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Abstract 

A melt inclusion study of rhyolitic volcanics in the Bousquet Formation, Doyon-

Bousquet-LaRonde district, Abitibi Subprovince, Québec: Insight into Archean magmatic 

processes 

 

By: Daniel Joseph Meagher 

 

     Silicate melt inclusions (SMI) from 2697 – 2699 Ma Bousquet rhyolites (Doyon-

Bousquet-LaRonde district, Québec) were characterized to elucidate magmatic 

contributions to VMS deposit tenor in the region. 

     The key results are as follows: (i) Early rhyolite is of dominantly ocean ridge (tholeiitic) 

to transitional affinity, whereas later rhyolite has dominantly volcanic arc (calc-alkaline) 

affinity; (ii) SMI record a wide compositional range compared to host (bulk) rocks, 

reflecting extensive plagioclase fractionation at depth and inconsistent with TTG 

classifications previously proposed for the melts; (iii) Ore/accessory metal concentrations 

in SMI (e.g., Auavg = 33 to 120 ppb) are much higher than crustal abundances, and reflect 

pre-eruptive Bousquet Formation magma metal tenor; and (iv) melts were saturated in 

liquid CO2 but undersaturated in H2O at depth. 

     The study is one of only a few studies of SMI from Archean rocks and the first to present 

trace element/ore metal data for SMI of this age. Hell how are you my name is Daniel meag 
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Chapter 1: Introduction 

1.0 Structure and objectives of thesis 

     This study is comprised of three chapters: Chapter 1 offers a brief outline of the thesis 

structure, key objectives, and background on volcanogenic massive sulphide (VMS) 

deposits, a principle deposit type hosted within, and genetically linked to, the volcanic 

rocks in the study area. Chapter 2 investigates silicate melt inclusions in the Archean 

(2699–2697 Ma; Lafrance et al., 2003; Mercier-Langevin et al., 2007b) Bousquet 

Formation (Blake River Group, Abitibi Subprovince, Québec) volcanics and their potential 

links to Au-rich VMS deposits and other Au-rich deposit styles (e.g., sub-sea floor 

epithermal) in the region. Chapter 2 represents a stand-alone manuscript for submission to 

Contributions to Mineralogy and Petrology. The research presented in Chapter 2 is 

potentially critical in helping to explain the anomalously high Au content in VMS deposits 

of the Doyon-Bousquet-LaRonde (DBL) deposit camp and represents the first investigation 

of silicate melt inclusions in an Archean terrane. The overall incentive to conduct analysis 

of silicate melt inclusions in these rocks is the desire to determine the original ore and 

accessory metal tenor of the magmatic system. Where they are preserved in phenocryst 

quartz, their compositions may be largely unaffected by post-solidus processes (Schiano, 

2003). Chapter 3 provides a summary of the key findings of Chapter 2 and outlines future 

work needed to resolve outstanding issues raised in this study. 

     The primary objective of this thesis was to investigate SMI in volcanics that may be 

genetically linked to Au-rich VMS deposits in the region. The investigation: (i) Evaluates 

the robustness of SMI preservation through petrography and chemical analysis in Bousquet 
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Formation volcanics; (ii) Constrains the metal and trace element chemistry of SMI trapped 

in different lithologies and at different times throughout the evolution of the volcanic 

stratigraphy, and evaluates processes that may have influenced metal enrichment (e.g., 

fractional crystallization); (iii) Evaluates the possible role of volatiles (either degassing 

from and originating in the magmas, or from wall rocks) in modifying the metal content of 

the crystallizing magmas; and (iv) Evaluates the magmatic fluid contribution to Au-rich 

VMS and possibly related systems through comparison of metal ratios and concentrations 

in regional ore deposits and silicate melt inclusions. 

     This study was funded by the Targeted Geoscience Initiative-5 (TGI-5; Natural 

Resources Canada) – a collaborative federal geoscience program that provides industry 

with the next generation of geoscience knowledge and innovative techniques, which will 

hopefully result in more effective targeting of buried mineral deposits (Natural Resources 

Canada, 2019). Although previous studies have suggested a link between the Mooshla 

Intrusive Complex, Bousquet volcanics, and regional deposits in the study area based on 

geochronology, mapping/field relations, petrography, and lithogeochemistry (see Chapter 

2: Introduction), a silicate melt inclusion study is a novel approach to clarifying this link.  
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1.1 VMS deposits 

     Volcanogenic massive sulphide deposits are known historically as volcanic-associated, 

volcanic-hosted, and volcano-sedimentary-hosted massive sulphide deposits (Galley et al., 

2007). They are major sources of Zn, Cu, Pb, Ag, and Au, and notable sources for Co, Sn, 

Se, Mn, Cd, In, Bi, Te, Ga, and Ge (Galley et al., 2007). Canada hosts close to 350 known 

VMS deposits, representing nearly half of the known deposits worldwide (~ 800; Galley et 

al., 2007). Due to extensive development and mining of these deposits, they have 

contributed to 27%, 49%, 20%, 40%, and 3% of Canada’s Cu, Zn, Pb, Ag, and Au 

production, respectively (Galley et al., 2007). 

     These magmatic-hydrothermal deposits are as old as 3.4 Ga and are still actively 

forming at, or near, the seafloor in submarine volcanic environments by the discharge of 

evolved, high temperature, seawater-dominated hydrothermal fluids (Franklin et al., 1981, 

2005; Lydon, 1984, 1988; Large et al., 2001a; Gibson et al., 2007; Galley et al., 2007). 

They are syngenetic, stratabound lens-like accumulations of polymetallic massive to semi-

massive sulphide (Figure 1; Gibson et al., 2007). There are two geometrically distinct parts 

of the deposit: a massive sulphide lens that runs parallel to adjacent or underlying strata; 

and, sulphide-rich veins that cross-cut strata (i.e., stringer/stockwork zone) enveloped by 

altered footwall volcanics or sediments (i.e., alteration pipe; Figure 1; Gibson et al., 2007). 

This resulting geometry of VMS deposits is independent of their tectonic setting. They all 

contain the alteration pipe zone that underlies the ocean floor interface and contains a lens 

of massive sulphide ore composed primarily of pyrite, chalcopyrite, sphalerite, and 

sometimes galena (Figure 1; Yergeau et al., 2015). The pipe-like zone of disseminated 
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sulphides also contains extensive chloritic and sericitic alteration created by hot fluids that 

passed though the rock on its way to the ocean floor (Figure 2; Hannington et al., 1999; 

Huston, 2000; Dubé et al., 2007a; Gibson et al., 2007; Mercier-Langevin et al., 2011a). 
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Figure 1: Volcanogenic massive sulphide deposit schematic (after Gibson et al., 2007). 

Contains a concordant semi-massive to massive sulphide lens containing exhalative 

deposits of ferruginous chemical sediments and pyrrhotite-pyrite-chalcopyrite-sphalerite-

galena ore overlying a discordant stringer/stockwork sulphide zone enveloped by altered 

rocks (i.e., alteration pipe). Circled numbers represent metal zonation, with the higher 

numbers being Cu-rich and the lower numbers more Zn-rich. Py = pyrite, Cp = 

chalcopyrite, Po = pyrrhotite, Sp = sphalerite, and Gn = galena. 
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Figure 2: Illustrative relationships of subvolcanic intrusions, sub-seafloor alteration, 

synvolcanic faulting, and the formation of VMS deposits (after Gibson et al., 2007). 

See text for explanation of the six essential features (i.e., circled numbers in schematic). 
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     There are six essential features for the formation of VMS hydrothermal systems (Figure 

2; Franklin et al., 2005; Gibson et al., 2007). First, there needs to be a heat source, 

potentially from a synvolcanic intrusion, to initiate, drive and maintain the long duration, 

hot hydrothermal system (see #1 in Figure 2; Cathles, 1981; Cathles et al., 1997; Gibson et 

al., 2007). Most Precambrian VMS camps contain a large subvolcanic intrusion, typically 

of quartz diorite-tonalite-trondhjemite composition, that could have acted as a heat source 

(Galley, 2003). Second, there is a reaction zone where metals are leached by evolved 

seawater from volcanic and sedimentary strata (see #2 in Figure 2; Gibson et al., 2007). 

Third, there are large-scale, deep synvolcanic faults that act as conduits for the recharge 

and discharge of metal-rich hydrothermal fluids (see #3 in Figure 2; Gibson et al., 2007). 

Fourth, there are alteration zones in the hanging wall and footwall that formed when near 

surface strata reacted with mixed hydrothermal fluid and ambient seawater (see #4 in 

Figure 2; Gibson et al., 2007). Fifth, there is a massive sulphide deposit with a metal content 

refined by successive hydrothermal events (see #5 in Figure 2; Gibson et al., 2007). Sixth, 

there are distal exhalites that were formed by a hydrothermal contribution to background 

sedimentation (see #6 in Figure 2; Galley et al., 2007). 

     Volcanogenic massive sulphide deposits can be found in a variety of tectonic settings: 

Ophiolite-related obduction environments, oceanic spreading ridges, thickened oceanic 

crust, sedimented oceanic ridges and sedimented continental margin rifts, and many rifted 

arc settings such as nascent arcs, island arcs, fore-arc troughs, back-arc basins, intra-

oceanic arc rifts, primitive volcanic arcs, mature volcanic arcs, and continental arcs (Figure 

3; Ohmoto and Skinner, 1983; Swinden, 1991; Rona et al., 1993; Scott, 1997; Carvalho et 
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al., 1999; Galley and Koski, 1999; Goodfellow and Zierenberg, 1999; Perfit et al., 1999; 

Syme et al., 1999; Huston, 2000; Barrett et al., 2001; Piercey et al., 2001b; Dusel-Bacon et 

al., 2004; Hannington et al., 1995, 1999, 2005; Galley et al., 2007; Piercey, 2009; Shanks, 

2012). The VMS deposits in the Noranda and DBL camps, for example, are similar to a 

modern primitive island arc or back-arc environment that was undergoing extension and 

rifting (Mercier-Langevin et al., 2007c; Gibson and Galley, 2007; Beaudoin et al., 2014). 

Some of the most economically important VMS districts (e.g., Bathurst, Finlayson Lake, 

Golden Grove, Bergslagen, Mount Windsor, and the Iberian Pyrite Belt) are contained 

within continental back-arc settings that are dominated by bimodal siliciclastic rocks ± iron 

formation (Allen et al., 1996; Carvalho et al., 1999; Doyle and McPhie, 2000; Piercey et 

al., 2001; Sharpe and Gemmell, 2002; van Staal et al., 2003; Galley et al., 2007). A large 

volcanic edifice within the Kermadec and Tonga-Fiji supracrustal tectonic zone of the 

western Pacific is a modern analogue of the inferred primitive rifted arc environment of 

economic VMS deposits such as the bimodal-mafic Kidd Creek VMS deposit (Barrie and 

Hannington, 1999; Gibson and Galley, 2007). 
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Figure 3: Large scale tectonic settings for the formation of VMS deposits. Settings 

include back-arc basin, island arc, mid-ocean ridge, and continental rift, with VMS deposits 

depicted by bright yellow dots (from Shanks, 2012). 
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     In addition to large volcanic edifices, black smokers are also modern analogues for 

active VMS formation and are found in arc settings, and extensional zones and basins with 

volcanic activity along mid-ocean ridges (Hedenquist and Lowenstern, 1994). Many 

concepts of ore genesis have been supported by studies of these modern VMS systems (i.e., 

black smokers; Ohmoto and Skinner, 1983 and references therein; Hannington et al., 2005). 

Ore genesis models propose that fluids of black smokers originate from cold (2 ˚C), 

alkaline, oxidizing, and metal-deficient seawater, but when they vent through chimneys of 

black smokers, they are hot (250-400 ˚C), slightly acidic, reduced, and metal-charged 

(Ohmoto, 1996). The metal-rich fluids are discharged from the vent and rise like a plume 

into the overlying seawater, causing ore minerals to crystallize and settle on the seafloor 

(Solomon and Walshe, 1979; Ohmoto, 1996). The chimneys themselves are made up of an 

assortment of anhydrite, barite, and sulphides such as pyrite, pyrrhotite, chalcopyrite, and 

sphalerite, as well as gangue opaline silica. The hydrothermal fluids that reach chimneys 

of black smokers have changed from metal-deficient to metal-charged because they have 

circulated through and metasomatized the basaltic ocean crust and collected/mobilised 

metals along the way (Schiffman et al., 1987; Richardson et al., 1987; Barrie and 

Hannington, 1999; Yardley and Bodnar, 2014; Patten et al., 2016). 

     Regardless of how VMS deposits were formed, they are often simply classified by either 

base metal content (e.g., Hutchinson, 1973; Solomon, 1976; Franklin et al., 1981; Large, 

1992), tectonic setting (e.g., Sawkins, 1976; Hutchinson, 1980), Au content (Poulsen and 

Hannington, 1996; Hannington et al., 1999; Huston, 2000), host rock textures (e.g., Morton 

and Franklin, 1987; Gibson, 1999), or host rock lithology (e.g., volcanic, volcano-
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sedimentary, sedimentary divisions: Sangster and Scott, 1976; Barrie and Hannington, 

1999; Galley et al., 2007). However, they can also be classified using five host rock 

composition: Mafic, mafic-siliciclastic, bimodal-mafic, bimodal-felsic, and felsic-

siliciclastic (Figure 4; Barrie and Hannington, 1999; Franklin et al., 2005; Piercey, 2011). 

When the host rock composition classification scheme is used, VMS deposits of similar 

characteristics group together well and many ambiguities that arise when classifying based 

on metal content (e.g., both felsic- and mafic-dominant successions contain Cu-Zn 

deposits), tectonic setting (e.g., deposits with ambiguous oringins due to metamorphism), 

or age (e.g., many Phanerozoic Cu-Zn deposits are similar to Archean Cu-Zn deposits) are 

avoided (Barrie and Hannington, 1999). This host rock classification is based on the pre-

altered rock before hydrothermal fluids circulated through the system providing ore-

forming metals and creating alteration zones. 
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Figure 4: Stratigraphic relationships and potential petrochemical assemblages for 

different VMS deposit groups based on host rock composition (after Piercey, 2011). 

BON = boninite, HFSE = high field strength element, IAT = island arc tholeiites, KOM = 

komatiite, LOTI = low-Ti tholeiite, MORB = mid-ocean ridge basalt, OIB = ocean island 

basalt, THOL = tholeiite. 
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     The hydrothermal alteration associated with VMS ore is dependant on the composition, 

architecture, and facies of the volcanic succession (Gibson et al., 1999; Large et al., 2001b; 

Doyle and Allen, 2003; Gibson et al., 2007; Shanks, 2012; Debreil et al., 2018). When 

VMS deposits are hosted by massive or pillowed lavas, they are typically characterized by 

sea floor exhalative sulphide mounds underlain by discordant alteration pipes and 

stockworks (Gibson et al., 1999; Debreil et al., 2018). In contrast, tabular sulphide bodies 

with broader alteration zones that can extend to the hanging wall develop in VMS deposits 

hosted by volcaniclastic-dominated successions (Gibson et al., 1999; Large et al., 2001b; 

Doyle and Allen, 2003; Gibson et al., 2007; Shanks, 2012; Debreil et al., 2018). Invaluable 

information on ore-forming processes (chemical and physical), as well as exploration 

guidelines, can be learned from studying hydrothermal alteration associated with VMS 

deposits (Çağatay, 1993; Shanks, 2012). For example, the Küre pyritic Cu orebodies in the 

western Black Sea region are associated with illite-mica + quartz zones that display rapid 

changes in the degree of feldspar alteration (Çağatay and Boyle, 1977; Çağatay, 1993). 

This rapid change indicates steep temperature changes and intensity of hydrothermal 

alteration, and can be implemented as directional vectors for drilling programs (Çağatay 

and Boyle, 1977; Çağatay, 1993). 

     There is a series of commonly recognized alteration zones in hydrothermal settings: 

potassic, argillic, phyllic, and propylitic (Sales and Meyer, 1948; Titley and Hicks, 1966; 

Meyer and Hemley, 1967; Meyer et al., 1968; Shanks, 2012). Each alteration zone has 

distinct mineralogy and a decrease in alteration intensity away from the vein or pluton, 

respectively (Shanks, 2012). Some of the above alteration zone classifications were 



23 

 

adopted by researchers for VMS deposits, but sericitic replaced phyllic and chloritic and 

advanced argillic were added as an alteration zone in subseafloor settings (Table 1; Sillitoe 

et al., 1996; Hannington et al., 1999; Shanks, 2012). There is an unmistakeable 

thermodynamic basis for the presence of the alteration assemblages associated with the 

aforementioned alteration zones (Hemley and Jones, 1964; Beane, 1994; Reed and 

Palandri, 2006; Shanks, 2012). The higher temperature and pressure mineral assemblages 

can be predicted for metamorphosed VMS deposits (Table 1; Bonnet and Corriveau, 2007; 

Shanks, 2012). The study of hydrothermal alteration mineral assemblages is an essential 

tool for pinpointing the origin of metallic elements in VMS deposits (Shanks, 2012). For 

example, combining the depletion of key elements in altered rocks with measured estimates 

of the rock volume can delimit possible sources of ore metals (Shanks, 2012). 
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Table 1: Diagnostic minerals in hydrothermally altered VMS deposits at different 

metamorphic grades. 
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     The source of metal contributions in VMS deposits is open for debate. Huston et al. 

(2011) concluded that there is at least a small magmatic-hydrothermal contribution but that 

metal leaching of underlying rocks is well documented suggests that a magmatic-

hydrothermal contribution is not necessary. However, some evidence, like 

disproportionately high magmatic SO2, found through sulfur isotope systematics, indicates 

a significant magmatic-hydrothermal contribution (Huston et al., 2011). It is believed that 

volcanic rock of basaltic ocean crust is the main source of metals carried by the 

hydrothermal fluids escaping submarine vents. A large amount of metals are mobilised 

from the crust but only a small amount becomes trapped as VMS mineralization (Patten et 

al., 2016). Mass balance studies have demonstrated the geochemical connection between 

the fluids and volcanics by identifying similarities of the metal content of VMS deposits 

with that of their associated primary igneous rocks. For example, ophiolite-hosted Cu-Zn 

deposits, which are typified by the deposits of the Troodos Massif, Cyprus, leach metals 

from mafic volcanics that are characterized by much higher Cu and Zn contents than their 

felsic equivalents. However, sulfur is an element which is not sourced from the rock but 

rather it comes from the sulfate component of the cold ambient seawater that mixes with 

the hydrothermal fluids (Shanks, 2012). This metal source debate will be looked at in depth 

in Section 1.1.2 Magmatic contributions to VMS. The following section, however, will 

focus only on the setting and characteristics of the economically significant Au-rich VMS 

deposits. 



26 

 

1.1.1 Gold-rich VMS systems 

     Gold-rich VMS deposits are a subtype of both VMS and lode-Au deposits and can be 

found in belts and districts of all ages (Figure 5; Poulsen and Hannington, 1996; 

Hannington et al., 1999; Huston, 2000; Poulsen et al., 2000; Dubé et al., 2004, 2007a; 

Mercier-Langevin et al., 2011a). They are found in areas of high hydrothermal and tectonic 

activity in volcanic terranes represented by arc-, back-arc, or rifting-related seafloor 

environments (Figure 3; Dubé et al., 2007a; Mercier-Langevin et al., 2011a). They are 

located near major crustal-scale faults, like the Cadillac-Larder Lake fault in the DBL 

camp, and large subvolcanic intrusions in orogenic belts and greenstone belts (Dubé et al., 

2007a). There can be a wide range in volume for these subvolcanic composite intrusions 

(e.g., intrusions related to the Archean Sturgeon Lake and Noranda, and Paleoproterozoic 

Snow Lake VMS camps range from 300 to 1,000 km3; Galley, 2003). These structural 

blocks separate the Au deposits and the younger Cu-Zn VMS deposits of Noranda 

(Mercier-Langevin et al., 2011a). This exemplifies the fact that, in most cases, Au-rich 

VMS deposits are situated in recognizably different volcanic and/or structural settings than 

other types of VMS deposits in the same district (Mercier-Langevin et al., 2011a). 
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Figure 5: Schematic of the various types of Au deposits. Deposits at their inferred crustal 

levels of formation (Dubé et al., 2001; Poulsen et al., 2000; from Dubé et al., 2007a). BIF 

= banded iron formation. 
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     Gold-rich VMS deposits have many of the same features as other VMS deposits, but 

form in volcanic environments that somewhat differ from that of other VMS deposits of 

their host district, and are sometimes hosted in transitional to calc-alkaline intermediate to 

felsic volcanic rocks which may suggest a fertile geodynamic setting and/or optimal timing 

of formation of the deposit (e.g., early arc rifting or rifting front; Hannington et al., 1999; 

Dubé et al., 2007b; Mercier-Langevin et al., 2011a; Beaudoin et al., 2014). The timing of 

these Au-rich deposits in some VMS districts could be directly related to the geodynamic 

evolution of the tectonic (i.e., arc-back-arc) setting and the corresponding magmatic 

characteristics (e.g., Macuchi Arc in Ecuador; Chiaradia et al., 2008; Baimak-type VMS 

deposits of the South Urals; Prokin and Buslaev, 1999; Herrington et al., 2005; Mercier-

Langevin et al., 2011a). 

     Worldwide, Au-rich VMS deposits have a variety of host sequences, including: effusive 

volcanics, volcanoclastics, or epiclastic mafic to felsic rocks, and mixed volcanogenic 

sedimentary sequences such as terrigenous, pelagic, or chemical sedimentary rocks 

(Mercier-Langevin et al., 2007b). They occur in greenstone belts of all ages with 

greenschist to lower amphibolite metamorphism and are associated with subvolcanic 

intrusions and dyke-sill complexes in the presumed stratigraphy (Galley, 2003; Dubé et al., 

2007a). It is common for the deposits to occur near intermediate to felsic volcanic centres, 

or adjacent to intermediate to felsic domes and basalt-andesite or clastic sediments (Figure 

6; Dubé et al., 2007a). The volcanic successions that host Au-rich VMS deposits have, in 

general, a higher proportion of felsic rocks than mafic rocks (Barrie and Hannington, 1999; 

Hannington et al., 1999; Mercier-Langevin et al., 2007b). Similar to most VMS deposits, 
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Au-rich VMS deposits contain semimassive to massive, stratabound to locally discordant 

sulphide lenses that overlie stockwork feeder zones (Figure 6; Dubé et al., 2007a). Also, 

syntectonic sulphide veins can develop, and primary sulphide layering is rarely preserved 

in deformed deposits (Dubé et al., 2007a). 
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Figure 6: Schematic of Au-rich VMS system. Geological setting and hydrothermal 

alteration zones associated with an Au-rich VMS system (from Dubé et al., 2007a). 
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     Ultimately, the main characteristic that sets Au-rich VMS apart from other VMS 

deposits is their anomalously high Au (Mercier-Langevin et al., 2011a). Mercier-Langevin 

et al. (2011a) analyzed Au grades and tonnages of 513 VMS deposits and concluded that 

deposits with 3.46 g/t Au and 31 t Au or more are considered Au-rich VMS. The Au content 

(in g/t) of an Au-rich VMS exceeds the associated combined Cu, Pb, and Zn grades (in 

weight percent; Hannington et al., 1999; Huston, 2000; Poulsen et al., 2000; Dubé et al., 

2007a). The Archean Abitibi greenstone belt hosts some of the best examples of the most 

extensive Au mineralization in VMS deposits in the world, including the Horne (53 Mt of 

ore at 6.1 g/t Au or 328 t Au; Kerr and Mason, 1990), and Quemont (13.8 Mt of ore at 5.5 

g/t Au or 76 t Au; Mercier-Langevin et al., 2011b) deposits of the Noranda camp (Mercier-

Langevin et al., 2014). 

     In terms of mineralization, there is considerable debate regarding the synvolcanic versus 

syntectonic origin of Au-rich VMS deposits because the original mode of mineralization 

in ancient terranes has been obscured by deformation and metamorphism (Dubé et al., 

2007a; Dubé et al, 2007b). There are two proposed genetic models for the mineralization 

of Au-rich VMS deposits (Dubé et al., 2007a). The first model is the syntectonic model 

which postulates that conventional syngenetic volcanic-hosted Au-poor, base metal-rich, 

VMS mineralization was overprinted during regional deformation and metamorphism by 

Au mineralizing fluids (Tourigny et al., 1989a, 1990; Marquis et al., 1990a,b,c; Yeats and 

Groves, 1998). The syn-deformational nature of Au mineralization is inferred by the 

location of deposits in highly deformed and metamorphosed sequences close to regional-

scale faults, the existence of discordant sulphide veins, and ore zones that are locally 
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parallel to foliation (e.g., DBL district; Tourigny et al., 1989a; Marquis et al., 1990a, b, c; 

Dubé et al., 2007a) or that are transposed along discordant post-ore shear zones (or high-

strain zone; e.g., Boliden; Allen et al., 1996; Bergman Weihed et al., 1996; Mercier-

Langevin et al., 2013). The second model is the synvolcanic model which proposes that 

the Au-rich deposits are syngenetic VMS deposits characterized by anomalous fluid 

chemistry (with magmatic Au input) and/or deposits from a shallow-water to subaerial 

volcanic setting analogous to epithermal conditions in which boiling may have had a major 

impact on the fluid chemistry (Poulsen and Hannington, 1996; Hannington et al., 1996; 

Sillitoe et al., 1996; Huston, 2000; Dubé at al., 2007a). The fluid would have had high Au 

content relative to base metals, and the Au would have precipitated due to a rapid change 

in pH and a decrease in temperature (Poulsen and Hannington, 1996; Dubé et al., 2007a). 

     The above models can be simplified into four potential processes that explain the 

enrichment of Au and related elements (i.e., As, Sb, Se, and Te): (i) boiling in the 

subseafloor of a shallow water environment; this changes the fluid chemistry and creates a 

Au-rich gaseous fluid (Urabe et al., 1987; Huston and Large, 1989; Butterfield et al., 1990; 

Poulsen and Hannington, 1996; Hannington et al., 1999; Patten et al., 2016); (ii) VMS 

formation in areas with originally high Au concentrations such as back-arc settings or 

mantle plumes (Huston, 2000; Moss et al., 2001; Pitcairn, 2011; Webber et al., 2013; Patten 

et al., 2016); (iii) magmatic input from a source such as a shallow sub-seafloor intrusion 

(Urabe et al., 1987; Stanton, 1990; Sillitoe et al., 1996; Patten et al., 2016); and (iv) late 

mineralization overprinting due to regional metamorphism (Dubé et al., 2007a; Patten et 

al., 2016). 
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     Host rocks can become enriched in Au for several reasons: the partial melting of a 

residual mantle containing Au-enriched magmatic sulphide to form boninites, and 

suppression of sulphide and oxide fractionation which isolates Au in alkaline, high fO2 

magmatic systems leading to various hydrothermal processes (Hamlyn et al., 1985; 

McInnes and Cameron, 1994; Barrie and Hannington, 1999). Primary depositional controls 

and subsequent tectonic modification and remobilization have produced an uneven Au 

distribution in the host rocks of Au-rich VMS deposits (Dubé et al., 2007a). Elongated 

sulphide orebodies in VMS deposits represent macroscale evidence of ductile 

redistribution and remobilization of orebodies (Rickard and Zweifel, 1975; Gaal, 1977; 

Gilligan and Marshall, 1987; Belkabir and Hubert, 1995). The sulphide mineralogy of Au-

bearing ores are typically more complex than in Au-poor VMS and contain pyrite, 

chalcopyrite, sphalerite, pyrrhotite, and galena, with minor minerals such as bornite, 

tennantite, sulphosalts, arsenopyrite, mawsonite, and tellurides (Hannington et al., 1999; 

Dubé et al., 2007a). The ores are dominated by Au, Ag, and Cu or Zn with locally high 

concentrations of As, Sb, Bi, Pb, Se, Te, and Hg (Dubé et al., 2007a). Deposits with the 

Au-Cu association generally have advanced argillic alteration, like the LaRonde Penna and 

Bousquet 2-Dumagami deposits in the DBL mining district (Dubé et al., 2007a). High-

sulfidation conditions like those in some epithermal environments are deduced from the 

metamorphosed advanced argillic and more discrete massive silicic alteration assemblages 

(Dubé et al., 2007a). 

     Gold-rich VMS deposits will often have advanced argillic-style alteration which is 

symptomatic of an environment with acidic, relatively oxidized, and sulfur-rich fluids of 
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magmatic origin and are comparable to fluids in the upper parts of volcanoes (Hedenquist 

and Lowenstern, 1994; Sillitoe et al., 1996). These Au-rich deposits also have intense 

silicification (and their metamorphosed equivalents) that appear strata-bound to semi-

conformable; sometimes they will also contain K-feldspar-bearing footwall alteration 

assemblages that contrast with the sericite- and chlorite-dominated alteration facies typical 

of most VMS deposits (Sillitoe et al., 1996; Hannington et al., 1999; Huston, 2000; Dubé 

et al., 2007a; Mercier-Langevin et al., 2011a; Beaudoin et al., 2014). This style of alteration 

differs from the pipe-like, strongly focused, sericite- and chlorite dominated alteration 

assemblages ordinarily found in most VMS deposits (Beaudoin et al., 2014). Gold-poor 

VMS deposits can also exhibit zones of argillic or aluminous alteration (e.g., Mattabi 

deposit in Sturgeon Lake, Ontario, Canada; Franklin et al., 1975; Undu deposit in Fiji; 

Colley and Rice, 1975; Sillitoe et al., 1996; some Kuroko deposits; Marumo, 1989); 

however, a high percentage of the most Au-rich VMS deposits have this style of alteration 

(Mercier-Langevin et al., 2011a). 

     There is evidence that the aluminous ore zone alteration assemblage of the LaRonde 

Penna deposit was once an advanced argillic hydrothermal alteration zone formed in a 

submarine environment but was subsequently metamorphosed (Dubé et al., 2007b; 

Beaudoin et al., 2014). If the advanced argillic alteration was indeed formed in a submarine 

setting, then there was most likely a direct magmatic input into the hydrothermal system 

rather than it forming from steam-heated or weathering processes (Dubé et al., 2007b; 

Mercier-Langevin et al., 2007b; Beaudoin et al., 2014). The next section will focus on 

magmatic contributions to ore-forming processes in VMS deposits. 
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1.1.2 Magmatic contributions to VMS 

     Many researchers have shown that base and precious metals in ancient VMS deposits 

can come from the leaching of deep footwall rocks by evolved seawater in high-

temperature zones (Franklin et al., 1981; Yang and Scott, 1996; Gibson et al., 2007). 

However, research has also shown the possibility of magmatic contributions to the ore-

forming fluid because of the spatial association of massive sulphides with ancient and 

modern sea-floor volcanic rocks (Stanton, 1994; Fenner, 1933; Urabe and Marumo, 1991; 

De Ronde, 1995; Franklin et al., 1981; Rona and Scott, 1993; Yang and Scott, 1996). For 

this reason, there is a level of uncertainty regarding the source of metals in VMS deposits 

(De Ronde, 1995; Yang and Scott, 2002; Gibson et al., 2007). The leaching of rocks by 

evolved seawater can be best understood by recognizing and defining high temperature 

reaction zones; whereas, the direct or indirect magmatic contribution to VMS deposits can 

be understood through studying behaviour patterns of metals and sulphur during partial 

melting, magmatic fractionation, and submarine volcanic evolution (Gibson et al., 2007). 

Depending how evolved and volatile-rich the associated magmas are, it is likely that metals 

are sourced from both the leaching of rocks by seawater and magmatic fluids in varying 

amounts (Figure 7; Gibson et al., 2007; Mercier-Langevin et al., 2007b). 
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Figure 7: Model showing the environment for the formation of high- and low-

sulfidation VMS deposits in a sub-marine felsic dome-cryptodome and flow breccia 

complex. The depicted volcanic architecture is a simplified version of the LaRonde-

Bousquet 2 Au-rich VMS complex, Doyon-Bousquet-LaRonde mining camp, Quebec. The 

schematic shows that, in response to evolving local geology, mineralization styles can 

steadily evolve (spatially and temporally) from Au-Cu-Zn-Ag-Pb ore with neutral pH, to 

transitional, to acidic advanced argillic alteration with Au ± Cu ore. Importantly, the 

variability of seawater and magmatic volatile (degassing) contributions to the mineralizing 

hydrothermal fluids and its subsequent buffering controls what metal assemblages are 

transported to the ore (from Mercier-Langevin et al., 2007b). 
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     To demonstrate the role seawater plays in the formation of VMS deposits, researchers 

have compared geochemical and geological characteristics of early VMS deposits to those 

of modern hydrothermal systems on the seafloor (Vearncombe et al., 1995; Jamieson et al., 

2012). For example, sulphur isotope systematics of modern hydrothermal systems has 

shown that most of the sulphate in seawater precipitates as anhydrite as the downwelling 

fluid reaches higher temperatures (Alt, 1995; Jamieson et al., 2012). When the 

downwelling fluid reaches the base of the high-temperature upwelling zone, what is left of 

the sulphate reacts with the Fe2+-bearing wall rock minerals (Shanks et al., 1981; Jamieson 

et al., 2012). At this point, the remaining sulphur is reduced and precipitates as sulphide 

minerals (i.e., ore minerals) at or near the seafloor surface after it has been mixed with 

sulphide leached from the volcanic host rock and ascended as hot fluid to mix with cold 

local seawater (Woodruff and Shanks, 1988; Jamieson et al., 2012). Not only does the 

reduced sulphur mix with sulphide leached from the volcanic host rock, but it also mixes 

with directly degassed magmatic sulphur (Herzig et al., 1998). 

     The magmatic contribution of metals to a VMS system is possible if three conditions 

are met: (i) there is an evolving magmatic system that exsolves volatiles with a fluid phase; 

(ii) there is an enrichment of ore metals in the exsolved fluid phase; and (iii) the enriched 

fluid separates and mixes with the sea-water convective system (Yang and Scott, 1996). 

The study of SMI in phenocrysts of fresh rocks can reveal information about the first two 

conditions because SMI are snapshots of the metal and volatile characteristics of pre-

eruptive magmas at high pressure-temperature (PT) conditions (Roedder, 1984; Yang and 

Scott, 1996; Créon et al., 2018). Yang and Scott (1996) have demonstrated the potential 
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for magmatic contributions to submarine hydrothermal systems through the study of SMI 

in felsic volcanics dredged from the eastern Manus basin offshore of Papua New Guinea 

(Taylor et al., 1991). It is known that currently active volcanic systems, like those in the 

Manus basin, contain magmas that release magmatic fluids capable of carrying ore metals 

and volatiles when depressurized (Fenner, 1933; Roedder, 1984; Stanton, 1994; De Ronde, 

1995; Hedenquist and Lowenstern, 1994; Yang and Scott, 1996). The volcanic rocks of the 

Manus basin host Cu-Zn-Pb-Ag-Au polymetallic sulphide deposits and represent a modern 

analogue of the hydrothermal environment that produced VMS deposits in the ancient 

geological record (Binns and Scott, 1993; Scott and Binns, 1995; Yang and Scott, 1996). 

The SMI of these volcanics were trapped in phenocrysts that formed early in the andesite-

basaltic magma and contained metal- and CO2-rich volatile phases (Yang and Scott, 1996). 

Together, these characteristics indicate that metals could have been transported by high-

temperature fluids in the pre-erupted magma of the Manus basin and suggest that similar 

submarine magmatic-hydrothermal systems, like those that formed ancient VMS deposits, 

would exhibit the same processes (Ballhaus et al., 1994; Fleet and Wu, 1995; Stoiber and 

Rose, 1974; Taran et al., 1995; Yang and Scott, 1996). 

     Magmatic devolatilization could be the mechanism of subvolcanic intrusive complexes 

that produces hot fluids with enrichments of ore metals, S, and other volatiles, and supplies 

them to spatially associated seafloor deposits (Galley, 1996; Brauhart et al., 1998; Galley 

et al., 2003; Yang and Scott, 2003; Galley et al., 2007; Ioannou et al., 2007; Huston et al., 

2011; Galley and Lafrance, 2014). For devolatilization to be effective in developing large 

ore deposits there would have to be appropriate temperature, pressure and redox conditions 
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for maintaining large concentrations of Cl and ore-forming metals in solution until a fluid 

phase is generated, the presence of hydrous magmas for production of a satisfactory vapour 

phase, and the sequestration of both metals and ligands in appropriate concentrations 

(Giggenbach, 1996; Christenson, 2000; Von Damm, 2000; Lilley et al., 2003; De Ronde et 

al., 2005; Galley and Lafrance, 2014). Due to its intricate evolution, the MIC, for example, 

may have had a suitable environment to trap metals and the ligands appropriate for their 

complexion and transportation to the subvolcanic depositional environment (Galley and 

Lafrance, 2014). Evidence of the in situ devolatilization process in subvolcanic intrusive 

complexes includes, but is not limited to, extensive alteration zones and miarolitic cavities 

associated with aplite dyke swarms, like those that formed during crystallization of the 

xenolith-rich tonalite magma chamber of the MIC-associated Mouska and Doyon stages 

(Audétat and Pettke, 2003; Galley and Lafrance, 2014). 

     In many cases, metal-rich magmatic volatiles can be supplied to precious metal-rich 

(e.g. Au) VMS systems (Lydon, 1996; Sillitoe et al., 1996; Hannington et al., 1999; 

Piercey, 2011). There is evidence suggesting this connection, including aluminous 

alteration assemblages, precious metal (Au-Ag) enrichment, fluid inclusions with high 

salinity and magmatic halogens, and suites of elements (e.g., Hg, Bi, Sb, and Ba) associated 

with epithermal deposits in the mineralization and alteration zones of the VMS systems 

(Sillitoe et al., 1996; Hannington et al., 1999; Roth et al., 1999; Sherlock et al., 1999; Dubé 

et al., 2007b; Mercier-Langevin et al., 2007b; Piercey, 2011). The shallow-level (i.e., less 

than 3-4 km depth) subvolcanic intrusions potentially provide the metals, fluids, and 

volatiles to precious metal-rich VMS systems, with deeper heat (i.e., ~10 km depth) being 
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the major driver for hydrothermal circulation on a larger, geodynamic scale (Figure 7; 

Piercey, 2011). The deeper heat source is typically a subvolcanic composite intrusion 

which, for exploration purposes, is important to dileneate because it establishes the location 

of thermal corridors that lead to significant VMS mineralization (Galley, 2003). 

     The large-scale fluid flow of these systems creates extensive (i.e., many kilometers of 

strike length) semi-conformable zones of hydrothermal alteration that intensifies into zones 

of discordant alteration in the footwall and hanging wall of individual deposits; they are 

discordant to regional metamorphic isograds (Figure 8; Galley, 1993; Hannington et al., 

2003; Galley et al., 2007; Shanks, 2012). Some of these alteration zones, such as advanced 

argillic alteration zones associated with subaerial high-sulfidation hydrothermal systems 

(e.g., Arribas, 1995), are characterized by a direct contribution of magmatic fluids and 

meteoric fluid mixing (Hedenquist and Lowenstern, 1994; Beaudoin et al., 2014). 

Additionally, aluminous alteration zones, like those of the LaRonde Penna deposit, are 

interpreted to represent the metamorphosed equivalent of advanced argillic alteration zones 

and may also have contributions of magmatic fluids (Hedenquist and Lowenstern, 1994; 

Dubé et al., 2007b; Beaudoin et al., 2014). In a mineralogical context, a direct magmatic 

input can be inferred by the presence of uncommon alteration assemblages (e.g., advanced 

argillic, aluminous, strongly siliceous, or K-feldspar alteration; Hannington et al., 1999; 

Mercier-Langevin et al., 2011a). For example, the cone site of the Brothers hydrothermal 

system in the Southern Kermadec Arc has an advances argillic alteration assemblage of 

illite + amorphous silica + natroalunite + pyrite + native S, which is a common assemblage 

for subaerial magmatic hydrothermal systems (Arribas, 1995; De Ronde et al., 2005). 
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Geochemically, magmatic contributions to hydrothermal fluids can be inferred by specific 

trace element signatures; especially, those signatures with enrichments of chalcophile 

elements, like in fumarolic gas condensates from andesitic volcanoes (e.g., Au-Ag-As-Sb 

± Bi-Hg-Te; Hannington et al., 1999; Huston, 2000; Halbach et al., 2003; Glasby et al., 

2004; Glasby et al., 2008; Mercier-Langevin et al., 2011a). 
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Figure 8: Example of the aerial extent of alteration zoning in VMS deposits. Semi-

conformable alteration zones of the Blake River Group (Noranda volcanic complex, 

western Abitibi Subprovince, Ontario) that have a discordant geometry to the region’s 

metamorphic isograds (Hannington et al., 2003; from Shanks, 2012). 
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1.2 List of acronyms and abbreviations 

     The following table summarizes acronyms and abbreviations that are commonly used 

throughout the thesis (following page): 

Table 2: List of acronyms and abbreviations used throughout this thesis 

Acronym/abbreviation Meaning 

alm almandine 

aln allanite 

ank ankerite 

ann annite 

BIF banded iron formation 

BON boninite 

BSE back-scattered electron 

bt biotite 

cal calcite 

CCD charge-coupled device 

ccp chalcopyrite 

chl chlorite 

CL cathodoluminescence 

cn chondrite 

cp chalcopyrite 

DBL Doyon-Bousquet-LaRonde 

EDS energy dispersive spectroscopy 

ep epidote 

flinc fluid inclusion 

fO2 oxygen fugacity 

fsp feldspar 

Ga giga-annum 

gn galena 

grt garnet 

HCL hot cathodoluminescence 

HFSE high field strength element(s) 

HREE heavy rare earth elements 

IAT island arc tholeiites 

ilm ilmenite 

iron ox iron oxide 

KOM komatiite 

LA-ICP-MS laser ablation inductively-coupled mass 

spectrometer 

leu leucoxene 
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LILE large ion lithophile elements 

LOTI Low-Ti tholeiite 

LREE light rare earth elements 

LRM laser Raman microscopy 

Ma mega-annum 

MHC molybdenum-halfnium-carbide (vessel) 

MIC Mooshla Intrusive Complex 

mnz monazite 

MORB mid-ocean ridge basalt 

ms muscovite 

Mt million metric tons 

NWR New Wave Research (laser manufacturer) 

OIB ocean island basalt 

phl phlogopite 

pl plagioclase 

po pyrrhotite 

PPL plane polarized transmitted light 

py pyrite 

QFP quartz feldspar porphyry 

qtz quartz 

REE rare-earth element 

rt rutile 

sd siderite 

SDD silicon drift detector 

SEM scanning electron microscope 

SILLS Signal Integration for Leeds Laser System 

SMI silicate melt inclusion 

sp sphalerite 

SRM standard reference material 

sul sulphide 

TGI-5 Targeted Geoscience Initiative-5 

THOL tholeiite 

VMS volcanogenic massive sulphide 

zrn zircon 
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Abstract 

     Silicate melt inclusions (SMI) in rhyolitic volcanic rocks in the ~2699 – 2697 Ma 

Bousquet Formation, Blake River Group (Doyon-Bousquet-LaRonde mining camp, 

Abitibi Subprovince, Québec) were studied using a variety of methods (petrography, 

microthermometry, high P-T homogenization, laser Raman microspectroscopy, SEM-

EDS, SEM-CL, hot-CL, LA-ICP-MS). The main objectives of the study are to determine 

if the volcanic rocks preserve evidence of the original metal tenor of the magmas in SMI, 

and to examine the links between the metal contents and chemistry/volatile content of these 

melts and anomalously high Au content in some VMS deposits of the DBL deposit camp. 

The study is one of only a few studies of SMI from Archean age rocks and the first to 

present trace element/ore metal data for SMI of this age. 
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     Diamond drill core was collected at the Westwood Mine and the LaRonde Penna Mine, 

while surface samples were collected near these mines, the Mooshla B deposit, and the 

Doyon Mine. Petrographic observations indicated that most units within the Bousquet 

Formation, except unit 4.2, contain SMI. However, only a few lithologies were appropriate 

for detailed study. The appropriate lithologies (i.e., units 2.0 and 5.3) contain locally large 

phenocrysts that were not pervasively fractured and SMI that were not chemically 

modified. Silicate melt inclusions of primary origin were characterized from magmatic 

quartz phenocrysts of units 2.0 [quartz feldspar porphyry (QFP) rhyolite sills] and 5.3 (QFP 

rhyolite flows). Data reported for SMI are for inclusions that are recrystallized but occur 

away from fractures and areas of alteration-dissolution-reprecipitation of the host 

phenocryst, as indicated by cathodoluminescence imaging, and do not show evidence of 

post-entrapment decrepitation. The SMI have a similar mineralogy to hourglass inclusions 

(physically connected to surrounding matrix), but can be differentiated from these on the 

basis of: (i) the hourglass inclusions are always completely crystallized (no glass) and 

contain secondary (metamorphic, alteration) minerals not found in SMI; (ii) the hourglass 

inclusions often appear to be still tied to an embayment of matrix material that protrudes 

into the quartz phenocryst but that extends below the inclusion out of the plane of focus; 

(iii) the hourglass inclusions are often highly irregular in shape and their contained crystals 

penetrate into the inclusion walls, whereas commonly (but not always) SMI are smaller 

and rounded/subrounded with smoother walls. Homogenized SMI show that co-entrapment 

of an immiscible carbonic fluid (CO2-dominant) occurred, indicating that the melt was 

saturated in CO2 at the time of entrapment in the phenocrysts.  
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     Based on SEM analyses of homogenized SMI, the contained melts are rhyolitic. Trace 

element dissemination based on LA-ICP-MS data indicate that unit 2.0 SMI are of ocean 

ridge (ORG) or within plate (WPG; anorogenic) tectonic settings whereas unit 5.3 SMI are 

consistent with a syn-collision (syn-COLG) or volcanic arc (VAG) classification. 

However, no SMI have trace element (Sr-Y-La-Yb) characteristics consistent with Archean 

tonalite-trondhjemite-granodiorite (TTG), suggesting significant compositional 

modification (e.g., possibly due to crustal contamination) prior to entrapment relative to 

equivalent intrusive units of the Mooshla Intrusive Complex (MIC). Even though the bulk 

compositions of the SMI and bulk rocks are similar, the range in major and trace elements 

is much wider in the SMI. Comparative analysis of apatite, SMI, and bulk rock data shows: 

(i) At depth, prior to eruption-emplacement, the SMI and coeval apatite record the 

crystallization of significant amounts of plagioclase (An = 10 – 30%), K-feldspar, and 

apatite; (ii) The concentrations of Au, Cu, As, Sn, Sb, Bi, and Pb are up to two orders of 

magnitude higher in SMI than in bulk rocks; (iii) Major and trace data for the SMI reflect 

significant differentiation of the rhyolite (at least 70 – 75%) over its entrapment history 

indicating a prolonged phenocryst residence at depth in a rhyolitic magma chamber; and 

(iv) Metal concentrations in bulk rocks in this setting are not representative of the 

composition of the original magmatic liquids. 

