isotope Laboratories. Trace impurities 

and residual solvent peaks were determined using tables developed by Nudelam et al.60 

2.5.2 Symmetric Gemini Surfactants 

 

 

 

 N1,N1,N4,N4-tetramethyl-N1,N4-ditetradecylbutane-1,4-diaminium bromide, 1 

(14-4-14), was prepared by dissolving 1 equiv. 1,4-dibromobutane (1.079 g, 5 mmol) and 

2.1 equiv. N,N-dimethyltetradecylamine (2.535 g, 10.5 mmol) in  10.0 mL of acetonitrile 

in a 35 mL microwave reaction vessel.  The reaction vessel was then placed in a CEM 

microwave reactor set at 60°C, with pressure tolerance of 15 psi, max power of 15W, and 

stirred for 30 minutes. After microwave irradiation, the reaction vessel was set in a freezer 

overnight. The resulting precipitate was vacuum filtered and rinsed with ethyl acetate. The 
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hygroscopic product was then placed into a vacuum desiccator for 24 hours to afford 3.21 

g (92.0% yield) of white solid. 

 

1 (14-4-14) 1H NMR (300 MHz, CDCl3) δ 4.01-3.80 (m, 4H), 6.49-3.35 (m, 4H), 3.28 (s, 

12H), 2.19-2.01 (m, 4H), 1.84-1.64 (m, 4H), 1.23 (s, 44H), 0.85 (t, J = 7.1 Hz, 6H). 13C 

NMR (75.5, CDCl3) δ 65.3, 63.58, 50.9, 31.9, 29.7, 29.6, 29.6, 29.5, 29.4, 29.3, 29.2, 26.3, 

22.9, 22.7, 19.9, 14.1. ESI-HRMS m/z: [M-Br]+ Calcd for C36H78Br2N2 617.5348, 

618.5382, 619.5329, 620.5361; Found 617.5348, 618.5379, 619.5335, 620.5357. 

 

2 (12-4-12) 1H NMR (300 MHz, CDCl3) δ 4.01-3.86 (m, 4H), 3.51-3.38 (m, 4H), 3.28 (s, 

12H), 2.18-2.23 (m, 4H), 1.82-1.63 (m, 4H), 1.22 (s, 38H), 0.85 (t, J = 7.0 Hz, 6H). 13C 

NMR (75.5, CDCl3) δ 65.2, 63.6, 50.9, 31.9, 29.6, 29.5, 29.4, 29.3, 29.2, 26.3, 22.9, 22.7, 

19.9, 14.1. ESI-HRMS m/z: [M-Br]+ Calcd for C32H70Br2N2 561.4722, 562.4756, 

563.4702, 564.4735; Found 561.4705, 562.4731, 563.4690, 564.4713. 

 

3 (8-4-8) 1H NMR (300 MHz, CDCl3) δ 3.85-3.71 (m, 4H), 3.47-3.34 (m, 4H), 3.27 (s, 

12H), 2.12-1.99 (m, 4H), 1.82-1.65 (m, 4H), 1.25 (s, 20H), 0.86 (t, J = 7.0 Hz, 6H). 13C 

NMR (75.5, CDCl3) δ 65.3, 63.5, 50.9, 31.6, 29.1, 29.0, 26.3, 22.6, 19.9, 14.0. ESI-HRMS 

m/z: [M-Br]+ Calcd for C24H54N2Br2 449.3470, 450.3504, 451.3450, 452.3483; Found 

449.3447, 450.3475, 451.3429, 452.3450. 
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2.5.3 Asymmetric Gemini Surfactants 

 

 N1-dodecyl-N1,N1,N4,N4-tetramethyl-N4-tetradecylbutane-1,4-diaminium 

bromide, 5 (14-4-12), was prepared by dissolving 4 equiv. 1,4-dibromobutane (0.864 g, 4 

mmol) and 1 equiv. of the longer chain dimethylamine (N,N-dimethyltetradecylamine, 

(0.241 g, 1 mmol) in 10.0 mL of acetonitrile. Microwave irradiation was performed using 

the same conditions as the symmetric molecules. A rotary evaporator and high capacity 

vacuum pump were used to remove solvent and ensure the removal of all unreacted 1,4-

dibromobutane. The reaction mixture was then taken back up in acetonitrile and 1 equiv. 

N,N-dimethyldodecylamine (0.213 g, 1 mmol) was added. Microwave irradiation was 

repeated with the same conditions as above. After microwave irradiation, the reaction 

vessel was set in a freezer overnight. The resulting hygroscopic product was then put 

through the same workup process as the symmetric molecules to afford 0.205 g (30.5% 

yield) of white solid. 
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4 (14-4-8) 1H NMR (300 MHz, CDCl3) δ 3.94-3.78 (m, 4H), 3.48-3.35 (m, 4H), 3.28 (s, 

12H), 2.16-2.03 (m, 4H), 1.82-1.64 (m, 4H), 1.23 (s, 32H), 0.86 (t, J = 7.0 Hz, 6H). 13C 

NMR (75.5, CDCl3) δ 65.3, 63.6, 50.9, 31.9, 31.6, 29.7, 29.7, 29.5, 29.4, 29.3, 29.2, 29.1, 

29.0, 26.4, 22.9, 22.7, 22.6, 19.9, 14.1, 14.0. ESI-HRMS m/z: [M-Br]+ Calcd for 

C30H66Br2N2 533.4409, 534.4443, 535.4389, 536.4422; Found 533.4391, 534.4446, 

535.4367, 536.4416. 

 

5 (14-4-12) 1H NMR (300 MHz, CDCl3) δ 3.95-3.80 (m, 4H), 3.48-3.35 (m, 4H), 3.28 (s, 

12H), 2.19-2.03 (m, 12H), 1.83-1.65 (m, 4H), 1.24 (s, 40H), 0.86 (t, J = 7.16 Hz, 6H). 13C 

NMR (75.5, CDCl3) δ 65.3, 63.7, 50.9, 31.9, 29.7, 29.7, 29.6, 29.5, 29.4, 29.2, 26.4, 22.9, 

22.7, 19.9, 14.1. ESI-HRMS m/z: [M-Br]+ Calcd for C34H74Br2N2 589.5035, 590.5069, 

591.5015, 592.5048; Found 589.5018, 590.5042, 591.4999, 592.5021. 

 

6 (12-4-8) 1H NMR (300 MHz, CDCl3) δ 3.97-3.84 (m, 4H), 3.46-3.35 (m, 4H), 3.27 (s, 

12H), 2.20-2.07 (m, 1.84-1.67 (m, 4H), 1.25 (s, 28H), 0.87 (t, J = 7.16 Hz, 6H). 13C NMR 

(75.5, CDCl3) δ 65.5, 63.7, 50.9, 31.9, 31.6, 29.6, 29.5, 29.4, 29.3, 29.2, 29.1, 29.0, 26.3, 

22.9, 22.7, 22.6, 22.5, 19.9, 14.1. ESI-HRMS m/z: [M-Br]+ Calcd for C28H62Br2N2 

505.4096, 506.4130, 507.4076, 508.4109; Found 505.4082, 506.4113, 507.4065, 508.4091. 
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