     The presence of CO2 in SMI of the Bousquet rhyolites, due to their advanced age, 

suggests that any SMI trapped in a magmatic system may potentially have CO2 as a 

saturated phase. Unlike typical porphyry, which have natural fractionation degassing, the 

Bousquet magmatic system continuously received CO2-bearing fluids from an external 
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source, became CO2 saturated, and underwent constant fractionation iterations with 

degassing causing early removal of metal-bearing H2O fluids. The source of CO2 trapped 

in the SMI could have been organic matter or carbonates in wall rocks hosting the rhyolitic 

magma at depth. However, the oldest sedimentary rocks in the area belong to the Cadillac 

Group (<2689 Ma) which are younger and overly the Blake River Group. 

     Ore metal contents in the SMI of units 5.3 and 2.0 are potentially minimum values, 

suggested by the presence of co-entrapped carbonic liquid and very low water content in 

the inclusions. Immiscible or exsolving fluid phases likely disturbed the original metal 

contents of the SMI which is seen in the lack of correlation between very strongly 

incompatible elements (e.g., Cs) and ore metals in SMI. Ore metal ratios in the SMI are 

conserved even in the presence of saturated volatiles, as seen in the overlapping of selected 

metal ratios of the SMI and the LaRonde Penna deposit ore bodies. The overlap indicates 

that the volcanic rocks have had some direct influence, through active degassing or passive 

leaching, on the metals of the LaRonde Penna VMS deposits. 

     The SMI of unit 5.3 have a range of 6 ppb Au (1st quartile) to 159 ppb Au (3rd quartile; 

n = 10) while unit 2.0 SMI have a range of 5 ppb Au (1st quartile) to 24 ppb Au (3rd quartile; 

n = 14); at these Au concentrations, a minimum of 0.5 – 15 km3 and 4 – 19 km3 of rhyolitic 

magma would be required, respectively, to source the Au in the LaRonde Penna VMS 

deposits through leaching or devolatilization. A conservative estimate of the volume of the 

Upper Member of the Bousquet Formation is approximately ~7.5 km3. Therefore, it is not 

unreasonable that with a correction for efficiency, the rhyolitic units of the Bousquet 

Formation provided magmatic Au to the VMS deposits. 
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2.0 Introduction  

     It is well known that a prerequisite for the evolution of volcanogenic massive sulfide 

(VMS) deposits is the presence of a synvolcanic magmatic system which initiates and 

drives subseafloor convective hydrothermal systems (Campbell et al., 1981; Cathles, 1981; 

Lydon, 1996; Brauhart et al., 1998; Barrie et al., 1999; Galley, 2003; Galley et al., 2003; 

Franklin et al., 2005; Baker, 2009; Galley and Lafrance, 2014). Many researchers have 

suggested that volatiles and metals of magmatic origin contribute directly to the ore-

forming fluid of VMS systems, especially in Au-rich VMS deposits, stressing the spatial 

and temporal association of mineralization with ancient and modern sea-floor volcanic 

rocks (Fenner, 1933; Franklin et al., 1981; Urabe, 1987; Sawkins, 1990; Urabe and 

Marumo, 1991; Rona and Scott, 1993; Stanton, 1994; De Ronde, 1995; Sillitoe et al., 1996; 

Yang and Scott, 1996; Hannington et al., 1999; Hannington et al., 2005; Mercier-Langevin 

et al., 2007c). A magmatic contribution of metals to a VMS system is possible if three 

conditions are met: (i) there is an evolving metal-rich magmatic system that exsolves 

volatiles; (ii) there is an enrichment of ore metals in the exsolved volatile phase; and (iii) 

the metal enriched volatiles mix into the seawater convective system (Yang and Scott, 

1996). Evidence for magmatic devolatilization of subvolcanic intrusive complexes as a 

process to enrich metals, S and other volatiles species in VMS systems has been extensively 

discussed (Galley, 1996; Brauhart et al., 1998; Galley et al., 2003; Yang and Scott, 2003; 

Galley et al., 2007; Ioannou et al., 2007; Huston et al., 2011; Piercey, 2011; Galley and 

Lafrance, 2014). Evidence for the in-situ devolatilization process in VMS-coeval 

subvolcanic intrusive complexes includes, but is not limited to, the presence of extensive 

alteration zones and miarolitic cavities associated with aplite dyke swarms. Evidence that 
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devolatilization has led to the delivery of metal-bearing magmatic volatiles to VMS 

systems includes the following features in mineralized and hydrothermally altered zones: 

(i) aluminous alteration assemblages (i.e., metamorphosed equivalent of advanced argillic 

assemblages); (ii) potassic alteration; (iii) enrichment in precious metals (Au-Ag); (iv) high 

salinity fluid inclusions and magmatic halogens; and (v) other element suites (e.g., As, Hg, 

Bi, Sb) typically associated with porphyry-epithermal deposits (Hedenquist and 

Lowenstern, 1994; Arribas, 1995; Sillitoe et al., 1996; Hannington et al., 1999; Roth et al., 

1999; Sherlock et al., 1999; Halbach et al., 2003; Glasby et al., 2004, 2008; Dubé et al., 

2007b; Mercier-Langevin et al., 2007b, 2011a; Piercey, 2011; Beaudoin et al., 2014). 

     In the DBL mining district, Abitibi Subprovince, Québec, a prolific period of Au-

enriched VMS deposit formation was synchronous with the eruption/emplacement of the 

Bousquet Formation volcanics (2699–2697 Ma; Lafrance et al., 2003; Mercier-Langevin 

et al., 2007b; Mercier-Langevin et al., 2017), Blake River Group (ca. 2704 – 2695 Ma). 

Whereas the geological relationships between mineralization and volcanism are well 

documented, strongly suggesting a genetic link (e.g., Mercier-Langevin et al., 2007a, b; 

Galley and Lafrance, 2014), the metal endowment of the original magmas and their 

potential to supply ore and accessory metals and volatiles to the seafloor or subseafloor 

hydrothermal systems are unconstrained. In particular, the upper member of the Bousquet 

Formation, which hosts the majority of the Au-rich VMS deposits in the DBL camp (i.e., 

LaRonde Penna deposit: 59 Mt at 4.3 g/t Au, 8.1 Moz Au; Mercier-Langevin et al., 2007c; 

Bousquet 2-Dumagami deposit: 15.5 Mt at 7.3 g/t Au, 3.6 Moz Au; Mercier-Langevin et 

al., 2007c, 2009; Westwood deposit: 14.2 Mt at 7.6 g/t Au, 3.5 Moz Au; Mercier-Langevin 
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et al., 2009; and Bousquet 1 deposit: 7.5 Mt at 5.3 g/t Au, 1.3 Moz Au; Mercier-Langevin 

et al., 2009), is a strong candidate for contributing both metals and volatiles to the Au-rich 

VMS deposits. In particular, the unit 5.3 QFP rhyolite may have been especially important 

as a causative magma since it hosts the 20 North lens hanging wall of the LaRonde Penna 

deposit. 

     Previous studies (Valiant and Hutchinson, 1982; Guha et al., 1983; Gaudreau, 1986; 

Langshur, 1990; Marquis et al., 1990; Savoie et al., 1991; Trudel et al., 1992; Belkabir and 

Hubert, 1995; Tremblay et al., 1995; Gosselin, 1998; Lafrance et al., 2003a, 2005; Dubé et 

al., 2004, 2007a-b, 2014; Mercier-Langevin et al., 2004, 2007a-d, 2009, 2011a; Mercier-

Langevin, 2005; Galley and Lafrance, 2007, 2014; Wright-Holfeld et al., 2010, 2011; 

Beaudoin et al., 2014; Yergeau, 2015; Yergeau et al., 2015) have suggested a genetic link 

between the MIC, Bousquet Formation volcanics, and regional deposits in the area, based 

on ore metal distributions, geochronology, mapping/field relations, petrography, and 

lithogeochemistry. Specific lines of evidence include: (i) crude metal zoning (Cu-Zn-Pb-

Ag-Au), despite metamorphic recrystallization and deformation which is still evident in 

the massive sulphide lenses, demonstrating primary synvolcanic mineralization (Mercier-

Langevin, 2005; Dubé et al., 2004, 2007a); (ii) U-Pb geochronology revealing that, in less 

than ~2 Ma, the volcanic and intrusive rocks of the Bousquet Formation and MIC were 

emplaced/erupted; crosscutting relationships and the relative timing of deformation and 

metamorphism suggest that ore-forming hydrothermal systems were linked to the 

magmatism, with VMS ores more or less coeval with volcanism (Dubé et al., 2014; 

Yergeau et al., 2015); (iii) petrography and lithogeochemistry indicating correlations of 

different volcanic and alteration facies with Au enrichment (Mercier-Langevin et al., 
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2017); (iv) The occurrence of Au-enriched sulphide-rich clasts in debris flows that occur 

stratigraphically above massive sulphide lenses in the LaRonde Penna deposit, implying 

that there was pre-deformation Au-rich VMS mineralization (Mercier-Langevin, 2005; 

Dubé et al., 2007a); (v) The observation of little or no Au mineralization between stacked 

Au-rich ore lenses within the volcanic succession (Mercier-Langevin et al., 2017); and (vi) 

The observation of a primary distribution of Au and Cu preserved in highly strained lenses 

along synvolcanic faults (Mercier-Langevin et al., 2017). 

     In general, past studies indicate that Au, along with other metals (Cu-Zn-Ag-Pb) were 

mainly introduced as primary components of the ore bodies in the DBL camp (Dubé et al., 

2004; Mercier-Langevin et al., 2004; Mercier-Langevin, 2005; Galley and Pilote, 2002; 

Galley and Lafrance, 2007; Lafrance et al., 2003a, b, c, 2005). For example, Au-Cu-Zn-

Ag-Pb mineralization at the LaRonde Penna deposit is suggested to have formed from near-

neutral, seawater-dominated hydrothermal fluids with possibly direct magmatic 

contributions responsible for the Au ± Cu endowment of the ore and advanced argillic 

alteration (now aluminous alteration; Dubé et al., 2007; Mercier-Langevin et al., 2007b, c). 

However, although less deformed parts of the volcanic sequence have been studied (e.g., 

the LaRonde Penna deposit), the extent of deformation, metamorphism and alteration 

severely limits the ability to accurately constrain ore paragenesis and primary features (e.g., 

original mineral assemblages and metal tenor; Tourigny et al., 1989a; Mercier-Langevin et 

al., 2007a, b, d). Such deformation and metamorphic events modify the metal chemistry of 

bulk rocks thereby masking evidence of metal enrichment, degassing, fluid-melt 

partitioning, and the extent of magmatic fractionation and their relationship to ore metal 

tenor (Ikramuddin et al., 1975; Hannington et al., 1986; Marshall and Gilligan, 1987, 1993; 
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Larocque et al., 1993; Marshall et al., 2000). In the DBL camp, the overlapping nature of 

multiphase deformation, regional metamorphic episodes, and magmatism is a 

fundamentally limiting issue when evaluating the causative links between magmatic 

activity and Au metallogenesis (Galley and Lafrance, 2014). 

     The Bousquet Formation volcanics at the LaRonde Penna mine, occurring to the east of 

the MIC, provide a rare opportunity in an Archean terrane to study the petrography and 

chemical composition of silicate melt inclusions (SMI) to develop first order constraints 

concerning the potential for a direct magmatic contribution to the district’s Au-rich VMS 

deposits. Ore lenses of the LaRonde Penna Au-rich VMS deposit are hosted by the 2698 ± 

0.8 Ma upper member of the Bousquet Formation (Mercier-Langevin et al., 2007b, 2017), 

contemporaneous with a prolific period of Au-rich VMS formation in the Blake River 

Group (McNicoll et al., 2014; Mercier-Langevin et al., 2017). The age relationship between 

the host upper member of the Bousquet Formation and the LaRonde Penna deposit suggests 

a viable correlation between the petrogenetic evolution of this volcanic assemblage and 

enrichment in Au (Mercier-Langevin et al., 2007c, 2011c, 2017). 

     The analysis of SMI preserved in phenocryst quartz and other relatively robust igneous 

minerals (e.g., apatite, titanite, zircon) provides a means to determine the original metal 

tenor and volatile of the magmatic system and its potential to supply ore metals to the 

hydrothermal system. The compositions of SMI may be largely unaffected by post-solidus 

processes, and may also preserve magmatic liquid compositions that predate magmatic-

hydrothermal processes such as differentiation, degassing and leaching of metals (e.g., 

Roedder, 1979; Kamenetsky et al., 1999; Audétat et al., 2000; Danyushevsky et al., 2002; 

Rapien et al., 2003; Schiano, 2003; Student and Bodnar, 2004; Halter et al., 2005; Audétat 
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and Pettke, 2006; Zajacz et al., 2008; Lerchbaumer and Audétat, 2013; Zhang and Audétat, 

2018). Specifically, integrating petrographic studies with geochemical analysis of the SMI 

allows the temporal evolution of melt composition to be evaluated at different stages in the 

magmatic-hydrothermal evolution of a mineralizing environment, as shown in many 

studies (e.g., Sobolev and Shimizu, 1993; Nielsen et al., 1995; Gurenko et al., 1996; 

Sobolev and Chaussidon, 1996; Sobolev, 1996; Kamenetsky et al., 1997; Kamenetsky et 

al., 1999; Métrich et al., 1999; Audétat et al., 2000; Sobolev et al., 2000; Rapien et al., 

2003; Student and Bodnar, 2004; Halter et al., 2005; Audétat and Pettke, 2006; Zajacz et 

al., 2008; Lerchbaumer and Audétat, 2013; Zhang and Audétat, 2018). 

     In this study, quartz phenocryst-hosted SMI in two rhyolitic units of the lower and upper 

members of the Bousquet Formation were characterized using a variety of microanalytical 

techniques (scanning electron microscopy-backscattered electron [SEM-BSE] imaging, 

SEM-energy dispersive spectroscopy [EDS], cathodoluminescence [CL], laser Raman 

microspectroscopy [LRM], laser ablation-inductively coupled plasma-mass spectrometry 

[LA-ICPMS], and preliminary microthermometry/homogenization experiments) in order 

to provide a detailed mineralogical and geochemical description of the SMI, including ore 

and accessory metal chemistry. Together, the data gathered provide new constraints on the 

chemical evolution of the magmatic-hydrothermal systems in the district. Specific 

objectives addressed include: (i) An evaluation of the robustness of SMI preservation 

through petrography and chemical analysis; (ii) Constraining the metal and trace element 

chemistry of SMI and evaluating processes that may influence metal enrichment; (iii) A 

preliminary evaluation of the presence and role of volatiles in magma evolution; and (iv) 

A preliminary evaluation of the magmatic fluid contribution to Au-rich VMS. 
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     The present study is one of only a few investigations of SMI in Archean-age terranes 

(e.g., McDonough and Ireland, 1993; Shimizu et al., 2001; Chupin et al., 2006; Berry et 

al., 2008). These studies of Archean SMI focus exclusively on komatiitic olivine 

phenocrysts which are typically fractured and replaced by serpentine and entrap melts 

during the rapid growth of spinifex olivine (Kamenetsky et al., 2010). A lack of studies in 

Archean terranes may stem partially from the assumption of a lack of SMI preservation 

(extensive modification) but these are unfounded concerns since polyphase deformation, 

metamorphism, and uplift can equally impact younger terranes. The current study offers a 

new approach to Archean melt inclusion investigations, focusing on quartz phenocrysts as 

hosts to SMI. 

2.1 Geological Setting 

2.1.1 Deposit overview 

     Deposits of the DBL mining camp ,discovered and developed 50 km east of the Noranda 

district, have been mined since the 1930s and contain Au ± Cu-Zn-Ag-Pb ores which 

contain more than 28 Moz of Au combined, making the camp one of the most Au-rich 

mineralized districts in Canada, and one of the world’s largest Au districts hosted in 

Archean-age rocks (Lafrance et al., 2003; Gibson and Galley, 2007; Mercier-Langevin et 

al., 2007a, 2009, 2011b; Mercier-Langevin et al., 2011b; Galley and Lafrance, 2014). 

     There are three main Au ± Cu-Zn-Ag deposit types in the camp: (i) Au-rich VMS 

deposits (LaRonde Penna, Bousquet 2-Dumagami, Bousquet 1, Westwood, Ellison, and 

Warrenmac deposits; total ≈ 12.3 Moz Au); (ii) epizonal “intrusion-related” Au-Cu 
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sulphide-rich vein systems (Doyon deposit; total ≈ 5.7 Moz Au); and (iii) shear zone-

hosted, orogenic (remobilized), Au-Cu sulphide-rich veins (Mouska, Mic Mac, and 

Mooshla deposits; total ≈ 7.6 Moz Au; Mercier-Langevin et al., 2007a, 2009; Galley and 

Lafrance, 2014; Yergeau, 2015). The third type (shear zone-hosted) shares characteristics 

with ore types 1 and 2 and could be transposed and/or remobilized epizonal intrusion-

related Au-Cu vein systems or Au-rich VMS (Mercier-Langevin et al., 2007a). The shear 

zone-hosted deposit has a quartz-sulphide vein type that resembles that of the epizonal 

intrusion-related Au-Cu deposits (e.g., Doyon deposit; Mercier-Langevin et al., 2007a). 

Specifically, the veins contain 75 vol% sulphides (pyrrhotite and chalcopyrite are 

dominant, with minor pyrite), the quartz is greyish, and there are trace amounts of 

magnetite, ilmenite, electrum, and tellurides of Ag and Pb (Belkabir and Hubert, 1995; 

Mercier-Langevin et al., 2007a). Together, all the deposits in the camp make it the sixth 

largest Au district in the Superior Province with a total past production, current reserves, 

and estimated resources of 790.1 t Au (Mercier-Langevin et al., 2020). The present study 

focuses on the Au-rich VMS deposits of the DBL camp which contains two world-class 

deposits (i.e., LaRonde Penna and Bousquet 2) with production, reserves, resources, and 

metal ratios shown in Table 1.
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Table 1: Total production, reserves, and resources1 at the end of 2013 (December 31, 2013) for the Doyon-Bousquet-

LaRonde mining camp 

 
Note: Modified from Mercier-Langevin et al., 2017. 

1. Global gold endowment figures (total metal budget in situ) include total historical production (in situ) plus current reserves and 

resources data taken from public sources and are for comparison purposes only; refer to Iamgold and Agnico Eagle Mines websites 

for details. 

2. Current producers. 

3. Reference: Dubé et al., 2003. 

4. Reference: GSC, unpublished.
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2.1.2 Regional geology 

     The DBL mining camp’s regional geology and geologic setting of its contained mineral 

deposits have been described in Gunning (1941), Fillion et al. (1977), Valiant and 

Hutchinson (1982), Marquis et al. (1990b), Trudel et al. (1992), Lafrance et al. (2003, 

2005), Mercier-Langevin et al. (2004, 2007a, 2011b), and Yergeau (2015). The DBL 

mining camp is within the eastern- and upper part of the Blake River Group (ca. 2704 – 

2695 Ma; McNicoll et al., 2014), which is the youngest volcanic-dominated group in the 

Archean Abitibi greenstone belt between the Lac Parfouru fault to the north and the 

Cadillac-Larder fault zone to the south (Ayer et al., 2002; Lafrance et al., 2005; Mercier-

Langevin et al., 2007a, b; McNicoll et al., 2014). The DBL mining camp is a ~10 km long 

east-west-striking, southerly younging homoclinal succession of Blake River Group 

tholeiitic, transitional, and calc-alkaline submarine volcanic rocks (Lafrance et al., 2003a; 

Mercier-Langevin et al., 2007d). The base of the Blake River Group volcanics (i.e., the 

Hébécourt Formation) is in thrust contact with the sedimentary rocks of the younger 

Kewagama Group (≤2686 ± 4 Ma; Davis, 2002) to the north along the Lac Parfouru fault, 

and is disconformably overlain by siliciclastic strata and minor iron formation of the 

Cadillac Group to the south (≤2689 Ma ± 2 Ma in the LaRonde Penna mine area: Mercier-

Langevin et al., 2007a, and ≤2687.4 ± 1.2 Ma in the Doyon mine area: Lafrance et al., 

2005; Mercier-Langevin et al., 2007b, d; Galley and Lafrance, 2014). 

     The Blake River Group is divided into the Hébécourt Formation in the north and the 

Bousquet Formation in the south (Lafrance et al., 2003a). The base of the Hébécourt 

Formation is primarily tholeiitic pillowed to massive aphyric to glomeroporphyritic 
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tholeiitic basalt flows and sills (Lafrance et al., 2003). Its upper contact is intruded by QFP 

rhyolite sills of unit 2.0 of the Bousquet Formation (Lafrance et al., 2003). More emphasis 

will be on the Bousquet Formation because it is the focus of this study; it overlies the 

Hébécourt Formation, consists of a volcanic succession that is more geochemically evolved 

and fractionated than the basalt and andesite of the Hébécourt Formation, and has a 

composition of transitional tholeiitic at the base (i.e., north) to calc-alkaline at the top (i.e., 

south; Lafrance et al., 2003a; Mercier-Langevin et al., 2007b, d; Galley and Lafrance, 

2014). It is divided into two members: the lower member (unit 2.0, 2698.6 ± 1.5 Ma, 

Lafrance et al., 2003; unit 4.2, 2698.3 ± 0.9 Ma, Lafrance et al., 2005) and the upper 

member (unit 5.2, 2698.3 ± 0.8 Ma, Mercier-Langevin et al., 2007b; unit 5.3, 2697.8 ± 1 

Ma, Mercier-Langevin et al., 2007b; unit 5.5, 2697.5 ± 1.1 Ma, McNicoll et al., 2014). 

     Strong deformational and metamorphic events are seen in the Bousquet Formation, with 

at least three phases of deformation that account for the present geometry of the camp 

(Langshur, 1990; Savoie et al., 1991; Belkabir and Hubert, 1995; Mercier-Langevin et al., 

2007b). A weak, moderately inclined northeast-southwest foliation (S1) defines the first 

phase of deformation (D1) which is responsible for the regional folding of the Blake River 

Group (Hubert et al., 1984; Mercier-Langevin et al., 2007b; Yergeau, 2015). A strong, 

overprinting, and penentrative east-west schistosity (regional S2) with shear planes and 

faults that dip steeply to the south represents the second and main deformation phase (D2) 

in the DBL area (Mercier-Langevin et al., 2007b; Galley and Lafrance, 2014). The second 

deformational event (D2) caused intense flattening, stretching, folding, and shearing of 

primary features in most deposits (e.g., Bousquet deposit: Tourigny et al., 1989b; Bousquet 
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2-Dumagami deposit: Tourigny et al., 1993; Marquis et al., 1990b; Doyon deposit: Savoie 

et al., 1991). Dextral transpressive brittle-ductile faults related to the third phase of 

deformation (D3) overprint D2 (Yergeau, 2015). In a regional metamorphic context, the 

Blake River Group has a prograde upper greenschist-lower amphibolite-facies episode 

associated with the main deformational phase (D2), and an overprinting phase associated 

with retrograde greenschist metamorphic facies (Dimroth et al., 1983a, b; Tourigny et al., 

1989a; Marquis et al., 1990a; Powell et al., 1995; Lafrance et al., 2003; Mercier-Langevin, 

2005; Dubé et al., 2007b). Unoriented porphyroblasts of actinolite and biotite in the MIC 

suggest peak metamorphism is late to post-D2 (Marquis et al., 1990b; Belkabir and Hubert, 

1995; Dubé et al., 2004; Mercier-Langevin, 2005). 

2.1.3 Lower Member of the Bousquet Formation 

     The Bousquet Formation volcanics are sub-divided into a lower member and an upper 

member (Figure 1; Galley and Lafrance, 2014). The lower member is older than the upper 

member and is predominantly composed of tholeiitic to transitional, mafic to felsic pillows 

and flows, and its units are laterally extensive (Stone, 1990; Lafrance et al., 2003a; 

Mercier-Langevin et al., 2007a, b, 2008; Yergeau et al., 2015). It can be up to 600m thick 

and is characterized in the western DBL camp by a glomeroporphyritic dacite unit 

overlying intermediate scoriaceous tuffs and tuff breccia units with mainly basaltic to 

andesitic fragments (unit 3.3; Mercier-Langevin et al., 2008). The lowest stratigraphic unit 

(unit 2.0; 2698.6 ± 1.5 Ma; Lafrance et al., 2003) is comprised of porphyritic (quartz and 

feldspar), tholeiitic, rhyolite sills that intrude the older Hébécourt Formation (Figures 1 and 

2; Lafrance et al., 2003a). These sills can have up to 35 vol % blue quartz and feldspar 
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phenocrysts (<1.5 mm) in a sericitized matrix (Mercier-Langevin et al., 2007c). Unit 2.0 

rhyolite is distinct from other units of the Bousquet formation because it has high Si and 

Zr contents and an elevated Zr/TiO2 ratio (Mercier-Langevin et al., 2009). Unit 2.0 consists 

of meter-thick sills of unit 2.1 in the Hébécourt basalt (Figures 1 and 2). 
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Figure 1 (previous page): Location and geological map of the DBL mining camp. (A) 

Simplified map of Canada showing the location of the DBL mining camp in Rouyn-

Noranda, Quebec. Location is indicated by the red dot. (B) Geological map of the MIC, 

Bousquet Formation volcanics, and associated ore deposits (modified from Galley and 

Lafrance, 2014). Note: Although this map does not list unit 2.0, it is the most 

straightforward representation in the literature of the relationship between intrusives and 

volcanics in the DBL camp; therefore, unit 2.0 is represented by unit 2.1 on the map 

because unit 2.0 is simply a collection of meter-thick sills of unit 2.1. 
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Figure 2: Stratigraphic columns of the DBL mining camp. Stratigraphy of the DBL 

mining camp depicting the stratigraphic setting of the principal ore lenses in the Doyon, 

Westwood, Bousquet 1, and LaRonde regions. The ore lenses are not to scale. The 

Bousquet Formation is divided into a lower member of tholeiitic to transitional 

composition and an upper member of transitional to calc-alkaline composition. Unit 2.1 is 

not shown here but is depicted by unit 2.0 which is a collection of meter-thick sills of unit 

2.1 (from Yergeau et al., 2015; modified from Lafrance et al., 2003a). 
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     Stratigraphically higher is unit 3.1 (intermediate tuff breccia to lapilli tuff) and unit 3.2 

which is comprised of fragmental feldspar-phyric basalt and/or andesite with a fine-grained 

matrix of chl + ep + cb + ser (Mercier-Langevin et al., 2007b, c, 2008). At the Westwood-

Warrenmac Corridor, unit 3.2 overlies the tholeiitic felsic rocks of unit 2.0 and can be 

composed of mafic to intermediate banded lapilli tuffs with some amygdular fragments 

(Figure 2; Mercier-Langevin et al., 2009). Rocks of unit 3.2 are characterized by negative 

Nb-Ta and Zr-Hf anomalies and slightly enriched HFSE and LREE patterns (Mercier-

Langevin et al., 2009). Overlying unit 3.2 is unit 3.3, which is comprised of scoriaceous 

tuffs with highly altered and brecciated tholeiitic andesitic to dacitic tuffs dominated by 

scoriaceous fragments (Figures 1 and 2; Mercier-Langevin et al., 2007b, c, 2009). 

Amygdules are filled with epidote and carbonate and, sometimes, by quartz and feldspar. 

This unit is either of a pyroclastic or an autoclastic origin (Mercier-Langevin et al., 2007c). 

This unit is less differentiated than the underlying units; there is enrichment in LREE and 

depletion in HREE compared to the Hébécourt Formation, so these andesitic rocks were 

not generated by simple fractional crystallization of the tholeiitic magma reservoir inferred 

for the Hébécourt Formation (Mercier-Langevin et al., 2007c). Mercier-Langevin et al. 

(2007c) proposed several partial melting scenarios combined with fractional crystallization 

of amphibole ± plagioclase at midcrustal levels that could have produced the tholeiitic to 

transitional, mafic to intermediate rocks of units 3.3 and 4.4. 

     Overlying the intermediate scoriaceous tuffs and tuff breccias of unit 3.3 is unit 4.2 

(2698.3 ± 0.9 Ma; Lafrance et al., 2005), which is a dacite glomeroporphyritic 

volcaniclastic unit (Figures 1 and 2; Lafrance et al., 2005; Wright-Holfeld et al., 2010; 
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Galley and Lafrance, 2014; Yergeau et al., 2015). Above unit 4.2 is unit 4.3, which is a 

dacitic to rhyolitic schist characterized by aphanitic rhyodacitic sills and dykes that can be 

up to 200m thick and is of transitional to calc-alkaline magmatic affinity (Figures 1 and 2; 

Mercier-Langevin et al., 2009; Wright-Holfeld et al., 2010; Galley and Lafrance, 2014; 

Yergeau et al., 2015). It is a highly deformed sericite-altered schist which does not allow 

for the identification of primary volcanic features (Savoie et al., 1990; Lafrance et al., 

2003a). There are intensely bleached intervals in unit 4.3 associated with quartz-carbonate 

veins and an abundance of pyrite (Wright-Holfeld et al., 2010). 

     Finally, unit 4.4 is a heterogeneous unit comprised of microporphyritic (5–40 vol % 

feldspar phenocrysts) basalt and andesite with a fine-grained granoblastic matrix of act + 

fsp + ep + chl + qtz + cb + bt + ser + leu + py (Figures 1 and 2; Mercier-Langevin et al., 

2007b, c, 2008, 2009; Wright-Holfeld, 2010; Galley and Lafrance, 2014; Yergeau et al., 

2015). It is more homogeneous in the LaRonde Penna mine area where it is in sheared-

contact with unit 5.1 (Mercier-Langevin et al., 2007c). This homogeneous portion of unit 

4.4 is mainly highly altered tholeiitic to transitional, glomeroporphyritic to massive 

textured, pillowed, and brecciated flows of basalt and andesite (Mercier-Langevin et al., 

2007c). 

2.1.4 Upper Member of the Bousquet Formation 

     The upper member (2698.3 ± 0.8 Ma - 2697.5 ± 1.1 Ma; McNicoll et al., 2014) is 

younger than the lower member and is comprised of units 5.1 to 5.5 (Figures 1 and 2; 

Mercier-Langevin et al., 2007c). The lithology of the upper member is primarily 
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transitional to calc-alkaline, intermediate (i.e., basaltic andesite, andesite) to felsic (i.e., 

dacite, rhyodacite, rhyolite) flows, lobes, and flow breccias (Figures 1 and 2; Lafrance et 

al., 2003a; Dubé et al., 2007b; Mercier-Langevin et al., 2007a, b, c, d, 2009; Wright-

Holfeld et al., 2010; Yergeau et al., 2015). The felsic units of the upper member are laterally 

restricted and are made up of coalesced flows, unlike the lower member units which are 

laterally extensive (Figure 2; Stone, 1990; Lafrance et al., 2003a; Mercier-Langevin et al., 

2007b). The lowest stratigraphic unit (unit 5.1) is comprised of dacite-rhyodacite, andesitic 

to Ti-rich dacitic sills (Figures 1 and 2; Mercier-Langevin et al., 2007b, c, 2009; Wright-

Holfeld et al., 2010; Yergeau et al., 2015). These sills are 5 to 25 m thick and have feldspar-

microporphyritic and amygdaloidal textures with minor volcaniclastics (Mercier-Langevin 

et al., 2007c). Additionally, there are massive, pillowed, amygdaloidal, and feldspar-

phyritic flows that are up to 50 m thick (Mercier-Langevin et al., 2007c). These successions 

also contain hyaloclastites (crystal tuffs) mixed with polymictic volcaniclastic beds that 

have small scale (mm to cm) quartz and carbonate-filled amygdules and less than 10 vol 

% feldspar microphenocrysts in a recrystallized matrix (Mercier-Langevin et al., 2007c). 

There are 2- to 10-m-thick sills with feldspar-microporphyritic and amygdaloidal textures 

emplaced within a dacite-rhyodacite subunit (i.e., Unit 5.1b-d; Mercier-Langevin et al., 

2007c). Subunits labelled with an “a” are found proximal to the MIC (e.g., Doyon Mine 

and Westwood Deposit), while subunits labelled with a “b” are found distal to the MIC 

(e.g., LaRonde Penna Mine). Finally, Unit 5.1 contains a 25- to 150-m thick sequence of 

massive, microporphyritic (feldspar and quartz) domes with lobes and flow breccia 

(Mercier-Langevin et al., 2007c). 
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     The second oldest unit is unit 5.2 (2698.3 ± 0.8 Ma; Lafrance et al., 2005; Mercier-

Langevin et al., 2007b), which is a rhyodacite-rhyolite volcaniclastic unit comprised of 

feldspar-dominated microporphyritic volcanic rocks (Figures 1 and 2; Mercier-Langevin 

et al., 2007b, c, 2009; Yergeau et al., 2015). This unit was not significantly fractionated by 

magmatic processes and has a chemically homogenous protolith, as indicated by a constant 

Zr/TiO2 ratio of 290 (Mercier-Langevin et al., 2007c). There are subunits of unit 5.2; those 

labelled with an “a” are found proximal to the MIC (e.g., Doyon Mine and Westwood 

Deposit), while subunits labelled with a “b” are found distal to the MIC (e.g., LaRonde 

Penna Mine). Following unit 5.2 in the volcanic sequence is unit 5.3 (2697.8 ± 1 Ma; 

Mercier-Langevin et al., 2007b), which is a calc-alkaline, feldspar- and quartz-phyric 

rhyolite comprised of massive and brecciated autoclastic flows, domes, and tuffaceous 

rhyolite (Figures 1 and 2; Mercier-Langevin et al., 2007b, c, 2009; Wright-Holfeld et al., 

2010; Yergeau et al., 2015). It overlies and intrudes unit 5.2 and contains fine-grained 

volcaniclastic beds (crystal tuffs) in a quartz and feldspar matrix with sericite alteration 

(Mercier-Langevin et al., 2007c). The phyric texture contains 5-15 vol %, 1-2 mm rounded 

and partially resorbed blue quartz microphenocrysts and 7-15 vol %, 1-2 mm zoned 

plagioclase microphenocrysts (Mercier-Langevin et al., 2007c). 

     Overlying unit 5.3 is unit 5.4, which is a basaltic andesite unit comprised of a sills and 

dikes complex with feldspar-dominant microporphyritic and fine-grained amygdaloidal 

facies (Figure 2; Mercier-Langevin et al., 2007b, c, 2009; Wright-Holfeld, 2010). There 

are a few narrow glomeroporphyritic sills that are only very locally developed (Mercier-

Langevin et al., 2007c). The porphyritic textures can be seen in the hanging wall of the 
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Bousquet 2-Dumagami deposit which contains andesite with up to 15 vol % plagioclase 

phenocrysts (Dubé et al., 2014). Finally, unit 5.5 (2697.5 ± 1.1 Ma; McNicoll et al., 2014) 

is the upper felsic unit and is comprised of quartz and feldspar microporphyritic rhyodacite 

to rhyolite (5-20 vol % albite microphenocrysts; recrystallized matrix), and fine-grained 

volcaniclastics with massive domes, lobes, and autoclastic flow breccia (Figure 2; Lafrance 

et al., 2003a; Mercier-Langevin et al., 2007b, c, 2009; Wright-Holfeld et al., 2010; Yergeau 

et al., 2015). In the LaRonde Penna mine area, these lobes and breccias overly unit 5.3 and 

are intruded by unit 5.4 (Figure 2; Lafrance et al., 2003a). 

2.1.5 Mooshla Intrusive Complex 

     The polyphase Mooshla synvolcanic intrusion occurs along the contact between the 

Hébécourt and Bousquet Formations in the western portion of the DBL camp and has an 

oval geometry of roughly 4 x 2 km (Figure 1; Valliant and Hutchinson, 1982; Gaudreau, 

1986; Langshur, 1990; Galley and Lafrance, 2014). The MIC is grouped into two distinct 

stages of formation: (i) Mouska stage (2698.5 ± 0.5; McNicoll et al., 2014) consisting of 

five intrusive phases (phases A - E) ranging from gabbro to tonalite; and (ii) Doyon stage 

(2696.9 ± 1 Ma; Lafrance et al., 2005) comprising four intrusive phases (phases F-I) 

ranging from tonalite to trondhjemite typical of Archean TTG (Galley and Lafrance, 2014). 

     Galley and Lafrance (2014) distinguished each intrusive phase by chemical 

composition, variable intrusion style, and by distinctive overprinting relationships. The 

Mouska stage intrusive phases were emplaced along the contact of the Hébécourt 

Formation and the lower member of Bousquet Formation (Langshur, 1990; Galley and 
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Lafrance, 2007; Galley and Lafrance, 2014). The geochemical characteristics of the 

intrusives are consistent with those of the Bousquet Formation volcanics, implying a 

synvolcanic timing and coeval relationship for the intrusive complex. This agrees with the 

U-Pb zircon geochronology of Lafrance et al. (2005) and McNicoll et al. (2014), and with 

the findings of Langshur (1990) and Belkabir (1995). There is also a similarity in their Ta 

versus Yb and Nb versus Yb values (see Fig. 11B, C of Galley and Lafrance, 2014) and 

between their primitive mantle-normalized trace element profiles (see Fig. 9A, C of Galley 

and Lafrance, 2014). The tholeiitic to transitional affinity of the Mouska stage (i.e., 

gabbros, quartz diorites, and tonalites) is consistent with the affinity of the lower Bousquet 

Formation (i.e., basalt to rhyodacite suite; Lafrance et al., 2003). The U-Pb dating, 

described in McNicoll et al. (2014), found an age of 2698.5 ± 0.4 Ma for the phase C, 

which shows that the Mouska stage is synchronous with some of the units of the lower 

Bousquet Formation. The transitional to calc-alkaline Doyon stage (i.e., porphyries and 

trondhjemites) is geochemically compatible with the upper Bousquet Formation (i.e., 

dacites and rhyodacites; Lafrance et al., 2003). The U-Pb dating, described in Lafrance et 

al. (2005) and in McNicoll et al. (2014), produced an age of 2696.9 ± 1 Ma for the phase 

H which distinctly establishes that the Doyon stage is synchronous with the felsic volcanic 

units of the upper Bousquet Formation (2698−2697 Ma; Lafrance et al., 2005; Mercier-

Langevin et al., 2007a, 2011a; McNicoll et al., 2014). 

     There are overlapping trace element compositional fields between the MIC and the 

mafic, intermediate, and felsic extrusive units, suggesting similar tectonic settings (Galley 

and Lafrance, 2014). Additionally, there are aplite/rhyolite dikes similar in trace element 
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composition to unit 5.3 that crosscut the phase D tonalite in the eastern part of the MIC 

(see Figs. 9, 11 of Galley and Lafrance, 2014). The Mouska stage and the lower Bousquet 

Formation are crosscut by the Doyon stage phases which is contemporaneous and possibly 

comagmatic with the upper member (Langshur, 1990; Lafrance et al., 2003; Galley and 

Lafrance, 2007, 2014; Mercier-Langevin et al., 2007a). All of the above data from the 

literature indicate that the MIC is both temporally and spatially related to the period of 

upper Blake River Group arc-style volcanism, which developed during early stages of 

oceanic arc rifting (Mercier-Langevin et al., 2007b, 2011; Galley and Lafrance, 2014). 

     The MIC hosts the Mooshla A and B Au deposits and portions of the Doyon and Mouska 

Au-Cu deposits (Galley and Lafrance, 2007, 2014; Mercier-Langevin et al., 2007a; Dubé 

et al., 2014). The pluton is associated with hydrothermal events that formed these ore 

bodies and the Mic Mac deposit ore body which is hosted in the Hébécourt Formation 

(Mercier-Langevin et al., 2007a). Both Mouska and Mic Mac deposits are shear-hosted Au 

deposits (Lafrance et al., 2003a; Mercier-Langevin et al., 2007a, 2009, 2011b; Galley and 

Lafrance, 2014; Yergeau, 2015). The Mic Mac deposit has a synvolcanic and pre-intrusive 

VMS-style mineralization, while the Mouska deposit has a late “early-intrusive”-stage 

VMS and sulphide-rich vein-type mineralization (Belkabir et al., 2004; Galley and 

Lafrance, 2007; Mercier-Langevin et al., 2007a). The Doyon and Mooshla A deposits have 

a syn ‘late-intrusive’-stage quartz and sulphide vein-type mineralization, while the 

Mooshla B deposit has a post-intrusion or syndeformation quartz ± tourmaline-carbonate-

sulphide vein-type mineralization (Belkabir et al., 2004; Galley and Lafrance, 2007; 

Mercier-Langevin et al., 2007a). 



72 

 

2.1.6 Gold-enriched VMS deposits of the DBL camp 

     The upper member of the Bousquet Formation hosts most of the Au-rich VMS lenses 

of the DBL camp at the LaRonde Penna, Bousquet 2-Dumagami, Bousquet 1 and 

Westwood deposits (Dubé et al., 2007; Mercier-Langevin et al., 2007a, 2009; Wright-

Holfeld et al., 2010, 2011; Galley and Lafrance, 2014). In general, the LaRonde Penna 

deposit is predominantly associated with thick footwall volcaniclastic rocks of the Upper 

Member of the Bousquet Formation (Mercier-Langevin et al., 2007b; Mercier-Langevin et 

al., 2011a). It is made up of four stacked massive sulphide lenses and has two main ore 

zones (20 North and 20 South; Dubé et al., 2007a, b; Mercier-Langevin et al., 2007a, b; 

Dubé et al., 2014). The 20 North and 20 South ore zones are sheetlike, massive to semi-

massive polymetallic sulphide lenses and stringer zones (Dubé et al., 2007b). A majority 

of the 20 North lens hanging wall is comprised of feldspar- and quartz-phyric rhyolite of 

unit 5.3 (Dubé et al., 2007a; Mercier-Langevin et al., 2007c). Its footwall is made up of 

rhyodacite-rhyolite feldspar-phyric flow breccia, and rhyolitic domes/cryptodomes of unit 

5.2, with an alteration assemblage of quartz-biotite-garnet-muscovite (Dubé et al., 2007a; 

Mercier-Langevin et al., 2007c). There is an abundance of unit 5.2 rhyodacitic clasts in the 

20 North ore zone which indicates that the sulphide lens formed, at least in part, through 

replacement of this unit (Dubé et al., 2007b; Mercier-Langevin et al., 2007a). 

     The 20 South ore body at the LaRonde Penna Mine is an 8- to 10-m-thick Au- and Zn-

rich sulphide lens and stringer zone that was emplaced toward the top of unit 5.4 (Dubé et 

al., 2007a, b, 2014). It is primarily hosted in rhyodacitic volcanic flow-breccia of unit 5.5 

and basaltic andesite sills of unit 5.4 (Dubé et al., 2007a, b, 2014; Mercier-Langevin et al., 
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2007c). The hanging wall is comprised of unit 5.5 in the east and unit 5.4 in the centre of 

the deposit, while units 5.5 and 5.3 are in its footwall (Dubé et al., 2007a, b, 2014; Mercier-

Langevin et al., 2007c). The hanging wall and footwall have plagioclase-quartz-rutile 

and/or anatase-titanite-biotite ± chlorite alteration (Dubé et al., 2007b). Dubé et al. (2007b) 

proposed that the hanging-wall basaltic andesite of unit 5.4 could have been a thermal 

barrier that isolated the ore-forming fluid from cold seawater and helped to focus 

hydrothermal fluid flow. 

     The Bousquet 2-Dumagami deposit contains stacked, deformed, and transposed semi-

massive to massive pyrite-rich lenses, breccia zones, and associated sulphide veins and 

stringer zones (Dubé et al., 2014). It has three ore zones: The Massive Hangingwall zone, 

the Massive Footwall zone, and Zone 5 (Tourigny et al., 1993; Dubé et al., 2014). Many 

ore zones occur at or near blue quartz-phyric rhyolitic flows and sills of unit 5.3 (hanging 

wall) and dacitic to rhyodacitic volcaniclastic rocks of unit 5.1 (footwall; Dubé et al., 

2014). The Massive Hangingwall zone is the main ore zone at the Bousquet 2 mine (Dubé 

et al., 2014). It is an Au-Ag-Cu-Zn sheet-like, semi-massive to massive, pyrite-rich 

sulphide lens intermixed with vein and breccia zones, with a pyrite-sphalerite ± 

chalcopyrite ± bornite ± galena ore assemblage (Dubé et al., 2014). The ore zone contains 

unit 5.5 which is in contact with the overlying greywacke of the Cadillac Group (Marquis 

et al., 1990a; Savoie et al., 1991; Trudel et al., 1992; Teasdale et al., 1996; Dubé et al., 

2004, 2007b, 2014). This contact is delineated by a centimeter to several decimeters thick, 

semi-massive, deformed, and brecciated pyrrhotite-rich horizon with local weakly 

anomalous Zn values (Marquis et al., 1990a; Savoie et al., 1991; Trudel et al., 1992; 
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Teasdale et al., 1996; Dubé et al., 2004, 2007b, 2014). The Massive Footwall zone is 

another semi-massive to disseminated pyrite-rich auriferous zone at the Bousquet 2 mine 

(Dubé et al., 2014). It is composed of breccias and stringer zones including, or mixed with, 

massive pyrite veins and lenses (Dubé et al., 2014). Finally, Zone 5 is the main ore zone at 

the Dumagami mine and is equivalent to the Massive Hangingwall zone at Bousquet 2 

(Dubé et al., 2014). It consists of massive pyrite and massive sphalerite-galena bodies, with 

the presence of chalcopyrite and/or bornite being a reliable indication of economic Au 

grades (Marquis et al., 1990a; Dubé et al., 2014). 

     The Westwood deposit contains two Au-rich VMS lenses: The North corridor and the 

Westwood-Warrenmac corridor (Mercier-Langevin et al., 2009; Wright-Holfeld et al., 

2010, Yergeau et al., 2015). The intermediate to felsic upper member of the Bousquet 

Formation volcanics hosts the ore-zones of these corridors (Mercier-Langevin et al., 2009; 

Wright-Holfeld et al., 2010; Yergeau et al., 2015). The North corridor ore-zone is hosted 

in tholeiitic to transitional andesite of unit 5.1, whereas ore zones in the Westwood-

Warrenmac Corridor are hosted in transitional to calc-alkaline dacite-rhyodacite of unit 5.1 

(Mercier-Langevin et al., 2009; Wright-Holfeld et al., 2010; Yergeau et al., 2015). The 

Westwood-Warrenmac Corridor is significantly sheared and its associated hydrothermal 

system overprinted the North corridor (Mercier-Langevin et al., 2009; Wright-Holfeld et 

al., 2010). Both corridors have widespread quartz-chlorite-sericite alteration and proximal 

Mn-garnet alteration (Mercier-Langevin et al., 2009; Wright-Holfeld et al., 2010). 

     The Westwood-Warrenmac Corridor is one of two major Au-rich sulphide vein, 

stockwork- and VMS lens dissemination-style deposits in the DBL camp; the Bousquet 1 
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deposit also shows this type of mineralization (Valliant and Hutchinson, 1982; Tourigny 

et al., 1993; Lafrance et al., 2003a; Mercier-Langevin et al., 2007a; Yergeau, 2015; 

Yergeau et al., 2015; Boily-Auclair et al., 2020). The five ore zones (1 to 5, from south to 

north) of the Bousquet 1 deposit are stratiform volcanic-sedimentary exhalative pyritic 

bodies and subconformable sulphidic veins (Valliant and Hutchinson, 1982; Tourigny et 

al., 1988; Mercier-Langevin et al., 2007a). Eighty percent of the ore is in Zone 3 which is 

found at the contact between the lower and upper members of the Bousquet Formation 

(Mercier-Langevin et al., 2007a). 

2.2 Sampling and analytical methods 

2.2.1 Sample collection and preparation 

     Representative samples of each volcanic unit were collected from outcrop and drill core 

in the Westwood and LaRonde Penna mine site areas. Outcrop samples were taken distal 

to VMS lenses (Figure 3) to obtain the freshest examples of the various units as possible. 

Distal alteration assemblages include fine-grained biotite and quartz with local zones of 

intense muscovite alteration, whereas proximal alteration assemblages contain quartz, Mn-

garnet, biotite, and muscovite (Mercier-Langevin et al., 2017). Sampling was conducted 

on various surface outcrops, on 3 drill holes from the LaRonde Penna Mine and 7 drill 

holes from the Westwood Mine (Table 2). These drill holes were selected for detailed 

sampling as they represent an almost complete stratigraphic column through the entire 

Bousquet Formation providing the opportunity to examine the melt inclusion record in all 

volcanic units. The sampling strategy for drill core was to obtain representative lithologies 



76 

 

but also to target the units that contained ideal host phases for SMI (e.g., units containing 

quartz phenocrysts; Audétat and Pettke, 2003). A total of 67 samples were collected from 

12 different volcanic units spanning the upper and lower Bousquet formations. All samples 

were cut and processed into polished thin sections (30 μm) at Vancouver Petrographics 

Limited, and following petrographic observations by optical microscope, a sub-set of 

samples were made into double-polished thick sections (150 μm) for detailed SMI analysis. 
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Table 2: Description of sample lithologies 
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Table 2 (continued): Description of sample lithologies 
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2.2.2 SMI petrography 

     Petrography characterization and mapping/selection of SMI for further analysis were 

conducted initially on polished thin sections, followed by double-polished thick sections. 

Petrographic analysis of SMI constituted the basis for all other analytical techniques carried 

out and described below, and involved characterizing and classifying the SMI present using 

the melt inclusion assemblage (MIA) method (cf. Goldstein, 2003; Bodnar and Student, 

2006). The appearance and distribution of the SMI, and the relative timing of their 

entrapment in each volcanic unit was established, where possible. Maps of SMI distribution 

were created to aid in selecting individual SMI for analytical work and providing 

constraints on the overall origin of the inclusions, when combined with other imaging (e.g., 

BSE, CL) methods. Subsets of SMI were selected based on the following criteria: (i). The 

abundance and size of SMI in host phenocrysts; (ii) the degree of preservation of SMI (e.g., 

away from fractures in, and near the edges of, phenocrysts; absence of decrepitation halos); 

(iii) samples in which host matrix was the least altered and deformed relative to other 

samples of the same unit; (iv) differentiating accidentally-trapped mineral inclusions and 

SMI visibly contaminated by those minerals from uncontaminated SMI; and (v) 

differentiating partially enclosed (‘hourglass”) inclusions from completely enclosed SMI. 

Mainly, the prevailing limitations were the abundance of SMI and the presence of quartz 

phenocrysts. Other volcanic samples had plagioclase phenocrysts with SMI, for example, 

but the grains were highly altered and contain cleavage planes that promote the incursion 

of metamorphic fluids. 
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2.2.3 SMI microthermometry 

     Preliminary SMI microthermometry was carried out at Saint Mary’s University’s 

Department of Geology on a Linkam Scientific Instruments TS1500 heating stage with 

sapphire heating plates, mounted on an Olympus BX41 with a Q-Imaging color video 

camera to provide real-time video and capture capability for heating experiments. The 

melting points of pure Ag (961.8°C), Au (1064°C), and Cu (1085°C) (Alfa Aesar Inc.) were 

determined during repeated heating experiments at a heating rate of 6°C/min, and compared 

to known values to create a calibration curve to correct future measurement temperatures. 

Heating rates during measurements were cycled between 10°C/min and 30°C/min, with Ar 

gas (40 mL/min) pumped through the stage sample chamber to prevent oxidation of SMI 

during heating. The uncertainty associated with temperature measurements is ± 2°C based 

on monitoring stage stability during cycled melting/freezing of a pure Ag standard at a 

heating rate of 6oC/min. 

2.2.4 Confocal laser Raman microspectroscopy 

     Confocal laser Raman microspectroscopy (LRM) was performed at the Department of 

Geology, Saint Mary’s University, Halifax, Nova Scotia, to determine the volatile 

composition of glass and fluid bubbles in homogenized SMI (from both “high P-T piston 

cylinder” and “MHC cold-seal pressure vessel” methods), and to assess the crystallinity of 

homogenized SMI. Analyses were performed using a Horiba Jobin-Yvon LabRam HR 

instrument (Saint Mary’s University) equipped with a 100 mW (at source), 532 nm Nd-

YAG diode laser (Laser Quantum) and a Synapse CCD detector (Horiba Jobin-Yvon). Pure 

silicon was used as a frequency calibration standard and analyses were performed using a 
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20 to 40 µm confocal hole diameter, depending on inclusion/bubble size and inclusion 

depth, selected to maximize resolution at depth. A 600 grooves/mm grating (spectral 

resolution of approximately ± 2 cm-1) was used during spectrum collection. Spectra were 

collected by accumulating three, 50-60 s acquisitions at 100% laser power (~2.15 mW at 

sample surface through a 100x long working length objective). The method was used to 

detect the presence of volatile phases (e.g., H2O, CO2, N2, CH4, H2S) and glass that cannot 

be identified by optical petrography or microthermometry. 

2.2.5 Scanning electron microscope-energy dispersive spectroscopy (SEM-EDS), back-

scattered electron (BSE), and cathodoluminescence (CL) analysis 

     Mineral identification and major/minor element analyses were performed on quartz 

phenocrysts, exposed SMI (homogenized and unhomogenized), and general volcanic rock 

unit mineral assemblages using a TESCAN MIRA 3 LMU Variable Pressure Schottky 

Field Emission SEM (Saint Mary’s University, Halifax, Nova Scotia, Canada). The SEM 

is equipped with a back-scattered electron (BSE) detector, energy dispersive spectroscopy 

(EDS), and cathodoluminescence (CL) functionality. The BSE detector can provide 

qualitative elemental/phase information about the sample being analysed. For EDS, a solid-

state, 80 mm2 X-max Oxford Instruments EDS detector was used. The EDS system utilized 

silicon drift detector (SDD) technology to analyse characteristic X-rays emissions and 

provided semi quantitative elemental information for exposed SMI that were homogenized 

by high P-T experiments (see below). A beam voltage of 20 kV and an approximate 

working distance of 17-20 mm was used for all analyses. Images were acquired using a 
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Gatan miniCL imaging system that measures cathodoluminescence photons in the UV, 

visible, near infrared and ultraviolet regime (wavelength range: 185 - 850 nm). 

2.2.6 Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) 

     Trace element concentrations in unhomogenized SMI and accessory apatite (occurring 

as inclusions in quartz), and the Ti content of phenocryst quartz were determined by LA-

ICP-MS at the Magmatic and Ore-Forming Processes Research Laboratory at the 

University of Toronto. This method is favored as it samples the entire volume of the SMI 

(or included apatite grain) but does not require homogenization of the SMI prior to analysis 

to acquire quantitative compositional information (Halter et al., 2002a, b; Halter and 

Pettke, 2004). The set up consisted of a New Wave Research (NWR) 193UC ArF Excimer 

laser ablation system attached to an Agilent 7900 quadrupole mass spectrometer. Silicate 

melt inclusions were ablated through stepwise increase of the ablation pit diameter (10-100 

μm) such that the final pit size was slightly larger than the maximum inclusion dimension. 

After collecting ~50s of background signal with the laser turned off, the inclusions required 

10 to 30 s of ablation time to collect the melt inclusion + host quartz signal. The instrument 

was tuned to maximum sensitivity while maintaining robust plasma conditions (U≈Th on 

NIST SRM610) and low oxide and doubly charge ion production rates (ThO/Th < 0.3%; 

Mass 21/42 < 0.3%). Helium was used as a carrier gas at a flow rate of 1.0 L/min.  

     Dwell times for all isotopes in all sample types (apatite, quartz, SMI) were 10 ms, except 

for 197Au and 107Ag for SMI analyses for which dwell times were set at 50 ms. Interference 

corrections for 91Zr16O on 107Ag, and 181Ta16O on 197Au were performed manually, based 
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on determination of oxide production rates using in-house zircon and rutile standards, 

respectively, and subtracting corresponding contributions (count rate basis) from Zr and 

Ta occurring in the SMI. Host corrections for the SMI routinely reduced 30.7 ± 22.4% of 

the total 107Ag signals and 4.0 ± 3.8% of the total 197Au signals. Table 3 lists detailed 

instrument operation conditions and data reduction parameters for SMI analyses. Data were 

acquired in time-resolved signal mode, displayed as a signal intensity versus time plot with 

progressive analysis. Analyses of up to ~30 unknowns (i.e., SMI, apatite, quartz) were 

bracketed by 2 standard analyses at the beginning and the end of each analysis block to 

enable drift correction during data reduction. SMI and apatite grain measurements 

produced a mixed transient signal with the host quartz. Increased counts of elements such 

as P (for apatite) and Al (for SMI), and decreased counts of Si were used to distinguish the 

start and end of SMI ablation from background host quartz during signal selection. While 

quartz-host only measurements were obtained, host quartz signal intervals in SMI and 

apatite inclusion measurements were also quantified as additional quartz analyses for Ti 

thermometry. The Ti concentrations were implemented into the equations of the Ti-in-

quartz thermometer from Thomas et al. (2010). 
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Table 3: LA-ICP-MS instrument and data acquisition parameters for SMI 
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     The compositions of SMI, apatite inclusions, and host quartz in the phenocrysts were 

quantified using the software SILLS (Guillong et al., 2008). This involved deconvoluting 

the mixed SMI or apatite + host quartz signal from the host only signal after calculation of 

background corrected count rates for each isotope, and quantification of inclusion and host 

compositions. The standard reference material (SRM) NIST610 silicate glass was used for 

the calibration of analyte sensitivities for SMI, apatite, and quartz analyses. Internal 

standard values of 70 wt% SiO2, 55 wt% CaO (ideal), and 99.99 wt% SiO2 were applied 

for SMI, apatite, and quartz quantification, respectively. Other constraints used for the SMI 

quantification were 95 wt% total oxides and 5 wt% H2O (laser Raman analyses of 

homogenized SMI indicated low quantities of H2O; therefore, 5 wt% H2O is likely an 

overestimate). It should be noted that whereas a fixed value of 70 wt% for SiO2 was used 

for SMI quantification, analysis of homogenized SMI (via internally-heated pressure 

vessel; see below) by SEM-EDS showed that SMI compositions were slightly higher in 

unit 2.0 (~74 - 79 wt% SiO2) on an anhydrous basis. Recalculation of the LA-ICP-MS data 

shows that this introduces a maximum of a ~9% (relative) underestimate of trace element 

concentrations in the SMI reported (e.g., at 70% SiO2, a value of 30 ppm Rb; at 79% SiO2 

a value of 34 ppm Rb).  
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2.2.7 Hot cathodoluminescence (HCL) imaging of quartz 

     Hot cathodoluminescence (HCL) emission imaging was performed on polished thin 

sections of select volcanic units (i.e., 2.0, 4.3, and 5.3) to provide textural information for 

discrete quartz generations and quartz growth zones. Hot cathodoluminescence analysis 

was performed using a Lumic HC4-LM hot-cathode cathodoluminescence microscope at 

Saint Mary’s University, Halifax, Nova Scotia, Canada. The cathodoluminescence 

microscope is coupled to a Olympus BXFM focusing mount with images captured by a 

Kappa DX40C peltier cooled camera operated using the DX40C-285FW software package. 

An acceleration voltage between 9.5 - 11.5 kV, a beam current of 0.25 mA, a filament 

current of 2.3 A, a deflection of 10 V and a focus of 5.5 V were used during analysis. 

2.2.8 High pressure-temperature piston cylinder analysis of quartz 

     Three high PT piston cylinder experiments were performed on quartz grain aliquots 

from sample 711-7200-U5.3 (unit 5.3) at the Dalhousie University High Pressure 

Laboratory. Each experiment had a 5 mm diameter, 0.127 mm wall thickness, Pt capsule 

containing aluminum oxide powder, and 6 quartz grains that were roughly 0.25 mm in 

diameter. The capsules were welded using the ‘ash-can’ design and a Lampert PUK 3 

welder in micro mode with output power at 20% (Sneeringer and Watson, 1985; Zhang et 

al., 2015). The capsules were placed in ¾ inch assemblies containing an Al2O3 tube with 

thermocouple and disk, a crushable MgO tube, a graphite furnace, a prefractured Pyrex 

sleeve, and an NaCl sleeve (Zhang et al., 2015). The Pyrex sleeves were prefractured at 

600˚C to achieve a stable initial pressurization (Tropper and Manning, 2007). The 

assemblies containing capsules were stored at 110˚C for >12 hours in a vacuum oven and 
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then placed in a piston-cylinder apparatus for various time, temperature, and pressure 

conditions. 

     Experiment #1 ran for 72 hours and was set at a temperature and pressure of 900˚C and 

3 kbar, respectively. Experiment #2 ran for 120 hours and was set at a temperature and 

pressure of 950˚C and 5 kbar, respectively. Experiment #3 ran for 72 hours and was set at 

a temperature and pressure of 950˚C and 3 kbar, respectively. A Eurotherm controller with 

a W95Re5-W74Re26 thermocouple was used to monitor the temperatures. A spinel 

thermometer was used to establish a thermal gradient of ± 20˚C within the capsule (Watson 

et al., 2002). All runs used N2 flow to prevent thermocouple oxidation (Walter and Presnall, 

1994). Temperatures of 900 - 950°C were chosen to exceed the SMI trapping temperature 

of ~800°C (established by Ti-in-quartz thermometry – see Section 2.3.6). Overheating the 

sample provided the extra thermodynamic drive to homogenize the SMI. The same 

overheating principle was applied to the molybdenum-hafnium-carbide (MHC) cold-seal 

pressure vessel analytical technique (see Section 2.2.9). 

2.2.9 Molybdenum hafnium carbide (MHC) cold-seal pressure vessel 

     All experiments were performed at 950 ± 10˚C and 1500 ± 50 bar on surface samples 

711-7200-U5.3 (unit 5.3) and 731-9061-U2.0 (unit 2.0) in an externally-heated rapid 

quench MHC cold-seal pressure vessel assembly at the Magmatic and Ore-Forming 

Processes Research Laboratory at the University of Toronto. Argon was used as a pressure 

medium and the pressure was monitored throughout the experiment using a factory 

calibrated digital pressure transducer. Each experiment had a 5 mm ⌀, 0.127 mm wall 
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thickness, Pt capsule containing aluminum oxide powder, and 6 - 8 quartz grains that were 

roughly 0.25 mm in diameter. The capsules were welded using the ‘ash-can’ design 

(Sneeringer and Watson, 1985) and a Lampert PUK 3 welder in micro mode with output 

power at 20% (Zhang et al. 2015). 

2.2.10 Host bulk rock analysis 

     Drill core samples were sent to the Ontario Geological Survey (GeoLabs) in Sudbury, 

Ontario for whole rock analyses. Major element and loss of ignition (LOI) 44 determined 

by X-ray fluorescence spectrometry (XRF). The sample powders underwent LOI 

determinations, and were then fused with a borate flux to produce a glass disk. Trace 

elements were analyzed by inductively-coupled plasma mass spectrometry (ICP-MS) after 

closed vessel, four acid (HF-HCl-HNO3-HClO4) digestion. Relative analytical 

uncertainties are within ± 5 % for all major elements and ± 3 % for most trace elements. 

2.3 Results 

2.3.1 Petrography of host volcanic rocks 

     Twelve units/subunits of the Bousquet Formation were collected from diamond drill 

core at the Westwood Mine and the LaRonde Penna Mine, and from outcrop near these 

mines, the Mooshla B deposit, and the Doyon Mine (Figures 3 - 5; Table 2). In this study, 

rock type classifications and descriptions are based on field and laboratory observations, 

and from past studies (i.e., Mercier-Langevin et al., 2007b, c, 2008, 2009; Wright-Holfeld 

et al., 2010; Galley and LaFrance, 2014; Yergeau et al., 2015). Outcrop-scale (surface and 
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underground) and hand-sample scale (from polished slabs of diamond drill core) features 

of the volcanic units of the Bousquet Formation are shown in Figures 4 and 5. Of 

importance to note in the context of an SMI study is that these images show volcanic rocks 

exhibiting variable degrees of strain and hydrothermal alteration (Figures 4 and 5). While 

deformation and alteration do not preclude a rock unit from SMI studies, it was noted 

during sampling as it may impact the preservation of both SMI and their host mineral 

phases (c.f., Student and Bodnar, 2004). Additionally, the presence and abundance of 

coarse-grained phenocryst phases (quartz, feldspars, pyroxene) as potential host phases for 

SMI are highly variable within units, and with some units showing far higher abundance 

whereas others are devoid of these (Figures 4 and 5).  
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Figure 3: Sample location map of the DBL mining camp showing the LaRonde Penna 

mine and other mines, and major bedrock lithologies and structures. Inset shows the 

location of the more detailed map. Red dots show the locations of samples collected from 

outcrops and are labelled with their corresponding unit. The location of drill holes from 

which samples were obtained are not shown but are summarized in Table 2 (modified from 

Mercier-Langevin et al., 2007b). 
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Figure 4 (previous page): Photographs of the Bousquet Formation volcanics in 

outcrop and underground at the Westwood Mine. (A) Unit 2.0 tholeiitic QFP rhyolite 

sill; (B) Unit 3.2 basalt with quartz amygdules; (C) Unit 4.2 scoriaceous tuff; lapilli blocky 

tuff with qtz + ep amygdules as part of alteration rims of volcanic bombs; (D) Variably 

sericitized, deformed Unit 4.3 dacite to rhyolite; (E) Unit 4.3 boudinaged quartz vein in 

mineralized (sulfidic) dacite to rhyolite; (F) Unit 4.4 heterogenous volcanic (basalt to 

andesite) with late chevron folding (post-mineralization); (G) Unit 5.1 foliated (dashed 

lines follow foliation plane), fine-grained rhyodacitic sill. (H) Flow breccia with unit 5.2 

rhyodacitic-rhyolitic feldspar-rich microporphyry clasts; and (I) Unit 5.4 basaltic andesite 

dyke (dashed outline) crosscutting layered, mineralized (note gossan) unit 5.2 rhyodacite-

rhyolite volcaniclastic.
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Figure 5 (previous page): Representative images of polished slabs/drill core samples 

of the Bousquet Formation volcanic units, arranged from youngest (A) to oldest (L). 

(A) Unit 5.5 rhyodacitic-dacitic quartz feldspar porphyry (QFP); (B) Unit 5.4 basalt-

andesitic basalt; (C) Unit 5.3 rhyolitic QFP; (D) Unit 5.2b rhyodacite-rhyolite; (E) Unit 

5.2a Doyon rhyodacite-rhyolite; (F) Unit 5.1ac dacite-rhyodacite; (G) Unit 4.4 basalt to 

andesite; (H) Unit 4.3 Doyon dacite-rhyolite; (I) Unit 4.2 glomeroporphyritic dacite; (J) 

Unit 3.3 andesitic-dacitic scoriaceous tuff; (K) Unit 3.2 basalt; (L) Unit 2.0 QFP rhyolite. 

Note: White text = phenocrysts and amygdules, yellow text = alteration minerals, red text 

= mineralization, bt = biotite, cal = calcite, cb = carbonate, chl = chlorite, ep = epidote, fsp 

= feldspar, grt = garnet, mag = magnetite, po = pyrrhotite, py = pyrite, qtz = quartz, ser = 

sericite. 
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     Commonly, the volcanic rocks in the mine domain are very sulfide rich. However, the 

core intervals and surface samples chosen for this study are not from significantly 

mineralized areas as those may be too hydrothermally altered to preserve melts in 

phenocrysts. The main features of the sampled lithologies are summarized below, based on 

petrographic observations: 

• Unit 5.5 - Pale to medium grey, rhyodacitic-dacitic quartz feldspar porphyry (QFP) 

that is silicified (Figures 5A and 6A). The samples contain quartz and plagioclase 

phenocrysts (up to 1 mm) concentrated in pale grey, deformed felsic lithic 

fragments (Figures 5A and 6A). Muscovite and intergrown medium to pale grey 

sericitic and chloritic/biotite alteration patches occur through the groundmass 

(Figures 5A and 6A). The felsic fragments often show more sericite alteration than 

the matrix (Figure 5A). The samples of this unit are unmineralized to locally weakly 

pyrite/pyrrhotite-mineralized; generally, sulphides occur in fine-grained, mm to cm 

sized clusters and fine- to medium-grained, disseminated blebs. 

• Unit 5.4 - Basalt to andesitic basalt containing feldspar and clinopyroxene 

phenocrysts, showing absent to very weak schistosity, and very weak chloritization 

and sericitization (Figures 5B and 6B). There are isolated patches of calcite in the 

matrix and bands (mm - cm) of pyrite (Figures 5B and 6B). 

• Unit 5.3 - Very pale grey to pale greenish-grey, non-mineralized QFP rhyolites with 

locally pale blue quartz phenocrysts (Figures 5C and 6C). They have pervasive, 

streaky, greenish-grey sericitic alteration in the matrix and are silicified (Figures 
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5C and 6C). Calcite veinlets, biotite and muscovite also occur in the groundmass 

(Figures 5C and 6C). 

• Unit 5.2b (i.e., subunit of 5.2 from the LaRonde Penna Mine which is distinct from 

subunit 5.2a occurring at the Doyon Mine and Westwood deposit) - Rhyodacite to 

rhyolite (Figures 5D and 6D). They are silicified with dark grey chloritic + 

biotite/white mica banding (mm – cm) occurring in a paler grey sericite altered 

matrix (Figures 5D and 6D). This unit has recrystallized quartz phenocrysts, quartz-

carbonate veinlets (mm – cm), metamorphic garnet, and is non- to weakly pyrite 

mineralized (Figures 5D and 6D). 

• Unit 5.2a - Unmineralized to weakly pyrite-mineralized, rhyodacitic to rhyolitic 

rocks with weak schistosity and alkali feldspar phenocrysts. The matrix shows dark 

chloritic, siliceous and white mica banding, and pale grey sericitic alteration 

(Figures 5E and 6E). 

• Unit 5.1ac (i.e., subunit of 5.1 that is found at the Doyon Mine is distinct from 

subunit 5.1b found at the LaRonde Penna Mine) - Dacite to rhyodacite (Figures 5F 

and 6F). They are unmineralized unit hematitic banding, a weak schistosity, and 

alternating bands of sericitic and chloritized matrix. They have dispersed crystals 

of calcite (Figures 5F and 6F). 
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Figure 6 (previous page): Petrography of the upper member Bousquet Formation 

volcanics. All samples shown in XPL and PPL. (A) Unit 5.5 rhyodacitic-dacitic QFP 

containing sericite, plagioclase, quartz, biotite, muscovite, and a silicified matrix. (B) Unit 

5.4 phenocrystic basalt-andesitic basalt with clinopyroxene crystals in an inequigranular 

matrix of opaques (pyrite?), chlorite, sericite, and calcite. (C) Unit 5.3 non-mineralized 

QFP rhyolite with quartz phenocrysts in a fine-grained matrix of muscovite and biotite, 

with calcite veinlets. (D) Unit 5.2b rhyodacite-rhyolite with recrystallized quartz 

phenocrysts in a microcrystalline matrix of banded mica and quartz; contains quartz-

carbonate veinlets. (E) Unit 5.2a unmineralized to weakly pyrite mineralized rhyodacite-

rhyolite with potassium feldspar phenocrysts in a mica and siliceous banded matrix. (F) 

Unit 5.1ac unmineralized dacite-rhyodacite with hematitic banding, a weak schistosity, 

alternating bands of sericite, chlorite, and muscovite, and dispersed crystals of alteration 

calcite. Note: bt = biotite, cal = calcite, chl = chlorite, cpx = clinopyroxene, hem = hematite, 

k-feld = potassium feldspar; ms = muscovite, pl = plagioclase, ppl = plane polarized light, 

py = pyrite, qtz = quartz, ser = sericite, xpl = cross polarized light 
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• Unit 4.4 - Pyrite-mineralized andesites, with chlorite and biotite altered 

groundmass, and diffuse pale grey sericitic banding (mm – cm; Figures 5G and 

7A). This unit is silicified (Figures 5G and 7A). Locally the samples are magnetic 

due to very fine-grained magnetite or pyrrhotite (Figure 5G). Weak to moderate 

pyrite mineralization occurs as fine to medium-grained disseminations, clusters, 

and bands (mm – cm; Figures 5G and 7A). The samples also contain muscovite, 

clinopyroxene, and garnet (Figure 7A).  

• Unit 4.3 - Dacite to rhyolite with a schistose to massive texture (Figures 5H and 

7B). They contain disseminated pyrite, bands of pale grey sericitic alteration, and 

are pervasively silicified. The groundmass contains plagioclase, muscovite, 

chlorite, and blue-grey quartz phenocrysts (Figures 5H and 7B). 

• Unit 4.2 - Glomeroporphyritic dacites showing primary flow banding, quartz-

epidote amygdules, chloritic alteration, and a silicified groundmass (Figures 5I and 

7C). 

• Unit 3.3 - Andesitic to dacitic scoriaceous tuffs with sericite-altered feldspar 

phenocrysts in an altered, amphibole-rich groundmass containing epidote 

amygdules and chlorite (Figures 5J and 7D). 

• Unit 3.2 - Fine-grained basalts with banded (mm – cm) to massive textures (Figures 

5K and 7E). The samples are chlorite- and biotite-altered with weak to moderate 

silicification (Figures 5K and 7E). The unit is non-mineralized and contains white 

quartz-carbonate veinlets (5-10%; mm – cm; Figures 5K and 7E). 

• Unit 2.0 - Rhyolitic with a weak schistosity, intense silicification, and contain 

muscovite and biotite in the groundmass (Figures 5L and 7F). The unit contain 
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abundant blue-grey quartz and feldspar phenocrysts (i.e., QFP; Figures 5L and 7F). 

The unit also shows very weak chloritization and sericitization in the groundmass 

and late quartz-carbonate veinlets (Figures 5L and 7F). 
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Figure 7 (previous page): Petrography of the lower member Bousquet Formation 

volcanics. All samples shown in XPL and PPL. (A) Unit 4.4 silicified andesite with an 

inequigranular matrix of chlorite, muscovite, biotite, clinopyroxene, garnet, and pyrite. (B) 

Unit 4.3 pyrite mineralized dacite-rhyolite with phenocrysts of quartz in a fine-grained 

matrix of muscovite, chlorite, plagioclase, and quartz. (C) Unit 4.2 glomeroporphyritic 

dacite with primary flow banding in a silicified microcrystalline matrix, with epidote-

quartz amygdules, and chlorite alteration. (D) Unit 3.3 andesitic-dacitic scoriaceous tuff 

with sericite-altered feldspar phenocrysts in an altered, amphibole-rich groundmass with 

epidote amygdules and chlorite. (E) Unit 3.2 fine-grained basalt with banded (mm – cm) 

to massive textures containing chlorite- and biotite-alteration with weak to moderate 

silicification. (F) Unit 2.0 rhyolite with a weak schistosity, chloritization and sericitization, 

a strong silicification, and contains muscovite + biotite in the groundmass; contains 

abundant quartz and feldspar (not shown) phenocrysts, and late quartz-carbonate veinlets. 

Note: bt = biotite, cal = calcite, chl = chlorite, cpx = clinopyroxene, ep = epidote, grt = 

garnet, hem = hematite, ms = muscovite, pheno = phenocryst, pl = plagioclase, ppl = plane 

polarized light, py = pyrite, qtz = quartz, ser = sericite, xpl = cross polarized light 
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2.3.2 Petrography of silicate melt inclusions and other included phases 

     Silicate melt inclusions are rare and difficult to identify in all units of the Bousquet 

Formation. Units 2.0, 4.3, 4.4, and 5.3 were suitable for SMI analysis, whereas all other 

units were not suitable because they were completely altered, had no suitable host minerals, 

and/or no SMI were observed. Phenocrysts (rather than matrix minerals) host the largest 

and most easily optically-discernable inclusions used for SMI investigations (Figure 8A - 

L). Notably, unit 2.0 has large (0.25 – 0.75 cm) abundant (10 - 15%) blueish-grey (Ti-rich) 

quartz phenocrysts in rhyolitic sills (Figure 5L), unit 4.3 has abundant (15 - 20%) blueish 

quartz phenocrysts in dacitic to rhyolitic schists (Figure 5H), unit 4.4 has abundant (10 – 

25%) hornblende crystals in basaltic to andesitic schists (Figure 5G), and unit 5.3 has 

abundant (5 – 10%) quartz phenocrysts in rhyolite (Figure 5C). Units 2.0 (QFP rhyolitic 

sills; Yergeau et al., 2015), 4.3 (rhyodacitic sills and dykes; Yergeau et al., 2015), and 5.3 

(QFP rhyolitic flow; Mercier-Langevin et al., 2007b) were the only volcanics found to 

contain viable SMI (see Section 2.2.2 – SMI petrography for SMI selection criteria). A 

complete list of samples containing viable SMI for microanalytical study is presented in 

Table 4.  
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Figure 8 (previous page): Representative photomicrographs of SMI hosted in quartz 

from units 2.0 and 5.3 of the Bousquet Formation. All images taken in transmitted PPL. 

(A) Thin section of partially weathered rhyolite from a unit 2.0 surface sample. (B) Thin 

section of rhyolite from a unit 2.0 surface sample showing abundant phenocrystic quartz; 

circled grains contain melt inclusions. (C) Recrystallized assemblage of three SMI and an 

accidentally trapped K-feldspar grain in a rutile-included quartz phenocryst. (D) SMI 

assemblage containing 3 inclusions; dashed area is enlarged in frame (E). (E) Partially 

recrystallized SMI assemblage [enlarged view from (D)]. included rutile needles are shown 

in the upper right corner of the frame. (F) Large, partially recrystallized SMI and included 

rutile grains in a quartz phenocryst. (G) A partly recrystallized SMI containing monazite 

and ilmenite daughter phases. Part of the inclusion is glassy. (H) Assemblage of 4 SMI 

containing opaque oxide daughter phases; the large opaque phase in the inclusion in the 

center right of the image is likely an accidentally trapped phase. (I) Recrystallized SMI 

containing oxide and K-feldspar daughter phases. Enlarged image of inclusion shown in 

(C). (J) Recrystallized SMI with a glassy area near the bottom of the inclusion and a large 

oxide grain, possibly accidentally trapped. (K-L) Two SMI from a single assemblage 

showing consistent daughter phase mineralogy; both have greenish phases (mica or 

amphibole), clear translucent phases (glass, K-feldspar or quartz), yellowish high relief 

phases (unknown), and small dark phases (oxides) in similar phase proportions. (M-N) 

SMI co-entrapped with apatite (both in the SMI and in quartz, adjacent to the SMI; apatite 

is considered an accidentally trapped phase saturated at the time of SMI enclosure). (O-R) 

Apatite and zircon grains included in quartz phenocrysts. (S) Allanite grain included in a 

quartz phenocryst. Note: aln = allanite, ap = apatite, ilm = ilmenite, kfs = K-feldspar, mnz 

= monazite, ox = oxide, qtz = quartz, rt = rutile, SMI = silicate melt inclusion, zrn = zircon. 
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Table 4: Summary of SMI selected for LA-ICP-MS analysis 
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     The SMI are categorized into three types based on petrographic observations at room T 

(Figure 9). Type I inclusions are SMI with a transparent, isotropic, and amorphous glassy 

proportion, or devitrified glass proportion (composed of tiny crystallites of K-feldspar, 

quartz, and other daughter phases) dominating the inclusion volume (>50 vol%) with lesser 

daughter mineral phases (<50 vol%; see SEM results below; Figure 9A & D; Table 5; 

Frezzotti, 2001). Through SEM-BSE, optical petrography, and LA-ICP-MS, daughter 

mineral phases encountered routinely include apatite (Figure 8M – R), zircon (Figure 8Q), 

K-feldspar (Figures 10H & J, and 11N & O), calcic plagioclase (An = 10 – 30%; Figure 

10G and I), ilmenite (Figures 10G and I, and 11N), oxides (Figure 8H – J), biotite (Figure 

10G – J), and muscovite (Figure 10H and J). Importantly, the muscovite in SMI is a low-

Mg and -Fe variety as compared to muscovite in the matrix and hourglass inclusions. Type 

II inclusions are SMI with a glassy proportion of <50 vol% and daughter phases dominating 

the inclusion volume (>50 vol%; Figure 9B & D; Table 5). Types I and II inclusions are 

desirable for analysis/interpretation relevant to characterizing melt chemistry because they 

are interpreted to represent true melt inclusions (isolated from source magma at the time of 

quartz growth). However, sometimes types I and II inclusions contain accidentally trapped 

solids (e.g., K-feldspar, calcic plagioclase, muscovite, biotite, zircon, apatite, ilmenite) and, 

based on evaluation of the LA-ICP-MS compositional data (see below; images of all SMI 

selected for LA-ICP-MS analyses are shown in Appendix 1), were excluded from the final 

dataset because their bulk compositions do not reflect the true composition of the melt. 

Similarly, Type III inclusions (Figure 9C - D; Table 5) are not true SMI but rather 

“hourglass”-style inclusions (Anderson, 1991) that have been exposed in cross-section 

during thin section preparation in such a way that they appear to be completely included. 
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However, they were never isolated from their surroundings and thus were prone to 

chemical/mineralogical modification. Units 2.0 and 5.3 contain all three types of inclusions 

along with co-entrapped accessory minerals (Figure 8). Petrographically, types I/II 

inclusions were distinguished from accidentally trapped mineral inclusions and type III 

inclusions (truncated hourglass inclusions) using four criteria: (i) Type III inclusions are 

always completely crystallized (no glass) and contain secondary (metamorphic, alteration) 

minerals not found in type I/II SMI (ankerite, Mg-rich siderite, calcite, magnetite, and 

sulphides; see SEM results below; Figure 9C; Table 5); (ii) Type III inclusions are often 

spatially related or directly connected to an embayment of matrix material (i.e., hourglass 

inclusion) that protrudes into the quartz phenocryst but that extends below the inclusion 

out of the plane of focus (Figure 9D); (iii) Type III inclusions are often highly irregular in 

shape and their contained crystals that penetrate into the inclusion walls, whereas 

commonly (but not always) type I/II inclusions are smaller and rounded/subrounded with 

smoother walls; and (iv) Accidentally trapped minerals occur in types I/II/III inclusions 

and in host quartz (free of recrystallized melt); they preserve some original euhedral crystal 

shape (i.e., of a single crystal), and have distinct petrographic features including 

contraction “gaps” along their host walls (cavity in quartz), and/or penetration into the 

walls of the inclusion that otherwise shows smooth edges bounding its contents and 

variable grain sizes and proportions that are not consistent from inclusion to inclusion. 
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Figure 9 (previous page): Schematic differentiating idealized examples of three 

inclusion types recognized in the Bousquet volcanics. All mineral phases shown in the 

inclusions were identified consistently by SEM-EDS but do not necessarily represent all 

minerals present in the inclusions as some could not be identified based on EDS analyses 

owing to their size or ambiguous composition. Mineral phases are not to scale. (A) Sketch 

of a type I SMI with an amorphous microcrystalline fsp + qtz body and few crystallized 

phases (bt ± pl ± kfs ± ilm ± mnz). (B) Sketch of a type II SMI with an amorphous 

microcrystalline fsp + qtz body and a moderate number of crystallized phases (ms ± bt ± 

kfs ± zrn). (C) Sketch of a composite type III inclusion that contains crystallized matrix 

minerals (ms ± qtz ± bt(ann) ± kfs ± aln ± cal ± sul ± ank ± mag (Fe-oxides) ± pl ± sd (Mg-

rich) ± zrn). Types I and II inclusions are true SMI, whereas Type III inclusions represent 

partly included melt (now altered, mineralized, and not having a bulk composition 

representative of the liquid) along embayments in the host phenocryst (hourglass 

inclusions). (D) A cross polarized light image of a quartz phenocryst showing examples of 

hourglass inclusions and types of SMI along a growth zone; if a cross section was taken 

through the neck of the hourglass inclusion (dashed line), it would have the appearance of 

a recrystallized SMI. Note: aln = allanite, ank = ankerite, ann = annite, bt = biotite, cal = 

calcite, ilm = ilmenite, kfs = potassium feldspar, mag = magnetite, mnz = monazite, ms = 

muscovite, pl = plagioclase, sd = siderite, sul = sulphide, zrn = zircon. 
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Table 5: Mineral phases in inclusions and groundmass of units 2.0 and 5.3 
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Figure 10 (previous page): Mineralogy and petrographic characteristics of inclusions 

in unit 2.0. Photomicrographs are in transmitted PPL, or from SEM-BSE, SEM-CL, and 

hot cathode CL imaging. (A) PPL image of a quartz phenocryst with two exposed SMI. 

(B) SEM-BSE image showing matrix mineralogy (ilm + chl) and two exposed SMI. (C-D) 

SEM-CL and hot CL images showing light grey/intense blue (i.e., magmatic) and dark 

grey/dull blue (i.e., metamorphic) zones. Note the halos around exposed SMI. (E) SEM-

BSE image showing detailed matrix mineralogy (ilm + bt + ms +pl) and two exposed SMI. 

(F) SEM-BSE image showing detailed matrix mineralogy (ilm + bt + pl). (G-J) SEM-BSE 

and PPL images showing detailed SMI composition (ilm + bt + ms + kfs + pl + zrn). (K) 

PPL image of a quartz phenocryst with two exposed hourglass inclusions. (L) SEM-BSE 

image showing matrix mineralogy (chl + pl + cal + ccp) and two exposed hourglass 

inclusions. (M-N) SEM-CL and hot CL images showing light grey/intense blue (i.e., 

magmatic) and dark grey/dull blue (i.e., metamorphic) zones. Note the presence of halos 

around the two exposed hourglass inclusions. (O) SEM-BSE image showing detailed 

matrix mineralogy (pl + grt + + aln) and two exposed hourglass inclusions. (P) SEM-BSE 

image showing detailed matrix mineralogy (bt + pl + grt + aln). (Q-T) SEM-BSE and PPL 

images showing detailed hourglass inclusion mineralogy (qtz + ms + ann + kfs + cal + ank 

+ mag + sul + Mg-rich sd + zrn). Note: aln = allanite, ank = ankerite, ann = annite, bt = 

biotite, cal = calcite, ccp = chalcopyrite, chl = chlorite, grt = garnet, ilm = ilmenite, kfs = 

potassium feldspar, mag = magnetite, Mg-rich sd = magnesium-rich siderite, ms = 

muscovite, pl = plagioclase, qtz = quartz, SMI = silicate melt inclusion, sul = sulphide, zrn 

= zircon. 
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Figure 11 (previous page): Petrographic mosaic of unit 5.3 quartz phenocrysts. 

Microphotographs captured with PPL, SEM-BSE, SEM-CL, and hot CL. (A-B) PPL and 

SEM-BSE images of a quartz phenocryst showing hourglass inclusion mineralogy (bt ± 

kfs) and matrix mineralogy (ms). (C) SEM-CL image showing dark circles that represent 

hourglass inclusions. (D) Hot CL image showing mostly an intense blue colour (i.e., 

magmatic) and minor amounts of a brownish-red colour (i.e., metamorphic). The brownish-

red colour is found in a medial fracture and blebs of hourglass inclusions. (E-F) PPL and 

SEM-BSE images of a quartz phenocryst showing hourglass inclusion mineralogy (bt ± 

kfs) and matrix mineralogy (ms ± kfs). (G) SEM-CL image showing dark circles that 

represent hourglass inclusions. (H) Hot CL image showing a reddish blue coloration, which 

indicates some hydrothermal and metamorphic influence. (I-J) PPL and SEM-BSE images 

of a quartz phenocryst with two exposed SMI; images show SMI mineralogy (kfs), 

fracture-fill mineralogy (kfs), and matrix mineralogy (kfs ± phl ± ms). (K-L) SEM-CL and 

hot CL images showing light grey/intense blue (i.e., magmatic) and dark grey/dull blue 

(i.e., metamorphic) zones. (M) SEM-BSE image showing detailed matrix mineralogy (ms 

± phl) and two SMI (ilm ± mnz ± kfs). (N-O) PPL image showing detailed SMI 

composition (ilm ± mnz ± kfs). Note: bt = biotite, ilm = ilmenite, kfs = potassium feldspar, 

mnz = monazite, ms = muscovite, phl = phlogopite, qtz = quartz. 
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     Importantly, types I/II/III inclusions are associated with growth zones within quartz 

phenocrysts suggesting a primary origin (Figure 9D). Differentiation of type I/II from type 

III inclusions is further resolved with a combination of plane-polarized light, SEM-BSE, 

SEM-CL, and hot cathode CL (HCL) images collected for ~50 quartz phenocrysts from 15 

thin sections of units 2.0 and 5.3 (Figures 10, 11, and 12). The type I/II SMI included in 

the final dataset are enclosed within light grey (SEM-CL) and intense blue (HCL) 

“remnant” zones of magmatic quartz (Figures 10C – D, and 11J - L). The type I/II SMI 

found outside of these zones in darker grey, or less intense blue “altered” quartz were 

eliminated from the dataset because modification of the host may have leaked and/or 

changed their physical/chemical composition. Type III inclusions occur within dark grey 

(SEM-CL) and dull blue or red (hot CL) zones reflecting local alteration of the primary 

quartz host (Figures 10M – N, and 11C, D, G, and H). Rarely, quartz phenocrysts that 

contained SMI showed primary zoning in the CL images (Figure 12G and H).  
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Figure 12 (previous page): Petrographic mosaic of unit 2.0 quartz phenocrysts. 

Microphotographs captured with PPL, SEM-BSE, SEM-CL, and hot CL. (A) PPL image 

of a quartz phenocryst with an hourglass inclusion. (B) SEM-BSE image showing 

hourglass inclusion mineralogy (chl ± ms ± cal) and matrix mineralogy (alm ± ep). (C & 

D) SEM-CL and hot CL images showing light grey/intense blue (i.e., magmatic) and dark 

grey/dull blue (i.e., metamorphic) zones. (E) PPL image of a quartz phenocryst with an 

hourglass inclusion. (F) SEM-BSE image showing hourglass inclusion mineralogy (bt ± 

ms ± cal) and matrix mineralogy (ms ± ep). (G) SEM-CL image showing contrasting 

shades of light and dark grey, indicating primary growth zoning. (H) Hot CL image 

showing an intense blue (i.e., magmatic origin). Note: alm = almandine, bt = biotite, cal = 

calcite, chl = chlorite, ep = epidote, ms = muscovite, qtz = quartz. 
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2.3.3 Composition of SMI  

     The major and trace element composition of the quartz-hosted SMI was obtained by 

LA-ICP-MS in order to provide constraints on the composition of the magmatic reservoir 

where the melts were trapped, including its ore and accessory metal tenor. Figure 13 shows 

representative transient LA-ICP-MS signals from SMI ablations as well as other phases 

(e.g., accidentally trapped mineral grains) to illustrate the characteristics of different signal 

types. Typical melt inclusion signals, free of accidentally trapped mineral phases, had count 

rates rise and fall gradually with a dome-like signal-time distribution that is synchronous 

for many major and trace elements (Figure 13A - B, and G - P). Metal isotope signals tend 

to increase and decrease together and generally follow other isotopes tied to the 

recrystallized melt phase. For example, 209Bi, 121Sb, and 107Ag show a distinctive dome 

shape in Figure 13O – P. However, metal isotope count rates may also be somewhat 

“decoupled” from other elements (Figure 13A – B, and I – J). Melt inclusions with reported 

Au had unambiguously higher count rates for 197Au than the background and host quartz. 

For example, the SMI shown in Figure 13N had an average of 64.4 cps 197Au over the SMI 

+ host signal interval, whereas background/host only had an average of 9.2 cps 197Au. 

Occasionally, isolated metal-bearing phases (Cu + As + Bi + Ag) were observed in the SMI 

signals that are not “melt-dissolved” metals but accidentally trapped sulphide particles 

(Figure 13G – H). These inclusion signals, when quantified, yield unrealistically high metal 

concentrations   
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Figure 13 (previous page): Representative LA-ICP-MS signals of SMI, mineral 

inclusions, and melt with accidentally trapped minerals. (A-B) Elemental 

concentrations in counts per second (cps) of a quartz phenocryst-hosted SMI of unit 2.0. 

Laser is off and a background (gas blank) signal is collected from 30-45 seconds; laser is 

on from 45-90 seconds; and the SMI is ablated from 52-82 seconds. The SMI is represented 

by decreased counts of 29Si and increased counts of 27Al, 39K, 44Ca, 88Sr, 90Zr, 107Ag, and 
178Hf. This is a good, typical, melt signal of a completely buried SMI and it does not display 

a stepwise opening. It has a nice dome shape in general but with a distinction between 

different phases in the inclusion. Note the 65Cu, 75As, 139La, and 209Bi bearing phase from 

65-80 seconds. (C-D) Elemental concentrations in cps of a quartz phenocryst-hosted 

apatite grain of unit 5.3. Laser is off and a background signal is collected from 20-35 

seconds; laser is on from 35-100 seconds; and the apatite grain is ablated from 60-100 

seconds. This is not an SMI but was included as an important signal because of its relevance 

to subsection 2.2.3 of the results. Note that the end of the apatite signal is not shown 

because it continued down to the glass slide contact which compressed the curves and 

distorted the image. The apatite grain is represented by increased counts of 31P, 44Ca, 55Mn, 
88Sr, 139La, 140Ce, 146Nd, 147Sm, 153Eu, 172Yb, 232Th, and 238U. (E-F) Elemental 

concentrations in cps of a polymineral inclusion in a quartz phenocryst of unit 2.0. Laser 

is off and a background signal is collected from 25-45 seconds; laser is on from 45-115 

seconds; and the host inclusion is ablated from 55-95 seconds. The high 56Fe, 27Al, 44Ca, 
55Mn, 88Sr and lack of 23Na suggests this is not plagioclase but rather muscovite + carbonate 

together with a small allanite in the center. Note the allanite phase that contains elevated 
89Y, 139La, 151Eu, 209Bi, 232Th, and 238U from 55-85 seconds. (G-H) Elemental 

concentrations in cps of a quartz phenocryst-hosted SMI of unit 2.0. Laser is off and a 

background signal is collected from 30-45 seconds; laser is on from 45-145 seconds; and 

the SMI is ablated from 55-110 seconds. The SMI is represented by decreased counts of 
29Si and increased counts of 23Na, 25Mg, 27Al, 39K, 56Fe, 133Cs, 178Hf, and 181Ta. Note the 

accidentally trapped metal-rich phase (alloy or mineral). that contains elevated 65Cu, 75As, 
107Ag, and 209Bi from 75-90 seconds. Areas of spectra with metal-bearing phases were not 

included in the quantification of SMI composition. Note: Most LA-ICP-MS spectra have a 

step-like feature that is caused by the shifting of the aperture size of the laser. As the 

aperture increases in size, the laser is blocked briefly and causing a drop in element counts. 
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Figure 13 continued (previous page): Representative LA-ICP-MS signals of SMI, 

mineral inclusions, and melt with accidentally trapped minerals. (I-J) Elemental 

concentrations in counts per second (cps) of a quartz phenocryst-hosted SMI of unit 2.0. 

Laser is off and a background (gas blank) signal is collected from 35-45 seconds; laser is 

on from 45-100 seconds; and the SMI is ablated from 52-90 seconds. The SMI is 

represented by decreased counts of 29Si and increased counts of 23Na, 27Al, 39K, 44Ca, 75As, 
88Sr, 90Zr, 107Ag, 118Sn, 139La, 208Pb, and 238U. Note the 65Cu-bearing phase from 65-75 

seconds and 31P, 139La, and 238U spikes from 70-75 seconds, representing an included 

apatite grain. (K-L) Elemental concentrations in cps of a quartz phenocryst-hosted SMI of 

unit 5.3. Laser is off and a background signal is collected from 35-45 seconds; laser is on 

from 45-85 seconds; and the SMI is ablated from 52-75 seconds. The SMI is represented 

by decreased counts of 29Si and increased counts of 23Na, 27Al, 39K, 88Sr, 90Zr, 139La, 178Hf 

and 238U. Note the elevated 197Au value which correlates with 65Cu but not 107Ag; therefore, 

it is not accidentally trapped electrum. (M-N) Elemental concentrations in cps of a quartz 

phenocryst-hosted SMI of unit 2.0. Laser is off and a background signal is collected from 

40-45 seconds; laser is on from 45-105 seconds; and the SMI is ablated from 50-95 

seconds. The SMI is represented by decreased counts of 29Si and increased counts of 23Na, 
27Al, 39K, 44Ca, 90Zr, 133Cs, and 178Hf. Note the elevated metals, including 65Cu, 107Ag, 
121Sb, 197Au, and 209Bi. (O-P) Elemental concentrations in cps of a quartz phenocryst-

hosted SMI of unit 2.0. Laser is off and a background signal is collected from 30-45 

seconds; laser is on from 45-115 seconds; and the SMI is ablated from 52-105 seconds. 

The SMI is represented by decreased counts of 29Si and increased counts of 23Na, 27Al, 39K, 
44Ca, 90Zr, 133Cs, and 178Hf. Note trapped apatite (31P spike) and the elevated metals, 

including 65Cu, 107Ag, 121Sb, 197Au, and 209Bi. Note: Most LA-ICP-MS spectra have a step-

like feature that is caused by the shifting of the aperture size of the laser. As the aperture 

increases in size, the laser is blocked briefly and causing a drop in element counts. 
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     Signals representing included mineral phases (either monomineralic or polymineralic 

aggregates), or accidental entrapment of mineral phases with or without co-entrapped melt, 

were rejected from the final data set. These were recognized in signals by their flat intensity 

profiles for many major and trace elements (Figure 13E – F), or irregular humps in the 

transient signals for elements in the accidental phase that synchronously increased and 

decreased in measured isotope intensity, not corresponding to the intensity of elements in 

the true melt fraction (Figure 13E – F). Sometimes minerals accidentally trapped in melt 

inclusions dominate the signal. Hourglass inclusions, and inclusions containing large, 

accidentally trapped mineral phases were identified by anomalously high count rates for 

certain isotopes (44Ca = calcite; 56Fe = magnetite; 56Fe, 25Mg, 44Ca = siderite, ankerite; 47Ti, 

93Nb, 56Fe = oxides; 44Ca, 23Na, 27Al = plagioclase; 44Ca, some REE = apatite or allanite; 

90Zr, 178Hf = zircon; 85Rb, 137Ba, 27Al = K-feldspar; and 208Pb, 75As, 107Ag, 118Sn, 182W = 

oxides or sulfides). 

     The final data set for SMI from unit 2.0 (n = 99) reflects a data filtering process that 

significantly reduced the ranges in specific major and trace element concentrations (TiO2, 

Al2O3, CaO, Na2O, B, Rb, Ba, HFSE, REE, Mo, Sn, W, and Pb; Figure 14). Filtering (i.e., 

removing inclusions from the data set) was justified on examination of signals/quantified 

values that demonstrated the presence of mineral inclusions that were not part of the 

crystallized melt (i.e., accidentally trapped phases). The same data filtering process resulted 

in a final data set for unit 5.3 (n = 49) with a reduction in error bar ranges in a box-whisker 

plot for a variety of elements (TiO2, Al2O3, FeO, MnO, MgO, CaO, Cs, Rb, Ba, Nb, Zr, 

Hf, Ce, Lu, As, Ag, Sn, W, and Pb; Figure 15). 
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Figure 14: Box-whisker plot of unit 2.0 (filtered vs unfiltered). Box-whisker plot with 

the 1st and 3rd quartile ranges, averages, and error bars of major and minor oxides, LILE, 

HFSE, REE, and metals of unit 2.0 SMI. Concentrations of oxides and elements were 

collected by LA-ICP-MS. Purple boxes show the unfiltered data set (n = 114) while red 

boxes show the filtered data set (n = 99). Numbers above each box and whisker represent 

the number of filtered SMI analyses for each corresponding element or oxide. Note the 

reduction in error bar ranges for TiO2, Al2O3, CaO, Na2O, B, Rb, Ba, HFSE, REE, Mo, Sn, 

W, and Pb. 
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Figure 15: Box-whisker plot of unit 5.3 SMI (filtered vs unfiltered). Box-whisker plot 

with the 1st and 3rd quartile ranges, averages, and error bars of major and minor oxides, 

LILE, HFSE, REE, and metals of unit 5.3 SMI. Concentrations of oxides and elements 

were collected by LA-ICP-MS. Purple boxes show the unfiltered data set (n = 52) while 

yellow boxes show the filtered data set (n = 49). Numbers above each box and whisker 

represent the number of filtered SMI analyses for each corresponding element or oxide. 

Note the reduction in error bar ranges for TiO2, Al2O3, FeO, MnO, MgO, CaO, Cs, Rb, Ba, 

Nb, Zr, Hf, Ce, Lu, As, Ag, Sn, W, and Pb. 

  



127 

 

     Bulk rock data (Table 6) was also obtained for the host rhyolites and compared to the 

SMI data for units 2.0 (Figure 16; Table 7) and 5.3 (Figure 17; Table 7) in order to 

determine if: (i) post entrapment processes modified the bulk magma and/or rock 

composition (e.g., by continued fractionation/differentiation, degassing, alteration, and 

metamorphism); and (ii) whether the bulk rock analyses can be used as a reliable proxy for 

magma metal tenor. Quantification of major, minor, and trace elements in SMI of units 2.0 

and 5.3 included the ore metals Au-Ag-Cu-Mo-Sn-Sb-W (Table 7). 
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Table 6: Bulk rock analyses of units 2.0 and 5.3 of the Bousquet Formation 
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Figure 16: Box-whisker plot of unit 2.0 SMI and bulk rocks major and trace element 

concentrations. Shown are the 1st and 3rd quartile ranges, averages, and error bars of major 

and minor oxides, LILE, HFSE, REE, and metals of unit 2.0 SMI (n = 99). Concentrations 

of oxides and elements were collected by LA-ICP-MS. Numbers above each box-whisker 

represent the number of SMI analyses for each corresponding element or oxide. Bulk rock 

data (n = 6) overlay the box-whisker symbols for comparison and were collected from six 

corresponding SMI-bearing samples. Only the SMI values for V are significantly lower 

than the bulk rock values. Many SMI values are higher than the bulk rock values, including 

Zr, Hf, U, Th, La, Y, Er, Yb, As, Sb, Pb, Bi, and Au. All bulk rock Ag values were below 

detection limit (bdl = 0.2 ppm). 
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Figure 17: Box-whisker plot of unit 5.3 SMI and bulk rocks major and trace element 

concentrations. Shown are the 1st and 3rd quartile ranges, averages, and error bars of major 

and minor oxides, LILE, HFSE, REE, and metals of unit 5.3 SMI (n = 49). Concentrations 

of oxides and elements were collected by LA-ICP-MS. Numbers above each box-whisker 

represent the number of SMI analyses for each corresponding element or oxide. Bulk rock 

data (n = 2) overlay the box-whisker symbols for comparison and were collected from two 

corresponding SMI-bearing samples. Several SMI values are lower than the bulk rock 

values, including FeO, Na2O, Sc, V, Co, and Cu. Many SMI values are higher than the bulk 

rock values, including K2O, U, Th, La, Ce, Nd, Gd, Dy, As, Sb, Bi, and Au. All bulk rock 

Ag values were below detection limit (bdl = 0.2 ppm). 
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Table 7: Compositions of units 2.0 and 5.3 SMI analyses 
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     Notably, there are large ranges in unit 2.0 SMI concentrations (up to two orders of 

magnitude) of B, Cs, REE, Sc, V, Cu, As, Mo, Ag, W, Bi and Au (Figure 16), and many 

elements have higher concentrations in unit 2.0 SMI than in the bulk rock analyses (Zr, Hf, 

U, Th, La, Y, Er, Yb, As, Sn, Sb, Pb, Bi, and Au; Figure 16). However, bulk rock 

concentrations of Cs, Sr, Nb, Ta, Sc, Co, Ni, Cu, Mo, and W are equal, or show similar 

ranges to those in the SMI (Figure 16). Concentrations of V and Cr in unit 2.0 SMI are 

lower than the bulk rock (Figure 16). All bulk rock Ag values are below detection limit 

(i.e., bdl = 0.2 ppm; Figure 16). 

     Almost all elements measured in unit 5.3 SMI have concentration ranges of less than 

one order of magnitude, except for La, Y, Ag, Bi, and Au which have ranges of up to two 

orders of magnitude (Figure 17). The following groups of elements and metals for unit 5.3 

have higher concentrations in SMI than bulk rock: REE, As, Sn, Sb, Bi, and Au (Figure 

17). Concentrations of major and minor oxides (with the exception of FeO), LILE, HFSE, 

Mo, W, and Pb are equal, or show similar ranges, in the SMI compared to bulk rock (Figure 

17). Concentrations of Sc, V, Co, and Cu for unit 5.3 SMI are lower than the bulk rock 

(Figure 17). All bulk rock Ag values are below detection limit (i.e., bdl = 0.2 ppm; Figure 

16). 

2.3.4 Composition of quartz-hosted accessory apatite 

     Apatite was analyzed because it is an abundant co-entrapped phase, and it was 

straightforward to also analyze to gain additional information about the magmatic 

reservoir. Apatite is a common mineral phase identified in SMI (as an accidentally trapped 
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phase, showing variable phase proportions) and was identified by transient “spikes” in Ca, 

P, LREE, and U isotope count rates within, but distinct (offset) from, the melt signal 

(Figure 13I - J, and O - P). The Ca signal from apatite small grains can be obscured by the 

Ca within the melt fraction, whereas P is present in the melt fraction at much lower 

concentration so P was used as an identifier for accidental apatite inclusions. Quartz 

phenocryst-hosted apatite grains, free of melt, were also identified as isolated grains in the 

vicinity of SMI and recognized in LA-ICPMS signals by coincident, increased count rates 

in Ca, P, Mn, Sr, REE, U and Th (Figure 13C - D). Table 8 summarizes LA-ICPMS 

analyses of the apatite included in quartz (free of melt), providing data that is relevant to 

the interpretation of the source and evolution of the silicate melt which is unambiguously 

coeval, based on the observations of co-entrapment (Figure 8M – R). Note that some 

anomalously high Ti values in the apatite data are due to small needles of rutile included 

in the analytical volume. Other less common accessory minerals identified as accidentally-

trapped phases, also relevant to petrogenetic modelling, are allanite and zircon (Figures 8Q 

– S, and 13E - F).
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Table 8: LA-ICP-MS analyses of trace elements in quartz-hosted apatite inclusions, Bousquet Formation 
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2.3.5 Composition of rehomogenized SMI 

     The goal of homogenization experiments was to characterize the volatile chemistry of 

the melt, to assess homogenization temperature as it relates to minimum entrapment T, and 

to determine the SiO2 content of the melt as an internal standard for LA-ICP-MS data 

reduction. Three different homogenization approaches were applied: (i) 1 atm heating stage 

brought to a maximum temperature of 1345°C at a heating rate of 10 - 30°C/min; (ii) three 

high pressure-temperature piston cylinder experiments (Experiment 1: t = 72 hours, T = 

900˚C; and P = 3 kbar; Experiment 2: t = 120 hours, T = 950˚C and P = 5 kbar; Experiment 

3: t = 72 hours, T = 950˚C, and P = 3 kbar); and (iii) one rapid quench MHC cold-seal 

pressure vessel experiment at 950˚C and 1500 bar for 36 hours. 

     Initial homogenization experiments using a high T microthermometric stage were 

performed on a phenocrystic quartz hosted SMI. This showed a first phase change (onset 

of melting) at ~692°C (Figure 18D) with a mottled appearance distinct at ~785°C consistent 

with an increase of the silicate liquid proportion in the inclusion (Figure 18E). 

Microfractures began to develop in the quartz host at 1345°C and melting of the quartz in 

the inclusion wall between 1050°C and 1345°C was observed with no closure of the bubble, 

precluding determination of the homogenization T (Figure 18G - I). Interestingly, the 

inclusion selected for measurement also contained a distinct, and volumetrically 

significant, CO2 phase (LCO2 + VCO2) at room T (Figure 18A). 
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Figure 18: Microthermometry of Bousquet Formation SMI. Plane polarized light 

microphotographs of a unit 4.3 quartz-hosted SMI during progressive heating stages. (A) 

There is liquid CO2 and a vapour CO2 bubble at 24°C in a crystallized melt inclusion. (B - 

D) Progressive heating resulting in the SMI undergoing a phase change at 692°C; the phase 

(white dotted circle) became darker and changed shape; this was the first sign of melting 

in the inclusion. (E - F) A mottled texture appeared at 785°C, indicating an increase in 

liquid present in the inclusion. (G) Separation of a CO2 phase from the liquid melt. (H - I) 

At 1330°C, the quartz host began to melt as is evidenced by the expansion of the SMI 

cavity; subsequent micro fractures developed in the quartz host making it difficult to 

calculate the total homogenization of the inclusion. 
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     The final T before terminating the experiment (1345°C) is far too high for 

homogenization of a hydrous granitic SMI (Bodnar and Student, 2006), suggesting that 

water must have been lost from the melt during heating by diffusion or through microcracks 

(Student and Bodnar, 1996; Bodnar and Student, 2006), and/or that the CO2 phase was 

heterogeneously trapped with melt. If related to water loss, the melting temperature of the 

inclusion would increase because water lowers the solidus and liquidus. In addition, the 

isochoric nature of the inclusion was lost because fractures formed and the host melted 

(i.e., the inclusion volume changed, and the bubble got larger). The larger bubble required 

a higher T to force it to shrink. This process of melting, fracturing, and bubble expansion 

feeds back on itself and the homogenization T is never reached (see Figure 18H). 

Alternatively, if the CO2 is accidentally trapped as an immiscible phase in the SMI, it 

cannot dissolve entirely in the melt because it has a saturated (free) volatile phase and not 

an original melt component, so no realistic amount of heating will homogenize this CO2 

phase. 

     After the initial microthermometric heating experiment on unit 4.3 SMI to observe 

melting behavior, alternative homogenization methods (piston cylinder, and MHC pressure 

vessel) were used that prevent decrepitation and volatile loss (Student and Bodnar, 1996; 

Bodnar and Student, 2006) with the focus on units 2.0 and 5.3 because they were also the 

units that produced substantial LA-ICP-MS compositional data sets (Appendix 2). 

Inclusions in quartz phenocrysts, hand-picked from unit 2.0 and unit 5.3 were recovered 

from high P-T experimental capsules and analyzed by laser Raman microspectroscopy. 

The heated phenocrysts contained numerous homogenized SMI suitable for analysis, 
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containing a transparent (glassy) to translucent (finely crystalline, devitrified?) solid phase 

and bubble/s (maximum ~ 5 m diameter) at room T (Figure 19). The glassy portion of the 

homogenized SMI had very low H2O contents (Figure 19A). The bubble phases vary in 

total bubble phase proportion from inclusion to inclusion, showed commonly two phases 

within them, a liquid phase, and a vapour phase that exhibited Brownian motion. Laser 

Raman microspectroscopy confirmed that the bubbles in the SMI of both units contained 

CO2 liquid and CO2 vapour (Figure 19B). Representative Raman spectra of the vapour 

phases in homogenized SMI (by piston cylinder) show characteristic peaks for CO2 and 

minor CO3
-2, N2, and CH4 (Figure 19B), while spectra of the homogenized glass show 

absent or low magnitude peaks of water bands (Figure 19C). The distribution of some 

species/compounds contained within a homogenized SMI are shown in Figure 20. 
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Figure 19 (previous page): Petrography and Raman spectra of CO2-rich and H2O-poor homogenized SMI of the Bousquet 

rhyolites. Raman spectra of bubbles and glass or devitrified glass from homogenized SMI of Bousquet volcanics. Intensity 

measured in counts and Raman shift in cm-1. (A) Baseline corrected Raman spectra from units 2.0 and 5.3 SMI displaying water 

band peak areas. Water peak with 0.95 wt% H2O is from Zajacz et al. (2005). Spectra 711_7200_15A and B are from analyzed 

glass of the homogenized SMI in Figure 20. (B) Raman spectrum displaying peaks of quartz and CO2. (C-I to C-IX) Transmitted 

PPL images of partially homogenized quartz-hosted SMI from the unit 5.3 surface sample; bubbles contain CO2 liquid (LCO2) and 

vapour (VCO2) as determined by laser Raman spectroscopy.
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Figure 20 (previous page): Raman maps of a homogenized SMI from unit 5.3. The 

mapped areas for H2O, CO2, SiO2 are based on intensity ranges 3450-3650 cm-1, 1385-

1390 cm-1, and 450-475 cm-1, respectively. (A) PPL image of a homogenized SMI with a 

large liquid and vapour CO2 bubble in glass. (B - D) Intensity distribution of H2O, CO2, 

and SiO2 in the homogenized SMI and surrounding host quartz. (E) PPL image of a 

homogenized SMI with a large liquid and vapour CO2 bubble in glass. (F - H) Intensity 

distribution of H2O, CO2, and SiO2 in the homogenized SMI and surrounding host quartz. 
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     Homogenized SMI analyses (from MHC pressure vessel experiments) for unit 2.0 can 

be found in Table 9. Compositional data for SMI from unit 2.0 bracket the SiO2 content 

between 79.2 and 74.6 wt% (Table 9). Assuming that this compositional range may still 

slightly overreport SiO2 due to incorporation of excess silica from the host quartz, and loss 

of some H2O, the LA-ICP-MS data (Appendix 2) were reduced using an internal standard 

value of 70 wt% SiO2. The worst-case scenario in terms of uncertainty of this assumption 

is that the trace element LA-ICP-MS data are within ~10% relative of their true values. To 

illustrate the difference in calculated trace element values based on the chosen internal 

standard for LA-ICP-MS (i.e., 70 wt% SiO2) and a higher value of internal standard of 79.2 

wt% SiO2, calculations were done in SILLS at each value. For example, in inclusion 7 in 

sample 711-7200-U5.3 (phenocryst 4; Appendix 2B), at 70 wt% SiO2 the calculated 

concentrations of Mo and Au are 1.15 and 0.15 ppm, respectively; using a value of 79.2 

wt% SiO2 concentrations of Mo and Au are 1.3 and 0.17 ppm, respectively. 
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Table 9: SEM-EDS analyses of homogenized SMI from unit 2.0 (T = 950˚C and P = 

1500 bar, 36 hours) 

 
Note: bdl = below detection limit. 
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     The water bands in the Raman spectra from homogenized SMI (via MHC pressure 

vessel) in units 2.0 and 5.3 have maximum peak intensities that are an order of magnitude 

or lower than in hydrous (2.5 – 5 wt% H2O) melt inclusions reported in felsic systems 

(Zajacz et al., 2005) and in some inclusions, no water peak was recognized at ~3500 cm-1. 

A semi-quantitative estimate of the water content of the SMI of units 2.0 and 5.3 using the 

approach of Zajacz et al., (2005) indicates << 0.5 wt% H2O (C. Dalzell, communication, 

2020). Consequently, whereas the water content (5%) originally applied to the LA-ICP-

MS calculations is too high, determining an internal standard value (SiO2 wt%) from 

homogenized SMI using SEM-EDS (rather than by EEMP) was appropriate considering 

not only how small the inclusions are, but also the similarity anticipated between anhydrous 

(SEM) and hydrous (EMP by difference) composition determination. (Figure 19C). 

     Many SMI contained refractory mineral phases that did not melt completely in larger 

inclusions. For example, Fe was commonly under-reported due to the presence of Fe-oxide 

phases along inner walls of the inclusions that were not included in spot analyses of the 

glass. (Table 9). Because it is likely that only some of the quartz that had precipitated 

naturally along the wall of the SMI was remelted back into the SMI during homogenization, 

it was initially thought that the rastering approach (i.e., including quartz host slightly 

beyond the boundary of the SMI) would ensure all quartz grown along the wall of the cavity 

would be included in the analytical volume. However, rastered and area analyses of SMI 

by SEM-EDS over-reported silica because the analytical volumes included minor quartz 

host surrounding the SMI. This led to other elements being under-reported. Consequently, 
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spot analyses were used, and it should be noted that SiO2 is probably slightly overreported 

in the homogenized inclusions. 

2.3.6 Titanium in host quartz 

     Quartz phenocrysts are saturated in rutile (Figure 8C, E, and F). Thus, the Ti content 

has the potential to provide a constraint on the temperature of entrapment of quartz, 

confirming the T of entrapment from piston cylinder and MHC vessel of at least 900˚C at 

3 kbar (piston cylinder, run time = 72 hours) and 950 ± 10˚C at 1500 ± 50 bar (MHC, run 

time = 36 hours). Concentrations of Ti in quartz phenocrysts from units 2.0, 4.3, and 5.3 

were measured by LA-ICP-MS (Table 10; Appendix 3A, B, and C). The Ti values are not 

contaminated by rutile grains because the final concentrations obtained for each unit had 

narrow ranges indicating the laser beam was not hitting large rutile needles, but rather the 

quartz itself. Concentrations were implemented into the equations of the Ti-in-quartz 

thermometer from Thomas et al. (2010). The activity of Ti was assumed to be 1 based on 

the presence of rutile in the quartz. However, the rutile may have been exsolved from the 

quartz; thus, it was not saturated when the quartz crystallized. Therefore, additional 

calculations with a Ti activity of 0.7 (due to saturated ilmenite in SMI) were completed 

and presented in a PT diagram (see Section 2.4.7). Pressures used for the T calculation are 

based on robust barometry for the MIC rocks (Neyedley et al., 2021). The calculations 

yielded T values consistent with crystallizing conditions for the MIC Phases B and C (i.e., 

6.5 – 13.5 kbar) which were established through Ti-in-zircon and Ti-in-quartz thermometry 

(Neyedley et al., 2021). This P constraint assumes that the phenocrysts of quartz grew in 

the same magma chamber as the MIC zircons. Unit 5.3 quartz phenocrysts (n = 83) have 
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an average Ti concentration of 113 ppm (1σ = 21.8 ppm) corresponding to a crystallization 

temperature of 686˚C (1σ = 25.6˚C) at 6.5 kbar and 848˚C (1σ = 29.9˚C) at 13.5 kbar and 

aTiO2 = 1; unit 4.3 quartz phenocrysts (n = 39) have an average Ti concentration of 268 ppm 

(1σ = 79.8 ppm) corresponding to a crystallization temperature of 785˚C (1σ = 36.5˚C) at 

6.5 kbar and 964˚C (1σ = 42.7˚C) at 13.5 kbar and aTiO2 = 1; and unit 2.0 quartz phenocrysts 

(n = 182) have an average Ti concentration of 83.4 ppm (1σ = 21.3 ppm) corresponding to 

a crystallization temperature of 653˚C (1σ = 33.2˚C) at 6.5 kbar and 809˚C (1σ = 38.8˚C) 

at 13.5 kbar and aTiO2 = 1 (Table 10). The Ti concentrations of unit 4.3 are highly variable 

with a 1σ of 79.8 ppm, which could mean the quartz has been altered so the data was 

omitted from tables dan figures.  
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Table 10: Summarized LA-ICP-MS analyses of titanium in quartz. 

 
Note: aTiO2 = 1 
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2.4 Discussion 

2.4.1 Preservation and origin of SMI  

     Quartz phenocrysts in unit 2.0 (rhyolitic sills) and 5.3 (quartz rhyolite flow) contain the 

only unambiguous and well-preserved (based on petrographic characteristics) SMI of the 

Bousquet Formation volcanics (Figure 8C - L). The SMI are associated with growth zones 

(observed rarely; Figures 8D and 12G), so they have been trapped in the growing quartz 

phenocrysts at any number of stages (e.g., in the staging magma chamber at depth, as they 

rose through the crust, and/or as the magmas were extruded as flows or injected as 

subvolcanic sills/dykes). However, the SMI analyzed are tied to growth zones not in the 

outermost rims of the phenocrysts (Figure 9D), and therefore, they are interpreted to have 

been trapped considerably earlier than actual host flow or sill emplacement, prior to 

eruption (cf. Anderson et al., 2000). The SMI analyzed are well preserved, showing no 

physical signs of being impacted by deformation, decrepitation, or alteration. They are 

recrystallized or partly recrystallized due to post-entrapment slow cooling and 

devitrification (Frezzotti, 2001; Figure 8K - L), but show no decrepitation haloes or radial 

cracks, contain primary igneous daughter minerals, and occur in remnant magmatic quartz 

domains in the phenocrysts, based on CL analysis (Figures 10C and 11K). 

     The SMI are not secondary in origin because they cluster in assemblages in the centre 

of phenocrysts (Figure 8D) and/or along growth zones (Figure 9D) away from the edges 

of phenocrysts, rather than in cross-cutting trails along healed fractures near the edge of 

the grains (Roedder, 1984; Frezzotti, 2001; Abersteiner et al., 2019). Hot CL and SEM-CL 
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was conducted on quartz phenocrysts from unit 2.0 (Figures 10C – D, M - N, 12C – D, and 

G - H) and unit 5.3 (Figure 11C – D, G – H, and K – L) to confirm if the quartz retained 

magmatic compositional provenance or if it was recrystallized and overprinted by a 

metamorphic event. Bodnar and Student (2006) note that SMI can be altered through 

chemical diffusion during post-solidus processes. For example, it is possible for H and H2O 

to diffuse out of the SMI, while trace elements simultaneously enter the inclusion from the 

surroundings (Bodnar and Student, 2006). 

     Cathodoluminescence imaging can be used to assess the extent of recrystallization, 

resorption, dissolution, and reprecipitation as well as solid state diffusion related chemical 

changes in quartz (Götze et al., 2001). The intensity and colour of CL fluorescence in quartz 

are proportional to the concentration of Ti which correlates with the temperature of 

crystallization in quartz containing rutile (Wark and Spear, 2005; Rusk et al., 2006; Spear 

and Wark, 2009). Visible CL luminescence colours in magmatic quartz are long-lived, deep 

violet to blue, whereas greenschist to amphibolite facies metamorphic quartz is generally 

brown-red (Götze et al., 2001). Phenocrysts from units 2.0 and 5.3 show distinct blue CL 

luminescence in the core of the phenocrysts confirming that the quartz is magmatic 

(Figures 10D & N, 11D, H, & L, and 12D & H). 

     The hot CL images of quartz phenocrysts indicate that most of the quartz grains have 

not been pervasively altered and preserve remnant magmatic domains (Figure 11D & L). 

Some phenocrysts have large isolated fractures that show the red CL coloration 

(characteristic of metamorphism; e.g., Figure 11A – D). These areas of re-equilibrated 

quartz tend to occur as extensive networks of rimming and fractures on/through magmatic 
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quartz domains. There are rare cases of dark stringers or zones cut across bright areas of 

quartz grains (Figure 12D). The compositional boundaries between light CL and dark CL 

areas are sharp. Some phenocrysts are quite damaged and show CL patterns with mottling 

and corroded edges (Figures 10C, M, and 12C); in some cases, there are only small light 

grey spots remaining (Figure 11K). It is clear that the quartz phenocrysts have been 

recrystallized and hydrothermally modified in the areas that have mottling patterns and 

corroded edges (Figure 12C - D; Frelinger et al., 2015). These features, likely formed at 

sub-solidus conditions associated with hydrothermal alteration and would affect the 

composition of proximal SMI (Bodnar and Student, 2006). Smaller quartz phenocrysts may 

be more easily altered/recrystallized. Overall, the CL luminescence (blue, red, and non-

luminescent quartz) in the samples indicate at least two different generations of quartz. 

     Most phenocrysts that host SMI do not show primary zoning (Figure 12G and H) and 

where observed it is weakly visible suggesting that the phenocrysts were in equilibrium 

with their host melt during prolonged crystallization. Primary zoning is related to varying 

abundances of lattice defects or activator ions and may represent trace element variations 

on the parts per million scale (Watt et al., 1997; Götze, 2012). The phenocrysts in this study 

may have crystallized slowly enough to allow trace elements that are cathodoluminescence 

activators to diffuse evenly in the crystal. This is important because it suggests that P-T 

conditions were stable, and residence times were long for the phenocrysts during their 

growth, and supports the idea that the SMI were trapped at depth rather than during 

transit/emplacement/eruption (Matthews et al., 2012). Alternatively, lack of primary 

zoning could be the consequence of metamorphism (Sittner and Götze, 2018). If the 
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phenocrysts were heated back up in a metamorphic environment to amphibolite grade 

conditions, the CL-activating elements that show primary zoning could have redistributed 

evenly throughout the grains destroying the primary zoning. However, hot CL images 

indicate that most quartz phenocrysts still carry the characteristic deep, long-lived blue of 

magmatic quartz (Figures 10 D, N, 11D, L, and 12D, H,) as opposed to the purple to 

reddish-brown colour of metamorphic quartz (Figure 11H). 

     Generally, the phenocrysts containing analyzed SMI do not show an abundance of 

secondary features, like “spider” dissolution-reprecipitation fractures or extensive 

rimming/creeping replacement that would suggest a pervasive incursion of hydrothermal 

fluids (Rusk et al., 2008a; Rusk et al., 2008b; Frelinger et al., 2015). This strengthens the 

argument that the SMI analyzed are unmodified and isolated from the external 

surroundings after entrapment (Schiano, 2003). 

     The majority of unit 5.3 phenocrysts incorporated melt and partially crystallized melt 

to form type III (hourglass) inclusions (Figure 11C and G), and some phenocrysts have 

areas of reddish CL luminescence or are non luminescent suggesting alteration/re-

equilibration to some extent (Figure 11H). Type III (hourglass) inclusions have very dark 

(non-luminescent) SEM-CL characteristics (Figure 11A - C and E - G). However, analyzed 

SMI occur within the fresh parts of the phenocrysts, as shown by the corresponding grey 

scale SEM-CL images and hot CL images (Figures 10C – D, and 11I - L). The majority of 

SMI have thin, dark haloes (in SEM-CL) around their edges which could reflect quartz 

precipitated on the inclusion walls after entrapment (Figure 10C - D; Frezzotti, 2001). 
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2.4.2 Mineralogy of SMI 

     Analyses of the SMI by LA-ICP-MS, when combined with SEM data for homogenized 

and unhomogenized inclusions and petrographic observations, can clarify if the mineral 

phases contained in the SMI are true daughter phases (Figure 8K – L), accidentally trapped 

solids (Figure 8H), or formed via the down-temperature re-equilibration of enclosed 

silicate melt with the host quartz (Halter et al., 2002a; Zajacz and Halter, 2007). In this 

study, SMI commonly contain secondary mineral phases (e.g., ankerite, calcite, siderite, 

magnetite, pyrite/pyrrhotite in type III inclusions; Figure 10Q - S) that are inconsistent with 

expected liquidus phases in a felsic magmatic system, and/or primary phases with 

unusually high or variable mineral volumetric proportions (e.g., K-feldspar, calcic 

plagioclase, muscovite, biotite, zircon, apatite, ilmenite in types I/II/III inclusions; Figure 

10G - J) not in appropriate phase proportions expected for crystallization magma aliquots. 

For example, SMI containing accidentally trapped K-feldspar and/or muscovite result in 

very high K contents in the quantified LA-ICP-MS analyses. For this reason, analyses of 

many SMI were eliminated from the final dataset. Likewise, LA-ICP-MS signals yielding 

unusually high Ca, Mg, and/or Fe were rejected as they were shown to contain accidentally-

trapped plagioclase or oxides, or alteration carbonates (type III).  

     The variability in melt:mineral proportions due to accidentally trapped phases also 

causes difficulties in homogenization experiments. Melt inclusions containing large 

accidentally trapped mineral phases do not homogenize completely to a liquid at the same 

temperature as SMI with little to no accidentally trapped minerals (Student and Bodnar, 

2004) and resulted in many (~90%) of the SEM analyses being rejected. This is generally 
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consistent with the results of other studies that homogenized felsic SMI to study their 

compositions (Student and Bodnar, 2004). 

     Examination of LA-ICP-MS transient signals allow the mineralogy of SMI to be 

clarified, at least partly, after analysis. For example, SMI from the Bousquet rhyolites 

usually contain K-feldspar, muscovite and plagioclase as major crystallized phases (Figure 

13A – B). This can be seen in decoupled signal intensities for 39K and 23Na/ 44Ca peaks in 

the inclusions (Figure 13B). Apatite, zircon, biotite and ilmenite (Table 5) are also 

recognizable in spectra from specific combinations of elements whose isotope intensities 

vary proportionally with one another. For example, apatite can be recognized from 

coincident Ca, P, U, Th, Sr and Mn signals, with or without a coentrapped melt proportion  

(Figure 13C – D). In type III (hourglass-related) inclusions, poly-minerallic assemblages 

containing muscovite with carbonate and allanite are distinguished in the LA-ICP-MS 

signals and differentiate these from type I/II inclusions (Figure 13E – F).  

     Many SMI with accidentally trapped mineral grains show distinct parts of the LA-ICP-

MS signal that are melt-related at the start and/or end of inclusion signal (e.g., elevated 

93Nb and 39K at the start of the signal in Figure 13F). Again, such signals had to be rejected 

from the final data set as it was clear that accidental entrapment of solids had occurred. 

Some type I/II inclusions also contain accidentally trapped metal-rich phases (sulfides?) 

that can be differentiated from sulfides present in type III inclusions based on composition. 

The occasional Cu-As-Ag-Bi-rich phases in type I/II SMI may have been saturated primary 

phases (Figure 13H) whereas other sulfides (e.g., pyrite) that occur in type III inclusions 

are likely post-solidus and formed during alteration/mineralization of the volcanics. 
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     Type I/II SMI are distinguished from matrix/hourglass and mineral inclusions because 

they have characteristically consistent mineralogy after crystallization (see Figure 8K – L 

for an example; Severs et al., 2009). Preliminary identification of viable SMI in quartz 

phenocrysts is done by simply noting the optical properties of the solid phases in the SMI 

and comparing their proportions to each inclusion in the assemblage. For example, many 

SMI of unit 2.0 contain a greenish semi-opaque phase, a translucent phase, a yellowish 

high relief phase, and a small dark phase (Figure 8K – L) that occur in equal proportions 

from inclusion to inclusion. In addition to melt, hourglass, and mineral inclusions, 

Bousquet quartz phenocrysts have SMI co-entrapped with apatite, zircon, allanite, and 

monazite (Figures 8M – S and 11N). 

     The mineral assemblages of SMI, hourglass inclusions, and matrix rock were 

distinguished by systematically comparing their SEM-BSE data (Figures 10, 11, and 12B 

& F). The SMI, hourglass, and matrix assemblages share common minerals like biotite, K-

feldspar, plagioclase, muscovite, ilmenite, and zircon (Figures 10E – J, O – T, and 11J, M 

- O; Table 5). However, the composition of muscovite in SMI is very low in Mg and Fe as 

compared to muscovite in the matrix and hourglass inclusions, meaning they are of 

different origins. There may also be a rim of post-entrapment authigenic quartz 

crystallization on the inclusion walls, which is evidenced by the textural difference seen in 

CL (i.e., halos around SMI; Figure 10C and D; Götze et al., 2001; Danyushevsky et al., 

2002; Pettke et al., 2004). However, the LA-ICP-MS methods used in the present study 

accounted for the crystallization of host mineral on the inclusion walls by ablating and 
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analyzing the entire SMI and host mineral rim, and by using internal standardization for 

the quantification of SMI (Pettke et al., 2004). 

     The most abundant minerals in all types of inclusions are muscovite, plagioclase (An = 

10 – 30%), and K-feldspar (orthoclase) which gives the inclusions bulk compositions that 

resemble a feldspar with elevated counts of Al2O3, SiO2, K2O, Na2O, and CaO (Figure 13; 

Appendix 2). The assemblages are very similar which is not surprising because the matrix 

crystallized from the same melt preserved in SMI (Schiano, 2003). Schiano (2003) noted 

that melt inclusions sample small volumes of the parental liquids at intermediate steps in 

the evolution of the magma. Melt inclusion compositions are simply representations of 

discrete points on the liquid line of descent for the host rock (Fedele et al., 2003). This 

shows that SMI, in general, do not have very different minerals than the matrix (Figure 

10G – J versus Q – T); their mineral assemblages are very similar even with the matrix 

having some modification by metamorphism (Veksler et al., 1998). 

     The SEM-EDS analyses of homogenized SMI revealed that they contain Cl (Table 9). 

This is a distinguishing characteristic of a melt because Cl does not diffuse out of SMI and 

it only degasses out of a melt at shallow pressure, well after H2O and CO2 (Spilliaert et al., 

2006a; Le Voyer et al., 2014; Manzini et al., 2017). Even though allanite contains Cl and 

was a saturated phase at the time of melt entrapment (Figure 8S), the homogenized SMI do 

not show high P and REE so the Cl would not be from an accidentally trapped apatite. 
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2.4.3 Compositional classification of SMI 

     Figure 21 shows the SMI compositional data in conventional chemical discrimination 

diagrams that allow IUGS classification of the melt composition and tectonic 

discrimination (Harris et al., 1986; Le Bas et al., 1986; Pearce et al., 1984; Pearce, 1996; 

Ross and Bédard, 2009). Based on SEM-EDS data from homogenized SMI, the unit 2.0 

and 5.3 magmas are classified as rhyolitic (Figure 21A, circles) consistent with the IUGC 

classification of these rocks noted in previous literature (Mercier-Langevin et al., 2007b, 

c, 2009; Wright-Holfeld et al., 2010; Galley and Lafrance, 2014; Yergeau et al., 2015) and 

the whole rock compositions (Figure 21A, squares). In Figure 21A, SMI show higher Na2O 

+ K2O contents than the bulk rock analyses. Figure 21B - F utilize large ion lithophile 

element (LILE) and high field strength element (HFSE) abundances to provide a tectonic 

discrimination of the SMI compositions. Bulk rock data are also shown in the diagrams, 

for comparison. There are less data points for Figure 21A compared to the other frames 

because there was less data collected for SEM-EDS of homogenized SMI than for LA-ICP-

MS of non-homogenized SMI. 
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Figure 21 (previous page): Rock type and tectonic affinity discrimination diagrams 

showing compositional classifications of SMI and bulk rock analyses. Bulk rock data 

are circled and show considerably less scatter in composition than SMI compositions. (A) 

Total alkalis-silica rock type classification diagram from Le Bas et al. (1986); unit 2.0 SMI 

and bulk rock compositions plot in the rhyolite field; SMI data is from SEM-EDS analyses 

of homogenized SMI. (B) Nb vs. Y diagram from Pearce et al. (1984); the majority of unit 

2.0 SMI plot in the within-plate granitoid (WPG) and ocean ridge granitoid (ORG) fields 

with some scatter into the syn-collisional granitoid (Syn-COLG) and volcanic arc granitoid 

(VAG) fields, whereas unit 5.3 SMI plot more strictly within the Syn-COLG and VAG 

fields. (C) Ta vs. Yb diagram from Pearce et al. (1984); similar to (B), the majority of unit 

2.0 SMI plot in the ORG field with some scatter, whereas unit 5.3 SMI also show 

considerable scatter but plot dominantly in the VAG field. (D) Rb vs. (Y + Nb) diagram 

from Pearce (1996); similar to (B) and (C), the majority of unit 2.0 SMI plot in WPG and 

post-orogenic granitoid (POG) fields, whereas unit 5.3 SMI plot in the VAG field with 

some scatter into the POG field. (E) Rb/30-Hf-Ta x 3 ternary diagram from Harris et al. 

(1986); in this diagram, both units 2.0 and 5.3 SMI plot largely in the VAG field, with unit 

5.3 SMI also in the WPG field. (F) Zr vs Y diagram from Barrett and MacLean (1993); 

unit 2.0 SMI plot mainly in the in the tholeiitic field with a very wide compositional range, 

but also scatter into the calc-alkaline and transitional fields, whereas unit 5.3 SMI are 

concentrated mainly in the in the transitional field. 
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     Two major points are noted in these discrimination diagrams: (i) the spread in SMI 

compositions is much larger than that of the bulk rock data; and (ii) the SMI compositions 

of both units indicate a transition from an anorogenic to an orogenic tectonic setting from 

unit 2.0 (lower Bousquet Formation) to unit 5.3 (upper Bousquet Formation). To the first 

point, there is a tendency for SMI from one unit to record different compositions; whereas 

bulk rock analyses will show limited compositional range (De Vivo and Bodnar, 2003; 

Badanina et al., 2004). Scatter is inevitable with SMI data because melt inclusions are 

trapped in phenocrysts at various points in the evolution of a magma; therefore, variability 

is expected in the composition of the trapped melt even in a single unit if the host 

phenocryst grew over a long period (Badanina et al., 2004). Unit 2.0 bulk rock data cluster 

in single fields in each discrimination plot (Figure 21B – D), but the SMI data are clearly 

concentrated in both the within plate granite (WPG) and ocean ridge granites (ORG) fields 

depending on which trace elements are plotted (Figure 21B – D). Unit 5.3 bulk rock data 

also cluster in a single field [volcanic arc granites (VAG); Figure 21B - D] whereas the 

majority of SMI compositions are in the VAG field (Figure 21B – E) with some scatter 

into the ORG and WPG fields (Figure 21C). Some of the scatter seen in the diagrams must 

reflect small, accidentally trapped mineral grains (Nielsen et al., 1997; Créon et al., 2018). 

However, the main reason for the compositional spread in SMI from each unit is suggested 

to be primary differentiation processes during SMI entrapment. 

     The second major point noted in Figure 21 is the transition from an anorogenic to an 

orogenic tectonic setting. This evolution is consistent with that of a back-arc basin setting 

where volcanism is first caused by crustal extension and mantle diapirism below a 

thickened arc crust and later by subduction processes and differentiation in midcrustal 
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magma chambers (Mercier-Langevin et al., 2007c; Galley and Lafrance, 2014; Yergeau, 

2015). Subduction-related magmas contaminated by continental crust are characteristic of 

the upper Bousquet Formation based on bulk rock geochemical studies at the LaRonde 

Penna Mine according to Mercier-Langevin et al. (2007c). This implies a mature arc 

setting. In particular, unit 5.3 is the most evolved (i.e., most felsic) and most strictly VAG-

related (calc-alkaline) unit of the camp. It forms part of the 20 North lens hanging wall (the 

largest ore lens in the DBL camp) and part of the 20 South lens footwall at the LaRonde 

Penna mine, and also hosts part of (and overlies) the Bousquet 2 deposit (Mercier-Langevin 

et al., 2007b). Furthermore, unit 5.3 is also part of the hanging wall that contains the small 

VMS ore lenses at the Westwood Mine (Mercier-Langevin et al., 2009; Yergeau et al., 

2015). 

     The setting of magma generation transitioned from a tholeiitic spreading ridge 

environment to a collisional subduction environment over time (Galley and Lafrance, 2007, 

2014; McNicoll et al., 2014; Mercier-Langevin et al., 2007c, 2009, 2017). The bulk rock 

analyses for unit 2.0 cluster in the transitional, ORG, and WPG fields, but the SMI data are 

much more spread out in the tholeiitic, transitional, calc-alkaline, ORG, WPG, and VAG 

fields (Figure 21B - F). Together, the unit 2.0 and 5.3 SMI data show evidence for ORG 

and VAG origins, respectively. Whereas the transition from dominantly anorogenic to 

orogenic affinity (i.e., lower member to upper member transition of the Bousquet 

Formation; Mercier-Langevin et al., 2007c) is supported by these data, SMI compositions, 

in particular unit 2.0, spread between the compositional fields (Figure 21B – D, and F), 

consistent with sampling of liquids in phenocrysts at different times, transitioning from 

extensional to convergent tectonics (Davidson et al., 2005). This variation in the source 
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environment for magmas, as well as evidence of the variability due to processes such as 

assimilation and mixing as the magmas ascend through the lithosphere (Davidson et al., 

2005), are not typically evident (or not as evident) in the spread of whole rock data from a 

single lithology. In some diagrams (Figure 21B-D, F), the SMI data are consistent with 

bulk rock analyses, differentiating the anorogenic nature of unit 2.0 from the orogenic 

nature of unit 5.3, but the extent of SMI compositional scatter is not reflected in the bulk 

rock data. The SMI provide a less ambiguous discrimination than the bulk rock data. 

     Unit 2.0 is relatively deep in the footwall and its tholeiitic nature, plus its (La/Yb)CN and 

Zr/Y ratios, makes it more akin to the Hébécourt Formation that underlies the Bousquet 

Formation which suggest a common source (Mercier-Langevin et al., 2007c). This unit 

may mark the start of the transition from the tholeiitic volcanism to the calc-alkalic 

magmatism in the upper member of the Bousquet Formation to which much of the ore is 

associated (Mercier-Langevin et al., 2007c). The spread in SMI data from ORG/WPG to 

VAG fields supports this transitional nature of unit 2.0 SMI (Figure 21B - F). It is unclear, 

however, if this mix of geochemical affinities is due to contamination by hydrous magmas 

and/or assimilation of Nb- and Ta-depleted rocks, or from subduction-related processes 

(Mercier-Langevin et al., 2007c). 

     Further discrimination of the SMI compositions and their host rocks involved the use 

of an SMI Ba-Rb-Sr granite discrimination diagram of El-Bouseily and El-Sokkary (1975; 

Figure 22). Barium is the most abundant of the three elements, relatively (Figure 22). Unit 

5.3 SMI compositions fall into the “normal” granite field (Figure 22). The associated bulk 

compositions fall in the “normal” granite and anomalous granite fields (Figure 22). Unit 

2.0 SMI compositions show a much wider range in classification with more than half of 
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the analyses in the “normal” granite field and the rest in the anomalous granite, granodiorite 

and quartz diorite, and diorite fields (Figure 22). Half of unit 2.0 bulk rock analyses fall in 

the anomalous granite field, while the rest are in the “normal” granite, and the granodiorite 

and quartz diorite fields (Figure 22). Thus, in general bulk rock classifications in this 

diagram coincide to SMI compositions. Those anomalously high Sr analyses leading to the 

spread to dioritic classifications reflects the removal of plagioclase during magma 

evolution (El-Bouseily and El-Sokkary, 1975). Furthermore, the diagram shows that the 

melts (and rhyolitic rocks) are not highly evolved as they do not plot near the Rb apex of 

the ternary (i.e., not strongly differentiated). 
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Figure 22: Rubidium-strontium-barium ternary granitoid classification diagram 

showing units 2.0 and 5.3 SMI and bulk rock compositions. (A) All unit 5.3 SMI 

analyses are in the normal granite field (n = 9), and the bulk rock analyses are split between 

the normal granite field (n = 1) and the anomalous granite field (n = 1). More than half of 

unit 2.0 SMI are in the normal granite field (n = 27), while the rest are in the anomalous 

granite field (n = 8), the granodiorite and quartz diorite field (n = 5), and the diorite field 

(n = 5). Half of unit 2.0 bulk rock analyses are in the anomalous granite field (n = 3), while 

the rest are in the normal granite field (n = 2) and the granodiorite and quartz diorite field 

(n = 1; modified from El-Bouseily and El-Sokkary, 1975). 
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     The felsic rocks of units 2.0 and 5.3 are Ba-rich and Sr-depleted (Figure 22; El-Bouseily 

and El-Sokkary, 1975). This is consistent with patterns seen in rocks affected by the 

fractionation of plagioclase because Sr is incorporated into plagioclase (Martin, 1999; 

Richards and Kerrich, 2007; Moyen, 2009). There has been relatively much less 

crystallization of K-feldspar compared to plagioclase (An = 10 – 30%) since Ba is still high 

and Rb relatively low in the melt (Guo and Green, 1989). When the melt was being trapped 

in quartz, clearly feldspar fractionation influenced element concentrations locally. 

     Figure 23A - B show differentiation of post-2.5 Ga TTG and normal volcanic arc rocks 

(formed by partial melting of the asthenospheric wedge above the subducting slab) from 

Archean TTG suites and younger adakitic rocks (generated in arc environments by partial 

melting of the subducting oceanic basaltic crust; Martin, 1999; Richards and Kerrich, 

2007). Silicate melt inclusions from units 2.0 and 5.3 are distinct in terms of their relative 

Sr-Y-La-Yb compositions (Figure 23; Martin, 1999; Richards and Kerrich, 2007; Moyen, 

2009). Unit 5.3 SMI have higher Sr/Y and La/Yb ratios than unit 2.0 SMI and show some 

trending toward the adakitic field, though they still fall entirely within the “normal arc” 

field (Figure 23A, B). The much higher Y, and lower Sr/Y of unit 2.0 SMI suggests that 

those melts experienced much more plagioclase fractionation than the unit 5.3 magma 

(Figure 23A; Defant and Drummond, 1990; Defant and Drummond, 1993; Castillo et al., 

1999; Richards and Kerrich, 2007). The much higher Yb and lower (La/Yb)CN ratio of unit 

2.0 SMI reflects a lack of garnet in the source region for the parental magma of unit 2.0. In 

convergent margins, the mantle has an eclogitic garnet-bearing composition due to the 

subduction of Al-rich sediments that undergo dehydration and partial melting, and release 

Al-rich fluids at high pressure promoting metamorphic reactions that produce garnet 
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(Dasgupta et al., 2005; Hermann et al., 2006; Kerrick and Connolly, 1998; Molina and Poli, 

2000; Poli et al., 2009; Malaspina et al., 2010; Dragovic et al., 2015).  
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Figure 23 (previous page): Bousquet formation SMI and bulk rock source magma 

type discrimination diagrams based on Sr-Y-La-Yb systematics.  (A) Sr/Y vs Y 

discrimination diagram (modified from Richards and Kerrich, 2007) of unit 2.0 and 5.3 

SMI and bulk host rocks to SMI-bearing quartz phenocrysts. Roughly 90% of all analyses 

are in the “normal arc” field. The SMI from the Bousquet formation fall in the field of 

normal arc compositions, with unit 5.3 melt showing some scatter towards the adakite field 

whereas unit 2.0 melts scatter to much higher Y and lower Sr/Y ratios consistent with 

anorogenic settings (ocean ridge granitoids, tholeiites). Bulk rock analyses show a much 

narrower compositional range but generally fall within the same areas of the diagram. (B) 

Chondrite-normalised (La/Yb)CN vs. YbCN diagram (modified from Martin, 1999) showing 

unit 2.0 and 5.3 SMI. Chondritic values from Palme and Jones (2004). Continuous curves 

represent partial melting of an Archaean tholeiitic source, leaving residues of the following 

types: garnet free amphibolite, 10% garnet-bearing amphibolite and eclogite. These curves 

of equilibrium partial melting (PM) were calculated using the equations of Shaw (1970; 

modified from de Souza et al., 2001). Normal (non-adakitic) volcanic arc and trondjemite-

tonalite-granite (TTG) compositional fields are from Hansen et al. (2002), and the mid-

ocean ridge basalt (MORB) field is from Van Staal et al. (2009). Melt inclusions in the 

Bousquet volcanics fall well outside of the compositional field for Archean TTG, and 

within the field for “normal arc” and extend to much higher YbCN. (C) Sr/Y vs. La/Yb 

diagram showing discriminatory fields for various melt compositions formed through 

various source melting scenarios and through mantle/crust interactions (modified after 

Moyen, 2009). Various melting curves and resulting compositional fields for produced 

melts are shown: (i) Mafic mantle source, low P (10 kbar) and a garnet-plagioclase-

amphibolite residuum; this generates melts below the mantle source array;(ii) Mafic mantle 

source, high P (20 kbar) melting of a similar source, generating high silicate adakite-like 

melts; (iii) Metasomatized mantle source (garnet-lherzolite, with 5 or 10% garnet), 

generating low silica adakites; (iv) Continental crust source (CC-solid curved line with 

arrow and UCC-dashed curved line with arrow), with a plagioclase-rich residuum. Melt 

inclusions from units 2.0 and 5.3 are distinct from one another in this diagram, both falling 

well outside of the field for TTG and most consistent with melts generated by volcanic arc 

magmas and normal S and I type granites. Compositional fields shown are: AA = Archean 

adakites, Arc = volcanic arc magmas, CC = continental crust, Ch = chondrite, DMM = 

depleted mantle, HSA = high silica adakites, LSA = low silica adakites, MMA = 

metasomatized mantle, MORB = mid ocean ridge basalt, OIB = ocean island basalt, 

PRIMA = primitive mantle, S and I = normal S and I type granites, TTG = trondjemite-

tonalite-granite, UCC = upper continental crust. Mineral and rock type abbreviations: 

Amp=amphibole; Pg=plagioclase; Grt=garnet; Cpx=clinopyroxene; Lz=lherzholite; 

Phl=phlogopite. 
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     The lower Y and larger spread in Sr/Y in unit 5.3 SMI compositions (at the border of 

the adakitic field), suggests that this melt composition was either more influenced by 

fractionation of other minerals (amphibole, pyroxene, titanite, zircon, garnet) or 

experienced much less plagioclase fractionation (Moyen, 2009). Generally, this also 

suggests that the unit 2.0 magma had lower initial water content than unit 5.3 magma 

(Nekvasil, 1992; Danyushevsky, 2001). As in other discrimination diagrams already 

discussed, the SMI from both units show a much larger spread in Sr/Y and La/Yb ratios, 

and Y, Yb abundances than their respective bulk rocks indicating that the SMI record a 

more extensive magma differentiation history (i.e., prior to eruption/emplacement). 

Importantly, both the SMI and bulk rocks do not have compositions consistent with 

Archean TTG magmas when plotted on these diagrams (Moyen, 2009). The presence of 

muscovite in SMI (Figure 10H & J) also supports the non-TTG classification of the 

magmas. Unit 5.3 SMI classify in the “normal arc” or post-2.5 Ga TTG field, and the 

majority of unit 2.0 SMI have compositions consistent with rhyolites in anorogenic settings 

(rifting and/or hot-spot related; Figure 21C and F; Green and Falloon, 2015). 

     Figure 23C compares both the Sr/Y and La/Yb ratios which clearly shows the melts fall 

in the fields of composition of magmas produced by extensive melting of crust 

(contaminated), and have experienced extensive plagioclase fractionation, and are not 

recognizable as having adakitic or TTG compositional affinity any longer. This is 

important because the related (coeval) intrusive system that is the same age (MIC) is 

considered a TTG complex based on its whole rock geochemistry and petrographic features 

(Galley and Lafrance, 2014). 
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2.4.4 Magmatic evolution of the Bousquet Formation rhyolites 

     In contrast to bulk rock analysis, trace element concentrations in SMI can give reliable 

information about the melt composition at the time of entrapment and reveal information 

about its evolution through primary magmatic processes (e.g., differentiation, mixing, 

saturation of magmatic volatiles; Webster et al., 1995; Chabiron et al., 2001, 2003; Halter 

et al., 2002a; Heinrich et al., 2003; Gray et al., 2011). Additionally, in volcanic rocks, 

whereas whole rock compositions may provide information only on the bulk liquid 

composition at the time of eruption/emplacement, the pre- to syn-eruptive history of 

fractionation can be preserved in SMI within phenocryst phases in a single rock unit 

(Roedder, 1992; Frezzotti, 2001). 

     Normative abundance diagrams show LA-ICP-MS data for units 2.0 (Figures 24A and 

25A) and 5.3 (Figures 24B and 25B) SMI compared to their respective bulk rock values, 

and SMI from two barren arc granites (i.e., Rito del Medio and Cañada Pinabete plutons; 

Audétat and Pettke, 2003). Data are normalized to upper continental crust (Figure 24; 

McDonough and Sun, 1995) and primitive mantle (Figure 25; McDonough and Sun, 1995). 

The normative abundance diagrams illustrate three important points. First, they show that 

when bulk rock analyses and SMI compositions are compared, while the overall bulk rock 

abundance patterns mimic the SMI compositions (similar overall slope, and relative 

enrichments and depletions), there are notable differences: (i) Eu and Sr anomalies are 

more pronounced in the SMI than in the bulk rock analyses (Figures 24 and 25); and (ii) 

there is a larger range (by about 1 order of magnitude) in overall concentrations shown by 

the trace element data for the SMI compared to the bulk rock. For example, the SMI of unit 
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2.0 have Na2O and Cs values with ranges of two orders of magnitude while their bulk rock 

values have a range of one order of magnitude or less (Figures 16 and 17). Overall, there 

are large ranges in Na2O, K2O, Cs, Zr, Hf, Y, Yb, and various ore and accessory metals in 

the SMI (Figures 16 and 17). Large ranges in melt composition are attributed to the 

fractionation of a relatively simple assemblage of plagioclase, K-feldspar, quartz, and 

apatite. The bulk rocks may not preserve evidence of such extensive fractionation as 

recorded in SMI (Zajacz and Halter, 2007) because they represent melt compositions only 

at the time of eruption and after modification. However, the bulk rocks and SMI 

compositions have similar relative enrichments and depletions: (i) unit 2.0 for Sr, Eu, U, 

and Th (likely partitioned into apatite; Figure 24A) and LILE (Rb and Ba likely partitioned 

into K-feldspar; Figure 25A), and unit 5.3 for Cs, Sr, and Y (Figure 24B); and Zr, Hf, U, 

and Th (Figure 25B). 
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Figure 24 (previous page): Normative abundance diagrams (relative to upper 

continental crust) of SMI and bulk rock analyses for units 2.0 and 5.3. Normative 

abundance diagram summarizing LA-ICP-MS analyses of quartz-hosted SMI and host bulk 

rock data, as well as SMI data from two barren arc granites (Rito del Medio and Cañada 

Pinabete plutons, New Mexico, USA; Audétat and Pettke, 2003). Normalization values for 

upper continental crust from McDonough and Sun (1995). (A) Data from unit 2.0. The 

majority of SMI analyses are higher in concentration in most trace elements compared to 

the bulk rock values, except for Cs, Sr, Nb, Ta, U and Eu. The SMI values for B, Cs, Nb, 

U and Th are notably lower than the barren granites. Note the large ranges (up to two orders 

of magnitude) for the LILE, HFSE and REE in the SMI but general similarity in the 

abundance patterns between bulk rock and SMU values. Dashed lines (bright red) represent 

SMI from one phenocryst. (B) Data from unit 5.3. The majority of SMI values are higher 

in concentration in most trace elements compared to the bulk rock values, except for Sr 

and Nb. The SMI values for B, Cs, Nb, U and Th are lower than the barren granites. Note 

the large ranges (up to two orders of magnitude) for Sr, La, Y, and Yb. Dashed lines 

(orange) represent SMI from one phenocryst. 
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Figure 25 (previous page): Normative abundance diagrams (relative to primitive 

mantle) of SMI and bulk rock analyses for units 2.0 and 5.3. Normative abundance 

diagram summarizing LA-ICP-MS analyses of quartz-hosted SMI and host bulk rock data, 

as well as SMI from two barren arc granites (Rito del Medio and Cañada Pinabete plutons, 

New Mexico, USA; Audétat and Pettke, 2003). Normalization values for primitive mantle 

from McDonough and Sun (1995). (A) Data from unit 2.0. The majority of SMI analyses 

are higher in concentration in most trace elements compared to the bulk rock values, except 

for Cs. The SMI analyses for B, Cs, Nb, U and Th are lower, whereas the analyses for Zr, 

Ce, and Y are higher, than the barren granites. Note the large ranges (up to two orders of 

magnitude) for B, Cs, and REE. (B) Data from unit 5.3. The majority of SMI analyses are 

higher in concentration in trace elements compared to the bulk rock values. The SMI 

analyses for B, Cs, Nb, U and Th are lower, whereas Zr, Ce, and Y are higher, than the 

barren granites. Note the large ranges (up to two orders of magnitude) for Sr, La, Y, and 

Yb. 
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     A second important observation is that the normative abundance diagrams show 

different trace element chemistry for unit 2.0 and unit 5.3 SMI: (i) Unit 2.0 SMI data show 

depletions in Rb and Ba (unit 5.3 SMI data do not) attributed to more K-feldspar and 

plagioclase (An10-30%) crystallization, respectively, from the unit 2.0 magma (Figures 24 

and 25); (ii) the Eu anomaly is much more pronounced in unit 2.0 SMI than in unit 5.3 

SMI; (iii) U and Th show depletions in unit 2.0 SMI (Figure 24A) relative to unit 5.3 SMI 

(Figure 24B), possibly linked to more apatite fractionation from the unit 2.0 magma prior 

to entrapment; (iv) Nb-Ta-Zr-Hf are distinctly depleted in unit 5.3 SMI (Figure 25B). 

Overall, the two units have very different geochemical signatures, suggesting different 

parental magmas for, or conditions of, melting. All of these features in the SMI are absent 

in the bulk rock data. 

     A third important observation involves the comparison of the Bousquet SMI 

compositions to SMI in other unmineralized felsic igneous systems (younger “barren” arc 

granitoids, the only data from a barren environment reported in the literature; Audétat and 

Pettke, 2003; Figures 24 and 25). This comparison shows that strongly incompatible 

elements such as B, Cs, Nb, Th, and U can reach much higher concentrations (up to an 

order of magnitude or more) in other unmineralized felsic igneous systems. This suggests 

that the Bousquet melts are much less evolved and fractionated (Thomas et al., 2003). 

Importantly, even though barren granitic melts reported by Audétat and Pettke (2003) are 

quite evolved, they did not saturate in incompatible element-rich mineral phases 

(tourmaline, Cs micas, columbite, uraninite; London, 1986; Ertl et al., 1997; Adam and 

Green, 2006), except locally in the most evolved pegmatitic segregations (e.g., Cañada 
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Pinabete pluton, Cs values up to 5400 ppm), but they did saturate common rock-forming 

minerals (K-feldspar, quartz, plagioclase, biotite, and muscovite). Thus, whereas th e 

mineralogy (and therefore, major element composition) can be very similar between two 

different felsic igneous systems, the SMI data illustrate that the relative extent of 

fractionation can be quite different. 

     Audetat and Pettke (2003) evaluated the relationship between the Cs content of a melt 

phase and the degree of fractionation in a felsic magma. As Cs is very incompatible in all 

common-rock forming minerals, and does not partition preferentially into exsolving 

volatiles, measuring its concentration in SMI can be used as a semi-quantitative proxy for 

fractionation (Audétat and Pettke, 2003; see their Figure 7). Using this model and assuming 

a similar felsic starting composition, the Bousquet rhyolitic SMI have Cs ranges of 0.1 – 

15.8 ppm (average = 3.2 ppm; unit 2.0) and 1.3 – 16.2 ppm (average = 3.5 ppm; unit 5.3), 

indicating that they had a similar maximum extent of differentiation at the time of SMI 

entrapment, after 0 - 96% (average = 70%; unit 2.0) and 0 - 97% (average = 75%; unit 5.3) 

crystallization of parental magmas. In comparison, the barren granite at Cañada Pinabete 

(Audetat and Pettke, 2003) contains SMI in quartz phenocrysts with Cs concentration range 

from 1.5 to 5500 ppm (average = 1068 ppm), resulting from 50 – 99% (average = 99%) 

crystallization (Audétat and Pettke, 2003). 

     Despite not reaching such extreme levels of differentiation as younger, barren arc 

granitoids, the SMI in units 2.0 and 5.3 do record an extensive history of fractionation prior 

to eruption, as their host quartz phenocrysts were growing at depth. A long history of 

fractionation recorded in the SMI is typical of host phenocrysts in felsic-intermediate 
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composition magmas that grow over a long residence time in staging chambers (e.g., 

Roedder, 1992; Frezzotti, 2001; Danyushevsky et al., 2002). This record of fractionation 

is clearly shown in the normative abundance patterns of SMI from both Bousquet units 

(Figures 24 and 25). As indicated earlier, the SMI show a large range in trace element 

concentrations but having similar overall patterns. The range in fractionation can even be 

seen in single phenocrysts of unit 2.0 that have SMI with up to two orders of magnitude of 

variation in REE (Figure 24A: Appendix 2A). A few patterns that deviate significantly 

away from the normal fractionation trends are likely due to the inclusion of minor 

accidentally trapped mineral phases that were not resolved/rejected during data reduction. 

Variations in element concentration, when the entire data set is considered, are likely the 

result of (i) accidentally trapped liquidus mineral phases, and (ii) compositional diversity 

in the melt induced by normal fractionation processes and melt evolution (Richter, 1986; 

Student and Bodnar, 2004; Zajacz and Halter, 2007; Gray et al., 2011). 

     Most SMI have incompatible element patterns that are higher in abundance than the 

bulk rock because the Bousquet rhyolites contain significant K-feldspar, plagioclase, and 

quartz. Fractionation of these minerals that are poor in incompatibles dilute the melt, 

resulting in flows/sills that are liquid + crystals. The melts that are trapped in quartz became 

rich in incompatibles but are depleted in Eu + Sr (plagioclase), Rb + Ba (K-feldspar), U + 

Th (apatite), and Zr + Hf (zircon) compared to the bulk rocks. Mixtures of crystals and 

liquid contain less incompatible elements than the trapped liquid-only aliquot in SMI. Thus 

the bulk rocks are not representative of bulk liquid compositions and must represent 

samples from units that contain significant accumulations of feldspar and quartz crystals 

(Gray et al., 2011). It should also be noted that some of the elements, like the LILE, may 
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be lower in the bulk rock due to alteration which may modify the LILE whereas SMI 

preserve the original range in LILE values. 

     Based on the arguments above, if the potential for a magma to supply ore metals is 

related in part to its degree of differentiation, which causes incompatible ore metal 

concentrations to increase, the Bousquet volcanics are clearly not anomalous in this respect 

based on primary SMI data, questioning whether they are, in fact, the causative volcanic 

units contributing ore metals to mineral deposits in the region. 

     It should be noted that the wide range in trace element enrichments and depletions in 

the Bousquet SMI (relative to the bulk rock analyses) are not due to boundary layer effects 

(i.e., variable diffusivities of trace elements relative to inclusion entrapment duration; 

Harrison and Watson, 1984; Bacon, 1989; Lu et al., 1995). Using the approach of Baker 

(2008), ratios of trace elements with contrasting diffusivities (e.g., Cs/Zr) do not vary as a 

function of melt inclusion size (Table 11).
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Table 11: Boundary layer effect as function of Cs/Zr ratio and size of SMI 



180 

 

     The SMI of the Bousquet rhyolites recorded fractionation as shown by the large range 

of at least an order of magnitude in the box-whisker plots, and the scatter plots that show 

trends indicating fractionation (Figures 16, 17, and 26). There are five key mineralogical 

trends of fractionation in this study: 

(i) Plagioclase fractionation is evident in the trends of decreasing Sr (Figure 26A) and 

Na2O (Figure 26B) and increasing K2O (Figure 26C). Strontium and CaO have a positive 

correlation, but mineral fractionation is from right to left on the graph (Figure 26D) because 

Sr and Ca strongly partition into plagioclase (Bacon and Druitt, 1988). Although not 

plotted, the SMI analyses have negative correlations of Al2O3, Na2O and CaO with K2O, 

FeO, and MgO, reflecting the crystallization of large amounts of plagioclase during melt 

entrapment. Petrographic observations also support the saturation of plagioclase while melt 

was being trapped (Figure 10G – I). 
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Figure 26 (previous page): Correlation graphs of units 2.0 and 5.3 SMI and bulk rock 

data. Chemistry of the SMI measured by LA-ICP-MS analysis. Unit 5.3 SMI showed 

distinct trends for the drill hole sample versus the surface sample. Unit 2.0 SMI showed 

uniform trends when all samples (n = 8) were grouped together. Bulk rock data include 

unit 5.3 drill hole (n = 1), unit 5.3 surface (n = 1), and unit 2.0 (n = 6). (A) Sr (ppm) vs 

MgO (wt%): Analyses of unit 5.3 drill hole SMI (n = 32) show a strong negative 

correlation, with its bulk rock not following along trend. Analyses of unit 2.0 SMI (n = 81) 

show a weak inverse correlation, with its bulk rock roughly following along trend. 

Correlations illustrate plagioclase, followed by plagioclase + K-spar + quartz fractionation. 

(B) Na2O (wt%) vs K2O (wt%): Analyses of unit 5.3 drill hole SMI (n = 33) and surface (n 

= 16) show negative correlations, with the drill hole bulk rock following along trend but 

the surface bulk rock does not follow the trend. Higher K2O values for the surface sample 

analyses illustrate the accidental trapping of K-feldspar (circled). Analyse of unit 2.0 SMI 

(n = 99) show a negative correlation, with its bulk rock following along trend. At the pivot 

point, plagioclase fractionation changes to plagioclase + K-spar + quartz fractionation. 

Note that SMI with very high Na2O contents (>8%) may contain accidentally trapped 

albitic plagioclase. (C) K2O (wt%) vs MgO (wt%): Analyses of unit 5.3 drill hole SMI (n 

= 33) show a flat trend which is due to the fractionation of K-feldspar. Analyses of unit 2.0 

SMI (n = 94) show a positive correlation, with its bulk rock following along trend. A group 

of surface sample analyses illustrate melt with accidentally trapped K-feldspar (circled). 

(D) Sr (ppm) vs CaO (wt%): Analyses of unit 5.3 drill hole and surface SMI show strong 

positive correlations, with both their bulk rocks following along trend. Analyses of unit 2.0 

SMI (n = 88) show a weak positive correlation, with its bulk rock following along trend. 

Fractionation goes from right to left (arrow). (E) Cs (ppm) vs MgO (wt%): Analyses of 

unit 5.3 drill hole SMI (n = 33) show a slight positive correlation. Analyses of unit 2.0 SMI 

(n = 90) show a positive correlation, with its bulk rock following along trend. There are 

accidentally trapped K-feldspar in the surface samples which lowers the MgO and raises 

the Cs concentrations. (F) Zr (ppm) vs Cs(ppm): Analyses of unit 2.0 SMI (n = 90) show 

higher Zr values than unit 5.3 SMI (n = 49). There is no correlation for either group. (G) 

La (ppm) vs Ce (ppm): SMI of both units show strong positive correlations. (H) Cs (ppm) 

vs Rb (ppm): SMI of both units show positive correlations.  
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(ii) Potassium feldspar growth and accidental entrapment: In the graphs of Figure 26, 

the trends reflect mineral fractionation while the separate groups of SMI (from the same 

unit) reflect variations in accidentally trapped mineral phases. There is a point during 

fractionation in which K2O and other elements (Cs, Sr) level out and no longer increase or 

decrease (Figure 26A, C, and E), corresponding to the point at which K-feldspar joins the 

crystallizing assemblage. Petrographic observations show that K-feldspar removal was 

ongoing while SMI were being trapped in quartz (Figures 10H & J, and 11N & O). Unit 

5.3 surface sample analyses have higher K2O but lower MgO concentrations than drill hole 

sample analyses (Figure 26C) due to contamination of accidentally trapped K-feldspar, 

raising the relative concentration of K2O and lowering the relative concentration of MgO 

in the melt (Goodrich et al., 2013). Regardless of contamination, the surface sample 

analyses still follow the same fractionation trends as the drill hole analyses (Figure 26A - 

C). The unit 5.3 surface sample SMI also show a decrease in Sr and CaO as fractionation 

progressed but it has been shifted relative to the drill hole sample SMI (Figure 26D). This 

is consistent with the dilution of the trapped melt with a Ca-poor mineral like K-feldspar 

(Goodrich et al., 2013). It is important to note that the bulk composition mimics the SMI 

composition of unit 5.3, so K-feldspar is impacting both the SMI and the bulk rock (Figure 

26D). There is a curvilinear trend in the Cs versus MgO plot with higher levels of Cs 

indicating a more evolved/fractionated melt (Figure 26E; Bea et al., 1994). The surface 

sample and many unit 2.0 SMI analyses sit higher on the Cs axis due to accidentally trapped 

micas, like biotite (Figure 26E; Bea et al., 1994; Adam and Green, 2006). 

(iii)  There are pivots in the patterns in Figure 26 indicating changes in mineralogy. 

Strontium is partitioning into plagioclase until it hits a pivot point and starts to crystallize 
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plagioclase + K-feldspar + quartz (Figure 26A). Halfway through the fractionation trend 

in Figure 26B, the same assemblage (plag + K-spar +qtz) begins to crystallize as 

plagioclase removal decreases while quartz and K-feldspar removal increases. 

(iv)  The history of mineral growth and lack of crystallized mafic phases is shown in 

the tight minor and trace element correlations of both units. For example, Sr in both units 

shows inverse correlations with majors (e.g., MgO; Figure 26A), which is consistent with 

Sr being pulled out by plagioclase (Bacon and Druitt, 1988; Bea et al., 1994). Plagioclase 

crystallization and removal ceases when Sr stops decreasing and levels off; while elements, 

like MgO, begin to increase (Figure 26A). The continuous increase of MgO indicates that 

not many mafic minerals crystallized while plagioclase was being removed. Over the 

entrapment history of the melts, it does not appear that many mafic minerals were 

crystallizing because the more evolved SMI (i.e., deepest Eu anomalies, and richest in Rb 

and Cs) have high concentrations of K2O, FeO, and MgO (Appendix 2A and B). FeO and 

MgO are not decreasing as the melt evolves because so much plagioclase is growing that 

even if FeO and MgO are coming out of the melt, they are not being removed at a rate 

faster than the plagioclase is growing. 

(v) Accessory phases crystallized, impacting the rare earth and incompatible trace 

elements of the SMI. There is no correlation between Zr and Cs (Figure 26F) which means 

they are not strictly behaving incompatibly even though they are typically two very 

incompatible elements (Mittlefehldt, 1999; Burnham, 2018). The upper limit in Cs is 

similar for both units (i.e., 16 ppm) which means that they both reached the same point of 

fractionation (Figure 26F). Zircon and rutile strongly partition Zr and must have been 

saturated during the entire evolution of the melt because the Zr values stay constant and 
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never drop (Figure 26F; Foley et al., 2000). The Zr contents of the two units are very 

different which is consistent with the VAG versus ORG argument (Figure 26F; Hemayat, 

2016). The ORG (i.e., unit 2.0) melts are higher in Zr than the VAG (i.e., unit 5.3) melts 

(Figure 26F). Unit 5.3 has low Zr and Hf contents with a low average Zr/Hf ratio (25.7 ± 

5.4) compared to unit 2.0 (29 ± 5.2), it does not have a strong negative Eu anomaly (Figure 

24B), and it has a high LREE/HREE ratio (3.3 ± 2.7) compared to unit 2.0 (0.9 ± 0.8). All 

these features indicate a more evolved and mineralized magma that occurs particularly in 

mature arcs (Hemayat, 2016). 

     There are near perfect fractionation trends in the SMI data as shown by incompatible 

elements, like La and Ce (Figure 26G). Rare earth elements are very good monitors of 

fractionation and are, therefore, very good at showing the extent of fractionation across the 

data set. Elements like Cs and Rb do not have a perfect trend (Figure 26H), likely due to 

fluid exsolution. Fluid exsolution does not impact the REE, owing to their much lower 

solubility in magmatic fluids. The normal fractionation of incompatible trace elements in 

melt, however, can be influenced by the crystallization of accessory minerals 

(Schwindinger et al., 2020). For example, U and Th preferentially partition into allanite 

and zircon, while La and Ce partition into apatite and zircon (Figure 26G; Gray et al., 

2011). Accessory mineral inclusions in Bousquet quartz phenocrysts indicate that zircon, 

apatite and allanite were saturated phases at the time of melt entrapment (Figure 8M – S). 

This can be seen in the SMI chemistry from variations in the enrichment and depletion of 

REE and U (Figure 24). For example, unit 2.0 SMI have depleted U values which could be 

partially due to the presence of zircon grains (Figure 24A; Bea et al., 1994). In addition to 
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zircon, variations in REE content can be due in part by the presence of apatite which is a 

main carrier of REE, reducing their concentration in coexisting melt (Frondel and Marvin, 

1959; Banfield and Eggleton, 1989; Morteani and Preinfalk, 1996; Taunton et al., 1998; 

Pan and Stauffer, 2000). Both units contain allanite (Figure 8S) and unit 5.3 contains 

monazite (Figure 11N); these accessory minerals are the main hosts and repository for 

LREE, thus increasing the concentration of HREE in the magma (Gromet and Silver, 1983; 

Bea, 1996; Gieré and Sorensen, 2004). This phenomenon only had a noticeable effect on 

the REE patterns of unit 2.0, which dip toward the LREE relative to the HREE when 

normalized to upper continental crust (Figure 24A). 

     Interestingly, in both units, the SMI with the highest REE values (i.e., most fractionated) 

have amongst the highest U values (Figure 24). This suggests that U is tracking with the 

normal progression of fractionation. If zircons were forming consistently throughout the 

evolution of the magma, the most fractionated melts would display the biggest U 

anomalies. This is not the case for units 2.0 and 5.3; therefore, another mineral may be 

partitioning U, unless the zircons were transiently soluble during the evolution of the 

magma. Zircon fractionation did not increase throughout the evolution of the magma as 

can be seen by the lack of correlation with Zr and Cs (Figure 26F). Cesium changes due to 

fractionation and Zr should change as well, but there is no correlation. This must mean that 

zircon is crystallizing continuously as the melt fractionates. 

     Inclusions of apatite are trapped coevally with melt (Figure 8M – R) and give a snapshot 

of the chemistry of apatite in equilibrium with those melts at the time of entrapment. 

Sometimes the apatite grains are trapped inside the SMI (Figures 8M and 13I). The apatites 
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are recording chemistries that are very different from one another. The apatites, by proxy, 

are recording differences in melt chemistry just like the SMI which allows for classification 

of magma type (Figure 27; Belousova et al., 2002). The apatites are showing evidence of 

Eu removal which means there was fractionation of plagioclase in the magma (Figure 

27D). This is a reassertion that plagioclase removal affects the chemistries of the apatites. 

In the Sr/Y vs Y diagram, it shows that there is much more plagioclase removal in the unit 

2.0 magma which is backed up by the larger Eu anomaly as compared to unit 5.3 (Figures 

23 and 27D).  
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Figure 27: Discrimination diagrams and normative abundance patterns for SMI-

coeval, quartz phenocryst-hosted apatite. Compositional fields for apatite from different 

igneous rock types (grey fields) are from Belousova et al. (2002).  New fields delineated 

for Archean VAG and ORG are from this study. (A) Sr vs Y; unit 5.3 apatites plot in the 

mafic rocks field whereas most unit 2.0 apatites fall in the granitoid and granite pegmatite 

fields (B) Y vs Eu/Eu*; unit 5.3 apatites plot in the mafic rocks field whereas  unit 2.0 

apatites plot in the granitoid and granite pegmatite fields, consistent with (A). (C) 

(Ce/Yb)chondrite-normalized vs REE (total); both units 5.3 and 2.0 apatites follow the granitoid 

and granite pegmatite fields; (D) Chondrite-normalized REE data. data; note the more 

pronounced Eu anomaly, higher MREE and HREE, and lower LREE composition of unit 

2.0 apatites compared to unit 5.3. For comparison, =bulk rock data are also (red dashed 

lines = unit 2.0; yellow dashed lines = unit 5.3). 
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     The apatite data, by itself, gives great insight into the bulk compositional differences 

between the magmas of each unit (Figure 27). The apatite shows something that is not 

apparent in the bulk rock chemistry. It mimics the melt chemistry very closely, specifically 

with the deeper Eu and much shallower LREE pattern and much lower MREE and HREE 

for the unit 2.0 apatite. This confirms that apatite REE chemistry is a good proxy for melt 

chemistry and they are likely in equilibrium with the melt in the melt inclusions. For 

example, unit 2.0 apatites share the same range in composition as granites whereas unit 5.3 

apatites fall in more mafic range (Figure 27A – B). These differences in apatite chemistry 

imply that the stage of liquid evolution that crystallized apatites of one unit is very different 

than the other unit and there is a possible influence of more basic magmas. However, there 

are similarities in the apatite chemistry of both units, like their shared Eu anomalies (Figure 

27D). These apatites were likely growing in the presence of a magma that had plagioclase 

removed from it. Most of the REE values of both units are in the granitoid field and indicate 

that the apatites equilibrated with a typical granitic liquid (Figure 27C). 

     The LA-ICP-MS data of quartz-hosted apatite grains from units 2.0 (n= 27) and 5.3 (n 

= 12) are summarized in discrimination diagrams and normative abundance plots (Figure 

27; Table 8) along with bulk rock data for both units for comparison. Proposed 

discrimination fields for apatite compositions crystallized from different rock compositions 

were from Belousova et al. (2002). Based on concentrations of Sr and Y, unit 5.3 apatites 

fall in the “mafic” field and most unit 2.0 apatites fall in the granitoid/ granite pegmatite 

fields (Figure 27A). A similar result is seen based on the parameters Y vs Eu/Eu* showing 

unit 5.3 apatites plot in the “mafic” field and unit 2.0 apatites in the granitoid/ granite 



190 

 

pegmatite fields (Figure 27B). Concentrations of (Ce/Yb)cn vs REE showed that unit 5.3 

apatites were in the granitoid, diabase, and granite pegmatite fields, and most unit 2.0 

apatites were in the granitoid and granite pegmatite fields (Figure 27C). 

     The apatite and SMI data demonstrate that the bulk rock compositions are quite different 

than the SMI compositions (Figures 24, 25, and 27). There are two major themes that 

comparison of apatite, SMI, and bulk rock data show: (i) The data show that the SMI and 

apatites are recording a much broader history of melt evolution than bulk rocks at depth; 

and (ii) In the next section, metals in SMI are defined in terms of concentration relative to 

the bulk rock metals which have been metamorphosed and modified; the metal 

concentrations in the bulk rocks are not representative of the original metal tenor of the 

magmatic system. The liquid line of decent of magmatic systems is defined by primary 

melt inclusions that formed at different stages of evolution of the melts (Schiano, 2003). 

2.4.5 Relationships between metals and magmatic evolution 

     The data in the present study provide the first constraints on metal concentrations in a 

pre-emplacement/eruptive magmatic system in the Archean. Normative abundance 

diagrams (Figures 28 and 29) and box-whisker plots (Figures 30 and 31) illustrate the 

differences between bulk rock metal concentrations and SMI metal concentrations. There 

are few published studies of SMI metal concentrations in barren granitic rocks. 

  



191 

 

 

 

 

 

 

 

 

 



192 

 

Figure 28 (previous page): Normative abundance diagrams (relative to continental 

crust) of SMI and bulk rock analyses for units 2.0 and 5.3 metals. Normative abundance 

diagrams summarizing LA-ICP-MS analyses of quartz-hosted SMI and host bulk rock data, 

as well as SMI from two barren arc granites (Rito del Medio and Cañada Pinabete plutons, 

New Mexico, USA; Audétat and Pettke, 2003). Normalization values for continental crust 

from McDonough and Sun (1995). (A) Data from unit 2.0. The majority of SMI analyses 

(except V, Cr, and Mo) are higher in concentration compared to the bulk rock values (e.g., 

As, Sn, Sb, Pb, Bi, and Au). The majority of SMI analyses are lower in concentration 

compared to the barren arc granites (e.g., As, Mo, Ag, Sb, W, Pb, and Bi). Note the large 

ranges (up to four orders of magnitude) for Sc, V, Cu, As, Mo, Ag, W, Bi and Au. (B) Data 

from unit 5.3. The majority of SMI analyses (except Sc, V, Co, and Cu) are higher in 

concentration compared to the bulk rock values (e.g., As, Sn, Sb, W, Bi, and Au). The 

majority of SMI analyses are lower in concentration compared to the barren arc granites 

(e.g., Cu, As, Mo, Sn, Sb, W, Pb, and Bi). Note the large ranges (up to three orders of 

magnitude) for Ag, Bi, and Au. 
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Figure 29 (previous page): Normative abundance diagrams of units 2.0 and 5.3 metals 

normalized to primitive mantle. Normative abundance diagrams summarizing LA-ICP-

MS analyses of quartz-hosted SMI and host bulk rock data, as well as SMI from two barren 

arc granites (Rito del Medio and Cañada Pinabete plutons, New Mexico, USA; Audétat 

and Pettke, 2003). Normalization values for primitive mantle from McDonough and Sun 

(1995). (A) Data from unit 2.0. The majority of SMI analyses (except V, Cr, and Mo) are 

higher in concentration compared to the bulk rock values (e.g., As, Sn, Sb, Pb, Bi, and Au). 

The majority of SMI analyses are lower in concentration compared to the barren arc 

granites (e.g., As, Mo, Ag, Sb, W, Pb, and Bi). Note the large ranges (up to four orders of 

magnitude) for Sc, V, Cu, As, Mo, Ag, W, Bi and Au. (B) Data from unit 5.3. The majority 

of SMI analyses (except Sc, V, Co, and Cu) are higher in concentration compared to the 

bulk rock values (e.g., As, Sn, Sb, W, Bi, and Au). The majority of SMI analyses are lower 

in concentration compared to the barren arc granites (e.g., Cu, As, Mo, Sn, Sb, W, Pb, and 

Bi). Note the large ranges (up to three orders of magnitude) for Ag, Bi, and Au. 



195 

 

 

Figure 30: Box and whisker plot of metals from units 2.0 SMI. Shown are the 1st and 

3rd quartile ranges, averages, and error bars of metals. Metal concentrations were collected 

by LA-ICP-MS. Numbers near each box and whisker represent the number of SMI with 

analyses above detection limit. Bulk rock data are averages from collected samples and 

overlay the box and whiskers for comparison. 
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Figure 31: Box and whisker plot of metals from units 5.3 SMI. Shown are the 1st and 

3rd quartile ranges, averages, and error bars of metals. Metal concentrations were collected 

by LA-ICP-MS. Numbers near each box and whisker represent the number of SMI with 

analyses above detection limit. Bulk rock data are averages from collected samples and 

overlay the box and whiskers for comparison. 
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     For both Bousquet units, As-Sb-Sn-Pb-Bi-Cu-Au are significantly higher than the bulk 

rock analyses, suggesting that the SMI preserve the original metal concentrations in the 

melt with concentrations varying as a result of fractionation like other incompatible 

elements (Roedder, 1984; Sobolev, 1996; Frezzotti, 2001; Lowenstern, 2003). However, 

the metal chemistry of the bulk rocks can be modified during the evolution of the system 

in several ways giving the appearance that the SMI have more fractionated compositions: 

(i) the bulk rocks can be hydrothermally altered and metals stripped out (Mathieu, 2018); 

(ii) metals can be removed by alteration (der Straaten et al., 2011); (iii) volatiles can 

saturate and extract metals after melt entrapment (Holloway, 1976; Webster, 1997); and 

(iv) the bulk rock represents melt diluted with crystals, causing the bulk rock metals to be 

lower than the true liquid composition found in SMI (Kent, 2008). It is likely that a 

combination of these processes/scenarios apply in this case, but the evidence suggests that 

volatile exsolution, fractionation, and crystal dilution explain the SMI-bulk rock 

differences. 

     The anomalous ore and accessory metals that are higher in the SMI comprise an 

association of chalcophile elements commonly associated with magmatic volatile 

contributions to hydrothermal fluids in porphyry-epithermal type settings (e.g., Au-Ag-As-

Sb ± Bi-Hg-Te; Halbach et al., 2003; Glasby et al., 2004; Halter et al., 2005; Audétat et al., 

2008; Glasby et al., 2008; Rusk et al., 2008b; Mercier-Langevin et al., 2011a). These metals 

are also present in the LaRonde Penna deposit within accessory mineral assemblages in the 

ores (e.g., As = arsenopyrite, Sb = tetrahedrite, Sn = stannite, Bi & Au = Bi-Au tellurides, 

and Pb & Ag = Pb-Ag sulphosalts; Mercier-Langevin et al., 2007a). Thus, on the basis of 
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metal associations alone, the metals within the Bousquet rhyolites could have degassed or 

been leached from glassy matrix in the bulk rocks in the shallow crust. For example, this 

could have happened at depth through the decomposition of magmatic sulphides during 

degassing of the magmas. This process releases S, Cu, Au, and other chalcophile elements 

such as Ag, Sb, Pb and Bi (Keith et al., 1997; Halter et al., 2002b; Halter et al., 2005; 

Stavast et al., 2006; Audétat et al., 2008). 

     Whereas the bulk volcanic rocks are at or below continental crust metal values, the SMI 

compositions are commonly well above normal continental crust levels (Figure 28). Some 

of the metals like As, Ag, Sb, Bi, and Au have concentrations in the SMI that are one to 

two orders of magnitude higher than normal continental crust (Figure 28). This illustrates 

that these melts are highly anomalous in terms of their metal contents. Aside from Sn which 

shows a weak inverse correlation with Sr, there are no significant correlations between 

metals in the SMI (Figure 32) and elements like B and Cs that are strongly incompatible 

and increase with progressive fractionation. 
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Figure 32: Correlation graphs of metal concentrations for units 2.0 and 5.3 SMI. Unit 

2.0 data are red, and unit 5.3 data are yellow, with circles and diamonds for SMI and 

squares for bulk rock. (A, H, K) The only graphs that show correlations of metals with 

trace elements (Sr vs Sn = negative; Cs vs Bi and Cs vs Sb = curvilinear positive). (B-G, 

I, J, and L) Various metal plots that show no correlation with Sr, Cs, and Na2O which are 

key elements that indicate fractionation. 
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     As well, both magnetite and ilmenite are indicator minerals for oxidizing and reducing 

environments, respectively, and are present in units 2.0 and 5.3 as daughter and 

accidentally trapped (saturated) phases (Figures 10 and 11; Hart et al., 2004; Ishihara, 

2007; Maulana et al., 2013). Oxidized magnetite-series granitoids concentrate metals such 

as Mo, Cu, Zn, Pb, Ag, and Au; whereas, reduced ilmenite-series magmas have lower 

abundances of these but tend to have higher concentrations of Sn and W (Ishihara, 2007). 

The SMI analyses show that the metals associated with reducing magmas (Sn and W) are 

present but at lower abundances compared to the others (Figures 28 and 29). The metal 

concentrations of the magmas at depth are initially established by a parental liquid 

composition and change as the magmas differentiated in the crust before 

eruption/emplacement. However, B and Cs do not show any correlations with metals in the 

SMI (Figure 32). This contradicts the idea that fractionation controlled (increases) the 

chalcophile metal content of the Bousquet magmas. For example, even though there was 

extensive fractionation of plagioclase, the metal content did not increase during plagioclase 

removal. If the melts were trapped along a typical differentiation path, then there would 

have been correlations between the metals and the incompatible element parameters like 

Cs (Audétat et al., 2000). Therefore, the record of fractionation control on metal 

endowment has been obtained (i.e., by degassing or sulphide saturation). The high 

concentrations of metals are likely tracked to the magmatic source region (Yang and Scott, 

1996, 2002, 2005, 2006; Beaudoin et al., 2007; Marques et al., 2009, 2011, 2020). 

     However, the SMI from unit 2.0 have many ore and accessory metals (i.e., As, Mo, Ag, 

Sb, W, Pb, and Bi) lower in concentration than younger barren arc granites (Rito del Medio 
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and Cañada Pinabete plutons, New Mexico, USA; Audétat and Pettke, 2003; Figure 28A). 

Another comparison was made with SMI from the Timbarra composite granitic pluton, 

Australia (Mustard et al., 2006). All plutons have significantly higher concentrations of 

some metals (Sb, As, W, Mo, Pb, Bi, Sn) than the Bousquet rhyolite melts but comparable 

Au, Cu, and Ag. Overall, the more modern barren granites are more concentrated in metals 

than the SMI from Bousquet rhyolites (Figures 28 and 29), but this could be related to the 

higher degree of fractionation of these examples. Despite showing relatively low degrees 

of fractionation, the Bousquet rhyolites illustrate that having a fractionated liquid is not 

necessarily the sole prerequisite for metal-enriched magmas. In general, metal tenor 

depends on more factors than just fractionation (e.g., composition of the source region, ƒO2; 

Blevin and Chappell, 1992). Elevated Au and Ag (and other accessory metals like Mo, Pb, 

Sb, Sn, As) well above normal upper crustal concentrations could reflect an oxidized source 

magma for the Bousquet formation rocks (Figure 28; Hedenquist and Lowenstern, 1994; 

Sillitoe et al., 1996). 

2.4.6 Volatiles in SMI 

     Characterization of the SMI should include determination of volatile content, 

homogenization characteristics and assessment of fluid-melt entrapment (Cannatelli et al., 

2016), as these parameters may shed light on processes that have impacted metal 

enrichment and loss from magmas. Previous research on volatiles associated with mantle 

xenoliths show that there is a significant CO2-rich component in the lithospheric mantle in 

alkaline arc systems (e.g., Berkesi et al., 2012). CO2 saturation in arc environments is 

driven by carbonate rocks that are subducted and melted, producing CO2-rich fluids that 
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metasomatize and enrich the mantle (Yaxley et al., 2019). CO2 is also prevalent in melts 

produced in alkaline arc environments due to the low degrees of partial melting of the 

metasomatized mantle responsible for alkaline magmatism (Yaxley et al., 2019). However, 

aside from lower-crustal/upper-mantle xenoliths (e.g., Hansteen et al, 1991; Schiano & 

Clocchiatti, 1994; Schiano et al, 1992; Chupin & Tomilenko, 1995; Szabo et al, 1996) and 

komatiites (e.g., Anderson, 1995; Shimizu et al., 2009; Kamenetsky et al., 2010), the few 

studies of SMI in Archean environments have yet to demonstrate CO2 in SMI. 

     Preliminary microthermometric analysis of a unit 4.3 SMI gave a first melting T of 

692°C (Figure 18) which is somewhat higher than the solidus T expected for a felsic melt 

high in H2O content and trapped at high P (500 – 600°C; Lutgens and Tarbuck, 2000). 

However, laser Raman microspectroscopy yielded spectra with negligible water band 

peaks (3500 – 3650 cm-1) for homogenized glass in the SMI of units 2.0 and 5.3 (Figure 

19A). The H2O content was not quantified but based on the size of the H2O peak 

corresponding to 0.95 wt% H2O (Figure 19A) that are typical of hydrous SMI (Zajacz et 

al., 2005), the Bousquet SMI have <<1 wt% H2O (Figure 19A). Petrographic and Raman 

spectroscopy observation (Figure 19B and C) show that silicate melt and immiscible CO2 

liquid were trapped at depth in a magma chamber or as the quartz phenocrysts ascended 

through the crust. Unhomogenized SMI show the immiscible CO2 phase clearly (Figure 

18) and therefore it is not an artifact of heating the inclusions. 

     Clearly, the Bousquet rhyolites were CO2 saturated prior to eruption/emplacement and 

the evidence for immiscible entrapment of CO2 in unambiguous (Figure 19). Commonly, 

the CO2 saturation point and a decreased CO2/H2O ratio are reached by progressive 
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decompression and CO2 exsolution while the magma rises to the surface (Lowenstern, 

2001; Wallace, 2003). The rise to a shallower crustal environment reduces the pressure and 

CO2 is lost due to first boiling (Moss et al., 1997). Carbon dioxide solubility drops 

dramatically because it is more a function of pressure than temperature. Deep mid crust 

magmas (10-15 km) under high pressure are commonly vapour saturated and CO2 is an 

appreciable part of this exsolved vapour (Lowenstern, 2001). The temperature at which 

CO2 is soluble is dependent on the speciation of CO2 (Lowenstern, 2001). Carbon dioxide 

dissolves in rhyolites in a molecular form (retrograde temperature solubility), but typically 

dissolves as carbonate group minerals in basalts (prograde; Lowenstern, 2001). 

     However, the CO2/H2O ratio is very high in the Bousquet rhyolitic melts so the normal 

saturation and exsolution processes described above cannot be the only explanation. The 

amount of CO2 observed in the inclusions is way beyond the amount soluble in a felsic 

melt even at high P (from Lowenstern, 1994: 960 ppm CO2 at 4.3 kbar or 16 km) and so 

the melts did not exsolve that CO2 after entrapment. If excess CO2 was added to the system 

from an external source during its evolution, the Bousquet melts would have become CO2-

saturated forcing H2O to exsolve (Frezzotti, 2001; Lowenstern, 2001). If the CO2-bearing 

fluid was in constant contact with the melt, H2O would continue to degas, and the resulting 

SMI would be H2O-poor with immiscible CO2 (Bodnar and Sterner, 1987; Joyce and 

Holloway, 1993; Lowenstern, 2001). It is difficult to determine where the CO2 originated. 

One option is that during melt generation, storage, fractionation and ascent, a CO2-bearing 

fluid was released from assimilated sedimentary rocks (Ganino et al., 2008; Blythe et al., 

2015). This is consistent with trace element chemistries and mixed geochemical affinities 

(Figure 21B – F) of the Bousquet melts that could be due to the assimilation of Nb- and 
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Ta-depleted rocks. However, the only two relevant sedimentary rocks in the study area 

belong to the <2686 Ma Cadillac Group (Davis, 2002) and the <2676 Ma Timiskaming 

Group (Davis, 2002), these are younger than the volcanics and could not have been 

assimilated during emplacement/eruption. 

     There is evidence that CO2-saturated magmas within the middle to upper crust cannot 

ascend through the crust without freezing (Frezzotti, 2001; Lowenstern, 2001). In general, 

adding CO2 to a magma should cause it to crystallize as H2O is distilled out, forcing the 

magma to cross its solidus and crystallize (Lowenstern, 2001). Importantly, this specific 

process of H2O degassing only happens when CO2 is added at a later stage in the evolution 

of the magma. Water will not degas before CO2 under normal equilibrium (open or closed 

system) degassing of initially dissolved (primary) H2O (Lowenstern, 2001). For example, 

if a rhyolitic magma follows a normal trend of equilibrium degassing, it will lose CO2 first 

as pressure decreases and second as solids form (first and second “boiling,” respectively). 

As quartz phenocrysts grow, they incorporate samples of melt ± saturated K-feldspar or 

other crystallized phases, and small droplets of immiscible CO2. However, at this stage 

water has not been lost from the magma. With progressive decrease in P and/or combined 

crystallization, the droplets change from CO2- to H2O-rich (Yardley and Bodnar, 2014). A 

model degassing curve shows this change in dissolved volatile content as a magmatic 

system decompresses (rises through the crust) and crystallizes (Thomas et al., 2010). 

     Ultramafic arc magmas, however, are H2O-poor with 0.54 – 4.25 wt.% dissolved H2O 

as compared to 1.9 – 6.3 wt.% H2O in typical primitive arc magmas at high pressures deep 

below the surface (Lowenstern, 2001; Créon et al., 2017). Ultimately, there was likely high 
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concentrations of CO2 at the entrapment pressures of the Bousquet SMI to make free 

bubbles of CO2 in the melt. However, the Bousquet rocks studied are rhyolites which have 

a lower CO2 solubility than mafic liquids but could still have 1000s ppm of CO2 because 

typical arc magmas, which are a combination of mafic and felsic liquids, have up to 2500 

ppm CO2 (Créon et al., 2017). Carbon dioxide saturation as seen in the homogenized SMI 

(i.e., free CO2 bubbles) of the Bousquet volcanics indicates that degassing was in progress 

which made water contents drop down into the sub-weight percent range (Figure 19) 

     It is possible that metals could have been lost early in the evolution of the Bousquet 

magmas when melt interacted with a CO2-rich lithology, like a basaltic melt (e.g., unit 5.4 

basaltic andesite; Lowenstern, 2001). This type of interaction can disrupt normal 

fractionation and cause metal-rich fluids to leave the magmatic system (Lowenstern, 2001). 

Carbon dioxide may carry metals as well, but it is more likely that an exsolved saline 

aqueous fluid will be a more potent carrier (Lowenstern, 2001; Audétat et al., 2000, 2008). 

The metal contents of units 2.0 and 5.3 SMI are highly variable which could be the result 

of magma interaction with an external CO2-bearing fluid, forcing the metals to leave along 

the whole fractionation path. This is also consistent with the lack of correlations observed 

between ore metals and strongly incompatible elements since periodic metal loss would 

destroy the normal (expected) differentiation relationships between elements like Cs and 

ore metals seen in fluid undersaturated melt systems (e.g., Audétat and Pettke, 2003; Figure 

32). 
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     It should be noted that while the SMI contain primary hydrous minerals (i.e., biotite, 

muscovite) the modal abundance and likely water content of these minerals are consistent 

with the SMI being H2O-bearing but not necessarily H2O-rich based on mass balance. 

2.4.7 Pressure-temperature constraints on SMI entrapment 

     The concentrations of Ti in magmatic quartz saturated in rutile (aTiO2 = 1) provides the 

only numerical constraint on the P-T conditions (Thomas et al., 2010) of phenocryst growth 

and, therefore, SMI entrapment. Titanium-in-quartz concentrations were resolved from 

LA-ICP-MS analyses of the quartz host surrounding SMI as well as in magmatic quartz 

domains adjacent to SMI. Small, evenly distributed rutile needles (Figure 8C, E, and F) are 

abundant and were formed after the quartz crystallized during cooling-induced titanium 

exsolution (Adachi et al., 2010) or decompression (Zhang et al., 2003; Kawasaki and 

Motoyoshi, 2007; Adachi et al., 2010). It is unlikely that there were tiny rutile needles 

throughout the magma chamber that were then trapped in quartz because of the infrequent 

occurrence of primary rutile in felsic igneous rocks (Hayden and Watson, 2007). The initial 

amount of dissolved Ti in quartz before rutile exsolution can be reconstructed using a large 

beam diameter in-situ analytical method such as LA-ICP-MS or EMP (e.g., Adachi et al., 

2010). Each spot analysis incorporates quartz and rutile needles. 

     Initially, it was observed that analyses of darker (CL) and/or fractured areas in the 

phenocrysts yielded low Ti concentrations probably reflecting quartz formed or modified 

during post-magmatic events (cf. Spear and Wark, 2009). In contrast, analyses of quartz 

from the brighter blue (CL) regions of phenocrysts gave higher and very consistent Ti 
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values considered to be magmatic concentrations (Spear and Wark, 2009). Hot CL and 

SEM-CL analyses of units 2.0 and 5.3 quartz phenocrysts showed that the targeted SMI 

(and host quartz for Ti determination) resided in these brighter magmatic domains. The 

range in Ti values for phenocrysts in both units is very small (Table 10). 

     The P-T conditions for quartz in units 2.0 and 5.3 were constrained by finding the 

intersection of the Ti-in-quartz T trajectories through P-T space with P constraints for the 

early crystallization of MIC Phases B and C which were established through Ti-in-zircon 

thermometry and Ti-in-quartz thermometry (Figure 33; Neyedley et al., 2021). The P-

unconstrained Ti-in-quartz trajectories pass through the P-T window for early crystallizing 

phases (zircon, quartz) in the MIC phases B and C. The minimum and maximum P from 

those early MIC phases brackets the P-T window for the Bousquet quartz phenocrysts 

between ~6.5 – 13.5 kbar and ~650 - 850°C. Unit 2.0 phenocrysts yield a crystallization T 

range of 653 ± 33˚C (at 6.5 kbar) to 809 ± 39˚C (at 13.5 kbar), and unit 5.3 phenocrysts 

yield a crystallization T range of 686 ± 26˚C (at 6.5 kbar) to 848 ± 30˚C (at 13.5 kbar; 

Figure 33; Table 10). Textural and compositional observations (fine exsolution and narrow 

Ti concentration ranges) indicate that equilibrium was well established between rutile and 

quartz. 
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Figure 33: Pressure-temperature trapping conditions of Bousquet Formation SMI. 

Temperature trajectories (diagonal fields) calculated from Ti concentrations in quartz 

phenocrysts from unit 5.3 (n = 83), and unit 2.0 (n = 182), with aTiO2 of 1 (rutile saturated 

= solid lines) and 0.7 (ilmenite saturated = dashed lines). Pressure-temperature conditions 

for the MIC phases B and C are from Neyedley et al., 2021. Water-saturated granite liquidi 

at various dissolved H2O concentrations are from Holtz and Johannes (1991). Maximum 

metamorphic conditions for the Bousquet Formation are from Tourigny et al. (1989, 1993), 

Marquis et al. (1990a), Mercier-Langevin (2005), and Yergeau et al. (2015). The P-T range 

of TTG magma generation is from Condie (2005), Clemens et al. (2006), Getsinger et al. 

(2009), and Hoffman et al. (2014). 
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     In agreement with the MIC Phase B and C constraints on the P of phenocryst growth, 

the suggested TTG affinity of the volcanic source magma (Galley and Lafrance, 2014) 

requires a source depth of greater than ~10 kbar (Figure 33; Condie, 2005, Clemens et al., 

2006, Getsinger et al., 2009, and Hoffman et al., 2014). Unit 2.0 and 5.3 phenocrysts grew 

at conditions that overlap with both the lower P range for TTG generation and Phase B/C 

zircon and quartz crystallization conditions. This is evidence that the Bousquet volcanics 

were linked to the MIC magma evolution, storage, and fractionation at depth. 

     The maximum metamorphic grade of the Bousquet Formation rhyolites is upper 

greenschist to lower amphibolite facies (Figure 33; Mercier-Langevin et al., 2007b). The 

black field in Figure 33 straddling the greenschist/amphibolite transition (Yergeau et al., 

2015) yields a maximum pressure of 4 kbar and T of ~550°C for peak metamorphism 

(Tourigny et al., 1993; Marquis et al., 1990a). These conditions are at substantially lower 

P-T than the estimates of crystallization conditions of the quartz phenocrysts. If the P-T 

fields estimated for units 2.0 and 5.3 phenocrysts are extrapolated down to a lower P, only 

a small portion of the field for unit 2.0 intersects the upper end of the metamorphic field 

and most of the T window for both units 2.0 and 5.3 exceed the maximum metamorphic T 

of 550°C (Yergeau et al., 2015). However, this scenario is impossible since the phenocrysts 

contain SMI and entrapment T of a “normal” granitic liquid at such low T would be very 

unlikely. 

     The entrapment temperatures for both units at the lower P constraint are low for rhyolitic 

magmas but possible if saturated in volatiles in a high-pressure environment (Foley and 

Pintér, 2018). The liquidus and solidus of a rhyolite is lowered substantially at high 
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dissolved H2O and CO2 (Wallace and Green, 1988; Foley and Pintér, 2018). The H2O-

saturated liquidi (Figure 33) from Holtz and Johannes (1991) demonstrate that as the 

concentration of H2O in the magma increases, the liquidus temperature decreases (Figure 

33). For example, the 3 wt% H2O liquidus shows the upper P-T limit that solids would 

exist in a magma with 3 wt% H2O. It is important to note that, at the P-T conditions for 

SMI entrapment, the magma should contain ~3 wt% H2O. As there is much less than 1 

wt% H2O in the SMI (Figure 19) this suggests that the magma had already degassed H2O 

by the time of entrapment (i.e., by CO2 incorporation causing H2O exsolution; Lowenstern, 

2001). 

     It is important to note that the Bousquet did not completely crystallize in situ. Instead, 

the volcanics were emplaced as very viscous partially crystallized magmas in which SMI 

had already been trapped at high pressures. The liquid CO2 phase in the SMI is thought to 

be the result of volatiles mingling with the partially crystallized magma in a very high-

pressure environment. The phenocryst, therefore, rose from a substantial depth in the crust. 

     In general, the results presented suggest that at considerable depth (i.e., a mid-crustal 

magma chamber) the Bousquet magmas had already lost several wt% H2O and gained 

immiscible CO2. This has very important implications not only for VMS systems but also 

for Archean Au deposits whose ore fluids contained high CO2 contents derived from the 

degassing of wall rocks during metamorphism or interaction with TTG magmas 

(Lowenstern, 2001; Spilliaert et al., 2006b; Blundy et al., 2010; Hinsberg et al., 2016). 

Early volatile loss may reduce the fertility of VMS ore-related magmas while the Au 

content of the magmas may be sequestered into CO2 that goes on to supply Au to Archean 
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gold deposits - but this investigation is beyond the scope of this paper. However, it is 

possible that this information provides a new direction of research as to the source of the 

fluids that produce Au deposits such as those in the DBL camp. Gold-enrichments in the 

DBL camp could be associated with fluids rich in Au (but no other metals) and CO2 sourced 

from sedimentary wall rocks at depth that degassed deep in the crust during interaction 

with Bousquet-type magmas (Ganino et al., 2014). 

2.4.8 Comparison of metal ratios in SMI and regional ore deposits 

     Previous studies of melt inclusions in magmatic-hydrothermal ore forming systems 

have shown that inclusion metal ratios overlap with ore metal ratios, indicating that 

magmatic liquids exert a direct control on ore tenor and metal ratios (e.g., Cu/Au) may be 

conservative (Halter et al., 2002). Ratios of Au/As, Sb/Bi, Cu/Au, and Cu/As in 

mineralized systems within the DBL district (Dubé et al., 2004; Geological Survey of 

Canada, unpublished) were compared to data from SMI (Appendix 2A and B) in the 

Bousquet Formation (Figure 34). While only one SMI has all these metals above detection 

limit for unit 5.3, unit 2.0 has several SMI analyses which show overlap in metal ratios 

(i.e., Au/As vs Sb/Bi, and Cu/Au vs Cu/As) with the LaRonde Penna ore bodies (i.e., Zn-

rich 20N lens, Zn-rich 20S lens, and Au-rich 20N lens; Figure 34). Maximum and 

minimum metal ratios are included for SMI analyses that had metals below detection limit 

(Figure 34). The unit 2.0 rhyolite does not host the LaRonde Penna ore (vs. the unit 5.3 

which hosts the majority of the 20N lens hanging wall zone) but is the earliest Bousquet 

Formation unit and is a sills complex emplaced in the stratigraphically lower Hébécourt 

Formation. Metal ratios in other deposits do not overlap with those of unit 2.0 SMI. Both 
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the SMI and LaRonde Penna ore bodies are characterized by low Au/As and Cu/As ratios, 

compared to the Mouska, Doyon and Westwood deposits. For example, Au/As ratios for 

unit 2.0 SMI analyses have an average of 0.004 and Doyon ore bodies have an average of 

0.644, which is roughly a difference of 200x. The exact mechanism of metal transfer to the 

LaRonde Penna hydrothermal system is not known (e.g., metals lost through volatile 

exsolution, or passive leaching from volcanics) but this comparison suggests that metal 

tenors in the LaRonde Penna ores were controlled (at least locally) by the associated 

magmatic metal chemistry. There is a lack of correlation between very strongly 

incompatible elements (e.g., Cs) and ore metals (in SMI) which is consistent with 

disturbance of the original metal contents of SMI by immiscible or exsolving fluid phases. 

However, the overlap between metal ratios (i.e., Cu/Au, Cu/As, Au/As, Sb/Bi) of the SMI 

and the LaRonde Penna deposit ore bodies suggests that even in the presence of saturated 

volatiles, ore metal ratios are conservative. The overlap in metal ratios is an indication that 

the volcanic rocks have had some direct influence, either through active degassing or 

passive leaching, on the ore metal content of the LaRonde Penna VMS system. 
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Figure 34: Ore metals compared to SMI metals of the Bousquet Formation. Metal 

ratios of Au/As vs Sb/Bi, and Cu/Au vs Cu/As in mineralized systems (i.e., Doyon Mine, 

Westwood Mine, Mouska Mine, and LaRonde Penna Mine) within the DBL district and 

SMI of the Bousquet Formation. Notes: Data for Doyon deposit, Westwood deposit, and 

Mouska deposit ores from the Geological Survey of Canada, unpublished. Data for 

LaRonde ore from Dubé et al., 2004.  
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2.4.9 Mass balance considerations 

     Figure 35 shows the absolute best-case scenario in terms of the volume of magma (in 

km3) would have been required to source Au in the LaRonde Penna deposit, at various 

concentrations of Au in the magma (based on SMI measurements by LA-ICP-MS). By 

“best-case” scenario, this means that all the Au in the magma gets extracted and deposited. 

Therefore, this approximation relates to the minimum magma volume required. The SMI 

of unit 5.3 have a median of 0.069 ppm Au (1st quartile = 0.006 ppm, 3rd quartile = 0.159 

ppm, n = 10) while unit 2.0 SMI have a median of 0.014 ppm Au (1st quartile = 0.005 ppm, 

3rd quartile = 0.024 ppm, n = 14); at these Au concentrations, a minimum range of 0.5 – 15 

km3 and 4 – 19 km3 of magma volume would be required, respectively, to produce the total 

amount of Au in the LaRonde Penna VMS deposits (Figure 35). Note that this is a very 

small amount of magma compared to the volume of magma estimated for other low-grade 

Au deposits (e.g., Cu porphyry deposit >1000 km3; Chelle-Michou et al., 2017). 
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Figure 35: Amount of magma for Au tonnage. The amount of magma (in km3) needed to supply various deposits with their Au 

tonnage (in kg) based on variable concentrations of Au (in ppm). Included are ranges for Au tonnage in deposit types (i.e., epizonal, 

VMS, and shear-hosted) of the DBL camp, as well as total Au tonnage for the DBL camp. For comparison, total Au tonnage for 

other world-class camps (i.e., McIntyre-Hollinger-Coniaurum, Kirkland Lake, and Campbell Red Lake), and for the Bingham 

Canyon Mine Cu-porphyry are presented. The ranges for minimum magma volume required to produce the LaRonde Penna VMS 

deposits are based on the Au concentrations of unit 2.0 and unit 5.3 melts. Unit 2.0 has a median Au concentration of 0.014 ppm, a 

1st quartile of 0.005 ppm, and a 3rd quartile of 0.024 ppm. Unit 5.3 has a median Au concentration of 0.0695 ppm, a 1st quartile of 

0.0064 ppm, and a 3rd quartile of 0.159 ppm. Notes: Data for DBL camp from Mercier-Langevin et al., 2017. Data for Bingham 

Canyon Mine from MDO Data Online, 2020. Data for McIntyre-Hollinger-Coniaurum, Kirkland Lake, and Campbell Red Lake 

from Mercier-Langevin et al., 2007a. 
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     The calculations, as stated, assume that all Au in the magma is transferred to the deposit 

and that the magma represents the initial composition available for metal transfer. There 

are several reasons why this is not possible: (i) Not all the Au will be sequestered and 

transferred in a volatile phase by degassing. The efficiency of fluids leaving the magma 

and carrying gold is partly controlled by the partition coefficient (KD
fluid/melt) which is a 

function of fluid and magma composition, and many other variables (Zajacz et al., 2012). 

The range in KD
fluid/melt for Au is ~10 - 100, respectively (Simon et al., 2005; Zajacz et al., 

2012; Chiaradia and Caricchi, 2017). This means that under some conditions, most but not 

all the Au in the magma will go into the fluid phase. (ii) Not all the Au will be precipitated 

(i.e., as sulphides) from the fluid. For porphyry systems, Chiaradia (2020) showed 

quantitively that Au-rich deposits are the result of better efficiency of Au precipitation than 

Cu-rich porphyries but so far this type of modelling has not been done on a VMS system. 

In a VMS system, not all the Au that is carried by fluid will be precipitated efficiently 

because not all Au leaves the solution. Some Au remains tied up with ligands and gets 

dispersed in areas that do not form economic deposits. (iii) Not all the magma interacts 

with the volatiles, and only part of the magma volume may degas near structures in such a 

way that volatiles bearing Au can be transferred to the hydrothermal system (i.e., focusing 

of fluids; Sparks, 2003; Huber et al., 2012; Chelle-Michou et al., 2017). All three of these 

factors play into the efficiency of Au transfer - if the transfer from magma to fluid, and 

from fluid to deposit is less efficient, more magma (with the Au concentrations measured) 

will be needed to provide the same amount of Au to the deposit. 

     It is also important to note that in the case of the Bousquet melts, there is evidence of 

volatile loss (low H2O) and the presence of abundant CO2 (as a saturated phase introduced 
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before the time of entrapment), so it is likely that the SMI Au (and other metal) 

concentrations are minimum concentrations available to ore-forming processes. Thus, 

assuming transfer of all Au without the inefficiencies, even less magma than stated above 

would have been needed to source the Au in the LaRonde Penna VMS deposits. 

     Degassing of a magma is an “active” process to supply metals to a VMS system. 

“Passively” the metals are brought into the hydrothermal system by the convection of 

seawater through volcanic and sedimentary rocks. The metals, leached from glass (and 

fine-grained matrix crystals), in the subsurface volcanics sample metals from interstitial 

(quenched) melt. However, like magma degassing, this is not necessarily an efficient 

process because seawater would not circulate through the entire Bousquet Formation 

because the process of leaching/extraction by heated seawater is more localized to the vent 

locations (Scott and Binns, 1995). This is another example of the inefficiency of metal 

extraction from magmas or magmatic rocks. Thus, by either scenario (passive or active) 

the amount of Au and magma volumes shown in Figure 35 are minimum values. 

     Both units 2.0 and 5.3 were saturated in CO2 which means that the higher concentrations 

of Au in unit 5.3 SMI are truly due to a difference in bulk composition of the melts. The 

upper member of the Bousquet Formation was clearly more enriched in Au even after CO2 

interaction and H2O loss. Using Au concentrations from SMI in the upper member, and a 

conservative estimate of the volume of the upper member of the Bousquet Formation 

(approximately ~7.5 km3;15 x 0.5 x 1km; Figure 3), approximately 0.5 – 15 km3 of unit 

5.3 melt [minimum of 0.069 ppm Au (1st quartile = 0.006 ppm, 3rd quartile = 0.159 ppm, n 

= 10)] would be needed to supply Au to the LaRonde Penna VMS deposits (Figure 35). It 

is important to reiterate that the melt may have already lost Au to a volatile phase (SMI are 
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saturated in carbonic fluid and have lost H2O; see Section 2.4.6); therefore, the values 

measured in the SMI are minimums and, counteracting inefficiencies, the volumes of 

magma required may in fact be maximums rather than minimums. 

     Overall, there are two phenomena working in tandem to consider for the study area 

when calculating the amount of Au-bearing magma required to source Au in this district, 

if a magmatic source for Au is to be entertained (via degassing of magmatic volatiles): (i) 

parts of the magmatic system have degassed, and were saturated with externally-derived 

volatiles at depth, so the measured metal concentrations in the melts used in the 

calculations are likely minimum values; and (ii) there is an efficiency of Au transfer 

problem which means that not all the Au in the magma will be transferred to the volatile 

phase. It is a complex process to quantitatively evaluate these factors in the calculations of 

magma volume and it is beyond the scope of this paper. For these reasons, the amount of 

magma shown in Figure 35 that would be needed to supply Au to the deposits in the district 

are minimums. 

2.5 Conclusion 

     A comprehensive study of silicate melt inclusions from the lower and upper Bousquet 

Formation, Blake River Group, Doyon-Bousquet-LaRonde mining district was undertaken 

to characterize the chemistry and volatile content of magmas in an Archean ore district, 

and to examine possible links between the original magmatic metal endowment and 

exceptionally Au-rich VMS deposits in the DBL camp. The key results of this study and 

implications are summarized below: 
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(i) Only two volcanic lithologies within the Bousquet Formation contain suitable SMI 

appropriate for detailed study: SMI within magmatic quartz phenocrysts of units 2.0 

[quartz feldspar porphyry (QFP) rhyolite sills] and 5.3 (QFP rhyolite flows). Despite 

recrystallization, primary SMI are preserved in phenocrysts and have bulk 

compositions consistent chemically and mineralogically with trapped silicate liquids. 

Careful evaluation of each melt inclusion assemblage, based on petrographic and 

compositional criteria, is required to differentiate true SMI from hourglass-type 

inclusions and to evaluate contamination by accidental entrapment of saturated 

phases, or modification by post-entrapment modification. A combination of 

cathodoluminescence imaging, inclusion and host petrography (SEM, optical, 

Raman) and scrutiny of LA-ICP-MS data after analyses of single inclusions is 

required to do this robustly. Trace element dissemination based on LA-ICP-MS data 

show that unit 2.0 SMI are of ORG or WPG (anorogenic) tectonic settings whereas 

unit 5.3 SMI are consistent with a syn-COLG or VAG classification. However, no 

SMI have trace element (Sr-Y-La-Yb) characteristics consistent with Archean TTG, 

suggesting considerable compositional modification (e.g., by extensive plagioclase 

fractionation, and crustal contamination) prior to entrapment.  

(ii) Even though the bulk compositions of the SMI and bulk rocks are similar and have 

similar tectonic affinity classifications, the range in major and trace elements, 

including ore metals, is much wider in the SMI. This reflects a combination of many 

processes: differentiation (prior to entrapment and eruption), crystal accumulation 

(diluting incompatible melt constituents in the rhyolites), possibly 

degassing/interaction with carbonic volatiles at depth, and post-solidus 
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alteration/metamorphism. Metal concentrations in bulk rocks assayed in this 

geological environment are not representative of the composition of the initial 

magmatic liquids. 

(iii) Comparative analysis of apatite, SMI, and bulk rock data shows that at depth, prior 

to eruption-emplacement, the SMI and coeval apatite document the crystallization of 

significant amounts of plagioclase, K-feldspar, and apatite. SMI record significant 

differentiation of the rhyolite (at least 70 – 75% crystallization) over its entrapment 

history indicating a lengthy phenocryst residence at depth in a staging chamber or 

deeper source region. Based on preliminarly constraints from SMI homogenization 

experiments combined with Ti-in-quartz thermometry, SMI were trapped in quartz 

phenocrysts at P = 10 - 13.5 kbar, consistent with the predicted range of early 

paragenesis for the magmas of the Mooshla Intrustive Complex. Homogenized SMI 

show that co-entrapment of an immiscible carbonic fluid (CO2-dominant) took place, 

suggesting that the melt was saturated in CO2 at the time of entrapment in the 

phenocrysts. The presence of CO2 in SMI of the Bousquet rhyolites, due to their 

advanced age, suggests that any SMI trapped in a magmatic system may potentially 

have CO2 as a saturated phase. The Bousquet magmatic system continuously 

received CO2-bearing fluids from an outside source, became CO2 saturated, and 

underwent constant fractionation iterations with degassing causing early removal of 

metal-bearing H2O fluids. Mingling of silicate melt with immiscible CO2 (e.g., 

derived from wall rocks) may have stripped some ore metals out of the magma before 

entrapment in SMI. 
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(iv) The SMI of unit 5.3 have a range of 6 ppb Au (1st quartile) to 159 ppb Au (3rd quartile; 

n = 10) while unit 2.0 SMI have a range of 5 ppb Au (1st quartile) to 24 ppb Au (3rd 

quartile; n = 14); at these Au concentrations, a minimum of 0.5 – 15 km3 and 4 – 19 

km3 of rhyolitic magma would be required, respectively, to source the Au in the 

LaRonde Penna VMS deposits through leaching or devolatilization. A conservative 

estimate of the volume of the Upper Member of the Bousquet Formation is 

approximately ~7.5 km3. Therefore, it is not unwarranted that with a correction for 

efficiency, the rhyolitic units of the Bousquet Formation supplied magmatic Au to 

the VMS deposits. However, it is important to note that while these metal 

concentrations are well above upper crustal concentrations, the Bousquet Formation 

rhyolitic melts were not unusually evolved or enriched in ore metals when compared 

to younger, felsic magmas in arc and transitional ore-forming settings. 

(v) The presence of co-entrapped carbonic liquid, and very low water content, in the SMI 

from both Units 5.3 and 2.0 may suggest that ore metal contents in the SMI are 

minimum values. A lack of correlation between very strongly incompatible elements 

(e.g., Cs) and ore metals (in SMI) is consistent with disturbance of the original metal 

contents of SMI by immiscible or exsolving fluid phases. On the other hand, selected 

metal ratios for elements consistently enriched in the SMI (Cu/Au, Cu/As, Au/As, 

Sb/Bi) overlap between the SMI and the LaRonde Penna deposit ore bodies and this 

is unlikely to be a coincidence, suggesting that even in the presence of saturated 

volatiles, these ore metal ratios are conservative. Both the SMI and ore bodies are 

characterized by low Au/As and Cu/As ratios, compared to the Mouska, Doyon and 

Westwood deposits. The overlap in metal ratios between the LaRonde Penna ore and 
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SMI is an indication that the volcanic rocks have had some direct influence, either 

through active degassing or passive leaching, on the ore metal content of the 

LaRonde Penna VMS system. 
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Chapter 3: Conclusions, limitations, and future work 

3.1 Key conclusions 

     The results of this study show that Bousquet Formation SMI are well preserved and 

contain important information regarding  magmatic evolution, metal tenor, volatile content, 

and P-T conditions. The key findings of this study are: 

(i) In the Bousquet Formation, only two volcanic lithologies contain appropriate SMI 

acceptable for thorough study: SMI inside magmatic quartz phenocrysts of units 2.0 

[quartz feldspar porphyry (QFP) rhyolite sills] and 5.3 rhyolite sills] (QFP rhyolite 

flows). Primary SMI are protected in phenocrysts despite recrystallization and have 

bulk compositions that are chemically and mineralogically compatible with trapped 

silicate liquids. Based on petrographic and compositional criteria, careful evaluation 

of each melt inclusion assemblage is required to distinguish true SMI from hourglass-

type inclusions and to evaluate contamination by accidental saturated phase 

entrapment or alteration by post-entrapment modification. To do this robustly, a 

combination of cathodoluminescence imaging, inclusion and host petrography 

(SEM, optical, Raman) and scrutiny of LA-ICP-MS data after single inclusion 

analysis is required. Dissemination of trace elements based on LA-ICP-MS data 

suggests that unit 2.0 SMI has ORG or WPG (anorogenic) tectonic settings, while 

unit 5.3 SMI is consistent with the classification of syn-COLG or VAG. Nonetheless, 

no SMI has trace element (Sr-Y-La-Yb) features consistent with Archean TTG, 
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indicating major compositional alteration prior to trapping (e.g., by substantial 

plagioclase fractionation and crustal contamination). 

(ii) The spectrum of major and trace elements, like ore metals, is much broader in the 

SMI, although the bulk compositions of the SMI and bulk rocks are similar and have 

comparable tectonic affinity classifications. This represents a mixture of many 

processes: differentiation (prior to entrapment and eruption), aggregation of crystals 

(diluting incompatible melt constituents in rhyolites), possibly degassing/interaction 

at depth with carbonic volatiles, and alteration/metamorphism post-solid. In this 

geological environment, metal concentrations in bulk rocks assayed are not 

indicative of the composition of the initial magmatic liquids. 

(iii) Comparative study of apatite, SMI, and bulk rock data reveals that SMI and coeval 

apatite record the crystallization of large quantities of plagioclase, K-feldspar, and 

apatite at depth prior to eruption-emplacement. SMI reported substantial rhyolite 

differentiation (at least 70-75% crystallization) over its history of entrapment, 

suggesting a long phenocryst residence at depth in a staging chamber or deeper 

source area. SMI were trapped in quartz phenocrysts at P = 10 - 13.5 kbar based on 

preliminary constraints from SMI homogenization experiments combined with Ti-

in-quartz thermometry, consistent with the expected range of early paragenesis for 

the magmas of the Mooshla Intrusive Complex. Homogenized SMI suggests that 

there was co-entrapment of an immiscible carbonic fluid (CO2-dominant), implying 

that at the time of entrapment in the phenocrysts, the melt was saturated in CO2. Due 

to their advanced age, the presence of CO2 in the SMI of the Bousquet rhyolites 

indicates that any SMI trapped in a magmatic system may potentially have CO2 as a 
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saturated phase. CO2-bearing fluids were continuously received from an external 

source by the Bousquet magmatic system, were CO2 saturated, and underwent 

constant fractionation iterations with degassing causing early removal of H2O metal-

bearing fluids. Mixing silicate melt with immiscible CO2 (e.g., derived from wall 

rocks) could have separated some ore metals from the magma prior to SMI 

entrapment. 

(iv) Unit 5.3 SMI range from 6 ppb Au (1st quartile) to 159 ppb Au (3rd quartile; n = 10) 

while unit 2.0 SMI range from 5 ppb Au (1st quartile) to 24 ppb Au (3rd quartile; n 

= 14); at these Au concentrations, a minimum of 0.5-15 km3 and 4-19 km3 rhyolitic 

magma would be needed, respectively, to obtain the Au by leaching or 

devolatilization in the LaRonde Penna VMS deposits. A conservative estimate of the 

volume of the Bousquet Formation's Upper Member is approximately ~7.5 km3. It 

is therefore possible that the rhyolitic units of the Bousquet Formation delivered 

magmatic Au to the VMS deposits (with an efficiency correction). However it is 

important to note that while these metal concentrations are well above upper crustal 

concentrations, when compared to younger, felsic magmas in arc and transitional ore-

forming environments, the Bousquet Formation rhyolitic melts were not 

exceptionally evolved or enriched in ore metals. 

(v) The existence in the SMI of both Units 5.3 and 2.0 of co-entrapped carbonic liquid 

and very low water content may mean that the ore metal content in the SMI is a 

minimum value. The lack of correlation between very strongly incompatible 

elements e.g., Cs) and ore metals (in SMI) is consistent with the disruption by 

immiscible or exsolving fluid phases of the original metal contents of the SMI. On 
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the other hand, selected metal ratios between the SMI and the LaRonde Penna deposit 

ore bodies for elements consistently enriched in the SMI (Cu/Au, Cu/As, Au/As, 

Sb/Bi) overlap, and this is unlikely to be a coincidence, indicating that these ore metal 

ratios are conservative even in the presence of saturated volatiles. In comparison to 

the Mouska, Doyon and Westwood deposits, both the SMI and ore bodies are 

distinguished by low Au/As and Cu/As ratios. The overlap between the LaRonde 

Penna ore and SMI in metal ratios is an indication that the volcanic rocks had some 

direct influence on the ore metal content of the LaRonde Penna VMS system, either 

by active degassing or passive leaching. 

3.2 Limitations and future work 

     (i) The compositional difference between melt inclusion and bulk rock geochemistry 

may be due to a method of mixing magma in either a closed system ( i.e., compositionally 

zoned magma chamber) or an open system ( i.e. mixing of two separate magma batches; 

Dietrich et al., 2000). These are possibilities which could be explored in future studies. 

     (ii) The variability in SMI compositions found in the same unit can be directly linked 

to the trapping of SMI at different times in quartz phenocrysts that were crystallised long 

before the eruption. Future work to account for this variability would be to take note of 

SMI shapes, as they may gradually shift from irregular in late-formed crystals to mature 

negative-crystal shapes in early-formed crystals (Manley, 1996; Frezzotti, 2001). 

     (iii) If the SMI devitrified, there must be assurance that the H2O peaks came from a 

glass and not from a microcrystalline K-feldspar that was devitrified. If a K-feldspar was 
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shot, a water band would be very tiny, since there is no water in a K-feldspar. This is more 

work which can be done in future studies. 

     (iv) With other techniques, like infrared, the amount of CO2 in the inclusions could be 

measured. 

     (v) Laser ablation data for zircons is complimentary to Ti in quartz because if the Ti 

values are unmixed from the host and the zircon then a pressure for the phenocryst can be 

calculated. This will allow the potential estimate of a very precise depth for the magma 

chamber from which the phenocryst came. However, there are only two good zircon signals 

collected for the current data set. Also, a different internal standard needs to be chosen for 

the zircons found in units 2.0 and 5.3. Besides Zr, Hf is the other major element that is 

present in zircon in quite high concentrations. Unfortunately, Hf was not present in the 

laser ablation element menu when the zircons were studied. Going forward, there needs to 

be a timely way that will allow estimates on the entrapment depth for the samples. 

However, zircon grains in quartz phenocrysts were not nearly as prevalent as other 

accessory minerals, like apatite. 

     (vi) Thomas et al. (2010) presented a diagram that makes use of several minerals when 

determining an exact pressure. On the diagram, there are calibration lines that represent 

values of Zr in rutile. The calibration lines intersect with lines representing Ti in quartz. 

Zirconium would not accumulate in quartz because it is quite incompatible in most rock-

forming minerals (Burnham, 2018). The Zr concentrations in rutile would be a good 

constraint; however, the rutile needles in unit 2.0 and 5.3 samples are too small to isolate 

and therefore difficult to get an accurate reading. However, measuring Ti in zircons is an 
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alternative option because there are large zircon grains present in units 2.0 and 5.3. There 

are still many samples left from these units, so a search for zircons can be conducted; even 

so, it will take time to map the grains and should be considered for future work. When more 

zircons have been mapped in the samples, Hf will be included in the laser ablation menu 

list and an internal standard for Hf can be established on the probe at Dalhousie University. 

     (vii) Zircon fractionation did not progress throughout the evolution of the magma as can 

be seen by the lack of correlation with Zr and Cs (Figure 26F). Further study looking at the 

Zr/Hf ratios of zircons in quartz diorites and gabbros of the MIC could give a better idea 

of whether there is another mineral that is fractionating U. Any mineral that fractionates U 

would result in a change in Zr/Hf ratios because Zr would be removed proportionally with 

U (Lovering and Wark, 1974; Frondel, 1975; Pearce and Cann, 1975; Williams, 1978). 

     (viii) Collection of more SEM-EDS analyses of unit 5.3 exposed types I and II SMI 

(homogenized and non-homogenized), and analyses of type III inclusions with a distinction 

made between melt + accidentally trapped minerals and hourglass inclusions. This 

distinction will allow for accidentally trapped mineral phases to be catalogued for both 

units 2.0 and 5.3. 

     (ix) Future mass-balance work: An in-depth quantitative study on the efficiency of Au 

precipitation in this type of environment and whether this volume of magma could provide 

enough Au to the LaRonde Penna VMS deposits. 

     (x) Investigate whether the Au content of the Bousquet Formation magma was 

incorporated into CO2. 



Appendix 2A - LA-ICP-MS analyses of unit 2 0 SMI
Sample (unit 2.0) 23Na2O (wt.%) 25MgO 27Al2O3 29SiO2 31P2O5 39K2O 44CaO 47TiO2 55MnO 56FeO 11B(ppm) 45Sc 51V 53Cr 59Co 62Ni 65Cu 75As 85Rb 88Sr 89Y 90Zr 93Nb 95Mo 107Ag 118Sn 121Sb 133Cs 137Ba 139La 140Ce 141Pr 146Nd 147Sm 151Eu 157Gd 159Tb 163Dy 165Ho 167Er 169Tm 172Yb 175Lu 178Hf 181Ta 182W 197Au 208Pb 209Bi 232Th 238U
3086-29-177-pheno2-melt2 1.684768164 0.85776 15.3189 70.002 <0.067 4.63345 0.21185 0.76651 0.0747 3.39518 39.9692328 51.855 11.4272 <15.6 1.37187 <40.1 74.3606 106.46 90.142 133.68 57.5232 677.056 35.8715 <1.00 16.0933 28.401 3.91493 7.24892 744.234 5.99227 13.4744 1.74872 8.99105 2.1653 0.22807 4.07593 1.35394 10.1342 2.40296 8.09451 1.09504 8.77232 1.52123 23.3363 3.32783 0.62857 <0.68 75.4622 3.84749 4.24728 0.72227
3086-29-177-pheno2-melt3 0.429737015 0.19457 18.7763 70.0016 0.04137 5.43364 0.13526 0.19737 0.01343 1.77672 13.2207266 12.5979 <0.32 <6.45 0.55463 <14.9 124.873 30.658 87.6253 44.2923 51.1743 261.443 14.3175 1.2723 4.54827 1.62286 <0.86 2.6199 494.838 33.0933 76.4737 9.29638 39.2664 10.2335 0.7187 8.62492 1.36507 8.30701 1.78591 5.72778 0.89918 7.2044 1.0753 8.11163 0.79552 <0.21 <0.24 14.1946 0.54572 4.50906 1.16072
3086-29-177-pheno3-melt3 6.249464734 0.13406 15.5729 70.0069 0.01791 1.43912 0.86175 0.21112 0.02267 2.48415 21.9372552 7.4772 0.11297 <0.50 1.07582 <1.31 <0.093 3.9684 21.1535 201.197 41.3038 470.38 20.4197 1.60765 0.82463 1.78733 0.16002 0.66213 295.388 7.83359 17.7869 2.22073 9.94961 2.49765 0.54976 2.86629 0.49414 4.4841 1.44383 6.52903 1.2396 9.79219 1.74671 13.4424 0.9808 0.842 <0.014 8.13273 0.06069 5.53709 1.41954
3086-29-177-pheno4-melt1 4.065227817 0.19707 17.2454 70.0028 0.02572 3.31558 0.68656 0.25535 0.01979 1.18643 14.0032549 15.1993 0.66151 <0.73 0.68741 <1.86 0.21829 19.339 50.6811 129.824 114.836 439.803 17.8658 1.03868 1.55966 2.7456 0.41788 1.28232 567.107 42.5513 96.3367 12.2248 51.8533 12.5921 1.7026 14.5831 2.54149 17.7913 4.15637 12.5602 1.92282 14.1234 2.22105 12.6837 0.90986 0.33611 <0.017 59.5359 0.24633 6.65145 1.76215
3086-29-177-pheno4-melt2 3.447835858 0.1444 16.4507 70.0024 0.01694 3.0386 1.11126 0.21833 0.02267 2.54684 17.2741923 n.a. n.a. n.a. n.a. n.a. 0.1321 21.096 n.a. n.a. n.a. 305.192 n.a. 1.49827 2.3551 2.36317 0.55112 1.26961 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 8.5548 0.7868 0.3113 <0.0026 n.a. 0.25519 n.a. n.a.
3086-29-188.5-pheno1-melt3 0.719472521 0.55 17.6975 70.0055 <0.028 5.66911 0.10523 0.1303 0.02529 2.09289 33.5247586 15.3102 1.55216 <10.3 1.10344 <19.4 1900.76 21.64 90.4985 36.8582 6.87025 259.465 5.90371 <0.49 4.36315 2.8619 1.07994 3.68137 782.029 <0.070 0.1086 <0.022 0.28186 <0.15 0.04896 <0.44 0.189 1.9392 0.69464 2.41313 0.37292 3.83405 0.62788 13.0341 0.49129 <0.23 <0.29 207.112 5.01105 3.91643 0.25376
3086-29-188.5-pheno4-melt1 5.827016064 0.23522 15.1784 70.0019 0.02667 0.88645 3.1088 0.16454 0.01846 1.55262 7.38753088 11.6859 0.18469 <3.33 0.94707 <5.25 <0.43 37.817 37.3225 340.576 114.14 329.833 15.4657 1.50022 0.51311 1.92708 0.37432 3.70107 289.99 46.9374 108.585 14.6109 60.1821 15.6883 1.45056 17.4725 3.15707 20.4268 5.04045 13.3109 2.22813 17.919 2.62587 13.2237 1.02653 0.3706 <0.096 87.1276 1.14236 9.01644 2.30438
3086-29-188.5-pheno4-melt2 0.319799991 1.15226 16.3202 69.9989 0.02324 5.74868 0.40809 0.17729 0.02527 2.82629 41.1046802 9.67185 0.44882 <5.16 1.9403 <8.76 <0.66 16.396 128.758 20.6887 62.1061 468.734 18.6795 1.0036 <0.30 2.86166 0.46268 4.11993 745.96 23.2175 50.8402 6.17683 26.5001 4.95506 0.09962 5.30083 0.92201 8.06565 2.31143 8.61588 1.70518 11.4143 2.08674 15.4096 1.66653 0.43095 <0.15 38.9863 0.58244 6.28697 1.90165
3086-29-188.5-pheno6-melt1 0.316776728 0.53917 17.4188 70.0018 0.01439 5.80732 0.53863 0.21821 0.04136 2.10352 33.0377449 12.2347 0.68761 <1.95 0.84019 <2.41 <0.23 112.59 68.1209 98.4276 6.52817 397.11 12.3087 <0.083 0.20222 3.52696 0.76641 3.70846 408.663 13.0599 36.3257 4.80123 19.9077 4.15504 0.30135 2.25395 0.31091 1.75427 0.41612 1.62222 0.25604 2.59227 0.52475 15.9978 0.59959 0.3289 <0.038 48.4348 3.28579 8.11741 0.62171
3086-29-188.5-pheno7-melt2 5.598437353 0.20256 15.9262 70.0001 <0.15 0.36104 3.68484 0.20271 0.02323 0.92577 <48.0 6.10411 <2.03 <48.3 <1.22 <84.5 <7.68 49.439 15.6186 501.553 124.025 241.248 3.92866 1.72722 <3.31 <9.03 <4.98 <1.76 41.0617 51.9775 113.569 16.0671 69.3737 18.2868 3.07209 25.5476 3.3381 20.2666 5.4328 9.86648 2.33119 11.6579 1.31643 13.9798 0.29379 <0.54 <1.95 120.043 <1.60 9.73926 2.26726
3086-29-188.5-pheno9-melt1 6.0155743 0.3755 15.4001 70.0006 0.04179 0.46558 3.20967 0.18134 0.01212 1.29773 <14.1 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 442.522 85.1383 335.475 n.a. 1.1898 <0.34 <1.77 <1.32 1.42654 n.a. 47.5295 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 13.0159 n.a. 13.7748 0.6211 <0.26 <0.065 n.a. <0.36 n.a. n.a.
3086-29-188.5-pheno14-melt1 4.267756906 0.15939 15.8065 70.0035 0.01595 2.47645 1.99405 0.17369 0.01832 2.08438 32.3705466 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 227.419 101.16 335.526 n.a. 1.07644 0.42791 2.03113 0.40986 3.60071 n.a. 45.1318 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 13.6304 n.a. 11.387 1.12489 0.40181 0.00482 n.a. 0.66058 n.a. n.a.
3086-29-188.5-pheno14-melt2 3.810347226 0.21634 16.4592 69.996 0.02177 2.71626 1.87838 0.18888 0.01862 1.69426 21.2226577 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 225.27 90.04 367.6 n.a. 1.54759 0.41953 2.70124 <0.43 2.41117 n.a. 37.5001 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 12.1513 n.a. 12.2637 0.87242 0.32971 <0.020 n.a. 0.81954 n.a. n.a.
3086-29-188.5-pheno14-melt3 5.204740208 0.18685 16.1105 70.0054 0.02009 1.37584 2.60504 0.18511 0.01649 1.28992 13.3385524 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 323.838 101.243 347.935 n.a. 0.63598 0.2856 <1.18 <0.75 1.5663 n.a. 32.5208 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 13.8962 n.a. 12.7564 1.00416 <0.20 <0.029 n.a. 0.69358 n.a. n.a.
3086-29-188.5-pheno14-melt4 0.32449626 0.93898 16.6558 69.9999 0.01452 5.68069 0.05798 0.2006 0.01439 3.11261 50.2426618 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 22.0569 46.1434 327.811 n.a. 1.57407 0.02831 1.44644 <0.47 3.49946 n.a. 7.68574 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 7.61997 n.a. 12.1114 1.16139 0.22202 <0.018 n.a. 0.32318 n.a. n.a.
3086-29-188.5-pheno14-melt5 6.323659337 0.22773 15.3848 70.002 0.02522 0.3035 3.20377 0.23092 0.0172 1.28122 14.2145535 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 384.55 107.561 348.683 n.a. 1.54744 0.28282 <0.71 <0.48 3.0075 n.a. 47.1689 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 14.4832 n.a. 12.9272 1.08169 0.28889 <0.018 n.a. 0.5991 n.a. n.a.
3086-29-188.5-pheno14-melt6 5.102196932 0.23479 15.9318 69.9982 0.027 1.52713 2.3669 0.21257 0.01863 1.58081 13.4624771 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 295.767 84.8064 299.365 n.a. <0.23 0.20597 1.33857 <0.43 2.20429 n.a. 38.4451 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 10.895 n.a. 9.98344 0.82427 0.14388 <0.017 n.a. 0.74189 n.a. n.a.
3086-29-188.5-pheno14-melt7 6.772797204 0.09984 16.165 69.9959 0.02157 0.31103 2.95373 0.11434 0.01243 0.55327 <9.01 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 348.829 110.683 334.585 n.a. 1.32417 0.2619 <0.74 <0.48 1.30727 n.a. 46.1579 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 13.657 n.a. 11.9679 0.59308 <0.12 <0.016 n.a. 0.31187 n.a. n.a.
3086-29-218-pheno1-melt1 6.986885892 0.2333 15.3511 69.9979 <0.025 0.64942 1.45811 0.17109 0.05518 2.08188 <7.90 5.21704 0.55399 <6.26 2.23169 <15.1 3.28094 <4.96 30.3623 81.9699 97.9989 261.091 11.5882 2.97561 0.98933 <1.07 <0.87 1.97175 285.864 51.2286 117.156 14.2764 58.8708 14.7324 1.47342 17.3039 2.85647 17.7441 3.55751 10.1035 1.71351 9.97912 1.65953 8.82616 0.62065 <0.19 <0.23 18.4517 0.29633 8.24475 1.95728
3086-29-218-pheno1-melt2 7.290806923 0.19611 15.1263 70.0008 <0.011 0.52736 1.82125 0.17072 0.0506 1.81344 9.2079739 6.56538 0.50673 <2.72 1.7203 <6.81 9.38862 <1.81 28.1166 104.106 134.292 292.536 19.8931 1.68465 0.38267 <0.51 <0.42 2.39783 394.842 68.7904 177.925 18.8072 82.4643 19.7411 1.61431 22.111 3.86763 23.8652 4.83725 14.5768 2.17872 13.6059 2.0088 8.31023 1.02594 0.26708 <0.10 24.3558 0.19216 9.73762 2.35935
3086-29-218-pheno1-melt4 7.463180367 0.1649 15.2323 70.0053 0.01072 0.609 1.2557 0.2118 0.04727 1.99978 6.56627825 5.77614 0.68634 <1.08 1.69817 <2.91 18.483 1.2779 30.3471 67.9405 93.7693 265.092 20.7517 1.43253 0.54385 1.41956 0.27185 2.43478 174.736 42.6215 95.7229 12.1794 51.4183 13.2554 1.07565 14.6468 2.44558 16.0407 3.48843 10.583 1.54856 10.6199 1.64527 8.42172 1.23936 0.26023 <0.032 20.8066 0.25883 7.09001 1.56116
3086-29-218-pheno2-melt1 6.59327428 0.19177 15.5308 69.9963 <0.040 0.34787 2.49822 0.17902 0.0429 1.58798 <13.6 1.83666 <0.61 <10.8 1.53621 <22.7 15.2179 <7.55 22.6174 134.906 91.747 355.747 8.14759 1.36053 <0.85 <1.79 <1.39 2.01536 124.291 45.2601 103.261 12.7654 55.5585 14.0018 1.47359 16.712 2.4837 17.636 3.51174 9.18663 1.65421 11.8923 1.73627 10.8846 0.49964 <0.36 <0.34 26.3224 <0.36 6.79861 1.58054
3086-29-218-pheno3-melt1 6.661300107 0.22792 15.2716 69.9993 <0.0083 0.53853 1.95523 0.20495 0.05142 2.0852 6.33430317 n.a. n.a. n.a. n.a. n.a. 11.5067 3.1949 n.a. n.a. n.a. 299.853 n.a. 1.12397 0.45524 0.88814 <0.48 1.57023 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 9.99858 0.75212 0.27598 <0.017 n.a. 0.36492 n.a. n.a.
3086-29-218-pheno4-melt1 6.338824987 0.17174 15.7263 69.9931 <0.015 0.49767 2.40952 0.16892 0.05509 1.63815 9.30232018 5.64051 0.28435 <3.27 2.33147 <8.99 29.2246 <2.40 29.453 120.754 107.276 241.973 19.2043 1.8096 0.56678 1.05606 <0.43 3.04596 124.163 54.2671 122.265 15.4076 65.2491 15.0407 0.82794 15.4186 2.67872 18.4897 3.74998 10.8895 1.71039 11.3902 1.79407 8.48751 1.03311 0.31325 <0.13 15.2232 0.23905 7.34747 1.76772
3086-29-218-pheno4-melt2 7.804574534 0.03195 15.8148 69.9949 <0.0078 0.59462 1.80118 0.08744 0.03182 0.83371 8.47142693 7.12384 0.18695 <1.85 0.38199 <5.32 7.50375 1.395 34.6919 87.0546 107.599 278.373 17.9015 2.40501 0.17253 2.06858 0.38739 2.14243 229.088 51.6143 119.288 15.1987 64.4665 16.003 0.78933 16.6593 2.83737 20.2008 4.00714 11.9661 1.87289 12.1825 1.868 9.90297 1.13546 0.27435 <0.043 13.4897 0.17005 7.84324 1.79904
3086-29-218-pheno5-melt1 1.204222295 0.50162 16.3092 69.998 0.05369 4.90258 0.37847 0.43496 0.0748 3.14253 38.2001173 n.a. n.a. n.a. n.a. n.a. 54.5092 <2.34 n.a. n.a. n.a. 948.566 n.a. 0.22306 1.33211 2.49398 0.70569 3.85757 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 24.5551 1.10788 0.43552 <0.016 n.a. 0.40816 n.a. n.a.
3086-29-278-pheno1-melt1 0.747786636 0.25689 17.3869 69.9969 0.00692 6.14613 0.32642 0.27165 0.03762 1.82283 49.7612215 n.a. n.a. n.a. n.a. n.a. 0.30334 3.6036 n.a. n.a. n.a. 381.947 n.a. 0.77714 0.04199 4.46154 0.37079 1.81183 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 16.4653 1.98742 0.20895 0.0135 n.a. <0.035 n.a. n.a.
3086-29-278-pheno1-melt2 0.177478874 0.37524 17.5509 70.0012 <0.023 6.28272 0.31675 0.30767 0.00968 1.97708 21.7687777 20.4018 1.15265 <8.09 0.41462 <14.0 31.5289 <4.82 94.4184 22.3131 134.119 380.633 12.3092 2.02048 <0.51 5.05775 <0.81 1.33121 1883.85 64.725 158.142 19.3638 82.5946 18.7957 2.90305 21.3886 3.93582 30.6792 6.45563 17.5089 2.39157 16.3715 2.9539 15.3657 0.53278 0.639 <0.21 3.90887 <0.35 12.8576 2.82416
3086-29-278-pheno2-melt1 0.393482659 0.26575 18.0446 70.0067 <0.071 5.37919 0.24783 0.30562 0.03177 2.34278 <27.6 9.39577 1.41093 <22.2 1.04463 <41.6 31.1272 <13.7 77.8805 35.6546 80.0092 405.876 17.2321 <2.05 <1.57 <3.62 <2.53 1.81504 1081.51 67.8888 132.913 17.7576 76.3955 20.1147 1.88214 17.2562 3.40323 19.9307 4.19457 10.334 1.18652 8.22943 1.29732 15.2902 0.21727 0.37885 <0.45 22.2726 <0.82 10.0291 1.55983
3086-29-278-pheno2-melt2 0.536087563 0.26783 18.0285 70.0002 <0.083 4.98687 0.51316 0.28273 0.03253 2.31659 <28.4 7.5189 <1.01 <25.5 0.86724 <58.2 31.5092 19.924 74.2999 30.8164 84.1042 351.453 12.5496 <2.08 <1.30 <4.72 <2.66 1.63899 1178.61 51.1163 114.81 14.4291 63.0883 15.5751 1.81111 13.6475 2.65622 18.4757 2.15851 7.91803 1.38599 8.49682 1.87379 14.1175 0.2664 <0.66 <0.92 26.641 <0.77 9.90531 1.7862
3086-29-278-pheno3-melt1 7.395347533 0.16391 15.2479 69.9977 <0.012 0.17465 2.55881 0.25357 0.04356 1.16512 7.08848751 4.65902 0.74222 <4.06 1.29098 <7.88 7.59296 9.9079 5.6758 121.219 94.4837 270.452 5.64226 1.34626 <0.29 1.03217 <0.42 0.69385 56.302 55.3489 126.954 16.2629 71.1821 17.6939 1.80152 18.7725 3.21092 21.1176 4.16769 11.1078 1.38908 9.20591 1.51762 10.4074 0.34578 <0.12 <0.077 23.0262 <0.11 9.6237 1.89663
3086-29-278-pheno4-melt2 0.263941656 0.41268 17.7986 69.9951 <0.093 5.52422 0.54294 0.22284 0.03688 2.22406 <36.7 7.80479 <1.03 <33.1 <0.98 <50.6 <4.29 <20.8 81.3224 19.7453 167.995 429.003 25.6584 <0.94 <2.29 <5.27 <3.13 <1.08 1693.66 77.3176 178.248 24.136 112.551 26.4985 2.35158 29.1039 3.83589 30.8169 6.50987 23.7908 2.93031 21.1916 3.10446 19.3117 1.34623 <0.84 <0.96 16.9336 <0.87 15.5794 2.90504
3086-29-278-pheno4-melt3 0.141193289 0.34942 16.7585 70.0004 <0.12 5.55668 2.09861 0.24736 0.05069 1.78087 <43.7 4.41134 <2.05 <45.5 <1.20 <97.3 23.1618 <24.8 85.5843 15.2524 6.80113 242.975 11.7423 <2.82 <3.05 <6.70 <4.21 1.89536 1565.16 <0.19 0.4122 <0.16 <0.91 <1.86 <0.32 <1.01 <0.26 <0.61 <0.16 0.98298 0.26692 5.93858 1.34169 15.9438 0.67168 <1.66 <1.13 1.33283 <1.14 2.25527 2.04697
3086-29-282-pheno1-melt1 0.526967288 0.23111 17.2898 69.9937 <0.010 4.91424 1.26121 0.2716 0.06111 2.44446 20.319403 9.02525 1.06912 <2.85 1.02533 <6.51 9.10725 3.0557 64.0997 42.447 130.142 351.591 18.1798 1.31788 0.57197 3.03226 <0.28 1.50846 572.458 57.4422 128.211 16.457 69.4809 16.9714 1.92047 18.9555 3.23136 21.5611 4.718 13.9982 2.03201 13.5818 1.94973 10.4727 0.99743 0.39556 <0.085 17.3088 0.14167 8.90649 2.10033
3086-29-282-pheno1-melt2 5.997467127 0.07007 16.7729 69.9955 <0.027 0.22229 3.20876 0.0513 0.00692 0.66476 <8.26 0.75592 <0.37 <7.19 0.70534 <20.3 10.7785 <4.28 5.51247 202.962 21.7403 248.843 0.82058 1.51551 <0.49 <1.24 <0.75 <0.330 12.2392 37.6207 75.6185 8.72901 33.3749 4.12854 <0.11 1.942 0.32268 1.97364 0.66353 2.46704 0.45266 4.92792 0.9793 8.23784 0.09673 <0.096 <0.25 1.74745 <0.21 6.23122 1.36177
3086-29-282-pheno1-melt4 5.653095519 0.1012 16.3062 69.998 0.01598 0.28533 3.17709 0.24619 0.02133 1.19557 5.14680722 11.6461 0.68009 <1.37 1.06431 <3.66 51.2325 0.8512 6.95036 169.675 128.917 183.888 11.3777 2.26124 0.10555 4.03272 <0.15 0.48313 13.9965 65.3401 146.581 18.2269 77.6919 18.774 1.50384 22.3647 3.71439 24.2782 4.99751 13.3265 1.82311 11.5879 1.63171 5.9721 0.65759 <0.038 <0.041 3.4637 <0.034 9.85736 1.8059
3086-29-282-pheno2-melt1 0.988072207 0.34426 17.3097 70.0066 <0.029 5.09218 0.49128 0.21413 0.08775 2.45426 46.975083 13.2662 <0.46 <7.86 0.47061 <23.6 <1.60 <4.77 70.9716 25.8744 273.284 378.17 22.04 <0.83 <0.67 4.27696 <0.78 1.72813 742.503 128.911 250.004 35.6707 139.619 38.6978 2.62237 43.7954 7.42623 46.8942 11.2821 27.3846 3.30665 23.3603 3.0035 12.7092 0.8097 0.49809 <0.33 23.2031 <0.23 20.3691 3.6026
3086-29-282-pheno2-melt2 2.039551355 0.37676 16.3672 70.0041 <0.0018 5.26293 0.29518 0.27611 0.05921 2.32084 187.662645 10.4308 0.38575 <0.43 1.39276 <1.24 166.514 5.787 56.3872 61.1881 3.48693 435.632 25.2349 0.17389 0.84808 3.42167 0.71609 2.37946 242.445 2.80744 4.73311 0.43986 1.52632 0.31984 0.05835 0.36412 0.07165 0.56283 0.14223 0.47041 0.09353 0.95345 0.18104 17.1131 1.59424 0.02906 <0.017 14.0211 0.11346 12.2271 0.49431
3086-29-282-pheno2-melt3 3.262389793 0.34869 15.2467 70 <0.0014 5.41608 0.23335 0.28075 0.03848 2.18268 108.745318 6.5662 0.75418 <0.37 1.23811 <0.90 687.925 5.2135 61.0838 46.7275 11.4185 390.65 33.5734 0.43117 7.57266 2.14847 0.43337 2.27393 867.705 4.08031 9.1235 0.96822 3.80776 1.08944 0.23769 1.16711 0.22864 1.70736 0.38782 1.44328 0.27656 2.31598 0.38629 14.4339 1.89811 0.03443 <0.0067 11.663 0.13368 8.6978 0.59764
3086-29-282-pheno3-melt1 5.69438172 0.12081 15.2012 70.006 <0.018 0.38965 3.88196 0.20014 0.04646 1.46538 6.39044321 2.83697 0.50523 <4.42 1.6961 <12.0 <1.04 6.1318 19.3387 113.736 110.827 26.4918 8.55235 1.55644 <0.43 2.77602 <1.05 0.9896 45.2259 56.7116 123.096 15.1818 65.9844 16.6553 1.56884 17.5103 2.75692 19.4032 3.71774 11.0473 1.25164 6.23275 0.61398 0.63275 0.74019 0.1208 <0.19 16.4958 0.27097 8.09831 0.51558
3086-29-282-pheno3-melt2 0.474783959 0.22288 17.2988 69.9999 0.01524 4.90417 1.16972 0.21441 0.05513 2.645 32.559585 7.82853 0.50894 <3.44 1.19408 <8.60 <0.62 <3.09 74.2566 63.6391 123.018 290.91 23.2655 1.52114 0.57905 7.31815 0.57871 1.89354 677.119 55.0357 120.312 15.4344 67.6483 17.2898 1.48853 18.2803 3.10887 19.6152 4.08796 12.1313 1.98586 13.8649 2.14576 10.0184 0.98676 0.58695 <0.12 18.7263 0.26577 7.80017 2.03088
3086-29-282-pheno4-melt1 5.246737851 0.20849 16.4119 69.9985 0.00585 1.47632 2.52577 0.1095 0.02399 0.99294 24.1859778 4.25328 0.47733 <0.36 0.64905 <1.00 26.0956 1.2789 25.4812 89.9657 113.507 279.493 23.0976 3.3927 0.22517 1.47696 0.2123 0.85553 100.863 4.16497 9.54725 1.19774 4.50689 1.34004 0.16727 3.50196 1.13782 13.9851 4.14137 15.1706 2.40121 16.7786 2.394 9.68337 1.67407 0.16616 0.01486 5.71063 0.06022 14.2034 2.50807
3086-29-282-pheno4-melt2 3.677837294 0.13972 16.3749 70.0047 0.00961 2.8133 1.64561 0.17383 0.04152 2.11904 30.2627906 8.84517 0.62618 <0.45 1.34654 <1.44 1.27392 1.0312 58.6063 54.9417 118.701 257.876 26.182 1.43719 0.57139 3.34331 0.21506 1.93168 558.527 56.2522 125.215 16.1079 66.9973 16.0363 1.14085 17.701 2.99041 20.1805 4.26176 13.0696 1.88121 12.9193 1.98437 8.8357 1.4477 0.4307 <0.017 9.78092 0.08057 8.37755 1.85252
3086-29-282-pheno4-melt4 3.787087669 0.13681 15.7215 69.993 0.00617 2.50428 1.95882 0.17863 0.06112 2.65254 52.9364677 11.4527 0.56228 <0.25 1.39741 <0.65 0.10489 1.9897 55.7099 60.9381 176.728 327.157 31.6898 2.43168 2.18557 4.56681 0.54197 2.79687 455.375 71.0243 168.83 20.5781 86.6562 21.42 1.32498 23.9354 4.10742 28.637 6.39276 19.7243 3.01768 20.3607 3.06279 12.127 1.75697 0.63711 0.00481 13.9287 0.1263 11.8276 2.74086
3215-166-79.3-pheno1-melt1 0.180322215 0.13576 17.1739 70.0028 0.01205 5.08459 1.93906 0.17634 0.04313 2.252 33.155867 n.a. n.a. n.a. n.a. n.a. 0.22459 8.413 n.a. n.a. n.a. 373.545 n.a. 0.42624 0.1232 3.53513 0.19353 12.4175 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 10.3481 0.7982 1.61916 0.00233 n.a. 0.07613 n.a. n.a.
3215-166-79.3-pheno1-melt2 0.213653573 0.10487 13.9451 69.9939 0.01087 4.11176 6.32379 0.11476 0.08292 2.09847 36.6360763 n.a. n.a. n.a. n.a. n.a. 17.3287 9.4106 n.a. n.a. n.a. 339.51 n.a. 0.09421 0.08627 1.56739 0.17581 13.4539 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 9.39185 0.71283 1.04183 0.00189 n.a. 0.0374 n.a. n.a.
3215-166-79.3-pheno1-melt3 0.142172255 0.17006 18.9508 70.0044 <0.016 5.61653 0.31401 0.30494 0.01848 1.4827 31.326642 14.3076 <0.27 <4.82 <0.21 <13.4 <0.93 <3.64 93.878 28.9201 144.784 452.566 11.3833 0.49214 <0.42 3.41766 <0.88 6.39747 690.029 33.6058 75.2295 10.5314 44.7556 12.8992 2.13567 14.6994 3.43962 26.4288 5.55766 15.9508 2.18477 13.9445 1.88864 13.6067 0.41733 0.39201 <0.13 2.24701 <0.17 4.82102 1.62126
3215-166-79.3-pheno1-melt4 0.312833267 0.17886 17.9633 69.9933 <0.022 5.3526 1.24991 0.3012 0.03575 1.61761 46.8122101 33.9191 <0.39 <6.50 <0.29 <23.4 1.27244 31.427 107.027 37.0868 136.285 395.195 11.3026 <0.71 <0.66 6.54027 <1.09 8.62567 808.074 43.0886 98.6127 13.4746 60.6562 15.4758 2.2622 17.1252 3.38498 23.8789 5.00108 17.185 2.50429 16.7061 2.41534 12.6925 0.41141 0.61477 <0.24 13.7667 <0.26 6.48959 1.53456
3215-166-79.3-pheno3-melt1 0.088059768 0.32314 16.8595 70.0061 0.09769 4.52773 2.36667 0.22859 0.03998 2.46252 37.0166193 n.a. n.a. n.a. n.a. n.a. 0.21322 4.4786 n.a. n.a. n.a. 224.889 n.a. 0.11911 0.02623 4.93845 0.17211 15.8386 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 6.96495 1.11703 0.53112 0.01111 n.a. 0.07802 n.a. n.a.
3215-166-79.3-pheno3-melt2 0.447003294 0.14552 17.3356 70.003 <0 00064 4.67663 2.0346 0.17239 0.05501 2.13941 37.3077546 12.2434 0.01927 <0.18 0.09806 1.91556 0.18084 15.698 82.7114 64.839 114.688 406.038 22.6906 1.40481 0.45829 2.33174 0.43925 12.8721 527.095 41.8476 97.8081 12.3505 52.9783 13.7078 1.94008 15.6305 2.69597 18.6407 4.16918 12.9769 1.96366 13.4588 2.01717 11.3348 1.13474 0.39134 <0.0042 23.1881 0.11819 5.64164 1.49299
3215-166-79.3-pheno4-melt2 0.245226806 0.18133 17.9081 69.9996 0.00344 4.85289 1.83769 0.17451 0.04244 1.75476 31.5308224 9.58064 <0.029 <0.52 0.15043 <1.72 <0.13 9.9798 82.7947 56.1409 110.669 388.233 17.8888 0.30466 0.31421 2.71535 0.28964 9.05757 488.511 39.0458 89.9204 11.1558 48.3189 12.7974 2.0059 14.6764 2.51418 17.8645 3.90388 12.6795 1.9781 13.2846 1.96148 10.8078 0.68549 3.07748 0.01759 18.2239 0.09183 5.82238 1.46063
3215-166-79.3-pheno4-melt3 1.34241774 0.12355 17.8345 69.9975 <0.017 3.38625 2.91326 0.1694 0.03284 1.22877 24.1336889 5.91189 <0.20 <5.37 <0.20 <17.4 <1.12 <3.24 58.4882 137.586 113.628 363.248 10.1834 0.51884 <0.42 1.95401 <0.66 5.10127 453.971 43.3922 100.014 12.3622 51.6414 12.4361 2.00304 14.4751 2.56078 17.567 4.05766 13.4271 2.25826 13.552 2.09859 10.6494 0.35624 0.57162 <0.15 12.0643 <0.14 6.06254 1.47958
3215-166-79.3-pheno5-melt1 0.676977875 0.31399 16.5714 69.9959 0.00849 4.60415 2.59107 0.20443 0.04695 1.98667 26.8549823 n.a. n.a. n.a. n.a. n.a. 1.13092 3.8053 n.a. n.a. n.a. 381.119 n.a. 0.62603 0.0949 9.39326 0.24949 9.1768 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 9.61135 0.86528 0.36085 0.02592 n.a. 0.05596 n.a. n.a.
3215-166-79.3-pheno6-melt1 0.447375335 0.20879 18.5608 70.0061 <0.0066 5.29699 1.0344 0.19929 0.01911 1.22939 33.5806837 10.783 <0.12 <2.03 <0.066 <6.40 <0.42 9.3497 87.9626 51.1056 39.5908 329.443 18.0488 0.18927 0.29565 3.40026 <0.26 7.0234 628.996 9.73308 25.5599 3.43227 12.7825 3.07999 0.62147 4.26456 0.77989 6.62312 1.44632 4.49077 0.78488 5.9211 1.33375 8.86782 0.68556 1.07326 <0.052 10.4043 <0.060 2.87291 0.84883
3215-166-79.3-pheno6-melt3 0.301419273 0.20716 18.8287 69.9975 <0.026 5.59378 0.54866 0.2192 0.03314 1.27336 39.7389651 14.1886 <0.44 <8.14 <0.35 <21.5 <1.71 10.555 92.2777 33.2566 148.209 492.19 13.9164 2.02821 <0.64 3.80831 <0.98 10.9719 586.711 37.8545 87.147 10.9851 51.6787 13.9676 2.40041 17.4316 3.46767 27.1505 6.09806 17.4759 2.47866 20.1555 2.8748 13.7433 0.3791 0.16672 <0.21 27.5416 <0.23 4.88421 1.62896
3215-166-79.3-pheno6-melt4 0.123588877 0.18528 19.0029 70.0029 <0.065 4.84243 1.09189 0.27573 0.0231 1.4378 <22.6 n.a. n.a. n.a. n.a. n.a. <3.82 25.464 n.a. n.a. n.a. 460.557 n.a. <1.46 <1.15 <2.83 <5.99 3.47063 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 13.8135 0.49914 0.20229 <0.14 n.a. <1.22 n.a. n.a.
3215-166-131.8-pheno1-melt2 0.224207111 0.59508 17.4024 69.9975 0.03636 5.69156 0.02872 0.2413 0.00814 2.77468 36.4107537 14.4395 <0.53 <13.9 1.0982 <33.1 <2.20 <9.35 102.751 25.7614 28.595 271.023 7.13366 0.98832 <0.92 6.77407 <1.59 5.21046 734.294 28.041 60.2687 7.47294 37.7045 7.58322 0.9892 8.2618 1.07126 6.71571 0.97976 2.83136 0.79279 6.03391 0.98332 8.01875 0.27802 0.28117 <0.46 3.54644 <0.41 5.4462 1.0305
3215-166-131.8-pheno2-melt1 0.315418467 0.65027 17.5245 70.0059 <0.025 5.50153 0.07975 0.36341 0.00804 2.52702 25.4505584 15.6224 <0.43 <10.6 0.57869 <23.6 <1.61 <6.95 90.9225 25.5187 128.055 349.718 6.05314 0.96414 <0.65 6.10507 <1.23 3.76006 881.728 17.28 41.6033 5.29939 24.1417 5.38755 1.05145 7.4474 3.33919 4.42295 5.03876 6.74087 1.32466 9.99136 2.77128 10.4265 0.67148 <0.27 <0.35 3.9187 <0.32 7.84829 1.37749
3215-166-131.8-pheno3-melt1 0.194322952 0.99421 15.4781 70.001 0.01512 5.28702 0.08611 0.24107 0.03483 4.66821 29.6963194 14.1878 0.75381 <1.03 1.29768 <2.39 0.27607 35.737 137.185 10.9587 102.19 320.219 7.89516 0.74774 0.45592 11.6658 1.1013 3.11517 415.442 20.2637 47.4628 6.34263 27.4743 7.05642 0.69458 9.59836 1.97861 15.7808 3.92922 12.5105 2.04771 13.8832 2.22714 8.69944 0.63175 0.09143 <0.026 46.1872 2.32972 2.90596 1.17263
3215-166-131.8-pheno3-melt2 0.283418502 0.21337 18.9379 69.995 <0.013 6.09243 0.10058 0.18801 0.00088 1.18477 31.8839782 n.a. n.a. n.a. n.a. n.a. 0.96187 <5.29 n.a. n.a. n.a. 23.5182 n.a. 0.19434 <0.20 14.7121 <0.93 3.20345 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.92684 0.26187 <0.053 <0.030 n.a. <0.24 n.a. n.a.
3215-166-131.8-pheno3-melt3 0.595211037 1.35624 14.064 69.9967 <0.0058 4.64673 0.04486 0.27242 0.0398 6.01082 17.409954 11.3636 0.8058 <1.95 1.9052 5.3595 <0.44 34.66 125.256 14.7542 17.8922 226.697 8.61233 <0.054 0.54586 8.5063 0.79927 4.32668 531.063 3.73075 8.94739 1.06665 4.83296 1.63393 0.16255 1.51318 0.36992 3.41717 0.61662 1.82305 0.27584 2.08037 0.3205 5.46602 0.57505 0.05963 <0.048 46.9957 0.57244 2.36653 0.6475
3215-166-131.8-pheno4-melt1 0.416903187 0.5968 17.2005 69.9962 0.01213 5.5367 0.08512 0.21235 0.01541 2.92788 27.2100142 13.9191 0.25329 0.84631 0.71115 1.02945 <0.049 14.08 90.5363 20.5915 69.0962 385.657 13.6818 0.05643 0.28836 6.01018 0.41599 2.24696 912.882 35.4791 85.0706 11.0665 46.786 11.7195 1.54423 12.472 2.00846 13.2273 2.87577 9.13855 1.39539 10.0109 1.62986 13.2981 1.00875 0.17378 <0.011 10.6945 0.09906 6.12297 1.74081
3215-166-131.8-pheno4-melt2 0.371646431 1.34726 11.1837 70.0018 0.04408 4.22415 4.96092 0.0716 0.1392 4.65564 17.6782254 n.a. n.a. n.a. n.a. n.a. 10.7128 8.927 n.a. n.a. n.a. 107.464 n.a. 0.1714 0.12904 9.95976 0.22271 3.44481 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 3.47802 0.28163 0.13411 0.04519 n.a. 0.2772 n.a. n.a.
3215-166-131.8-pheno5-melt1 0.135923596 1.12994 15.0648 69.9933 <0.019 5.13351 0.11869 0.31084 0.018 5.14889 20.7518182 38.5473 <0.29 <8.67 1.72671 <12.8 <1.20 11.455 149.784 19.7031 54.6023 159.876 12.9837 <0.44 <0.47 11.5483 <1.07 7.22728 953.165 29.5775 72.8883 9.26825 42.259 11.7318 1.86557 12.4454 1.96991 14.2136 2.82352 8.49653 1.26797 9.56406 1.26555 6.55366 0.80176 0.51562 <0.29 3.91921 <0.25 8.29102 1.03041
3215-166-131.8-pheno8-melt2 0.336350637 0.44292 17.3744 69.9942 0.33836 5.64185 0.40782 0.12139 0.01046 2.33217 28.9420079 n.a. n.a. n.a. n.a. n.a. 0.37816 7.4899 n.a. n.a. n.a. 1317.64 n.a. <0.025 bdl 11.268 <0.12 3.36697 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 39.6274 0.62732 0.46111 0.00667 n.a. 0.06776 n.a. n.a.
3215-166-131.8-pheno8-melt4 6.730254034 0.29243 14.7541 70.001 0.00741 0.79035 1.67063 0.23218 0.01553 2.50617 2.16617205 n.a. n.a. n.a. n.a. n.a. <0.032 13.281 n.a. n.a. n.a. 239.354 n.a. <0.028 0.1316 <0.048 0.40627 2.5992 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 7.93468 0.94871 0.08432 <0.0022 n.a. 0.58165 n.a. n.a.
3215-166-131.8-pheno9-melt1 0.2205529 0.28379 19.1562 69.999 0.06335 5.02795 0.06996 0.31829 0.00913 1.85175 22.6074083 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 31.8026 89.4272 339.924 n.a. 1.08343 <0.41 8.34904 <1.34 6.12693 n.a. 33.9265 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 14.1653 n.a. 12.4071 0.227 0.24866 <0.048 n.a. <0.42 n.a. n.a.
3215-166-131.8-pheno9-melt2 0.263411076 0.26784 18.8017 70.0054 0.03288 5.44961 0.12326 0.33278 0.00924 1.71387 23.110943 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 33.1206 113.97 311.918 n.a. 0.37701 <0.15 9.29688 <0.45 3.53586 n.a. 39.5871 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 16.7416 n.a. 12.0289 0.58978 0.51277 0.26802 n.a. 42.3068 n.a. n.a.
3215-166-131.8-pheno9-melt3 0.647981161 0.52055 18.2243 69.999 0.04473 4.61336 0.3279 0.29432 0.01601 2.31191 17.7159383 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 40.5346 145.778 374.277 n.a. 0.95586 <0.21 7.75822 <0.68 5.63369 n.a. 77.3713 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 18.1925 n.a. 14.9436 0.42377 0.19827 <0.029 n.a. 1.28804 n.a. n.a.
3215-166-131.8-pheno10-melt1 0.503331451 0.34043 19.2264 69.9966 0.01801 4.86031 0.08488 0.28313 0.01826 1.66863 33.5820216 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 39.9216 110.241 374.274 n.a. 1.05077 0.30592 3.72723 <0.41 2.4843 n.a. 37.6238 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 17.4934 n.a. 14.2098 0.53301 0.11661 <0.016 n.a. 2.39803 n.a. n.a.
3215-166-131.8-pheno12-melt1 3.211794994 0.98356 13.6115 69.9966 0.01417 2.59911 1.70073 0.32144 0.0176 4.54351 4.64090558 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 124.822 26.1707 128.856 n.a. 2.01999 bdl 3.72361 <0.18 7.11206 n.a. 43.5483 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 3.00956 n.a. 4.76511 0.50499 <0.049 0.03268 n.a. 0.07765 n.a. n.a.
3215-166-131.8-pheno13-melt1 1.27542312 0.86474 12.65 70.0058 0.04175 3.63867 0.29185 1.89157 0.09252 6.24762 38.1858439 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 23.3372 45.4328 272.854 n.a. 0.44883 1.70039 12.0014 2.67016 5.60009 n.a. 88.7718 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 5.35119 n.a. 6.83296 8.39966 0.78665 <0.037 n.a. 5.23122 n.a. n.a.
3215-166-131.8-pheno13-melt2 0.494464187 0.28467 18.9347 70.0023 0.03961 5.06683 0.09082 0.24853 0.01603 1.82208 31.0290557 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 41.8078 107.788 399.494 n.a. 1.41089 0.20057 4.53276 <0.94 3.10361 n.a. 41.7614 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 15.485 n.a. 14.5123 0.91613 0.19099 <0.033 n.a. 1.35858 n.a. n.a.
731-9061-U2.1(4)-pheno1-melt1 6.722163598 0.06955 14.8104 69.9998 0.03988 0.68832 1.58277 0.2226 0.03098 2.83356 12.5371044 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 290.096 188.8 49.9177 n.a. 1.74269 0.07375 4.39824 <0.23 1.47231 n.a. 65.1692 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 21.0588 n.a. 2.00795 1.43392 0.35137 <0.0081 n.a. 0.11274 n.a. n.a.
731-9061-U2.1(4)-pheno2-melt1 7.736112004 0.00371 14.5102 70.0056 0.02674 0.03118 0.9969 0.16882 0.01872 3.50196 <15.3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 284.317 192.229 432.488 n.a. 1.48464 <0.33 <2.04 <1.23 0.35267 n.a. 52.4379 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 24.5255 n.a. 18.2488 1.79486 0.31111 <0.044 n.a. 0.40397 n.a. n.a.
731-9061-U2.1(4)-pheno2-melt2 7.071200471 0.15182 16.1235 69.9995 0.03684 1.32056 0.90825 0.18529 0.01947 1.18361 <23.6 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 269.11 220.852 445.715 n.a. 1.2223 <0.44 <2.77 <1.68 1.13466 n.a. 56.5451 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 23.2512 n.a. 17.8291 1.28637 <0.38 <0.066 n.a. <0.50 n.a. n.a.
731-9061-U2.1(4)-pheno2-melt3 8.56780712 0.13991 15.544 69.9978 0.01815 0.43666 0.70216 0.14783 0.01924 1.42644 10.6682223 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 209.128 245.447 373.557 n.a. 1.52278 <0.20 3.29066 <0.81 1.18479 n.a. 64.6874 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 28.8106 n.a. 16.7198 2.1141 0.47695 <0.029 n.a. <0.22 n.a. n.a.
731-9061-U2.1(4)-pheno3-melt2 7.110437744 0.03473 14.8104 69.9962 0.02595 0.61108 0.87085 0.1967 0.01505 3.3286 <6.28 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 234.909 144.934 402.3 n.a. 0.24794 bdl 2.03185 <0.46 0.18052 n.a. 51.672 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 18.7417 n.a. 16.5826 1.87918 0.51067 0.01888 n.a. 0.18255 n.a. n.a.
731-9061-U2.1(4)-pheno4-melt1 7.656943246 0.02875 15.525 70.0006 0.01819 0.74172 0.76437 0.16993 0.02173 2.07281 10.6150413 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 157.127 202.656 411.19 n.a. 1.39249 bdl 3.05915 0.11176 0.25679 n.a. 58.2418 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 23.9166 n.a. 16.512 1.04774 0.15824 <0.0048 n.a. 0.22477 n.a. n.a.
731-9061-U2.1(4)-pheno5-melt1 7.784275424 <0.0017 14.7795 70.0007 0.02637 0.05598 1.34868 0.19341 0.03107 2.77936 <19.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 158.017 193.593 423.14 n.a. 0.56585 <0.36 2.48532 <1.22 <0.25 n.a. 58.4223 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 23.2402 n.a. 17.5528 1.4268 <0.17 <0.042 n.a. <0.39 n.a. n.a.
731-9061-U2.1(4)-pheno5-melt2 8.052642485 <0.0012 14.8463 69.9964 0.05077 0.00907 0.97248 0.33229 0.02949 2.7105 <16.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 131.314 151.319 307.805 n.a. 1.44669 <0.33 <1.92 <1.03 <0.19 n.a. 44.4448 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 16.6077 n.a. 12.0172 1.513 0.16316 <0.043 n.a. <0.34 n.a. n.a.
731-9061-U2.1(4)-pheno5-melt3 8.2731066 0.05915 15.8725 69.9997 <0.033 0.03109 1.27727 0.20533 0.03163 1.23087 <27.4 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 152.045 209.847 403.406 n.a. 1.50434 <0.48 <2.91 <1.63 <0.34 n.a. 55.512 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 27.1044 n.a. 15.1211 1.5563 0.46737 <0.10 n.a. <0.49 n.a. n.a.
731-9061-U2.1(4)-pheno6-melt1 8.775190768 0.12366 16.5349 70.0055 0.03486 0.05589 0.51821 0.04441 0.01226 0.89516 <21.0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 159.483 173.35 422.055 n.a. 0.78812 0.13074 2.8324 <1.20 0.40572 n.a. 37.9712 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 25.0828 n.a. 20.6729 0.10641 <0.27 <0.051 n.a. <0.44 n.a. n.a.
731-9061-U2.1(4)-pheno6-melt2 8.201921855 0.11686 15.0866 69.997 0.0281 0.05181 0.90106 0.14422 0.03201 2.44042 22.5110836 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 136.28 170.756 389.936 n.a. 1.35632 bdl 3.07347 <0.22 0.31516 n.a. 54.7015 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 24.2153 n.a. 18.0131 1.32422 0.09669 <0.0091 n.a. 0.12242 n.a. n.a.
731-9061-U2.1(4)-pheno6-melt3 9.597921355 <0.0025 16.8123 69.9951 <0.043 0.02029 0.42364 0.06582 0.00136 0.04107 <32.7 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 184.591 77.337 353.554 n.a. <1.01 <0.57 <3.65 <2.15 <0.33 n.a. 59.8372 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 10.8587 n.a. 20.5493 1.86674 <0.22 <0.076 n.a. <0.68 n.a. n.a.
731-9061-U2.1(4)-pheno6-melt4 9.047565012 0.04248 16.5204 69.9986 <0.037 0.06388 0.65843 0.05006 0.01688 0.57525 <26.8 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 158.632 123.274 560.1 n.a. 0.59065 <0.46 3.71044 <1.77 <0.37 n.a. 36.1897 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 19.1124 n.a. 24.6014 0.69681 0.15905 <0.066 n.a. <0.56 n.a. n.a.
731-9061-U2.1(4)-pheno6-melt5 8.570192508 0.15546 15.3009 69.9991 <0.028 0.04917 0.46072 0.28424 0.02521 2.13679 22.1471012 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 165.98 154.537 420.088 n.a. 1.12421 <0.38 <2.30 <1.31 <0.23 n.a. 35.9146 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 23.8409 n.a. 20.4142 2.33446 0.60586 <0.051 n.a. <0.43 n.a. n.a.
731-9061-U2.1(5)-pheno1-melt1 8.43713423 <0 00092 15.4752 70.0063 <0.011 0.06291 0.53566 0.23165 0.01601 2.22726 <9.80 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 136.56 125.182 368.713 n.a. 1.32982 0.02484 <0.75 <0.50 0.282 n.a. 21.273 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 14.1205 n.a. 12.3382 1.15076 0.1948 <0.024 n.a. 0.21326 n.a. n.a.
731-9061-U2.1(5)-pheno2-melt1 8.646999919 0.07336 16.2483 69.9938 0.0252 0.15628 0.57095 0.21189 0.01486 1.05844 <6.22 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 131.145 145.776 395.596 n.a. 0.93293 bdl 0.87979 <0.32 0.50727 n.a. 34.7757 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 15.4519 n.a. 13.8548 1.04537 0.07383 <0.015 n.a. 0.22037 n.a. n.a.
731-9061-U2.1(5)-pheno2-melt2 8.334465926 0.13603 16.4513 69.9986 0.02322 0.03796 0.55135 0.17836 0.01935 1.26932 <12.7 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 125.21 132.679 390.239 n.a. 1.22869 <0.19 <1.04 <0.61 0.26256 n.a. 30.9612 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 13.7925 n.a. 12.7749 0.90354 0.25505 <0.027 n.a. 0.21314 n.a. n.a.
731-9061-U2.1(5)-pheno3-melt1 8.39371601 0.07849 16.4271 69.999 0.02281 0.26462 0.75208 0.1362 0.01208 0.9139 <9.28 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 148.584 188.359 453.802 n.a. 1.04325 <0.13 <0.69 <0.41 0.53288 n.a. 42.4976 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 17.4876 n.a. 15.9712 1.0199 0.18481 <0.019 n.a. 0.16905 n.a. n.a.
731-9061-U2.1(5)-pheno3-melt2 8.461227924 0.27518 15.5293 69.9949 0.01537 0.55106 0.30803 0.15185 0.01367 1.69941 <9.58 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 78.5486 166.277 423.99 n.a. 1.59344 <0.12 <0.71 <0.45 0.84502 n.a. 46.1905 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 17.6881 n.a. 13.1748 1.1972 0.34556 <0.022 n.a. <0.14 n.a. n.a.
731-9061-U2.1(5)-pheno3-melt3 7.541199368 0.17517 15.5117 69.9942 0.01439 0.38327 1.41591 0.18825 0.02239 1.7535 <6.68 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 213.462 225.013 378.736 n.a. 1.01974 <0.091 3.21395 <0.35 0.93751 n.a. 48.8853 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 21.9844 n.a. 13.8443 1.11121 0.11609 <0.015 n.a. 0.10619 n.a. n.a.
731-9061-U2.1(5)-pheno4-melt1 8.027446767 0.00072 15.7851 69.9942 0.0252 0.03783 1.11787 0.18448 0.01695 1.81013 8.13405679 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 233.06 177.714 360.079 n.a. 1.66625 bdl 1.69085 <0.29 0.07415 n.a. 55.1809 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 18.2143 n.a. 11.6436 1.2151 0.16132 <0.014 n.a. 0.10806 n.a. n.a.
731-9061-U2.1(5)-pheno4-melt2 7.527586017 <0.0011 14.6596 69.9971 0.02546 0.03434 0.90946 0.1958 0.02109 3.62932 <12.8 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 218.235 155.364 318.057 n.a. 1.01609 bdl 1.18928 <0.64 0.16252 n.a. 35.4312 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 15.3594 n.a. 11.1664 0.70752 0.31363 <0.028 n.a. <0.16 n.a. n.a.
731-9061-U2.1(5)-pheno4-melt3 7.544680439 0.07606 15.4394 70.0047 0.02477 0.04046 1.10482 0.24841 0.03376 2.48287 14.8267155 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 166.136 163.387 390.985 n.a. 1.72123 bdl 2.35001 <0.53 0.19191 n.a. 39.646 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 16.201 n.a. 12.7489 1.23115 0.16631 <0.022 n.a. <0.17 n.a. n.a.
731-9061-U2.1(5)-pheno5-melt1 8.007232662 0.02769 14.9547 69.9951 0.01818 0.04991 0.76187 0.15639 0.01719 3.01177 4.76272801 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 141.493 172.948 380.011 n.a. 1.12831 bdl 1.87509 <0.16 0.21438 n.a. 41.7546 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 18.5939 n.a. 12.7482 1.41174 0.31996 <0.0068 n.a. 0.11518 n.a. n.a.
731-9061-U2.1(5)-pheno5-melt2 7.326929337 0.00683 13.495 70.0057 0.01356 0.04642 0.47878 0.0194 0.01018 5.59719 <11.2 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 117.519 73.6552 334.777 n.a. 0.95616 <0.14 0.85016 <0.58 0.16846 n.a. 6.79577 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 9.27498 n.a. 11.8464 0.90892 0.26236 <0.024 n.a. 0.1578 n.a. n.a.
minimum 0.088059768 0.00072 11.1837 69.993 0.00344 0.00907 0.02872 0.0194 0.00088 0.04107 2.16617205 0.75592 0.01927 0.84631 0.09806 1.02945 0.10489 0.8512 5.51247 10.9587 3.48693 23.5182 0.82058 0.05643 0.02484 0.85016 0.11176 0.07415 12.2392 2.80744 0.1086 0.43986 0.28186 0.31984 0.04896 0.36412 0.07165 0.56283 0.14223 0.47041 0.09353 0.95345 0.18104 0.63275 0.09673 0.02906 0.00189 1.33283 0.0374 2.25527 0.25376
maximum 9.597921355 1.35624 19.2264 70.0069 0.33836 6.28272 6.32379 1.89157 0.1392 6.24762 187.662645 51.855 11.4272 0.84631 2.33147 5.3595 1900.76 112.59 149.784 501.553 273.284 1317.64 35.8715 3.3927 16.0933 28.401 3.91493 15.8386 1883.85 128.911 250.004 35.6707 139.619 38.6978 3.07209 43.7954 7.42623 46.8942 11.2821 27.3846 3.30665 28.8106 3.10446 39.6274 8.39966 3.07748 0.26802 207.112 42.3068 20.3691 3.6026



Appendix 2B - LA-ICP-MS analyses of unit 5 3 SMI
Sample (unit 5.3) 23Na2O (wt.%) 25MgO 27Al2O3 29SiO2 31P2O5 39K2O 44CaO 47TiO2 55MnO 56FeO 11B(ppm) 45Sc 51V 53Cr 59Co 62Ni 65Cu 75As 85Rb 88Sr 89Y 90Zr 93Nb 95Mo 107Ag 118Sn 121Sb 133Cs 137Ba 139La 140Ce 141Pr 146Nd 147Sm 151Eu 157Gd 159Tb 163Dy 165Ho 167Er 169Tm 172Yb 175Lu 178Hf 181Ta 182W 197Au 208Pb 209Bi 232Th 238U
3215-161-493-pheno1-melt1 0.510876337 0.50172 17.5247 70.0047 <0.018 5.15337 1.7694 0.28881 0.01632 1.23081 31.5876788 0.71514 4.62062 <5.95 0.50638 <13.2 <0.90 5.00698 120.425 94.9503 30.2783 146.201 10.7622 0.91919 <0.43 <0.95 <0.67 2.06393 1720.74 66.4766 122.559 12.2027 40.348 6.42194 0.99923 5.24764 0.54288 4.43041 1.14311 4.26539 0.72843 4.66654 0.88142 5.25106 0.61179 0.83377 <0.21 10.5692 0.33613 20.1225 5.11469
3215-161-493-pheno1-melt2 0.109413458 0.57403 17.8846 69.9934 <0.023 5.7336 1.00218 0.36136 0.01704 1.32582 40.9805073 3.10187 3.81754 <7.27 0.76785 <16.1 <1.24 <4.84 159.723 56.3392 41.9951 125.15 8.5701 2.52473 <0.40 1.46663 <0.81 2.57697 1786.62 82.5699 149.979 15.4011 51.1261 8.57339 1.34738 4.43121 0.80437 6.49578 1.74734 5.12334 0.94026 6.02828 0.73197 5.45005 0.66798 0.54038 <0.21 10.4952 19.4906 23.6484 5.64571
3215-161-493-pheno1-melt4 0.860974746 0.44003 17.9414 70.0039 0.03714 4.45672 1.97648 0.25397 0.01215 1.01728 35.4929365 n.a. n.a. n.a. n.a. n.a. <0.37 <2.65 n.a. n.a. n.a. 174.054 n.a. 1.92278 <0.097 0.44368 <0.44 2.24416 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 5.80461 0.65426 0.5166 <0.016 n.a. 0.22567 n.a. n.a.
3215-161-493-pheno2-melt1 0.130786416 0.84916 17.9634 69.9934 0.0054 6.33643 0.12889 0.14569 0.01275 1.43405 43.4267158 2.04653 4.51911 <1.59 0.42992 <3.56 0.46157 2.5672 146.633 18.8419 21.872 254.643 4.72613 2.07679 <0.13 0.73933 <0.17 8.49924 1573.62 74.1333 156.122 15.5838 50.5095 8.55858 1.17203 6.04399 0.8455 4.31976 0.90437 2.65451 0.48953 3.50691 0.55949 7.84407 1.7046 0.11331 0.11537 3.90296 <0.042 9.45126 4.34284
3215-161-493-pheno2-melt3 0.131477394 0.45717 17.5351 70.0027 0.01175 5.71547 1.36523 0.2591 0.02007 1.50191 35.7164533 4.04679 4.75046 <0.97 0.29742 <1.74 0.26272 1.84808 132.061 92.7924 52.0102 107.772 15.1447 1.75707 <0.046 1.1907 <0.10 16.15 1695.3 94.8476 183.873 17.5802 56.974 8.3502 1.47117 6.53336 1.04518 7.44258 1.94052 6.43654 1.12133 7.95598 1.13365 3.79992 1.02102 0.90435 <0.018 13.0522 0.44807 27.54 7.99703
3215-161-493-pheno3-melt2 0.573402403 0.49759 18.1218 69.9947 <0.0073 5.24883 1.20952 0.3372 0.01108 1.01018 36.0914046 2.88298 4.57992 <2.24 0.27473 <5.12 <0.29 20.0169 121.162 89.1633 25.4458 130.163 15.2166 <0.069 <0.17 1.06071 <0.24 3.38582 1745.41 55.1931 101.791 10.5377 32.2215 4.91818 0.84586 3.50839 0.52334 4.83361 0.87976 2.70338 0.44885 3.65593 0.47281 4.44324 0.84938 0.6328 <0.081 16.188 0.11012 15.7077 4.65957
3215-161-493-pheno3-melt3 1.455374303 0.36512 17.5798 69.9961 <0.014 4.19949 2.30861 0.2658 0.01155 0.81681 44.9977361 2.60968 3.55008 <4.43 0.33823 <11.6 <0.72 24.1147 97.1995 166.83 27.9138 181.294 11.8159 <0.34 <0.26 <0.74 <0.55 2.08576 1352.55 64.6378 118.957 11.1958 38.0248 5.86298 1.00154 4.68682 0.86672 4.61599 1.0288 3.00868 0.44936 3.60961 0.52071 6.14662 0.81492 0.6724 <0.10 23.9765 0.37902 17.9326 4.31287
3215-161-493-pheno4-melt1 1.296891661 0.36524 17.0632 70.0035 <0.029 3.91054 3.06009 0.2341 0.01467 1.03588 44.2209631 0.79206 3.83654 <11.4 <0.344 <18.3 3.86951 <6.67 93.3956 197.414 40.2462 168.747 10.3915 2.78288 <0.72 <1.67 <0.99 1.89326 1334.21 99.5416 182.628 18.6166 62.048 11.0747 1.51607 6.76933 0.8593 7.77321 1.45832 5.69138 0.91227 5.5721 0.99688 8.25111 0.85693 0.65791 <0.29 18.8966 <0.33 31.3651 7.07133
3215-161-493-pheno4-melt2 0.735518817 0.44302 17.3778 70.0015 0.02918 4.94166 2.08548 0.26753 0.01363 1.1046 36.8762613 0.59928 3.52625 <9.53 <0.204 <17.5 <1.06 <5.98 114.018 127.798 23.037 137.083 13.3866 1.98179 <0.62 <1.37 <0.98 1.55779 1711.68 51.5316 100.944 9.66691 32.7029 4.96457 0.72449 3.72553 0.47828 3.46584 0.78653 2.64803 0.47448 3.5196 0.61041 5.84631 1.0773 0.62206 <0.22 16.7562 <0.27 15.9461 4.19125
3215-161-493-pheno4-melt3 0.072384536 0.58321 17.6254 69.9943 <0.064 6.16458 0.85348 0.3385 0.01467 1.36859 62.7331314 <1.13 2.25963 <27.1 <0.630 <42.8 <2.62 <15.5 136.667 50.5371 25.2466 115.7 6.57102 1.00103 <1.67 <3.65 <2.58 2.16816 1782.55 63.3936 116.217 12.2489 40.6824 2.58095 0.60391 4.86012 0.82907 4.22307 1.38688 2.47529 0.50942 6.37084 0.55707 6.09033 0.4157 <0.64 <0.60 7.92148 <0.72 21.5427 3.88406
3215-161-493(2)-pheno1-melt1 0.625844884 0.47749 18.1794 69.9986 0.03456 4.54584 1.81418 0.28821 0.01367 1.02218 27.2374334 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 103.249 24.0768 169.348 n.a. 2.15678 <0.14 <0.61 <0.49 1.62161 n.a. 55.1336 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 3.28045 n.a. 4.75478 0.74391 0.6261 <0.037 n.a. 0.18231 n.a. n.a.
3215-161-493(2)-pheno1-melt2 0.108533562 0.59116 18.4758 69.9986 0.04796 5.4853 0.6646 0.40415 0.01279 1.21109 <24.2 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 36.4176 32.0124 136.336 n.a. 1.72314 <0.70 <3.32 <2.44 2.28752 n.a. 60.9396 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 3.88861 n.a. 4.49396 0.30027 <0.55 0.41457 n.a. <0.57 n.a. n.a.
3215-161-493(2)-pheno2-melt2 0.186287523 0.65197 17.7629 69.9938 0.0254 5.84713 0.87733 0.31033 0.02117 1.32373 37.8793401 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 61.6669 29.2619 121.328 n.a. 1.30548 <0.12 0.94853 0.56038 2.64777 n.a. 85.3939 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 2.73767 n.a. 3.92925 0.7539 0.76517 0.31048 n.a. <0.11 n.a. n.a.
3215-161-493(2)-pheno2-melt4 1.072963628 0.41017 18.0205 70.0015 0.03527 3.71199 2.67863 0.27434 0.00925 0.78534 20.6115739 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 173.28 26.5587 135.782 n.a. 1.7346 <0.18 <0.95 <0.59 1.26965 n.a. 56.1884 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 2.73235 n.a. 3.93783 0.67706 0.32842 <0.026 n.a. <0.17 n.a. n.a.
3215-161-493(2)-pheno2-melt6 0.103486785 0.6891 17.5311 69.9964 0.03435 5.42764 1.55034 0.31184 0.02514 1.33057 33.4141719 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 18.7644 1.80642 125.436 n.a. 1.67714 <0.41 <2.08 <1.36 2.24718 n.a. 3.6223 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0.83137 n.a. 3.06636 0.94408 0.30777 <0.056 n.a. <0.37 n.a. n.a.
3215-161-493(2)-pheno2-melt8 0.111963716 0.58353 18.4187 70.0014 <0.025 5.46551 0.86578 0.32987 0.01444 1.1863 <18.3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 50.1223 36.1448 168.237 n.a. 0.99245 <0.38 <2.11 <1.37 2.0633 n.a. 62.534 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 4.81696 n.a. 5.91909 0.96066 0.60283 <0.052 n.a. <0.38 n.a. n.a.
3215-161-493(6)-pheno1-melt1 0.978649522 0.381 17.3502 70.0003 0.0533 4.75705 2.09886 0.24199 0.01872 1.11993 81.6131104 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 123.728 38.312 151.198 n.a. 2.02178 0.13785 1.12677 0.63178 2.64633 n.a. 94.2583 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 7.07517 n.a. 6.63186 1.55605 0.88694 <0.0075 n.a. 0.45759 n.a. n.a.
3215-161-493(6)-pheno1-melt2 0.141945286 1.38544 16.4153 70.003 0.03111 6.03844 0.41853 0.22477 0.03047 2.311 75.9256942 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 18.9266 8.10979 135.113 n.a. 2.46156 0.00364 0.95075 <0.15 5.37191 n.a. 14.5025 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.95068 n.a. 6.14246 1.17313 0.45024 0.00442 n.a. <0.045 n.a. n.a.
3215-161-493(6)-pheno1-melt3 0.364381595 0.4974 17.2935 69.9962 <0.076 4.61751 2.2142 0.27085 0.03114 1.70696 <58.2 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 114.07 164.125 95.2923 n.a. 4.72573 <1.17 <5.63 <3.94 2.50752 n.a. 355.75 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 20.723 n.a. 5.01133 0.68045 <0.67 <0.14 n.a. <1.29 n.a. n.a.
3215-161-493(6)-pheno1-melt4 0.667894421 0.47738 17.8032 70.0065 0.08236 5.27815 1.29888 0.2634 0.01072 1.11155 52.2306987 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 88.3704 22.5029 243.013 n.a. 1.55947 <0.36 <2.17 <1.45 1.9141 n.a. 52.6133 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 4.83652 n.a. 10.2662 2.03688 1.00357 <0.050 n.a. <0.41 n.a. n.a.
3215-161-493(6)-pheno1-melt5 1.275677878 0.44762 18.5714 70.0062 0.04137 4.2097 1.33268 0.27173 0.00818 0.83545 58.6636384 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 133.385 <0.051 161.907 n.a. 1.59453 <0.20 <1.27 <0.73 2.03615 n.a. <0.015 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.15149 n.a. 7.1385 1.42483 0.84257 <0.030 n.a. <0.25 n.a. n.a.
3215-161-493(6)-pheno1-melt6 1.919225102 0.32838 17.8053 69.9963 <0.015 3.47 2.47159 0.24272 0.01072 0.74814 48.6100435 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 205.702 23.1721 100.874 n.a. 2.20668 0.16076 <1.21 <0.73 1.74708 n.a. 58.6556 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 3.9197 n.a. 4.70316 0.72813 0.62712 <0.027 n.a. <0.23 n.a. n.a.
3215-161-493(6)-pheno1-melt7 0.09884275 1.81074 14.9737 70.0025 0.02372 5.01568 2.1842 0.22364 0.05681 2.61018 49.4589602 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 23.553 3.12181 179.871 n.a. 1.86771 <0.20 <1.17 <0.79 5.39818 n.a. 38.332 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 1.72559 n.a. 7.67512 0.99441 0.22719 <0.026 n.a. <0.24 n.a. n.a.
3215-161-493(6)-pheno1-melt8 0.145634874 0.73018 17.7689 69.9963 0.07013 6.03206 0.66121 0.26537 0.01553 1.31472 73.7599433 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 18.1835 8.77349 220.887 n.a. <0.047 <0.069 0.57037 0.2564 2.85059 n.a. 206.715 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 2.73038 n.a. 10.1611 1.15426 0.51691 <0.0090 n.a. <0.081 n.a. n.a.
3215-161-493(6)-pheno2-melt1 1.198820229 0.32568 17.2455 69.9955 0.04076 3.79573 3.05635 0.21955 0.02054 1.10159 36.8121391 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 176.352 42.0551 120.972 n.a. <0.098 <0.059 0.78667 0.39976 1.83457 n.a. 97.3724 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 6.11542 n.a. 4.08051 0.87747 0.84384 <0.0078 n.a. 0.31458 n.a. n.a.
3215-161-493(6)-pheno2-melt2 1.074429304 0.39955 17.2227 70.001 0.04038 3.89239 3.06327 0.24796 0.01615 1.04212 30.2091441 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 180.971 36.3481 151.502 n.a. 1.47177 <0.10 0.81271 0.34079 1.44652 n.a. 74.5429 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 5.76718 n.a. 6.01845 0.82083 0.87478 <0.013 n.a. 0.28979 n.a. n.a.
3215-161-493(6)-pheno2-melt3 1.005290599 0.40697 17.7359 69.9971 0.03882 4.65351 1.78017 0.27724 0.01637 1.0887 38.1875381 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 113.207 30.0114 156.581 n.a. 2.07182 bdl 0.65542 0.44119 1.77966 n.a. 76.5336 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 3.8717 n.a. 5.63968 1.3422 0.85895 <0.014 n.a. 0.26254 n.a. n.a.
3215-161-493(6)-pheno2-melt4 1.114339576 0.41805 17.6684 69.9989 0.08537 3.62511 2.8135 0.24932 0.01314 1.01386 28.9910843 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 179.679 52.4488 219.648 n.a. 1.04134 <0.25 <1.61 <0.95 1.6358 n.a. 120.985 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 6.84372 n.a. 8.67206 0.91805 0.62866 <0.035 n.a. <0.31 n.a. n.a.
3215-161-493(6)-pheno2-melt5 0.816311694 0.47592 17.3224 70.0037 0.02756 4.4576 2.49059 0.25953 0.01562 1.13071 26.9153052 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 138.814 27.9882 132.477 n.a. 2.19892 <0.13 1.5084 <0.46 1.74797 n.a. 59.7772 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 4.11769 n.a. 3.32394 0.60106 0.54032 <0.016 n.a. <0.14 n.a. n.a.
3215-161-493(6)-pheno2-melt6 1.061561509 0.37513 17.3468 70.0028 0.03308 4.22273 2.62227 0.22368 0.02135 1.09061 43.3150561 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 151.938 42.7459 131.622 n.a. 1.69407 0.00075 0.91926 0.38242 1.75269 n.a. 104.183 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 5.85059 n.a. 4.65117 0.93022 0.73558 <0.0052 n.a. 0.30621 n.a. n.a.
3215-161-493(6)-pheno3-melt1 1.167555747 0.38398 17.4069 69.9993 0.04109 3.56962 3.31271 0.25833 0.01062 0.84986 35.1997414 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 209.416 34.8278 147.572 n.a. 2.39547 <0.26 <1.61 <1.05 1.41069 n.a. 82.8735 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 5.80027 n.a. 5.38562 0.55626 0.72287 <0.042 n.a. <0.33 n.a. n.a.
3215-161-493(6)-pheno3-melt2 0.105282271 0.55737 17.747 70.0033 0.06632 5.83209 0.96982 0.29777 0.01603 1.40493 48.1864147 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 59.7832 40.5202 75.9383 n.a. 0.93019 <0.37 <2.48 <1.37 2.41269 n.a. 85.9629 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 7.36301 n.a. 6.73491 0.73743 0.77031 <0.058 n.a. <0.49 n.a. n.a.
3215-161-493(6)-pheno4-melt1 0.787038686 0.41978 17.3576 70.0007 0.04096 4.32209 2.70892 0.23749 0.01944 1.10593 37.1933765 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 144.644 43.8434 181.407 n.a. 2.54288 <0.069 0.61422 0.2882 1.51195 n.a. 99.4525 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 6.28456 n.a. 5.99014 0.88763 0.82844 <0.010 n.a. 0.2409 n.a. n.a.
711-7200-U5.3(4)-pheno1-melt1 3.615036842 0.19515 14.4137 69.9932 0.04511 6.80869 0.49121 0.1834 0.02172 1.23277 93.6060103 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 575.034 22.4849 114.97 n.a. 1.54147 0.22335 1.12797 1.88619 5.92905 n.a. 56.817 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 3.82451 n.a. 5.26867 1.88079 0.74034 0.00185 n.a. 0.27332 n.a. n.a.
711-7200-U5.3(4)-pheno1-melt2 4.567359241 0.21571 14.9764 69.9973 0.04036 5.55235 0.32722 0.18543 0.02163 1.11626 108.448716 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 382.732 19.3796 116.797 n.a. 1.93719 2.8678 1.16092 2.26519 5.56 n.a. 63.6114 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 3.69805 n.a. 5.0658 1.78878 0.82365 <0.012 n.a. 0.15751 n.a. n.a.
711-7200-U5.3(4)-pheno1-melt3 4.630890473 0.18531 14.6716 69.997 0.03271 5.99864 0.38164 0.20582 0.01668 0.87969 93.3090034 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 359.44 19.4955 123.257 n.a. 2.04083 0.18006 1.19301 1.84381 5.69727 n.a. 57.3172 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 3.88636 n.a. 5.7572 1.98022 0.76162 <0.010 n.a. 0.24262 n.a. n.a.
711-7200-U5.3(4)-pheno2-melt1 0.12507006 0.29895 13.5659 69.9995 0.04418 11.7212 0.08016 0.14128 0.02019 1.00356 28.0120389 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 122.925 14.8267 109.049 n.a. 1.77169 <0.44 <2.92 <1.66 4.47008 n.a. 45.2315 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 3.05144 n.a. 4.75403 0.1144 <0.17 <0.10 n.a. <0.51 n.a. n.a.
711-7200-U5.3(4)-pheno2-melt2 0.1399016 0.2639 13.8971 70.0036 0.06399 11.5539 0.14982 0.13094 0.01158 0.78526 <18.6 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 212.878 10.9119 104.869 n.a. 1.55355 <0.36 <2.34 <1.33 3.55632 n.a. 47.2836 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 2.06144 n.a. 5.87242 0.95941 0.19846 <0.051 n.a. <0.44 n.a. n.a.
711-7200-U5.3(4)-pheno2-melt3 1.269786835 0.49953 12.1892 69.9979 0.05865 9.67033 0.4637 0.3562 0.05814 2.43656 57.745902 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 405.153 29.027 146.655 n.a. 2.32413 0.34639 1.57351 1.85381 3.00386 n.a. 174.925 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 3.94334 n.a. 6.56054 3.48714 1.80562 0.16158 n.a. 0.04679 n.a. n.a.
711-7200-U5.3(4)-pheno3-melt1 0.296254477 0.18603 13.7263 69.9975 0.04197 11.9522 0.08306 0.01758 0.01241 0.68672 51.3974075 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 171.189 15.3525 98.4915 n.a. 1.74394 0.16628 <1.08 1.19623 4.6207 n.a. 49.8893 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 2.24114 n.a. 3.49998 0.32888 0.25924 <0.028 n.a. <0.20 n.a. n.a.
711-7200-U5.3(4)-pheno3-melt2 0.533406473 0.2498 13.4616 70.002 0.0641 11.4667 0.11158 0.17503 0.01477 0.921 42.7756739 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 198.128 17.8961 115.304 n.a. 1.47245 <0.38 <2.32 <1.34 5.47473 n.a. 47.2162 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 2.25106 n.a. 4.47541 1.32168 0.22852 <0.049 n.a. <0.44 n.a. n.a.
711-7200-U5.3(4)-pheno3-melt3 0.253188413 0.32935 13.5164 69.997 0.04877 11.4689 0.13624 0.13614 0.02105 1.09304 39.1366809 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 173.433 15.7012 140.619 n.a. 1.47981 <0.33 <1.68 <1.13 3.89443 n.a. 61.9089 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 2.59712 n.a. 4.99737 0.54127 0.18634 <0.045 n.a. <0.32 n.a. n.a.
711-7200-U5.3(4)-pheno4-melt1 0.323374286 0.22926 13.3737 69.9988 0.04396 11.6982 0.19371 0.19577 0.01821 0.92495 77.4605107 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 420.179 16.8047 99.6624 n.a. 1.89507 0.10499 0.9472 1.56613 5.94071 n.a. 64.3214 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 2.83574 n.a. 4.27774 1.49703 0.54403 <0.011 n.a. 0.16364 n.a. n.a.
711-7200-U5.3(4)-pheno4-melt2 0.801534283 0.10875 13.6082 69.9968 0.05655 11.5109 0.22676 0.10048 0.00634 0.58375 71.6698408 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 398.696 22.8754 113.391 n.a. <0.093 <0.15 1.45484 <0.50 6.10921 n.a. 72.6987 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 3.68475 n.a. 4.96649 1.10373 0.22165 0.02356 n.a. <0.16 n.a. n.a.
711-7200-U5.3(4)-pheno4-melt3 2.326077685 0.18201 13.7717 69.9992 0.04937 9.00632 0.32483 0.17225 0.02209 1.14625 54.6857283 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 626.734 25.0817 88.8004 n.a. 1.81495 0.09303 0.97158 1.38084 4.65256 n.a. 81.7461 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 2.95189 n.a. 3.8308 1.30831 0.81963 0.00485 n.a. 0.17906 n.a. n.a.
711-7200-U5.3(4)-pheno4-melt4 1.132451057 0.15636 13.0981 70 0.04344 11.3806 0.27947 0.16988 0.01758 0.72204 57.5957003 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 563.156 21.6213 119.071 n.a. 1.99962 0.19577 0.88721 0.68767 5.48432 n.a. 48.8908 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 3.75209 n.a. 5.46133 1.68995 0.38225 0.01115 n.a. 0.32405 n.a. n.a.
711-7200-U5.3(4)-pheno4-melt5 4.229041019 0.2103 14.484 69.9969 0.04305 6.59625 0.32731 0.19355 0.01794 0.90168 64.5385702 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 277.76 23.7827 122.795 n.a. 1.14761 0.17077 1.55403 0.71389 4.58272 n.a. 60.7161 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 4.32005 n.a. 5.52599 1.79791 0.38791 0.15099 n.a. 0.7765 n.a. n.a.
711-7200-U5.3(4)-pheno4-melt6 0.475498664 0.2362 12.994 70.0002 0.03374 12.0744 0.15546 0.17782 0.02212 0.83054 53.9901 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 151.258 23.037 118.981 n.a. 1.60835 <0.19 <1.17 <0.71 4.87052 n.a. 65.5991 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 3.73985 n.a. 5.39579 0.82133 0.57007 <0.027 n.a. <0.23 n.a. n.a.
711-7200-U5.3(4)-pheno4-melt7 0.317025169 0.20973 13.4842 69.9931 0.0516 11.8849 0.11557 0.16236 0.01218 0.76937 35.9052233 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 189.214 20.105 132.306 n.a. 1.43736 <0.46 <2.47 <1.59 3.62826 n.a. 8.18252 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 3.90732 n.a. 5.00285 1.19609 <0.37 <0.071 n.a. <0.45 n.a. n.a.
minimum 0.072384536 0.10875 12.1892 69.9931 0.0054 3.47 0.08016 0.01758 0.00634 0.58375 20.6115739 0.59928 2.25963 0 0.27473 0 0.26272 1.84808 93.3956 18.1835 1.80642 75.9383 4.72613 0.91919 0.00075 0.44368 0.2564 1.26965 1334.21 3.6223 100.944 9.66691 32.2215 2.58095 0.60391 3.50839 0.47828 3.46584 0.78653 2.47529 0.44885 0.83137 0.47281 3.06636 0.1144 0.11331 0.00185 3.90296 0.04679 9.45126 3.88406
maximum 4.630890473 1.81074 18.5714 70.0065 0.08537 12.0744 3.31271 0.40415 0.05814 2.61018 108.448716 4.04679 4.75046 0 0.76785 0 3.86951 24.1147 159.723 626.734 164.125 254.643 15.2166 4.72573 2.8678 1.57351 2.26519 16.15 1786.62 355.75 183.873 18.6166 62.048 11.0747 1.51607 6.76933 1.04518 7.77321 1.94052 6.43654 1.12133 20.723 1.13365 10.2662 3.48714 1.80562 0.41457 23.9765 19.4906 31.3651 7.99703
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Appendix 3A - LA-ICP-MS analyses of titanium in quartz phenocrysts of unit 2.0
Sample 47Ti (ppm) aT (°C) bT (°C) Sample 47Ti (ppm) aT (°C) bT (°C) Sample 47Ti (ppm) aT (°C) bT (°C) Sample 47Ti (ppm) aT (°C) bT (°C)
3086-19-278-pC-ap1 80.2 653 809 3086-29-218-pheno4-melt2 73.5 644 799 3215-166-131.8-pheno4-melt1 70.4 640 794 731-9061-U2.0(4)-pheno2-melt1 73.8 645 800
3086-29-177-pheno1-melt1 42.9 595 741 3086-29-218-pheno5-melt1 133 705 870 3215-166-131.8-pheno4-melt2 56.2 619 770 731-9061-U2.0(4)-pheno2-melt2 69.7 639 793
3086-29-177-pheno2-melt1 202 754 927 3086-29-278-pA-ap1 140 711 877 3215-166-131.8-pheno5-melt1 71.2 641 795 731-9061-U2.0(4)-pheno2-melt3 81.7 655 811
3086-29-177-pheno2-melt2 86.6 660 818 3086-29-278-pB-ap1 140 712 878 3215-166-131.8-pheno6-melt1 79.4 652 808 731-9061-U2.0(4)-pheno2-quartz 80.0 653 809
3086-29-177-pheno2-melt3 61.7 628 780 3086-29-278-pD-ap1 75.2 647 802 3215-166-131.8-pheno7-melt1 1.80 386 497 731-9061-U2.0(4)-pheno3-melt2 67.2 636 789
3086-29-177-pheno2-melt4 97.7 673 832 3086-29-278-pheno1-melt1 70.0 640 794 3215-166-131.8-pheno8-melt1 72.1 642 797 731-9061-U2.0(4)-pheno3-quartz 72.5 643 797
3086-29-177-pheno3-melt1 98.8 674 834 3086-29-278-pheno1-melt2 67.1 636 789 3215-166-131.8-pheno8-melt2 73.2 644 799 731-9061-U2.0(4)-pheno4-melt1 76.0 647 803
3086-29-177-pheno3-melt2 75.4 647 802 3086-29-278-pheno2-melt1 105 680 841 3215-166-131.8-pheno8-melt3 57.2 621 771 731-9061-U2.0(4)-pheno4-quartz 95.1 670 829
3086-29-177-pheno3-melt3 85.0 659 816 3086-29-278-pheno2-melt2 86.5 660 818 3215-166-131.8-pheno9-melt1 88.0 662 820 731-9061-U2.0(4)-pheno5-melt1 75.5 647 802
3086-29-177-pheno4-melt1 123 697 861 3086-29-278-pheno3-melt1 94.6 669 828 3215-166-131.8-pheno9-melt2 114 688 851 731-9061-U2.0(4)-pheno5-melt2 81.4 654 811
3086-29-177-pheno4-melt2 123 697 860 3086-29-278-pheno4-melt1 26.5 555 695 3215-166-131.8-pheno9-melt3 87.3 661 819 731-9061-U2.0(4)-pheno5-melt3 60.1 625 777
3086-29-188.5-pheno13-melt1 80.2 653 809 3086-29-278-pheno4-melt2 96.2 671 830 3215-166-131.8-pheno9-quartz 92.5 667 826 731-9061-U2.0(4)-pheno5-quartz 80.4 653 809
3086-29-188.5-pheno13-quartz 80.0 653 809 3086-29-278-pheno4-melt3 67.2 636 789 3215-166-79.3-pheno1-melt1 65.7 634 786 731-9061-U2.0(4)-pheno6-melt1 73.8 645 799
3086-29-188.5-pheno14-melt1 92.8 667 826 3086-29-282.7-pA-a1 119 693 856 3215-166-79.3-pheno1-melt2 80.7 653 810 731-9061-U2.0(4)-pheno6-melt2 72.2 643 797
3086-29-188.5-pheno14-melt2 83.7 657 814 3086-29-282.7-pB-a1 95.2 670 829 3215-166-79.3-pheno1-melt3 59.9 625 776 731-9061-U2.0(4)-pheno6-melt3 75.9 647 803
3086-29-188.5-pheno14-melt3 89.3 664 822 3086-29-282-pheno1-melt1 101 676 836 3215-166-79.3-pheno1-melt4 79.3 652 808 731-9061-U2.0(4)-pheno6-melt4 58.0 622 773
3086-29-188.5-pheno14-melt4 86.2 660 817 3086-29-282-pheno1-melt2 81.2 654 810 3215-166-79.3-pheno2-melt2 77.9 650 806 731-9061-U2.0(4)-pheno6-melt5 59.5 624 776
3086-29-188.5-pheno14-melt5 99.0 674 834 3086-29-282-pheno1-melt4 111 686 848 3215-166-79.3-pheno2-melt3 69.5 639 793 731-9061-U2.0(4)-pheno6-quartz 68.7 638 791
3086-29-188.5-pheno14-melt6 87.9 662 820 3086-29-282-pheno1-melt6 107 682 843 3215-166-79.3-pheno3-melt2 69.7 639 793 731-9061-U2.0(4)-pheno6-quartz2 75.0 646 801
3086-29-188.5-pheno14-melt7 92.9 668 826 3086-29-282-pheno2-melt1 65.0 633 785 3215-166-79.3-pheno4-melt2 64.7 632 785 731-9061-U2.0(5)-pheno1-melt1 94.9 670 829
3086-29-188.5-pheno14-quartz 84.0 657 814 3086-29-282-pheno2-melt2 66.7 635 788 3215-166-79.3-pheno4-melt3 60.6 626 778 731-9061-U2.0(5)-pheno1-quartz 91.6 666 825
3086-29-188.5-pheno14-quartz2 86.5 660 818 3086-29-282-pheno2-melt3 84.1 658 815 3215-166-79.3-pheno5-melt1 50.3 609 758 731-9061-U2.0(5)-pheno2-melt1 81.1 654 810
3086-29-188.5-pheno1-melt1 70.1 640 794 3086-29-282-pheno3-melt1 83.5 657 814 3215-166-79.3-pheno5-melt2 7.87 469 594 731-9061-U2.0(5)-pheno2-melt2 75.0 646 801
3086-29-188.5-pheno1-melt2 64.3 632 784 3086-29-282-pheno3-melt2 103 678 838 3215-166-79.3-pheno6-melt1 65.3 633 786 731-9061-U2.0(5)-pheno2-quartz 71.8 642 796
3086-29-188.5-pheno1-melt3 46.8 603 750 3086-29-282-pheno4-melt1 69.7 639 793 3215-166-79.3-pheno6-melt3 50.3 609 758 731-9061-U2.0(5)-pheno2-quartz2 82.2 655 812
3086-29-188.5-pheno3-melt2 122 697 860 3086-29-282-pheno4-melt2 79.9 652 809 3215-166-79.3-pheno6-melt4 68.8 638 791 731-9061-U2.0(5)-pheno3-melt1 77.8 650 805
3086-29-188.5-pheno3-melt3 119 694 857 3215-166.131.8-pheno10-quartz 95.3 670 829 731-9061-U2(3)-p1-ap1 93.0 668 826 731-9061-U2.0(5)-pheno3-melt2 77.1 649 804
3086-29-188.5-pheno4-melt1 72.3 643 797 3215-166-131.8 92.2 667 825 731-9061-U2(3)-p1-zr1 74.6 646 801 731-9061-U2.0(5)-pheno3-melt3 85.9 660 817
3086-29-188.5-pheno4-melt2 73.6 644 799 3215-166-131.8-pheno10-melt1 103 678 839 731-9061-U2(3)-p1-zr2 74.4 645 800 731-9061-U2.0(5)-pheno3-quartz 78.4 651 806
3086-29-188.5-pheno5-melt1 65.2 633 786 3215-166-131.8-pheno12-melt1 92.0 667 825 731-9061-U2(3)-p2-ap1 100 675 835 731-9061-U2.0(5)-pheno4-melt1 78.1 650 806
3086-29-188.5-pheno6-melt1 75.4 647 802 3215-166-131.8-pheno12-quartz 84.4 658 815 731-9061-U2(3)-p3-ap1 97.8 673 832 731-9061-U2.0(5)-pheno4-melt2 76.4 648 803
3086-29-188.5-pheno6-melt2 69.7 639 793 3215-166-131.8-pheno13-melt1 121 695 858 731-9061-U2(3)-p3-ap2 84.5 658 815 731-9061-U2.0(5)-pheno4-melt3 81.9 655 811
3086-29-188.5-pheno7-melt1 62.6 629 781 3215-166-131.8-pheno13-melt2 106 681 842 731-9061-U2(3)-p3-ap3 64.4 632 784 731-9061-U2.0(5)-pheno4-quartz 87.1 661 819
3086-29-188.5-pheno7-melt2 86.0 660 817 3215-166-131.8-pheno13-quartz 98.4 673 833 731-9061-U2(3)-p4-ap1 84.4 658 815 731-9061-U2.0(5)-pheno5-melt1 86.9 661 818
3086-29-188.5-pheno8-melt1 72.9 644 798 3215-166-131.8-pheno13-quartz2 96.5 671 831 731-9061-U2(3)-p5-ap1 83.8 657 814 731-9061-U2.0(5)-pheno5-melt2 68.6 638 791
3086-29-188.5-pheno8-melt2 119 694 857 3215-166-131.8-pheno14-melt3 85.5 659 816 731-9061-U2(3)-p6-ap1 97.6 673 832 731-9061-U2.0(5)-pheno5-melt3 36.5 581 725
3086-29-188.5-pheno8-quartz 87.0 661 818 3215-166-131.8-pheno14-quartz 80.0 653 809 731-9061-U2(3)-p7-ap1 81.0 654 810 731-9061-U2.0(5)-pheno5-quartz 82.6 656 812
3086-29-188.5-pheno9-melt1 107 682 843 3215-166-131.8-pheno14-quartz2 78.7 651 807 731-9061-U2(4)-pA-zr1 92.8 667 826 quartz-pheno1-3086-29-188.5 86.8 661 818
3086-29-188.5-pheno9-quartz 100 675 835 3215-166-131.8-pheno1-melt1 63.9 631 783 731-9061-U2(4)-pB-ap1 87.7 662 819 quartz-pheno2-3086-29-218 101 676 836
3086-29-218-pheno1-melt1 87.5 661 819 3215-166-131.8-pheno1-melt2 79.8 652 808 731-9061-U2(4)-pB-ap2 83.6 657 814 quartz-pheno2-3086-29-278 102 677 837
3086-29-218-pheno1-melt2 99.9 675 835 3215-166-131.8-pheno2-melt1 69.6 639 793 731-9061-U2(4)-pC-ap1 94.1 669 828 quartz-pheno2-3086-29-282 102 677 838
3086-29-218-pheno1-melt3 75.8 647 803 3215-166-131.8-pheno2-melt2 88.2 662 820 731-9061-U2(4)-pD-quartz 92.1 667 825 quartz-pheno3-3086-29-177 80.1 653 809
3086-29-218-pheno1-melt4 94.4 669 828 3215-166-131.8-pheno2-melt3 91.1 666 824 731-9061-U2(4)-pE-ap1 98.0 673 833 quartz-pheno3-3086-29-177 82.0 655 812
3086-29-218-pheno2-melt1 107 682 844 3215-166-131.8-pheno3-melt1 92.0 667 825 731-9061-U2(4)-pF-ap2 86.1 660 817 quartz-pheno4-3086-29-177 103 678 839
3086-29-218-pheno3-melt1 112 687 849 3215-166-131.8-pheno3-melt2 82.4 655 812 731-9061-U2.0(4)-pheno1-melt1 88.9 663 821 quartz-pheno4-3086-29-188.5 70.3 640 794
3086-29-218-pheno4-melt1 84.0 657 814 3215-166-131.8-pheno3-melt3 91.8 666 825 a At 6.5 kbar.
a At 6.5 kbar. b At 13.5 kbar.
b At 13.5 kbar.



Appendix 3C - LA-ICP-MS analyses of titanium in quartz phenocrysts of unit 5.3
Sample 47Ti (ppm) aT (°C) bT (°C) Sample 47Ti (ppm) aT (°C) bT (°C)
3215-161-493(2)-pheno1-melt1 149 718 885 3215-161-493-pheno4-melt2 87.9 662 820
3215-161-493(2)-pheno1-melt2 160 726 895 3215-161-493-pheno4-melt3 94.4 669 828
3215-161-493(2)-pheno2-melt1 138 710 875 711-7200(2)-p1-a1 89.5 664 822
3215-161-493(2)-pheno2-melt2 138 709 875 711-7200(2)-p1-quartz 72.4 643 797
3215-161-493(2)-pheno2-melt4 125 699 863 711-7200(2)-p2-a1 138 709 875
3215-161-493(2)-pheno2-melt6 119 693 856 711-7200(2)-p2-quartz 125 699 863
3215-161-493(2)-pheno2-melt8 119 694 857 711-7200(2)-p3-a1 105 680 841
3215-161-493(2)-pheno2-melt9 164 729 898 711-7200(2)-p4-quartz 117 691 854
3215-161-493(3)-p1-a1 15.5 515 648 711-7200(2)-p5-a1 78.8 651 807
3215-161-493(3)-p2-a1 117 691 854 711-7200(2)-p5-quartz 106 681 842
3215-161-493(3)-p3-a1 118 692 855 711-7200(3)-p1-a1 116 691 854
3215-161-493(3)-p3-quartz 118 692 855 711-7200(3)-p1-quartz 126 700 864
3215-161-493(6)-pheno1-melt1 104 679 840 711-7200(3)-p2-a1 108 683 844
3215-161-493(6)-pheno1-melt2 90.8 665 824 711-7200(3)-p3-a1 173 735 905
3215-161-493(6)-pheno1-melt3 97.8 673 832 711-7200(3)-p4-a1 141 712 878
3215-161-493(6)-pheno1-melt3 124 698 862 711-7200(3)-p5-a1 125 699 863
3215-161-493(6)-pheno1-melt4 109 684 845 711-7200(3)-p5-quartz 134 706 871
3215-161-493(6)-pheno1-melt6 106 681 842 711-7200(3)-p6-a1 164 729 898
3215-161-493(6)-pheno1-melt7 88.1 662 820 711-7200(3)-p7-a1 148 718 885
3215-161-493(6)-pheno1-melt8 93.3 668 827 711-7200(4)-pheno1-melt2 122 696 859
3215-161-493(6)-pheno2-melt1 106 681 842 711-7200(4)-pheno1-melt3 111 686 848
3215-161-493(6)-pheno2-melt2 121 695 859 711-7200(4)-pheno1-quartz 110 686 847
3215-161-493(6)-pheno2-melt3 123 697 861 711-7200(4)-pheno2-melt1 87.0 661 818
3215-161-493(6)-pheno2-melt4 128 701 865 711-7200(4)-pheno2-melt2 105 681 841
3215-161-493(6)-pheno2-melt5 121 695 858 711-7200(4)-pheno2-melt3 112 687 849
3215-161-493(6)-pheno2-melt6 141 712 878 711-7200(4)-pheno2-quartz 107 682 843
3215-161-493(6)-pheno3-melt1 94.5 669 828 711-7200(4)-pheno2-quartz2 110 685 846
3215-161-493(6)-pheno3-melt2 96.2 671 830 711-7200(4)-pheno3-melt1 103 678 839
3215-161-493(6)-pheno3-melt3 103 678 839 711-7200(4)-pheno3-melt2 107 682 843
3215-161-493(6)-pheno4-melt1 103 679 839 711-7200(4)-pheno3-melt3 104 680 840
3215-161-493(7)-p1-a1 116 691 853 711-7200(4)-pheno3-quartz 108 683 844
3215-161-493(7)-p2-quartz 122 696 859 711-7200(4)-pheno3-quartz2 107 682 843
3215-161-493(7)-p3-a1 101 677 837 711-7200(4)-pheno4-melt1 110 685 847
3215-161-493-pheno1-melt1 104 679 840 711-7200(4)-pheno4-melt2 119 693 856
3215-161-493-pheno1-melt2 98.4 673 833 711-7200(4)-pheno4-melt3 118 693 855
3215-161-493-pheno1-melt4 119 693 856 711-7200(4)-pheno4-melt4 112 687 849
3215-161-493-pheno2-melt1 114 689 851 711-7200(4)-pheno4-melt5 106 681 842
3215-161-493-pheno2-melt2 130 703 868 711-7200(4)-pheno4-melt6 98.2 673 833
3215-161-493-pheno2-melt3 114 689 851 711-7200(4)-pheno4-melt7 114 689 851
3215-161-493-pheno3-melt2 131 704 869 711-7200(4)-pheno4-quartz 83.0 656 813
3215-161-493-pheno3-melt3 101 677 837 quartz-pheno4-3215-161-493 104 679 840
3215-161-493-pheno4-melt1 101 676 836
a At 6.5 kbar.
b At 13.5 kbar.
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